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1. Modelling of dynamical systems –

introduction and basic definitions

Modelling of any dynamic system is a process allowing learning, understanding and
explaining the main features of a real object. Often, the models give the possibility
to detect new phenomena which is sometimes impossible or difficult to get by phy-
sical experiments, due to the limited accuracy of research equipment or a limited
number of samples. High costs of experiment are usually associated with expensive
equipment, preparation of appropriate number of samples, which after the conduc-
ted tests may not be suitable for further use. Therefore, the numerical models of
the real objects are a very important in the process of designing of machines and
structures.

Generally, it is difficult to represent precisely the real systems by the model.
Fundamental problems occurring during the modelling process result from high
complexity of the real systems and a large number of physical phenomena occurring
during their operation. Thus, by the physical, mathematical or numerical model we
understand the approximate representation of the real system dynamics. The mo-
delling process can be represented in the form of an algorithm, shown schematically
in figure 1.1.

1.1. Physical model

Knowing the real object, in the first step we must try to build a physical model,
which will allow determining the selected characteristics of the real system. In rela-
tion to this, we have to make simplifying assumptions [4]. This step is mainly based
on the knowledge and intuition of the researcher (engineer, designer). Simplifica-
tions are attractive because they lead to a simple physical model, but unfortunately
they may also lead to erroneous results. Therefore, this step of modelling requires
intuition based on the engineer experience in order not to omit the behaviour and
physical phenomena occurring in a real object.

While creating physical model, we usually make simplifications regarding geo-
metry and material. We assume constancy of the selected parameters, skip less
significant internal and external interactions, neglect deformations of the selected
elements treating them as rigid bodies, skip the masses of ”very light” elements. In
addition, random excitations we replace by harmonic or polyharmonic forces.
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Figure 1.1. Block diagram of modelling process
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Figure 1.2. Physical model of a car with four degrees of freedom
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Figure 1.3. Reduced model of a car with two (left side) and one degree of

freedom (right side)

Motion of the system elements can be described in various reference systems,
using different types of coordinates. In mechanics, the most commonly, so called
generalized coordinates, are used, which are usually marked with the letter q, and
defined as independent physical quantities, determining the position of the consi-
dered system in space. They may be rectilinear coordinates, so called translational
coordinates or angular coordinates, so called rotational coordinates.

The number of independent coordinates, necessary for the unique description
of the system motion in the space is called a number of degrees of freedom. For
an unique description of free motion of a rigid body i.e. motion without constraints,
a six generalized coordinates are needed: three translational coordinates describing
and three rotational coordinates (e.g. Euler angles). Therefore, the free motion of
the rigid body is a motion with six degrees of freedom.

In the case when the object is modelled with the use of many rigid bodies
and when the motion constraints occur, there’s a necessity to select coordinates
in such a way that the motion of the whole system is uniquely determined. For
example, a car model presented in figure 1.2 is a system with 4 degrees of freedom
fxn1; xn2; xC ; 'g. The bodies mn1 i mn2 are treated as lumped the masses, M is
a rigid body performing plain motion, considered as a combination of translational
and rotary motion.

Then, the car model can be simplified (reduced) to the lower dimension e.g.
to the system with 2 degrees of freedom, presented in the form of sprung mass
m2 and unsprung mass m1. Such a model can represent vibrations of e.g. front
suspensions of the car. Obviously, for the model to be adequate, it’s necessary to
correctly determine its equivalent parameters i.e. masses, stiffness and damping.
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10 J. Warmiński

The most simplified is the model with 1 degree of freedom, representing motion
of the whole car by a single substituted mass, damping and stiffness. Despite its
simplicity, such models are also used in the mechanical engineering.

Motion of the system may be limited by the imposed constraints. In the model-
ling, the constraints are replaced by reactions (passive forces). In mechanics, the
constraints have been divided into specific classes, which depend on the adopted
criteria. Taking into account friction the constraints are divided into:

� ideal constraints – without friction, with the reactions forces normal to a contact
surface of the bodies,

� nonideal constraints – with friction, with the reaction forces deviated from nor-
mal due to the occurrence of contact friction force.

Depending on the method of motion limitations, we distinguish:

� one sided constraints – in which the reaction is directed one way, and the bo-
dy can detach from the surface constraining its motion. These constraints are
described with inequalities:

fk.q1; q2; : : : ; qs; Pq1; Pq2; : : : ; Pqs ; t/ > 0;

� two sided constraints – in which the reaction can change the sign and the mo-
tion is constrained in both sides preventing the detachment. These equations
generally have the following form:

fk.q1; q2; : : : ; qs ; Pq1; Pq2; : : : ; Pqs ; t/ D 0:

where s is a number of degrees of freedom and k D 1; 2; : : : ; r is a number of
constraints equations.

In analytical mechanics, the constraints have been also classified depending on
the time or derivatives of generalized coordinates (generalized velocities) occurring
in the equations that describe the motion limitations. Therefore, depending on time
occurrence, we distinguish:

� scleronomic constraints, which are described by equations independent of time

fk.q1; q2; : : : ; qs/ D 0

or
fk.q1; q2; : : : ; qs; Pq1; Pq2; : : : ; Pqs/ D 0;

� reonomic constraints, described by equations depend on time

fk.q1; q2; : : : ; qs; t/ D 0

or
fk.q1; q2; : : : ; qs ; Pq1; Pq2; : : : ; Pqs ; t/ D 0:
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Modelling of dynamic systems – introduction . . . 11

Due to the occurrence of the derivative (generalized velocity), the constraints are
divided into:

� geometric constraints – independent of generalized velocities

fk.q1; q2; : : : ; qs/ D 0

or

fk.q1; q2; : : : ; qs; t/ D 0;

� kinematic constraints – dependent on the generalized velocities

fk.q1; q2; : : : ; qs; Pq1; Pq2; : : : ; Pqs/ D 0

or

fk.q1; q2; : : : ; qs ; Pq1; Pq2; : : : ; Pqs ; t/ D 0:

The kinematic constraints

fk.q1; q2; : : : ; qs; Pq1; Pq2; : : : ; Pqs/ D 0

or

fk.q1; q2; : : : ; qs ; Pq1; Pq2; : : : ; Pqs ; t/ D 0

are divided into two classes:

� holonomic – these are so called integrable constraints which after integrating
can be reduced to geometric ones,

� nonholonomic – these are dependent on the generalized velocities, which can’t
be integrated and reduced to geometric ones.

The separation into holonomic and nonholonomic is very important in model-
ling of the mechanical systems.1 Systems with nonholonomic constraints result in
much more difficulties already at the stage of physical model construction, and
even more difficulties during attempts to determine the solutions. This is due to
the fact that no generalized coordinates exist for them, perturbation of which does
not disturb the constraints’ equations. It’s worth noting that the existence of one
non-integrable equation among the constraints’ equations does not mean that the
whole system is nonholonomic [6].

1The authors of the work [6] mention Lagrange mistake who claimed that for every mechanical sys-
tem, we can select independent coordinates which have independent variations. However, after the
analysis of the systems rolling without sliding on the horizontal plane or surfaces with complex
shapes, it has been demonstrated that so called nonholonomic constraints exist. The division into
holonomic and nonholonomic constraints has been introduced by Hertz in 1894. [2]
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12 J. Warmiński

A common case of systems with nonholonomic constraints are such systems,
in which the constraints are described by linear equations in regard to generalized
velocity

A11 Pq1 C A12 Pq2 C : : :C A1s Pqs C B1 D 0

A21 Pq1 C A22 Pq2 C : : :C A2s Pqs C B2 D 0

:::

Ar1 Pq1 C Ar2 Pq2 C : : :C Ars Pqs C Br D 0 (1.1)

where r is the number of constraints’ equations, s is a number of degrees of fre-
edom, and the coefficients Aij , Bi , j D 1; 2 : : : ; s, i D 1; 2; : : : ; r are the functions
of generalized coordinates i.e.

Aij D Aij .q1; q2; : : : ; qs; t/; Bi D Bi .q1; q2; : : : ; qs ; t/

Constraints described by equations (1.1) are called kinematic, linear and noninte-
grable. Moreover, if the coefficients Aij ; Bi do not involve time directly, we call
them independent of time, and furthermore if all coefficients Bi D 0, then we call
them homogeneous.

xx

L

yy

''

!t

r

L.t/

x.t/x.t/

y.t/y.t/

mm

.a/ .b/

Figure 1.4. System with scleronomic (a) and reonomic (b) constraints

The mathematical pendulum presented in figure 1.4(a) is an example of a system
with scleronomic constraints. Motion of the mass m is restricted by an inextensi-
ble line with constant length L which guarantees that at any moment of time the
following equation is fulfilled

x.t/2 C y.t/2 � L2 D 0 (1.2)
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Modelling of dynamic systems – introduction . . . 13

In the next example (figure 1.4b) the length of the line is varied due to rotation
of the cylinder with a radius r , rotating with angular speed !. In this case the length
of the pendulum is determined by equation L.t/ D L0�!rt , where L0 is the initial
length of the line. In this case the equation of the constraints is:

x.t/2 C y.t/2 � .L0 � !rt/2 D 0 (1.3)

In this case the constraints are reonomic, they directly dependent on time.
Let us now consider the disk which rolls on the horizontal plane (figure 1.5).

Let us assume that the plane is perfectly rough, thus there is no sliding between the
disk and the substrate. We are dealing with a plain motion of the disk which, in
this case, due to the constraints applied has two degrees of freedom described by
coordinates x and '.

C

O

r

v0

v0

!r

'

x

Figure 1.5. System with kinematic constraints

Velocity of disk centre O equates to v0. Because there is no slip, velocity of
point C is equal to zero, vC D 0. Thus, for this point we may write the following
equation

Px � P'r D 0 ; (1.4)

where P' D !, and Px D v0. The equation (1.4) describes the kinematic constraints.
In fact, after integration of the equation (1.4) ) we obtain geometric constraints

x � 'r D 0 : (1.5)

Thus, the equation (1.4) describes the holonomic constraints, that is kinematic in-
tegrable constraints. Taking into consideration the time, these are also the sclere-
onomic constraints.

In the subsequent part of this work we will refer mainly to the models with
holonomic constraints.

The physical models of real systems may be created by lumped masses or non-
deformable bodies connected by massless springs and damping elements. These
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14 J. Warmiński

are the so called discreet models – with a finite number of degrees of freedom, de-
scribed by ordinary differential equations.

We can also propose another type of model assuming deformability of bodies
and considering a continuous mass distribution. These are the so called continuous

models with infinite number degrees of freedom, described by partial differential
equations.

k
m

x

k
mb m

x

w

Figure 1.6. Discreet model (a) and continuous model (b) of a beam with lum-

ped mass

Figure 1.6 presents a beam with point mass at the end. If the mass of the beam
mb is substantially smaller than the point mass m then we may disregard it, treating
the entire system as an oscillator which consists of a spring of k stiffness and point
mass m. In such a case the continuous model has been reduced to a discrete model
with the omission of beam’s mass. As it may be noticed the first bending form of
the beam was assumed. The frequency of natural vibrations of the model equates to
!0 D

p

k=m. With an increase of the beam’s mass its participation becomes more
and more important. At that stage we have to describe not only the lumped mass
motions m but also the motion of every element of the beam, treated as a continu-
ous system represented by – coordinate w. This requires introduction of differential
equations of the motion of a hybrid system -discreet-continuous – having an infinite
number of degrees of freedom and an infinite number of frequencies and modes of
vibrations [10].

Let us assume that we want to take into account the mass of the beam but we
want to reduce the analysis to only i.e. the first vibration mode. In such a case the
analysed discreet-continuous system may be replaced by a discreet one, taking into
account the influence of the beam’s mass. In order to do that we may use e.g. the
Rayleigh method [5], according to which the first natural frequency of the equiva-
lent one degree of freedom discrete system is equal to !01 D

p

k=.mCmb=3/, where
mb is the mass of a uniform beam.

Within the process of modelling we need to consider the fact that in reality all
the characteristics of i.e. elasticity or damping forces are nonlinear. Very often the
nonlinearities are approximated by linear characteristics. In many cases such appro-
ximation is allowed and the results are in a good agreement with the experiment.
The linear models are attractive because in many cases they are easier to solve and
it is often possible to determine strict analytical solutions. Furthermore, numerical
calculations are less time-consuming and the results are more predictable.
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Modelling of dynamic systems – introduction . . . 15

Unfortunately in many cases nonlinearities are significant and often, in order to
explain the phenomena which occur it is necessary to build a more precise nonlinear
model.

Nonlinearities may be divided as follows:

� geometric nonlinearities (structural),
� material nonlinearities (physical),
� nonlinearities which result from nonlinear external excitations.

An example of the system where geometric nonlinearity occurs is ie. a mathe-
matical pendulum presented on figure 1.4. The equation of free vibrations of the
pendulum has the form of

R' C !2
0 sin' D 0 :

Nonlinearity arises from the sin ' function present in the above equation. Geo-
metric nonlinearity may result from natural features of the system or it may be
purposefully introduced by the designer. The example may be the spring presented
on figure 1.7(a), the stiffness of which changes with the increase of deflection.

x

m

stiff

soft

x

S

Figure 1.7. The model of the system with geometric nonlinearity (a) and non-

linear characteristics of spring’s force (b)

Physical nonlinearities are caused by deviation from the Hook’s law. Fig 1.7(b)
presents the characteristics of elasticity force against the deflection. For small de-
flections both the stiff and the soft characteristics are close to the straight line (dotted
line). However, with an increase of deflection the actual characteristics (soft or stiff)
start to differ significantly from the linear resulting from Hook’s law.

The reason of nonlinearity may be the external factors caused by e.g. non-linear
magnetic field, nonlinear forces coming from an outflow of fluids leading to nonli-
near aerodynamic forces.

The division into linear models and nonlinear models is very significant. The
non-linear models introduce the possibility of qualitatively different behaviours,
different to their linear counterparts. In case of nonlinear systems, apart from regu-
lar motions, we may also expect the occurrence of chaotic motions [8].
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16 J. Warmiński

linear model

output
input

Figure 1.8. Possible responses of the deterministic linear model

nonlinear
model

input

output

periodic

quasi-periodic

chaotic

Figure 1.9. Possible responses of deterministic nonlinear model

The possible responses of the deterministic linear model (dissipative) are pre-
sented schematically on figure 1.8. If the system is forced by the harmonic force, its
response is also harmonic of the same frequency as the force with a difference only
in the amplitude and phase. The response of the nonlinear model may differ not
only in terms of the amplitude and phase but also in terms of the frequency which
might be a multiple of the force frequency or its fraction. We may also obtain either
a quasi-periodic or a chaotic responses (figure 1.9).

Nonlinearity causes the appearance of bifurcations, which normally proceed the
appearance of chaotic motion [3]. The chaotic vibrations occur only in nonlinear
systems.2

In mechanics, we distinguish three main mechanisms of vibration excitation:

� excited vibrations – by force, excited kinematically, inertia excited,
� parametric vibrations – caused by periodically variable coefficients,
� self-excited vibrations – caused by nonlinear properties of the system which,

cause the appearance of vibrations by the constant energy supply [9].

2It is also worth remembering that the modes of natural vibrations of the linear model are straight
lines and their number is equal to the number of degrees of freedom. In case of a nonlinear model
the modes are nonlinear, they may bifurcate, and their number may be greater than the number of
degrees of freedom. [10].
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The model of the system should also contain the influence of the energy source
which generates the vibrations [9]. If the interactions of the source of vibrations and
the vibrating system is omitted, it is a so called an ideal system or a system with
an ideal source of energy. These are the so called systems with unlimited power. If
we assume the interactions of a vibrating object and the source of vibrations in the
model (by adding the model of e.g DC motor), then such system is called nonideal

with limited power.

1.2. Mathematical model

Mathematical model of the system are the differential equations of the motion obta-
ined from the physical model discussed in chapter 1.1. The type of differential equ-
ations depends on the physical model and the accepted simplifying assumptions.
In case of continuous systems the mathematical model is represented by partial
differential equations (PDE). Partial differential equations require elaborating so-
lutions which fulfil the required boundary and initial conditions. The solutions are
the functions of space and time. There are several methods of determining solutions,
for example by applying Galerkin’s method and reducing the partial equations to
ordinary ones, by using finite element method, or by the application of the finite
difference method [8]. The basis of the finite element method and finite difference
method will be discussed in subsequent chapters of this book.

When the physical model is a discreet system with a finite degrees of freedom,
the mathematical model is represented by ordinary differential equations (ODE).
In such a case the solution is indicated for the given initial condition (so called
initial problem). Within the hereby chapter we will focus on the discreet systems
described by the ordinary differential equations.

The differential equations of motion (ODE) can be obtained through the direct
use of the Newton’s principles. In such an approach, it is necessary to analyse forces
and moments acting on the bodies which are the elements of the entire model. When
applying the second Newton’s principle we obtain differential equations of motion
as the second order ODEs. In case of the motion of a single solid body the ODEs
have the form of:

m
d2rc

dt2
D

N
X

iD1

Fi and
dKc

dt
D

N
X

iD1

ri � Fi (1.6)

where Fi – i th force which acts on the body, ri – is the radius vector determining
the force placement, rc – radius vector which defines the location of mass centre
C , Kc – angular momentum with respect to the centre of mass, N – total number
of acting forces.

The second approach consists in the energy use. In mechanics, the equations of
Lagrange of the second type are widely used. In this case it is possible to derive
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18 J. Warmiński

differential equations motion from the energy of a studied system. The equation
(1.7) presents one of the possible forms of Lagrange’s equations of the second type
for the systems with holonomic constraints

d

dt

�

@T

@ Pqj

�

� @T

@qj
C @V

@qj
C @R

@ Pqj
D Qj ; j D 1; 2; : : : ; s (1.7)

where qj , Pqj – denote the generalized coordinate and velocity, T i V are, accordin-
gly kinetic and potential energies of the entire system, R is Rayleigh’s function of
dissipation describing damping, Qj represents other generalized forces which are
not counted neither in potential V nor dissipation function R, j D 1; 2; : : : ; s.

Generalized force occurring on the right side of the equation (1.7) is defined as

Qj D
N
X

iD1

Fi
@ri

@qj
;

where Fi – force acting on i th material point, ri radius vector defining the location
of the point, N – number of material points. It is worth noting that the generali-
zed force may have a dimension of the force given in N or a moment of force in
Nm. More detailed information on the Lagrange’s equations may be found in the
handbooks on analytical mechanics. We refer the reader to e.g. item [5].

1.3. Numerical model

Once the mathematical model is derived, the next step is to establish the solutions
of differential equations. This can be done by analytical methods, by determining
strict solutions or by approximate analytical methods, accepting some deviations.
Unfortunately, determination of strict solutions is possible only for a limited class
of equations. Whilst, analytical approximate methods are normally cumbersome
and an analysis is valid only for a limited range of parameters. The development of
computer techniques and numerical methods gave a brand new quality of dynamic
systems analysis. Numerical methods allow establishing solutions on the basis of
mathematical model with a high precision. Despite the fact that these are also the
approximate solutions, due to their precision, they can often be treated equally to
strict solutions.

In order for the mathematical model to be ”understood” by computer it needs to
be written by means of a computer eligible language. This requires writing a sub-
sidy of adequately encoded commands called computer programs. For the engine-
ering topics the basic program applied is the language called Fortran. This is one of
the first languages developed until now which has a rich and well tested numerical
libraries. This language allows for the conduct of advanced numerical calculations
on large digital machines, using many processes at the same time, conducting the
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so-called parallel calculations. The information on the structure of the Fortran lan-
guage may be found in work [1]. There are commercial versions of compiler of
Fortran language,3 as well as open free versions.4

Apart from the historically developed Fortran language there is also a more
modern programming language C or C++.5 The principles of programming and
the structure of the C language are presented in the work [7]. In order to conduct
calculations it is possible to use the library with programs which allow for the use
of standard calculations, e.g. inverting matrices, solving ordinary differential equ-
ations, solving a standard eigenvalue problem etc. On the websites of the software
suppliers we may find paid and free libraries dedicated to a given compiler and
operating system. Furthermore, software producers continue to work on the upgra-
des of compilers in such a way so that combining the modules written in different
languages into one final code is possible.

