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1. Introduction

Surface girders are a group of structures (or structural members) which are
characterized by some similarity of shapes, i.e. three dimensional by nature members
have got one of their dimensions significantly smaller than two others. This dimension,
usually called “thickness” is in case of technical applications of theory of surface
girders at least one order smaller (i.e. 10 times) smaller than dimensions measured in
other perpendicular directions. Considering the working characteristics of these
structures they are usually divided into: slabs, plates and surfaces. Slabs and plates are
structures that ignoring the thickness may be treated as planar elements, while surfaces

are curved elements.

Slabs are structures loaded in their planes, so the state of stresses occurring in
them can be treated with high accuracy as planar in case they are “thin enough”. When
we deal with massive (“thick”) slab we often can simplify the analysis of the state of
strain assuming that this is a 2D state which simplifies the calculations. In both cases a
slab can be considered as a two dimensional structure which decreases the number of

the needed components of state of strain or stress.

A plate, though externally similar to a slab, yet it is loaded perpendicularly to its
surface which produces its state of strain called bending. In the theory of thin plates
there have been introduced assumptions similar in their nature to the theory of beams,
I.e. assumption on straight normals to the surface before deflection which after
deformation (bending of the plate) remain straight and normal to the deflected surface.
This simplification proposed by Kirchhoff and Love is widely applied in engineering
and contributes to simplification of essential equations needed to solve the states of

stress and strain.

A surface is a structure which on the grounds of its curvature is usually
subjected to compression and tension, as well as to bending. It is obviously much more
complicated problem to obtain needful components of states of stress and strain in this
case than for slabs or plates. This is why there are usually applied specific methods for
specific cases of Surface geometry, i.e. cylindrical, revolutionary or surfaces in
membrane state, which again lets the limitation of the effort needed for problem

solution.



We will try to present the simplest approaches to solution of the problem of
surface girders statics. There will be shown methods used in analyses of such structures
and many examples of solution for specific engineering problems. We will discuss
analytical and numerical methods used nowadays in engineering practice. Special
attention will be paid to the issue of plate bending, which is essential in the process of
civil engineering structures design and additionally profitable from the point of view of

teaching and comparison of different computational methods.

At the end of this introduction, we should comment on the term in the title of
this book “Surface Girders” which rather does not occur in English literature, but a
compact and well characterizing the described structures’ work. It is generally exact
translation of the term proposed by Witold Nowacki in the tile of his Polish book
,Dzwigary powierzchniowe”, which may heve been inspires by other well-known book
,Flaschentragwerke” by Karl Girkmann. In English literature there is usually employed
term “Theory of plates and shells” — e.g. famous book by Stephen Timoshenko and S.
Woinowsky-Krieger. The term ,,slab” for compressed plates is also rarely used, but we

have decided to use it consistently to distinguish bended plates from compressed slabs.

The contents of this book mostly consist of the material used by the authors
during lectures and classes conducted at the Faculty of Civil Engineering and

Architecture of Lublin University of Technology over the period 2000-2012.



2. Theoretical Background - Introduction to Theory of

Elasticity

Here we will present a few basic assumptions and theorems of mechanics which

will be used in the subsequent chapters of this book.

2.1. Assumptions regarding the linear model of a structure

In this chapter and some subsequent ones we will be dealing with linear
problems of mechanics. This means that the process of structural deformation can be

written by linear differential equations. It involves the following consequences:

+ Displacements of structure points which appear during deformation are small. Linear
displacements are considerably smaller than the characteristic dimension of a
structure (for example, the deflection of a beam is a few hundredths times smaller
than its length) and angles of rotation are considerably smaller than one (for
example, a nodal angle of rotation is smaller than 0.01 rad).

« Strains are small. It enables the relationship between strains and displacements to be

expressed with the help of linear equations.
+ The material is linear elastic which means that it satisfies Hook’s law.

It may seem that such limits which are put on both geometry of a structure and
material characteristics strongly restrict the application of the model. In effect these
limits are realized for many structures (they can refer to most of them), so the range of
usage of the model is very wide. The reader should know this when he proceeds with

the description of any real problem in terms of mechanics equations.

2.2. Stresses and strains

We will denote components of the stress tensor traditionally as it occurs
in most books on the finite element method. This means that components of direct stress
will be denoted by letters oy, oy, o; and components of shear stress by zy, z., 7
(Egn. 2.1a). Because of the symmetry of the stress tensor (zy= 7yx, == T = Tay)
[Fung], [Timoshenko, Goodier], we will use only six components which when

presented in a column matrix form the stress vector (Eqn 2.1b):
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Denoting the components of the strain tensor traditionally (Egn.2.2a) we assume

the following definitions:
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where ¢&,,¢&,,¢&,, are the components of direct strain (unit elongation) and

Vx1Vxr Yy, the components of shear strain (they are the angles of the non-dilatation

strain), uy, Uy, U, are the components of the displacement vector in the cartesian

coordinate system.

We write the components of strain in the form of a column matrix - the

strain vector (Eqn. 2.2b):
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We simplify the calculation of the internal work % if we take the
components of the strain vector y,4 (the angles of the volumetric strain) instead of usual

tensor definitions:

wzjngom:IsTDde, 2.4)
v v

where ¥ means the volume of a body.



2.3. Constitutive equations

As we have noted in our introductory assumptions, the relationship between the
components of the stress tensor and the components of the strain tensor (that is, between

o and g in our notation) is expressed by the linear equation:
oc=D-g, (2.5)

- 2.6
¢=D"-o, @

where D is the square matrix with dimensions 6x6 containing the material

constants:
A+2n A A0 0 0
A A+20 A 0 0 O
A A A+20 0 0 0
D= , 2.7)
0 0 0 up 0 0
0 0 0 0 p O
0 0 0 0 0 p

where A and u are the Lamé constants.

Since some other material constants like Young’s modulus - E and Poisson’s
ratio v are more often used, in practice we present the relationships between them and

the Lamé constants by the following formulae:

= B = B
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The Lamé constant u is noted by the letter G and is called Kirchhoff’s (or shear)
modulus.

The inverse matrix D with the material constants has an unusually simple

structure which is best shown by means of the constants E, v

1 —-v —v 0 0 0
-v 1 —v 0 0 0
D _1-v o-v 1 0 0 0 29)
E/IO0 0 0 21+v) 0 0
0 0 O 0 2(1+v) 0
0 0 O 0 0 2(1+v) |



It should be noted that matrix D is symmetrical which means that the

dependence D=D" occurs. This dependence will often be used in conversions.

2.4. Plane stress

In two-dimensional problems of thin plates, the following simplification of the

assumption is:
o=0 7,=0 7,=0 (210)

which leads to the plane stress criterion.

If we put equation 1.10 into equation 1.5 taking into consideration data from
equation 1.7 we obtain:

gzz—lL(ngLey), 7zx:0, 7zy:O- (2.11)

-V

In plane stress, the dimensions of the stress and strain vectors and the matrix of

the material constants are reduced by half and thus:

O-X 8)(
6=|o,|, t=|¢ |, o=D-g, e=D's¢ (2.12)
Xy yxy
1 v 0
E
D=1_V2 v 1 l0 , (2.13)
0o o =¥
2
1 —v 0
D—lzé —v 1 0o | (2.14)
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2.5. Plane strain

In problems regarding deformations of massive buildings, the plane strain
criterion is often found and it is expressed by the equations:

gZ:O, yzx:O’ 7/zy:0a (2.15)



When we insert the above equations into 1.6 taking also into consideration 1.9 we get

the following relations:

o, = V(GX +Gy), 7,=0, 7,=0 (2.16)

This is called the plane strain.

After taking into consideration the above equations 1.15 and 1.16, we can
notice that the relationship between the reduced stress and strain vectors 1.12 leads to

the following matrix of elastic constants:
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3. Theory of Slabs

The 2D element can be defined as a solid of which one dimension (thickness) is
considerably smaller than the two others and whose middle plane (the surface parallel to
both external surfaces of an element) is a plane (Fig. 3.1). A plate element has also such
a shape but the 2D element differs from a plate the way it is loaded. The 2D element can
be loaded only with the load acting in its plane and by the temperature dependent upon
the x and y coordinates. On the other hand, the plate can be loaded with a force
perpendicular to its surface or any temperature field. Plate elements will be discussed in

the following chapter.

Fig. 3.1. The exemplary application of a 2D element.



When external surfaces of a 2D element are free and this element is thin enough
(Fig. 3.1a), we can assume that 0,=0,7,=0,7,, =0 in reference to the whole

thickness of the element. Then it is said that this is a plane stress problem. The thinner
the 2D element (comp. Nowacki (1979), Timoshenko and Goodier (1962)), the better
the approximation is. Hence only the components of stress shown in Fig. 3.2 are non-
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Fig. 3.2. Stress tensor components in plane stress.

With regard to the symmetry of a stress tensor components of shear stress 7,

and 7, are equal, thus we have three independent components of stress which we

compose in the stress vector:

c=|o, | (3.1)

A completely different case occurs when the component Lz in Fig. 3.1b is very
significant, that is h<<Ly, Ly, Lz, and the support and load conditions are constant along
the axis which is perpendicular to the element. The structure satisfying these conditions
can also be analysed by applying plane state which in fact is plane strain. Since the
cross dimension of the structure shown in Fig. 3.1b prevents the structure deformation
in the direction perpendicular to the cross section, the thin layer cut out from this

structure is in the state described by the equation:

SZ:O, 72)(20’ yzy:O~ 3.2)



o, =0 comes from the above equations, but the first equation allows to
calculate the component , on the basis of two other components of a direct stress.

Thus, we have
o, = V(O'X +o, ) (3.3)

which allows to limit the number of searched components of the stress vector to three

components given in Egn. (3.1)

We also group independent components of the strain tensor in a column matrix

which we have called a strain vector:

There is a relationship between vectors ¢ and & described by constitutive
equations whose form depends on the model of the material which the structure is made
of. In this book we deal only with elastic isotropic materials which obey Hook’s law.

Hence we can write the constitutive equation as follows:
c=D-g, (3.5)
where D is a square matrix containing material elastic constants described in Chapter 2.

For plane stress, the matrix D has the form written by Eqn. (2.13). Plane strain

requires another matrix for elastic constants which is described by Eqn. (2.17).

3.1. Geometric relationships

A certain point can move only on the plane during the deformation process and

then the displacement vector of this point u(x,y) has two components:

(3.6)

u(x.y) z[ux(x, y)]

u, (X, y)

Some known relations exist (Timoshenko and Goodier (1962)) between the

components of displacement and strain vectors:

. _6uy ou, auy

g, = — =4 (3.7)
“ox Y oy’ P oy ox’ '
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which can be presented in the form:

o, 0
=P P = Oxa 0 _ 0 0 _0 3.8
=D u(xy), ?= 5T ey (3.8)
0,0,

where @ is the matrix of differential operators.

3.2. Equilibrium equations

Let us consider equilibrium of infinitely small part of a slab with dimensions
dx x dy and Thickness b (Fig. 3.3). Assuming plane state of stress and consequently

constant stresses at the plate thickness, we can write down equilibrium equations:

D> X=0, >Y=0 YM=0, (39)

which lead to the following relations:

3 X =(0, +do, -, )bdy +(z,, +dz,, —7,, )pdx+F,bdxdy =0,

SY = (0, +do, -, Jodx+(r,, +dz,, 7, )ody + F,bdxdy =0, (3.10)
S'M = (¢, +dz, +7,, pdydx/2—(r, +dr,, +7, Jodydx/2=0.

7, +dT,
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Fig. 3.3. Stress components and body forces in infinitesimal slab element.

Dividing two first equations (3.10) by the volume of the element (7=bxdx xdy)

we obtain:

11



o Ty Y
X
y (3.11)
do, dr
Y+ - Y4+F =0
dy dx 7

The third equation is fulfilled automatically by assuming the stress tensor
symmetry (zy=1). Calculating the limit of the relation (3.11) at the dimensions of the

element approaching zero (dx — 0, dy — 0) we obtain differential equilibrium equations:

oo

0Ty,
Ly 2t F =0,
(3.12)

System of two equations (3.12) contains three unknown components of stress
vector which imposes the need of additional relation combining the quantities we want
to find. It can be delivered by so-called compatibility condition, which utilizes the
combination of three components of stress vector and two components of displacement
vector through (3.6) the stress-strain constitutive relation (2.5). This method leading to
the classical solution of the plane stress state with use of Airy's stress function will be

shown in the next chapter.

Another method is writing down equilibrium equations (3.12) in such a way that
the unknown quantities are components of displacement vector. Thanks to constitutive

relations at the assumption of plane stress state, we obtain (comp.[Fung]):

ou
G|:V2ux+l+v 0 (8UX n YJ:|+ F =0,

l-vox\ ox oy
(3.13)
ou
szuy+1+va oy, Xy +F,=0,
1-voy( ox oy

where G is shear modulus (2.8), and V? is Laplace operator:

2 2
V2= (% + %} (3.14)

Assumption of plane strain results in the following form of equations:

12



ou
G| Viu, + L o[, oty +F,=0,
1-2vox| ox oy

ou
szuy+ 1 0 aux+ Y11+ F =0.
1-2voyl ox oy Y

Comparison of relations (3.13) and (3.15) leads to the conclusion that after

(3.15)

replacement of Poisson’s coefficient by v' = v/(1-v) in equations (3.15) we obtain
relations (3.13). It allows simple conversion of the solutions obtained for plane stress

into plane strain and other way around.

3.3. Compatibility equations

Condition of strain compatibility is resulting from relations (2.2), which define

components of small strain tensor and vector. In case of plane strain we have:

ou
uZ:0’ gxzaux, gy:_y’ gzzauzzo, O-Z:V(GXJ’_GV)
OX oy 0z
(3.16)
ou, ou
Y =7y = oy +é’_):,’ Y =V =00 7y =72 =0.
In case of plane stress the relations are slightly different:
ou ou
0:01 :O, :01 gx: Xv & :_y; 82—__ X+g ’
z }/xz 7/yz 0”X y Of,y 1—V( Y)

(3.17)

ou, ou
7/Xy=7/>’x=0”y é’_):, Va =V =00 7y =72 =0.

Common for both plane states is dependence of components of stress and strain
only on two coordinates x, y. Because 3 independent components of strain tensor are
obtained through derivation of 2 components of displacement vector (uy, uy), then there

must occur the relation between them called compatibility relation.

