$\begin{aligned} & \text { CERAMMIKA } \\ & \text { BADANIA } \end{aligned}$	NORMA BRANZOWA	$\frac{\mathrm{BN}-83}{7010-02}$
	Szkliwa ceramiczne Mełody badań ar naprężeń między kliwem i czerepem	
		$\underset{\text { BN-69/7010-02 }}{\substack{\text { Zomiast } \\ \text { B }}}$
		Grupa katalogowa 0819

1. WSTEP

1.1. Przedmiot normy. Przedmiotem normy jest pomiar naprężen między wypalonym szkliwem i czerepem lub angobą, powstających pod wpływem zmian temperatury.
1.2. Zakres stosowania metody. Metodę należy stosować przy ocenie prawidłowości (stopnia) dopasowania szkliwa do tworzywa ceramicznego lub angoby.

2. METODA BADANIA

2.1. Zasada metody. Pomiar polega na ciągłej rejestracji wielkości i kierunku ugięcia, powstającego wskutek różnicy rozszerzalności cieplnej szkliwa i czerepu w czasie ogrzewania próbki od temperatury pokojowej do temperatury płynięcia szkliwa oraz w czasie jej chłodzenia.

2.2. Aparatura, przyrzady i materiaty

a) Aparat do badania naprężeń między szkliwem i czerepem, wg metody Stegera.
b) Forma gipsowa do formowania plastycznego lub od lewania próbek.
c) Suszarka elektryczna z regulacją temperatury.
d) Piec elektryczny do $1410^{\circ} \mathrm{C}$.
e) Sprzęt i materiały do przygotowania mas lejnych i plastycznych oraz szkliw.
f) Szlifierka.
2.3. Pobieranie i przygotowywanie próbek do badan. Do badań należy pobrać co najmniej 1 kg masy suchej, plas tycznej lub co najmniej 1 litr masy lejnej oraz badane szkliwo. W przypadku pobrania masy suchej, należy doprowadzić ją do stanu plastycznego lub przygotować z niej masę lejną wg technologii stosowanej dla badanego rodzaju tworzywa.

Z pobranej masy uformować kształtki o wymiarach zgodnych z rys. 1.

Rys. 1

[^0]Należy uformować tyle kształtek, aby można było spośród nich wybrać do badań 3 sztuki nie zdeformowane. Kształtki wysuszyć w suszarce elektrycznej w temperaturze nie przekraczającej $105^{\circ} \mathrm{C}$. W zależności od rechnologii przewidzianej dla danego tworzywa ceramicznego, wysuszo ne kształtki należy przeznaczyć do szkliwienia w stanie surowym lub wypalić na biskwit w laboratoryjnym albo przemysłowym piecu, zgodnie z krzywą wypalania przewidzianą technologią.

Szkliwieniu podlega część środkowa próbki. Grubość warstwy szkliwa powinna wynosić, w zależności, od tworzywa, od 0,3 do $1,0 \mathrm{~mm}$. Poszkliwione próbki wysuszyć w suszarce elektrycznej w temperaturze $105^{\circ} \mathrm{C}$, następnie wypalić w piecu przemysłowym lub laboratoryjnym zgodnie z wymaganą technologią. Próbki powinny być wypalone w pozycji chroniącej je możliwie jak najbardziej przed deformacja.

Z tak przygotowanych próbek naléży wybrać do badań 3 sztuki nie wykazujące żadnej deformacji. Części nieszkli-
2.5. Przedstawianie wyników pomiaru. Uzyskaną z pomiarów krzywą naprężeń (Średnią z 3 próbek), przenieść z taśmy rejestratora na papier milimetrowy z wykreślonymi współrzędnymi : na osi pionowej wychylenie próbki mierzone z dokładnością $0,1 \mathrm{~mm}$, a na osi poziomej temperature $w^{\circ} \mathrm{C}$.

Zaleca się stosować następującą skalę: $5 \mathrm{~mm}=0,1 \mathrm{~mm}$ wychylenia, $20 \mathrm{~mm}=100^{\circ} \mathrm{C}$.

Wychylenie dodatnie lub ujemne należy odczytywać względem poziomego odcinka krzywej naprężeń. Odczytać dane dla temperatury pokojowej, $200^{\circ} \mathrm{C}, 400^{\circ} \mathrm{C}$ i $600^{\circ} \mathrm{C}$ i wpisać do świadectwa badania.

Poza krzywą naprężeń, wynikiem badania jest jej interpretacja i wnioski. Przy interpretacji i wnioskach należy wykorzystać wyniki badań współczynnika rozszerzalności cieplnej szkliwa, wykonane zgodnie z BN-68/7001-07.