Recently many modern higher level computational packages have been laun-
ched which enable introducing differential equations of motion in the form similar
to the classical mathematical notation of writing equations, without the necessity of
programming ”line by line”. Furthermore, such systems have many functions which
facilitate the performance of numerical calculations. Sometimes the mathematical
model is built on the basis of a block scheme where each unit performs more or
less complex operations. Among many available systems in research in the field of
technical sciences the most popular is the Matlab6 package as well as Mathemati-
ca.7 The packages are also equipped in their own programming languages which
enable the creation of one’s own codes.

Usually numerical simulations are cheaper than experimental tests. They allow
a comprehensive analysis of influence of individual parameters and enable making
a choice of the optimal solution. Numerical solutions are close to strict ones. The
disadvantage of the solution obtained by numerical methods is a lack of analytical
dependencies between the parameters and the response of the system, contrary to
analytical solutions where dependencies are defined.

1.4. Model validation

The numerical model is created on the basis of the physical and mathematical mo-
dels. The quality of a physical and subsequently – mathematical and numerical mo-
dels – is determined by a comparison with the real object. As shown on the block

3Information on current software for Windows is available on the supplier website
https://software.intel.com/en-us/intel-visual-fortran-compiler-for-windows

4Information on free software for the Linux system is available on the website
https://gcc.gnu.org/wiki/GFortran

5Free software for Linux is available on the website https://gcc.gnu.org/gcc-4.9/
6http://www.mathworks.com/products/matlab/
7http://www.wolfram.com/mathematica/
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scheme in figure 1.1, once we have the results of calculations we need to validate
them. This is most often conducted by performing a physical experiment in charac-
teristic points and then-comparing them to numerical results. If the differences are
within the accepted range then the numerical model adequately represents the real
object. If the results of the experiment are unavailable or difficult to be obtained
then the results of numerical simulation are compared to the results obtained by
other methods, e.g. analytical solutions can be established for specific values of
parameters (for which this is possible) and it may be compared with the results of
the numerical simulation.

The quality of the numerical model is determined by simplifications accepted
at the stage of building the physical model. But apart from the simplifications the
values of coefficients needed for the numerical model, called as input data, play
a key role. These data are gathered on the basis of observations of the real object
and formulation of the physical and mathematical models (figure 1.1). The more
precise the model requires a larger number of coefficients necessary to perform the
numerical simulations. Very often, the measurement of some values may be hard,
and then we must approximate them, sometimes intuitively. On the other hand, too
large simplifications may lead to omitting important physical phenomena. There-
fore, one of the more important stages in the process of modelling is validation of
the numerical model. If the validation is correct then we may conduct a series of
numerical simulations in order to analyse comprehensively system dynamics.

1.5. Calculation results and their presentation

The results of numerical calculations are collected in the form of files and saved
on devices on which they can be stored even after switching off the computer. Nor-
mally, the results are presented in columns representing a given physical value, e.g.
time t , generalized coordinate qj , generalized velocity Pqj etc. Often, some additio-
nal values are calculated on the basis of given solutions, i.e. elasticity force, kinetic
energy, potential energy etc. and they also can be stored in the files. The results
are presented in the form of graphs such as time courses of selected values, phase
planes, Poincaré’s maps and others. Methods of analysis of the results have been
discussed in detail in the subsequent chapter. It is possible to present the results of
calculations by direct animations which show the behaviour of the studied system.
The preparation of data needed for computation is performed by specific software.
This stage is called pre-processing. The process of the results presentation after the
main computation is called post-processing.
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2. Ordinary differential equations –

methods of analysis

Modelling of dynamic systems is a complex process which consists of a number
of key stages. First, it is necessary to create a physical model, then, we have to do
simplifying assumptions in order to get the mathematical model, and in the final
stage we create the numerical model which is the basis for numerical simulations.
The model should be validated and in a case of occurrence of significant errors,
has to be corrected. The detailed description of particular stages of medelling was
presented in chapter 1.

In this chapter we will discuss the methods of analysis of discreet systems, de-
scribed by ordinary differential equations [3], [4]. Let us consider the mechanical
system described by n differential equations of the first order

dx1

dt
D f1 .x1; x2; : : : ; xn/

dx2

dt
D f2 .x1; x2; : : : ; xn/

:::
dxn

dt
D fn .x1; x2; : : : ; xn/ (2.1)

with initial condition
xi.t0/ D xi0 ; (2.2)

where i D 1; 2; : : : ; n.
A set of equations (2.1) may have solutions [1] which depend on initial con-

ditions. Imposing the certain condition for the sought solution guarantees its uni-

queness. Most often it is initial conditions assigned by the equation (2.2).1 The
equation (2.1) with initial condition (2.2) is called initial problem or Cauchy’s pro-
blem. If time does not appear in (2.1) in a direct form in the right sides of the
equations then the system is called autonomous. In the opposite case, the system is
called non-autonomous and then, the equations have the following form

dxi

dt
D fi .x1; x2; : : : ; xn; t/ (2.3)

1It is possible to set boundary conditions at the range Œa; b�, gi .xi .a/; xi .b// D 0 where gi is a
function of variables xi , i D 1; 2; : : : ; n. The equation (2.1) with the boundary condition is called
boundary problem.
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In mechanics, very often functions fi .x1; x2; : : : ; xn; t/ are periodic, so

fi .x1; x2; : : : ; xn; t/ D fi .x1; x2; : : : ; xn; t C T / ;

where T is the period. This system is called n-dimensional non-autonomous perio-
dic. Formally, time t may be treated as additional coordinate used to describe the
motion. Then the dimension of the problem is increased to nC 1. By applying the
notation xnC1 D t , n-dimensional non-autonomous system is transformed to nC1

dimensional autonomous system of the form

dx1

dt
D f1 .x1; x2; : : : ; xn; xnC1/

dx2

dt
D f2 .x1; x2; : : : ; xn; xnC1/

:::
dxn

dt
D fn .x1; x2; : : : ; xn; xnC1/

dxnC1

dt
D 1 : (2.4)

This means that time increased the problem by one coordinate xnC1. However, due
to significantly different behaviours, in mechanics the autonomous and non-autono-
mous systems are studied separately. Non-autonomous periodical systems describe
for instance the parametric vibrations in which characteristic zones of parametric
resonances occur.

2.1. Basic concepts in dynamics of mechanical systems

We will introduce the most important concepts related to the dynamics of mecha-
nical systems [5]:

� phase space – n dimensional space, where n is a number of differential equ-
ations given in Cauchy’s form (2.1),

� phase plane – phase space of n D 2 dimension,
� phase point – point of coordinates .x1; x2; : : : ; xn/, also called the representa-

tive or regular point,
� critical pint or singular point – point having coordinates .x10; x20; : : : ; xn0/

for which right hand sides of equations (2.1) are equal to zero,
fi .x10; x20; : : : ; xn0/ D 0,

� phase trajectory or orbit – integral curve of the system of equations (2.1) ob-
tained through subsequent locations of the phase point,

� Poincaré plane – stroboscopic map of trajectory on the phase plane, also called
Poincaré’s map.
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The motion of point takes place in n dimensional phase space according to the
phase trajectory which are the integral curves of the system of equations (2.1). The
feature of phase trajectories is the fact that they cannot cross one another. In order to
justify the above statement let us hypothetically assume that the trajectories do cross
one another, as presented on 2.1. Trajectories commence in the initial points, first

point of trajectories
crossing

x1

trajectory

initial condition, t=0
A (x ,x )0 10 20 B (x ,x )0 10 20

x2

Figure 2.1. Phase plane with two different trajectories obtained for different

initial conditions

of them in point A0.x10; x20/, second B0.x10; x20/. Because the initial conditions
may be freely selected, we can change them in such a way so that the initial points
A0 and B0 are found on the point where the trajectories cross. This would mean that
when starting from the place of crossing it would be possible to obtain two solutions
starting from the same initial condition which contradicts with the statement of
uniqueness of the solutions [1].

In the phase space there are singular points (critical) which correspond to the
steady state of the dynamic system. The singularity of these points will be shown
by transforming the system of equations (2.1). Let us divide each of the equations
by the first equation. Then we obtain:

dx2

dx1
D f2 .x1; x2; : : : ; xn/

f1 .x1; x2; : : : ; xn/

dx3

dx1
D f3 .x1; x2; : : : ; xn/

f1 .x1; x2; : : : ; xn/

:::
dxn

dx1
D fn .x1; x2; : : : ; xn/

f1 .x1; x2; : : : ; xn/
(2.5)
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In this way we have eliminated time from the system. If there is a point having
coordinates .x10; x20; : : : ; xn0/, for which

fi.x10; x20; : : : ; xn0/ D 0

that is the numerator and denominator in equations (2.5) is equal to zero, then in
fact we obtain a singularity

dx2

dx1
D 0

0
;

dx3

dx1
D 0

0
; : : : ;

dxn

dx1
D 0

0
:

Singular points can ”attract” or ”repel” the phase trajectory, which means that
they are stable or unstable. A phase trajectory may get close to the stable singular
point at an infinitely small distance, but it will never reach it, or more precisely, it
will reach at t !1.

As an example let us consider the viscous damped oscillator. Its motion is de-
fined by the ordinary differential equation of the second order

Rx C 2� Px C !2
0x D 0 ; (2.6)

where � is a damping coefficient and !0 is the natural frequency. This is a system
with one degree of freedom with variable x as a generalized coordinate. Once the
equation (2.6) is transformed to the form of Cauchy (2.1) we obtain the system of
two differential equations of the first order

Px D v

Pv D �2�v � !2
0x ;

(2.7)

where two phase coordinates (state variables) x and v occur. These are displace-
ment and velocity of the oscillator. As result from the above example dynamics of
the system with s degrees of freedom may be transformed into a set of differential
equations of the first order with dimensions n D 2s. As noted earlier, the space Rn

with dimension of n is called phase space. The phase trajectory for viscous damped
oscillator (2.7) is drawn in the phase plane in fig 2.2. Phase trajectory starts in the
initial point A0, and then, when time t goes to infinity, the trajectory goes to the
singular point which, as it is easy to establish, is placed in the origin of reference
system. This singular point is stable and the trajectory reaches it at t !1.

Apart from the classical phase plane the stroboscopic mapping of a solution
(trajectory) on the phase plane is applied for the analysis of non-linear dynamic
systems. This method of observation has been introduced by Ueda in order to study
non-linear vibrations of oscillators excited externally [9]. This method is commonly
used in the analysis of dynamics, in particular in case of systems with periodic
excitations e.g. external or parametric. This kind of projection is called Poincaré

map, stroboscopic map or stroboscopic portrait.
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regular point

trajectory

singular point

initial condition t=0

A (x ,v )0 0 0 A(x,v)

x

v

Figure 2.2. Trajectory, regular and singular points on the phase plane

Let us consider that the solution of the system is defined by the harmonic func-
tion in the form of x.t/ D A sin.!t C '/. In such case instead of observing the
entire phase trajectory we can observe its stroboscopic portrait. We register the so-
lution at the periods corresponding to the frequency of !. These moments have been
marked by points on time courses of displacement and velocity (fig. 2.3(a) i (b)).
Projecting it on the phase plane we obtain stroboscopic mapping in the form of one
point M with coordinates M.xs; vs/. The location of the point M depends on the
amplitude of vibrations A and phase '. Considering that Px.t/ D A! cos.!t C '/

we obtain

xs
2 C vs

2

!2
D A2; (2.8)

and

tg ' D xs

vs
: (2.9)

Of course the solution may have a more complex nature than the periodical
function presented on figure 2.3. Then, there may appear more points on the stro-
boscopic map, or a closed line or more complex structures, such as strange chaotic

attractors [5, 7, 9, 10, 2].

2.2. Stability of singular points

Let us consider the system of differential equations presented in the form (2.1). The
singular point [8] of the system has the coordinates marked by superscript 0. We
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Figure 2.3. Time histories of generalized coordinate x.t/ (a) and generali-

zed velocity Px.t/ (b) and the method of Poincaré map creation (stroboscopic

portrait) (c)

remember from the chapter (2.1), that values of the function which are located on
the right side of the equations (2.1), in the singular point are equal to zero

f1

�

x1
0; x2

0; : : : ; xn
0
�

D 0;

f2

�

x1
0; x2

0; : : : ; xn
0
�

D 0;

:::

fn

�

x1
0; x2

0; : : : ; xn
0
�

D 0:

(2.10)
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We disturb the solutions in the vicinity of the singular point by introducing the
variation ıi to each coordinate

Qx1 D x1 C ı1

Qx2 D x2 C ı2

:::

Qxn D xn C ın;

(2.11)

where Qxi stands for the disturbed and xi undisturbed solution. Equations (2.1), after
substituting in (2.11) and subtracting from undisturbed equations take the form

dı1

dt
D f1 . Qx1; Qx2; : : : ; Qxn/ � f1

�

x1
0; x2

0; : : : ; xn
0
�

;

dı2

dt
D f2 . Qx1; Qx2; : : : ; Qxn/ � f2

�

x1
0; x2

0; : : : ; xn
0
�

;

:::

dın

dt
D fn . Qx1; Qx2; : : : ; Qxn/ � fn

�

x1
0; x2

0; : : : ; xn
0
�

:

(2.12)

Expanding the disturbed functions f1 . Qx1; Qx2; : : : ; Qxn/ in Taylor series in the
vicinity of the singular point and considering the first order terms we obtain

Qf1 . Qx1; Qx2; : : : ; Qxn/ Df1

�

x1
0; x2

0; : : : ; xn
0
�

C
�

@f1

@x1

�

0

ı1

C
�

@f1

@x2

�

0

ı2 C : : :C
�

@f1

@xn

�

0

ın;

Qf2 . Qx1; Qx2; : : : ; Qxn/ Df2

�

x1
0; x2

0; : : : ; xn
0
�

C
�

@f2

@x1

�

0

ı1

C
�

@f2

@x2

�

0

ı2 C : : :C
�

@f2

@xn

�

0

ın;

:::

Qfn . Qx1; Qx2; : : : ; Qxn/ Dfn

�

x1
0; x2

0; : : : ; xn
0
�

C
�

@fn

@x1

�

0

ı1

C
�

@fn

@x2

�

0

ı2 C : : :C
�

@fn

@xn

�

0

ın:

(2.13)
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Then, substituting (2.13) into equation (2.12) we obtain the system of differential
equations in variations

dı1

dt
D
�

@f1

@x1

�

0

ı1 C
�

@f1

@x2

�

0

ı2 C : : :C
�

@f1

@xn

�

0

ın

dı2

dt
D
�

@f2

@x1

�

0

ı1 C
�

@f2

@x2

�

0

ı2 C : : :C
�

@f2

@xn

�

0

ın

:::

dın

dt
D
�

@fn

@x1

�

0

ı1 C
�

@fn

@x2

�

0

ı2 C : : :C
�

@fn

@xn

�

0

ın:

(2.14)

We get a set of linear, homogeneous differential equations of first order the
solutions of which are sought in the form

ıi D Cie
�t ; (2.15)

where: Ci is an amplitude, and � an unknown parameter, i D 1; 2; : : : ; n. Intro-
ducing the solution (2.15) to equations (2.14) we obtain the set of linear algebraic
equations, homogeneous with respect to amplitudes Ci

��

@f1

@x1

�

0

� �

�

C1 C
�

@f1

@x2

�

0

C2 C : : :C
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@xn

�

0

Cn D0;

�
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@x1

�

0

C1 C
��

@f2

@x2

�

0

� �

�

C2 C : : :C
�

@f2

@xn

�

0

Cn D0;

:::
�

@fn

@x1

�

0

C1 C
�

@fn

@x2

�

0

C2 C : : :C
��

@fn

@xn

�

0

� �

�

Cn D0:

(2.16)

In order to get non-trivial solutions, Ci ¤ 0, the main determinant of (2.16)
must be equal to zero
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: : :
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� �

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

D 0: (2.17)

Expanding determinant (2.17) we obtain the characteristic equation as n-degree
polynomial of � parameter. Stability and a type of a singular point depends on the
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values of roots �i of the equation (2.17). If all roots �i are real negative numbers or
complex numbers with real negative parts, then the singular point is stable. Bearing
in mind, that perturbation was assumed in form (2.15) we see that in fact that the
perturbation ıi will go to zero. The perturbed solution tends to the singular point.

Equation (2.17) may be saved in the matrix form

dııı

dt
D J

�

x0
�

ııı ; (2.18)

where ııı is a column matrix of perturbations, whilst

J
�

x0
�

�
�

@f

@x

�

0

(2.19)

is Jacobian - a square matrix of derivatives determined in the singular point.

2.3. Singular points classification – phase plane

The classification of singular points is based on analysis of stability presented in
sub-chapter 2.2. The classification is limited to the phase plane (phase space R

2).
The perturbation of the solution in the vicinity of the singular point is defined by
(2.15). In case of a dimension n D 2 we have

ı D C1e�1t C C2e�2t : (2.20)

Therefore, depending on the value of parameters �1 and �2 we get the different
behaviours in the vicinity of the singular point. The type of singular point depends
on the value of two roots of characteristic equation (2.17), or in other words on the
eigenvalues of Jacobian (2.19).

2.3.1. Node

If roots �1 i �2 are real negative numbers then the disrupted trajectory gets close
to the singular point having the shape presented on figure 2.4(a). In such a case the
singular point is called stable node. When both roots are real positive numbers, the
disrupted trajectory goes away from the singular point, and then the singular point
is a unstable node (figure 2.4(b).

2.3.2. Focus

The solution gets quite different shape in a case when roots �1 and �2 are complex,

conjugate numbers. When the real part of both roots is negative, we obtain the
singular point called stable focus (2.5(a)), or if the real part is positive we obtain
unstable focus (figure 2.5(b)).
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Figure 2.4. Trajectories around the stable (a) and unstable (b) node
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Figure 2.5. Trajectories around the stable (a) and unstable (b) focus

2.3.3. Centre

In a particular case the roots �1 and �2 may be complex conjugate numbers with
zero values of a real part, i.e. they are imaginary numbers. This solution is located
on the border and it is neither stable nor unstable. The trajectory neither gets closer
to the singular point nor does it go away from it (figure 2.6). This is a neutral point
called centre.

2.3.4. Saddle

When both roots �1 and �2 are real numbers with opposite signs (one of them is
positive while the other one is negative) then we obtain a singular point of sad-
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Figure 2.6. Trajectories around a centre point
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Figure 2.7. Trajectories around the saddle point

dle type (figure 2.7), which is always unstable, regardless of which of the roots is
positive and which is negative.

2.4. Singular points in case of mathematical pendulum

As an example we present the singular points of a mathematical pendulum, and we
determine their stability. Viscous damped vibrations of the pendulum are presented
in figure 2.8 and they are defined by the equation:

J0 R' C c P' CmgL sin ' D 0: (2.21)
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L

mg

'

c'

Figure 2.8. Mathematical pendulum with damping

Dividing both sides of the equation by J0 and introducing the notation 2� D c=J0,
!0 D

p

mgL=J0, we obtain the differential equation of motion in a standard form

R' C 2� P' C !0
2 sin' D 0: (2.22)

Substituting � D P', the equation (2.22) is written in the form of the set of two
differential equations of the first order

P' D �

P� D �2�� � !0
2 sin '

(2.23)

Singular point is determined by equaling right sides of the equations (2.23)
to zero. Thus, we obtain � D 0 and sin' D 0, which allows determining the
coordinates of the singular points '0, �0

8

<

:

'0

�0

9

=

;

D

8

<

:

k�

0

9

=

;

; k D : : : ;�1; 0; 1; : : : (2.24)

Characteristic equation (2.17) takes the form
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
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@f1

@'
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� �

�
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@'

�

0
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@f2
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�
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� �

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

D

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

�� 1

�!0
2.�1/k �2� � �

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

D 0 ; (2.25)
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and its roots are calculated as

�1;2 D �� ˙
q

�2 � .�!0
2/k (2.26)

In case of underdamping , i.e. if 0 < � < !0 we may write (2.26) in the form

�1;2 D �� ˙ i

q

!0
2 � �2 for keven;

�1;2 D �� ˙
q

!0
2 C �2 for k odd;

(2.27)

where i D
p
�1. Because we accepted n < !0, then expressions under the root

are larger than zero. Thus, when k is an even number then roots are �1;2 complex
conjugate with negative real parts. This means that singular points with coordinates
: : : .�2�; 0/; .0; 0/; .2�; 0/; : : :, are stable focus types. Whilst, when k is an odd
number the roots are real numbers of with different signs which means that the
singular points : : : .�3�; 0/, .��; 0/, .�; 0/, .3�; 0/; : : :, are saddles (unstable).
The course of the example phase trajectories has been presented in figure 2.9. The
letter F stands for the stable focus while letter S is a saddle point.