It is obtained by comparison of the following derivatives:

s, _ u, O, :a3uy %y _ du, . o%u, (318)
oy>  oxoy?' ox* ox® T oxdy Oxoy: oxPoy

SO
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2 2
e, .\ 0%¢y 07y _ (3.17)
oy>  ox*  oxoy

Substituting now constitutive relations of plane stress (2.12) into (3.17) we

obtain the equation

2 2 62
%(GX _Vo-y)"'%(o-y _Vo'x):(l""/)ﬁ’ (3.18)
X X
which after taking equilibrium equations (3.12) into consideration obtains the following
form:

oF
Vz(o-X +0'y)= —(1+v oF, +—= | (3.19)
ox oy
Executing similar operations in plane strain we get:
oF
V(o +o,) =t [ Ty | (3.20)
1-viox oy

Equation (3.19), in case of plane stress, or (3.20) in plane strain, together with
equilibrium equations (3.12) forms a system of three equations which allows
determination of three independent components of stress tensor. Solution of such
systems of equations is most frequently performer through the stress function proposed
by G. B. Airy and described in the next chapter.

3.4. Airy stress function

Airy's idea is based on the observation that the system of equilibrium equations
(3.12) can be solved with use of substitution:
o°d o’d o’d

Gx:6y2’ Gy:ya Z-xy:_axay1 (3.21)

where @(x,y) is a stress function, which automatically fulfills equilibrium conditions in
case of mass forces Fy , Fy disappearance. Introduction of relations (3.21) into the
compatibility equation (3.19) results with the condition that must be fulfilled by the

stress function:

(3.22)

o' ‘e o'
Z +2 a2 T A Y
OX ox°oy® oy
When mass forces are not equal to zero, but fulfill the potential condition, i.e.

are derivatives of some function ?(x,y):

14



F--2 fF-=_2 (3.23)

Airy's approach can be applied as well, but it needs now some correction:

2 2 2
JX—‘Pzaay—gf, Gy—g’zg?, Txyz—aa;. (3.24)
X X

The compatibility equation after substitution of these relations in the plane stress
condition obtains the following form:
oo | o'o oo
4 +2 2,2 + 4
OX ox-oy: oy

Plane strain condition gives us compatibility equation in similar form:

T (2.25)

4 4 4
89D+2 o'®d +8 ¢:—1_2VV2¥’. (3.26)
8X4 aXZGyZ ay4 1_V

The stress function described by equation (3.22) is named the biharmonic

function. The family of biharomonic functions contains polynomials, exponential,
trigonometric and hyperbolic functions. Application of these functions to solution of

analytical problems of slab statics will be shown in the next chapters.

3.5. Analytical solutions of 2D elasticity problems

Examples of solution for problems of slabs statics, shown in this chapter, will
deal with problems without mass forces. This will simplify solutions and make it easier
to understand analytical methods used here:

o'd 5 o'd  o'd

3 Z + axzayz + ay4 :0, lub VZVZQD:O’ (3.27)
X

o* ot ot ) . . .
~ 42—~ 4+ = |isabiharmonic operator.
8X4 aX28y2 ay4

where v2y? z(
Biharmonic functions fulfilling homogenous equation (3.27) can be selection

from a wide group of functions:

@(X,y)z
8y +aX+a,X* +ax° +...+by+by* +h Y’ +.. .+ C Xy +C, XY + XY+ 62
Ae*“sinay, Ae*™cosay, Axe*™sinay, Axe ™ coscay,

Ae P sin px, Ae*” cos px, Aye*”sin px, Aye™” cos Sx.

15



Now we will show their usage in solving problems which usually occur in civil

engineering and are important from practical point of view.

3.5.1. Rectangular slab. Solution in the polynomial form

Let us accept the Airy stress function as a full 3" degree polynomial:

(X, y) =8, +aXx+a,y+a x> +a,xy +ay’ +a,x> +a X’y +axy’ +ay’, (3.29)
where ap...ag are constants that can be selected in such a manner that the boundary
conditions are fulfilled. The stress function in the shape of (3.29) fulfills the biharmonic
equation (3.27) for any values of these constants. After its derivation we obtain the
components of the stress vector:

o =2;—q:=2a5+2a8x+6agy,

X

2
o, 2867? =2a, +6a,x+2a,Y, (3.30)

0’
= =—(a, +2a,x+2a,y).

Ty -
Y oxoy
Accepting a rectangular slab of the h height and the | span (Fig. 3.4), we

indicate: {=y/h, &=x/l and 2=I/h. Now we will see what is the influence of each constant
occurring in equations (3.30) on the boundary conditions. To do so we will compose the

stress diagrams in the slab area: —1/2 <x<+1/2; -h/2 <y<+h/2, assuming |=5h.

1), (

=
Ny

Fig. 3.4. Coordinate system and geometry of the rectangular slab

Because 3 first coefficients ayp...a, of the polynomial (3.29) have no influence
on the stress field in the slab (comp. eg. 3.30) we can narrow down to seven diagrams
with coefficients as...ag not equal to 0. For the sake of convenience, we will assume
that these coefficients, one by one, take unit values, keeping in mind that the stress
fields obtained in such a way should be multiplied by the values, which fulfill the
boundary conditions of the problem.

16



a) az=1, other coefficients a;=0

b) a,=1, other coefficients a;=0

y

d) as=1, other coefficients a;=0

f) ag=1, other coefficients a;=0

17



| ,

9) ag=1, other coefficients a;=0

Fig. 3.5. The influence of the Airy function coefficients on the stress distribution in
rectangular slab

The analysis of the diagrams shown in Fig. 3.5 leads to the conclusion, that the
stress function in the shape of the 3™ degree polynomial allows solving the problems of
compression, tension, shearing and simple bending. Details for such applications may

be followed through the examples shown in the book by Timoshenko and Goodier.

We will now show an example of the 5™ degree polynomial application to the
problem referring to bending of simply supported slab-beam loaded with uniform load
distributed at the top edge (Fig. 3.6).

A y, é’ q
P b i

T Txf h
|

R R
1 LA

Fig. 3.6. Bending of the rectangular beam-slab

The boundary conditions of the problem are:

o, (xh12)=—q/b, 7,(x1h)=0, o,(x~h/2)=0, 7, (x~h/2)=0,

hi/2 hi/2 hi/2

[o.0/2,y)dy=0, [o,0/2,y)ydy=0, [7,(1/2,y)bdy=R=ql/2,

~h/2 ~h/2 ~h/2 (3.31)
h/2 h/2 h/2

jax(-l/z,y)dyzo, jax(—l/z,y)ydyzo, J.rxy(—I/Z,y)bdy:—R:—qI/2,

—h/2 -h/2 -h/2

where b is the beam cross-section width and g [kN/m] is the load intensity.

At the vertical edges (x=+1/2) there have been applied boundary conditions in the
integral form, because it is not possible that the polynomial form of the stress function
fulfills the boundary conditions fully. In the present form this means that the horizontal

forces and the bending moments disappear at the beam ends.

18



We will now accept the stress function as a 5 degree polynomial:

D(X,Y) =X +a,xy +a,y> +a,x°> +a X’y +a,xy’ +a,y° +ax* +a X’y +
+ax’y? +a,xy’ +a,yt +ax’ +a,Xxy +a Xy +a Xy’ +axyt +a,y’,
where a;... a;g are the constants accepted to fulfill the compatibility equation

(3.32)

(3.26) and the boundary conditions (3.31). There have been omitted constant and linear
components in the equation (3.32) because they have no influence on the equations

describing the components of stress vector (3.21).

Substitution of the polynomial (3.32) to the condition (3.26) leads to:

VAVAD(X,y) = (3.3
4(6ay +a,,+6a,,)+12x(10a,, +10a,, +a,;)+12y(2a,, +a,, +10a,,)=0.
Components of the stress vector are obtained after the Airy function derivation:

0D

o, Fa = 2a, +2a,X +6a,y +2a,,X* +6a,,Xy +12a,,y* +2a,. x> +3a, X’y +
+12a,,xy* +20a,,y°
82¢ 2 2 3 2
o, = v 2a, +6a,X+2a;y +12a,X" + 635Xy +2a,,y +20a,,x” +12a,,X"y + (3.34)
+6a,xy° + 22,5y’
o O’ _ (3, +2ax+ 2a,y +3a,x” + 4a,,xy +3a,y’ +4a,,x° +6a, X"y +
Yooy (+6agy’+day,y’

The condition (3.33) gives 3 equation allowing calculation of the a; coefficients,

which come from the independence of the polynomials occurring in (3.33):

6a, +a,,+6a,, =0,
10a,, +10a,, +a,; =0, (3.35)
2a,, +a,,+10a,, =0.

The remaining equations are obtained after using of the boundary conditions

(3.31). Conditions o, (x,h/2) = —% and O, (x-h/2)=0 give the system of equations:

19



231+a5h+a10h—2+a15h—3=—ﬂ, 6a4+3a9h+§a15h2=0,

2 4 Db 2

h? h® 3,
231_ash+am?—3167=0, 6a4—3a9h+5a15h =0, (3.36)
12a, +6a,,h =0,
123, -6a,h =0, a,,=0.

The conditions of the shear stress disappearance at the top and bottom Edge of

the slab 7, (X,31) =0 and 7,,(X,—3h) =0, produce the following system of equations:

h2 h3 h2
a2+a6h+3a117+a“?:0, 2a5+2a10h+3a16?:0,

h? h? h?
az—a6h+3a117—a17?:0, 2a, +2a,,h +3a16?:0, (3.37)
3a, +3a,h =0,
3a, —3a,h =0, a,=0.

The integral conditions leading to moments and horizontal resultant forces
h/2 h/2

disappearance at the edges x==I/2 : J'O—X (x1/2,y)dy =0, J'ax (£l/2,y)ydy =0, give
—h/2 —h/2

the system of equations:

4a,h+2a;hl +a, hl? +2a,,h* +a,;h°l =0,
4a,h—2aghl +a,hl* +2a,h* —a,,h’l =0, c.38)
8a,h® +4a, ,h’l +a,h’1* +4a,;h° =0,
8a,h® —4a,,h’l +a,h’1* +4a,,h° = 0.

h/2

Conditions jfxy(ﬂ/z, y) bdy = +ql /2,describing the resultant of the shear

—-h/2

stress at the left and right edges of the slab give equations:

4a, +4a.l +3a,l° +a,,h* +2a,I° +a,h’l = —2q—|,
bh (3.39)
4a, —4a,) +3a,l” +a,,h* —2a,,|° —a,h’l = 28—:].

Conditions (3.35, 3.36, 3.37, 3.38, 3.39) contain 23 equations with 18 unknown
coefficients. Five of these equations are fulfilled identically. Other 18 can be easily
simplified to the system of five equations. The coefficients ay, as, as, as, as, ao, a1, a1,
aiz, ai3, a14, @15 @17 are equal to zero, and others can be calculated after solution of the
system of equations which will be shown in the matrix form:
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16 0 0 0 O a | —h
0 80 h* 0 ag -1
0 08 12 4n2||a |= 4b'ih 0 (3.40)
0 0 0 5h 0 ||a,
10 00 1 10]|a,] | 0|
After solution of this system we obtain the components of the stress vector in the
form:
o =17 —axt r2y? —2n?)= 30 e[ ag)r e gt 2]
X 2bh3 3 5 2b 3 5
—q 3 12 3\_ —Q 3
= 12y° —h h®)=—(1-4 37) (3.41)
34 (.2 2 3q 2
=1 (h?-4y?)x="2(1-4 ,
TXY 2bh2 ( y ) 2b( é/ )Aé

This solution allows interpretation of the classic problem of beam bending. The
normal stress oy distribution, as it can be seen in Fig. 3.7a, is non-linear, but includes
the component depending on y*, with small influence at the high beam slenderness. We
observe stress o at the left and right edges with the resultant Nx=0 and the resultant
bending moment M,=0. According to de Saint Venant theorem, the influence of this
stress distribution becomes negligibly small at the distances higher than the dimension
of the area at which this stress field occurs, i.e. h — the slab height. We also obtain the
shear stress z, distribution in the cross-section and the normal stress oy distribution at
the slab height, which is usually neglected in the classic Bernoulli solution. The
diagrams of stresses described with use of equations (3.41) are presented in Fig. 3.7.
More of this problem analysis can be found in the book by Timoshenko and Goodier.

y
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0.75

-0.5h

b) oy stress at £&=0 C) Ty Stress at £=0.5
Fig. 3.7. Graphs of stress fields in the rectangular slab

3.5.2. Rectangular slab. Solution in the Fourier series form

Assuming the stress function as a combination of trigonometric and exponential
functions, we will solve the same problem as it has been solved with use of polynomials
in the previous paragraph. There will be surely some differences in fulfilling the
boundary conditions. The geometry is shown in Fig. 3.6 and the boundary conditions
are described by the equations (3.31).

Because of the problem symmetry we assume the stress function as a cosine

Fouries series:

o(x,y) = Zn: f.(y)cos ax, (342)
i=0

where fi(y) are unknown so far functions, which are taken in such a form to
fulfill the biharmonic equation (3.27), «; are constants needed to fulfill the boundary
conditions, n is the number of the summed terms of the Fourier series allowing the
needed precision of the solution. Calculating adequate derivatives, we substitute (3.42)
to the equation (3.27).

or'd &,
=) a; f.(y)cosg;x,
oo = 2o fy)
a4¢ C 2¢ll
= 2f1(y)cosax,
axzayz ;al i i
i 0 (3.43)
=> f(y)cosex,
¥ %

vevee = 3 ot £, (y) - 202 £ (y)+ £ (y)cos e x = 0,

i=0
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d*f(y d*f(y
where £'(y)= 210, py)- 410

To fulfill the compatibility equation (3.27) we need fulfillment of the ordinary
linear differential equation:

a'f(y)-207 £ (y)+ £ (y)=0. (3.44)

The solution to the equation (3.44) may be given as functions in the shape:

where A;, B, C;, D; are constants, which should be accepted in such a manner to

fulfill the boundary conditions. Now we calculate the components of stress vector:

) A coshe,y + B, sinhay +
o, =Y. a’| C/(2sinha;y + ey cosheyy)+ [cos a;x,
| D/(2cosha;y +a,ysinh )

o, =-> o (Acoshe,y+B;sinhe,y +Cia;ycoshay + D ysinh o,y Jcos X, (3.46)
i=0

Asinhea,y + B, cosha,y +
T,y = —Zn:af C,(cosha,y + e, ysinh ay )+ [sin o x.
| D(sinh ey + e ycoshey)
The next step is substitution of the boundary conditions in order to calculate the
constants A;, B, Ci, Di. In different way as we have done it in the previous paragraph we
will start from the left and right edges of the slab. We will also strengthen the boundary

conditions by demanding of the disappearance of stresses at the vertical edges:

) A coshe,y+ B, sinhe,y + I
5,(112,y) =Y a?| C,(2sinh iy + , ycosh y) + Cos(“_i) _o o
= . 2
D.(2coshe,y +a,ysinhay)

To make the condition (3.47) be fulfilled at any value of y, the following

equation must be in force:

cosO[—iI =0 > al iz - ai:'—ﬁ, i=135,...n, (3.48)
2 2 2 I

which gives automatic fulfillment of the condition oyx(-1/2,y) = 0 at the left slab edge.

