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1. Introduction 

Surface girders are a group of structures (or structural members) which are 

characterized by some similarity of shapes, i.e. three dimensional by nature members 

have got one of their dimensions significantly smaller than two others. This dimension, 

usually called “thickness” is in case of technical applications of theory of surface 

girders at least one order smaller (i.e. 10 times) smaller than dimensions measured in 

other perpendicular directions. Considering the working characteristics of these 

structures they are usually divided into: slabs, plates and surfaces. Slabs and plates are 

structures that ignoring the thickness may be treated as planar elements, while surfaces 

are curved elements. 

Slabs are structures loaded in their planes, so the state of stresses occurring in 

them can be treated with high accuracy as planar in case they are “thin enough”. When 

we deal with massive (“thick”) slab we often can simplify the analysis of the state of 

strain assuming that this is a 2D state which simplifies the calculations. In both cases a 

slab can be considered as a two dimensional structure which decreases the number of 

the needed components of state of strain or stress.   

A plate, though externally similar to a slab, yet it is loaded perpendicularly to its 

surface which produces its state of strain called bending. In the theory of thin plates 

there have been introduced assumptions similar in their nature to the theory of beams, 

i.e. assumption on straight normals to the surface before deflection which after 

deformation (bending of the plate) remain straight and normal to the deflected surface. 

This simplification proposed by Kirchhoff and Love is widely applied in engineering 

and contributes to simplification of essential equations needed to solve the states of 

stress and strain. 

A surface is a structure which on the grounds of its curvature is usually 

subjected to compression and tension, as well as to bending. It is obviously much more 

complicated problem to obtain needful components of states of stress and strain in this 

case than for slabs or plates. This is why there are usually applied specific methods for 

specific cases of Surface geometry, i.e. cylindrical, revolutionary or surfaces in 

membrane state, which again lets the limitation of the effort needed for problem 

solution. 
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We will try to present the simplest approaches to solution of the problem of 

surface girders statics. There will be shown methods used in analyses of such structures 

and many examples of solution for specific engineering problems. We will discuss 

analytical and numerical methods used nowadays in engineering practice. Special 

attention will be paid to the issue of plate bending, which is essential in the process of 

civil engineering structures design and additionally profitable from the point of view of 

teaching and comparison of different computational methods. 

At the end of this introduction, we should comment on the term in the title of 

this book “Surface Girders” which rather does not occur in English literature, but a 

compact and well characterizing the described structures’ work. It is generally exact 

translation of the term proposed by Witold Nowacki in the tile of his Polish book 

„Dźwigary powierzchniowe”, which may heve been inspires by other well-known book 

„Fläschentragwerke” by Karl Girkmann. In English literature there is usually employed 

term “Theory of plates and shells” – e.g. famous book by Stephen Timoshenko and S. 

Woinowsky-Krieger. The term „slab” for compressed plates is also rarely used, but we 

have decided to use it consistently to distinguish bended plates from compressed slabs. 

The contents of this book mostly consist of the material used by the authors 

during lectures and classes conducted at the Faculty of Civil Engineering and 

Architecture of Lublin University of Technology over the period 2000-2012. 
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2. Theoretical Background – Introduction to Theory of 

Elasticity 

Here we will present a few basic assumptions and theorems of mechanics which 

will be used in the subsequent chapters of this book. 

2.1. Assumptions regarding the linear model of a structure 

 In this chapter and some subsequent ones we will be dealing with linear 

problems of mechanics. This means that the process of structural deformation can be 

written by linear differential equations. It involves the following consequences: 

 Displacements of structure points which appear during deformation are small. Linear 

displacements are considerably smaller than the characteristic dimension of a 

structure (for example, the deflection of a beam is a few hundredths times smaller 

than its length) and angles of rotation are considerably smaller than one (for 

example, a nodal angle of rotation is smaller than 0.01 rad). 

 Strains are small. It enables the relationship between strains and displacements to be 

expressed with the help of linear equations. 

 The material is linear elastic which means that it satisfies Hook’s law. 

It may seem that such limits which are put on both geometry of a structure and 

material characteristics strongly restrict the application of the model. In effect these 

limits are realized for many structures (they can refer to most of them), so the range of 

usage of the model is very wide. The reader should know this when he proceeds with 

the description of any real problem in terms of mechanics equations. 

2.2. Stresses and strains 

 We will denote components of the stress tensor traditionally as it occurs 

in most books on the finite element method. This means that components of direct stress 

will be denoted by letters x , y , z   and components of shear stress by xy , xz , yz 

(Eqn. 2.1a). Because of the symmetry of the stress tensor (xy=yx, xz=zx, yz=zy) 

[Fung], [Timoshenko, Goodier], we will use only six components which when 

presented in a column matrix form the stress vector (Eqn 2.1b): 
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Denoting the components of the strain tensor traditionally (Eqn.2.2a) we assume 

the following definitions: 
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where ,,, zyx   are the components of direct strain (unit elongation) and 

yzxzxy  ,,  the components of shear strain (they are the angles of the non-dilatation 

strain), ux, uy, uz are the components of the displacement vector in the cartesian 

coordinate system. 

 We write the components of strain in the form of a column matrix - the 

strain vector (Eqn. 2.2b):  
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(2.3) 

 

 We simplify the calculation of the internal work W if we take the 

components of the strain vector  (the angles of the volumetric strain) instead of usual 

tensor definitions: 

 
VV

VVW dd εDεεσ
TT , 

(2.4) 

where V  means the volume of a body. 
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2.3. Constitutive equations 

As we have noted in our introductory assumptions, the relationship between the 

components of the stress tensor and the components of the strain tensor (that is, between 

 and  in our notation) is expressed by the linear equation: 

,εDσ   (2.5) 

,1
σDε  

 
(2.6) 

where D is the square matrix with dimensions 6×6 containing the material 
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(2.7) 

where  and  are the Lamé constants. 

Since some other material constants like Young’s modulus - E and Poisson’s 

ratio  are more often used, in practice we present the relationships between them and 

the Lamé constants by the following formulae: 
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The Lamé constant  is noted by the letter G and is called Kirchhoff’s (or shear) 

modulus. 

The inverse matrix D
-1

 with the material constants has an unusually simple 

structure which is best shown by means of the constants E, : 
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It should be noted that matrix D is symmetrical which means that the 

dependence D=D
T
 occurs. This dependence will often be used in conversions. 

2.4. Plane stress 

In two-dimensional problems of thin plates, the following simplification of the 

assumption is: 

0,0,0  zyzxz   
(2.10) 

which leads to the plane stress criterion. 

If we put equation 1.10 into equation 1.5 taking into consideration data from 

equation 1.7 we obtain: 
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In plane stress, the dimensions of the stress and strain vectors and the matrix of 

the material constants are reduced by half and thus: 
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2.5. Plane strain 

In problems regarding deformations of massive buildings, the plane strain 

criterion is often found and it is expressed by the equations: 

0,0,0  zyzxz   (2.15) 
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When we insert the above equations into 1.6 taking also into consideration 1.9 we get 

the following relations: 

 yxz   ,   0zx ,   0zy  (2.16) 

This is called the plane strain. 

 After taking into consideration the above equations 1.15 and 1.16, we can 

notice that the relationship between the reduced stress and strain vectors 1.12 leads to 

the following matrix of elastic constants: 

  


























2

21
00

01

01

211 






E
D , (2.17) 














































1

2
00

01
1

0
1

1

1 2
1

E
D . (2.18) 

  



8 

 

3. Theory of Slabs 

The 2D element can be defined as a solid of which one dimension (thickness) is 

considerably smaller than the two others and whose middle plane (the surface parallel to 

both external surfaces of an element) is a plane (Fig. 3.1). A plate element has also such 

a shape but the 2D element differs from a plate the way it is loaded. The 2D element can 

be loaded only with the load acting in its plane and by the temperature dependent upon 

the x and y coordinates. On the other hand, the plate can be loaded with a force 

perpendicular to its surface or any temperature field. Plate elements will be discussed in 

the following chapter. 

a)    

b)   

Fig. 3.1. The exemplary application of a 2D element. 
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When external surfaces of a 2D element are free and this element is thin enough 

(Fig. 3.1a), we can assume that 0,0,0  zyzxz   in reference to the whole 

thickness of the element. Then it is said that this is a plane stress problem. The thinner 

the 2D element (comp. Nowacki (1979), Timoshenko and Goodier (1962)), the better 

the approximation is. Hence only the components of stress shown in Fig. 3.2 are non-

zero.  

 

Fig. 3.2. Stress tensor components in plane stress. 

With regard to the symmetry of a stress tensor components of shear stress xy  

and yx  are equal, thus we have three independent components of stress which we 

compose in the stress vector: 
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A completely different case occurs when the component LZ in Fig. 3.1b is very 

significant, that is h<<LX, LY, LZ, and the support and load conditions are constant along 

the axis which is perpendicular to the element. The structure satisfying these conditions 

can also be analysed by applying plane state which in fact is plane strain. Since the 

cross dimension of the structure shown in Fig. 3.1b prevents the structure deformation 

in the direction perpendicular to the cross section, the thin layer cut out from this 

structure is in the state described by the equation:  

0,0,0  zyzxz  . (3.2) 
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0z  comes from the above equations, but the first equation allows to 

calculate the component 
z  on the basis of two other components of a direct stress. 

Thus, we have 

 
yxz   , (3.3) 

which allows to limit the number of searched components of the stress vector to three 

components given in Eqn. (3.1) 

We also group independent components of the strain tensor in a column matrix 

which we have called a strain vector: 
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There is a relationship between vectors σ and ε described by constitutive 

equations whose form depends on the model of the material which the structure is made 

of. In this book we deal only with elastic isotropic materials which obey Hook’s law. 

Hence we can write the constitutive equation as follows: 

,εDσ   (3.5) 

where D is a square matrix containing material elastic constants described in Chapter 2. 

For plane stress, the matrix D has the form written by Eqn. (2.13). Plane strain 

requires another matrix for elastic constants which is described by Eqn. (2.17). 

3.1. Geometric relationships 
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Some known relations exist (Timoshenko and Goodier (1962)) between the 
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which can be presented in the form: 

ε=D u(x,y),   
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where D is the matrix of differential operators. 

3.2. Equilibrium equations 

Let us consider equilibrium of infinitely small part of a slab with dimensions 

dx × dy and Thickness b (Fig. 3.3). Assuming plane state of stress and consequently 

constant stresses at the plate thickness, we can write down equilibrium equations: 
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Fig. 3.3. Stress components and body forces in infinitesimal slab element. 
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The third equation is fulfilled automatically by assuming the stress tensor 

symmetry (xy=yx). Calculating the limit of the relation (3.11) at the dimensions of the 

element approaching zero (dx → 0, dy → 0) we obtain differential equilibrium equations: 
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System of two equations (3.12) contains three unknown components of stress 

vector which imposes the need of additional relation combining the quantities we want 

to find. It can be delivered by so-called compatibility condition, which utilizes the 

combination of three components of stress vector and two components of displacement 

vector through (3.6) the stress-strain constitutive relation (2.5). This method leading to 

the classical solution of the plane stress state with use of Airy's stress function will be 

shown in the next chapter. 

Another method is writing down equilibrium equations (3.12) in such a way that 

the unknown quantities are components of displacement vector. Thanks to constitutive 

relations at the assumption of plane stress state, we obtain (comp.[Fung]): 

,0
1

1

,0
1

1

2

2







































































y

yx
y

x

yx
x

F
y

u

x

u

y
uG

F
y

u

x

u

x
uG









 (3.13) 

where G is shear modulus (2.8), and 
2
 is Laplace operator: 
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Assumption of plane strain results in the following form of equations: 
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Comparison of relations (3.13) and (3.15) leads to the conclusion that after 

replacement of Poisson’s coefficient by ν' = ν/(1ν) in equations (3.15) we obtain 

relations (3.13). It allows simple conversion of the solutions obtained for plane stress 

into plane strain and other way around. 