-2p 2p 4p0

-5

5

S S S

F

P'

'

Figure 2.9. Trajectories on the phase plane - underdamped mathematical pen-

dulum, F -focus, S -saddle point
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In case of critical damping and overdamping � > !0, for k even the roots are
real negative numbers while for odd they are real of opposite signs. Singular points
are respectively stable nodes and saddles (unstable). A particular case is obtained
when assuming that the motion of a pendulum is not damped (� D 0). At that point
the roots have the values �1;2 D ˙i !0 for k even, and �1;2 D ˙!0 for k odd.
This means that singular points correspond to the centre and saddle.

2.5. Numerical methods

In many cases establishing strict solutions of the system of equations (2.1) is impos-
sible. This concerns mainly non-linear equations of which the analytical solutions
are established most often by approximate methods [6]. Currently it is possible to
perform symbolic calculations in such packages as e.g. Mathematica. The advanta-
ge of such an approach is obtaining the solution in the form of analytical dependen-
cies which gives the possibility of an easy and comprehensive parametric analysis.
The disadvantage of symbolic calculations is their cumbersome complex formu-
las and rather easy possibility of making an error. Numerical calculations allows
the direct integrating of differential equations of motion avoiding these obstacles.
Nevertheless we must remember that numerical calculations also give approximate
results which are burdened with an numerical error.

2.5.1. Representation of numbers, conditioning of the numerical

problem and stability of algorithms

Numbers in computer systems are represented by a finite number of digits coded in
the appropriate arithmetics. In numerical calculations binary arithmetics is com-
monly used. Although an equally important role is played by an octal or hexade-
cimal system. In computer systems we distinguish two representations of numbers
fixed point representation or floating point representation. Fixed point notation is
used for natural numbers (Integer type). In such case the result of basic actions, ie.
adding, subtracting, multiplying is strict. Floating point notation is applied for real
numbers (Real type). In general, in such case the result is an approximate number.
Floating point representation is about presenting the number in the form of man-

tissa and basis of representation given in the power which is a natural number. The
representation of floating point number has the form

x D S �M � BE (2.28)

� S – sign defined as S D .�1/z where z is the exponent defining the sign, when
z D 0 the number is positive, when, z D 1 the number is negative,

� M – mantissa, 0 < M < 1,
� B – representation base, B is the base of the power or the representation base.

For the decimal system B D 10, for the binary system B D 2,
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� E – exponent, exponent E of power part is called feature of a number.

For example the number x D 123:45 is written in the decimal system

.123:45/10 D 0:12345 � 103 (2.29)

123:45 D 1 � 102 C 2 � 101 C 3 � 100 C 4 � 10�1 C 5 � 10�2

In computer systems the numbers are written with the base 2. For example number
1

10
D 0:1 in binary system is written in the form

.0:1/10 D .0:00011 .0011//2 (2.30)

As we can see the above number does not have a strict representation in the
binary system. The floating point numbers may be written in a Single or Double

Precision. In order to write the number in a double precision we need 64 bits (64 bit
computer word). Figure 2.10 presents a scheme of coding of floating point number
in a binary system.

exponent mantissa

05163

1 bit sign

Figure 2.10. The representation of a double precision number in a floating

point binary system

It must be pointed out that floating point arithmetic is not joint, thus

.x C y/C z ¤ x C .y C z / (2.31)

as well as it is not separable

x � .y C z / ¤ .x � y/C .x � z / (2.32)

The order of performing operations has an impact on the final result.
We have to remember that while performing numerical calculations the follo-

wing numerical errors may occur in the calculations:

� input errors – they occur when we introduce data to digital machine (to the me-
mory or registers) which numerical representation is different than their strict
values,
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� truncation errors – errors which occur due to truncated number of actions e.g.
computing finite sum instead of infinite one,

� error of rounding of numbers – errors which occur during calculations. These
errors may be minimized by establishing a proper method and order of compu-
ting actions.

In numerical calculations we need to pay attention to two basic concepts: con-

ditioning of the problem, stability of the numerical algorithm.
Conditioning of a problem means a property of a mathematical problem, that

is a problem which consists of establishing a vector of results based on vector data,
for example finding solutions of a set of ordinary differential equations. Problem
conditioning is thus not related to the applied numerical algorithm but to the for-
mulated task. We may distinguish well-conditioned and ill-conditioned problems.

As an example of an ill-conditioned problem let us determine solutions of a set
of linear algebraic equations [11]

.2:5410C ı11/ x1 C .2:1120C ı12/ x2 D 4:6530

.1:8720C ı21/ x1 C .1:5560C ı22/ x2 D 3:4280 (2.33)

We are looking for solutions x1 i x2. Let us assume that coefficients of the set (2.33)
are entered with a certain ”small” error. Perturbations of coefficients are denoted by
ıij , i; j D 1; 2. When the perturbations are equal to zero ıij D 0, then we obtain
the strict solution which is:

x1 D 1:0000 ; x2 D 1:0000:

Now we introduce into the system some inaccuracies of coefficients. Let us assume
small perturbations:

ı11 D 0:0010 ı12 D 0:0010

ı11 D �0:0010 ı12 D �0:0020 (2.34)

Then solutions of the system (2.33) are equal (2.34) equate to

x1 D 3:9943 ; x2 D �2:6032 :

We see that the task is ill-conditioned. Small inaccuracies in value of coefficients
caused very large changes in the results.

Due to numerical errors for given data vector c and numerical precision " > 0

of the numerical machine, the numerical result Snum will differ from the strict result
Sc

Snum.c; "/ ¤ S.c/:

The conditioning or the problem (well or ill-conditioned) depends on variation of
the difference between the results S.c/ and Snum.c C ıc/.
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Numerical stability is a property of calculation algorithms. If the result of
calculations varies from the strict result and calculation errors cumulate then the
numerical process is unstable [3]. We say that the algorithm is numerically stable if
for the arbitrary selected data a0 exists a precision of calculations "0 that for " < "0

lim
"!0

Snum.a0; "/ D S.a0/

Algorithm is numerically stable when increasing accuracy the of calculations it is
possible to find the solution of the problem with arbitrary small error.

2.5.2. Numerical methods for ordinary differential equations – initial

problem

The numerical solution of the system of ordinary differential equations (2.1) with
a given initial condition (2.2) is a certain function which satisfies a given initial
problem in discrete time domain. Because numerical calculations are performed
with an assumed time step, the solution is a series of points obtained for selected
moments of time within the interval ht0; tki. Starting from the initial condition t0
we establish values in the moment t1 D t0 C �t , t2 D t1 C �t etc. with the end
at the tk moment. This series is an approximation of the strict solution of the pro-
blem. The continuous solution is substituted by the discrete one in the subsequent
moments of time t . Thus, this method is called the difference method. In order to
obtain the solution in it is necessary to determine the approximate values of left
sides of the equations (2.1) i.e. derivatives dxi

dt
as well as right sides of functions

fi .x1; x2; : : : ; xn/. The derivatives may be determine by various more or less com-
plex numerical methods.

The numerical methods used for solving ordinary differential equations can be
divided into:

� single step methods in which the solution x.t/ is constructed with the formula

xkC1 D xk C h f̂ .tk ; xk ; h/

x0 D x.t0/ (2.35)

where f̂ may be the linear or non-linear function, while k is an integration
step. In case of one step methods in order to establish a subsequent approxi-
mation xk the solution from the previous xk�1 is sufficient. Starting from the
initial point x0 we establish further solutions xi , i D 1; 2 : : : ; N , where N is a
number of integration steps,

� multi-step methods are defined by dependencies

˛mxkCmC: : :C˛1xkC1C˛0xkDh .ˇmfkCmC: : :Cˇ1fkC1Cˇ0fk/

xj D xj .h/ (2.36)
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where fj D f .tj ; xj / ; kD0; 1; 2; : : : ; N�m ; j D0; 1; : : : ; m�1. The method
defined by a dependency (2.35) is a peculiar case of a multi-step method. The
method defined by the formula (2.36) is called m-steps method. In the multi-
-step method a certain number of previous solutions are applied. In order to
start calculations it is necessary to know the solutions in the initial moment and
in k�1 moments of time which are unknown. Thus, in order to ”kick off” with
the calculations it is necessary to establish solutions for several initial steps.
These solutions may be established by means of a one-step method and then
the multi-step method can be activated. Therefore, multi-step methods are not
in the group of the so called self-staring methods, contrary to the single-step
methods.

While establishing a numerical solution it is key to select the step of integra-
tion �t . The length of this step is selected in such a way so that the error occurring
throughout the calculations is minimal. Due to the fact that the strict solution is unk-
nown therefore the error is also estimated by approximate methods, applying e.g.
the Runge approach discussed in detail while presenting the Runge-Kutta method.

It is worth noting that in order to solve equations with elements of a very fast
and a very slow dynamic actions which are numerically stiff we apply methods
dedicated to them such as Adams or Gear method.

2.5.3. Euler method

One of the simplest methods of solving differential equations is Euler method, also
called the method of tangents. This method consists in finding a solution in the form

xkC1 D xk C hf .tk ; xk/ k D 1; 2; : : : ; N (2.37)

where x, f are column vectors which correspond respectively to coordinates xi and
right sides fi of the system of equations (2.1). The Euler method will be explained
for a single differential equation in the form

dx

dt
D f .x; t/ (2.38)

The derivative dx
dt

is approximated by difference quotient determined in nodes t

and t C h, h is an integration step. Applying the Taylor expansion we obtain

dx

dt
D x.t C h/ � x.t/

h
C h

2

d2x

dt2
(2.39)

with the dependency in nodes

x.tkC1/ D x.tk/C hf .tk ; x.tk//C gk (2.40)
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where gk are expansions of a higher order. Omitting in the equation (2.40) the
unknown functions gk we obtain Euler method

xkC1 D xk C hf .tk ; xk/

x0 D x.t0/
(2.41)

t

h

tk

f
k

tkC1 tkC2

x

xk

Figure 2.11. Graphic interpretation of Euler’s method

A graphic interpretation of Euler method is presented in figure 2.11. In order
to establish the solution in point tkC1, we apply the equation of a tangent to curve
in point tk .

The Euler method is the easiest difference method used in practice only in spe-
cific cases. Its advantage is its simplicity. In order to obtain the required accuracy
it is necessary to apply a small step �t because we must determine the value of
function f .x.t/; t/ on the basis of just one time step.

A more precise result may be obtained by construing more advanced methods
of calculations of a derivative through the use of information from several previous
steps, that is by applying multi-step methods or considering the values of the func-
tions f .x.t/; t/ in a larger number of points located between the nodes [3, 11].

2.5.4. Runge-Kutta method

Runge-Kutta (RK) method is included in many standard software packages or li-
braries of Fortran or C languages. The Runge-Kutta method belongs to a one-step
method so it is an self-starting method. An accuracy in this method is increased due
to a larger number of test steps between nodes in which the right sides of equations
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(2.1) are determined. The values of a vector of functions f .x; t/ are calculated also
in intermediate points other than nodes defined by time step. This method is suitable
for solving the majority of ordinary differential equations. It is also recommended
for discontinuous systems. The most popular method is the fourth order RK method
(RK4).

The general form of the explicit Runge-Kutta method is presented by the follo-
wing dependencies:

x.t C�t/ D x.t/C
s
X

iD1

wiKi (2.42)

K1 D �tF .x.t/; t/ (2.43)

Ki D �tF
�

x.t/C
i�1
X

j D1

bijKj ; t C ai�t
�

; i > 1 (2.44)

where wi , ai , bij coefficients – real numbers.
The equation (2.42) is used for calculation the values of solution in the subse-

quent node as the sum of solutions in the previous node and the weighted average of
the values of the solution between the nodes, marked as Ki (2.44) with wi weights
assigned to this average.K1 (2.43) is the value of the solution computed as in Euler
method. The remaining increments K2, K3, . . . , Ks , are calculated on the basis of
recurrence scheme, that is each subsequent one is calculated on the basis of the
previous one.

These values are calculated analogously as in the Euler method, although the
values of function F are considered for the moment of time later than t and for
the approximated values of solutions x. In this case the trial steps are calculated
in order to obtain greater accuracy of the solution. The later moment of time is
calculated applying the coefficient ai , and computing tai

D tCai�t , and then the
approximate solution for this moment as

x.tai
/ D x.t/C

i�1
X

j D1

bijKj :

The value of a solution in the moment tai
is found by adding to the current solu-

tion a weighted average from the calculated previously Kj . Iterative formula of the
Runge-Kutta method of the fourth order allowing establishing the solution in the
step k C 1 has the form of:
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xkC1 D xk C�xk

�xk D 16 .K1 C 2K2 C 2K3 CK4/

K1 D hf .tk ; xk/

K2 D hf

�

tk C
h

2
; xk C

h

2
K1

�

K3 D hf

�

tk C
h

2
; xk C

h

2
K2

�

K4 D hf .tk C h; xk C hK3/

(2.45)

where h D �t D tkC1 � tk is a time step. For comparison we present the explicit
RK2 method, called midpoint method and defined by the dependency

xkC1 D xk CK2 (2.46)

where K2 is the same as in the formula (2.45).
Coefficients within the Runge-Kutta method are established through the selec-

tion of the order of the method ensuring convergence of the solutions.
As noted in section 2.5.3 the error made while establishing numerical solution

(which is an approximate one) strongly depends on the selected method and the
choice of integration step. Within the Runge-Kutta methods to estimate the value of
the error the so called Runge method is applied. This method consists in establishing
the error in point xkC1 performing the following calculations [3]:

� we establish an approximate solution xkC1 going from xk to xkC1 with a step
size h,

� we establish approximate solution from xk to Qxk taking a step h
2

, and then from

Qxk to xkC1 also with a step h
2

.

The error of solution with the passing of the h step is defined as

xkC1 � x
.1/

kC1
� p .h/pC1 (2.47)

while with h
2

step as

xkC1 � x
.2/

kC1
� 2p

�

h

2

�pC1

(2.48)

where p stands for the order of the method, p a certain constant, h integration

step, xkC1 is a strict solution, x
.1/

kC1
approximate solution obtained with step h,

while x
.2/

kC1
is an approximate solution obtained by solving bisection step h

2
. When

subtracting the equation (2.48) from (2.47) we obtain

ı D 1

2p � 1

�

x
.1/

kC1
� x

.2/

kC1

�

(2.49)
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where ı D x
.1/

kC1
�x

.2/

kC1
, is an estimated value of method error. For the Runge-Kutta

method of 4-th order we obtain the measure of the error

ı D 1

15

ˇ

ˇ

ˇx
.1/

kC1
� x

.2/

kC1

ˇ

ˇ

ˇ : (2.50)

The selection of the integration step is a compromise between accuracy and time
of calculations. If we assume that the calculations ought to be conducted with the
accuracy ", then there may occur two cases:

� ı < ", the solution is sufficiently accurate. In addition, we may assume that if
ı > "=50 a step h can be doubled (this will allow to shorten time of calculations)
in other case, we move to the next point,

� ı > ", the solution is not sufficiently accurate, the step h is divided on half and
the calculations are repeated.

In numerical libraries for the majority of computational systems we may find
many procedures devoted to solving ordinary differential equations (initial pro-
blem). The Runge-Kutta method is available as a standard and recommended me-
thod for the most of typical problems. For example in the Matlab package the pro-
cedures of RK of 2nd and 3rd order ode23 as well as of 4th and 5th order ode45

are offered as default.
As an example, we may establish the solution of a non-linear Duffing equation

Rx C 2� Px C x C x3 D f0 sin!t: (2.51)

The equation coefficients indicate: � – damping coefficient,  – non-linear stiffness,
f0, ! – amplitude and excitation frequency.

On the example of Duffing’s equation it is possible to verify the impact of the
given parameters on obtained solutions, as well as to check the impact of the in-
tegrating step, the method order on the accuracy of the obtained results. In order
to compare the results we take two extremely different integrating steps: ”large”
and ”small” step. Fig 2.12 presents the solutions of natural vibrations for � D 0:05,
 D 0:25, f0 D 0. The solutions were determined by RK4 method with an inte-
gration step h D 1 (figure 2.12(a)) and h D 0:01 (figure 2.12(b)). The differences
in the obtained solutions are clearly visible on the presented time histories.

2.6. Self-training problems

Problem 1

Derive ordinary differential equations of motion of the car model with four degrees
of freedom, presented on figure 1.2. Differential equations to be written in Cauchy’s
form (2.1). Write the equations in a selected programming language (i.e. Fortran,
C or in Matlab or Mathematica package), and then find the solutions describing the
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Figure 2.12. Numerical solutions of Duffing equation, natural vibrations for

� D 0:05,  D 0:25, f0 D 0 and (a) integration step h D 1, (b) integration

step h D 0:01

motion of the given masses. Perform the simulations for the various time steps and
initial conditions.

Problem 2

Reduce the model of a car with four degrees of freedom (figure 1.2) to the model
with two degrees of freedom (1.3(a)) describing the motion of the front suspension.
The differential equations must be written in Cauchy’s form (2.1), and then in the
selected programming language (e.g. Fortran, C or in Matlab package or Mathe-
matica). Indicate the solutions describing motion of sprung and unsprung masses.
Perform simulations for the various time steps and initial conditions. Compare re-
sults with the model of four degrees of freedom.
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3. Partial differential equations.

Finite-difference method

3.1. Partial differential equations

The general form of partial differential equations (PDEs) which contains the deri-
vatives of an unknown function z.x; y; : : : / of two or more independent variables
can be written in the following way

f

�

x; y; :::; z;
@z

@x
;

@z

@y
; :::;

@2z

@x2
;

@2z

@y2
;

@2z

@x@y
; : : :

�

D 0 (3.1)

In structural mechanics the equations of this type are used in many applications,
inter alia, in research on elements with continuous mass distribution (bars, beams,
plates etc.) In this work the scope of the considerations is limited to the analysis of
second order linear PDE described in the form

a1
@2z

@x2
C a2

@2z

@x@y
C a3

@2z

@y2
C a4

@z

@x
C a5

@z

@y
C a6z D f .x; y/ (3.2)

A detailed classification of second order linear partial differential equations is per-
formed based on the value of the determinant � which is defined in the following
way � D a2

2�4a1a3. Thus, the classification was made using only first three terms
of the equation (3.2). We distinguish the following type of the equations [3]:

� elliptic .� < 0/, e.g.:

@2z

@x2
C @2z

@y2
C F

�

x; y; z;
@z

@x
;

@z

@y

�

D 0 (3.3)

� parabolic .� D 0/, e.g.:

@2z

@x2
C F

�

x; y; z;
@z

@x
;

@z

@y

�

D 0 (3.4)

or
@2z

@y2
C F

�

x; y; z;
@z

@x
;

@z

@y

�

D 0 (3.5)
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� hyperbolic .� > 0/, e.g.:

@2z

@x2
� @2z

@y2
C F

�

x; y; z;
@z

@x
;

@z

@y

�

D 0 (3.6)

or
@2z

@x@y2
C F

�

x; y; z;
@z

@x
;

@z

@y

�

D 0 (3.7)

The presented classification is not only a formal and indicates the scope of po-
ssible applications in technical issues. Hyperbolic and parabolic equations can be
used to describe dynamic processes (e.g. vibrations, thermal conduction etc.) where
usually one of the variables is time. While the basic application of elliptic equations
is the analysis of equilibrium conditions where function z depends only on spatial
variables.