Knowing the ¢; values we can analyze the conditions at the top and bottom edges of the

slab
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ay(x,h/2)=—%,

> a(Acosh B+ B;sinh B +C, 3, cosh B, + D, sinh 8 Jcosax = Y p, COS ;X

i=1,3,5 i=1,3,5

A sinh S, + B, cosh g, +
7,,(x,h/2)= Za C,(cosh B + . sinh B )+ [sina,x =0,

™% | Dy(sinh g+ 3 cosh ) (3.49)
o,(x,~h/2)=0

Zn:af(A cosh 3 — B, sinh B —C, 3, cosh 3, + D, 3, sinh /3, )cos a;,x = 0,

i=1,3,5

— A sinh g, + B, cosh g, +
7, (x—h/2)= Za C,(cosh g, + g, sinh B )+ |sina,x =0,

=% | _D,(sinh B + 3, cosh 3,)
172 i
where B =« g = P, J' cos ;X dx = A9 1)71 is the solution of
7Z'

—1/2

the uniformly distributed load and taken as the Fourier series.

After solution of this system of equations we obtain the values of constants A;,
Bi, Ci, Di:

Di = pi 1 IB , A :—D{]ﬁ'%\],
ﬂ sinh 3, — coshﬁ[1+ o j i
C= 5 : B =-C/(L+Atdh B)
' 2a? pcosh B —sinh B(1+p th B) i i ),

which allow calculation of the components of stress vector on the basis of equations
(3.46).

The stress diagrams are shown in Fig. 3.8. For comparison of both solutions

(3.50)

(polynomial and based on Fourier series) both diagrams have been juxtaposed in Fig.
3.8b. There you can see the more detailed representation of the boundary condition
ox(1/12,y) =0. The differences in both solutions are quickly disappearing according to

Saint Venant’s theorem and in the middle of slab no differences can be observed.
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b) load of the upper slab edge
a) oy stress field over the slab area expanded in Fourier series

Y4 osh Y4 osh Y4 osh

7, a; I
E=0  -05h £=0.49  -05n &=0.50 -O.Sh\
C) ox stress on 3 different cross-section: &=0; 0.49; 0.5; red line — polynomial

solution; blue line ----- solution by Fourier series
Fig. 3.8. Graphs of stress fields in the rectangular slab obtained by Fourier series

3.5.3. Solutions in polar coordinate system

Many interesting solutions can be obtained by using the assumption of rotational
symmetry. We will now show, without going into details, some solutions obtained on
the basis of Airy function in polar coordinate system. More of such solutions can be
found in the previously presented books by Timoshenko and Goodier, Fung, Nowacki.
Especially the first one contains many examples of solution to problems important from

practical point of view.

The polar coordinate system shown in Fig. 3.9 is connected with Cartesian

coordinate system by the following relations:

y

r’=x’+y% $=arctanZ, x=rcosd, y=rsing,
X
_ (3.51)
or or . 09 sing 0% cosé
—=00s%, —=sing, —=-T——, =1,
X oy OoX r oy r
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Introducing them into relations (3.21) and (3.22), we obtain:

_1lod 1 0°0 _O’D 100 1 0°®

= _+__| =—, v = ,
T o e %P T e T 259 Yoros

2 2 2 2
ViV = 6_+ to, Lo 6czb+iza_cb+izadj
or r-or r°od

(3.52)

__+_
or’ r*or r’o9
where o, oy, g are the stress tensor components in the polar coordinate system.
A y
r

\9 X

Fig. 3.9. Relationship between Cartesian and polar coordinate systems

We will now show 3 solutions for important problems which have solutions in
polar coordinate system:

e problem of pressure analysis in thick-walled pipe,
e compression of the half-space with concentrated force,

e circular slab compressed with use of two forces remaining in equilibrium
state.

® Stress in thick-walled pipe as a result of internal pressure p1 and external

pressure po

Fig. 3.10. The cross-section of the pipe subjected to the action of external and internal
pressure

Components of stress are described with use of equations:
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o - a’b’(p,—p) 1 pp’—pa’

' b*-a®> r* b*-a® ’
azbz(po — pl) 1 pob2 — p1a2 (353
8= b2 — 52 'F_ b2_a2 '
7,4 =0,

where a is the internal radius, b is the external radius of the pipe (Fig. 3.10), shear stress

rg disappears because of the rotational symmetry in the problem.

The stress diagrams or and oy for 2 load cases: po=0, p1=1 and po=1, p1=0 are shown in
Fig. 3.10b and Fig. 3.10c.

® Compression of the half-space with concentrated force

Fig. 3.11. Concentrated force acting on the edge of the half infinite slab

The problem is solved with use of relatively simple stress function:

@(r,9) :—bi rgsing
4 (3.54)

o, == —+ = , 0,=—5=0, 7
“r o r? o8 br v 0 or? U or

100 1 0@ _ 2Pcosd _ang_o 8(1 acbj

and the stress vector has got only one component not equal to 0. Such a distribution of

stresses is called a simple radial distribution.

It is convenient to use Cartesian stress components. They can be obtained by the second
equation (3.54) transformation into Cartesian coordinate system:
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o,=0,8in* 9= 2P §in? 9cos? 9,
ybrz

o,=0,008" 9= _ 2P st 3, (3.55)
ybrz

7, =0,sinJcosI= ~ 2P ingcos® .
ybrz

-0 [kPa]

x [m]

Fig. 3.12. Stress graph at the depth y=1m for the force P=1kN and the bandwidth b=1m

The stress graph for stresses described with equation (3.51) when assuming values
P=1 kN, y=1 m, b=1 m, is shown in Fig. 2.12.

Simple radial distribution has got an interesting feature, which will be used in

the next solution. The stress o at the side of the circular tangent do the plane y=0 is

2P
constant and equal to o, :_W’ where d is the cylinder radius, because d = r 3
T cos

(comp. Fig. 3.13).

Fig. 3.13. Stress o7 on the cylinder surface
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® Circular slab compressed with two forces remaining in equilibrium

Adding together two solutions for radial distribution, which have been shown in
previous problem, we will obtain stress distribution in a circular slab compressed with

two forces in equilibrium (Fig. 3.14). Two added radial stresses acting in perpendicular

2P
direction to each other, generate the state of even pressure o, = “bdn at the side of the
T

cylinder. Because the slab shown in Fig 3.14 has two edges unaffected by stresses then
to get rid of this pressure we need to apply the balancing positive stress of the same
value.

) TP b) P

Fig. 3.14. Circular disk compressed by two balancing forces, so-called Brazilian test

Finally, we obtain the stress distribution, which is described with equations:

oo__ 4P| -g)r gt 1
©ordbl(acreef (weoreef 2]
oo 4P| @-gf . @+ 1
"omdb|(a-cfF e (arep+ef 2
o _—4P @-¢)e | @+g)e
Tomdb|(a-¢peef (weofeef ]

where £ and ¢ are dimensionless coordinates in the coordinate system shown in Fig.

(3.56)

3.14b. Graphs of stress distribution described with these equations are shown in Fig.
3.15. There can be seen a singularity of the stress field in the point where the
concentrated force is applied. The stress tends toward infinity at this point. A very

interesting stress o distribution is obtained along the vertical symmetry axis of the slab
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2P
(Fig. 3.15e), which at the long stretch has got constant value o, :ﬁ' This is why a
T

laboratory test of cylinder compression with use of two loads distributed along side
lines and remaining in equilibrium is used to evaluate tensile strength of material. Such
a test is called Brazilian test and it is executed for brittle materials, i.e. rocks, concrete
etc. which have got many times smaller tensile strength than the compressive one.

-6P
Existence of 3 times bigger compressive stresses 0, :_db in the middle of the test
T

specimen (comp. Fig. 3.15d) has minor influence on the effort of material, then.

b) O-y(éa C) C) Txy(é:y o

’ —oyemdh | b

. ‘ i a(0.0)
/ 1 T~ '”-h_‘.\-‘. é-’ ‘ 1|3 Gy(O!C)

d) (=0- 6(<.0), 65(¢.0)

e)

Fig. 3.15. Stress distribution in the circular disc compressed with two balanced forces
3.6. Numerical solutions of the slab static problems with
FEM
Analytical solutions shown in the previous chapters unfortunately cannot be
applied to any problem, e.g. a slab of any shape or with any boundary conditions. These
limitations of analytical methods have caused their smaller fitness to everyday

engineering practice. Numerical methods are not affected by such drawbacks.

Popularity of such methods grew in the 2" half of the 20" century thanks to the
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development of computational techniques and certainly lasts nowadays. Numerical
methods have their own drawbacks such as numerical model errors, discretization
errors, limited possibility of singularity in stress fields modelling, etc. However, we can
control them and narrow down their influence, which gives the basis for using the
results of calculations in engineering practice. From among many numerical methods
used for problem solutions and shown in this chapter, the most universal and
convenient, thus for this reason nowadays the most popular if finite element method
(FEM). It will be shown in short here, however the reader who wants to learn this
method in depth should be referred to the excellent book by O. C. Zienkiewicz. Another
method, with usage presented here, is older than FEM - finite difference method
(FDM). Its applications in solid body mechanics are nowadays rare, but it is worth to
know this universal and simple in the idea method of solving differential equations.
FDM in application of slab statics is described in detail in the book by F. Anderman.

3.6.1. The stiffness matrix of an elastic element

Let us divide a continuum into finite elements. We will discuss only a triangular
2D element in this book and we will choose such elements during discretization
(Fig. 3.16).

AY

Fig. 3.16. Nodal forces and displacements for the 2D element in the global

coordinate system.

According to assumption Eqn. (3.6) it is seen that every node of an element has
two degrees of freedom and all nodal forces have two components. The local coordinate
system xy is chosen in such a way that its axes are parallel to the axes of the global
coordinate system. Hence distinguishing components of local and global vectors and

matrices is insignificant.
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Now we group nodal displacements and forces in the vectors of:

¢ nodal and element displacements

uix
u. Uy
i Ui Yoo e _lu [=|Y (357)
u, = U = yu, = , ut=lu; (= :
Uiy Ujy Uiy u ij
k u
kx
Uiy |
e nodal and element forces
_Fix_
f By
_ : F.
fl :|:FIX:|a f] :|:FJX:|a fk :|:Fk>(:|, fe: f] = " . (358)
Fly ij Fky f ij
“ Fkx
_Fky_

Since we look for the dependence between nodal displacement and nodal forces
vectors of an element we apply the principle of virtual work which requires giving the
relation between displacements of points lying within the element and displacements of
nodes. Accepting errors coming from approximation, we assume that this relationship

can be written by the function of two variables:

UX(X, y) - Ni (X’ y)uix +N i (X’ y)ujx + I\Ik (X’ y)ukx and

(3.59)
Uy (6 ¥) = N, 0 YDty + N O YU + N (6 )y,

or the general matrix form:

u(x, y) = N°(x, y)u®, (3.60)
where N°(x,y) is the matrix of shape functions of the element:

NGo») =[N (e ) T N, () T N (x,2) 1] (@61)

where | is a unit diagonal matrix and Ni(x,y), Nj(X,y), Nk(x,y) are the shape functions for

nodes i, j, k.

Let us now assume the simplest of all possible forms of the shape function for

the node i
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Ni(x,y)=a;+bx+cy, (3629)
where a;, bj, ¢ are constants which we determine on the basis of consistency conditions
Ni(xi’yi):]ﬂ Ni(xj’yj):O, Ni(Xk;yk):O. (3.63)

After inserting these conditions into Eqn. (3.62), we obtain the set of equations:

L x;, vy |4 1
1 X,y b, |=10 (3.64)
L xe yidle 0

which, after being solved, give the values of coefficients of the shape function.
Equation (3.64) can also be written in the general form:
5i1
Ma; = §; , where ;=] 0;, (3.6510)

S

which, after modification depending on the change of i into j (or k), allows us to
determine the coefficients of the shape functions for the subsequent nodes. d;; means the

Kronecker’s delta in this equation.

We solve the set of Egn. (3.65) by the Cramer method

1 . .
x’y’xy.xy- Xio Vi
WZdCtMZI X, Y= 4 A l_|_
R R O 7R % B D R Y I R R
| T
X Vi
X: y;
_ Y
Wo =10 X, yj=|,
ko Vi
X Vi
(3.66)
W, =1 0 yj=—‘1 y; Y=Yk
L0 y
X
W, =1 x, t XJ'=xk—x.
i J 1 Xk ]
Xk
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W, W, W
then & =—-, b, '

C:

="

W Tw e T w
0
Similarly, if we change the index i into j and we find 8;=| 1|,
0
0 x
X Vi Xy,
VV; = xj y] ==
' X Vi
0 x »
10 y
Wy =l 1 yi|=y -y
1 0 y,
I x, 0
Wcj =l x; l=x-x
1 x, O

0
o= 0],
1
0 x
XI yl XI yi
Wak:O Xj yJ :X y.
1ox yl W0
1 0 vy,
ka:]- 0 Yil=Yi Y,
11y
1 x O
W, =L Xx; 0=x;-X
1 x 1

(1)

(3.68)
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for node k.

Constants a;, a;, ax are insignificant for further transformations (because they are
connected with the rigid motion of a 2D element) and they can be neglected when
solving the set of Egn. (3.65).

