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results of the recent research to the reader without delay. We will utilize mechanism that 
allows a rapid publication in style of arXiv.org of Cornell University. Last but not least, 
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...we chose the applications of probability methods as Ariadna’s thread making the 
papers selection for this volume (...). A natural determination to understand the world 
around which sometimes takes a form of scientific curiosity is a motivation to pose intri-
guing questions, state problems and hypothesis. If the inspiration comes from the reality 
outside world of mathematics and the results can be verified in practice, then such work 
fits into our cathegory of broad applications.
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Preface

Probability in Action is a set of papers made by the members of Department
of Quantitative Methods in Management in Lublin Technical University listed
in alphabetical order: Tadeusz Banek, Przemyslaw Kowalik, Edward Kozlowski,
Agnieszka Surowiec and Tomasz Warowny. The volume includes also some
papers written by our colleagues from other departments, Department of Math-
ematics: Adam Gregosiewicz, Dariusz Majerek, Malgorzata Murat, Ernest Niez-
naj, Wojciech Rosa and Witold Rzymowski and our co-workers from Department
of Mechanics and Vibroacoustics AGH Cracow University of Science and Tech-
nology: Wojciech Batko and Olaf Knapik. This initiative is more or less a contin-
uation of our previous book Process Conrol in Management, published in 2009.

There are many reasons to collect papers in the book form. In the case of po-
tential reader’s diverse scientific interests the presentation in a single book with
many different papers has some advantages over a monothematic monograph -
something interesting for everyone, one may say. This approach is successfully
applied by many editors and publishers. In view of the number of books which
already exist on the subject, one can ask, with a reason, whether another book
about ’probability in action’ is really needed. In particular, what is our excuse
for writing this one? Our answer is this – on the desks of scientific journals edi-
tors there are large piles of excellent up-to-day papers and manuscripts waiting for
publication resulting with delay measured in years. We want to bring the results
of the recent research to the reader without such a delay. We will utilize mech-
anism that allows a rapid publication in style of arXiv.org of Cornell University.
Last but not least, this book has to substantiate our activity in the last two years.
These are the goals of this book.

As the title Probability in Action suggests we chose the applications of prob-
ability methods as Ariadna’s thread making the papers selection for this volume.
The term ’applications’ we understand in the broad sense. Here, by applications
we understand a type of problems at hand and the methods for solving them rather
then what purists consider as real applications, i.e., the applications in engineer-
ing, economy, biology, or social sciences, when one starts from a real data, has
to build a model which is consistent with data and allows to predict new data.
A natural determination to understand the world around which sometimes takes
a form of scientific curiosity is a motivation to pose intriguing questions, state
problems and hypothesis. If the inspiration comes from the reality outside world
of mathematics and the results can be verified in practice, then such work fits into
our cathegory of broad applications.



 



Tadeusz Banek1

A causal construction of diffusion processes

Keywords: diffusion processes, translation of Wiener processes, Girsanov theorem, calculus of vari-

ations

Abstract

A simple nonlinear integral equation for Ito’s map is obtained. Although it does
not include stochastic integrals, it does give a causal construction of diffusion pro-
cesses which can be easily implemented by iteration systems. Next, the result is ap-
plied for calculations of various type of variational derivatives. Applications in finan-
cial modelling are discussed.

1 Introduction

Diffusions are an important class of stochastic processes. They are Markov,
and have continuous trajectories. There are extensive, competent historical sur-
veys of the topic by D.W. Stroock (2003), D.W. Stroock and S.R.S. Varadhan
(1979, 1987) and we recommend Stroock’s discussion to the interested reader.
Here, we shall point out only main stages. Historically, the first construction was
given by A.N. Kolmogorov (1931) and, since then, a problem of constructing dif-
fusions in Rn having differential operators as generators and no barriers, is known
as the Kolmogorov problem. We will restrict our attention to the later class and
call it (for short), K− diffusions. The second construction of K− diffusions was
given by K. Ito (1951) (and it is called Ito diffusions, too). The theory of ordinary-
stochastic equations by H. Sussman (1977) and H. Doss (1977) and some its mod-
ifications (see I. Karatzas and S.E. Shreve 1991) may be regarded as a determin-
istic variant of Ito’s theory. The third is known as a solution of D.W. Stroock
and S.R.S. Varadhan martingale problem (see D.W. Stroock and S.R.S. Varad-
han 1979). The fourth is given by the Isobe-Sato formula (see E. Isobe and S. Sato
1983), which gives Wiener-Ito integrals for chaos decomposition of K− diffusions.