3.3. Compatibility equations 

Condition of strain compatibility is resulting from relations (2.2), which define 

components of small strain tensor and vector. In case of plane strain we have: 
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In case of plane stress the relations are slightly different: 

 , 
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(3.17) 

Common for both plane states is dependence of components of stress and strain 

only on two coordinates x, y. Because 3 independent components of strain tensor are 

obtained through derivation of 2 components of displacement vector (ux, uy), then there 

must occur the relation between them called compatibility relation. 

It is obtained by comparison of the following derivatives: 
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 (3.18) 

so 
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 (3.17) 

Substituting now constitutive relations of plane stress (2.12) into (3.17) we 

obtain the equation 

      ,1
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which after taking equilibrium equations (3.12) into consideration obtains the following 

form: 
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yx   (3.19) 

Executing similar operations in plane strain we get: 
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Equation (3.19), in case of plane stress, or (3.20) in plane strain, together with 

equilibrium equations (3.12) forms a system of three equations which allows 

determination of three independent components of stress tensor. Solution of such 

systems of equations is most frequently performer through the stress function proposed 

by G. B. Airy and described in the next chapter. 

3.4. Airy stress function 

Airy's idea is based on the observation that the system of equilibrium equations 

(3.12) can be solved with use of substitution: 

,,,
2

2

2

2

2

yx

Φ

x

Φ

y

Φ
xyyx














   (3.21) 

where (x,y) is a stress function, which automatically fulfills equilibrium conditions in 

case of mass forces Fx , Fy disappearance. Introduction of relations (3.21) into the 

compatibility equation (3.19) results with the condition that must be fulfilled by the 

stress function: 

.02
4
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
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yx
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x

Φ
 (3.22) 

When mass forces are not equal to zero, but fulfill the potential condition, i.e. 

are derivatives of some function Ψ(x,y): 
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  (3.23) 

Airy's approach can be applied as well, but it needs now some correction: 
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The compatibility equation after substitution of these relations in the plane stress 

condition obtains the following form: 
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Plane strain condition gives us compatibility equation in similar form: 
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 (3.26) 

The stress function described by equation (3.22) is named the biharmonic 

function. The family of biharomonic functions contains polynomials, exponential, 

trigonometric and hyperbolic functions. Application of these functions to solution of 

analytical problems of slab statics will be shown in the next chapters. 

3.5. Analytical solutions of 2D elasticity problems 

Examples of solution for problems of slabs statics, shown in this chapter, will 

deal with problems without mass forces. This will simplify solutions and make it easier 

to understand analytical methods used here: 
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 (3.27) 

where 
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 is a biharmonic operator. 

 Biharmonic functions fulfilling homogenous equation (3.27) can be selection 

from a wide group of functions: 
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 (3.28) 
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Now we will show their usage in solving problems which usually occur in civil 

engineering and are important from practical point of view. 

3.5.1. Rectangular slab. Solution in the polynomial form 

Let us accept the Airy stress function as a full 3
rd

 degree polynomial: 

,),( 3

9

2

8

2

7

3

6

2

54

2

3210 yaxyayxaxayaxyaxayaxaayxΦ   (3.29) 

where a0 ... a9 are constants that can be selected in such a manner that the boundary 

conditions are fulfilled. The stress function in the shape of (3.29) fulfills the biharmonic 

equation (3.27) for any values of these constants. After its derivation we obtain the 

components of the stress vector: 

  .22
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
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











 
(3.30) 

Accepting a rectangular slab of the h height and the l span (Fig. 3.4), we 

indicate: ζ=y/h, ξ=x/l and λ=l/h. Now we will see what is the influence of each constant 

occurring in equations (3.30) on the boundary conditions. To do so we will compose the 

stress diagrams in the slab area: l/2  ≤ x ≤ l/2; h/2  ≤ y ≤ h/2, assuming l=5h. 

 

Fig. 3.4. Coordinate system and geometry of the rectangular slab 

Because 3 first coefficients a0 ... a2 of the polynomial (3.29) have no influence 

on the stress field in the slab (comp. eq. 3.30) we can narrow down to seven diagrams 

with coefficients a3 ... a9 not equal to 0. For the sake of convenience, we will assume 

that these coefficients, one by one, take unit values, keeping in mind that the stress 

fields obtained in such a way should be multiplied by the values, which fulfill the 

boundary conditions of the problem.    

y, ζ

x, ξ

l

h
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a) a3=1, other coefficients ai=0 

   

b) a4=1, other coefficients ai=0 

 
  

c) a5=1, other coefficients ai=0 

   

d) a6=1, other coefficients ai=0 

   

e) a7=1, other coefficients ai=0 

 
  

f) a8=1, other coefficients ai=0 
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g) a9=1, other coefficients ai=0 

Fig. 3.5. The influence of the Airy function coefficients on the stress distribution in 

rectangular slab 

The analysis of the diagrams shown in Fig. 3.5 leads to the conclusion, that the 

stress function in the shape of the 3
rd

 degree polynomial allows solving the problems of 

compression, tension, shearing and simple bending. Details for such applications may 

be followed through the examples shown in the book by Timoshenko and Goodier. 

We will now show an example of the 5
th

 degree polynomial application to the 

problem referring to bending of simply supported slab-beam loaded with uniform load 

distributed at the top edge (Fig. 3.6). 

 

Fig. 3.6. Bending of the rectangular beam-slab 

The boundary conditions of the problem are: 
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(3.31) 

where b is the beam cross-section width and q [kN/m] is the load intensity. 

At the vertical edges (x=±l/2) there have been applied boundary conditions in the 

integral form, because it is not possible that the polynomial form of the stress function 

fulfills the boundary conditions fully. In the present form this means that the horizontal 

forces and the bending moments disappear at the beam ends. 

x

y
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y
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We will now accept the stress function as a 5
th

 degree polynomial: 

,
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 (3.32) 

where a1... a18 are the constants accepted to fulfill the compatibility equation 

(3.26) and the boundary conditions (3.31). There have been omitted constant and linear 

components in the equation (3.32) because they have no influence on the equations 

describing the components of stress vector (3.21). 

Substitution of the polynomial (3.32) to the condition (3.26) leads to: 
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 (3.33) 

Components of the stress vector are obtained after the Airy function derivation: 
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(3.34) 

The condition (3.33) gives 3 equation allowing calculation of the ai coefficients, 

which come from the independence of the polynomials occurring in (3.33): 
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,01010
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181614

151713

12108


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 (3.35) 

The remaining equations are obtained after using of the boundary conditions 

(3.31). Conditions 
b

q
hxy )2/,(  and 0)2/,( hxy give the system of equations: 
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(3.36) 

The conditions of the shear stress disappearance at the top and bottom Edge of 

the slab 0),(
2
1 hxxy  and 0),(

2
1  hxxy , produce the following system of equations: 
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 (3.37) 

The integral conditions leading to moments and horizontal resultant forces 

disappearance at the edges x=±l/2 : 
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Conditions 




2/

2/

,2/),2/(

h

h

xy qldybyl describing the resultant of the shear 

stress at the left and right edges of the slab give equations: 
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 (3.39) 

Conditions (3.35, 3.36, 3.37, 3.38, 3.39) contain 23 equations with 18 unknown 

coefficients. Five of these equations are fulfilled identically. Other 18 can be easily 

simplified to the system of five equations. The coefficients a2, a3, a4, a6, a8, a9, a10, a11, 

a12, a13, a14, a15 a17 are equal to zero, and others can be calculated after solution of the 

system of equations which will be shown in the matrix form:  
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 (3.40) 

After solution of this system we obtain the components of the stress vector in the 

form: 
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 (3.41) 

This solution allows interpretation of the classic problem of beam bending. The 

normal stress x distribution, as it can be seen in Fig. 3.7a, is non-linear, but includes 

the component depending on y
3
, with small influence at the high beam slenderness. We 

observe stress x at the left and right edges with the resultant Nx = 0 and the resultant 

bending moment Mz = 0. According to de Saint Venant theorem, the influence of this 

stress distribution becomes negligibly small at the distances higher than the dimension 

of the area at which this stress field occurs, i.e. h  the slab height. We also obtain the 

shear stress xy distribution in the cross-section and the normal stress y distribution at 

the slab height, which is usually neglected in the classic Bernoulli solution. The 

diagrams of stresses described with use of equations (3.41) are presented in Fig. 3.7. 

More of this problem analysis can be found in the book by Timoshenko and Goodier. 
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a) x stress on 3 different cross-section: =0; 0.49; 0.5 
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b) y stress at =0  c) xy stress at =0.5 

Fig. 3.7. Graphs of stress fields in the rectangular slab 

3.5.2. Rectangular slab. Solution in the Fourier series form 

Assuming the stress function as a combination of trigonometric and exponential 

functions, we will solve the same problem as it has been solved with use of polynomials 

in the previous paragraph. There will be surely some differences in fulfilling the 

boundary conditions. The geometry is shown in Fig. 3.6 and the boundary conditions 

are described by the equations (3.31). 

Because of the problem symmetry we assume the stress function as a cosine 

Fouries series: 
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where fi(y) are unknown so far functions, which are taken in such a form to 

fulfill the biharmonic equation (3.27), i are constants needed to fulfill the boundary 

conditions, n is the number of the summed terms of the Fourier series allowing the 

needed precision of the solution. Calculating adequate derivatives, we substitute (3.42) 

to the equation (3.27). 
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where  
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To fulfill the compatibility equation (3.27) we need fulfillment of the ordinary 

linear differential equation: 
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IVII  (3.44) 

The solution to the equation (3.44) may be given as functions in the shape: 
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where Ai, Bi, Ci, Di are constants, which should be accepted in such a manner to 

fulfill the boundary conditions. Now we calculate the components of stress vector: 
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The next step is substitution of the boundary conditions in order to calculate the 

constants Ai, Bi, Ci, Di. In different way as we have done it in the previous paragraph we 

will start from the left and right edges of the slab. We will also strengthen the boundary 

conditions by demanding of the disappearance of stresses at the vertical edges: 
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To make the condition (3.47) be fulfilled at any value of y, the following 

equation must be in force: 
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which gives automatic fulfillment of the condition x(l/2,y) = 0 at the left slab edge. 

Knowing the i values we can analyze the conditions at the top and bottom edges of the 

slab 
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the uniformly distributed load and taken as the Fourier series. 

After solution of this system of equations we obtain the values of constants Ai , 

Bi , Ci , Di : 
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which allow calculation of the components of stress vector on the basis of equations 

(3.46). 

The stress diagrams are shown in Fig. 3.8. For comparison of both solutions 

(polynomial and based on Fourier series) both diagrams have been juxtaposed in Fig. 

3.8b. There you can see the more detailed representation of the boundary condition 

x(l/2,y) = 0. The differences in both solutions are quickly disappearing according to 

Saint Venant’s theorem and in the middle of slab no differences can be observed. 
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a)  σx stress field over the slab area 

 

 

b)  load of the upper slab edge 

expanded in Fourier series 

ξ=0   ξ=0.49  ξ=0.50  

c) x stress on 3 different cross-section: =0; 0.49; 0.5;  red line ── polynomial 

solution; blue line ----- solution by Fourier series 

Fig. 3.8. Graphs of stress fields in the rectangular slab obtained by Fourier series 

3.5.3. Solutions in polar coordinate system 

Many interesting solutions can be obtained by using the assumption of rotational 

symmetry. We will now show, without going into details, some solutions obtained on 

the basis of Airy function in polar coordinate system. More of such solutions can be 

found in the previously presented books by Timoshenko and Goodier, Fung, Nowacki. 

Especially the first one contains many examples of solution to problems important from 

practical point of view.  

The polar coordinate system shown in Fig. 3.9 is connected with Cartesian 

coordinate system by the following relations:  
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Introducing them into relations (3.21) and (3.22), we obtain: 
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 (3.52) 

where r, ϑ, rϑ are the stress tensor components in the polar coordinate system. 