After determining the shape functions of the element, let us come back to its
strains. We insert Eqn. (3.60) in (3.8):

e=PN°(X,y)u* =B*(x, y)u®, (3.69)

obtaining the dependence between the nodal displacements of the element and its
strains. The matrix B in Eqn. (3.69) is called a geometric matrix and it can be expressed

as follows:

B“(x.)=[B,(x.») B,(x.)) B,(x.))

n

b 0
where B, =@N, (X, y) = C, (3.70)
c, b,

n
is the geometric matrix of any node n.

Thus, we have all components which are necessary to write an element
equilibrium equation. We apply the principle of virtual work which says that the
external work (done by external forces — here nodal forces) has to be equal to internal
work (done by stress) of a 2D element:

(ue)Tfe = IeTcd V. (3.71)

4

We transform this equation first substituting the constitutive relation Eqgn. (3.5)

for & and next substituting geometric relations (3.69) for &:

(ue)'f* = [(B2u* ] DB*Ud 0 =(u*) [ (B°) DB*d 71" (3.72)

4 4
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In this equation the nodal displacement vectors of the element being independent
of variables x and y, are taken to the front and back of the integral. Eqn. (3.72) can be

solved independently of element displacements only when

= [(B*) DB*d D u*. (3.73)
v

which, after comparison with the known relation:

f=K°u°

gives us th’e equation determining coefficients of the element stiffness matrix:

K= [(B*) DB*d . (3.74)

v

Building the element stiffness matrix can be considerably easy if we note that
this matrix divides into blocks:

Kii Ky Kik
K*=1K; K; K (12.75)
K, Ky Kg

in which any of them, for example Kj;, can be calculated from the equation:

K, =[(B,)'DB;d?, (3.76)

v

and others coming from analogous equations formed after suitable changes of

indices have been made.

The insertion of the geometric matrices B; and B; given by Eqn.(3.70) and the
matrix D given by Eqn. (2.13) into (3.76) results in

K, =(B,)'DB,[d?=(B,) DB,Ab =
4

]

1-v 1-v

bic;v+b;c @.77)

EAb bibj +Cicj

1—-v 1-v
c,-cj+b,-bjT

T

2
-V
bic;v+bic;

where A is the surface of a slab element and b is the its thickness.

The above matrix is the stiffness matrix for plane stress.
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Note that matrices B;, Bj and D do not contain components dependent on

variables x, y, z, thus we can take them outside the integral.

We obtain the block of the stiffness matrix for plane strain accepting the matrix
of material constants according to Eqn. (2.17):
1-2v 1-2v
EAb (l—v)bibj+cicj bic;v+b;c >

K __ B (3.78)
; — 1-2 1-2
(1+v)(1-2v) bjCiV +bl-cj A (1- V)cz'cj + bz‘bj 2 .

Since the local coordinate system is assumed in such a way that its axes are parallel to
the global coordinate system, then we do not have to transform the stiffness matrix.

We also calculate element strains. They are given by Eqgn. (3.69) and taking into
consideration Eqn. (3.70) we have

&y = anunxv &y = anuny v Yy = Z(Cnunx_'_bnuny)- (379)

n=i, j,k n=i, j,k n=i, jk

We see that components of the strain vector are constant within the element
which is the consequence of the assumption of linear shape functions. This element is

called CST (constant strain triangle).

We determine element stresses from the constitutive Eqn. (3.5) and Eqn. (2.13)
or (2.17) according to the kind of variant that we deal with. It is obvious that strains,

just as stresses are constant within the CST element.

3.6.2. Nodal force vector for a distributed load

Loads on slab elements can be treated as loads on plane trusses which means
that they can be applied to the nodes of a structure. But if a distributed load acting on
the boundary of an element is given, then it should be converted to concentrated forces

acting on the nodes of an element (Fig. 3.17).
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Fig. 3.17. Nodal forces representing continuous loads.

Similarly, as in previous chapters, we apply the principal of virtual work giving
the following equilibrium equation for this case:

(ue) e+ 1y fu(©) a(€)dé =0, (3.80)

where u(¢) contains functions describing the displacement of the loaded edge and

q(&)= {qX(é)} contains functions describing the load on the edge, L;; is the length of the

q,(¢)

edge i-j, ¢ is the non-dimensional coordinate taking zero value at the node i and value 1
at the node j. Since we assume linear shape functions for the element, then we write the
vector u(¢) as follows:

u(é)=New, (3.81)
where Nf is the matrix of shape functions for displacements of the boundary.
NG =[NP NS Ng(e)o] (3.82)

where N7 (£)=1-&, N{(£)=¢, or in the developed form

. |1-¢ 0 & 000
NE = , (3.83)
0 1-¢£ 0 £ 0 O
After inserting relation Eqn. (3.81) into Eqgn. (3.80), we obtain
1
fe =L (N5 ) a(s)ds. (3.84)
0
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After taking into consideration the shape functions described by Eqn. (3.83), we

obtain
[(1-¢)a,(&)]
(1—-&)a, ()
] m e ¢
0
L O .

For example, let us calculate the nodal force vector due to the linear distributed
load on the edge i-j of value qi, Qiy - at the node i and gjx, qjy - at the node j. We write

such a load with the help of a non-dimensional coordinate ¢:

lanli-g)+q,8
q(g) = Liy(l—&) +qij (3.86)

and after inserting the above equation into Eqgn. (3.85), we obtain

1 1

_q,-x [(1-e)ae+q,[(1-¢)eae

0 0
1 1
g, | (1-8) de+q,, [ (1-&)ede
0 0
1 1
f°=-L;| gq,[(1-g)ede+q, [eax (3.87)
0 0

1 1
gy | (1-E)edE +q,, [ £2dE
0 0 0
0

which after integration gives

_2qix + qjx
26],-y + 49y
L; 9ix +2qjx

fe=——" 3.88
6 9iy +2qjy ( )
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For a particular case when the load is constant and equal to (&) = {q”} , on the
oy

basis of Eqn. (3.88) we obtain

G ox
qoy
Lilq
L 3.89
2 |4, (3.89)
0

0

It should be remembered that the calculated forces are forces acting on the
element. We obtain the necessary nodal forces changing the sense of vectors which

means:

p¢ =-f°¢ (3.90)

where pe is the nodal force vector for the nodes touching the element e.

3.6.3. A Nodal force vector due to a temperature load

As in the previous section, we apply the principal of virtual work to calculate
alternative nodal forces replacing a temperature load. In accordance with the features of
a CST element we will take into consideration only a constant temperature field within

the element.

The suitable equation of virtual work has the form:

(ue)Tfet :J‘STctd‘D:J‘aTDstd‘UY (3.91)

v v

where o; is the stress field in the element which is caused by the temperature and &; is

the strain of the element caused by the change of a temperature.

Assuming isotropy of a 2D element we obtain

1
e=at, A 1], (3.92)
0

After inserting geometric relation Eqgn.( 3.69) into Eqn. (3.91), we obtain
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1 1
f* =aAt[(B*) D|1/d7 =a,AtAb(B*) D| 1| (3.93)

For a plane stress problem this equation is simplified to the following relation:

b
Ci
AtEAD | b;
g __ % j 3.94
PSN 1—V Cj ( )
by
| Ci |
where b; ... ¢ are coefficients of shape functions of the CST element.
Plane strain gives a slightly different nodal force vector:
b ]
Ci
AtEAb | b;
fot, == ST=E T 3.95
O (@+vii-2v)|c, (3.99)
by
L Cx

As in previous sections, we should change the signs of components of nodal

forces before applying them to the nodes:
pel — _fet (396)

We calculate stresses in the element undergoing the action of a temperature

taking into consideration strains caused by the thermal expansion of the element:

1
6,=D(e-¢g)= D BUe—OttAt 1(]. (3.97)
0

3.6.4. Boundary conditions of a 2D element

Boundary conditions of a two-dimensional structure can be treated analogously
to the conditions in a plane truss because the nodes of both systems have two degrees of

freedom on the XY plane.
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Hence we have: fixed supports (at the node r; in Fig. 3.18) and supports which
can move along the X axis (at the node r;), next supports which can move along the Y
axis (at the node r4) or skew supports (at the node r3). The boundary conditions for these

supports are as follows:

e nodery: Uy=0,u,=0,
e nodery U,=0,

o nodery Uy=0,

e for node rs;, where constraints are not consistent with the axes of the global
coordinate system we propose the use of boundary elements described in
[Podgorski, Gontarz] or [Podgorski, Blazik].

Fig. 3.18. Slab structure divided into triangle finite elements.

3.6.5. Example of solving the problem of bending the rectangular slab

Let us solve with use of FEM the problem which has been previously calculated
with analytical methods, to compare the results. We will make use of the stiffness
matrix of CST element shown in previous paragraphs and use, for sake if comparison,
more complex quadrilateral element. Autodesk Simulation Mechanical will be used to

obtain the solution.

The slab shown in Fig. 3.19 is divided into 640 triangular elements (Fig. 3.19),
which gives 369 nodes with 2 degrees of freedom at each node. Composition of the
stiffness matrix for triangular elements and collation of nodal forces into equilibrium

equations results in generation of system of 738 equations.

»< A
U\HHH\HHHHHHHH\VHHHHHHHHHHﬂHH 1 é’ q

L / ‘ Q‘e

Vﬂ(

Fig. 3.19. Slab FEM model, built with CST elements.
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Thanks to boundary conditions: uya=0, uxg=0, uys=0 we can eliminate or modify
3 equations, which allows solution of the system. After determination of displacements,
we calculate stress in elements. We have used CST, so at the triangular area we obtain
constant values of stresses. To smooth the stress field, we average the calculated stress

at each node. Figure 3.20a shows normal stress ox field at the slab surface and the

diagram of these stresses in the cross-section £=0.5, which has been generated with use
of Autodesk Simulation Mechanical 2015. Figure 3.20b shows the same stress field
obtained with use of quadrilateral elements. There are observed differences at the graph
in Fig. 3.20a, which is diverged from the expected linear relation. It is caused by less
dense mesh of triangular CST elements and smaller accuracy of solutions obtained with

use of such elements in comparison to the ones when quadrilateral elements are used.

el (I
H
i .
a) Slab model 1 b) Slab model 2

Fig. 3.20. Stress graph at &=0 for two FEM models

It is apparently visible in the cross-section, which is close to a support. Figure 3.21
shows stress diagrams in the cross-section located in the 0.25m distance from the right
support of the slab. The diagrams have been prepared for both models of slab and for
comparison there have been additionally given diagrams resulting from analytical

solutions: polynomial and based on Fourier series (Fig. 3.7, Fig. 3.8).
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Fig. 3.21. Normal stresses ox in the cross-section at £=0.45 calculated by various

methods.

3.7. Numerical solutions of the slab static problems with

FDM

Finite difference method (FDM) is one of the simplest methods of solving
problems described with use of systems of differentia equations. The idea in this
method is based on the replacement of derivatives occurring in these equations with the
appropriate difference quotients. Some difficulty in application of this method is

generated by boundary conditions and irregular shape of an edge.

Fig. 3.22 Grid of the nodes and boundary conditions

We overlay mesh of nodal points (as regular as possible) (Fig. 3.22) to the area
where the calculated equation should be fulfilled. The values of the analyzed function in
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the nodes of the mesh are the set of unknowns. Now, difference quotients adequate to
the order of differential equation should be set down, which will allow us to transform
differential equation into the system of algebraic equations. The simple method of
getting these quotients is expansion of the analyzed function into Taylor series at the

nodal points.

3.7.1. One variable function

Expansion into Taylor series of the analyzed function u(x) around the point at

the coordinate x; (Fig. 3.23.), may be presented in the following form:

du d%u du d*u d’u
Ujpg =Uj +4— + AXI Axl AXI 1 AXI 5 (3.98)
a2 ad B a4t Bl
du| 42 d% _4°d% Axdu\ Axdu\
U 1=U — i _
= Axd o2 dx? .3 dx® oA dx4‘ 51 dxs‘ (3.99)
Transformation of equations (3.98) and (3.99) leads to:
d
d;J(i u'*ZX +0(4,) - forward finite difference (3.100)
du =w+0(élx) - backward finite difference (3.101)
axj A

and calculating the mean from (3.100) and (3.101) or subtracting (3.99) from (3.98) we
get:

du

U U;
o, S THA L O(4,2) - central finite difference, (3.102)

24,

which is characterized by smaller error. In these equations A is the distance between

mesh nodes in the x direction, and O(4,) means the remainder of the A, order, O(4,%) is

) du| . . . .
the remainder of the 4,2 order, i is the value of the derivative calculated in the point
i

at the x; coordinate.

This result can be also obtained by approximation of the analyzed function in the

range 24, with 2" order polynomial: u(x) = a, X* + a; X + ao (Fig. 3.23). The constants
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a; should be evaluated with use of conditions: u(0) = uj, u(-4x) = Uiz, U(4) = Uj+1,

which leads to the equation:

2
X X
U(X) & Uiy —2U; + Ui )+ (Ui g — Ui )~ + U s 3.103
i+1 i IlZAXZ i+1 |12| i ( )

which after derivation in regard to x and calculation of the derivative in the ,,i” point,

(x=0) gives central finite difference (3.102).

u(x) -
w,  langent /
central difference’” N .
s \ |
L ) . \ T
PN t:affmard difference J
’
I';:r,;_,appl"()xl'matf()n by 2 2d degree p()h omial
-2 i—1 i i1 s |
_2Ax *Ax 0 Ax ZAX .