1Technical University of Lublin, Faculty of Management, Department of Quantitative Methods
in Management, Nadbystrzycka 38, 20-618 Lublin, e-mail: t.banek@pollub.pl



10 Tadeusz Banek

In this paper, we propose a new, pathwise variant of Ito’s construction of K−
diffusions. Although the construction uses a Wiener process (Ito’s idea), it does
not involve Ito’s integrals. It consists in:

(a) Solving a nonlinear, deterministic, Volterra type integral equation

c
(

w(t)−
∫ t

o
κ (x(s))ds

)
= x(t) , (1)

where w ∈ CT , C ([0,T ] ;R), c and κ are ordinary scalar function to be specify
later. Under mild assumptions (1) can be solved pathwise and nonanticipative,
i.e., for any w, v ∈CT one finds xw, xv ∈CT such that restrictions xw, xv, on [0, t]
coincide if w(s) = v(s), s ∈ [0, t].

(b) Forming a map Xt (w) : [0,T ]×CT → R, such that Xt (w) = xw (t). Hence,
X (w) belongs to the space G(CT ) of all nonanticipative mappings from CT to CT

and it is a fix point of the operator L : G(CT )→G(CT ), defined by

L(X (w))(t) = c
(

w(t)−
∫ t

o
κ (X (w)(s))ds

)
, (2)

where we adopt the convention X (w)(t) = Xt (w).
(c) Showing that Xt (w) is a K− diffusion assuming that w(t), t ∈ [0,T ] is

a Wiener process.
(d) Proving that it is true in the opposite direction as well, i.e. if Xt (w) is

a K− diffusion, then it is a fixed point of L.
It is instructive to compare an intuitive picture behind Ito’s theory (here, we aga-

in recommend D.W. Stroock 2003, D.W. Stroock and S.R.S. Varadhan 1979, 1987)
to the picture of K− diffusions as suggested by (1). In the first picture, infinites-
imal increments of K− diffusions are resulting from combined effects of two
forces: a deterministic drift and random (Gaussian) fluctuations. Since combina-
tion means a sum here, the both forces (deterministic and random) have the same
status in creation of K− diffusions. However, (1) suggests other picture, or, look-
ing from a cybernetic perspective, better to say a “behaviour”. Namely, xw follows
w, what is easily visible on the diagram below

w−→(+) ⊗ −→ [c(·)]−→ ◦ −→ xw
(−) ↑ ↓
←− [

∫
] ←− [κ (·)]

which explains the idea of simple iteration system which works according to (1).
With y(t),

∫ t
0 κ (x(s))ds, this behaviour is even more explicit

d
dt

y(t) = κ ◦ c(w(t)− y(t)) .
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Hence yw (t) ,
∫ t

0 κ (xw (s))ds follows w with the speed equal to the image
of the difference w(t)− yw (t) under κ ◦ c. Thus, in this picture we have pure
deterministic mechanism, expressed in the terms of κ ◦ c composition, which
forces yw to follow a random path w. Even more, a rule of producing actions
according to the current errors is known in Automatic Control as a classical feed-
back rule, which in turn is the most transparent idea of Cybernetics. If there is
any Variational Principle responsible for this rule, it is an open question.

The paper is organized as follows. In a preliminary section we state an aux-
iliary result on (1). In the next section we prove an equivalence theorem, which
is the main result of this section. Several corollaries are also included. In the next
section we apply the equivalence theorem for calculations of w− derivatives of Xt (w).
Indication for financial mathematics is discussed next.

2 Preliminaries

We state here the following

Lemma 1 Assume c : R→ R is locally Lipschitz and κ : R→ R measurable and
bounded. Then, (a) for any w ∈ CT , there exists a unique xw ∈ CT satisfying (1),
(b) for any w ∈CT and any ξ ∈CT , a sequence of successive approximation

x0 = ξ , xn+1 = Φw (xn) ,

Φw (x)(t) , c
(

w(t)−
∫ t

o
κ (x(s))ds

)
is convergent in any norm ‖·‖

λ
, λ ≥ 0, to xw, where

‖x‖
λ
= max

{
e−λ t |x(t)| ;0≤ t ≤ T

}
,

(c) a mapping CT 3w 7→ X (w), xw ∈CT is locally Lipschitz (in any ‖·‖
λ

, λ ≥ 0),
and nonanticipating.

Proof. The proof consists in two steps. In the first one, one can show that
(a),(b),(c) hold when c is globally Lipschitz. In the second one, one can apply
a method of continuation in the locally Lipschitz case.