 

Fig. 3.9. Relationship between Cartesian and polar coordinate systems 

We will now show 3 solutions for important problems which have solutions in 

polar coordinate system: 

 problem of pressure analysis in thick-walled pipe, 

 compression of the half-space with concentrated force, 

 circular slab compressed with use of two forces remaining in equilibrium 

state. 

∎ Stress in thick-walled pipe as a result of internal pressure p1 and external 

pressure p0 

   

Fig. 3.10. The cross-section of the pipe subjected to the action of external and internal 

pressure 

Components of stress are described with use of equations: 
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(3.53) 

where a is the internal radius, b is the external radius of the pipe (Fig. 3.10), shear stress 

rϑ disappears because of the rotational symmetry in the problem. 

The stress diagrams r and ϑ for 2 load cases: p0=0, p1=1 and p0=1, p1=0 are shown in  

Fig. 3.10b and Fig. 3.10c. 

 

∎ Compression of the half-space with concentrated force 

 

Fig. 3.11. Concentrated force acting on the edge of the half infinite slab 

The problem is solved with use of relatively simple stress function: 
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and the stress vector has got only one component not equal to 0. Such a distribution of 

stresses is called a simple radial distribution. 

It is convenient to use Cartesian stress components. They can be obtained by the second 

equation (3.54) transformation into Cartesian coordinate system: 
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Fig. 3.12. Stress graph at the depth y=1m for the force P=1kN and the bandwidth b=1m 

The stress graph for stresses described with equation (3.51) when assuming values 

P=1 kN, y=1 m, b=1 m, is shown in Fig. 2.12. 

Simple radial distribution has got an interesting feature, which will be used in 

the next solution. The stress r at the side of the circular tangent do the plane y=0 is 

constant and equal to 
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
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P
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2
 , where d is the cylinder radius, because 
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(comp. Fig. 3.13). 

 

Fig. 3.13. Stress r on the cylinder surface 
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∎ Circular slab compressed with two forces remaining in equilibrium  

Adding together two solutions for radial distribution, which have been shown in 

previous problem, we will obtain stress distribution in a circular slab compressed with 

two forces in equilibrium (Fig. 3.14). Two added radial stresses acting in perpendicular 

direction to each other, generate the state of even pressure 



db

P
r

2
  at the side of the 

cylinder. Because the slab shown in Fig 3.14 has two edges unaffected by stresses then 

to get rid of this pressure we need to apply the balancing positive stress of the same 

value.  

a)   b)  

Fig. 3.14. Circular disk compressed by two balancing forces, so-called Brazilian test 

Finally, we obtain the stress distribution, which is described with equations: 
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 (3.56) 

where  and  are dimensionless coordinates in the coordinate system shown in Fig. 

3.14b. Graphs of stress distribution described with these equations are shown in Fig. 

3.15. There can be seen a singularity of the stress field in the point where the 

concentrated force is applied. The stress tends toward infinity at this point. A very 

interesting stress x distribution is obtained along the vertical symmetry axis of the slab 
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(Fig. 3.15e), which at the long stretch has got constant value 
bd

P
x




2
 . This is why a 

laboratory test of cylinder compression with use of two loads distributed along side 

lines and remaining in equilibrium is used to evaluate tensile strength of material. Such 

a test is called Brazilian test and it is executed for brittle materials, i.e. rocks, concrete 

etc. which have got many times smaller tensile strength than the compressive one. 

Existence of 3 times bigger compressive stresses 
bd

P
y




6
 in the middle of the test 

specimen (comp. Fig. 3.15d) has minor influence on the effort of material, then. 

 

a) x(ξ, ζ) 

 

b) y(ξ, ζ) 

 

c) xy(ξ, ζ) 

 

 

d) ζ=0→ x(ξ,0), y(ξ,0) 

e)  

ζ=0 

 

x(0,ζ ) 

 

y(0,ζ) 

Fig. 3.15. Stress distribution in the circular disc compressed with two balanced forces 

3.6. Numerical solutions of the slab static problems with 

FEM 

Analytical solutions shown in the previous chapters unfortunately cannot be 

applied to any problem, e.g. a slab of any shape or with any boundary conditions. These 

limitations of analytical methods have caused their smaller fitness to everyday 

engineering practice. Numerical methods are not affected by such drawbacks. 

Popularity of such methods grew in the 2
nd

 half of the 20
th

 century thanks to the 

σx

ξ

-σy *
πdb___
P

ζ

-σy*
πdb___
P σx*

πdb___
P



31 

 

development of computational techniques and certainly lasts nowadays. Numerical 

methods have their own drawbacks such as numerical model errors, discretization 

errors, limited possibility of singularity in stress fields modelling, etc. However, we can 

control them and narrow down their influence, which gives the basis for using the 

results of calculations in engineering practice.  From among many numerical methods 

used for problem solutions and shown in this chapter, the most universal and 

convenient, thus for this reason nowadays the most popular if finite element method 

(FEM). It will be shown in short here, however the reader who wants to learn this 

method in depth should be referred to the excellent book by O. C. Zienkiewicz. Another 

method, with usage presented here, is older than FEM – finite difference method 

(FDM). Its applications in solid body mechanics are nowadays rare, but it is worth to 

know this universal and simple in the idea method of solving differential equations. 

FDM in application of slab statics is described in detail in the book by F. Anderman. 

3.6.1. The stiffness matrix of an elastic element 

Let us divide a continuum into finite elements. We will discuss only a triangular 

2D element in this book and we will choose such elements during discretization 

(Fig. 3.16). 

 

Fig. 3.16. Nodal forces and displacements for the 2D element in the global 

coordinate system. 

According to assumption Eqn. (3.6) it is seen that every node of an element has 

two degrees of freedom and all nodal forces have two components. The local coordinate 

system xy is chosen in such a way that its axes are parallel to the axes of the global 

coordinate system. Hence distinguishing components of local and global vectors and 

matrices is insignificant. 
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Now we group nodal displacements and forces in the vectors of: 

 nodal and element displacements 
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 nodal and element forces 
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Since we look for the dependence between nodal displacement and nodal forces 

vectors of an element we apply the principle of virtual work which requires giving the 

relation between displacements of points lying within the element and displacements of 

nodes. Accepting errors coming from approximation, we assume that this relationship 

can be written by the function of two variables: 

kxkjxjixix uyxNuyxNuyxNyxu ),(),(),(),(     and 

kykjyjiyiy uyxNuyxNuyxNyxu ),(),(),(),(  , 

(3.59) 

or the general matrix form: 

ee yxyx uNu ),(),(  , (3.60) 

where N
e
(x,y) is the matrix of shape functions of the element: 

 N I I I
e

i j kx y N x y N x y N x y( , ) ( , ) ( , ) ( , )          
, 

(3.61) 

where I is a unit diagonal matrix and Ni(x,y), Nj(x,y), Nk(x,y) are the shape functions for 

nodes i, j, k. 

Let us now assume the simplest of all possible forms of the shape function for 

the node i 
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ycxbayxN iiii ),( , (3.629) 

where ai, bi, ci are constants which we determine on the basis of consistency conditions 

1),( iii yxN , 0),( jji yxN , 0),( kki yxN . (3.63) 

After inserting these conditions into Eqn. (3.62), we obtain the set of equations: 
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(3.64) 

which, after being solved, give the values of coefficients of the shape function. 

Equation (3.64) can also be written in the general form: 

Mαi = δi , where δi






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
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


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





 (3.6510) 

which, after modification depending on the change of i into j (or k), allows us to 

determine the coefficients of the shape functions for the subsequent nodes. δij means the 

Kronecker’s delta in this equation. 

We solve the set of Eqn. (3.65) by the Cramer method 
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(3.66) 
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then  
W

W
a ia

i  ,  
W

W
b ib

i  ,  
W

W
c ic

i  . 

Similarly, if we change the index i into j and we find δj
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(11) 

Finally, we have 
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(3.68) 
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W

W
a ka

k  , 
W

W
b kb

k  , 
W

W
c kc

k  . 

for node k. 

Constants ai, aj, ak are insignificant for further transformations (because they are 

connected with the rigid motion of a 2D element) and they can be neglected when 

solving the set of Eqn. (3.65). 

After determining the shape functions of the element, let us come back to its 

strains. We insert Eqn. (3.60) in (3.8): 

eeee yxyx uBuNε ),(),( D , (3.69) 

obtaining the dependence between the nodal displacements of the element and its 

strains. The matrix B in Eqn. (3.69) is called a geometric matrix and it can be expressed 

as follows: 

 B B B B
e

i j kx y x y x y x y( , ) ( , ) ( , ) ( , )
, 

where 

0

( , ) 0

n

n n n

n n

b

x y c

c b

 
 

 
 
  

B ND  (3.70) 

is the geometric matrix of any node n. 

Thus, we have all components which are necessary to write an element 

equilibrium equation. We apply the principle of virtual work which says that the 

external work (done by external forces – here nodal forces) has to be equal to internal 

work (done by stress) of a 2D element: 

  
V

Vdee
σεfu

TT

. (3.71) 

We transform this equation first substituting the constitutive relation Eqn. (3.5) 

for δ and next substituting geometric relations (3.69) for ε: 

        eeeeeeeeee dd uDBBuuDBuBfu  
VV

VV
TTTT

. (3.72) 
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In this equation the nodal displacement vectors of the element being independent 

of variables x and y, are taken to the front and back of the integral. Eqn. (3.72) can be 

solved independently of element displacements only when 

 
V

V eeee d uBDBf
T

, (3.73) 

which, after comparison with the known relation: 

f K u
e e e

, 

gives us the equation determining coefficients of the element stiffness matrix: 

 
V

Vdeee
BDBK

T

. (3.74) 

Building the element stiffness matrix can be considerably easy if we note that 

this matrix divides into blocks: 

K

K K K

K K K

K K K

e

ii ij ik

ji jj jk

ki kj kk



















, 

(12.75) 

in which any of them, for example Kij, can be calculated from the equation: 

 
V

Vdjiij BDBK
T

, (3.76) 

and others coming from analogous equations formed after suitable changes of 

indices have been made. 

The insertion of the geometric matrices Bi and Bj given by Eqn.(3.70) and the 

matrix D given by Eqn. (2.13) into (3.76) results in 

      Abd jijiij BDBBDBK
TT

V

V  


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



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





















EAb b b c c b c b c

b c b c c c b b

i j i j i j j i

j i i j i j i j
1

1

2

1

2
1

2

1

2

2







 

, 

(3.77) 

where A is the surface of a slab element and b is the its thickness. 

The above matrix is the stiffness matrix for plane stress. 



37 

 

Note that matrices Bi, Bj and D do not contain components dependent on 

variables x, y, z, thus we can take them outside the integral. 

We obtain the block of the stiffness matrix for plane strain accepting the matrix 

of material constants according to Eqn. (2.17): 

  

 

 
K ij

i j i j i j j i

j i i j i j i j

EAb b b c c b c b c

b c b c c c b b
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 
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
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 








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


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1 1 2

1
1 2

2

1 2

2
1 2

2
1

1 2

2

 













. 

(3.78) 

Since the local coordinate system is assumed in such a way that its axes are parallel to 

the global coordinate system, then we do not have to transform the stiffness matrix. 

We also calculate element strains. They are given by Eqn. (3.69) and taking into 

consideration Eqn. (3.70) we have 





kjin

nxnx ub
,,

 ,  



kjin

nyny ub
,,

 ,   



kjin

nynnxnxy ubuc
,,

 . (3.79) 

We see that components of the strain vector are constant within the element 

which is the consequence of the assumption of linear shape functions. This element is 

called CST (constant strain triangle). 

We determine element stresses from the constitutive Eqn. (3.5) and Eqn. (2.13) 

or (2.17) according to the kind of variant that we deal with. It is obvious that strains, 

just as stresses are constant within the CST element. 

3.6.2. Nodal force vector for a distributed load 

Loads on slab elements can be treated as loads on plane trusses which means 

that they can be applied to the nodes of a structure. But if a distributed load acting on 

the boundary of an element is given, then it should be converted to concentrated forces 

acting on the nodes of an element (Fig. 3.17). 
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Fig. 3.17. Nodal forces representing continuous loads. 