Fig. 3.23. Function u(x) approximation by 2" degree polynomial

y y
Ay [ (I j+1 Ay 7_'_1 | j+1
0 A0+ 0 — 0 M
—Ay — — i —Ay I i1
i-1 i i+1 i-1 i i+1
—AX 0 AX —AX 0 AX
a) 2Axdu/dx b) 2Aydu/dy

Fig. 3.24 Differential schemes: du/dx (a) and du/dy (b)

As it can be easily calculated, taking first 5 terms of the Taylor series (up to the

term containing x*), the second derivative can be expressed with use of the differential

formula:
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+0(4.%). (3.104)

2

d U‘ :Ui+1—2Ui+Ui_1
2‘ 2

dx i

Taking first terms of the Taylor series up to the term containing x° and averaging
in the same manner as we have done in equation (6), we obtain the expressions for

central finite differences:

dzu‘ _ —Uj,» +16Ui+1 —30Ui +16Ui_1 —Ui_» + O(AX4) (3.105)
dx | 1242 ’ '
%) Ujp = 2uig + 20 Uy 2

_ +0(42) (3.106)

3 3 ’

dx” | 24,
dul U — AU, +6U —4U_; +U;_, 2

= +0 . 3.107
o o (47) (3.107)

Ay

—AX 0 AX —AX 0 AX

a) Ax?d?u/dx? b) Ay? d?u/dy?
Fig. 3.25 Differential schemes: d’u/dx® (a) and d?u/dy? (b)

3.7.2. Case of two-variable function

By analogy to the differences in one-dimensional case, marking with i the order
of distances Ay in the x axis direction, and with j the order of distances 4 in the y axis

direction, we write down expressions for appropriate finite differences:

ou Uitg,j — Ui, j 2

- =3 =1 10(A

X 24, (45) (3.108)
ou Ui j+1 — Ui j1 2

— =5 ———+0), 3.109
ay i 2Ay y ( )
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0% Uiygj—2Uj j+Ujg 2
= : =+ 0(4), (3.110)
2 2 :
OX i A,
azu u.'. 1_2u.’. +u.’._1 2
Ay 1l nIt A'ZJ M 04,9, (3.111)
i y

Mixed derivatives may be replaced with finite differences calculated by
combining formulae (3.108) and (3.109), which gives:

2
o°u ‘ Ui j1 —Yisg j-1 — Ui ja T Ui ja

oxy| 444,

+0(42,4,%) (3.112)

Adding differential schemes (3.110) and (3.111) we obtain already previously

used Laplace operator:

—2ui]j + Ui N Ui —2ui'j +U
A 2 2

X y

Uiy, j i+
Vau(x,y) = 2 I+ 0(AA,7), (3.113)

and calculation of the 4" order derivative calculation leads to the biharmonic

operator which occurs in the equation of the Airy stress function:

- 4(ui—l,j F Ui )"' (ui—Z,j +Ui )

6u. .
VAVAU(X, y) = —

+
4
AX
N 8u; ;- 4(ui—l,j FUgtU o+ ui,j+l)+ Z(Ui—l,j—l tUgjatUigjat ui+1,j+l) N
o (3.114)
xBy
bu; ; — 4(ui,j—1 + ui,j+l)+ (ui,j—z + Ui,j+2)

+

4 4
A +0(A,,A)).
y

In the case of the quadrilateral differential mesh, when A=Ay, the biharmonic

operator obtains much simpler for, which will be used in further consideration.

Indicating A=A«=Ay we have:

20u; . —8(uHJ. Uy +U o+ Ui,,-+1)+

L]

1
VZVZU(X’ y)= E + 2(ui—1,j—l U jatUigjat ui+1,j+l)+ + O(Ax4’Ay4)' (3.115)

i+1, ]

FU T Ui tU U
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It is convenient to present differential quotients as graphic schemes. Schemes

referring to equations (3.108)...(3.115) are presented in figures: 3.23...3.27.

—AX 0 AX —AX 0 AX

a) 4AXAy 62U /oxdy b) A2, (aZU Jox? + % /ayz)

Fig. 3.26 Differential schemes: d°u/oxdy (a) and VZu for Ax=Ay = Ay, (b)

—AX AX

Fig. 3.27 Differential scheme for biharmonic operator V2V2u for Ax=Ay = A

In the chapter devoted to plate theory we will show another method of obtaining
the differential operator formula for the biharmonic equation, which can be useful when

differential mesh is irregular.

Application of Taylor series to determine differential quotients of higher orders
has been described in details in the wide monograph by T. J. Chung [2002]. Usage of
irregular meshes has been presented by J. Orkisz in the third part of monograph (Kleiber
et al. [1995]). Differential operators of higher orders used for solving equations of plate
theory and methods of boundary conditions application are given in extensive form in

monograph by Z. Kaczkowski [1980].
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3.7.3. Boundary conditions application

First order differential equations where the only boundary conditions are values
of the analyzed function in the boundary nodes of the mesh (Dirichlet’s condition), are
no difficulty when composing system of equations for FDM. If we limit our
consideration to first and second order differential equations then as it can be seen in
figures 3.24 and 3.25, differential operators contain only function values in the nodes
directly neighboring the node in which operator is written down. Because the function
values in the boundary points in Dirichlet’s conditions are given, then we do not have to
write down differential equations for these points. The only remaining points are inside
the area (Fig. 3.28). Thus the formed system of equations will not contain any function

values in points located outside the area of solution.

Difficulties are rising when we analyze higher order equations, where the
differential operators contain function values in neighboring points, but also located in
distances 24y and further from the central point (comp. Kaczkowski [1980]). Of other
nature, but similar in the effect difficulties are generated, when there are defined
derivatives of the function in the boundary points (Neumann’s conditions). First order
differential quotient (equation 3.108) written down for a boundary point introduces the
function value from the point located outside the solution area into the system of
equations. These values should be calculated on the basis of the derivative value in the
boundary point:

u =y — M=l// = U, =U,; +2Ay. (3.116)

In the example shown in Fig. 3.28 we have Dirichlet’s conditions in the points at
the area’s circumference and the Neumann’s condition in the point 14. If we want to use
central differences to describe a derivative at this point then this state generates the
necessity of introduction of additional node "16" located outside of the calculation area.
The additional equation allowing evaluation of the function value at the new node is

expressed as follows: u,, =u,, +2ay .
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Uy, U7, U, U3 =0, Uis = Ug

Fig. 3.28 Rectangular area 2ax4a and the Dirichlet and Neumann boundary conditions

In case of searching for the Airy stress function, we will deal with both types of
boundary conditions. This may seem odd, since the natural conditions at the slab edge
are referring to stresses which are described with use of 2" order derivatives of the Airy
function. We will show the method of consideration of boundary with use of the
previously shown example of the problem presented in Fig. 3.29 and boundary
conditions 3.31, which will be now slightly modified to make the obtained result similar

to the one calculated with use of the polynomial stress function:

1) o, (xh)=-q/b, 2)7,(xh)=0,
3)o,(x0)=0,  4)7,(x0)=0,

h
5) ¢, (0,y)=0, 6)- [z, (0,y)bdy=R=ql/2, (3.117)

0

7)o,(,y)=0, S)Frxy(l,y)bdy:R:qI/Z.

The stresses z, at both vertical edges of the slab have got parabolic distribution:

rxy:jbq:](l—4§2), which corresponds to the result obtained in the equation 3.41.
Maximum value occurs at the horizontal axis of the slab an is equal to 7, =43:th|3, at
3ql

the right edge and 7z, =~ at the left edge, which fulfills equilibrium conditions:
h/2 h/2

Irxy(l,y)bdy:qllz forx=1/2 and — jrxy(o,y)bdy=q|/2forx:|/2

-h/2 -h/2
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Fig. 3.29 Rectangular slab and stress boundary conditions

Writing down the boundary condition o, (x,h) = p(x) in the relation to the Airy

2

function, we have: o, = ‘qu = p(x) . Replacement of the 2" order derivative with the
X

differentia quotient (3.110) we obtain for the point i,j located at the top edge of the slab

2

o D 2D +D_ _ ,
Z s I — i X ——— 1} ; » Which combines the nearby
vl :

ij X

the following equation:

boundary points, as well. By using similarity of the boundary condition to the relation
of bending moment and shear load, which is known from beam theory, leads to the
significant simplification of this condition (comp. Andermann):
o’M
o

bending moment in the i,j point assigned for the fictional rod of the shape of the slab

t
it W VW N

a) b) c)
Fig. 3.30 Rectangular slab and its fictional edge rod (a), bending moment (b) and axial

=p(x) — @~M, which yields: &,

.; ~ M, ;, where M, is the value of the

ij?

circumference (Fig. 3.30).

Ay

"\—

force (c) charts

The rod, for easy calculation of internal forces, may be cut at any point. Internal
forces in the cross-section may be arbitrary. This does not influence the calculated in
this way stresses because only constant and linear components of stress function are
changed, and the stresses are expressed with use of 2" order derivatives. The moment
should be positive since it generated elongation of fictional rod fiber inside the slab area
(Fig. 3.30).

52



The boundary condition for shear stresses at the right edge of the slab:

2

0]
=t ives the
oxoy (V)9

7, (I,y) =t(y) written down with use of Airy function 7, =-—

2
. : : : o Din—Diin—Piyjnt P
following differential quotient: — 0 e TTILL
OX0y|. . 4A A, ’

1]

similar way as before, by using beam analogy (comp. Andermann) we obtain:

ON(y) N@;y) =—t(y). Integration of this equation leads to N(y) =—It(Y) dy, which allows

simplification of the boundary condition to the following relation % =N(y) and

@i+l,j _@i—l,j -N

it leads to the differential quotient in the shape which gives the

ij1
X

value of the stress function in the point outside the slab area: &, ,

= 2AXNi’j +D

where N;;is axial force in the point i,j calculated for the fictional rod.

1
(7] 0 3 7 11 15 19 23 27 31 35 39 35 31

44 0 4 8 12 16 20 24 28 32 36 140 36 32
!
43 0 3 7 11 15 19 23 27 31 35 !39 35 31

42 0 2 6 10 14 18 22 26 30 34 38 34 30

41 0 1 5 9 13 17 21 25 29 33 137 33 29

0 0 9 0 Q 0 () 9 0 9 0 ;0 0 0

9 0 1 5 9 13 17 21 25 29 33 i37 33 29

Fig. 3.31 Grid nodes of finite difference method, symmetry of the problem was used

We will show the application of this method in the example of quadrilateral mesh
of nodal points. Dividing shorter edge of the slab shown in figure 3.29 into four
sections, we obtain the mesh of the side length of 25cm (comp. Fig. 3.31). The
numbering scheme shown in figure uses the problem symmetry, i.e. nodes located at
both sides of the symmetry axis have got the same numbers. Zero boundary conditions
for stress function have been used as well (Dirichlet’s conditions) by numbering these
nodes as @ (comp. Fig. 3.30b). Zero values of the stress function derivatives have also

been introduced (Neumann’s conditions) by numbering nodes outside the slab area with
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the same values as for the nodes inside the area symmetrically across the slab edge
(comp. Fig. 3.30c). This method allows limitation of the number of unknown nodal

values.

The function values will be calculated in all boundary points. We will apply here

analogy of the bending moments diagram in the fictional rod (Fig. 3.30b). Distribution

2
of the bending moment is described with the equation: &(&)= M(§)=(18:)(1—4§2),

where =x/I. Table 1 gives values of dimensionless stress function (<) in points located
at the top edge of the slab. The function (&) is described with equation:

u(&)= ;(1—452). The values ; given in Table 1 indicate: 1 = 1(&).

Table 1.

Node i yz Node i yz Node i H;
0 0.00000 16 0.08000 32 0.12000
4 0.02375 20 0.09375 36 0.12375
8 0.04500 24 0.10500 40 0.12500
12 0.06375 28 0.11375

In the same way we calculate the values of derivative ‘sz N(y) in the points
X

of vertical edge (x=1/2). Integrating shear stresses at the left edge we obtain the equation

of the axial force in the fictional rod: N(y):J-er(y) dy or the other way by using

non-dimensional coordinates N(():;?(3§—4§3+C) where {=y/h and C is the

integration constant taken to make N(—h/2)=0. Finally, the function of axial force in

the fictional rod can be described with the following equation:

N() = _42'(1+ 3§—4§3). This equation allows calculation of the derivative values in

. 0D : . .
boundary points x| and then the stress function values in the external points
ivj

located in the opposite direction to x: &, =&, ;—2A,N,;. Because the side
dimension of the mesh in this case is equal to Ax=Il/n (n=20 in the presented case which
gives Ax=25cm), the function values in the points located on the left side of the edge are
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2
calculated with use of the equation: gbi_lj=q5i+1j+(2“b(1+3§ij—4§ij3) or
: i o0 : :

2

D, =D +q|;77i”, where 77i,j=21n(1+3§i,j—4§i,13) is the non-dimensional

i+1, j

increment of the function values in the x axis direction. Table 2 shows values of these

increments for n=20.

Table 2.

Node i ul Node i 7 Node i n

0 0.0000000 42 0.0250000 44 0.0500000
41 0.0078125 43 0.0421875

We will write down differential quotients for all internal points of the slab:

Node i VAV, =0
1 209,—8( D+ Ps+ D+ Do) +2( Do+ e+ Do+ Do) + D1+ Do+ D+ Dy =0
2 209D,—8( D1+ Pet+ D3+ D) +2( D5+ D1+ Do+ Do) + Do+ Pro+ Pt Dy =0
3 2005 8(Byt Dyt Dyt Do) +2(By+ Dyt Byt Do)+ B+ Dry+ Bt Dy =0
5 20@8(By+ Dyt Bt By)+2(By+ Byt Dyt Do)+ it Dyt Dyt Dy =0
6 20D6—8(Ds+ D1+ D7+ Do) +2( Dyt D1+ D3t D1)+ Do+ D1+ Dyt Dy =0
7 20D;—8(De+ D11+ Dt D3)+2(Dyy+ D11+ D+ D3)+ D+ D15+ D+ Dy =0

o 20D;-8(...)+2(...)+1(...) =0
37 20D37—8( Do+ P33t Pagt Dag)+2( Pyt Past Dyt Do)+ Dar+ Pogt+ Pag+ Dog =0
38 20D3g—8( D7+ Payt+ Do+ Day) +2(Past+ D5t Das+ P3)+ Do+ Dag+ Pyt Py =0
39 20D39—8(Pag+ Pas+ DPyo+ D3s)+2( Pyt Pagt D+ D3s) + Part Do+ Pag+ Dy =0

2
and Dirichlet’s boundary conditions &, = qtl) ; Tor points at the top edge, where

2

values z; are given in Table 1. Neumann’s conditions: & =&, ,, +qk|);7i for the external

points at the left edge where the values 7; are given in Table 2.
After rearrangement we obtain system of 44 equations which will be written

2
down in matrix form: B® = qkl)b’ where ® is the vector of nodal values of the stress
function, b is the right-hand side vector containing non-dimensional values z and 7, .