3 Equivalence theorem

Let g ∈ C1 (∆) > 0, ∆ ⊂ R, an open interval and f : R→ R measurable. Define
two functions:

c′ (x) = g(c(x)) (3)

and

κ (x) =
g′ (x)

2
− f (x)

g(x)
. (4)
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Example 2 (a) Let g(x) =
√

1+ x2. Then c(x) = sinh(a+ x). For an arbitrary
φ ∈C (R), set f (x) = x

2 −φ (x)
√

1+ x2, then κ (x) = φ (x). (b) Let g(x) = |x|α ,
1/2 < α < 1. Then for a ∈ R, we have c(x) = [sign(a+ x)] [(1−α) |a+ x|]1/1−α .
For φ ∈C (R), set f (x) = α

2 sign(x) |x|2α−1−|x|α φ (x), then κ (x) = φ (x).

Theorem 3 Assume c :R→ R, κ :R→ R satisfy (3)(4) and κ is bounded. If w(t),
t ∈ [0,T ] is a Wiener process on (Ω,F,P), then (I) the mapping
[0,T ]×CT 3 (t,w) 7→ Xt (w) ∈ R satisfies the equation

c
(

w(t)−
∫ t

0
κ (Xs (w))ds

)
= Xt (w) (5)

P− a.s., iff it solves strongly and uniquely Ito’s differential equation

dx(t) = f (x(t))dt +g(x(t))dw(t) (6)

x(0) = c(0) (7)

P− a.s., (II) if (5) holds, then

Xt (w) = c(w̃(t)) , (8)

where

w̃(t) =−
∫ t

0
κ ◦ c(w̃(s))ds+w(t) .

Proof. Assume that Xt (w) solves (5) and denote

w̃(t), w(t)−
∫ t

o
κ (Xs (w)) .

>From Ito’s formula and (3), (4) we get

dc(w̃(t)) (9)

=

[
1
2

c′′ (w̃(t))− c′ (w̃(t))κ (Xt (w))
]

dt + c′ (w̃(t))dw(t)

=

[
1
2

g(c(w̃(t)))g′ (c(w̃(t)))−g(c(w̃(t)))κ (Xt (w))
]

dt +g(c(w̃(t)))dw(t)

= g(c(w̃(t)))
{

1
2

g′ (c(w̃(t)))−
[

g′ (Xt (w))
2

− f (Xt (w))
g(Xt (w))

]}
dt

+g(c(w̃(t)))dw(t) .

Since (by the assumption)
Xt (w) = c(w̃(t)) ,
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thus the RHS of (9) equals

= f (Xt (w))dt +g(Xt (w))dw(t) .

Hence Xt (w) solves (6),(7) since X0 (w) = c(0)).
Now, it is the reverse direction. Let Xt (w), X0 (w)= c(0) solve strongly (6),(7).

Then

dXt (w) = [ f (Xt (w))+g(Xt (w))κ (Xt (w))]dt +g(Xt (w)) [dw(t)−κ (Xt (w))dt]

= [ f (Xt (w))+g(Xt (w))κ (Xt (w))]dt +g(Xt (w))dw̃(t) ,

where w̃(t) (from Girsanov theorem) is a Wiener process on a "new" space
(

Ω,F, P̃
)

with a measure

P̃(A) =
∫

A
ΛdP, A ∈ F,

Λ = exp
[∫ T

0
κ (Xt (w))dw(t)− 1

2

∫ T

0
κ2 (Xt (w))dt

]
,

(EP [Λ] = 1, because κ is bounded). It follows that Xt (w) satisfies on
(

Ω,F, P̃
)

the equation

dXt (w)

=

[
f (Xt (w))+g(Xt (w))

[
g′ (Xt (w))

2
− f (Xt (w))

g(Xt (w))

]]
dt +g(Xt (w))dw̃(t)

= g(Xt (w))
[

g′ (Xt (w))
2

dt +dw̃(t)
]
. (10)

It can be verified directly that c(w̃(t)) solves (10), hence

Xt (w) = c(w̃(t)) (11)

by uniqueness of (6),(7). Hence, we get

Xt (w) = c(w̃(t)) = c
(

w(t)−
∫ t

0
κ (Xs (w))ds

)
(12)

on the "old" space (Ω,F,P). The proof of the part (I) is completed. For the part
(II), note that (5) implies

w̃(t) = w(t)−
∫ t

0
κ (Xs (w))ds

= w(t)−
∫ t

0
κ ◦ c

(
w(s)−

∫ s

0
κ (Xu (w))du

)
ds

= w(t)−
∫ t

0
κ ◦ c(w̃(s))ds.
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Example 4 (continued). With g and f as above, we have the integral equation,
case (a)