Similarly, as in previous chapters, we apply the principal of virtual work giving 

the following equilibrium equation for this case: 

      

1

0

0 dLij

ee
qufu

TT
, (3.80) 

where u(ξ) contains functions describing the displacement of the loaded edge and 
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
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


y

x

q

q
q  contains functions describing the load on the edge, Lij is the length of the 

edge i-j, ξ is the non-dimensional coordinate taking zero value at the node i and value 1 

at the node j. Since we assume linear shape functions for the element, then we write the 

vector u(ξ) as follows: 

  ,ee

ij
uNu   (3.81) 

where 
e

ij
N  is the matrix of shape functions for displacements of the boundary. 
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ij NNN  (3.82) 

where  1)(o

iN ,  )(o

jN , or in the developed form 

.
00010

00001

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









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
e

ijN  (3.83) 

After inserting relation Eqn. (3.81) into Eqn. (3.80), we obtain 

    .

1

0

  dL e

ijij

e
qNf

T
 (3.84) 
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After taking into consideration the shape functions described by Eqn. (3.83), we 

obtain 

   

   

 
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For example, let us calculate the nodal force vector due to the linear distributed 

load on the edge i-j of value qix, qiy - at the node i and qjx, qjy - at the node j. We write 

such a load with the help of a non-dimensional coordinate ξ: 
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(3.86) 

and after inserting the above equation into Eqn. (3.85), we obtain 
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(3.87) 

which after integration gives 
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For a particular case when the load is constant and equal to 
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q
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(3.89) 

It should be remembered that the calculated forces are forces acting on the 

element. We obtain the necessary nodal forces changing the sense of vectors which 

means: 

p f
e e 

, 
(3.90) 

where 
e

p is the nodal force vector for the nodes touching the element e. 

3.6.3. A Nodal force vector due to a temperature load 

As in the previous section, we apply the principal of virtual work to calculate 

alternative nodal forces replacing a temperature load. In accordance with the features of 

a CST element we will take into consideration only a constant temperature field within 

the element. 

The suitable equation of virtual work has the form: 

   
VV

VV dd tt

ete
εDεσεfu

TTT
, (3.91) 

where σt is the stress field in the element which is caused by the temperature and εt is 

the strain of the element caused by the change of a temperature. 

Assuming isotropy of a 2D element we obtain 

εt=



















0

1

1

tt , (3.92) 

After inserting geometric relation Eqn.( 3.69) into Eqn. (3.91), we obtain 
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For a plane stress problem this equation is simplified to the following relation: 
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where bi ... ck are coefficients of shape functions of the CST element. 

Plane strain gives a slightly different nodal force vector: 
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As in previous sections, we should change the signs of components of nodal 

forces before applying them to the nodes: 

p f
et et 

. 
(3.96) 

We calculate stresses in the element undergoing the action of a temperature 

taking into consideration strains caused by the thermal expansion of the element: 

σt = D(ε  εt) = 


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3.6.4. Boundary conditions of a 2D element 

Boundary conditions of a two-dimensional structure can be treated analogously 

to the conditions in a plane truss because the nodes of both systems have two degrees of 

freedom on the XY plane. 



42 

 

Hence we have: fixed supports (at the node r1 in Fig. 3.18) and supports which 

can move along the X axis (at the node r2), next supports which can move along the Y 

axis (at the node r4) or skew supports (at the node r3). The boundary conditions for these 

supports are as follows: 

 node r1: 0
1
Xru , 0

1
Yru , 

 node r2: 0
2
Yru , 

 node r4: 0
4
Xru , 

 for node r3, where constraints are not consistent with the axes of the global 

coordinate system we propose the use of boundary elements described in 

[Podgórski, Gontarz] or [Podgórski, Błazik]. 

  

Fig. 3.18. Slab structure divided into triangle finite elements. 

3.6.5. Example of solving the problem of bending the rectangular slab 

Let us solve with use of FEM the problem which has been previously calculated 

with analytical methods, to compare the results. We will make use of the stiffness 

matrix of CST element shown in previous paragraphs and use, for sake if comparison, 

more complex quadrilateral element. Autodesk Simulation Mechanical will be used to 

obtain the solution. 

The slab shown in Fig. 3.19 is divided into 640 triangular elements (Fig. 3.19), 

which gives 369 nodes with 2 degrees of freedom at each node. Composition of the 

stiffness matrix for triangular elements and collation of nodal forces into equilibrium 

equations results in generation of system of 738 equations.  

  

Fig. 3.19. Slab FEM model, built with CST elements. 
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Thanks to boundary conditions: uyA=0, uxB=0, uyB=0 we can eliminate or modify 

3 equations, which allows solution of the system. After determination of displacements, 

we calculate stress in elements. We have used CST, so at the triangular area we obtain 

constant values of stresses. To smooth the stress field, we average the calculated stress 

at each node. Figure 3.20a shows normal stress x field at the slab surface and the 

diagram of these stresses in the cross-section  = 0.5, which has been generated with use 

of Autodesk Simulation Mechanical 2015. Figure 3.20b shows the same stress field 

obtained with use of quadrilateral elements. There are observed differences at the graph 

in Fig. 3.20a, which is diverged from the expected linear relation. It is caused by less 

dense mesh of triangular CST elements and smaller accuracy of solutions obtained with 

use of such elements in comparison to the ones when quadrilateral elements are used. 

 

a) Slab model 1 

 

b) Slab model 2 

Fig. 3.20. Stress graph at =0 for two FEM models 

It is apparently visible in the cross-section, which is close to a support. Figure 3.21 

shows stress diagrams in the cross-section located in the 0.25m distance from the right 

support of the slab. The diagrams have been prepared for both models of slab and for 

comparison there have been additionally given diagrams resulting from analytical 

solutions: polynomial and based on Fourier series (Fig. 3.7, Fig. 3.8). 
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Fig. 3.21. Normal stresses x in the cross-section at  =0.45 calculated by various 

methods. 

3.7. Numerical solutions of the slab static problems with 

FDM 

Finite difference method (FDM) is one of the simplest methods of solving 

problems described with use of systems of differentia equations. The idea in this 

method is based on the replacement of derivatives occurring in these equations with the 

appropriate difference quotients. Some difficulty in application of this method is 

generated by boundary conditions and irregular shape of an edge. 

 

Fig. 3.22 Grid of the nodes and boundary conditions 

We overlay mesh of nodal points (as regular as possible) (Fig. 3.22) to the area 

where the calculated equation should be fulfilled. The values of the analyzed function in 
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the nodes of the mesh are the set of unknowns. Now, difference quotients adequate to 

the order of differential equation should be set down, which will allow us to transform 

differential equation into the system of algebraic equations. The simple method of 

getting these quotients is expansion of the analyzed function into Taylor series at the 

nodal points. 

3.7.1. One variable function 

Expansion into Taylor series of the analyzed function u(x) around the point at 

the coordinate xi (Fig. 3.23.), may be presented in the following form: 
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Transformation of equations (3.98) and (3.99) leads to: 
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         - forward finite difference (3.100) 
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         - backward finite difference (3.101) 

 

and calculating the mean from (3.100) and (3.101) or subtracting (3.99) from (3.98) we 

get: 
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    - central finite difference, (3.102) 

 

which is characterized by smaller error. In these equations x is the distance between 

mesh nodes in the x direction, and O(x) means the remainder of the x order, O(x
2
) is 

the remainder of the x
2
 order,  

idx

du
is the value of the derivative calculated in the point 

at the xi coordinate. 

This result can be also obtained by approximation of the analyzed function in the 

range 2x with 2
nd

 order polynomial: u(x) = a2 x
2
 + a1 x + a0  (Fig. 3.23). The constants 
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ai should be evaluated with use of conditions:  u(0) = ui ,  u(x) = ui-1 ,  u(x) = ui+1, 

which leads to the equation: 

i
x

ii

x

iii u
x

uu
x

uuuxu  
 2

)(
2

)2()( 112

2

11
, (3.103) 

which after derivation in regard to x and calculation of the derivative in the „i” point,  

(x=0) gives central finite difference (3.102). 

 

Fig. 3.23. Function u(x) approximation by 2
nd

 degree polynomial 

 

    

         a)  dxdux2      b)  dyduy2   

Fig. 3.24 Differential schemes:  du/dx (a)   and   du/dy  (b) 

As it can be easily calculated, taking first 5 terms of the Taylor series (up to the 

term containing x
4
), the second derivative can be expressed with use of the differential 

formula: 
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Taking first terms of the Taylor series up to the term containing x
6
 and averaging 

in the same manner as we have done in equation (6), we obtain the expressions for 

central finite differences: 
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 a) 
222 dxudx  b) 

222 dyudy  

Fig. 3.25 Differential schemes: d
2
u/dx

2
 (a)   and   d

2
u/dy

2
 (b) 

3.7.2. Case of two-variable function 

By analogy to the differences in one-dimensional case, marking with i the order 

of distances x in the x axis direction, and with  j the order of distances y in the y axis 

direction, we write down expressions for appropriate finite differences: 
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Mixed derivatives may be replaced with finite differences calculated by 

combining formulae (3.108) and (3.109), which gives: 
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Adding differential schemes (3.110) and (3.111) we obtain already previously 

used Laplace operator: 
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and calculation of the 4
th

 order  derivative calculation leads to the biharmonic 

operator which occurs in the equation of the Airy stress function: 
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In the case of the quadrilateral differential mesh, when x=y, the biharmonic 

operator obtains much simpler for, which will be used in further consideration. 

Indicating =x=y we have: 
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It is convenient to present differential quotients as graphic schemes. Schemes 

referring to equations (3.108)...(3.115) are presented in figures: 3.23...3.27. 

  

 a) yxuyx  24  b)  22222 yuxuxy   

Fig. 3.26 Differential schemes: 
2
u/xy (a)   and  

2
u for x = y = xy (b) 

  

Fig. 3.27 Differential scheme for biharmonic operator 
2


2
u for x = y =  

In the chapter devoted to plate theory we will show another method of obtaining 

the differential operator formula for the biharmonic equation, which can be useful when 

differential mesh is irregular. 

Application of Taylor series to determine differential quotients of higher orders 

has been described in details in the wide monograph by T. J. Chung [2002]. Usage of 

irregular meshes has been presented by J. Orkisz in the third part of monograph (Kleiber 

et al. [1995]). Differential operators of higher orders used for solving equations of plate 

theory and methods of boundary conditions application are given in extensive form in 

monograph by Z. Kączkowski [1980]. 
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3.7.3. Boundary conditions application 

First order differential equations where the only boundary conditions are values 

of the analyzed function in the boundary nodes of the mesh (Dirichlet’s condition), are 

no difficulty when composing system of equations for FDM. If we limit our 

consideration to first and second order differential equations then as it can be seen in 

figures 3.24 and 3.25, differential operators contain only function values in the nodes 

directly neighboring the node in which operator is written down. Because the function 

values in the boundary points in Dirichlet’s conditions are given, then we do not have to 

write down differential equations for these points. The only remaining points are inside 

the area (Fig. 3.28). Thus the formed system of equations will not contain any function 

values in points located outside the area of solution.   

Difficulties are rising when we analyze higher order equations, where the 

differential operators contain function values in neighboring points, but also located in 

distances 2x and further from the central point (comp. Kączkowski [1980]). Of other 

nature, but similar in the effect difficulties are generated, when there are defined 

derivatives of the function in the boundary points (Neumann’s conditions). First order 

differential quotient (equation 3.108) written down for a boundary point introduces the 

function value from the point located outside the solution area into the system of 

equations. These values should be calculated on the basis of the derivative value in the 

boundary point: 
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 (3.116) 

In the example shown in Fig. 3.28 we have Dirichlet’s conditions in the points at 

the area’s circumference and the Neumann’s condition in the point 14. If we want to use 

central differences to describe a derivative at this point then this state generates the 

necessity of introduction of additional node "16" located outside of the calculation area. 