Matrix B because of its dimensions will be shown in two pieces - blocks B; , B,

located at the diagonal of the matrix B = El B,

4 2

} (Fig. 3.33).
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Fig.3.32 Chart of the Airy stress function over the slab surface
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Fig. 3.34 Comparison of stresses in the slab at £=0.45, obtained by various methods

4. Theory of Plates

Plates are one of the most commonly used elements in structures. They can be
found in almost every building or mechanical structure. The geometric shape of a plate
can be defined similarly to a 2D element (Chapter 3), but they differ in the way of
loading. Plates are loaded with normal loads to their surfaces which cause bending.
Bending is not present in the case of the deformation of the 2D element.

Analytical methods of determining both deflections and internal forces were
described by Euler, Bernoulli, Germain, Lagrange, Poisson and especially by Navier in
papers which appeared at the end of the 18" century described by Rao (1982). Literature
devoted to the theory of plates is unusually rich, the books of Kaczkowski (1980),
Nowacki (1979), Timoshenko and Woinowsky-Krieger (1962) are recommended to
interested readers.

Many important statics and dynamics problems of plates were solved by
analytical methods (mainly by the method of the Fourier series), but they are inaccurate
both in the case of problems with complex boundary conditions and complicated shapes
of plates. However, the finite element method has proved to be universal and although it

gives approximate solutions, they are precise enough for practical applications.
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4.1. Classifications of Various Plate Theories

e Classical Plate Theory

e Shear deformation included
» FSDT (First order Shear Deformation Theory)
= TSDT (Third order Shear Deformation Theory)

Classical Plate Theory:

e Assumptions:
= All layers in plane state of stress
= Transverse normal strain g negligible compared to in-plane
normal strains & and & (no transverse interaction of layers)
= Transverse shear strains & and g negligible (straight lines
normal to the middle surface remain so after deformation —
Kirchhoff hypothesis)

oW ow
l//l(Xl,X2)=—a V’z(xi’xz)=—a—xz
e Displacements:
ow( X, X
ul(xi’XZ’X3)=u(X1,X2)—X3%
ow( X, X
UZ(M,XZ,X3)=V(X1,X2)_XS%
2
u3(X11X21X3)=W(X1,X2)
e Strain:
au aZW av aZW
6‘1=&—X36_X12 €2=6_)(2—X36—X§ 83=g4=85=0

=a_“+ﬂ_2X3 0w ei(><1_,x2,x3)=ei(x1,x2)+x3;<i
oX, Ox 0X,0X, 1=1,2,6

&g

ou ov ou ov
=—— €,=_— €=+ _—
OX, 0X, 0Xx, 0X

€
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0w 0w o°w
K, =— K, =—

ox? T Taxax,

Shear deformation should be taken into account for moderately thick plates.

e Reissner-Mindlin theory:
o Relaxation of the Kirchhoftf’s plate theory assumptions: Transverse
normals before deformation are no longer perpendicular to the

middle surface after deformation — translation + rotation.

First order shear deformation theory:
Uy (%% %) = U (%, %, )+ x5 (%, %,)
Uy (% % %) =V (0, %, )+ X, (%, %, )

U3(X1’ X5 X3)= W(Xl’ Xz)

Higher order theories (TSDT):

ow
Ul()(i,XZ,X3)= U(X1’X2)+X3‘//1(X1’X2)_C1X33(‘//1+a]

ow
u2(xl’ Xy Xs) =V(X1' Xz)"’ X3W2(X1' Xz)_C1X§ [l//z +&J

U3(X1, X5 X3)= W(Xv Xz)
Theories of higher orders than 3 are not used. Too much computational effort, to

small gain in precision of results.

4.2. Basic assumptions and equations of the classical plate

theory

We accept the following assumptions of the classic theory of thin plates
(Timoshenko and Woinowsky-Krieger (1962)):

a) thickness of a plate is small in comparison with its other dimensions;
b) deflections of plates are small in comparison with its thickness;

¢) middle plane does not undergo lengthening (or shortening);
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d) points lying on the lines which are perpendicular to the middle plane
before its deformation lie on these lines after the deformation;

e) components of stress which are perpendicular to the plane of the plate
can be neglected.

From point d) of the above assumptions it follows that the displacement of

points lying within the plate varies linearly with its thickness (Fig. 4.3):

aN AN
U =-2— U =-2— U =W(XyY). (4.13)

& 12}

yA A

v

Fig. 4.3. The plate segment deformation scheme.

Thus stains are expressed by the relations:

ou o*w ou 2
s =%=_252_W, gyz—y:—z—z, yxy:aux+—y:—228w, (4.14)
o ox ox? oy oy oy OXx OXoy
The strain vector can be presented in the form:
€ =-z aw(x,y), (4.15)

where vector a is the vector of differential operators:

0
XX 52 a2 0,,2
d= 20;)yy 'ﬁxx:y'é)yy:?’axy:@(@/.

Xy

Let us assume that there is a plane stress condition in the plate, so the stress

vector can be determined as follows:
6 = D-g=-z D aw(x,y), (4.16)

where D is the matrix of material constants determined for plane stress (Eqgn. (13)).
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Now we introduce in the expression of internal forces (moments and shearing

forces — Figure 4)

hi/2 h/2 h/2
M, = Iaxzdz, M, = Jayzdz, M,, = eryzdz,
-h/2 -h/2 —h/2
(4.17)
h/2 h/2
Q= _frxzdz, Q, = Iryzdz.
-h/2 -h/2
Z -
I middle plane
—¥

V;L

a) stresses

Qx Mx)él
M, z ?

< 5 dy
M,
M, {D; ) '9(4 My, dy
<< N —
dx Qx% dx Myx‘Hyi dy
119
1"
Mx-ffo dx
Mxy+§ dx

b) internal forces

Figure 4. The distribution of stresses, external loads and internal forces in the plate

element.

The equilibrium of an infinitesimal plate element shown in Figure 4b leads to the
set of equations:
an aQy

-  +

-0 (4.18)
x o +q(x,y)=0,
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ox i oy =0
oM, oM, _0
ox oy .

After integration Eqn. (4.17) taking into consideration Eqn. (4.16), we obtain

[6214/ 82WJ
M,=-D|l —5+Vv—5
Ox oy
o*w o*w
M, =—D| o7 AW (4.19)
M. =-D(1-v) &'w
=-D(1-v
~ Ox0y
where D denotes the plate stiffness defined by the equation
12(1-v?) (420
From the last two Eqn. (4.18), we obtain relations for the shearing forces:
0. - _D(83w N w j
* ox®  oxoy?
' (4.21)
oo
y ox2oy  oy° .
Inserting the above equation describing shearing forces into the first Eqn. (4.18)
we obtain

o*w ot'w  otw _4(x,)

o +28x26f)/2 + o' D

(4.22)

It is a biharmonic partial differential equation which should be satisfied by the
function of deflection w(x,y) within the plate. The following boundary conditions should

be realised at the edges of the plate:

0 i 0 the fixed ed
= —_— = —0n
a) w=0, an on the fixed edge,
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o*w
b) w=0, g =0 — on the free supported edge,

c) M, =0, V,=0-on the free edge.

In the above equations n defines the direction of the line which is perpendicular
to the edge and V, is the reduced force introduced by Kirchhoff in 1850, described by
Timoshenko and Woinowsky-Krieger (1962). This force joins the influence of the
torsion moment M,s and the shearing force Q, on the free edge Figure 4b:

M 3w *w
V=Q - pl W, 2-y) 2V
= Qn {o”n3 + V)o”né’sz} (4.23)

where n describes the direction of the line which is perpendicular to the edge and s is
the direction of the line which is parallel to the edge of the plate.

The modification of the boundary conditions is necessary here because the
fourth order Eqn. (4.22) cannot be solved for three boundary conditions coming from

the requirement of zero stress on the free edge: My,s =0, M, =0, Q, =0.

5. Analytical methods

There are many analytical methods.

5.1. Thin Plates

Only selected cases of plates with particular shapes and loading can be solved
analytically. In other cases, iterative solution in the shape of infinite series can be found.
These iterative methods are:

+ Plate strip;
+ Double Fourier series expansion;

+ Single Fourier series expansion.

5.1.1. Plate strip

Cylindrical bending applies only in the following conditions:
o alb<<l,

+ long opposite edges support conditions independent of X..
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5.1.2. Navier solution

Double Fourier series expansion is called Navier solution and can be obtained in

case of rectangular, simply supported plates.

The load of the rectangular plate of the dimensions a x b, perpendicular to the
plate surface, can be expressed as double Fourier series, with use of the following

formula;

Py (%, %,) =D P sina, X sin BX, (19)

r=1 s=1

where the coefficients can be calculated as:
a=— f.=— r,s=12,3,...

After integration at the whole surface of the plate, the coefficients for the series

expansion can be expressed as follows:

_4

prs a.b

O Sy
© Sy 0

p; (X, X, )sin &, X, sin B,x,dx,dx, (20)

In the case of the uniform plate p3(X1,X2)=p=COHSt, the following

simplification can be obtained:

16p
= ,$=13,5,....
Prs s r.s (21)
Assuming the function of the plate deflection as the double series expansion:
w(x, %)= > w,sina,xsin AX, 22)
r=1 s=1

and substitution into the differential equation of the plate (10), we obtain the

following equation:

o) ) 2 . . o) ) . .
DZZ(“rZ +ﬁsz) W, sine, X sin B.x, = Y- g, sine, X sin B.X, 23
r=1 s=1 r=1 s=1
To make the equation fulfilled for each coefficient X; and X,, we finally get the
relation:
O
Wrs - A (24)
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where:
A= D(ocr2 +,BSZ)2

Knowing the deflected surface (22), on the basis of equations (4.19) and (4.21),

we can find formulae for calculation of internal forces:

M, = Dilil‘,(af +VBL )W, sine,x,sin B, (25)
M, = Dii(mrz +[352)wrs sina, X, Sin B.X, (26)
M, =-D(1- V)ililarﬂswrs CoS @, X, COS B.X, (27)
Q= Dggar (o + B7) W, cosa, % sin B.X, (28)
Q= Dilil B (a2 + B2, sina,x, cos Bx, (29)

5.1.1. Nadai-Lévy solution

Single series expansion is called Nadai-Lévy solution and can be used in case of
rectangular plates with simply supported long edges and arbitrary other boundary

conditions.

The following assumptions are used in this method:
+ The load is changing only along the x axis;
+ Both sides of the plate (x=0 and x=Ly) are simply supported.
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Figure 5. The plate load scheme.

These assumptions allow 6 essentially different schemes of plate support which

have been shown in Figure 6.

a b | C

y ¥y y

Figure 6. The plate support schemes.

5.1.1.1. Equation of the deflected plate

The plate deflection can be described with use of the following equation:

W(X,y) =W, (X, y)+W,(x) (30)
After substitution of this equation to the equilibrium equation of the plate, we

obtain:

VA w (% y)+w,(X) ] = % (31)

which allows writing this equation in the following form:

Vi, (x,y)=0 (32)
d*w, (x
: 5 ) _p() )
dx D
Seeking the solution of the equation (33) as a series:
w, (X) = E,singx (34)

i=1

we expand the load into sine series:
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p(x)=>_ psinex (35)

2 L . iﬂ'
where p, ZL_I p(x)sing;xdx, i :L_'
X 0

X

After substitution to the equation (33) we obtain:

00

> a'E, sinaix:%z p, sina X (36)

i=1 i=1

and consequently:

p.
E_ -
i Da-4 (37)

Solution of the equation (32) is also sought as a sine series:

0

w,(X)=>_ f(y)sinax (38)

i=1

which after substitution into equation (32) gives the condition describing the function

f.(y):

d*f, d*f,

dy4 _2ai2d_y2+ai4 fi :0 (39)
Solution of the linear differential equation (32) can be put down in the following

form:

f.(y)=Ashay+B chay+Cayshay+Daychay, (40)

she,y=sinha.y, chay=cosha.y.

where the constants A;, Bj, Ci, D; should be taken to fulfil all boundary

conditions for both edges y = const.

The following derivatives of the function f(y) will be commonly used in the

following considerations:

f (y)=a[Achay+Bshay+C (sha,y+aychay)+D (cha,y+ayshay)], (41)
f'(y)=a’[Asha,y+B chay+C (2cha,y+a,ysha,y) + D, (2sha,y +a,ycha,y)] (42)
f. (y)=a[Ache,y+Bshay+C (3she;y +aycha;y)+D;(3ch ey +a;ysha,y)] (43)
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5.1.1.2. Exemplary solutions with use of Nadai-Lévy method

5.1.1.2.1. Two opposite edges fixed and other two simply

supported

The following boundary conditions are in force for both edges fixed:

<
I
[+
N~
|—

W=0#&=%g=0, (44)

Symmetry of the deflected surface about the x axis results in disappearing of the
terms with non-symmetrical functions from the equation (40), i.e. Ai=0and D; = 0.
Equation (40) after substitution of boundary conditions (44) obtains the following form:

f.(y)=B cha;y+Cayshay, (45)
The equation of the deflected plate (30) can be simplified then:

00

w(X,Y)=w (X y)+w,(X)=> (B chay+Cayshay+E,)sinax (46)

i=1

Substitution of the boundary conditions results in:

o0

> (Bch 4 +Ci4sh A +E )singx=0 (47)
i=1
iai[Bishi, +C,(shA4 +4ch4)]singx=0 (48)
i=1
where; 4 = 2! L _ =L,

) T

X

To make this system of equations be in force for each x, the following conditions

should be fulfilled:
B.chA+CAshA+E =0 (49)
Bish4 +C (sh4+4ch4)=0 (50)
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After solution of system of equations (49) and (50) we obtain:

E,
C=——"—7- (51)
ch A + 4
sh 4
B =-C (1+4ch4) (52)

Eventually, by using equations (37), (51) and (52) all constants can be found,
and finally we can calculate the plate deflection with use of the equation (46).