3.2. Finite-difference method

The solutions of second order linear partial differential equations can be determi-
ned by theoretical methods: analytical (strict solution) and numerical (approximate
solution). One of the basic numerical tool is the finite difference method FDM. The
application of this algorithm requires to replace derivatives by appropriate differen-
ce quotients. The first derivative of the function of one variable z D f .x/ in point
x D xi can be approximated by several methods. Their geometric interpretations
are presented in fig. 3.1:

� forward difference quotient

dz

dx

ˇ

ˇ

ˇ

ˇ

xi

� �z

�x

ˇ

ˇ

ˇ

ˇ

C

xi

D f .xi C�x/� f .xi/

�x
D ziC1 � zi

�x
(3.8)

� backward difference quotient

dz

dx

ˇ

ˇ

ˇ

ˇ

xi

� �z

�x

ˇ

ˇ

ˇ

ˇ

�

xi

D f .xi/ � f .xi ��x/

�x
D zi � zi�1

�x
(3.9)

� central difference quotient

dz

dx

ˇ

ˇ

ˇ

ˇ

xi

� �z

�x

ˇ

ˇ

ˇ

ˇ

xi

D f .xi C�x/ � f .xi ��x/

2�x
D ziC1 � zi�1

2�x
(3.10)

Consider the continuous and differentiable function, for example: z D x2. The
exact value of the first derivative in point x D 2 can be defined as dz

dx
D 2x,

dz
dx

ˇ

ˇ

xD2
D 4.
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z D f .x/

xiC1xi�1 xi x

ziC1

zi�1

zi

z

�x�x

Figure 3.1. Geometric interpretation of the difference quotients

The approximate value of the first derivative of the function z was calculated
using points xi�1 D 1:9; xi D 2; xiC1 D 2:1 .�x D 0:1/. The obtained results

are: dz
dx

ˇ

ˇ

xD2
� �z

�x

ˇ

ˇ

C

xD2
D 2:12�22

0:1
D 4:1, dz

dx

ˇ

ˇ

xD2
� �z

�x

ˇ

ˇ

�

xD2
D 22�1:92

0:1
D 3:9,

dz
dx

ˇ

ˇ

xD2
� �z

�x

ˇ

ˇ

xD2
D 2:12�1:92

0:2
D 4.

Analysing the presented solutions we can see that the best approximation was
obtained using central difference quotient to calculation. The accuracy of the finite
difference method is assessed by Taylor’s series expansion of searched function
z.x/ about the point xi :

ziC1 D ziC�x
dz

dx

ˇ

ˇ

ˇ

ˇ

xi

C�x2

2Š

d2z

dx2

ˇ

ˇ

ˇ

ˇ

xi

C�x3

3Š

d3z

dx3

ˇ

ˇ

ˇ

ˇ

xi

C�x4

4Š

d4z

d42

ˇ

ˇ

ˇ

ˇ

xi

C::: (3.11)

zi�1 D zi ��x
dz

dx

ˇ

ˇ

ˇ

ˇ

xi

C�x2

2Š

d2z

dx2

ˇ

ˇ

ˇ

ˇ

xi

��x3

3Š

d3z

dx3

ˇ

ˇ

ˇ

ˇ

xi

C�x4

4Š

d4z

d42

ˇ

ˇ

ˇ

ˇ

xi

� ::: (3.12)

The equations (3.11) and (3.12) have been transformed as follows:

� forward difference quotient

dz

dx

ˇ

ˇ

ˇ

ˇ

C

xi

D ziC1 � zi

�x
C 0.�x/ (3.13)

� backward difference quotient

dz

dx

ˇ

ˇ

ˇ

ˇ

�

xi

D zi � zi�1

�x
C 0.�x/ (3.14)
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Subtracting equation (3.12) from (3.11) leads to obtaining the expansion for
central difference quotient.

dz

dx

ˇ

ˇ

ˇ

ˇ

xi

D ziC1 � zi�1

2�x
C 0.�x2/ (3.15)

In equations (3.13), (3.14), (3.15) the term 0.: : :/ signifies the remainder of the
Taylor’s series expansion. In brackets are information about the lowest order of the
part which has not been included within the finite difference method. For higher
order of this term we can obtain better accuracy of calculations.

The simplest method to find the approximation of the second derivative of the
function z.x/ in point xi is applied the dependence for the first derivative in points
xiC1=2 i xi�1=2

d2z

dx2

ˇ

ˇ

ˇ

ˇ

xi

�

dz
dx

ˇ

ˇ

ˇ

ˇ

xiC1=2

� dz
dx

ˇ

ˇ

ˇ

ˇ

xi�1=2

�x
�

ziC1�zi

�x
� zi �zi�1

�x

�x
D ziC1 � 2zi C zi�1

�x2

(3.16)
The above considerations showed method to replace the first and second deriva-

tive of the function of one variable z.x/ by difference quotients. The dependence
(3.2) presents the equation which contains the partial derivatives of the function
z.x; y/, where x; y are independent variables. Acting analogously as in one di-
mesional space case, we can written adequate derivatives in point xi ; yj by the
following difference equations:

@z

@x

ˇ

ˇ

ˇ

ˇ

xi ;yj

D ziC1;j � zi�1;j

2�x
(3.17)

@z

@y

ˇ

ˇ

ˇ

ˇ

xi ;yj

D zi;j C1 � zi;j �1

2�y
(3.18)

@2z

@x2

ˇ

ˇ

ˇ

ˇ

xi ;yj

D ziC1;j � 2zi;j C zi�1;j

�x2
(3.19)

@2z

@y2

ˇ

ˇ

ˇ

ˇ

xi ;yj

D zi;j C1 � 2zi;j C zi;j �1

�y2
(3.20)

@2z

@x@y

ˇ

ˇ

ˇ

ˇ

xi ;yj

D ziC1;j C1 � ziC1;j �1 � zi�1;j C1 C zi�1;j �1

4�x�y
(3.21)

Figure 3.2 presents the plane of independent variables where points after di-
scretization were placed. They create a rectangular grid which is characterized by
two increments �x and �y. The equations from (3.17) to (3.21) precisely define
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yiC1

yiC2

y
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�y

�y

�y

Figure 3.2. The rectangular grid with general difference scheme for second

order partial differential equations.

a general difference scheme for the point .xi ; yj / where solution of second order
linear partial differential equations by finite difference method can be found.

Independent variables can be related with space, eg. coordinates of rectangu-
lar Cartesian reference system x; y; z or also with time t . In the finite difference
method for the differential equations considered in time domain exist are two basic
calculation algorithms: explicit and implicit. If the first derivative of certain func-
tion equates to dz

dt
D f .t/ then we can find the value of the function ziC1 at the

subsequent moment t C�t using the option:

� explicit
dz

dt

ˇ

ˇ

ˇ

ˇ

ti

� ziC1 � zi

�t
(3.22)

ziC1 D zi C f .ti /�t (3.23)

� implicit
dz

dt

ˇ

ˇ

ˇ

ˇ

tiC1

� ziC1 � zi

�t
(3.24)

ziC1 D zi C f .tiC1/�t (3.25)

Comparing the equations (3.22) and (3.24) we can easily notice a fundamental
difference in the definition of both algorithms. In explicit method the time deriva-
tive is defined at the moment ti , whereas for implicit at the time tiC1. The value
of functions in point ziC1 can be calculated from so called explicit scheme (3.23).
Searched value in this method is only at the left side of the equation. An alternative
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scheme is implicit (3.24), because ziC1 is also inside the functions f .tiC1/. In this
work the examples of explicit and implicit schemes will be presented for a function
of two variables z.x; t/, where its derivatives create a differential equation:

@z

@t
D c

@2z

@x2
(3.26)

Using the explicit method the first derivative with respect to the time variable
t was replaced by forward difference quotient

@z

@t

ˇ

ˇ

ˇ

ˇ

ti ;xj

D ziC1;j � zi;j

�t
(3.27)

whereas the second derivative with respect to the spatial variable x by central dif-
ference quotient at the moment ti

@2z

@x2

ˇ

ˇ

ˇ

ˇ

ti ;xj

D zi;j C1 � 2zi;j C zi;j �1

�x2
(3.28)

Substituting the equations (3.27) and (3.28) to the equation (3.26) was obtained

ziC1;j D zi;j C
c�t

�x2
.zi;j C1 � 2zi;j C zi;j �1/ (3.29)

A difference scheme for the explicit method allowing to define z at time tiC1 is
presented in the figure 3.3. The basic advantage of the algorithm is the use of sim-
ple calculation procedures. Unfortunately, the stability of the method requires the
imposition of a limitation on the time increment length �t 6 �tmax , where limit
value �tmax is calculated from [2]:

c�tmax

�x2
D ı (3.30)

If ı 6 1=2 then the errors in a numerical procedures will not increase, but they can
oscillate. In the event when ı 6 1=4 the oscillations disappear and for ı D 1=6

errors in finite difference method are minimal for the considered equation (3.26).
Using the implicit method to find a solution of the differential equation (3.26)

the first derivative with respect to the time variable t was replaced by backward
difference quotient

@z

@t

ˇ

ˇ

ˇ

ˇ

tiC1;xj

D ziC1;j � zi;j

�t
(3.31)

whereas the second derivative with respect to the spatial variable x by a central
difference quotient at time tiC1

@2z

@x2

ˇ

ˇ

ˇ

ˇ

tiC1;xj

D ziC1;j C1 � 2ziC1;j C ziC1;j �1

�x2
(3.32)
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Figure 3.3. Rectangular grid with difference scheme for the explicit method

xj �2 xj �1 xj xj C1 xj C2 x

�x�x�x�x

ti�1

ti

tiC1

tiC2

t

�t

�t

�t

Figure 3.4. Rectangular grid with difference scheme for the implicit method

After substituting the equations (3.31) and (3.32) into the equation (3.26) was ob-
tained

ziC1;j D zi;j C
c�t

�x2

�

ziC1;j C1 � 2ziC1;j C ziC1;j �1

�

(3.33)

The presented scheme is implicit, because ziC1;::: exist in both side of this equ-
ation (on the right and left) (3.33). Implicit algorithm requires the application of
complicated calculation procedures, but is absolutely stable. A differential scheme
for the implicit method allowing to define z at the moment tiC1 is presented in the
figure 3.4.

In the FDM method the grid of points is limited, has a finite size. For the points
located at the edges of the considered grid is required to include the limit condi-
tions (boundary and/or initial). Consider the function z which depends on a spatial
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variable x and time t . Boundary conditions will define additional dependencies in
space domain. We can distinguish two main types of them [2]:

� type 1 or Dirichlet condition – boundary conditions imposed on the function z,
e.g.:

zjxD0; ti
D 0 (3.34)

� type 2 or Neumann condition – the form of boundary condition includes the
derivative function, e.g.

@z

@x

ˇ

ˇ

ˇ

ˇ

xD0; ti

D 0 (3.35)

Initial conditions are defined in time domain at the moment t D 0. Analogously
as for boundary conditions we can distinguish two basic types of initial conditions:

� initial condition imposed on the function z, e.g.:

zjxi ; tD0 D 0 (3.36)

� initial condition, where its form includes the first derivative function, z, e.g.:

@z

@t

ˇ

ˇ

ˇ

ˇ

xi ; tD0

D 0 (3.37)

The application of the finite difference method to solve the second order linear dif-
ferential partial equations requires consideration: boundary problem (elliptic equ-
ations) or initial - boundary problem (parabolic and hyperbolic equations).

3.3. Example – string vibrations

In the presented example, we consider the equation of transverse string vibrations
in the form

@2y

@t2
D c2 @2y

@x2
(3.38)

where: c2 D S
�

, S – Tension in the string, � – mass per unit length of string [6].
The scheme of the analysed system is presented in the figure 3.5.

In the finite difference method the explicit algorithm was used. The derivative
with respect to the spatial variable x was replaced by central difference quotient:

@2y

@x2

ˇ

ˇ

ˇ

ˇ

xj ; ti

D yj C1; i � 2yj; i C yj �1; i

�x2
(3.39)

The same type of the difference quotient was used to replace the second time deri-
vative of the function y.x; t/:

@2y

@t2

ˇ

ˇ

ˇ

ˇ

xj ; ti

D yj; iC1 � 2yj; i C yj; i�1

�t2
(3.40)
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x

y0

y

L

Figure 3.5. Scheme of the string’s initial deflection

After substituting the equations (3.39) and (3.40) to the equation (3.38) was obta-
ined

yj; iC1 D ı2.yj C1; i � 2yj; i C yj �1; i /C 2yj; i � yj; i�1 (3.41)

where: ı D c�t
�x

. The condition of stability for the explicit method adopts the form
ı 6 1 [1]. Using the equation (3.41) a difference scheme was made. It is presented
in the figure 3.6. Such a diagram is valid for any moment of time, where i > 0,
.t > 0/.

xj �2 xj �1 xj xj C1 xj C2 x

�x�x�x�x

ti�1

ti

tiC1

tiC2

t

�t

�t

�t

Figure 3.6. Rectangular grid with the difference scheme for the considered

example

Finding a solution requires consideration of the boundary and initial conditions.
The following conditions were adopted:

� boundary – resulting from clamped both ends of the string

zjxD0; ti
D 0 (3.42)
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zjxDL; ti
D 0 (3.43)

� initial – dependent on the accepted initial deformation and velocity of the string

zjxj ;tD0 D y0 sin
��

L
xj; iD0

�

(3.44)

@z

@t

ˇ

ˇ

ˇ

ˇ

xj ; tD0

D yj; iD1 � yj; iD�1

2�t
D 0 (3.45)

On the basis of the equation (3.45) was defined a dependence, which is neces-
sary to calculate the first iteration:

yj;iD�1 D yj;iD1 (3.46)

The string was discretized into 6 elements with the length equal to �x D L
6

. Sub-
stituting the dependencies (3.42), (3.43), (3.44), (3.46) to the equation (3.41) was
obtained the matrix form for the first iteration. It is used to calculated the values
yj;1:
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(3.47)

where:
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describes the initial deformation of the string. Whereas, matrix A contains coef-
ficients defined during discretization in the space domain and including boundary
conditions.

A D

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

0 0 0 0 0 0 0

1 �2 1 0 0 0 0

0 1 �2 1 0 0 0

0 0 1 �2 1 0 0

0 0 0 1 �2 1 0

0 0 0 0 1 �2 1

0 0 0 0 0 0 0

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

(3.49)

For next iterations, at the moments where i > 2 the transverse vibrations of the
string were calculated from the equation:
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(3.50)

Calculations were perform in Matlab software [5] for the selected parameters: ı D
0:1, y0 D 0:1. In fig. 3.7 the obtained results have been presented. Approximated

Figure 3.7. Transverse vibrations of the string

transverse vibrations of the string yi;j were presented on 3D graph which was
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performed by use command mesh for subsequent points of FDM grid. The pre-
sented example the application of the finite difference method to finding solution
of second order linear partial differential equations is not complicated. In scienti-
fic research FDM can be used to modelling many difficult problems, for example:
research on damaged structures [4].

Bibliography

[1] Cichoń C. (2005): Metody obliczeniowe: wybrane zagadnienia. Wydawnictwo
Politechniki Świętokrzyskiej.

[2] Cichoń C., Cecot W., Krok J., Pluciński P. (2009): Metody komputerowe

w liniowej mechanice konstrukcji. Wydawnictwo Politechniki Krakowskiej.
[3] Kącki E. (1989): Równania różniczkowe cząstkowe w zagadnieniach fizyki

i techniki. Wydawnictwo Naukowo-Techniczne.
[4] Manoach E., Warmiński J., Mitura A., Samborski S. (2012): Dynamics of

a composite Timoshenko beam with delamination. Mechanics Research Com-

munications 46: 47–53.
[5] Pratap R. (2009): Matlab 7 dla naukowców i inżynierów. Wydawnictwo Na-

ukowe PWN.
[6] Szabelski K. (2002): Zbiór zadań z drgań mechanicznych. Wydawnictwo Po-

litechniki Lubelskiej.



✐

✐

Document: ‘‘main_fileENG’’ --- 2015/6/11 --- 9:29 --- page 59 of 118
✐

✐

✐

✐

✐

✐

4. Analysis of non-linear signals

4.1. Introduction

The theory of signals is one of the fundamental areas of the technical knowledge.
Its familiarity is necessary not only for designers of electronic devices, but also
for automation specialists, IT scientists, electrical technicians and specialists for
data communication and mechanics. The development of digital technique revo-
lutionized the methods of processing signals, new methods of analysis appeared,
but the basics of the mechanisms are invariable – till the of Fourier and Laplace’s
transforms are used and classical algorithms of modulation.

In a colloquial language a signal is a mark with some information text. In tech-
nical sciences a signal is defined as a function f .t/ dependent usually on time. In
short words, a signal is a carrier of information.

By means of analysis of signals, we will understand in accordance with a de-
finition taken from a dictionary of Polish language – thoughtful phenomenon, se-
paration of features by definition, parts or components of the examined phenome-
non or subject; examination of features of elements or structure of something and
connections between them (...). The most convenient definition says that analysis
of a signal is an examination the aim being identification of properties, features,
measures of a signal as well as reproduction the information carried by the signal
[12]. The most popular methods used in the analysis of the signal are:

� examination of statistical measures (moments),
� analysis of probability distribution,
� correlation analysis,
� spectrum analysis (spectral, fourier or frequency),
� wavelet analysis.

A frequently used definition is also processing the signal, i.e. change of proper-
ty, form, features and measures of the signal, for easier analysis thereof, registration,
storing. The signal, due to its nature, can be divided into:

� deterministic,
� stochastic (random),
� mixed.
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A deterministic signal is foreseeable, whereas stochastic is a set of random infor-
mation. A mixed signal is composed of at least two component signals one of which
is deterministic and the other random. A deterministic signal in turn, is divided into
periodical and non-periodical in accordance with a diagram of those presented in
the figure 4.1.

Figure 4.1. Division of deterministic signals

Through periodical signal we understand a time course which fulfils the depen-
dence:

x.t/ D x.t C T / D : : : D x.t C kT /; (4.1)

where T is a period of signal, k an integral number. A typical example of the har-
monic signal, namely also periodical one there is a sinusoidal course:

x.t/ D Ao C A sin.2�f t C '/; (4.2)

where Ao is an average value, A – amplitude, f – frequency (f D 1=T ) expressed
in Hz, ' – phase shift.

A philharmonic signal is whereas a sum of harmonic signals described with the
formula:

x.t/ D Ao C
N
X

nD1

An sin.2�nf t C 'n/ (4.3)

f is basic frequency here, whereas n shall mean a number of harmonic component.
A quasi-periodical signal is similar in terms of mathematical formula, which is

described with an equation:

x.t/ D Ao C
N
X

nD1

An sin.2�fnt C 'n/: (4.4)

However, the essence of the quasi-periodical signal involves that the relations of
frequency fi=fk is an irrational number to at least one pair of components of the
signal, so called harmonic.



✐

✐

Document: ‘‘main_fileENG’’ --- 2015/6/11 --- 9:29 --- page 61 of 118
✐

✐

✐

✐

✐

✐

Analysis of non-linear signals 61

In the chapter, the examinations of the signals will be conducted on the basis
of a classic Fourier’s method as well as by means of recurrence plots, based on the
method of delayed coordinates and multi-scale entropy.

4.2. Fourier’s Transform

Signals, most often obtained from measurement, are analysed by us in the time
domain or in frequency domain. The tools which allow motion between these two
areas are transform of Fourier’s and reverse transform of Fourier’s. The analysis in
the frequency domain is called spectrum one. In a general case when we consider
the problem of spectrum analysis of signals we consider four different methods
of Fourier’s analysis meaning: transformation of Fourier – frequency changes in
the continuous manner and a series of Fourier – discrete frequency, respectively
for continuous signals (continuous time) and discrete signals (discrete time). The
result of the transformation conducted is transform [12]. However a definition of
transformation and transforms are very often used interchangeably.

Transformation of Fourier’s exchanges the function of real variable f .x/ into
the function of complex variable F.s/. Transformation of Fourier’s for continuous
signals can be defined with the equation:

F.s/ D
Z

1

�1

f .x/e�2�ixsdx: (4.5)

Whereas reverse transformation with the equation:

f .x/ D 1

2�

Z

1

�1

F.s/e2�ixsds; (4.6)

where i shall mean imaginary unit. In practice often a variable x shall mean time
(in seconds) and the argument of transforms s shall mean frequency expressed in
Hz.

In practice, as the result of measurements we obtain data with discrete nature,
and not continuous one, we will use a Discrete Fourier Transform (DFT) and Inver-
se Discrete Fourier Transform (IDFT). For the N-element course a discrete Fourier
transform we define as follows:

Xk D
N �1
X

nD0

xne�2�ink=N ; k 2 f0; 1; : : : N � 1g; (4.7)

where k is a number of harmonic, n number of the signal sample, xn value of the
signal sample (Fourier ratio), N number of samples.