Xt (w) = sinh
(

a+w(t)−
∫ t

0
φ (Xs (w))ds

)
and Ito’s equation

dx(t) =
[

x(t)
2
−φ (x(t))

√
1+ x2 (t)

]
dt +

√
1+ x2 (t)dw(t) ,

case (b)

Xt (w) =

[
sign

(
a+w(t)−

∫ t

0
φ (Xs (w))ds

)]
×
[
(1−α)

∣∣∣∣a+w(t)−
∫ t

0
φ (Xs (w))ds

∣∣∣∣]1/1−α

and Ito’s equation

dx(t) =
[

α

2
sign(x(t)) |x(t)|2α−1−|x(t)|α φ (x(t))

]
dt + |x(t)|α dw(t) .

Remark 5 From (11) and (12) we have on
(

Ω,F, P̃
)

Xt

(
w̃+

∫ ·
0
κ ◦ c(w̃(s))ds

)
= c(w̃(t)) .

Example 6 (a) Since in our example κ ◦ c(x) = φ (sinh(a+ x)), hence

dw̃(t) =−φ (sinh(a+ w̃(t)))+dw(t) ,

(b) here κ ◦ c(x) = φ

(
[sign(a+ x)] [(1−α) |a+ x|]1/1−α

)
, hence

dw̃(t) =−φ

(
[sign(a+ w̃(t))] [(1−α) |a+ w̃(t)|]1/1−α

)
+dw(t) .

Corollary 7 (weak solutions) Let b(t), t ∈ [0,T ] be a Brownian motion on some
probability space (Ω′,F′,P′). Define

Λ = exp
[
−
∫ T

0
κ ◦ c(b(t))db(t)− 1

2

∫ T

0
(κ ◦ c)2 (b(t))dt

]
.

If
EPΛ = 1,

then
xb (t), c(b(t))

is a (weak) solution of (5).
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Proof. According to Girsanov theorem

P(A),
∫

A
ΛdP′, A ∈ F

is a probability measure, (Ω,F,P) is a probability space, and

w(t), b(t)+
∫ t

0
κ ◦ c(b(s))ds

is a Wiener process on it. Hence

xb (t) , c(b(t))

= c
(

w(t)−
∫ t

0
κ ◦ c(b(s))ds

)
= c

(
w(t)−

∫ t

0
κ (xb (s))ds

)
on (Ω,F,P).

Remark 8 K− diffusions starting from random initial conditions can be easily
obtained. Let ξ is a random variable on (Ω,F,P), and consider the following
generalization of (5)

c
(

ξ +w(t)−
∫ t

0
κ (Xs (w))ds

)
= Xt (w) . (13)

If ξ is stochastically independent on w(t), t ∈ [0,T ], then the solution of (13) is
a K− diffusions with X0 (w) = c(ξ ).

4 Applications

4.1 Identification of financial instruments

Consider two financial instruments. Denote their prices by X and Y . Moreover,
assume that X and Y are driven by the same Wiener process and assume X is
a K− diffusion with c and κ known. How can one identify Y ? There is a well
known method of a "black box" identification by Norbert Wiener. However, his
method is essentially restricted to systems of special kind: input and output must
be observable. This is not the case in financial modelling. Here we have the black
box w→ (Xt (w) ,Yt (w)) and one may observe the output only. Hence, this method
cannot be applied directly. To overcome this difficulty, observe that, if c−1 exists,
then the mapping w→ Xt (w) is invertible, and

w(t) = c−1 (X (t))+
∫ t

0
κ (Xs)ds
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is a Wiener process, hence, the input and output of this black box

X → Yt (X) = Yt

(
c−1 (X (t))+

∫ t

0
κ (Xs)ds

)
is observable. Now, Wiener’s method of nonlinear systems identification can
be applied to the Y− black box (see N. Wiener 1958, Lecture 10 and 11)

4.2 Smooth densities

Set F̃ (x) = P(w̃(t)< x). Then

P(Xt (w)< x) = P(c(w̃(t))< x)

= F̃ ◦ c−1 (x) .

Hence, the smoothness density problem for Xt (w) is reduced to investigation
of ordinary function F̃ ◦ c−1.

Example 9

(a) F̃ ◦ c−1 (x) = F̃
(
sinh−1 (a+ x)

)
,

(b) F̃ ◦ c−1 (x) = F̃
(

sign(a+ x)(1−α)1−α |a+ x|1−α
)
.