5.1.1.2.2. One edge fixed and all other simply supported

The following boundary conditions are in force for the edges at y=const:

y=0:
w(x,0) =0, (53)
0, 0=2 0. (54)
E
y=L,:
w(x,L,)=0, (55)
o'w  o*w
M (x,L):D£—+v—] =0, (56)
y ayZ aXZ y:Ly
Condition (56) after introduction of (55) can be reduced to the following
equation:
oW
— =0. (57)
.,

The deflected surface is non-symmetrical, so the equation of the deflected plate

(30) obtains the following form:

w(X, y) = i(A1 sha,y+B, cha,y+Ca,ysha,y+ D ych oy +E, )sina x (58)

i=1

Introduction of the conditions (53) and (54) gives equations:
B +E =0 (59)

A+D =0 (60)
Conditions (55) and (57) give equations:
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AshA +BchA+CAshi+DAchA+E =0, (61)

AshA +BchA +C(2ch 2 +AshA)+D(2shA +4chA)=0, (62)
where 4 =a;L, = 7Ly
L

X

System of equations (59)-+(62) has got the solution:

1 _ .
ao.p  LHRAtA-GA o B
shA[l— A (cth 4 —thA)] 2ch 4,
B=-E D =-A (63)

where E; is described by equation (37) and th4 =tanh 4, cth4 =coth 4 .

Substitution of the calculated constants into equation (58) leads us to the calculation

of the deflected surface.

5.1.1.2.3. One edge fixed, opposite one - free, and two other

simply supported

The following boundary conditions are in force for the edges parallel to the x

axis:
y=0
w(x,0) =0, (64)
0,(%,0) =% -0 (65)
y=L,:
M. (x L):D(az—w+v62—WJ =0 (66)
y 8y2 aXZ - '

o*w o*w
-0 (67)
y=L,

V, (%, L )=—D{E+(2—v) 5o¢

3
As in the previous example, the deflected surface is non-symmetrical, so the

equation of the deflected plate (30) obtains the following form:

w(X, y) = i(A1 sha,y+B, cha,y+Ca,ysha,y+ D ych oy +E, )sinax (68)

i=1
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Introduction of the conditions (64) and (65) gives equations:

B+E =0, (69)
A+D, =0, (70)
Condition (66) after taking into account (69) and (70) reduces to the following
form:
—A{“Vtm, +z,,}+c{z,, thA +2}=E{1+V] (71)
1-v 1-v @-v)ch A

and condition (67) after introduction of (69) and (70) gives equation:

-V 1-v

A{lzcthi, —&}—Ci[w—/ﬁ cthi,}in, (72)

izl
where 4 =a;L, =
L

X

If we write down the system of equations (71) and (72) in the matrix form:

|:gli gZi:||:Ai:|:Ei|:hli:|’ (73)
95 94 |G h;

where g_ =—1+Vthﬂ,, Ay Oy =Athh+ 2,
-V

1-v
0y = 2cth 2, — 4, 9 =V A cth,,
1-v 1-v
14
" (1-v)cha, ' 2

then we obtain the solution in the form:

A =E, hlig4igh2i92i C.=E hZigli_hlig3i , Bi :_Ei, Di =—A1,

where G; =050, — 0,95 .

(74)

5.1.1.2.4.  All edges simply supported

The following boundary conditions are in force for both edges y = const:
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w(x,3L,)=0, (75)

o°'w  o°w
j =0, (76)
y=3L

My(X,%Ly) = D(W‘}‘Vy

y

As in the first example (5.1.1.2.1), symmetry of the deflected surface about the x
axis results in disappearing of the terms with non-symmetrical functions from the
equation (40), i.e. Ai=0and D; = 0.

So the equation (40) after substitution of boundary conditions (75) and (76)

obtains the following form:

f.(y)=Bchay+Cayshay, (77)
The equation of the deflected plate (30) can be simplified then:

W(X, ) =W, (X, Y)+W,(x)= i(Bi chayy+Ciyshay +E; )singx (78)

i=1

The second of boundary conditions (76) after taking (75) into account is reduced

to:
oW & £
6;/2:2_1: Csing;x=0 (79)
After introduction of the boundary conditions, we have:

> (Bich 4 +CAshA +E )sinax=0 (80)
i=1
> a’[Bich A4 +Ci(2ch 4 + 4 sh A, )Jsinax =0 (81)
i=1

al, izl
where 4, =2 = Y

2L

X

To make the system of equations (80) and (81) be in force for each x, the

following conditions should be fulfilled:
B.ch4+CAshA+E =0 (82)
B ch4 +C,(2ch 4 + A sh 4 )=0 (83)

After solution of system of equations (82) and (83) we have:
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C = 5 ,
2ch 4,

B =-C(2+AthA) (85)

(84)

5.1.1.2.5. Three edges simply supported, the remaining edge

free

The following boundary conditions are in force for the edges parallel to the x

axis
y=0
w(x,0) =0, (86)
o’'w 0w
M (x,O):D(—+v—j =0, (87)
y 6y2 aXZ 0
y=L,:
M, (x L):D[ﬁz_w @_Wj -0 (@)
y ! 2 aXZ L !
83
Vv, (x, L )——D{ } = 89
Y aya (89)
Equations (86) and (87) may be reduced into much simpler form:
B +E =0, (90)
B +2C, =0, (91)

which allows easy calculation of constant values: Bi = —Ei , Ci = %Ei :

Equations (88) and (89) may be presented as:

2 v (1 1) 4
+D,|—+-—"|=FE - -t
A 1-v thﬂ,l 'L—v{sh/l, thﬂJ 2}’ (92)
A+Diﬂf.thi.—1”} E[“thi. 4 (93)
I 1-v| 2|1-v
izl
where 4, =L, = 5 Y
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In the similar manner as in the example (5.1.1.2.3), it will be more convenient to

write down this system of equations in matrix form:

NN 2

2 A

1-v thi' “1-vishi tha
_ 14w h.zl chﬂ,—ﬂ,}
gZI_//LIthﬂ’I Ea 2i 2|: —v i (N

Finally, we obtain solution of (94) in the following form:

h1'92' _hz' O h2' _hr
A=F 4% 2% p g " hi 95
92 =9y J2i — Qi )

5.1.1.2.6. Two opposite edges simply supported, other two

free

The following boundary conditions are in force for both edges y = const:

y=t1L,:
o'w  o*w
M (x,%L)=D(—+v—j -0, (96)
y y 8y2 Y i
o*w oP*w
V.(X,iL)=-D|—+(2-v =0, 97
4b)=-0| 3 )WLL 0

As in examples (5.1.1.2.1) and (5.1.1.2.4), symmetry of the deflected surface
about the x axis results in disappearing of the terms with non-symmetrical functions
from the equation (40), i.e. Ai=0and D; = 0.

Boundary conditions (96) and (97) in this case obtain the following form:

2 1%
B+C|—+Athd |=———E | 98
I I_l—V | I} (1—V)Ch/ll | ( )
B +C, /L,cthﬂ,,—“q:o, (99)
i 1-v
alL, izl
where 4, =2 = d
2L
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As in example (5.1.1.2.5), it will be more convenient to write down this system

of equations in matrix form:

E S}E}:Em (100)

2
where g, ==+ A4 tha, g, =4cthy, ———, Ny =_——+"——.
=, AN Ga = ACRA T T (L-v)ch A

Solution of the system of equations (100) is finally given by:

B :EiM, C :_EiL- (101)
U2 — Oy 9o — 9y

6. Examples

6.1. Rectangular slab

Rectangular slab loaded with any at the edge — determination of displacements
and stress field

6.2. Rectangular plate

In this chapter, we will present some solutions for rectangular plates with use of

previously presented analytical methods.
6.2.1. Navier solution

6.2.1.1. Constant distributed load over limited rectangular area of

the plate

Let us consider simply supported rectangular plate with constant load p0 = 10kPa
over limited rectangular area of the plate. The plate dimensions are:

+ Length: Lx = 5m,

+ Width: Ly = 4m;

+ Thickness: h = 10cm.

The material parameters are:

+ Young’s modulus: E = 20GPa;

+ Poisson’s ratio: v = 0.2.
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3

E-h
We can calculate plate stiffness as: DO = —— = 1736.111-kN -m.
2
12(1 —v )
The load is distributed at the area limited by the coordinates:
+ atxaxis: Lx1 < x < Lx2, Lx1 = 1.5m, Lx2 = 3.5m;
+ atyaxis: Lyl <y<Ly2?; Lyl = 1m, Ly2 = 3m.

We can calculate the resultant of the distributed load:

Q = po0- j J q(x,y) dy dx Q = 40-kN

We will solve the plate with use of Navier method. First we calculate the
coefficients to be used in expanding the load into double Fourier series. The number of
terms used in this expansion is limited:

N = 20 i=1,3.N j =1,3.N
The coefficients are expressed with use of the formulae:
A= lm 0ti=£ Bi=ﬂ

Lx Ly

These coefficients obtain values presented in arrays:

A= oj = Bi=
3.141593 0.628319| 1 0.785398] 1
9.424778 1.834956 | 2356194 | m
15.707963 3.141593 3.926991
21.991149 4.39823 5.497787
28.274334 5.654867 7.068583
34.557519 6.911504 8.63938
40.840704 8.168141 10.210176
47.12389 9.424778 11.780972
53.407075 10.681415 13.351769
59.69026 11.938052 14.922565

The coefficients of the load expansion in a double Fourier series can be calculated with

use of the formula:

Pi.j = J J q(x,y)-sin(p j-y)-sin(aix) dy dx
Lyl

Lx- Ly

The coefficients of the load expansion can be shown as the following matrix:
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1 2 3 4 5 6 7 8

1 0.674 0.000 [ -0.225 0.000 | -0.135 0.000 0.096 0.000
2 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
3| -0.363 0.000 0.121 0.000 0.073 0.000| -0.052 0.000
4 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
5 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
6 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
7 0.156 0.000 | -0.052 0.000 (| -0.031 0.000 0.022 0.000
8 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
9| -0.075 0.000 0.025 0.000 0.015 0.000| -0.011 0.000
10 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
11| -0.061 0.000 0.020 0.000 0.012 0.000| -0.009 0.000
12 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
13 0.084 0.000 | -0.028 0.000 | -0.017 0.000 0.012 0.000
14 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
15 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
16 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Now we can approximate the load with use of the double Fourier series:

pLOCY) = D

2

The load can be presented in the graph:

> (pi.j sin(oix) sinp -y))}
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The function representing plate deflection approximated with double Fourier series
expansion is expressed as follows:

wic.y) = %'{Z[Z(ahi sin(aix) sin(p -V))ﬂ

i Lj

where:
4 = Pi,j
’ 2
() + (8)°]
DO 3
k0 = p_O k0 = 173.611-m

The plate deflection can be presented in the graph:

5

4

w

Maximum deflection occurs at the middle of the plate:
w E ,H = 3.95-mm
2 2

Next we will find the internal forces:

+ bending moments:

d? d?
Mx (x,y) = =DO-| —w(X,y) + v- w(x,Yy)
2 2
dx dy

() = po{z{z[ai, () v () sin(aix) sinp .y)]ﬂ

i L]

d? d?
My(x,y) = -DO-| —w(x,y) + v- w(x,y)
2 2
dy dx
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My(X,y) = p0|:i2|:2[ai’j [\ (wi)?+ (Bj)z].sin(ai.x).sin(ﬁj .y)]ﬂ

+ torsional moment:

Mxy (x,y) = —-D0-(1 —v)-[d_(d_w(x,y)ﬂ
dx \ dy

Mxy (x,y) = p0-(1 - V)[Z[Z(ai’j B j -€08( atjx)-cos(B j y))ﬂ
L
Bending moments and torsional moments can be presented in graphs with maximum

values:

+ bending moments:

Mx

Mx(% %) _ 4213572 x 10°. KN-M

My
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My(L—ZX %) _ 5152556 x 107 <N

+ torsional moment:

Mxy

KN
Mxy (0,0) = 2.330655 x 10°. "
m

The next step will be calculation of shear forces:

3 2
Qx(x,y) = -DO {d—wu y) +d—(d—w(x V)H
x> dx \ dy

Qx(x.y) = DO{Z{Z[%J’ ail (ai)?+ (8 )2 cos(aix) sin(s 'V)Jﬂ

L

3
Qy(x.y) = -DO Ld—w(x y) +—{—w(x y)ﬂ
y

Qy(x.y) = pO[Z{Z[""' 93 L(a)+ ()2 sin(aix)-cos(s y)]ﬂ

L

Shear forces can be presented in graphs with maximum values:
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Lx L KN
oy =, 2| = 5725398 x 10°.55

2 4 m
The next will be calculation of principal moments. First we calculate the parameters of
Mohr’s circle for principal moments:

+ horizontal component of Mohr’s circle radius:

Mx (x,y) = My(x,y)
2

Ux,y) =

«+ circle radius:

2 2
ROGY) = YU (x.y)2+ My (.y)
+ location of the circle center at the horizontal axis of bending moments:

Mx (x,y) + My(x,y)
2

S(x,y) =
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The functions of principal moments are calculated with use of formulae:
Mmax (x,y) = S(x,y) +R(x.,y)

Mmin(x,y) = S(x,y) —R(x,Yy)

These functions of principal moments can be presented in the graphs:

Mmax

Mmin

Finally, we can calculate the angle for the principal direction in relation to the x axis

direction:
o (x,y) = 05-atan2(U (x,y),Mxy (x,y))

This direction can be presented as a vector plot:
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6.2.2. Nadai-Lévy solution

6.2.2.1. Two opposite edges simply-supported, two others - fixed

Let us consider a rectangular plate with constant load which includes dead load
p0 = —bkPa —+v -h over the whole area of the plate. The plate is simply supported at
two opposite edges and fixed at other ones. The plate dimensions are:

+ Length: Lx = 5m,

+ Width: Ly = 6m;

+ Thickness: h = 7cm.