Calculating DFT in required in the 60s of the 20th century so much calculation
power that the machines from the period limited the usage of the algorithm. The
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year 1965 brought a revolution, J. Cooley and J. Tuckey published a paper under
the title „An Algorithm for the machine computation of complex Fourier series”, in
which they developed a faster algorithm of calculating a discrete Fourier transform
commonly known as FFT — Fast Fourier Transfor). FFT is DFT with a reduced
number of necessary arithmetical operations. The goal of FFT is to reduce a long
calculation algorithm by its division into shorter and simpler calculations of DFT
and shortening the time of calculation. The most popular version of FFT is FFT
with the basis of 2. The Algorithm of FFT with the base of 2 is a very effective
procedure for calculating DFT provided the dimension of DFT will be total power
of two. A good approach is to add a required number of samples with zero values to
the final part of the time series in order to adjust the number of its points to the next
size of FFT on the basis of 2. Algorithms which calculate a fast Fourier transform
are based on a method of ”divide and win” on recurrence basis. It means that we
divide a problem into sub-problems with smaller size and these recurrence ones we
divide again into smaller ones, etc. Reaching satisfactory small problems we solve
them. The solution of an initial problem is a sum of sub-problems.

In science and technique the measured values very often are of periodical natu-
re, i.e. which causes the repetition of a given physician value with a defined period
T . Such a periodical function may be presented in the form of infinite trigonometry
series called also Fourier series:

f .x/ D ao C
1
X

nD1

�

an cos
n�x

T
C bn sin

n�x

T

�

: (4.8)

Due to the Fourier analysis we may learn which harmonic components (perio-
dical) are present in a signal and in which relative amounts they appear in them. The
ratios of the Fourier series, called in short Fourier ratios, ao; an; bn are interpreted
as amplitudes of proper harmonic components. They are presented by means of
formulas of Euler-Fourier:

ao D
1

2�

Z T

�T

f .x/dx;

an D
1

�

Z T

�T

f .x/ cos
n�x

T
dx;

bn D
1

�

Z T

�T

f .x/ sin
n�x

T
dx:

(4.9)

Each periodical signal x.t/ may be represented as a sum of series of harmonic
functions if the Dirichlet’s conditions are fulfilled:

� function x.t/ is absolutely of integral nature in any range with the period length
T ,
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� in any limited range, x.t/ has a definite number of maximas and minimas with
definite value,

� in any limited range, x.t/ has a definite number of non-continuance.

These conditions are fulfilled for a majority of signals encountered in reality.
The quality of the spectrum obtained from FFT is affected by so called frequ-

ency of Nyquist, namely maximum frequency of harmonic components of the har-
monic signals being subject to the sampling process, which may be restored from
a series of samples without deformations. Spectrum components with frequencies
higher than frequencies of Nyquist are subject, during sampling, to overlapping on
the components with other frequencies (aliasing phenomenon) which causes that
they cannot be properly restored any more. In image the phenomenon was shown
on the figure 4.2, where through the points representing the samples of signal one
may conduct a few curves (signals) e.g. red and blue time series.

Figure 4.2. Example of non-definiteness of a signal – aliasing

In accordance with the theory of Kotielnikow-Shannon, with equal sampling
with distance of sampling Ts (constant time step), a condition for a proper restora-
tion of the signal is that its width of band B was strictly limited B < 1=Ts or that
the maximum frequency of a signal does not exceed the half of sampling frequency
fmax < fs=2; orfmax < 1=2Ts . In other words, the frequency of Nyquist is equal
to half of sampling frequency fN D fs=2 or fN D 1=2Ts .

As an example, for the sampling frequency 44.1 kHz used on CD records, the
frequency of Nyquist is 22.05 kHz. If in the analogue signal the components are
present with the frequency higher than frequency of Nyquist, it will cause the errors
in sampling (aliasing). However, a human ear does not hear the frequencies higher
than 22 kHz, therefore the components of the signal are cut out shortly before sam-
pling by means of using a low-pass filter.

Although in theory, frequency of Nyquist indicates the limit of the band, which
can be properly written in application of a defined sampling frequency, the limit is
slightly lower than frequency of Nyquist.

In order to avoid aliasing, one should assure that the sampled signal was limi-
ted in bands to the Nyquist frequency namely the half of sampling frequency. The
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phenomenon can be used by limiting the spectrum of a signal with the filter, called
anti-aliasing filter. The filter should have the width of the band smaller than a half of
sampling frequency. Usually filters with clearly smaller width of throttle band are
used in order to include small damping, which takes place on the transition section
of characteristics of the separating filter for the throttle band from the border one.

In practice, due to the fact that no signal with finite duration has limited band
(which results from properties of the Fourier transform), and no filter dampens ideal
in its border band aliasing appears always. In properly designed system using the
sampling of the signal seeks to minimize the phenomenon so that the amplitude of
alias components was small.

In nature, a majority of signals has a continuous nature as sound (changes in
air pressure in time) or electroencephalogram (EEG, electric potential of the brain
measured from the surface of the skull). Irrespective of the fact, modern analysis
of signals refers in practice mainly to discrete signals the example being the value
of shares in moments of closing next sessions of the stock exchange. The exchan-
ge of the continuous signal into discrete one has the name of discretization. The
discretization process bears a danger of loss of information about the condition of
the subject between samples and is strictly connected with the frequency of signal
sampling. The example can be the record of an image being subject to improper
discretization (figure 4.3). The image on the left side is original, whereas the one
on the right side discretized.

Figure 4.3. Image before and after discretization

In the next section, a proposal of an exercise conducted in the MATLAB pro-
gram is presented. The exercise shows the effect of losing data as a result of discre-
tization of a signal and allows to observe spectra of a few types of signals treated
separately as well as after their summing in one course.
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Figure 4.4. Continuous signal (a) and discrete (b – d)

Proposal of an exercise

If the continuous signal in nature (e.g. sound) we decide to analyse or store in digital
form then this continuous function (e.g. air pressure) in time we have to replace with
values measured in the finite (equal best) time intervals as it was shown in the figure
4.4.

Sampling exchanges the continuous signal (a) into points (b) with coordinates
in moments of sampling and values of continuous signals corresponding to them. If
we dispose only of a sampling signal (b), we can complete the values from among
samples assuming that the signal between them is, e.g. linear (c) or constant from
the previous point (d) — we see discrepancies with the original signal (a). Therefore
a selection of sampling frequency is very significant.

We will conduct an example which will show possibilities to us of the MATLAB
program and will explain an influence of the particular components of the signal
on the Fourier spectrum. First, the following signals will be generated:

� harmonic x1 D 0:7 sin.2�50t/ with frequency f1=50 Hz,
� harmonic x2 D 0:3 sin.2�100t/ with frequency f2=100 Hz,
� quasi-periodical composed of two periodical signals 100 and 100

p
3 Hz – i.e.

x3 D 0:2 sin.2�100t/C 0:3 sin.2�100
p

3t/,
� signal type ”chirp”: x4 D 0:4 sin.2�130t2),
� noise generated by the function ”random”: x5 D 0:1 � randn.size.1 � t//.

It should be made with the commands line in MATLAB or use for this the
(toolbox) Simulink package. The sampling frequency of these signals (time step)
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should be fixed fs1 D 1000 Hz. Ready signals should look as those in the figure 4.5.
Then we create a new course x, being the sum of above mentioned and we obtain
the signal showed on the figure 4.6. In order to show the influence of sampling time
of the signal on its exactness we change the number of samples in the signal x1 so
that the signal frequency will be reduced 8 times to adopt fs2 D 125 Hz. Then the
time course x1 with a changed number of samples (sampling frequency fs2) takes
now a completely different, deformed form drawn with a red colour on the figure

Figure 4.5. Signals x1–x5 generated with sampling frequency fs1 D 1000 Hz
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Figure 4.6. Signal x being the sum of signals from x1 to x5

4.7, in relation to the course of the original one (black colour). In order to change
the number of samples in the signal one may use e,g. ”decimate” command, which
is used just for changing the sampling frequency of the signals.

Then, we conduct the analysis of the frequency spectrum of the signal x perfor-
med by means of fast Fourier transform (FFT). There are many methods to perform
FFT in the program MATLAB. Here, for this purpose, the script was used with the
use of the command ”fft”, but one may use blocks with the module Simulink and
create model showed in the figure 4.8. The model shall collect the signal from the
work space of the program, perform the analysis and present the results in the form
of frequency spectrum.

The results of the Fourier transforms for the signals x1–x5 and the signal x

being the sum of courses from x1 to x5 were presented properly in the figures 4.9
and 4.10. Such spectra with characteristic peaks corresponding to given frequencies
should be obtained in the result of performing the exercise although the methods of
their calculation and outlining in the MATLAB are more. Here only two of them
were presented as an example.

4.3. Method of delayed coordinates and recurrence diagrams

The analysis of experimentally measured data is very often complicated due to the
complex nature of the process. Usually such courses are nor ordered or even may
show the features of deterministic chaos. Then, the usage of a proper method to
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Figure 4.7. Signal x1 generated with the sampling frequency fs1 D 1000Hz

(blue) and fs1 D 20Hz (red)

Figure 4.8. Matlab-Simulink model for FFT analysis

analyse them is required. One of the latest techniques used to examine non-linear
time courses is the one involving reconstruction of the x.t/ vector in the phase space
created for the new coordinates so called delays, thus the name method of delays.
The vector obtained from the time series reconstructed in a news state phase has
the form:

x D .xi ; xiCd ; xiC2d ; :::; xiC.m�1/d / (4.10)

where xi mean coordinate (i the sample) in the time series x.t/, d – time of delay,
m – embedding dimension.

Too small size of a dimension m makes that trajectories distance from each
other in reality may seem to be close to each other. Whereas, too big embedding
dimension complicates calculations and extends its time losing at the same time
information about relations between particular points of time course.

In accordance with the Takens’s theorem [8] the condition should be fulfilled:

m > 2D2 C 1 (4.11)
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Figure 4.9. FFT for signals x1–x5

there is a diffeomorphism between original and reconstructed atractor which me-
ans that both attractors represent the same dynamic system in different systems of
coordinates. D2 means here attractor dimension [8].

The most popular method for calculating the dimension m is the False Nearest
Neigbors – (FNN). It involves finding such a dimension m – in order to avoid false
cutting of close trajectories. An exact description of the method can be found in the
paper [9].

The time delay d is usually calculating with the Average Mutual Information
method – (AMI). In this method, contrary to the function of auto-corelation, also
non-linear corelations are included. The essence of AMI is to estimate how much
information on average contained in one state may be the result of the prediction
from the information contained in the previous one. The value of delay is adopted
as the least level d , for which the function accepts local minimum. The function
AMI is calculated from the formula:

AMI D �
P

ij pij .�/ ln
pij .�/

pi pj
; (4.12)

where pi is the probability of finding the value of time characteristics of the system
and in this range, pij shall mean probability that the observation of a given moment
of time t belongs to the range and the observation at a moment (tC�) for the range.
The exact description of the AMI method can be found e.g. in the paper [6].
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Figure 4.10. FFT for the signal x D x1 C x2 C x3 C x4 C x5

On the basis of the method, of delayed coordinates, a recurrence plot which is
a graphic interpretation of recurrence of conditions in the working space. The de-
finition of recurrence conditions of the preventive systems was introduced in 1890
by Henri Poincare. Despite large interest in his discover, only after development of
effective calculation systems, its practical application was possible in the numeric
analysis of the dynamic systems.

The recurrence plot presents the recurrence of states of the process of the phe-
nomenon (or the system). An important advantage of the method is a possibility
to apply both for a large and a small set of data, including also non-stationary co-
urses. A recurrence plot was introduced by Eckmann in 1987 in order to present
the visualization of conditions of a certain variable xi in the phase space [5]. In
the subsequent years, a quantity method of analysis was developed called: Recur-
rence Quantification Analysis – (RQA) [22]. The recurrence plots is based on the
dependence:

Ri;j D H
�

" �


xi � xj




�

; (4.13)

in which i; j is the number of state in space: i; j D 1; : : : ; N , where N is the
number of considered points, x s a reconstructed vector of delay in the state space,
H – Heaviside’s function, kxk – norm of the vector X in the space, most often Euc-
lid’s norm, " – non-negative real number (so called radius of search o parameter of
cut-off).
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If in the phase space, the distance between points xi and xj is smaller than " –
Ri;j D 1, in the contrary case Ri;j D 0. The result Ri;j D 1, shall mean the
occurrence of recurrence which in the plot is marked with a point. If Ri;j D 0,
means the lack of recurrence – white point on the diagram (lack of a point). The
diagram obtained must be symmetric towards so called line of identicality (main
diagonal of the matrix). Depending on the nature and properties of the process in
the recurrence plot, there can be continuous lines, interrupted, vertical, transverse
or varied points (single or in concentrations).

The selection of proper value of a parameter " is very important here, because
if the parameter is too small, then the number of points on the recurrence plot is
insufficient for analysis. On the other hand, however, if we take the value of the
parameter " which is too big, the number of recurrence points will be too high. As
a consequence we will obtain so called artificial points which are not significant
from the point of view of the process dynamics and even harmful as they obscure
its image. Too big value of the parameter m and d may cause the occurrence of
the calculation structures on the recurrence diagram not being the reflection of the
actual dynamics of the system.

Due to the repeating formulas of the recurrence diagrams they are divided into:

� uniform: characteristic for the stationary courses, white noise (figure 4.11(a)),
� periodical and quasi-periodical: containing structures with periodical or quasi-

-periodical recurrence (figure 4.11(b)),
� drifting: obtained for the non-stationary systems (figure 4.11(c)),
� torn: characterized with white areas, repeated as a result of rapid changes in

system dynamics (figure4.11(d)).

On the recurrence plots there can be single points, horizontal and vertical lines
creating so called texture. Single isolated recurrence points correspond rarely to
the states appearing, short-lasting in a single moment of time. The lines represent
local relation between particular fragments of phase trajectory. Diagonal lines occur
when a fragment of the phase trajectory runs parallel to another fragment of the
trajectory, namely in case of the periodical motions.

Proposal of an exercise

The procedure of obtaining recurrence diagrams will be presented here on the
example of signals generated in the previous sub-section and showed on the figure
4.5. A package TISEAN [7, 14, 13], will be used for that which consists of inde-
pendent programs (commands) for the analysis of the signals with a delay methods.
In the first stage, the function of mutual information will be calculated (AMI) by
means of a program (commands) ”mutual”. The value of a delay for all signals,
selected as the first minimum was established on the level 1. The diagrams of the
function AMI for particular courses was showed on the figure 4.12.
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Figure 4.11. Recurrence plots with the a) uniform (white noise),b) periodical,

c) drifting, d) torn structure [13]

In the next step, one should calculate the embedding dimension m. For this ef-
fect, the false nearest neighbours method should be used (FNN) and the command
”false nearest” from the TISEAN package was applied. The results of the calcu-
lations of the embedding dimension m for different time courses were showed on
the figure 4.13. In case of periodical signals (x1 and x2) the embedding dimension
m is 2, for quasi-periodical (x3) m D 3. For other signals, which deviate in their
nature from the periodical one, the dimension m is always higher, and the number
of false neighbours never falls to zero, especially for data containing the noise. The
last parameter which should be selected so as to outline the recurrence plots is the
size of the surrounding ". Optimum value of the parameter should assure proper
degree of shadowing the recurrence plot.

Recurrence plots obtained for signals x1–x5 and x were presented on the fi-
gure 4.14. The diagrams (a) and (b) represent the periodical signal with different
frequency and amplitude therefore long diagonal lines correspond to them in dif-
ferent distances from each other. Both these diagrams were outlined with the same
parameters (m; d; ") and therefore the distance between diagonal lines proves the
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Figure 4.12. Course of mutual function (AMI) for particular time courses x1 –

x5 and x

frequency of the signal. A larger degree of packing the diagonal lines (parallel to the
diagonal one) corresponds to a larger frequency of the signal. In case of the quasi-
-periodical signal x3 (figure 4.14(c)), except for diagonal lines also interrupted lines
are showed with different component frequency which non-commensurate to the
basic frequency (in case of 100Hz). Let us remember that the selection of surroun-
ding size is of key importance here. The issue raises discussion among researchers
of recurrence plots whether the analysis of comparable signals should be conducted
with unique parameters m; d; ", or not. Another plot (figure 4.14(d)) represents the
signal with variable frequency so called ”chirp” (x4), which is reflected with com-
pletely different representation on the diagram. In such a case, the recurrence plot
is characterized by densification of lines in a right corner, namely with the increase
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Figure 4.13. Values of the false nearest neighbours function (FNN) depending

on the embedding dimension m for particular time courses x1–x5 and x

of frequency of the signal. Whereas, in case of a noise (x5) the recurrence image is
characterized with complete dispersion of recurrence points which in this case do
not create the line (figure 4.14(e)). Making up all signals from x1 to x5 results in
significant complexity of the recurrence image (figure 4.14(e)) and an increase of
problem dimension in relations to the signals which are pure periodical. The noise
(x5), which was introduced as the representation of real measurement interruptions
has a significant meaning here.

In the exercise, the calculation procedure can be repeated using another surro-
unding parameter in order to prove its influence on the appearance of the recurrence
plots.
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Figure 4.14. Recurrence diagrams for certain time courses x1–x5 and x

4.4. Method of multi-scale entropy MSE and CMSE

A definition of entropy can be frequently encountered in thermodynamics, where
it is used for defining measurement level of non-ordering the particles. But entropy
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turned out to be a useful tool to describe phenomena in many areas of science, i.a.,
in information theory, statistical mechanics or chaos theory. In literature one may
find many definitions of entropy. In the chapter a few basic definitions were quoted
on the basis of the paper [20].

In 1948 Shannon introduced a definition of entropy into the information the-
ory. Since then, a few generalizations of the Shannon’s entropy were created. In
the subsequent years the definition appeared: Rényi’s entropy (1965) and entro-
py of Havard-Charvát-Daróczy-Tsallisa (HCDT) (1970). Entropy of Rényi comes
from a definition of an average mean value of Kołmogorow-Nagumo. Whereas,
the HCDT entropy constitutes a certain function of Rényi’s entropy. The entropies
listed above in general are used for assessing the degree of non-commensurabili-
ty of a discrete probability distribution. In applications, whereas, they constitute
measurements to determine the degree of concentration of a discrete probability
distribution.

To define the Shannon’s entropies in the information theory one should require
so that the searched function HS .X/ D HS .p.x1/; p.x2/; :::; p.xn// fulfilled the
following conditions:

� function HS should be continuous towards all arguments p.xi /, then small
changes in probabilities correspond to small changes in entropy,

� function HS grows monotonously along with a growth of n, if all n chan-
ce events of the X variable are equally probable (p.x1/ D p.x2/ D ::: D
p.xn/ D 1

n
),

� function HS should be symmetric then the value of the function of entropy
is a non-variable parameter of the permutation of probabilities p.x1/, p.x2/,
: : : ; p.xn/,

� fuction HS should be coherent namely, when the realization of events takes pla-
ce in two subsequently following stages after each other, then an initial entropy
should be the weighed sum of entropies of these subsequent stages.

For a discrete random variable X with probability distribution fp.x1/;

p.x2/; :::; p.xn/g, in which i�th probabilities fp.xi/g fulfil the conditions: 0 6

p.xi/ 6 1 and
n
P

iD1

p.xi / D 1, exists with an exactness to the constant � function

HS , which fulfils the four postulates above. This is called Shannon’s entropy:

HS .X/ D HS .p.x1/; p.x2/; : : : ; p.xn// D �

n
X

iD1

p.xi/ log
1

p.xi/
: (4.14)

The value � defines the unit of entropy [2] and for � D 1
log2

, the unit is bit, a de-
pendency (4.14) accepts the form:

HS .X/ D
n
X

iD1

p.xi/ log2
1

p.xi/
: (4.15)
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Shannon’s entropy HS .X/ has the following properties:

� HS .X/ adopts 0 value, when p.xi / D 1,
� HS .X/ is always a non-negative value,
� HS .X/ reaches a maximum value HS .X/ D log2n, when all p.xi/ are equal

to each other,
� HS .X/ is concave,
� HS .X/ fulfils property of additiveness for discrete independent random varia-

bles.

A dozen of years later, a Hungarian mathematician Alfred Rényi generalized
a definition of Shannon’s entropy and defined the Rényi’s entropy in the form of:

HR˛.X/ D 1

1� ˛
log2

 

n
X

iD1

p.xi/
˛

!

; (4.16)

where ˛ defines the Rényi’s entropy degree for ˛ > 0 and ˛ ¤ 1. Entropies HS

and HR˛ fulfil the relations of HR˛1
> HS > HR˛2

, if 0 < ˛1 < 1 and ˛1 > 1.
Whereas when ˛! 1, then the Shannon’s entropy HS is the border of the Rényi’s
entropy HR˛ .