The additional equation allowing evaluation of the function value at the new node is 

expressed as follows: auu 21116  . 
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Fig. 3.28 Rectangular area 2a4a and the Dirichlet and Neumann boundary conditions 

In case of searching for the Airy stress function, we will deal with both types of 

boundary conditions. This may seem odd, since the natural conditions at the slab edge 

are referring to stresses which are described with use of 2
nd

 order derivatives of the Airy 

function. We will show the method of consideration of boundary with use of the 

previously shown example of the problem presented in Fig. 3.29 and boundary 

conditions 3.31, which will be now slightly modified to make the obtained result similar 

to the one calculated with use of the polynomial stress function: 
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The stresses xy at both vertical edges of the slab have got parabolic distribution: 
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Fig. 3.29 Rectangular slab and stress boundary conditions 

Writing down the boundary condition )(),( xphxy   in the relation to the Airy 

function, we have: )(
2

2

xp
x

Φ
y 




 . Replacement of the 2

nd
 order derivative with the 

differentia quotient (3.110) we obtain for the point i,j located at the top edge of the slab 

the following equation: ji
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, which combines the nearby 

boundary points, as well. By using similarity of the boundary condition to the relation 

of bending moment and shear load, which is known from beam theory, leads to the 

significant simplification of this condition (comp. Andermann): 
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, which yields: 

jiji MΦ ,, ~ , where 
jiM ,
 is the value of the 

bending moment in the i,j point assigned for the fictional rod of the shape of the slab 

circumference (Fig. 3.30). 

 

 a) b) c) 

Fig. 3.30 Rectangular slab and its fictional edge rod (a), bending moment (b) and axial 

force (c) charts 

The rod, for easy calculation of internal forces, may be cut at any point. Internal 

forces in the cross-section may be arbitrary. This does not influence the calculated in 

this way stresses because only constant and linear components of stress function are 

changed, and the stresses are expressed with use of 2
nd

 order derivatives. The moment 

should be positive since it generated elongation of fictional rod fiber inside the slab area 

(Fig. 3.30). 
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The boundary condition for shear stresses at the right edge of the slab: 

)(),( ytylxy   written down with use of Airy function )(
2
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, which gives the 

value of the stress function in the point outside the slab area: 
jijixji ΦNΦ ,1,,1 2   , 

where Ni,j is axial force in the point i,j calculated for the fictional rod. 

 

Fig. 3.31  Grid nodes of finite difference method, symmetry of the problem was used 

We will show the application of this method in the example of quadrilateral mesh 

of nodal points. Dividing shorter edge of the slab shown in figure 3.29 into four 

sections, we obtain the mesh of the side length of 25 cm (comp. Fig. 3.31). The 

numbering scheme shown in figure uses the problem symmetry, i.e. nodes located at 

both sides of the symmetry axis have got the same numbers. Zero boundary conditions 

for stress function have been used as well (Dirichlet’s conditions) by numbering these 

nodes as 0 (comp. Fig. 3.30b). Zero values of the stress function derivatives have also 

been introduced (Neumann’s conditions) by numbering nodes outside the slab area with 
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the same values as for the nodes inside the area symmetrically across the slab edge 

(comp. Fig. 3.30c). This method allows limitation of the number of unknown nodal 

values. 

The function values will be calculated in all boundary points. We will apply here 

analogy of the bending moments diagram in the fictional rod (Fig. 3.30b). Distribution 

of the bending moment is described with the equation:      2
2

41
8

 
b

lq
MΦ , 

where ξ=x/l. Table 1 gives values of dimensionless stress function (ξ) in points located 

at the top edge of the slab. The function (ξ) is described with equation: 

   241
8

1
  . The values  i given in Table 1 indicate: i = (ξi). 

Table 1. 

Node i i  Node i i  Node i i  

0 0.00000 16 0.08000 32 0.12000 

4 0.02375 20 0.09375 36 0.12375 

8 0.04500 24 0.10500 40 0.12500 

12 0.06375 28 0.11375   

 

In the same way we calculate the values of derivative )(yN
x

Φ





 in the points 

of vertical edge (x=l/2). Integrating shear stresses at the left edge we obtain the equation 

of the axial force in the fictional rod:  dyyyN xy )()(   or the other way by using 

non-dimensional coordinates  C
b

ql
N 


 343

4
)(   where ζ=y/h and C is the 

integration constant taken to make 0)2/( hN . Finally, the function of axial force in 

the fictional rod can be described with the following equation: 

 3431
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)(  

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b

ql
N . This equation allows calculation of the derivative values in 

boundary points 
ji

x

Φ

,



, and then the stress function values in the external points 

located in the opposite direction to x: 
jixjiji NΦΦ ,,1,1 2 
. Because the side 

dimension of the mesh in this case is equal to Δx=l/n (n=20 in the presented case which 

gives Δx=25cm), the function values in the points located on the left side of the edge are 
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calculated with use of the equation:  3
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jijiji
b

lq
ΦΦ ,1

2

,1,1    , where  3

,,, 431
2

1
jijiji

n
   is the non-dimensional 

increment of the function values in the x axis direction. Table 2 shows values of these 

increments for n=20. 

 

Table 2. 

Node i i  Node i i  Node i i  

0 0.0000000 42 0.0250000 44 0.0500000 

41 0.0078125 43 0.0421875   

 

We will write down differential quotients for all internal points of the slab: 

Node i 22Φ|i = 0 

1 20Φ1Φ0+Φ5+Φ2+Φ0)+2(Φ0+Φ6+Φ0+Φ0)+Φ1+Φ9+Φ3+Φ41 = 0 

2 20Φ2Φ1+Φ6+Φ3+Φ0)+2(Φ5+Φ7+Φ0+Φ0)+Φ0+Φ10+Φ4+Φ42 = 0 

3 20Φ3Φ2+Φ7+Φ4+Φ0)+2(Φ6+Φ8+Φ0+Φ0)+Φ1+Φ11+Φ3+Φ43 = 0 

5 20Φ5Φ0+Φ9+Φ6+Φ1)+2(Φ0+Φ10+Φ2+Φ0)+Φ5+Φ13+Φ7+Φ0 = 0 

6 20Φ6Φ5+Φ10+Φ7+Φ2)+2(Φ9+Φ11+Φ3+Φ1)+Φ0+Φ14+Φ8+Φ0 = 0 

7 20Φ7Φ6+Φ11+Φ8+Φ3)+2(Φ11+Φ11+Φ3+Φ3)+Φ5+Φ15+Φ7+Φ0 = 0 

..i.. 20Φi)+2(...)+1(...) = 0 

37 20Φ37Φ0+Φ33+Φ38+Φ33)+2(Φ0+Φ34+Φ34+Φ0)+Φ37+Φ29+Φ39+Φ29 = 0 

38 20Φ38Φ37+Φ34+Φ39+Φ34)+2(Φ33+Φ35+Φ35+Φ33)+Φ0+Φ30+Φ40+Φ30 = 0 

39 20Φ39Φ38+Φ35+Φ40+Φ35)+2(Φ34+Φ36+Φ36+Φ34)+Φ37+Φ31+Φ39+Φ31 = 0 

and Dirichlet’s boundary conditions 
ii

b

lq
Φ 

2

  for points at the top edge, where 

values i are given in Table 1. Neumann’s conditions: 
iii

b

lq
ΦΦ 

2

40  
 for the external 

points at the left edge where the values i are given in Table 2. 

After rearrangement we obtain system of 44 equations which will be written 

down in matrix form: bΦB
b

lq 2

 , where Φ  is the vector of nodal values of the stress 

function, b is the right-hand side vector containing non-dimensional values i  and i . 

Matrix B because of its dimensions will be shown in two pieces - blocks B1 , B2 

located at the diagonal of the matrix 









24

31

BB

BB
B  (Fig. 3.33). 



56 

 

Solution of this system of equation in the shape of the stress function  yxΦ ,

graph over the slab area is shown in Fig. 3.32 

 

 
Fig.3.32 Chart of the Airy stress function over the slab surface 

B1

= 

 b

= 

 

B2

= 

 
Fig.3.33 Matrices of the Finite Difference Method equations system 

 

Figure 3.34 shows comparison of stress values in the section at the coordinate 

ξ=0.45, which are obtained with use of finite difference method and analytical method 

with use of the stress function as 5
th

 degree polynomial (Eqn.3.32). 
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Fig. 3.34 Comparison of stresses in the slab at ξ=0.45, obtained by various methods 

4. Theory of Plates 

Plates are one of the most commonly used elements in structures. They can be 

found in almost every building or mechanical structure. The geometric shape of a plate 

can be defined similarly to a 2D element (Chapter 3), but they differ in the way of 

loading. Plates are loaded with normal loads to their surfaces which cause bending. 

Bending is not present in the case of the deformation of the 2D element.  

Analytical methods of determining both deflections and internal forces were 

described by Euler, Bernoulli, Germain, Lagrange, Poisson and especially by Navier in 

papers which appeared at the end of the 18
th

 century described by Rao (1982). Literature 

devoted to the theory of plates is unusually rich, the books of Kączkowski (1980), 

Nowacki (1979), Timoshenko and Woinowsky-Krieger (1962) are recommended to 

interested readers. 

Many important statics and dynamics problems of plates were solved by 

analytical methods (mainly by the method of the Fourier series), but they are inaccurate 

both in the case of problems with complex boundary conditions and complicated shapes 

of plates. However, the finite element method has proved to be universal and although it 

gives approximate solutions, they are precise enough for practical applications. 

ζ
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4.1. Classifications of Various Plate Theories 

 Classical Plate Theory 

 Shear deformation included 

 FSDT (First order Shear Deformation Theory) 

 TSDT (Third order Shear Deformation Theory) 

Classical Plate Theory: 

 Assumptions: 

 All layers in plane state of stress 

 Transverse normal strain 3 negligible compared to in-plane 

normal strains 1 and 2 (no transverse interaction of layers) 

 Transverse shear strains 4  and 5 negligible (straight lines 

normal to the middle surface remain so after deformation – 

Kirchhoff hypothesis) 

 1 1 2

1

,
w

x x
x




 


  2 1 2

2

,
w

x x
x




 


 

 Displacements: 

   
 1 2

1 1 2 3 1 2 3

1

,
, , ,

w x x
u x x x u x x x

x


 


 

   
 1 2

2 1 2 3 1 2 3

2

,
, , ,

w x x
u x x x v x x x

x


 


 

   3 1 2 3 1 2, , ,u x x x w x x  

 Strain: 

2

1 3 2

1 1

u w
x

x x


 
 
 

 

2

2 3 2

2 2

v w
x

x x


 
 
 

 3 4 5 0    

 

2

6 3

2 1 1 2

2
u v w

x
x x x x


  

  
   

 
   1 2 3 1 2 3, , ,

1,2,6
i i ix x x x x x

i

  


 

1

1

u

x





 2

2

v

x





 6

2 1

u v

x x

 
 
 
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2

1 2

1

w

x



 


 

2

2 2

2

w

x



 


 

2

6

1 2

2
w

x x



 

 
 

Shear deformation should be taken into account for moderately thick plates. 

 Reissner-Mindlin theory: 

o Relaxation of the Kirchhoff’s plate theory assumptions: Transverse 

normals before deformation are no longer perpendicular to the 

middle surface after deformation – translation + rotation.  

First order shear deformation theory: 

     1 1 2 3 1 2 3 1 1 2, , , ,u x x x u x x x x x 
 

     2 1 2 3 1 2 3 2 1 2, , , ,u x x x v x x x x x 
 

   3 1 2 3 1 2, , ,u x x x w x x
 

Higher order theories (TSDT): 

      3

1 1 2 3 1 2 3 1 1 2 1 3 1

1

, , , ,
w

u x x x u x x x x x c x
x

 
 

    
 

 

      3

2 1 2 3 1 2 3 2 1 2 1 3 2

1

, , , ,
w

u x x x v x x x x x c x
x

 
 

    
   

   3 1 2 3 1 2, , ,u x x x w x x  

Theories of higher orders than 3 are not used. Too much computational effort, to 

small gain in precision of results. 