Acknowledgement 10 We would like to thank Professor Moshe Zakai for his
remarks and suggestions.
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Coupling in dynamical systems and its probabilistic
consequences

Keywords: bidirectional coupling, mutual information, Wiener-Ito homogeneous chaos expansion,

Fredholm alternative

Abstract
In the literature connected with environmental sciences one can observe a grow-

ing interest in description and analysis of so-called bidirectional coupling between
dynamics of distinct systems. This subject belongs to the System Science and
its investigation requires advanced methods. Inspired by Information Theory and
Wiener’s ideas of homogeneous chaos, we propose a probabilistic approach which
seems to be quite general and appropriate for this kind of problems. First, we apply
the tools of Information Theory getting a quantitative characterization of coupling’s
strength. Secondly, we use the Wiener-Ito chaos theory and the Fredholm alternative
getting coupling’s characterization in the kernel expansion terms.

1 Introduction

Multidirectional coupling is one of the most important phenomenon ari-
sing in complex dynamic systems and is, in fact, a central issue of General Sys-
tems Theory. Large, complex systems consist of many smaller, simpler subsys-
tems which operate independently, or partially independently. Sometimes, parts
of the subsystems are linked rigidly and the effect can be visible by outside ob-
servers. If the evolution of one subsystem influences the behaviour of the another,
then we call it a one-directional coupling. If the influence comes from the both
sides, we call it bidirectional coupling. Finally, multidirectional coupling means
that each subsystem is influenced by many other ones. Perhaps, the most fa-
mous example is the many-body problem in classical celestial mechanics where
the influences manifest themselves in the form of gravitation forces appearing
in the right side of Newton’s equations

mi
◦◦
qi = G∑

j 6=i

mim j (q j−qi)∣∣q j−qi
∣∣3 , i = 1, ...,n.

1Technical University of Lublin, Faculty of Management, Department of Quantitative Methods in
Management, Nadbystrzycka 38, 20-618 Lublin, e-mail: t.banek@pollub.pl , e.kozlovski@pollub.pl
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The many-body problem story is very illuminating and in particular it shows how
hard an investigation of multidirectional coupling can be. Hence, there is no sur-
prise that there are no general methods available for quantitative analysis
of the coupling phenomenons.

Consider the system with two inputs w,u and two outputs x,y. In the general
case each output depends on both inputs. Absence of bi-coupling is, by definition,
the case when each output depends on one input only, say x depends on w and y
depends on u but does not depend on w. In mathematical terms x is a w− function
and y is a u− function. However, in the case of bidirectional coupling (bi-coupling
in short), both x and y depend upon both variables w and u. A typical example are
the systems described by ordinary differential equations

◦
x(t) = f (x(t))+ϕ(x(t),y(t)) (1)
◦
y(t) = g(y(t))+ψ(x(t),y(t)) (2)

together with the initial conditions

x(0) = x0 (3)

y(0) = y0 (4)

With the exception for the particular case ϕ = ψ = 0, this system exhibits a com-
plex bidirectional coupling behaviour due to the dependence of ϕ and ψ on the both
variables x,y. As was pointed out in M. Rutha, E. Kalnaya, N. Zenga, R. S. Frank-
linb, J. Rivasc and F. Miralles-Wilhelmd (2011) "neglecting bidirectional coupling
renders models unable to exhibit important real-world phenomena and thus re-
duces usefulness as tools to explain and prepare for these phenomena". But what
is the real difference between the model with bi-coupling and with the model
without bi-coupling, i.e., the case ϕ = ψ = 0? On the phase space (x,y) we get
from (1)-(2) the equation

dy
dx

=
g(y))+ψ(x,y))

f (x)+ϕ(x,y)

which if it is solvable, gives the formula

y = R (x) (5)

But this means that
y(t) = R (x(t)) (6)

i.e., y(t) can be expressed in terms of x(t) independently of ϕ =ψ = 0 or ϕ 6= ψ 6= 0.
In conclusion we see that bi-coupling is invisible on the phase space (x,y) and other
methods for defining what the coupling mathematically means are needed.
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As was pointed out in T. Banek (2012) this phenomenon can be effectively
investigated by applying random independent signals w,u as inputs. If outputs
are independent as well, then there is no deterministic relation y = R (x) between
outputs, hence there is no bi-coupling and the complex system consists of two dis-
joint autonomic subsystems. The aim of this paper is to justify this claim
in a general setting. Moreover, we propose a quantitative characterization of this
phenomenon, which we call a strength of bi-coupling. The paper consists of two
parts. In the first we apply the tools of Information Theory getting a quantita-
tive characterization of coupling’s strength. In the second we use the Wiener-Ito
chaos theory and the Fredholm alternative getting coupling’s characterization
in the kernel expansion terms.