The ”˛” entropy type was also independently proposed by Havrad, Charva´t
and Daróczy, and then Tsallis. Entropy of Tsallis (or HCDT) was the first type of
entropy in non-logarythmic form. While using properties of the logarithmic expo-
nent functions by means of transformations which were omitted in the paper, the
equation for the Tsallis’s entropy was obtained (HCDT):

HT ˛.X/ D

n
P

iD1

p.xi/
˛ � 1

1 � ˛
: (4.17)

The product of HS and ln 2 constitutes the border of Tsallis’s entropy HT ˛ for
˛ ! 1. One should add that entropy HT ˛ fulfils the feature of sub-additiveness for
independent random variables [11]. The sub-additiveness property differentiates
the Tsallis’s entropy from the entropy of Shannon and Rényi.

The quoted definitions of Shannon’s, Rényi’s and Tsallis’s entropies prove well
in mathematic linguistics as well as in the issues connected with a fractal theory.
Presently, more and more often the so called multi-scale entropy is used, which
is the support in the examination of dynamic processes in the mechanics and the
medicine [10, 18, 1, 4, 3, 19]. A definition of multi-scale entropy constitutes an in-
teresting measurement in the assessment of systems complexity, in analysing their
behaviour to the external impulses. In the analysis of any signal, the entropy cha-
racterizes it by strengthening information and is the measure of non-order or uncer-
tainty. In the examination of completed length of signals the ”sampling entropy” is
used (SampEn) [17].
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For the signal of any time series Xi D fx1; x2; :::; xng with the length of
N points, one may define so called m-measurement chains of vectors v.i/ D
fxi ; xiC1; : : : ; xiCm�1g and v.j / D fxj ; xj C1; : : : ; xj Cm�1g. Afterwards, one
may define similarity between the vectors v.i/ and v.j /. The above vectors are
similar to each other if the two conditions are fulfilled:

� d.i; j / D maxfjx.i C �/ � x.j C �/j W 0 6 � 6 m � 1g and
� d.i; j / < r , where r is a certain tolerance level [16].

The sampling entropy constitutes here the information of v vectors for one scale
which is defined by the parameter m > 2. In order to estimate the complexity of the
signal examined in a larger scale, the multi-scale entropy was introduced [3]. This
entropy is not calculated by directly comparing v, vectors, but through comparing
newly created y.�/, vectors at so called the scale factor � . Vectors are created from
coarse-grained time series as follow (4.18)

y
.�/
j D 1

�

iDj�
X

iD.j �1/�C1

xi ; 1 6 j 6 N=�; (4.18)

where � D 1; 2; 3:::. In accordance with the above formula y
.�D1/
j D xi . For the

non-zero � the analysed series Xi is a part of the average chain N=� , where each
one has the length of � . The average value of calculated chains according to (4.18)
constitutes now a new coarse-grained time series y.�/.

In the figure 4.15 a coarse-graining procedure is presented for � D 2 and � D 3.
The averaging procedure introduces the smoothing of newly created y.�/, vectors,
based on the original time series Xi .
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Figure 4.15. Diagram of coarse-graining procedure for the scale factor � D 2

and � D 3 in MSE

The multi-scale entropy for scales m and � from the coarse-grained vector y.�/

is defined by equation (4.19)

MSE.x; �; m; r/ D SampEn
�

y.�/; m; r
�

: (4.19)
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Whereas, SampEn
�

y.�/; m; r
�

in the equation (4.19) is defined by (4.20)

SampEn
�

y.�/; m; r
�

D ln
�

Nn

Nd

�

: (4.20)

values Nd and Nn are calculated from the previously prepared coarse-grained data
y.�/ by the procedure (4.21)

Nd D Nn D 1;

if jy.�/.i/ � y.�/.j /j < r & jy.�/.i C 1/ � y.�/.j C 1/j < r

Nn D Nn C 1; (4.21)

if jy.�/.i C 2/ � y.�/.j C 2/j < r

Nd D Nd C 1:

The result of the equation (4.19) is the probability of the occurrence in the next
points of the time chain series with lengths m and mC1, which are similar towards
each other within the tolerance r . In the literature the values of parameter m and r

are provided [10] which are recommended to be used in calculations of multi-scale
entropy. For the analysis of the time series, the m D 2, was accepted, whereas
the tolerance of probability r D 0:1 �x where �x is a standard deviation of the
original time series of the Xi vector. For introduced the whole scope of the scale
factor parameter � the level of tolerance r is established as constant [15]. Graphic
presentation of chains similarity with different length at tolerance r (blue line) is
presented in figure 4.16. While analysing the time series from the first section of
two-point chains, i.e. m D 2, the similarity is noticeable between them (1-–2) and
(22-–23). Whereas for .m C 1/ D 3 similar chains consisting of three points are
(1–2–3) and (22–23–24). In the first comparison, the number of two- and three-
-point sequences amounts to 2. Counting the similarities is repeated for the next
two and three-component sequences (2–3) and (2–3–4) until the last ones occurring
in the time series of the signal: ([N -2]–[N -1]) and ([N -2]–[N -1]–N ). Obtained
numbers of sequences similar to each other are summed up and the final result is
the relations of a total number of the two-point sequences matching each other Nn

with total number of the three-point sequences similar to each other Nd . Entropy
SampEn is a natural logarithm from the product Nn=Nd in accordance with the
definition (4.20).

If the next chains of the analysed signal are identical towards each other, then the
result of entropy is zero and it means the lack of non-ordering the signal examined.
For smaller values of tolerance r the level of entropy increases, because of then
there is a smaller probability of occurring similar chains to each other.

Measurements of complexity of the signal by means of the multi-scale entropy
MSE may be encumbered with some error. It depends on the accepted length of
the index of scale factor � [21]. Therefore, authors of the paper [21] introduced
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Figure 4.16. Graphic illustration of estimating the similarities of next points

of measurement

a modified form of entropy, which eliminates the error, and they called it composi-
ted multi-scale entropy CMSE. If the calculations are conducted for the parameter
� 2 .0–20/, then the error is small and both results, the MSE and the CMSE are
accepted as consistent. The discrepancies between theMSE and theCMSE appear
at � > 20 which was presented on the view example in the figure 4.17(a) and
magnified in the figure 4.17(b).
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Figure 4.17. View diagrams of multi-scale entropy MSE and composite multi-

-scale entropy CMSE (a) and illustration of differences at the scale factor � �
20 (b)

In case of a composite entropy CMSE the coarse-graining procedure is pre-
sented in the figure 4.18. In comparison with the diagram presented in figure 4.15
and equation (4.18) describing the coarse-graining process only in the first grained

series (k D 1) y
.�/
1 , to mark CMSE the all coarse-grained time series are included
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in CMSE

into equation (4.22)

y
.�/

k;j
D 1

�

iDj�Ck�1
X

iD.j �1/�Ck

xi ; 1 6 j 6 N=�; 1 6 k 6 �: (4.22)

Then the formula which defines the composite multi-scale entropy CMSE takes
the form of:

CMSE.x; �; m; r/ D 1

�

�
X

kD1

SampEn
�

y
.�/

k
; m; r

�

: (4.23)

The calculation algorithms of both types entropiesMSE and CMSE were pre-
sented in the figure 4.19 by means of block diagrams.

In order to illustrate the results of any signal analysis, calculations were made
of composite multi-scale entropy CMSE for a few different signals (4.24):

X1 D sin.xi/ X2 D sin.xi C �i / X3 D �i X4 D 1 (4.24)
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Figure 4.19. The calculation algorithms of multi-scale entropy MSE (a) and

composite multi-scale entropy CMSE (b)

Appearing in vectorsX2 andX3 the � function constitutes the Gaussian white noise
which was generated in the Matlab environment using pseudo-random numbers
with normal distribution.
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The time series (4.24) presented in the figures 4.20 are specimen examples ac-
cepted for analysis. The goal is prove proper quantity identification of the non-or-
dering level by means of both types of multi-scale entropies MSE and CMSE.

In the figure 4.21(a) and 4.21(b) the diagrams present the entropy for all four
vectors of signals (Eq. (4.24)). From the comparison of both entropy calculation
approaches for the input data accepted, insignificant difference are visible only with
reference to the signals containing noise at scale factor � > 12. But on the accepted
� level they do not appear any significant change in interpretation of the results
obtained due to the level of complexity of the examined time series. Therefore, both
from diagrams 4.21a and 4.21b one may obtain the same information in quantity
sense with relative level of non-ordering.

Comparing the curves of the multi-scale entropy in the figure 4.21 for separate
time series, one may easy observe maximum values of entropy calculated for the
signal reflecting the white noise (red line). On a similar level the entropy is placed
for the harmonic signal disturbed with the same type of the noise (green line). The
changes observed of the entropy value at scale factor increasing are characteristic
for the signals containing white noise (Gauss) [4]. Whereas the non-disturbed har-
monic signal generated by function sinus, shows much larger order in comparison
with the time series containing only noise. In this case, the entropy value is much
smaller (blue line).

And finally, the minimum zero value of entropy from among the signals exa-
mined is the result for the time series of the constant equal value 1 (pink line). This
is obvious because of such signal due to the lack of changes in time does not show
any disorders.
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5. Foundations of finite element method

5.1. Overview

Elementary course in mechanics of materials deals with the fundamental structural
members and their simplest loading cases. Basic topics in continuum stress and
strain analysis are discussed including bar tension/compression, torsion of a circu-
lar shaft and uniform beam bending. To solve the problem constitutive relations1

relevant for the type of material and structure are to be formulated. Next, ordinary or
partial differential equations of equilibrium formulated for infinitesimal structural
elements are solved. Resulting mathematical expressions yield the values of desired
variables e.g. stress and strain at any point within the body.

Following the above procedure leads to the exact solutions, but it’s possible
only for the simplest structural elements and loading cases. For problems involving
complicated geometries, complex materials properties or combined loadings it is
generally not possible to obtain analytical solutions.

Comparing to the mechanics of materials approach a wider class of problems
can be resolved analytically by other methods. These include the use of elastici-
ty theory and energy formulations. The theory of elasticity allows the solution of
structural elements of general geometry under general loading conditions. However,
closed form solutions are also limited to relatively simple cases, since the solution
of elasticity problems also requires the solution of a system of partial differential
equations. Use of energy formulation allows to solve structural problems, but it is
best suited for specific types of structures like beams, trusses and frames, where lo-
ads or displacements at specific points may be found by means of e.g. Castigliano’s
theorem.

To analyse complex structures of arbitrary geometry and loading it is necessary
to apply a more general and effective calculation approach. The available methods
include, among others boundary element method (BEM), finite difference method
(FDM) and finite element method (FEM). Nowadays, the most commonly used
one is the finite element method. This is due to its versatility and simplicity to be
implemented in the form of numerical algorithms and efficient computer codes.

1 Formula defining stress-strain relation; for linear isotropic materials constitutive relation is com-
monly known as Hooke’s law
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Also hybrid methods are applied involving combination of the above techniques –
in order to e.g. optimize the calculations time [13].

As it was mentioned above, the finite element method is a numerical calculation
technique used for approximate solution of engineering problems. From the mathe-
matical point of view, the task comes down to solving the boundary value problem,
which is a mathematical problem of finding a certain function which describes
a distribution of a dependent variable (e.g. displacements, temperature, etc.) wi-
thin a given area. The function searched for should fulfill the governing differential
equation everywhere within a domain of independent variables (i.e. within analysed
structure) and satisfy the specific conditions on the boundary of this domain. The-
refore, the boundary value problem is called sometimes a field problem, and the
dependent variable searched for is the field variable. With respect to the type of
physical problem being analysed, the field variables may include physical displa-
cement, temperature, heat flux, and fluid velocity to name only a few. The domain
of the solution of the boundary value problem is the analysed physical structure.

Finding the function which fulfils the governing differential equation in the
whole area, often being a non-uniform one with complicated shapes etc. is an
extremely difficult task. Therefore, a division of the structure for the finite number
of sub-assemblies with small sizes and regular shapes is done. These sub-domains
are mutually connected with each other by nodal points. Due to this approach indi-
vidual fragments of the body are defined by a small number of parameters and re-
latively simple constitutive equations. Thus, it is possible to find local solutions to
the governing equations for the structure under consideration.

The next stage of solution procedure is interpolation of the results obtained in
nodal points of the domain over individual elements interior. In this way, approxi-
mate global solution is obtained, which describes the overall response of the struc-
ture. The division of the structure into a finite number of sub-domains (elements)
and describing it by a finite number of state variables is called discretization of the
system.

The solution of a general continuum problem by the finite element method al-
ways follows an orderly step-by-step process. With reference to the typical static
structural analysis the procedure can be presented by the work-flow graph given in
Figure 5.1. Individual stages are [11]:

� study of the physical problem and its mathematical model – this is an initial step
of the analysis when identification of all distinctive features of the problem need
to be done. This covers e.g. an acceptance of permitted simplifications, selec-
tion of possible axes and planes of symmetry which may facilitate the analysis,
location of areas where stress concentrations are expected, possible material
yielding due to high loads etc. An important issue is to establish additional cri-
teria of project evaluation e.g. concerning requested accuracy of calculations
and methods to review and verify the final numerical results,
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Figure 5.1. Overview of consecutive steps of a finite element analysis

� preparation of the numerical model of the system. This stage covers: the selec-
tion of finite elements types to be used, meshing the structure domain, defini-
tion of loads the structure is subjected to, imposing boundary conditions and
possible interaction with other structures etc.,

� analysis – the software assembles the governing algebraic equations in a matrix
form and computes the values of the unknown field variable(s). These values
are then used to compute additional variables of request, such as reaction forces,
element stresses etc. Appropriate solution techniques and numerical algorithms
are to be chosen to reduce the data storage requirements and computation time,

� results assessment (postprocessing). This stage provides essential information
required for the acceptance or rejection of the results. The standard treatment is
data processing via graphical user interface e.g. outline of the structure in the
deformed state, maps of strain and stress distribution, animations or time series
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plots in case of dynamic problems. An important part of this stage is the physi-
cal interpretation of obtained results and – if possible – their comparison with
experimental data,

� an optimization of the solution method. Before the final results approval addi-
tional simulations may be conducted to search for a better solution of the posed
problem or to work-out more effective methods of its solving if following mul-
tiple repeated analyses are expected.

On the presented diagram, the stages run with the aid of the FEM code are in-
dicated by a grey colour. Individual procedures (steps) may be performed by sepa-
rate software packages or within one integrated environment. In view of the above
discussed functions the FEM software packages may be divided into three basic
groups: pre-processors i.e. the programs for data preparation, processors (solvers)
and post-processors i.e. programs for outcomes evaluation.

One should point out that results of finite elements analysis are just the approxi-
mate ones, thus every time a rigorous review is necessary. Several methods of FEM
output assessment are presented in the literature; readers interested in this topic are
encourage to view references [4, 10, 11, 13].

In the next part of the chapter, the basic concepts related to structural mo-
delling by the finite element approach are discussed. Mathematical formalism of
the method is presented, but restricted to the necessary minimum. Two different
methods for deriving the stiffness matrix for elementary finite elements are intro-
duced. Next, we address a method of obtaining the global stiffness matrix via an
element-by-element assembly procedure. Finally, the standard ways to solve the
equilibrium equations are given.

The discussed topics are illustrated with simple numerical examples which faci-
litate the understanding of the core finite element method ideas. The given material
is illustrated by two basic examples i.e. linear static analysis of a simple 2-D truss
and linear static analysis of hyperstatic cantilever beam.

5.2. Linear static analysis of a truss structure

Truss structures are composed of straight elastic members subjected to axial forces
only. Satisfaction of this restriction requires that all members of the truss need to
be bar elements and that they are connected by pin joints such that each element is
free to rotate about the joint. If the individual members are connected by rigid joints
then the transverse forces and bending moments will arise. This types of structu-
res are called frames and their proper modelling requires use of beam elements.
Therefore in finite element method the bar is considered to be a one dimensional
element subject to axial deformation. The analysis of rods is simpler, since the axial
forces results only in longitudinal deformations of elements (tension or compres-
sion), whereas in case of beams it is necessary to include both transverse forces and
bending moments as well.
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The primary objective of any structural analysis is to determine internal loads
and deformations at any point of the given structure as caused by external loads.
Moreover, strains distribution maps, support reactions, frequencies of natural vibra-
tions and system’s stability data may be analysed. Numerous examples of different
structural analyses are given in references [3, 5, 7, 9].

5.2.1. Assumptions and limitations of linear analysis

Before starting the analysis it is necessary to formulate assumptions concerning the
mathematical model of the structure and further derivation steps. While limiting the
considerations to the static linear case, one assumes the following:

� material of the structure is linearly elastic (i.e. the Hooke’s law is fulfilled), so
the displacements are expressed as linear functions of applied loads. Therefore,
the superposition rule is valid and may be used to derive the overall equilibrium
equations. Moreover, it is presumed that the modelled material is homogenous
and fully isotropic,

� deformations of the system caused by the action of external loads are signifi-
cantly smaller than the characteristic dimensions of individual elements of the
system. That is to say displacements of the truss nodal points are smaller than
dimensions of rods cross-sections, so the change in geometry of the structure
as a result of its deformations does not affect the loading conditions,

� external loading forces are assumed to be imposed quasi-statically, so they do
not cause any dynamic effects; thereby the structure remains in the static equ-
ilibrium state.

In addition to the above postulated assumptions concerning the linear nature of
the given system, it is also presumed that the structure is manufactured perfectly –
i.e. no dimensional imperfections of individual members are present. In case of
statically indeterminate structures (hyperstatic ones) this assumption is especially
important due to the possibility of initial assembly stress to occur. For the above
reason, it is also assumed that the ambient temperature remains constant and does
not impact the material behaviour.

The primary characteristics of any individual finite element, as well as the who-
le structure are embodied in the stiffness matrix. For a standard structural finite
element, the stiffness matrix contains the geometric data and material behaviour
information that indicates the resistance of the element to deformation when sub-
jected to loading. The global stiffness matrix representing the whole structure is
assembled from individual stiffness components. Next the system equilibrium equ-
ations are obtained. The solution of this set are displacements of nodal points.

In order to derive the expressions for the individual elements stiffness matrices
the principle of virtual work or residual methods may be used [3]. Only in the sim-
plest cases it is possible to formulate these relations by a direct stiffness approach.
This method will be presented at first; for the comparison the requested relations
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are derived by means of minimum potential energy method too. In the subsequent
part of the chapter dealing with flexural (beam) elements energy approach is used.

5.2.2. Uniaxial bar element

Stiffness matrix for a rod element in local coordinate system

Let us consider a simple rod with a constant cross section, made of elastic uniform
and isotropic material – see Figure 5.2. We define the nodes 1 and 2 at the end
points of the bar, where the external axial forces F1 and F2 are applied. We assume
these are the only loadings of the bar and the element stays in equilibrium. For
convenience a coordinate system xy with its origin placed at the left end of the bar is
introduced (12 D Ox). This is the element (local) coordinate system of reference.

O

1 2

F1 F2
u1 u2

A

l
x

x

y

Figure 5.2. Forces and knot shifts of the simple rod

As a result of acting forces both nodes 1 and 2 are shifted along the rod axis
by u1 and u2 respectively. If the rod is infinitely stiff, both displacements are equal
u1 D u2, whereas in case of the deformable unit u1 ¤ u2. Therefore, these two
displacements uniquely define the position of the rod after deformation, so the bar
element under discussion has two degrees of freedom (u1 and u2).

Static equation of equilibrium takes the form

iD2
X

iD1

Fix D F1 C F2 D 0 (5.1)

and the net axial deformation of the element �l is

�l D u2 � u1; (5.2)

According to the definition the axial strain in the element is given by

" D "x D
u2 � u1

l
: (5.3)

Following the accepted assumptions on linear nature of the considered system,
the stress and strain variables are related by the Hooke’s law

� D E"; (5.4)
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where E is Young’s modulus of the material.
By definition stress resultants at nodal points A and B are:

node 1 : � D �F1

A
 compression (force towards the specimen);

node 2 : � D F2

A
 tension

(5.5)

where A is the cross section of the rod (5.1).
Putting relations (5.2), (5.3) and (5.4) into (5.5) formula we obtain a set of

equilibrium conditions

F1 D ��A D �E"A D �EA

l
.u2 � u1/ D EA

l
u1 �

EA

l
u2;

F2 D �A D E"A D EA

l
.u2 � u1/ D �EA

l
u1 C

EA

l
u2:

(5.6)

Relations (5.6) constitute the equilibrium condition as a system of two linear
equations with two unknown values (u1 and u2), which may be written in the matrix
form

8

<

:

F1

F2

9

=

;

D EA

l

2

4

1 �1

�1 1

3

5 �

8

<

:

u2

u1

9

=

;

, F D K � u; (5.7)

where K is square, symmetric and positive definite stiffness matrix of the rod ele-
ment in its local coordinate system. The symmetry property of the matrix results
directly from the Maxwell-Betti’s reciprocal work theorem.2 Moreover, the matrix
K is a singular one (detK D 0). Its size 2 � 2 corresponds to the fact that the
element exhibits two nodal displacements (or degrees of freedom).