Rys. 2
wione próbki należy wyrównać przez szlifowanie, jak to pokazano na rys. 1.
2.4. Wykonanie pomiaru. Pomiar należy wykonać aparatem Stegera. Próbkę umocować w uchwycie aparatu i umieścić w środku rury grzejnej. Na wolnym, oszlifowanym . końcu próbki, umieścić czujnik w odległości 90 mm od części poszkliwionej. Należy skontrolować, czy próbka jest umie'szczona prawidłowo w środku rury grzejnej. Prowadzić ogrzewanie i chłodzenie próbki w zakresie temperatur od temperatury pokojowej do najwyższej $1000^{\circ} \mathrm{C}$ i.chłodzić od co najmniej $80^{\circ} \mathrm{C}$, zgodnie z instrukcją obsługi aparatu, przy szybkości $5^{\circ} \mathrm{C} / \mathrm{min}$. Pomiar należy prowadzić aż do temperatury, przy której uzyska się na wykresie poziomy odci~ nek prostej o długości około 10 mm . Temperaturę odczytywać ze wskaźnika i znaczyć znacznikiem na krzywej co $40^{\circ} \mathrm{C}$, zarówno iw czasie ogrzewania jak i chłodzenia próbki.

Przykład

Podczas badania dwóch różnych próbek, uzyskano krzywe 1 i 2 , przedstawione na rys. 2, na którym:

1 - krzywa naprężeń między szkliwem i czerepem w czasie chłodzenia dla prawidłowo dobranego szkliwa i czerepu,
2- krzywa naprężeń między szkliwemi czerepem w czasie chłodzenia, dla szkliwa wykazującego harys.

Współczynniki rozszerzalności ciepinej dla tyen mas 1 szkliw, oznaczone wg BN-68/7001-07, wynoszą:
krzywa 1 masa szkliwo

$$
\begin{array}{ll}
\boldsymbol{\alpha}_{20-400}=46,7 \cdot 10^{-7} / \mathrm{K} & \alpha_{20-400}=45,6 \cdot 10^{-7} / \mathrm{K} \\
\boldsymbol{\alpha}_{20-730}=49,9 \cdot 10^{-7} / \mathrm{K} & \alpha_{20-730}=46,7 \cdot 10^{-7} / \mathrm{K}
\end{array}
$$

```
krzywa 2 masa szkliwo
    \mp@subsup{\alpha}{20-400}{}=69\cdot1\mp@subsup{0}{}{-7}/\textrm{K}}\quad\mp@subsup{\alpha}{20-400}{}=78\cdot1\mp@subsup{0}{}{-7}/\textrm{K
    \alpha}\mp@subsup{\alpha}{20-560}{}=72\cdot1\mp@subsup{0}{}{-7}/\textrm{K}\quad\mp@subsup{\alpha}{20-560}{}=90\cdot1\mp@subsup{0}{}{-7}/\textrm{K
    Interpretacja i wnioski:
krzywa 2 szkliwo imasa są dobrane nieprawidłowo;
szkliwo leży na czerepie pod naprężeniem u-
jemnym, rozciągającym, ulega samoistnemu
harysowi; należy obniżyć & szkliwa tak, aby
było najwyżej o 10-15}10-1\mp@subsup{0}{}{-7}/\textrm{K}\mathrm{ mniejsze niż
    \alpha masy.
krzywa 2 . szkliwo imasa są dobrane nieprawidłowo; szkliwo leży na czerepie pod naprężeniem ujemnym, rozciągającym, ulega samoistnemu harysowi; należy obniżyć \(\alpha\) szkliwa tak, aby było najwyżej o \(10-15 \cdot 10^{-7} / \mathrm{K}\) mniejsze niż \(\propto\) masy.
```

krzywa 1 - szkliwo i masa są dobrane prawidłowo; szkli-
wo leży na czerepie pod naprężeniem dodat-
nim, ściskającym, przez co podwyższonà jest
wytrzymałość mechaniczna wyrobu;

Pomiędzy szkliwem i czerepem nie mogą istnieć ani naprężenia ujemne, ani zbyt duże dodatnie.

K ONIEC

INFORMACJE DODATKOWE

1. Instytucja opracowująca norme - Instytut Szkła i Céramiki, Warszawa.
2. Istotne zmiany w stosunku do BN-69/7010-02
a) uściślono opis przygotowania próbki,
b) uściślono opis czynności wykonywanych przy pomiarze,
c) wprowadzono przykład interpretacji wyników.
3. Normy zwiazane

BN-68/7001-07 Oznaczanie współczynnika rozszerzalności cieplnej wypalonych surowców, półfabrykatów, wyrobów ceramicznych iszkliw
4. Autorzy projektu normy: mgr inż. Henryk Pieczarowski, mgr Zygmunt Strzeszewski.

[^0]: Zgłoszona przez Instytut Szkła; Ceramiki
 Ustanowiona przez Ministra Przemysłu Chemicznego i Lekkiego dnia 16 czerwca 1983 r. jako norma obowiqzuigca od d́nia 1 kwietnia 1984 r.
 (Dz. Norm. i Miar nr 13/1983, poz. 24)