2 Systems given by SDE’s

In order to overcome the effect expressed in (5)-(6) one can introduce into the sys-
tem (1)-(2) two stochastically independent "sources of randomness". This can
be done in two different ways.

The first way is accomplished by making the initial conditions (3)-(4) the ran-
dom independent variables on some probability space (Ω,z,P). Indeed, even
for the case ϕ = ψ = 0, and f ≡ g, independence assumptions of x0,y0 imply
that the solutions x(t),y(t) of (1)-(2) are stochastically independent as well. Thus
the function R appearing in (5)-(6) does not exist any more.

The second way consists in perturbing the right hand side of (1)-(2) by adding
independent random "white noise" disturbances and obtaining Ito’s stochastic dif-
ferential equations

dx(t) = [ f (x(t))+ϕ(x(t),y(t))]dt +dw(t) (7)

dy(t) = [g(y(t))+ψ(x(t),y(t))]dt +du(t) (8)

where (w(t),u(t)) is a pair of independent Wiener processes. Again, even for
the case ϕ = ψ = 0 and f ≡ g, the independence assumption of w(t),u(t) implies
that the solutions x(t),y(t) of (7)-(8) are stochastically independent as well.

On the other hand, if the two "sources of randomness" are stochastically
independent and ϕ , ψ are indeed the functions of two variables, then the solutions
x(t),y(t) of (7)-(8) are stochastically dependent. In this way the stochastic depen-
dence is connected with the phenomenon of bi-coupling in dynamical systems.

2.1 Mutual information as measure of bi-coupling

Mutual information is a concept from Information Theory. It is defined by the for-
mula

IT (x,y) = E ln
dµx,y

d [µx×µy]
(x,y) ,
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where E stands for expectation with respect to the measure P, µx,y is a measure
on the space of trajectories {(x(t),y(t)) ;0 ≤ t ≤ T} being the solutions of (7)(8),
while µx×µy is a product of marginal measures of µx,y.

Theorem 1 Let f ,g,ϕ,ψ are Lipschitz and satisfy a linear growth condition. Then

IT (x,y) =
1
2

∫ T

0
E
{
[ϕ(x(t),y(t))−ϕ(t,x)]2 +[ψ(x(t),y(t))−ψ(t,y)]2

}
dt (9)

where

ϕ(t,x) = E [ϕ(x(t),y(t)) |x(s) 0≤ s≤ t]

ψ(t,y) = E [ϕ(x(t),y(t)) |y(s) 0≤ s≤ t]

Proof. Under theorem’s conditions there exists a unique strong continuous
solution (x(t),y(t), 0 ≤ t ≤ T . We begin by considering the case f = g = 0 first.
For this case we have

µx,y � µw×µy (10)

µx � µw,µy� µu (11)
dµx,y

d [µx×µy]
(x,y) =

dµx,y

d [µw×µu]
(x,y)/

dµx

dµw
(x)

dµy

dµu
(y) (12)

where (10) means that the measure µx,y is absolutely continuous with respect
to µw×µy, (11) means that µx is absolutely continuous with respect to µw and µy

is absolutely continuous with respect to µu. Finally, (12) gives the Radon-Nikodym
derivative of µx,y with respect to µx×µy. Moreover

dµx,y

d [µw×µu]
(x,y) = exp{

∫ T

0
ϕ(x(t),y(t))dx(t)+

∫ T

0
ψ(x(t),y(t))dy(t)

−1
2

∫ T

0

[
ϕ

2(x(t),y(t))+ψ
2(x(t),y(t))

]
dt} (13)

and

dµx

dµw
(x) = exp

{∫ T

0
ϕ(t,x)dx(t)− 1

2

∫ T

0
[ϕ(t,x)]2 dt

}
(14)

dµy

dµu
(y) = exp

{∫ T

0
ψ(t,y)dy(t)− 1

2

∫ T

0
[ψ(t,y)]2 dt

}
(15)

All formulae (10)-(15) follow easily from the results included in R.S. Liptser and
A.N. Shiryaev (1978) (see chapter VII and XVI), so we omit their proofs. Substi-
tution of (13)-(15) into (12) and taking expectation gives (9). In the case f 6= 0,
g 6= 0 note that

f (t,x) = E [ f (x(t)) |x(s) 0≤ s≤ t] = f (x(t))

g(t,y) = E [g(y(t) |y(s)) 0≤ s≤ t] = g(y(t))



Coupling in dynamical systems and its probabilistic consequences 23

hence

f (x(t))+ϕ(x(t),y(t))− f (t,x)−ϕ(t,x) = ϕ(x(t),y(t))−ϕ(t,x)

g(y(t))+ψ(x(t),y(t))−g(t,y)−ψ(t,y) = ψ(x(t),y(t))−ψ(t,y)

what ends the proof.