The presented above method of deriving the stiffness matrix by means of the
Newton’s law is effective only in the simplest cases, e.g. rod elements. As it was
stated in the Overview section, much more powerful approach is to use calculus of
variations and minimum potential energy theorem. In order to compare these two
different methods derivation of matrix K for the truss element is repeated below.

Let’s define the longitudinal displacement of an arbitrary cross-section of the
rod (Figure 5.2) as u D u.x/. This displacement is a function of an independent va-
riable x designating the position of the cross-section under consideration. Thus, we
have the continuous field variable u.x/, which might be expressed approximately
as an algebraic combination of displacements at nodal points 1 and 2 3

u.x/ D N1.x/ � u1 CN2.x/ � u2: (5.8)

2 Each displacement is related to the other by the same physical phenomenon. In other words, if any
load F is applied at node i resulting a deflection d at node j , then if same load F is applied at j ,
it will give the same deflection d at node i .

3 Substitution of continuous field variable u by its values at specific points (nodes) is a part of di-
scretization procedure
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Functions N1.x/ and N2.x/ present in the above relation are referred to as shape
functions (also known as blending or interpolating functions). One observes they
are weighting factors for nodal displacements u1 and u2. In a general case, the
expression (5.8) for u.x/ is an approximate one. However, for the specific case of
uniform axial element discussed herein this formula is a strict one since within
these specimens strain is distributed linearly.

Taking into account nodal points 1 , 2 and their displacements

u.x D 0/ D u1; u.x D l/ D u2; (5.9)

one gets the conditions to be identically satisfied by both unknown shape functions.
Inserting (5.8) into the relations (5.9) one obtains

N1.0/ D 1; N2.0/ D 0;

N1.l/ D 0; N2.l/ D 1:
(5.10)

It is required that the displacement expression, equation (5.8), satisfy the end
conditions identically, since the nodes will be the connection points between ne-
ighbouring elements and the displacement continuity condition is enforced at tho-
se points. Since we have two conditions that must be satisfied by each of two
one-dimensional functions, the simplest form for the interpolation functions are
binomial expressions

N1.x/ D a1x C b1 N2.x/ D a2x C b2: (5.11)

Bearing in mind relations (5.10) we obtain:

a1 D �
1

l
b1 D 1;

a2 D
1

l
b2 D 0:

(5.12)

Thus, the final displacement field is described by the following formula

u.x/ D
�

1� x

l

�

� u1 C
x

l
� u2 (5.13)

or in the contracted matrix form

u.x/ D
˚

N1.x/ N2.x/
	

�

8

<

:

uA

uB

9

=

;

D N � u: (5.14)

According to the axial strain definition

" D du.x/

dx
; (5.15)
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and field variable approximation (5.13) the " is equal to

" D u2 � u1

l
: (5.16)

The above result is fully consistent with the previously derived expression (5.3).
Elastic potential energy of the rod in axial tension is

U D 1

2

Z

l

E.x/A.x/"2.x/dx; (5.17)

thus after including the strain definition (5.16) and the fact that the considered ele-
ment is uniform and constant cross-section the following expression is obtained

U D 1

2
EA

.u2 � u1/2

l
: (5.18)

The first Castigliano’s theorem states that for an elastic system in equilibrium,
the partial derivative of total strain energy with respect to deflection at a certain
point is equal to the force applied at that point projected on the direction of this
deflection. Thus, applying the theorem to both nodes one obtains

@U

@u1
D F1 D�

AE

l
� .u2 � u1/;

@U

@u2
D F2 D

AE

l
� .u2 � u1/:

(5.19)

The above may be written in the matrix form:

EA

l

2

4

1 �1

�1 1

3

5 �

8

<

:

u1

u2

9

=

;

D

8

<

:

F1

F2

9

=

;

: (5.20)

The final result is the element equilibrium equation. It is exactly the same formula
as (5.7) derived previously by direct stiffness approach.

Element transformation. Stiffness matrix in global system of reference

The methods presented above are capable of finding relations between external for-
ces and nodal displacements – (5.7)/(5.20). These are expressed in the local system
of reference, which conveniently represents an individual element. In case of con-
structions made of multiple elements that are located at different positions it is
recommended to set a global coordinate system to represent the whole structure.
Thus, the equilibrium equations for all the individual elements may be expressed
in the same system of reference. The mathematical conversion from the local to the
global reference system is done by means of a transformation matrix.
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Before deriving the requested relations it is necessary to modify the uni-axial
equilibrium condition (5.7). According to initially posed assumptions there are no
transverse forces and displacements (i.e. along the Oy axis), so the stiffness matrix
K may be extended by two additional zero rows and columns; similar zero rows
are added to both column vectors. Finally, the equation (5.7) will take its new and
more general two dimensional reference system form

8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

F1

V1

F2

V2

9

>

>

>

>

>

>

=

>

>

>

>

>

>

;

D EA

l

2

6

6

6

6

6

6

6

4

1 0 �1 0

0 0 0 0

�1 0 1 0

0 0 0 0

3

7

7

7

7

7

7

7

5

8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

u1

v1

u2

v2

9

>

>

>

>

>

>

=

>

>

>

>

>

>

;

; (5.21)

where F D fF1; V1 D 0; F2; V2 D 0g| and u D fu1; v1 D 0; u2; v2 D 0g| are
extended column vectors of nodal forces and nodal displacements respectively.

To develop the transformation formula that will subsequently be used to derive
the global stiffness matrix let us consider the rod analysed in a previous paragraph
now given in its new position. This orientation is defined by a directed angle � me-
asured from the Ox axis of rectangular external system of coordinates to the local
Ox axis – see Figure 5.3 (counterclockwise rotation is considered to be positive).
The system of coordinates xOy not directly related to the element is called the
global system of reference.4

1

O

2

u1

u2

u1

u2

v1

v2 x

y

x

y

�

�

Figure 5.3. Nodal displacements in local and global systems of reference

4 To distinguish local and global variables it is assumed, the quantities related to the global system
of reference are denoted by an overbar symbol.
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Let us consider the node 1 (Figure 5.3): from the sum of projections of displace-
ments u1 and v1 (variable v denotes transversal displacement) onto the directions
of local system of coordinates xOy we will obtain

u1 D u1 cos � C v1 sin �

v1 D �u1 sin � C v1 cos �;
(5.22)

Which can be written in the matrix form as follows

u1 D ‚ � u1: (5.23)

The matrix present in the above relation

‚ D

2

4

cos � sin �

� sin � cos �

3

5 (5.24)

is the transformation (or rotation) matrix of any vector value from the global system
of reference (the right hand side of the formula (5.23)) to the local system. So, the
vector variable u1 D fu1; v1g| represents displacements of node 1 in the global
system of coordinates.

Analysing the properties of the transformation matrix one may show that this
is an orthogonal matrix – thus ‚

�1 D ‚
|, i.e. the inverse matrix is equal to its

transpose.
Repeating the given above considerations for the second node, as well as for

forces vectors acting in both nodes the following relations are obtained

u2 D ‚ � u2 (5.25)

and
F1 D ‚ � F1; F2 D ‚ � F2: (5.26)

This is due to the fact the displacements as well as forces are vectorial variables, so
they transform in the same manner.

Combining equations (5.23) and (5.25) we can obtain one common relation
describing the transformation of displacements of the element. In order to do this
the expansion of transformation matrix to the size of four is necessary, so that the
order is consistent with the total number of global coordinates used

u D ‚ � u; (5.27)

where the matrix ‚ is created by juxtaposing two ‚ matrices

‚ D

2

4

‚ 0

0 ‚

3

5 D

2

6

6

6

6

6

6

4

cos � sin � 0 0

� sin � cos � 0 0

0 0 cos � sin �

0 0 � sin � cos �

3

7

7

7

7

7

7

5

(5.28)
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The matrix ‚ is transformation (rotation) matrix of the truss element from the
global coordinate system to the local one. Relation similar to (5.27) is applicable
for forces

F D ‚ � F : (5.29)

Thus, the matrix written in (5.28) is a universal transformation matrix, which is
capable of conversion of any vector variables between global and local coordinate
systems.

Given the above derived rotation matrix the equation of equilibrium (5.21) for-
mulated in the previous subsection may be converted from the local system of re-
ference to the global one. For this effect, one should replace the vectors u and F by
the appropriate formulas (5.27) and (5.29). As a result we will obtain

‚ � F D K �‚ � u: (5.30)

Pre-multiplying the last relation by the inverse of transformation matrix we obtain

‚
�1 �‚ � F D ‚

�1 �K �‚ � u; (5.31)

which by virtue of the orthogonality condition (see page 97) is equal to

F D ‚
| �K �‚ � u: (5.32)

Introducing new definition

K D ‚
| �K �‚ (5.33)

we obtain finally the equilibrium equation of the truss element in a global system
of reference

F D K � u: (5.34)

Apparent in the above formula the K matrix is the element stiffness matrix in
the global system of reference.

The subsequent steps of derivation presented in this section need to be repeated
for each element of the considered truss.

5.2.3. Global stiffness matrix of the structure

The stiffness matrix as introduced in the previous paragraph states the mathematical
relation between element nodal displacements and imposed nodal forces as referred
to global system of reference. Proceeding in the similar manner one may formulate
the stiffness matrix of the whole structure to relate the overall displacements and
overall loadings. To illustrate the procedure let us consider the three-element truss
presented in the Figure 5.4.
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A

B

C

1

2
3

F

u1

u2

u3

u4

u5

u6

˛

ˇ



x

y

Figure 5.4. Exemplary three-element truss structure and nodal displacements

numbering scheme

Following the given definitions (5.21) one may write down stiffness matrices
of individual rods in their local reference frames:

K1 D
EA1

l1

2

6

6

6

6

6

6

4

1 0 �1 0

0 0 0 0

�1 0 1 0

0 0 0 0

3

7

7

7

7

7

7

5

K2 D
EA2

l2

2

6

6

6

6

6

6

4

1 0 �1 0

0 0 0 0

�1 0 1 0

0 0 0 0

3

7

7

7

7

7

7

5

K3 D
EA3

l3

2

6

6

6

6

6

6

4

1 0 �1 0

0 0 0 0

�1 0 1 0

0 0 0 0

3

7

7

7

7

7

7

5

:

(5.35)

Individual transformation matrices ‚i , i D 1; 2; 3 result from mutual orienta-
tions of reference frames defined by the angles present between the Ox and Oxi

axes. Following the notation given in Figure 5.3 and eqn. (5.28) the appropriate
angles are: �1 D 0ı, �2 D ˛ and �3 D �ˇ. Thus we obtain

1 2 5 6 1 2 3 4

‚1 D

2

6

6

6

6

6

6

4

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

3

7

7

7

7

7

7

5

1

2

5

6

‚2 D

2

6

6

6

6

6

6

4

cos ˛ sin˛ 0 0

� sin˛ cos˛ 0 0

0 0 cos ˛ sin˛

0 0 � sin˛ cos ˛

3

7

7

7

7

7

7

5

1

2

3

4

(5.36)
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3 4 5 6

‚3 D

2

6

6

6

6

6

6

4

cosˇ � sinˇ 0 0

sinˇ cosˇ 0 0

0 0 cosˇ � sinˇ

0 0 sinˇ cosˇ

3

7

7

7

7

7

7

5

3

4

5

6

:

In given above matrices additional denotation of the columns and rows has been
introduced. The small digits correspond to the global degrees of freedom the con-
sidered element contributes to due to its deformation. Numbering order stays in
accordance with the scheme given in the Figure 5.4.

Based on (5.34) the stiffnesses of all elements are set in one, common global
system of coordinates as follows:

1 2 5 6

K1 D ‚
|

1 �K1 �‚1 D
EA1

l1

2

6

6

6

6

6

6

4

1 0 �1 0

0 0 0 0

�1 0 1 0

0 0 0 0

3

7

7

7

7

7

7

5

1

2

5

6

(5.37)

K2 D ‚
|

2 �K2 �‚2 D
1 2 3 4

D EA2

l2

2

6

6

6

6

6

6

4

cos2 ˛ sin˛ cos ˛ � cos2 ˛ � sin˛ cos ˛

sin˛ cos ˛ sin2 ˛ � sin˛ cos ˛ � sin2 ˛

� cos2 ˛ � sin˛ cos˛ cos2 ˛ sin˛ cos ˛

� sin˛ cos ˛ � sin2 ˛ sin˛ cos ˛ sin2 ˛

3

7

7

7

7

7

7

5

1

2

3

4

K3 D ‚
|

3 �K3 �‚3 D
3 4 5 6

D EA3

l3

2

6

6

6

6

6

6

4

cos2 ˇ � sinˇ cosˇ � cos2 ˇ sinˇ cosˇ

� sinˇ cosˇ sin2 ˇ sinˇ cosˇ � sin2 ˇ

� cos2 ˇ sinˇ cosˇ cos2 ˇ � sinˇ cosˇ

sinˇ cosˇ � sin2 ˇ � sinˇ cosˇ sin2 ˇ

3

7

7

7

7

7

7

5

3

4

5

6

whereas, additional numbering of global degrees of freedom has been repeated.
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Given the notation in the Figure 5.4 one may state the equilibrium equations for
each element as expressed in the global system of coordinates

element 1:
˚

F 1 F 2 F 5 F 6

	| D K1 �
˚

u1 u2 u5 u6

	|

element 2:
˚

F 1 F 2 F 3 F 4

	| D K2 �
˚

u1 u2 u3 u4

	|

element 3:
˚

F 3 F 4 F 5 F 6

	| D K3 �
˚

u3 u4 u5 u6

	|
:

(5.38)

Based on Ki definitions given in (5.37) the relations written above may be com-
bined in one equation of equilibrium valid for the whole structure – see (5.39) next
page. The column vectors F and u contain all nodal forces and displacements as
expressed in global coordinate frame. The square matrix appearing therein is called
global stiffness matrix. It is obtained by putting individual components of stiffness
matrices Ki of each element i D 1; 2; 3 (see (5.37)) in proper cells. The place
of input is defined row and column number proper to the corresponding degree
of freedom. The approved numbering scheme of individual nodal displacements is
described in the Figure 5.4. To some extent the (5.39) formula is similar to equation
(5.34) where the last one is valid for individual element only.

Assembly of the systems stiffness matrix is called global matrix aggregation.
Except for the method shown in the present paragraph matrix K may also be derived
by means of other methods – i.a. using the linkage matrices approach. However, the
size of these matrices makes the operation quite troublesome, thus this procedure
is not commonly used in numerical implementations of finite element method [3],
[8], [13].

One should emphasize that global equilibrium equation as written in (5.39) has
no unique solution. This results from the fact the global stiffness matrix, similar to
the individual stiffness matrices of each element, is singular – detK D 0. A unique
solution can be obtained only taking into account the constraints imposed on the
system displacements by the support conditions that preclude rigid body motion.

5.2.4. Boundary conditions and reduced global stiffness matrix

of the structure

The form of the generalized stiffness matrix introduced in the previous paragraph
may be used for the description of any truss structure having the geometry similar
to the one presented in the Figure 5.4, irrespective of the support conditions. The
form of this matrix strictly corresponding to the specific task under consideration
is obtained after introducing the boundary conditions representing the support of
the system.
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1
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Turning to the Figure 5.4, the structure is attached to the ground in points A and
C by pin and roller supports respectively. Thus in point A all degrees of freedom are
prohibited, while in point C only vertical, while horizontal displacement is allowed.
In accordance with the given notation the excluded global degrees of freedom are
u1 D u2 D u6 D 0. Therefore, one can remove rows and columns having numbers
one, two and six from the global stiffness matrix K (5.39). This new matrix Kks

represents the behaviour of the specific system considered in this problem. The
global stiffness matrix with the constraints applied as dictated by the boundary
conditions is called reduced global stiffness matrix

Kks D E

2

6

6

6

6

6

6

6

4

A2

l2
c2˛ C A3

l3
c2ˇ A2

l2
s˛c˛ � A3

l3
sˇcˇ �A3

l3
c2ˇ

A2

l2
s2˛ C A3

l3
s2ˇ A3

l3
sˇcˇ

SYMMETRY
A1

l1
C A3

l3
c2ˇ

3

7

7

7

7

7

7

7

5

: (5.40)

5.2.5. Truss equilibrium equation

As the reduced global stiffness matrix is defined one can set the equilibrium con-
dition (5.39) of the truss structure in its final form
8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

F 3

F 4

F 5

9

>

>

>

>

>

>

=

>

>

>

>

>

>

;

DE

2

6

6

6

6

6

6

6

4

F2

l2
c2˛C F3

l3
c2ˇ F2

l2
s˛c˛� F3
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sˇcˇ �F3
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c2ˇ

F2

l2
s2˛ C F3

l3
s2ˇ F3

l3
sˇcˇ

SYMETRIA
F1
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ˆ
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ˆ

ˆ
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>
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=

>

>

>

>

>

>

;

(5.41)
The left-hand vector F D fF 3; F 4; F 5g| of external nodal loads is to be de-
termined directly from the Figure 5.4. One immediately finds F 3 D F sin  ,
F 4 D �F cos  and F 5 D 0.

From the mathematical point of view, the above formula constitutes the system
of n D 3 linear equations with n D 3 unknowns. As it was mentioned in the
paragraph 5.2.2 the stiffness matrix is a square, positively definite one. Moreover
due to imposed boundary conditions it is not singular any more (detKks ¤ 0), so
the inverse of Kks exists. Thus, there exist unique and nonzero solution of (5.41).

In finite element method computer software the solution to the system of equili-
brium is found by appropriate numerical procedures. Many algorithms are available
and just a couple of them are mentioned below. Given the assumptions adopted, the
final system of equations presented by (5.41) is a linear algebraic equations system.
However, in a general case it may be a nonlinear one or it can be the set of differen-
tial equations. In these cases prior to the solution, the nonlinear terms need to be
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approximated by linear ones or conversion from differential to the finite difference
form has to be done. More information on this topic can be found in references e.g.
[1], [3].

One of the fundamental methods of solving the system of linear equations is the
Cramer’s rule. The method comes down to calculating the value of the main deter-
minant of the system (determinant of the stiffness matrix of the system) and n de-
terminants formed by replacing every n-column in stiffness matrix by the left-hand
side values (i.e. forces vector). Individual solutions to the system are expressed by
quotients of subsequent determinants and main determinant. As the calculation of
all nC1 determinants is very time-consuming, the Cramer’s rule is computationally
very inefficient for systems with many unknowns.

A more effective method is the Gauss’s elimination rule [1]. It comes down to
conversion of the square stiffness matrix to its triangular form. Next, the solution
to the modified system is achieved by means of a recurrence formula.

To perform matrix trangularization, one uses a sequence of following elemen-
tary row operations to modify the matrix until the lower left-hand corner of the
matrix is filled with zeros. At the first stage the procedure involves subtracting the
first equation from all the remaining ones – i.e. from second to n-th one. In each of
these operations the subtracted equation is multiplied by a factor, that eliminates the
first unknown value from each of the resulting equations where subtracting is per-
formed. Therefore, after this initial step, the first unknown is present in the first equ-
ation only. Then, the same procedure is repeated for the second equation and second
variable – the second equation is subtracted from the third and all subsequent ones.
So, after this step, the second unknown is present in the first two equations only.
Repeating the above steps for the next variables leads to the form, where the last unk-
nown is present in the last equation only. So the initial stiffness matrix is converted
to its triangular form. The solution of this modified system is already the trivial task.

More often than not the described procedure is alternated by so called Crout
modification, called partial selection of the basic element modification. In a general
outline this modification involves the change of the equations sequence so that at
a given step the expression with the largest possible modulus is eliminated. The
advantage of the approach is to minimize the final calculation error.