The material parameters are:

+ Young’s modulus: E = 30GPa;
+ Poisson’s ratio: v = 0.2;
. - — kN
+ Material specific weight: y = 25—,
m
E-h°
We can calculate plate stiffness as: DO = = 893.229-kN -m.
2
12(1 —v )

The load is distributed at the whore area of the plate:
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+ at xaxis: Lx1l < x < Lx2, Lx1 = Om, Lx2 = Lx;
+ aty axis: 0<y<Ly.
We can calculate the resultant of the distributed load:

Lx2

Q0 = p0-Ly- J q(x) dx Q0 = —202.5-kN
Lx1

We will solve the plate with use of Nadai-Lévy method. First we calculate the
coefficients to be used in expanding the load into single Fourier series. The number of
terms used in this expansion is limited:

N =15 i=1,3.N
The coefficients are expressed with use of the formulae:

I- L
oj = T A= oci-—y

Lx 2

These coefficients obtain values presented in arrays:

0.628319| 1 1.885
1.884956 | m 5.655
3.141593 9.425
4.398230 13.195
5.654867 16.965
6.911504 20.735
8.168141 24.504
9.424778 28.274

The coefficients of the load expansion in a single Fourier series can be calculated with

use of the formula:

5 Lx2
pj = —- J pO -sin(e.j-x ) dx
Lx Lyl

The coefficients of the load expansion can be shown as the following vector:
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1
-8.594
~2.865
~1.719
-1.228 | kPa
~0.955
~0.781
~0.661
-0.573

V(N[N DR W[N|=

Now we can approximate the load with use of the single Fourier series:

pl(x) = Z(pi'sin(ai'x))
i
The load can be presented in the graph:
1x10%

6.667x10°}

3.333x10°}

p1 (x)

—3.333x10°

— 6.667x10°

—1x 104—

The coefficients of the cylindrical component of the plate deflection can be calculated
as:

Pi
DO-(aj)*

and presented in as a vector:

Ei =
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1
-61.735010
-0.2540%4
-0.019755
-0.003673 | -mm
-0.001045
-0.000383
-0.000166
-0.000081

O N[ | AW N~

The cylindrical deflection of the plate is now described with use of the formula:
w2(x) = Z(E i-sin(aix))
i
and can be presented in the following graph:
807
601
401

20t

w2 (X) | | | |
mm 1 2 3 4
— 20t

— 40t

- 607

- 80~

X
The maximum value of this cylindrical deflection occurs at x=2.5 m:

w2max = w2(2.5m) w2max = —61.498-mm
To find the total deflection of the plate, firs we calculate other four coefficients with use
of the formulae:

Aj =0 Dij=0

Ci = il Bi = —Ci-(1+ »j-coth(2))
' ajcsch(3i) + cosh(n) IO

These coefficients can be presented as the following vectors:
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Aj = Bj = Ci=

0-100f -mm 4.642255:101 -mm -1.560989°101
0-100 1.183315°102 -1.778083°10-3
0-100 3.323909:10> -3.18847-10-6
0-100 1.940066°10-7 -1.366755°10-8
0-100 1.611143°109 -8.968435-10-11
0-100 1.647647-10-11 -7.580785°10-13
0-100 1.933413-10-13 -7.580698°10-15
0-100 2.501526°10-15 0-100

-mm

Dj

0-100

0-100

0-100

0-100

0-100

0-100

0-100

0-100

-mm

The following functions will be used in order to calculate the total deflection of the

plate:

f (i,y) = Ajsinh(ajy) + Bi-cosh(aiy) + Ci-aiysinh(ajy) + Dj-ajy -cosh(aijy)

f0(i,y) = f (i,y) + Ej
Additionally we calculate the derivatives of the function (i,y):

e first derivative:
] d ]
fl (Iay) = _f (Iay)
dy

fL (i,y) = «i] Aj-cosh(aiy) + Bi-sinh(ajy) ..
+Cj- sinh(ai'y) + aj-y-cosh(aijy)) ..
+Dj- cosh(ai-y) + aj-y-sinh(aj-y

e second derivative:

_ 4@
f2 (Iay) = _2f (Iay)
dy

2 (i.y) = («i) > Aisinh(aiy) + Bi-cosh(ajy) ...
+Cj- 2~cosh(ai-y) + ajy-sinh(ajy)) ...
+Dj-(2-sinh(atjy) + aj-y -cosh(aj-y

e third derivative:

3 (i,y) = (oci)3- Ai-cosh(ai-y + Bi-sinh(ai-y)
+Ci+(3-sinh(ajy) + ajy-cosh(ajy)) ..
+Dj-(3-cosh(aj-y) + iy sinh(aj-y

The functions can be presented in the graph:
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0.017

0 (TRY)
LI
SI(1.9)
26
f3(1.y) - 0.014

—6x10

—0.0227

—0.03-
The function representing plate deflection can be expressed on the basis of the presented
functions as follows (w(x,y)=w1(x,y)):
wil(x,y) = Z(fo (i,y)-sin(aix))
i
W(x,y) = Z[(Ai~sinh(ai~y) + Bj-cosh(aj-y) + Ci-ajy-sinh(ajy) + Dj-ajy-cosh(aiy) + Ej)-sin(aix)]

The plate deflection can be presented in the graph:

Maximum deflection occurs at the middle of the plate:
W(L—ZX,O) = —15.087-mm wl(L—ZX ,Oj = —15.087-mm

Next we will find the internal forces:

+ bending moments:

d? d?
MX (X 7y) - _DO —2W(X,Y) +v- 2W(Xay)
dx dy
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M (X,y) = D0.|:Z[(oci)2-f0 (i,y) —v 2 (i,y)]-sin(ai-x)}}

d? o2
My(x,y) = -DO-| —w(x,y) + v- w(x,y)
2 2
dy dx

My (X,y) = DO-|:Z|:|:V (ai)?10 (i,y) - 12 (i,y)]-sin(ai-x)J:|
i
+ torsional moment:

My (X,y) = ~DO-(1 —v)-[d—(d—w(x,y)ﬂ
dx \ dy

Mxy (X,y) = —DO-(1 —v)-[Z(ai-fl (i,y)-cos(ai-x))}
i
Bending moments and torsional moments can be presented in graphs with maximum

values:

+ bending moments:

Mx

Mx(B ,o) _ _5.82530.<NM
2 m
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My

L KN -
|v|y(—X ,oj — _6.28662— 1
2 m

+ torsional moment:

Mxy

Mxy(l_x,ﬂj _ 0.00000 N
2 m

The next step will be calculation of shear forces:

3 2
Qx(x,y) = —Do{d_3w(x Y) + d_(d_w(x ,y)ﬂ
dx dx {_dy?

Qx(x,y) = DO-{Z[(ai)g'fO (i,y) — ajf2 (i,y)]-cos(ai-x)]}
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a3 d | d
Qy(x 9y) = _DO|:_3W(X sy) + _[_ZW(X sy)]}
dy dy { dx

Qy(x.y) = DO-|:Z[[(ai)2-f1 (i.y) -3 (i,y)]-sin(ai-x)]}

Shear forces can be presented in graphs with maximum values:

0x

kN
Qx(Lx,0) = 9.509418-—
m

©

Lx L kN
oy = .2 | = 19.902710-55
2 2 m

The next will be calculation of principal moments. First we calculate the parameters of

Mohr’s circle for principal moments:

+ horizontal component of Mohr’s circle radius:

Mx (x,y) — My(x,y)

U(x.y) = >
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+ circle radius:

2 2
R(X.Y) = /U 0CY)2+ My (.y)
+ location of the circle center at the horizontal axis of bending moments:

Mx (x,y) + My(x,y)

S(x,y) = 5

The functions of principal moments are calculated with use of formulae:
Mmax (x,y) = S(x,y) + R(X.y)
Mmin(x,y) = S(x,y) —R(X,y)

These functions of principal moments can be presented in the graphs:

Mmax

KN -
Mmax (3m,2m) = 1082430~
m
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Mmin

KN -
Mmin (2.5m,0m) = —6.286619-— 1
m

Finally, we can calculate the angle for the principal direction in relation to the x axis

direction:

o (x,y) = 05-atan2(U (x,y), Mxy (x,y))

This direction can be presented as a vector plot:
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6.2.3. Finite difference method

6.2.3.1. Two neighboring edges simply-supported, two others -
fixed

Let us consider a rectangular plate with constant load q = 4kPa over the area of the
plate. The plate is simply supported at two neighboring edges and fixed at other ones.
The plate dimensions are:

+ Length: L, = 4m;

X

+ Width: Ly = 3m;

+ Thickness: h = 6cm.
The material parameters are:
+ Young’s modulus: E = 20GPa;

+ Poisson’s ratio: v = 0.17.

E.n°

_ 370.714-kN -m.
121 -2 !

We can calculate plate stiffness as: D =

The load is distributed at the whore area of the plate:
+ atxaxis: 0<x<Lx;
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+ atyaxis: 0<y<Ly.
We divide the plate area into A = 1m divisions. This leads to the nodal mesh, which

can be presented in figure:

7 B 5

17 18 19 20 21

30 1 2 3 122 10

15 29 4 5 6 |23 11

%

NN

14 ‘ 13 12

The following differential scheme will be used in order to approximate

differential equations:

d4
(1)
c1 |bs o2
( 2)---(-8)---( 2)
d1 b1 al bz d=
(1)---(-8)--~(20)--~(-8) -~ (1)
c3 |bg ey
(D-(B)—(2)
(1)d3

The equations approximating the plate deflection are written in every point inside the

plate area (marked in black), so we obtain the system of six equations:

20-wq — 8-(W + Wa + W3g + Wig) + 2(W17 + W1g + W5 + Wag) + (W7 + W3 + Wp7 + Wig) = og

20-wp — 8-(W1 + W1g + W3 + W) + 2(W1g + Woq + We + Wa) + (Wg + W22 + Wg + W30) = ag

20-w3 — 8:(W2 + Wg + W2 + We) + 2(W1g + W21 + W5 + Wp3) + (Wg + W1g + Wos + W1) = g

20-wg — 8 (W1 + W5 + W27 + W29) + 2(W30 + W2 + Woe + W28) + (W18 + We + W14 + W15) = aq
( )

20-wg — 8-(W2 + Wg + Wog + W4) + 2(W1 + W3+ Wo7 + W25) + (ng + W23+ W13+ W29) = ag



20-Wg — 8-(W3 + W3 + W5 + W5) + 2(W2 + W2 + Wog + Wog) + (Wog + W11 + W12 + Wa) = ag

There is a total number of 30 unknowns in this system of equations. Only the deflection

components at the points inside of the plate are the “real” unknowns. Other values will

be calculated on the basis of boundary conditions.

First we put down the condition for the nodes marked in red. These nodes are positioned

at edges that are fixed or simply supported, so we know the deflection at these nodes is

equal to 0, so we can state:

W17= W1g= W19= W20= W21= W22= W3= Wo4= Wa5= Wpg= Wp7= Wpg= Wp9= W30=0

In this way we eliminate the unknowns w;7+wsg from the system of equation. Additional

relations coming from boundary conditions are:

+ for the fixed edges: the deflection at the point outside the plate is equal to value of
the deflection in the plate area, opposite to the analyzed node;

+ for the simply supported edges: the deflection at the point outside the plate is equal to
the negative value of deflection in the plate area, opposite to the analyzed node;

The first condition results with equations:

W12 = We
W13 = Wg
W14 = W4
W15 = W4
Wip = W1

And the second one results with:

W7 = —W;
wg = —W2
Wg = —W3
W10 = —W3
W11 = —We

Introduction of the above relations into the system of equations results with the reduced
number of the unknown. The system of equations may be written as:

20-wq — 8-(W4+ w2) +2W5+ W3+ W1 —W1 = ag

20-wp — 8-(W1 + W3 + Ws) + 2(Wa + Wg) — W = o
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20-w3 — 8-(W2 + w6) +2W5+ W1 —W3 - W3 = ag
20-wy — 8-(W1 + W5) +2W2 4+ We+ W4+ W4 = ag
20-wg — 8-(W2 + Wy + w6) + 2(w1 + W3) + W5 = ag
20-wg — 8-(W3 + W5) +2W2 + W4+ Wp — W = ag

where there are only six unknowns, the same number as of the number of equations.
Solution of the system of equations leads to the following vector of deflection for six
nodes inside the plate area:

0
-2.315
—-3.537
w =|-2779 |mm
-2.016
-3.067
—2.424

These values can be distributed over the plate area to form the matrix of deflection:
Wo wp Wo Wo WQ
Wo wi W2 w3 WQ
Wo W4 W5 Wg WQ
Wo wp Wo Wp WQ

We can now present the results in the graph:

W

The next step is calculation of internal forces. The bending moments in the point i,j of

the matrix W can be calculated with the following formulae:
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D
M, = —2~|:W1i’j-2-(1+v)—Wli’j_]_—Wli’j+1—v~(Wli_1’j +Wlit1,j) ]

Ia.l A
D

My, - — Wi j 21+ v) = Wiiog j ~Whisg j —v (Wi jag+ WL j 1) ]
’ A

and the torsional moment can be found with use of the formula:
Moy, = 4_—D2(1—V)‘(W1i+1,j+1+W1i—1,j—1—W1i+1,j—1—W1i—1,j+1)
A
The moments can be put in the matrix of points, including the nodes at the edges:
+ bending moments:
0 0 0 0 0
submatrix My, 1.4.1,5) = i:slaz —_00;15676 :2322 _—069:97 8 kNTm
0 0254 0387 0305 O
0 0 0 0 0
i RN I O e
0 1495 2274 1797 O
+ torsional moment:
0.178 0.544 0.071 -0.544 -0.641
0 0236 0.031 -0.236 —0.373 | KN-m

submatrix(MX ,1,4,1,5) =
y 0 -0272 -0.036 0.272 0.428 m

0.155 0 0 0 0.186
Shear forces are calculated as:
D
Qxi = —3-(W1i’j+2—2-W1i’j+1+2W1i’j_]_—Wli’j_2 j
J 28 T+ -2 W j g+ 2WE o1+ Wling j 41+ Wi 41— Whjsg,j—1 — Wli—1 j -1
D
Qyi o= —~(Wli+2,j —2Wljy1,j +2Wli_1 j — W12 j ... j
b2 +-2Wljy1,j + 2Whi—1 j + Wljg1 j+1+ Whig1 j -1 —Wlj—1 j+1 —Wlj—1 j -1

and shown in matrix form:

-1.434 -2.247 -1.854

1.968 0.269 -1.11 ) kN
1543 0.216 -0.796

0.497 0.796 0.713jk|\|
m

submatrix(Qy,2,3,2,4) = (

submatrix(QX,2,3,2,4) = ( m

98



7. References

Timoshenko S.P., Goodier J.N. Theory of Elasticity. McGraw-Hill Comp., N.Y. 1951

Timoshenko S.P., Woinowsky-Krieger S. Theory of Plates and Shells. McGraw-Hill
Comp., N.Y. 1959

Ventsel E., Krauthammer Th. Thin Plates and Shells: Theory: Analysis, and
Applications. CRC Press, 2001

Girkmann K. Flichentragwerke, Springer, 1959
Nowacki W. Dzwigary powierzchniowe, PWN, Warszawa 1979

Fung Y. C. Foudations of Solid Mechanics, Prentice Hall Inc. New York, 1965

99