Corollary 2 If ϕ = ψ = 0, then IT (x,y) = 0.

Corollary 3 If

ϕ (x,y) = ax+by

ψ (x,y) = Ax+By,

then

IT (x,y) =
1
2

∫ T

0
E{b2 [y(t))−E [y(t) |x(s) 0≤ s≤ t]]2

+a2 [x(t)−E [x(t) |y(s) 0≤ s≤ t]]2}dt

or

IT (x,y) =
b2

2

∫ T

0
E [var (y(t) |x(s) 0≤ s≤ t)]dt

+
a2

2

∫ T

0
E [var (x(t) |y(s) 0≤ s≤ t)]dt

Corollary 4 Denote

p(t) = E [var (y(t) |x(s) 0≤ s≤ t)] ,

q(t) = E [var (x(t) |y(s) 0≤ s≤ t)] .

From Kalman-Bucy filtering theory, (p(t) ,q(t)) are given by the Riccati equations

◦
p(t) = 1+2Bp(t)−b2 p2 (t)
◦
q(t) = 1+2aq(t)−A2q2 (t)

Conclusion 5 From the above Corollaries we see that Mutual Information is:
(1) a non-negative quantity IT (x,y)≥ 0,
(2) vanishes IT (x,y) = 0 if there is no bi-coupling,
(3) it is almost explicitly described in the linear systems case.
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3 Chaos expansion of random signals

According to the Wiener-Ito homogeneous chaos theory (N. Wiener, 1958;
D.W. Stroock, 1987; P. Malliavin, 1997) any random variable FT defined on prob-
ability space (Ω,z,P) having a finite second moment EF2

T < ∞ and measurable
with respect to some Wiener process w(t), t ∈ [0,T ] can be uniquely expressed
as a limit (in the mean square sense) of the series

FT = E(FT )+ ∑
n≥1

IW
n (hn) (16)

of iterated stochastic integrals

IW
n (hn) =

∫ T

0
...

(∫ t2

0
hn (t1, ..., tn)dw(t1)

)
...dw(tn) (17)

which are centred
E
[
IW
n (hn)

]
= 0

and orthogonal

E
[
IW
n (hn) IW

m (hm)
]
=

{
0, n 6= m
‖hn‖2

2 , n = m
(18)

where

‖hn‖2 =

(∫ T

0
...

(∫ t2

0
h2

n (t1, ..., tn)dt1

)
...dtn

)1/2

The functions hn, n= 1,2, ... are called kernels of chaos expansions and are uniquely
defined and square integrable on the simplexes

Sn [0,T ] = {(t1, ..., tn) ;0 < t1 < ... < tn < T}

In the multidimensional extension of the theory, the Wiener process appearing
in (16)-(18) is multidimensional. Now we shall apply the chaos expansion theory
to the situation illustrated in the diagram above. This means that for any func-
tion c : R2→ R, such that E [c(x(T ) ,y(T ))]2 < ∞, there exists a unique sequence
of square integrable functions

(t1, ..., tn;τ1, ...,τm) 7−→ hc
n,m

(
t1, ..., tn
τ1, ...,τm

)
∈ R

on Sn [0,T ]×Sm [0,T ], such that, for

IW,U
n,m

(
hc

n,m
)

=
∫

Sm[0,T ]

(∫
Sn[0,T ]

hc
n,m

(
t1, ..., tn
τ1, ...,τm

)
dw(t1) ...dw(tn)

)
du(τ1) ...du(τm)(19)
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we have

c(x(T ) ,y(T )) = E [c(x(T ) ,y(T ))]+ ∑
n+m≥1

IW,U
n,m

(
hc

n,m
)
, (20)

where w(t), u(t), t ∈ [0,T ] are independent Wiener processes on (Ω,z,P). Since
the kernels of chaos expansion of c(x(T ) ,y(T )) depend itself on the function
c(x,y), we have used the subscript c in the notation hc

n,m.