Other methods of solving linear algebraic equations systems include e.g. Cho-
lesky factorization, static condensation and frontal solution. Wider considerations
on presented methods and other algorithms capable of solving linear algebraic equ-
ations systems are discussed in studies [1], [2] and [6].

5.2.6. Element strain and stress; axial force

Solution to the system of equations (5.41) gives displacements of nodal points of the
structure expressed in the global reference frame. Therefore, one may reconstruct
the full vector of global displacements u (see (5.39)) by extending the obtained
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solution with zero values resulting from the imposed boundary conditions. Thus,
this is a reverse operation to eliminating appropriate rows and columns while co-
nverting from the generalized form to the reduced one as described on page 103.
Finally, individual vectors of members displacements are expressed as follows:

element 1: u1 D
˚

0 0 u5 0
	|

;

element 2: u2 D
˚

0 0 u3 u4

	|
;

element 3: u3 D
˚

u3 u4 u5 0
	|

:

(5.42)

After using the rotation formulas (5.27) and rotation matrices definitions (5.35)
above vectors may be converted to their local reference frames
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;

; (5.43)
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; (5.44)
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: (5.45)
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Obtained expressions for u1, u2 and u3 vectors allow to calculate elements
elongations �li (i D 1; 2; 3) see (5.2) and their axial strains "i (i D 1; 2; 3) – see
also (5.3)

�l1 D uC � uA; "1 D
�l1

l1
D u5

l1
; (5.46)

�l2 D uB � uA; "2 D
�l2

l2
D u3 cos˛ C u4 sin˛

l2
; (5.47)

�l3 D uC � uB ; "3 D
�l3

l3
D u5 cosˇ � u3 cosˇ C u4 sinˇ

l3
: (5.48)

Stresses are calculated according to the Hooke’s law (see assumption of the
linear material behaviour).

�1 D E"1 D
u5

l1
E (5.49)

�2 D E"2 D
u3 cos ˛ C u4 sin˛

l2
E (5.50)

�3 D E"3 D
u5 cosˇ � u3 cosˇ C u4 sinˇ

l3
E (5.51)

whereas axial forces in rods are

N D

8

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

:

A1�1

A2�2

A3�3

9

>

>

>

=

>

>

>

;

D E

8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

u5

l1
A1

u3 cos ˛ C u4 sin˛

l2
A2

u5 cosˇ � u3 cosˇ C u4 sinˇ

l3
A3

9

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

;

: (5.52)

To complete the analysis of the structure, one may calculate the support forces
(reaction of the base). Readers interested in this topic will find more information in
references [5], [7].

5.3. Flexure elements. Linear analysis of beams

The rod (truss) elements discussed in the previous chapter are used to model parts
and sub-assemblies loaded in axial direction only. Therefore they cannot be used
to model structures where the transverse forces and bending moments occur. This
corresponds to the case of e.g., welded or riveted structures like frames and grates,
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since in these systems bending is a dominant type of internal loading. In the present
sub-chapter, the flexure element will be discussed. This is the finite element of first
choice for modelling slender members subjected to bending load. Similarly to the
previously presented rods the degrees of freedom for flexure element will be discus-
sed; next shape functions and the stiffness matrix will be derived. The relations will
be formulated in accordance with the Euler-Bernoulli beam theory. In further part
a simple example of a statically indeterminate beam analysis is performed.

5.3.1. Assumptions

Analogous to the case of axial elements discussed in sub-chapter 5.2 we will limit
our considerations to the linear model. Apart from assumptions made in section
5.2.2 on page 92 we postulate the following:

� to simplify the analysis we restrict the discussion to a two dimensional problem,
so the element and its loading are in the xy plane. Moreover the external loading
acts only in end points of the beam,

� transverse deflections v of the element are small in relation to the characteristic
dimension of its cross-section h, i.e. do not exceed 0;1h,

� the cross-section of the beam is symmetric and symmetry axis stays in the ben-
ding plane xy,

� straight lines normal to the beam mid-surface remain straight and normal to the
mid-surface after deformation (Kirchhoff assumptions),

� the thickness of the plate does not change during a deformation.

5.3.2. Shape functions of the beam element

In beam bending structural analysis the field variable of interest is the transverse
displacement v.x/ of a representative point located on beam mid-surface. Similar-
ly to the rod element problem, the value of field variable inside the finite element
is expressed in terms of generalized displacements of nodal points. As shown in
Figure 5.5, transverse deflection of the beam is not unequivocally described by di-
splacement of its end points only. The end deflections can be identical, as illustrated,
while the deflected shape of the two cases is completely different. Therefore, the fle-
xure element formulation must take into account not only end-point displacements
but the slope (rotation) of the beam as well. One may observe that introducing
the rotation of a nodal cross-section as a degree of freedom automatically assures
the consistency of cross-section rotations on the boundaries between neighbouring
finite elements.

Therefore the linear beam finite element has four degrees of freedom, being
the generalized displacements v1; �1; v2; �2. To this corresponds the generalized
loading in the form of two transverse forces and two bending moments. The rule
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v1v1 v2v2

Figure 5.5. Different forms of deformations with the same shifts of knots

concerning the positive sign of generalized coordinates and forces has been presen-
ted in the Figure 5.6.

l

1

y

2

l

1

y

2

(a) (b)

v1 v2

�1

�2
V1 V2

M1
M2

IzIz

xx

Figure 5.6. Beam finite element: (a) degrees of freedom (b)generalized forces

The yet unknown transverse displacement formula v.x/ D f .v1; �1; v2; �2; x/

is the function of the independent variable x which defines the location of the con-
sidered point on the beam axis. As one observes in Figure 5.7(a) this function must
fulfil the following boundary conditions:

v.x D 0/ D v1;
dv.x/

dx

ˇ

ˇ

ˇ

ˇ

xD0

D �1;

v.x D l/ D v2;
dv.x/

dx

ˇ

ˇ

ˇ

ˇ

xDl

D �2:

(5.53)

Any mathematical function of x to express the v.x/ variable may be assumed.
However, polynomials are most frequently used due to simplicity of numerical com-
putations. Considering four available boundary conditions and the one-dimensional
nature of the problem in terms of the independent variable x, we assume the displa-
cement function in the general form with maximum four unknown values. Let us
adopt therefore polynomial of the third order:

v.x/ D f .x/ D a0 C a1x C a2x2 C a3x3: (5.54)

In case of beams loaded by concentrated forces only, the choice of the third order
polynomial is fully justified. This is due to the fact that in the discussed case the
distribution of the bending moment Mg.x/ inside the element is linear. Since the
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initial position of undeformed beam

v1 v2

�1
�2

v.x/

V1 M1M1

x

x

x

Figure 5.7. Deformation field of the beam element and distribution of bending

moments in the considered system

bending moment is directly proportional to the second derivative of transverse di-

splacement d 2v.x/

dx2 , the two-fold differentiation of third order polynomial results in
the requested linear function.

Putting the general expression (5.54) into boundary conditions (5.53) the follo-
wing equations are to be fulfilled:
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:

v.x D 0/ D v1 D a0;

dv.x/

dx

ˇ

ˇ

ˇ

ˇ

xD0

D �1 D a1;

v.x D l/ D v2 D a0 C a1l C a2l2 C a3l3;

dv.x/

dx

ˇ

ˇ

ˇ

ˇ

xDl

D �2 D a1 C 2a2l C 3a3l2;

Thus after transformations, individual terms of the polynomial (5.54) are:

a0 D v1 a2 D
3

l2
.v2 � v1/ � 1

l
.2�1 C �2/

a1 D �1 a3 D
2

l3
.v1 � v2/C 1

l2
.�1 C �2/:

If put into the relation (5.54) and after re-ordering with respect to individual
degrees of freedom v1; �1; v2; �2 the following function is obtained:

v.x/ D
�

1� 3x2

l2
C 2x3

l3

�

v1 C
�

x � 2x2

l
C x3

l2

�

�1

C
�

3x2

l2
� 2x3

l3

�

v2 C
�

x3

l2
� x2

l

�

�2:

(5.55)
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While comparing the above expression with relations (5.8) and (5.13) one may
notice that terms in brackets

N1.x/ D 1 � 3x2

l2
C 2x3

l3
; N3.x/ D 3x2

l2
� 2x3

l3
;

N2.x/ D x � 2x2

l
C x3

l2
; N4.x/ D x3

l2
� x2

l

(5.56)

are the shape functions of the beam finite element

v.x/ D N1.x/v1 CN2.x/�1 CN3.x/v2 CN4.x/�2: (5.57)

5.3.3. Stiffness matrix of the beam element

Similarly to the approach presented in the previous sub-chapter, stiffness matrix will
be derived on the basis of the Castigliano’s theorem. To that end the total elastic
energy of the system must be given. In accordance with the Euler’s-Bernoulli theory
the energy comes only from the bending effect:

U D Ug D
1

2

Z

V

�"dV (5.58)

where dV is the volume of the infinite small beam segment, whereas " and � are
strain and stress acting on the considered section of the beam. The stress value may
be found from the flexure formula

� D Mg.x/

Iz
y D E

d2v.x/

dx2
y; (5.59)

where Iz is a moment of inertia of the cross-section about z axis perpendicular
to the bending plane xy, whereas y is the coordinate defining the location of the
point on the cross-section with respect to neutral plane. Inserting the transverse
displacement definition (5.57) to the above formula the stress expression is obtained

� D Ey

�

d2N1

dx2
v1 C

d2N2

dx2
�1 C

d2N3

dx2
v2 C

d2N4

dx2
�2

�

(5.60)

D Ey

��

12x

l3
� 6

l2

�

v1 C
�

6x

l2
� 4

l

�

�1 C
�

6

l2
� 12x

l3

�

v2 C
�

6x

l2
� 2

l

�

�2

�

:

Therefore, assuming strain and inertia definitions " D �
E

and Iz D
R

A y2dA

respectively the total potential elastic energy U of the element is

U D EIz

2

l
Z

0

�

d2N1

dx2
v1 C

d2N2

dx2
�1 C

d2N3

dx2
v2 C

d2N4

dx2
�2

�2

dx: (5.61)
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One should emphasize that in general case the above formula is only the appro-
ximate one. It results from the fact that the field variable v.x/ has been defined
with an arbitrary assumed third order polynomial. As it was commented earlier in
case of beams loaded in nodal points only this approximation gives strict results.
However, for different loading scenarios this definition may give not fully accurate
outcomes.

To derive the stiffness matrix K of the beam element the first Castigliano’s rule
is used. By virtue of the theorem the following equations are to be fulfilled:

@U

@v1
DV1;

@U

@�1
DM1;

@U

@v2
DV2;

@U

@�2
DM2:

(5.62)

After inserting the energy definition, performing the differentiation and neces-
sary manipulations we obtain the following relations at the first node

V1 D EIz

l
Z

0

�

d2N1

dx2

d2N1

dx2
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d2N2

dx2
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v2 C
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�
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M1 D EIz

l
Z
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�
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v2 C
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�
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(5.63)

and at the second one

V2 D EIz

l
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d2N3

dx2
v2 C

d2N4

dx2

d2N3

dx2
�2

�
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M2 D EIz

l
Z
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�
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The above system of four linear equations can be written in the condensed ma-
trix form

2
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where each .m; n/ term of the stiffness matrix is defined as

Kmn D EIz

l
Z

0

d2Nm

dx2

d2Nn

dx2
dx m; n D 1; : : : ; 4

Inserting previously derived expressions (5.55) for shape functions Ni.x/ (i D
1 : : : 4) and performing the integration we obtain the final form of the stiffness ma-
trix

K D EIz

l3

2

6

6

6

6

6

6

4

12 6l �12 6l

6l 4l2 �6l 2l2

�12 �6l 12 �6l

6l 2l2 �6l 4l2

3

7

7

7

7

7

7

5

: (5.64)

Thus, similarly to rod elements, symmetry of the linear flexure element stiffness
matrix is apparent. Moreover, the given matrix is singular (detK D 0). Due to
this last property it incorporates also rigid body behaviour if the element is not
constrained anyhow. The size of the matrix K.4�4/ results directly from the number
of degrees of freedom – i.e. two transverse shifts and two angles of revolution –
Figure 5.6.

5.3.4. Distributed load

In the present considerations the analysis has been made if external forces acting
on the flexure element are imposed in nodal points only. However, the commonly
encountered loading of beam elements is a distributed transverse force acting on
the length of the element.

The usual approach is to replace this distributed load with substitute nodal for-
ces and moments. The condition is that the mechanical work done by this nodal
load system is equivalent to that done by the distributed load. If dynamic effects
and energy dissipation are omitted, one may conclude the mechanical work done
by continuous loading is equivalent to the elastic potential energy of the system U

resulting from applied equivalent loads.
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l

1

y

2

l

1

y

2 xx

q.x/
V1eqv V2eqv

M1eqv M2eqv

Figure 5.8. Distributed load imposed on the beam element and equivalent no-

dal generalized forces

In accordance with the definition, elementary work dW done by the continu-
ous load q.x/ acting on infinitesimal section of the beam through the transverse
displacement v.x/ is given by product v.x/q.x/dx. Therefore the total work done
on the whole finite element is:

Wc D
l
Z

0

dW D
l
Z

0

q.x/v.x/dx D

D
l
Z

0

q.x/ ŒN1.x/v1 C N2.x/�1 CN3.x/v2 C N4.x/�2� dx:

(5.65)

Introducing equivalent generalized forces in beam nodes – see Figure 5.8 – one may
write the work done by this load

Weqv D Qeqv � v D V1eqvv1 CM1eqv�1 C V2eqvv2 CM2eqv�2: (5.66)

Multiplying in (5.65) the bracket terms by the q.x/ factor, separating into indi-
vidual integrals and comparing to (5.66) we obtain

V1eqv D
l
Z

0

q.x/N1.x/dx M1eqv D
l
Z

0

q.x/N2.x/dx

V2eqv D
l
Z

0

q.x/N3.x/dx M2eqv D
l
Z

0

q.x/N4.x/dx:

The derived above expressions are general in nature so they enable calculating the
equivalent generalized loads for any distribution of continuous loading q.x/.
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While inserting shape function definitions (5.56) and presuming constant value
q.x/ D q D const we get

V1eqv D
Z l

0

q

�

1 � 3x2

l2
C 2x3

l3

�

dx D ql

2
V2eqv D

ql

2

M1eqv D
Z l

0

q

�

x � 2x2

l
C x3

l2

�

dx D ql2

12
M2eqv D�

ql2

12

Example

To illustrate the application of the finite element method to solve beam structures
let us consider a simple, statically indeterminate system presented in the Figure 5.9.

l2 l2

21 3

1 2

x

y

y
P

v1 v2 v3

�1 �2 �3

Figure 5.9. Hyperstatic cantilever beam and its discretization into two finite

elements

Due to the force P acting in the middle of the beam the member must be divided
into at least two finite elements.5 The division point must coincide with the place
where the force P is applied.

Given the division into two finite elements one may write down individual stif-
fness matrices. Based on previous derivations and taking into account the length of
every finite element to be l

2
we obtain

K1 D K1 D K2 D K2 D
8EIz

l3

2

6

6

6

6

6

6

4

12 3l �12 3l

3l l2 �3l l2=2

�12 �3l 12 �3l

3l l2=2 �3l l2

3

7

7

7

7

7

7

5

(5.67)

The global stiffness matrix can now be assembled for the structure by using the
direct stiffness method. When the global stiffness matrix is assembled, the external

5 This condition results from the fact that the given formulas are derived for the case of transverse
forces imposed only at the ends of the finite element.
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nodal forces are directly related to the global nodal displacements. Through the
superposition of individual stiffnesses the governing equations for the beam are
thus given by

EIz

l3

2

6

6

6

6

6

6

6

6

6

6

6

6

4

96 24l �96 24l 0 0

24l 8l2 �24l 4l2 0 0

�96 �24l 192 0 �96 24l

24l 4l2 0 16l2 �24l 4l2

0 0 �96 �24l 96 �24l

0 0 24l 4l2 �24l 8l2

3

7

7

7

7

7

7

7

7

7

7

7

7

5

�

8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

v1

�1

v2

�2

v3

�3

9

>

>

>

>

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

>

>

>

>

;

D

8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

P1

M1

P2

M2

P3

M3

9

>

>

>

>

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

>

>

>

>

;

:

(5.68)
In the above expression, the fragments of the global stiffness matrix coming from
the individual finite elements are highlighted in grey colour. Moreover, one should
emphasize that due to the mutual position of individual finite elements the trans-
formation of coordinates wasn’t necessary.

Relation (5.68) is the general equilibrium condition of an arbitrary beam con-
sisting of two equal spans. After setting the boundary conditions this equation will
correspond to the discussed case.

Now considering the imposed constraints of clamping at the left end (node 1 )
and pin support at node 3 the restrained degrees of freedom are

v1 D 0 �1 D 0 v3 D 0: (5.69)

To solve the set of equilibrium equations and find the unknown, non-zero ge-
neralized displacements one removes from the stiffness matrix K (5.68) rows and
columns with numbers one, two and five. This can be done since all entries in co-
lumns (1,2,5) of the global stiffness matrix are multiplied by zero nodal values. The
reduced system of equilibrium equations is thus as follows

EIz

l3

2

6

6

6

4

192 0 24 l

0 16 l2 4 l2

24 l 4 l2 8 l2

3

7

7

7

5

�

8

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

:

v2

�2

�3

9

>

>

>

=

>

>

>

;

D

8

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

:

�P

0

0

9

>

>

>

=

>

>

>

;

Solution to the system are:

v2 D
�7P l3

768EIz
�2 D

�P l2

128EIz
�3 D

P l2

32EIz
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Inserting these values into the full set of equilibrium equations (5.68) one may
find the right-hand side vector of generalized forces in nodes 1 , 2 and 3 :

P1 D 11
16

P; P2 D �P; P3 D 5
16

P;

M1 D 3
16

P l; M2 D 0; M3 D 0:

As expected, the value of the transverse force in node no. 2 corresponds to the
external force P and the bending moment in pins 2 and 3 is equal to 0.

The shape of the beam deflection curve results directly from the the field varia-
ble v.x/ approximation and supposed shape functions – see (5.57) and (5.56)

N1.x/ D 1� 12x2

l2
C 16x3

l3
; N3.x/ D 12x2

l2
� 16x3

l3
;

N2.x/ D x � 4x2

l
C 4x3

l2
; N4.x/ D 4x3

l2
� 2x2

l
:

(5.70)

Since shape functions are the same for both finite elements the deflections for the
left and right section of the beam are given by

v.1/.x/ D N1.x/v1 CN2.x/�1 C N3.x/v2 CN4.x/�2;

v.2/.x/ D N1.x/v2 C N2.x/�2 CN3.x/v3 CN4.x/�3:
(5.71)

respectively. Thus finally

v.1/.x/ D P x2

96EIz
.�9l C 11x/;

v.2/.x/ D �P

768EIz
.7l3 C 6l2x � 60lx2 C 40x3/

(5.72)

where in both cases x 2
˝

0; 1
2
l
˛

.
Distributions of bending moment and transverse force result directly from their

definitions:

M.x/ D EIz
d2v

dx2
; V .x/ D �dMg.x/

dx
: (5.73)

After differentiation, for the individual sections the following results are obtained:

M1.x/ D 1

16
.11P x � 3lP /;

M2.x/ D 5

32
P.l � 2x/ x 2

�

0;
1

2
l

� (5.74)
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and

V1.x/ D �11

16
P; V2.x/ D C 5

16
P: (5.75)

The diagrams of the above variables are presented in the Figure 5.8. The obtained
results of the reaction forces in knots and bending ate fully consistent with the
results available in the literature e.g. [12].

(a)

(b)

2

1

3

2

1

3 x

x

V.x/

5
32

P l

3
16

P l

M.x/

11
16

P

5
16

P

Figure 5.10. Bending moment M.x/ (a), and shear force V.x/ (b) diagrams

in the hyperstatic beam

To sum up, one should pay attention to the fact that the solution of the statically
determinate or indeterminate system by the finite element method do not differ in
terms of work-flow and steps involved. In both problems the same system of equili-
brium is solved, the only difference results from the number of imposed boundary
conditions so the number of equations in reduced matrix (system) to be solved.
Whereas, while solving the statically indeterminate problem with classic Newton’s
equations of equilibrium the additional geometrical conditions for deformed struc-
ture need to be added. In the discussed example the requested condition may be
given as a virtual vertical force introduced in the right end and setting f3 D 0 or
the condition may result from the Menabrei’s theorem.
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