4.2. Basic assumptions and equations of the classical plate 

theory  

We accept the following assumptions of the classic theory of thin plates 

(Timoshenko and Woinowsky-Krieger (1962)): 

a) thickness of a plate is small in comparison with its other dimensions; 

b) deflections of plates are small in comparison with its thickness; 

c) middle plane does not undergo lengthening (or shortening); 
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d) points lying on the lines which are perpendicular to the middle plane 

before its deformation lie on these lines after the deformation; 

e) components of stress which are perpendicular to the plane of the plate 

can be neglected. 

From point d) of the above assumptions it follows that the displacement of 

points lying within the plate varies linearly with its thickness (Fig. 4.3): 

).,(,, yxwu
y

w
zu

x

w
zu zyx 








 (4.13) 

 

Fig. 4.3. The plate segment deformation scheme. 

Thus stains are expressed by the relations: 

2

2

x

w
z

x

ux
x









 ,   

2

2

y

w
z

y

uy

y








 ,   

yx

w
z

x

u

y

u yx
xy
















2

2 . (4.14) 

The strain vector can be presented in the form: 

ε = z ∂w(x,y), (4.15) 

where vector ∂ is the vector of differential operators: 

∂



















xy

yy

xx







2

, 2

2

x
xx




  , 2

2

y
yy




  , 

yx
xy






2

 . 

Let us assume that there is a plane stress condition in the plate, so the stress 

vector can be determined as follows: 

σ = D·ε= z D ∂w(x,y),  (4.16) 

where D is the matrix of material constants determined for plane stress (Eqn. (13)). 
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Now we introduce in the expression of internal forces (moments and shearing 

forces – Figure 4)  






2/

2/

h

h

xx zdzM  ,   




2/

2/

h

h

yy zdzM  ,   




2/

2/

h

h

xyxy zdzM  , 






2/

2/

h

h

xzx dzQ  ,   




2/

2/

h

h

yzy dzQ  . 

(4.17) 
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
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xy
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 b) internal forces 

Figure 4. The distribution of stresses, external loads and internal forces in the plate 

element. 

The equilibrium of an infinitesimal plate element shown in Figure 4b leads to the 

set of equations: 









Q

x

Q

y
q x y

x y
  ( , ) 0 , (4.18) 
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

M

x

M

y
Q

xy y

y 
. 

After integration Eqn. (4.17) taking into consideration Eqn. (4.16), we obtain 

M D
w

x

w

y
x   














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M D
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
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




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


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



2

2

2

2

, 

 M D
w

x yxy   1

2




 
, 

(4.19) 

where D denotes the plate stiffness defined by the equation 

 
D

Eh




3

212 1 
. 

(4.20) 

From the last two Eqn. (4.18), we obtain relations for the shearing forces: 

Q D
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w

x y
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


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







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Q D
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





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
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3

3
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(4.21) 

Inserting the above equation describing shearing forces into the first Eqn. (4.18) 

we obtain 







 





4

4

4

2 2

4

4
2

w

x

w

x y

w

y

q x y

D
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( , )

. 

(4.22) 

It is a biharmonic partial differential equation which should be satisfied by the 

function of deflection w(x,y) within the plate. The following boundary conditions should 

be realised at the edges of the plate: 

a) w = 0, 0
n

w




  on the fixed edge, 
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b) w = 0, 0
2

2


n

w




  on the free supported edge, 

c) Mn = 0, Vn = 0  on the free edge. 

In the above equations n defines the direction of the line which is perpendicular 

to the edge and Vn is the reduced force introduced by Kirchhoff in 1850, described by 

Timoshenko and Woinowsky-Krieger (1962). This force joins the influence of the 

torsion moment Mns and the shearing force Qn on the free edge Figure 4b: 

  









2

3

3

3

2
sn

w

n

w
D

s

M
QV ns

nn












 (4.23) 

where n describes the direction of the line which is perpendicular to the edge and s is 

the direction of the line which is parallel to the edge of the plate. 

The modification of the boundary conditions is necessary here because the 

fourth order Eqn. (4.22) cannot be solved for three boundary conditions coming from 

the requirement of zero stress on the free edge: Mns = 0, Mn = 0, Qn = 0. 

5. Analytical methods 

There are many analytical methods. 

5.1. Thin Plates 

Only selected cases of plates with particular shapes and loading can be solved 

analytically. In other cases, iterative solution in the shape of infinite series can be found. 

These iterative methods are: 

 Plate strip; 

 Double Fourier series expansion; 

 Single Fourier series expansion. 

5.1.1. Plate strip 

Cylindrical bending applies only in the following conditions: 

 a/b<<1, 

 long opposite edges support conditions independent of x2. 
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5.1.2. Navier solution 

Double Fourier series expansion is called Navier solution and can be obtained in 

case of rectangular, simply supported plates. 

The load of the rectangular plate of the dimensions a x b, perpendicular to the 

plate surface, can be expressed as double Fourier series, with use of the following 

formula: 

 3 1 2 1 2

1 1

, sin sinrs r s

r s

p x x p x x 
 

 


 

(19)
 

where the coefficients can be calculated as: 

r s

r s

a b

 
      , 1,2,3,r s   

After integration at the whole surface of the plate, the coefficients for the series 

expansion can be expressed as follows: 

 3 1 2 1 2 1 2

0 0

4
, sin sin

b a

rs r sp p x x x x dx dx
ab

   
 

(20)
 

In the case of the uniform plate  3 1 2,p x x p const  , the following 

simplification can be obtained: 

2

16
, 1,3,5,....rs

p
p r s

rs
 

 
(21)

 

Assuming the function of the plate deflection as the double series expansion: 

 1 2 1 2

1 1

, sin sinrs r s

r s

w x x w x x 
 

 


 

(22)
 

and substitution into the differential equation of the plate (10), we obtain the 

following equation: 

 
2

2 2

1 2 1 2

1 1 1 1

sin sin sin sinr s rs r s rs r s

r s r s

D w x x q x x     
   

   

  
 

(23)
 

To make the equation fulfilled for each coefficient 1x  and 2x , we finally get the 

relation: 

rs
rs

q
w




 
(24)
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where: 

 
2

2 2

r sD      

Knowing the deflected surface (22), on the basis of equations (4.19) and (4.21), 

we can find formulae for calculation of internal forces: 

 2 2

1 2

1 1

sin sinx r s rs r s

r s

M D w x x   
 

 

   
(25)

 

 2 2

1 2

1 1

sin siny r s rs r s

r s

M D w x x   
 

 

   
(26)

 

  1 2

1 1

1 cos cosxy r s rs r s

r s

M D w x x    
 

 

     
(27)

 

 2 2

1 2

1 1

cos sinx r r s rs r s

r s

Q D w x x    
 

 

   
(28)

 

 2 2

1 2

1 1

sin cosy s r s rs r s

r s

Q D w x x    
 

 

   
(29)

 

5.1.1. Nádai-Lévy solution 

Single series expansion is called Nádai-Lévy solution and can be used in case of 

rectangular plates with simply supported long edges and arbitrary other boundary 

conditions. 

The following assumptions are used in this method: 

 The load is changing only along the x axis; 

 Both sides of the plate (x=0 and x=Lx) are simply supported. 
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Figure 5. The plate load scheme. 

These assumptions allow 6 essentially different schemes of plate support which 

have been shown in Figure 6. 

  

Figure 6. The plate support schemes. 

5.1.1.1. Equation of the deflected plate 

The plate deflection can be described with use of the following equation: 

     1 2, ,w x y w x y w x   (30) 

After substitution of this equation to the equilibrium equation of the plate, we 

obtain: 

   4

1 2

( )
,

p x
w x y w x

D
      (31) 

which allows writing this equation in the following form: 

 4

1 , 0w x y   (32) 

 4

2

4

d ( )

d

w x p x

x D
  (33) 

Seeking the solution of the equation (33) as a series: 

 2

1

sini i

i

w x E x




  (34) 

we expand the load into sine series: 
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 
1

sini i

i

p x p x




  (35) 

where  
0

2
sin d

xL

i i

x

p p x x x
L

  , i

x

i

L


  . 

After substitution to the equation (33) we obtain: 

4

1 1

1
sin sini i i i i

i i

E x p x
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 

 

   (36) 

and consequently: 

4

i
i

i

p
E

D
  (37) 

Solution of the equation (32) is also sought as a sine series: 

   1

1

sini i

i

w x f y x




  (38) 

which after substitution into equation (32) gives the condition describing the function 

 if y : 

4 2
2 4

4 2

d d
2 0

d d

i i
i i i

f f
f

y y
     (39) 

Solution of the linear differential equation (32) can be put down in the following 

form: 

  sh ch sh chi i i i i i i i i i if y A y B y C y y D y y         , (40) 

sh sinhi iy y  , ch coshi iy y  . 

where the constants Ai, Bi, Ci, Di should be taken to fulfil all boundary 

conditions for both edges y = const. 

The following derivatives of the function f(y) will be commonly used in the 

following considerations: 

)]sh(ch)ch(shshch[)(
'

yyyDyyyCyByAyf iiiiiiiiiiiiii   , (41) 

)]chsh2()shch2(chsh[)(
2''

yyyDyyyCyByAyf iiiiiiiiiiiiii   ,(42) 

)]shch3()chsh3(shch[)(
3'''

yyyDyyyCyByAyf iiiiiiiiiiiiii   ,(43) 
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  where: 

3

3
'''

2

2
''' ,,

dy

fd
f

dy

fd
f

dy

df
f  . 

5.1.1.2. Exemplary solutions with use of Nádai-Lévy method 

5.1.1.2.1. Two opposite edges fixed and other two simply 

supported 

The following boundary conditions are in force for both edges fixed: 

1
:

2
yy L   

0, 0x

w
w

y



  


, (44) 

Symmetry of the deflected surface about the x axis results in disappearing of the 

terms with non-symmetrical functions from the equation (40), i.e. Ai = 0 and Di = 0. 

Equation (40) after substitution of boundary conditions (44) obtains the following form: 

  ch shi i i i i if y B y C y y    , (45) 

The equation of the deflected plate (30) can be simplified then: 

       1 2

1

, , ch sh sini i i i i i i

i

w x y w x y w x B y C y y E x   




      (46) 

Substitution of the boundary conditions results in: 

 
1

ch sh sin 0i i i i i i i

i

B C E x   




    (47) 

 
1

sh sh ch sin 0i i i i i i i i

i

B C x     




      (48) 

where: 
2 2

i y y

i

x

L i L

L

 
   . 

To make this system of equations be in force for each x, the following conditions 

should be fulfilled: 

ch sh 0i i i i i iB C E      (49) 

 sh sh ch 0i i i i i iB C       (50) 
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After solution of system of equations (49) and (50) we obtain: 

ch
sh

i
i

i
i

i

E
C










 (51) 

 1 chi i i iB C      (52) 

Eventually, by using equations (37), (51) and (52) all constants can be found, 

and finally we can calculate the plate deflection with use of the equation (46). 

5.1.1.2.2. One edge fixed and all other simply supported 

The following boundary conditions are in force for the edges at y=const: 

0 :y   

( ,0) 0w x  , (53) 

0

( ,0) 0x

y

w
x

y





 


, (54) 

:yy L  

( , ) 0yw x L  , (55) 

2 2

2 2
( , ) 0

y

y y

y L

w w
M x L D

y x




  
   

  
, (56) 

Condition (56) after introduction of (55) can be reduced to the following 

equation: 

2

2
0

yy L

w

y






. (57) 

The deflected surface is non-symmetrical, so the equation of the deflected plate 

(30) obtains the following form: 

 





1

sinchshchsh),(
i

iiiiiiiiiiii xEyyDyyCyByAyxw  . (58) 

Introduction of the conditions (53) and (54) gives equations: 

0 ii EB , (59) 

0 ii DA . (60) 

Conditions (55) and (57) give equations: 
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0chshchsh  iiiiiiiiiii EDCBA  , (61) 

    0chsh2shch2chsh  iiiiiiiiiiii DCBA  , (62) 

where 
x

y

yii
L

Li
L


  . 

System of equations (59)÷(62) has got the solution: 

 ]thcth1[sh

chth1
2
1

iiii

iii
ii EA








 , 

i

i
iii

E
AC




ch2
th  , 

ii EB  , ii AD   (63) 

where Ei is described by equation (37) and th tanhi i  , cth cothi i  . 

Substitution of the calculated constants into equation (58) leads us to the calculation 

of the deflected surface.  

5.1.1.2.3. One edge fixed, opposite one – free, and two other 

simply supported 

The following boundary conditions are in force for the edges parallel to the x 

axis: 

0 :y   

( ,0) 0w x  , (64) 

0

( ,0) 0x

y

w
x

y





 


, (65) 

:yy L  

2 2

2 2
( , ) 0

y

y y

y L

w w
M x L D

y x




  
   

  
, (66) 

3 3

3 2
( , ) (2 ) 0

y

y y

y L

w w
V x L D

y y x




  
     

   
, (67) 

As in the previous example, the deflected surface is non-symmetrical, so the 

equation of the deflected plate (30) obtains the following form:  

 





1

sinchshchsh),(
i

iiiiiiiiiiii xEyyDyyCyByAyxw  . (68) 
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Introduction of the conditions (64) and (65) gives equations: 

0 ii EB , (69) 

0 ii DA . (70) 

Condition (66) after taking into account (69) and (70) reduces to the following 

form: 






































i

iiiiiii ECA











ch)1(
1

1

2
thth

1

1
, (71) 

and condition (67) after introduction of (69) and (70) gives equation: 

iiiiiii ECA 
































cth

1

1
cth

1

2
, (72) 

where 
x

y

yii
L

Li
L


  . 

If we write down the system of equations (71) and (72) in the matrix form: 



























i

i

i

i

i

ii

ii

h

h
E

C

A

gg

gg

2

1

43

21
, (73) 

where 
iiig 









 th

1

1
1

,  






1

2
th2 iiig ,  

iiig 





 cth
1

2
3

,  
iiig 




cth

1

1
4 




 , 

i

ih




ch)1(
11


 ,  12 ih , 

then we obtain the solution in the form: 

i

iiii
ii

G

ghgh
EA 2241 

 , 

i

iiii
ii

G

ghgh
EC 3112 

 , ii EB  , ii AD  , (74) 

where iiiii ggggG 3241  . 

5.1.1.2.4. All edges simply supported 

The following boundary conditions are in force for both edges y = const: 

1
2

:yy L   
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1
2

( , ) 0yw x L  , (75) 

1
2

2 2

1
2 2 2

( , ) 0

y

y y

y L

w w
M x L D

y x




  
   

  
, (76) 

As in the first example (5.1.1.2.1), symmetry of the deflected surface about the x 

axis results in disappearing of the terms with non-symmetrical functions from the 

equation (40), i.e. Ai = 0 and Di = 0.  

So the equation (40) after substitution of boundary conditions (75) and (76) 

obtains the following form: 

  ch shi i i i i if y B y C y y    , (77) 

The equation of the deflected plate (30) can be simplified then: 

       1 2

1

, , ch sh sini i i i i i i

i

w x y w x y w x B y C y y E x   




      (78) 

The second of boundary conditions (76) after taking (75) into account is reduced 

to: 











1

''

2

2

0sin
i

ii xf
y

w
  (79) 

After introduction of the boundary conditions, we have: 

 





1

0sinshch
i

iiiiiii xECB   (80) 

  





1

2
0sinshch2ch

i

iiiiiiii xCB   (81) 

where 
x

yyi

i
L

LiL

22


  . 

To make the system of equations (80) and (81) be in force for each x, the 

following conditions should be fulfilled: 

0shch  iiiiii ECB   (82) 

  0shch2ch  iiiiii CB   (83) 

After solution of system of equations (82) and (83) we have: 
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i

i
i

E
C

ch2
 , (84) 

 iiii CB  th2 . (85) 

5.1.1.2.5. Three edges simply supported, the remaining edge 

free 

The following boundary conditions are in force for the edges parallel to the x 

axis: 

0 :y   

( ,0) 0w x  , (86) 

2 2

2 2

0

( ,0) 0y

y

w w
M x D

y x




  
   

  
, (87) 

:yy L  

2 2

2 2
( , ) 0

y

y y

y L

w w
M x L D

y x




  
   

  
, (88) 

3 3

3 2
( , ) (2 ) 0

y

y y

y L

w w
V x L D

y y x




  
     

   
, (89) 

Equations (86) and (87) may be reduced into much simpler form: 

0 ii EB , (90) 

02  ii CB , (91) 

which allows easy calculation of constant values: ii EB  , ii EC
2
1 . 

Equations (88) and (89) may be presented as: 



































2th

1

sh

1

1th1

2 i

ii

i

i

i
ii EDA












, (92) 



























 ii

i
iiii

E
DA 








 th

1

3

21

1
th , (93) 

where 
x

y

yii
L

Li
L


  . 
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In the similar manner as in the example (5.1.1.2.3), it will be more convenient to 

write down this system of equations in matrix form: 



























i

i

i

i

i

i

i

h

h
E

D

A

g

g

2

1

2

1

1

1
, (94) 

where  
i

i
ig





 th1

2
1 


 ,  

2th

1

sh

1

1
1

i

ii

ih

















 , 

 










1

1
th2 iiig ,  













 iiih 




th

1

3

2

1
2 . 

Finally, we obtain solution of (94) in the following form: 

ii

iiii
ii

gg

ghgh
EA

12

1221




 , 

ii

ii
ii

gg

hh
ED

12

12




 . (95) 

5.1.1.2.6. Two opposite edges simply supported, other two 

free 

The following boundary conditions are in force for both edges y = const: 

1
2

:yy L   

1
2

2 2

1
2 2 2

( , ) 0

y

y y

y L

w w
M x L D

y x




  
   

  
, (96) 

1
2

3 3

1
2 3 2

( , ) (2 ) 0

y

y y

y L

w w
V x L D

y y x




  
     

   
, (97) 

As in examples (5.1.1.2.1) and (5.1.1.2.4), symmetry of the deflected surface 

about the x axis results in disappearing of the terms with non-symmetrical functions 

from the equation (40), i.e. Ai = 0 and Di = 0. 

Boundary conditions (96) and (97) in this case obtain the following form: 

i

i

iiii ECB





 ch)1(
th

1

2














 , (98) 

0
1

1
cth 

















 iiii CB , (99) 

where 
x

yyi

i
L

LiL

22


  . 
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As in example (5.1.1.2.5), it will be more convenient to write down this system 

of equations in matrix form: 

 

























01

1 1

2

1 i

i

i

i

i

i h
E

C

B

g

g
, (100) 

where 
iiig 


th

1

2
1 


 , 











1

1
cth2 iiig , 

i

ih




ch)1(
1


 . 

Solution of the system of equations (100) is finally given by: 

ii

ii
ii

gg

gh
EB

12

21


 , 

ii

i
ii

gg

h
EC

12

1


 . (101) 

6. Examples 

6.1. Rectangular slab 

Rectangular slab loaded with any at the edge – determination of displacements 

and stress field 

6.2. Rectangular plate 

In this chapter, we will present some solutions for rectangular plates with use of 

previously presented analytical methods. 

6.2.1. Navier solution 

6.2.1.1. Constant distributed load over limited rectangular area of 

the plate 

Let us consider simply supported rectangular plate with constant load  

over limited rectangular area of the plate. The plate dimensions are: 

 Length: ; 

 Width: ; 

 Thickness: . 

The material parameters are: 

 Young’s modulus:  ; 

 Poisson’s ratio: . 

p0 10kPa

Lx 5m

Ly 4m

h 10cm

E 20GPa

 0.2
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We can calculate plate stiffness as: . 

The load is distributed at the area limited by the coordinates: 

 at x axis:  Lx1 < x < Lx2,   ,  ; 

 at y axis:  Ly1 < y < Ly2;  ,   . 

We can calculate the resultant of the distributed load: 

  

 We will solve the plate with use of Navier method. First we calculate the 

coefficients to be used in expanding the load into double Fourier series. The number of 

terms used in this expansion is limited: 

   

The coefficients are expressed with use of the formulae: 

   

These coefficients obtain values presented in arrays: 

    

The coefficients of the load expansion in a double Fourier series can be calculated with 

use of the formula: 

 

 

 

The coefficients of the load expansion can be shown as the following matrix: 

D0
E h

3


12 1 
2

 
1736.111 kN m

Lx1 1.5m Lx2 3.5m

Ly1 1m Ly2 3m

Q p0

Lx1

Lx2

x

Ly1

Ly2

yq x y( )




d




d










 Q 40 kN

N 20 i 1 3 N j 1 3 N

 i i   i

 i

Lx
  i

 i

Ly


 i

3.141593

9.424778

15.707963

21.991149

28.274334

34.557519

40.840704

47.12389

53.407075

59.69026

  i

0.628319

1.884956

3.141593

4.39823

5.654867

6.911504

8.168141

9.424778

10.681415

11.938052

1

m

  i

0.785398

2.356194

3.926991

5.497787

7.068583

8.63938

10.210176

11.780972

13.351769

14.922565
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m


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4

Lx Ly Lx1

Lx2

x

Ly1

Ly2

yq x y( ) sin  j y  sin  i x 




d




d








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
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Now we can approximate the load with use of the double Fourier series: 

 

The load can be presented in the graph: 
 

p1 x y( )

i j

p i j sin  i x  sin  j y  








p1

 p

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

0.674 0.000 -0.225 0.000 -0.135 0.000 0.096 0.000

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

-0.363 0.000 0.121 0.000 0.073 0.000 -0.052 0.000

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.156 0.000 -0.052 0.000 -0.031 0.000 0.022 0.000

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

-0.075 0.000 0.025 0.000 0.015 0.000 -0.011 0.000

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

-0.061 0.000 0.020 0.000 0.012 0.000 -0.009 0.000

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.084 0.000 -0.028 0.000 -0.017 0.000 0.012 0.000

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.000 0.000 0.000 0.000 0.000 0.000 0.000 ...


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The function representing plate deflection approximated with double Fourier series 

expansion is expressed as follows: 

 

where: 

  

  

The plate deflection can be presented in the graph: 

 

Maximum deflection occurs at the middle of the plate: 

 

Next we will find the internal forces: 

 bending moments: 

 

 

 

w x y( )
1

0
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

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
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

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









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d

d
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
2

x
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 torsional moment: 

 

 

Bending moments and torsional moments can be presented in graphs with maximum 

values: 

 bending moments: 

 

 

 

My x y( ) p0

i j

ai j   i 2
  j 2





 sin  i x  sin  j y 




















Mxy x y( ) D0 1 ( )
x y

w x y( )
d

d









d

d











Mxy x y( ) p0 1 ( )

i j

ai j  i  j cos  i x  cos  j y  















Mx
Lx

2

Ly

2










4.213572 10
0


kN m

m
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 torsional moment: 

 

 

The next step will be calculation of shear forces: 

 

 

 

 

Shear forces can be presented in graphs with maximum values: 
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The next will be calculation of principal moments. First we calculate the parameters of 

Mohr’s circle for principal moments: 

 horizontal component of Mohr’s circle radius: 

 

 circle radius: 

 

 location of the circle center at the horizontal axis of bending moments: 

 

Qx
Lx

4

Ly

2










4.452033 10
0


kN

m


Qy
Lx

2

Ly

4










5.725398 10
0


kN

m


U x y( )
Mx x y( ) My x y( )

2


R x y( ) U x y( )
2

Mxy x y( )
2



S x y( )
Mx x y( ) My x y( )

2

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The functions of principal moments are calculated with use of formulae: 

 

 

These functions of principal moments can be presented in the graphs: 

 

 

Finally, we can calculate the angle for the principal direction in relation to the x axis 

direction: 

 

This direction can be presented as a vector plot: 

Mmax x y( ) S x y( ) R x y( )

Mmin x y( ) S x y( ) R x y( )

 x y( ) 0.5 atan2 U x y( ) Mxy x y( )( )
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6.2.2. Nádai-Lévy solution 

6.2.2.1. Two opposite edges simply-supported, two others - fixed 

Let us consider a rectangular plate with constant load which includes dead load 
 over the whole area of the plate. The plate is simply supported at 

two opposite edges and fixed at other ones. The plate dimensions are:  

 Length: ; 

 Width: ; 

 Thickness: . 

The material parameters are: 

 Young’s modulus:  ; 

 Poisson’s ratio:  ; 

 Material specific weight: . 

We can calculate plate stiffness as: . 

The load is distributed at the whore area of the plate: 

p0 5 kPa  h

Lx 5m

Ly 6m

h 7cm

E 30GPa

 0.2

 25
kN

m
3



D0
E h

3


12 1 
2

 
893.229 kN m
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 at x axis:  Lx1 < x < Lx2,   ,  ; 

 at y axis:  0 < y < Ly. 

We can calculate the resultant of the distributed load: 

  

 We will solve the plate with use of Nádai-Lévy method. First we calculate the 

coefficients to be used in expanding the load into single Fourier series. The number of 

terms used in this expansion is limited: 

  

The coefficients are expressed with use of the formulae: 

   

These coefficients obtain values presented in arrays: 

    

The coefficients of the load expansion in a single Fourier series can be calculated with 

use of the formula: 

 

The coefficients of the load expansion can be shown as the following vector: 

Lx1 0m Lx2 Lx

Q0 p0 Ly

Lx1

Lx2

xq x( )




d










 Q0 202.5 kN

N 15 i 1 3 N

 i
i 

Lx
  i  i

Ly

2


 i

0.628319

1.884956

3.141593

4.398230

5.654867

6.911504

8.168141

9.424778

1

m

  i

1.885

5.655

9.425

13.195

16.965

20.735

24.504

28.274



p i
2

Lx Lx1

Lx2

xp0 sin  i x 




d











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Now we can approximate the load with use of the single Fourier series: 

 

The load can be presented in the graph: 
 

The coefficients of the cylindrical component of the plate deflection can be calculated 

as: 

 

and presented in as a vector: 

p i

1

1

2

3

4

5

6

7

8

-8.594

-2.865

-1.719

-1.228

-0.955

-0.781

-0.661

-0.573

kPa

p1 x( )

i

p i sin  i x  

0 1 2 3 4 5 6 7 8 9 10

1 10
4



6.667 10
3



3.333 10
3



3.333 10
3



6.667 10
3



1 10
4



p1 x( )

x

E i

p i

D0  i 4



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The cylindrical deflection of the plate is now described with use of the formula: 

 

and can be presented in the following graph: 

The maximum value of this cylindrical deflection occurs at x=2.5 m: 

   

To find the total deflection of the plate, firs we calculate other four coefficients with use 

of the formulae: 

   

  

These coefficients can be presented as the following vectors: 

E i

1

1

2

3

4

5

6

7

8

-61.735010

-0.254054

-0.019755

-0.003673

-0.001045

-0.000383

-0.000166

-0.000081

mm

w2 x( )

i

E i sin  i x  

w2max w2 2.5m( ) w2max 61.498 mm

A i 0 Di 0

Ci

E i

 i csch  i  cosh  i 
 Bi Ci 1  i coth  i  
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The following functions will be used in order to calculate the total deflection of the 

plate: 

 

 

Additionally we calculate the derivatives of the function f(i,y): 

 first derivative: 

 

 

 second derivative: 

 

 

 third derivative: 

 

 

The functions can be presented in the graph: 

A i
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The function representing plate deflection can be expressed on the basis of the presented 

functions as follows (w(x,y)=w1(x,y)): 

 

 

The plate deflection can be presented in the graph: 

 

Maximum deflection occurs at the middle of the plate: 

   

Next we will find the internal forces: 

 bending moments: 
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 torsional moment: 

 

 

Bending moments and torsional moments can be presented in graphs with maximum 

values: 

 bending moments: 
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









Mxy x y( ) D0 1 ( )

i

 i f1 i y( ) cos  i x  








Mx
Lx

2
0









5.82530
kN m

m




90 

 

 

  

 torsional moment: 

 

 

The next step will be calculation of shear forces: 

 

 

My
Lx

2
0









6.28662
kN m

m


Mxy Lx
Ly

2










0.00000
kN m

m


Qx x y( ) D0
3

x
w x y( )

d

d

3

x 2
y

w x y( )
d

d

2









d

d














Qx x y( ) D0

i

 i 3
f0 i y( )  i f2 i y( )



 cos  i x 












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Shear forces can be presented in graphs with maximum values: 

 

 

 

 

The next will be calculation of principal moments. First we calculate the parameters of 

Mohr’s circle for principal moments: 

 horizontal component of Mohr’s circle radius: 

 

Qy x y( ) D0
3

y
w x y( )

d

d

3

y 2
x

w x y( )
d

d

2









d

d














Qy x y( ) D0

i

 i 2
f1 i y( ) f3 i y( )



 sin  i x 













Qx Lx 0( ) 9.509418
kN

m


Qy
Lx

2

Ly

2










19.902710
kN

m


U x y( )
Mx x y( ) My x y( )

2

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 circle radius: 

 

 location of the circle center at the horizontal axis of bending moments: 

 

The functions of principal moments are calculated with use of formulae: 

 

 

These functions of principal moments can be presented in the graphs: 

 

 

R x y( ) U x y( )
2

Mxy x y( )
2



S x y( )
Mx x y( ) My x y( )

2


Mmax x y( ) S x y( ) R x y( )

Mmin x y( ) S x y( ) R x y( )

Mmax 3m 2m( ) 1.082430
kN m

m

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Finally, we can calculate the angle for the principal direction in relation to the x axis 

direction: 

 

This direction can be presented as a vector plot: 

Mmin 2.5m 0m( ) 6.286619
kN m

m


 x y( ) 0.5 atan2 U x y( ) Mxy x y( )( )
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6.2.3. Finite difference method 

6.2.3.1. Two neighboring edges simply-supported, two others - 

fixed 

Let us consider a rectangular plate with constant load  over the area of the 

plate. The plate is simply supported at two neighboring edges and fixed at other ones. 

The plate dimensions are:  

 Length: ; 

 Width: ; 

 Thickness: . 

The material parameters are: 

 Young’s modulus:  ; 

 Poisson’s ratio:  . 

We can calculate plate stiffness as: . 

The load is distributed at the whore area of the plate: 

 at x axis:  0 < x < Lx; 

q 4kPa

Lx 4m

Ly 3m

h 6cm

E 20GPa

 0.17

D
E h

3


12 1 
2

 

370.714 kN m
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 at y axis:  0 < y < Ly. 

We divide the plate area into  divisions. This leads to the nodal mesh, which 

can be presented in figure: 
 

The following differential scheme will be used in order to approximate 

differential equations: 
 

The equations approximating the plate deflection are written in every point inside the 

plate area (marked in black), so we obtain the system of six equations: 

 

 

 

 

 

 

 1m

20 w1 8 w2 w4 w30 w18  2 w17 w19 w5 w29  w7 w3 w27 w16  0

20 w2 8 w1 w19 w3 w5  2 w18 w20 w6 w4  w8 w22 w26 w30  0

20 w3 8 w2 w20 w22 w6  2 w19 w21 w5 w23  w9 w10 w25 w1  0

20 w4 8 w1 w5 w27 w29  2 w30 w2 w26 w28  w18 w6 w14 w15  0

20 w5 8 w2 w6 w26 w4  2 w1 w3 w27 w25  w19 w23 w13 w29  0
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There is a total number of 30 unknowns in this system of equations. Only the deflection 

components at the points inside of the plate are the “real” unknowns. Other values will 

be calculated on the basis of boundary conditions.  

First we put down the condition for the nodes marked in red. These nodes are positioned 

at edges that are fixed or simply supported, so we know the deflection at these nodes is 

equal to 0, so we can state: 

w17= w18= w19= w20= w21= w22= w23= w24= w25= w26= w27= w28= w29= w30=0 

In this way we eliminate the unknowns w17÷w30 from the system of equation. Additional 

relations coming from boundary conditions are: 

 for the fixed edges: the deflection at the point outside the plate is equal to value of 

the deflection in the plate area, opposite to the analyzed node; 

 for the simply supported edges: the deflection at the point outside the plate is equal to 

the negative value of deflection in the plate area, opposite to the analyzed node; 

The first condition results with equations: 

 

 

 

 

 

And the second one results with: 

 

 

 

 

 

Introduction of the above relations into the system of equations results with the reduced 

number of the unknown. The system of equations may be written as: 

 

 

20 w6 8 w3 w23 w25 w5  2 w2 w22 w24 w26  w20 w11 w12 w4  0

w12 w6

w13 w5

w14 w4

w15 w4

w16 w1

w7 w1

w8 w2

w9 w3

w10 w3

w11 w6

20 w1 8 w4 w2  2w5 w3 w1 w1 0

20 w2 8 w1 w3 w5  2 w4 w6  w2 0
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where there are only six unknowns, the same number as of the number of equations. 

Solution of the system of equations leads to the following vector of deflection for six 

nodes inside the plate area: 

 

These values can be distributed over the plate area to form the matrix of deflection: 

 

We can now present the results in the graph: 
 

The next step is calculation of internal forces. The bending moments in the point i,j of 

the matrix W can be calculated with the following formulae: 

20 w3 8 w2 w6  2w5 w1 w3 w3 0

20 w4 8 w1 w5  2w2 w6 w4 w4 0

20 w5 8 w2 w4 w6  2 w1 w3  w5 0

20 w6 8 w3 w5  2w2 w4 w6 w6 0

w

0

2.315

3.537

2.779

2.016

3.067

2.424























mm

W

w0

w0

w0

w0

w0

w1

w4

w0

w0

w2

w5

w0

w0

w3

w6

w0

w0

w0

w0

w0

















W
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and the torsional moment can be found with use of the formula: 

 

The moments can be put in the matrix of points, including the nodes at the edges: 

 bending moments: 

 

 

 torsional moment: 

 

Shear forces are calculated as: 

 

 

and shown in matrix form: 

 

 

Mx
i j 

D


2

W1i j  2 1 ( ) W1i j 1  W1i j 1   W1i 1 j  W1i 1 j   

My
i j 

D


2

W1i j  2 1 ( ) W1i 1 j  W1i 1 j   W1i j 1  W1i j 1   

Mxy
i j 

D

4
2

1 ( ) W1i 1 j 1  W1i 1 j 1  W1i 1 j 1  W1i 1 j 1  

submatrix Mx 1 4 1 5 

0

1.716

1.495

0

0

0.57

0.466

0.254

0

0.986

0.792

0.387

0

0.947

0.79

0.305

0

0

0

0















kN m

m


submatrix My 1 4 1 5 

0

0.292

0.254

0

0

1.038

0.697

1.495

0

1.61

1.07

2.274

0

1.289

0.879

1.797

0

0

0

0















kN m

m


submatrix Mxy 1 4 1 5 

0.178

0

0

0.155

0.544

0.236

0.272

0

0.071

0.031

0.036

0

0.544

0.236

0.272

0

0.641

0.373

0.428

0.186















kN m

m


Qx
i j

D

2
3

W1i j 2 2 W1i j 1 2W1i j 1 W1i j 2

2 W1i j 1 2W1i j 1 W1i 1 j 1 W1i 1 j 1 W1i 1 j 1 W1i 1 j 1











Qy
i j

D

2
3

W1i 2 j 2 W1i 1 j 2W1i 1 j W1i 2 j

2 W1i 1 j 2W1i 1 j W1i 1 j 1 W1i 1 j 1 W1i 1 j 1 W1i 1 j 1











submatrix Qy 2 3 2 4 
0.497

1.434

0.796

2.247

0.713

1.854









kN

m


submatrix Qx 2 3 2 4 
1.968

1.543

0.269

0.216

1.11

0.796









kN

m

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