3.1 Bi-coupling determined by kernels of expansion

Under the notation from previous section we have

Theorem 6 Assume c(x,y) = c1 (x)c2 (y). If w(t) and u(t) are stochastically
independent Wiener processes, then x(t) and y(t) are stochastically independent
if and only if

hc1c2
0 = hc1

0 hc2
0 , (21)

where

hc1c2
0 = E [c1 (x(T ))c2 (y(T ))]

hc1
0 = E [c1 (x(T ))] , hc2

0 = E [c2 (y(T ))]

and for any n,m≥ 0

hc
n,m

(
t1, ..., tn
τ1, ...,τm

)
= hc1

n (t1, ..., tn)⊗hc2
m (τ1, ...,τm) . (22)

In that case

IW,U
n,m

(
hc

n,m
)

= IW
n (hc1

n )⊗ IU
m (hc2

m ) (23)

IW
n (hc1

n ) =
∫

Sn[0,T ]
hc1

n (t1, ..., tn)dw(t1) ...dw(tn)

IU
m (hc2

m ) =
∫

Sm[0,T ]
hc1

n (τ1, ...,τm)du(τ1) ...du(τm)

and

c(x(T ) ,y(T )) = E [c1 (x(T ))]E [c2 (y(T ))]+ ∑
n+m≥1

IW
n (hc1

n )⊗ IU
m (hc2

m ) (24)

Proof. Indeed, a lack of bi-coupling and independence of x(t) and y(t) implies

c1 (x(T )) = E [c1 (x(T ))]+ ∑
n≥1

IW
n (hc1

n ) (25)

c2 (y(T )) = E [c2 (y(T ))]+ ∑
m≥1

IU
m (hc2

m ) (26)



26 Tadeusz Banek, Edward Kozłowski

hence

c1 (x(T ))c2 (y(T ))

= E [c1 (x(T ))]E [c2 (y(T ))]+ ∑
n+m≥1

IW
n (hc1

n )⊗ IU
m (hc2

m )

= E [c1 (x(T ))]E [c2 (y(T ))]+ ∑
n+m≥1

IW,U
n,m (hc1

n ⊗hc2
m ) (27)

Now, assume (21),(22). Let c2 (y) = 1. Then we must have

hc2
0 = 1,hc2

m ≡ 0,m≥ 1

and, in conclusion, from (27) we get (25). Let c1 (x) = 1. Then obviously we have

hc1
0 = 1,hc1

n ≡ 0,n≥ 1

and, in conclusion, from (27), we get (26). Since W,U are independent stochasti-
cally, then c1 (x(T )) ,c2 (y(T )) are independent as well.

3.2 Strength of bi-coupling

The results of the last section clearly indicate that there exists a close relation-
ship between intensity of bi-coupling and the kernels hc1c2

n,m of chaos expansion
of c1 (x(T ))c2 (y(T )). The aim of this section is to propose a formula which re-
flects this relation. We begin our analysis of bi-coupling on a subspace of order
(n,m) of the chaos spaces L2

(
(Ω,z,P) ,R2

)
.

Definition 7 Strength of bi-coupling on a subspace of order (n,m) of the chaos
space is defined by

Sn,m
T (x,y) = inf

∥∥hc1c2
n,m −hc1

n ⊗hc2
m

∥∥2
L2(Sn×Sm)

, (28)

where

‖hn,m‖L2(Sn×Sm)
=

(∫
Sn[0,T ]×Sm[0,T ]

h2
n,m

(
t1, ..., tn
τ1, ...,τm

)
dt1...dtndτ1...dτm

)1/2

and infimum is taken over all hc1
n ∈ L2 (Sn [0,T ]) ,hc2

m ∈ L2 (Sm [0,T ]) of the follow-
ing form

hc1
n (t1, ..., tn) =

∫
Sm[0,T ]

hc1c2
n,m

(
t1, ..., tn
τ1, ...,τm

)
ψ (τ1, ...,τm)dτ1...dτm

=
〈
hc1c2

n,m (t1, ..., tn) ,ψ
〉

L2(Sm)

hc2
m (τ1, ...,τm) =

∫
Sn[0,T ]

ϕ (t1, ..., tn)hc1c2
n,m

(
t1, ..., tn
τ1, ...,τm

)
dt1...dtn

=
〈
hc1c2

n,m (τ1, ...,τm) ,ϕ
〉

L2(Sn)
,
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where
ϕ ∈ L2 (Sn [0,T ]) , ψ ∈ L2 (Sm [0,T ]) .

Remark 8 From Definition 7 we have Sn,m
T (x,y)≥ 0 for any signals x,y. In the ab-

sence of bi-coupling we have from Theorem 6 the conclusion Sn,m
T (x,y) = 0 .

Theorem 9 Fix n,m≥ 0. Then

Sn,m
T (x,y) =

∥∥hc1c2
n,m

∥∥2
L2(Sn×Sm)

−‖Hn,m‖2 (29)

where Hn,m =
(

Hn,m
i, j

)
is an infinite matrix with elements

Hn,m
0,0 , hc1

0 hc2
0

and

Hn,m
i, j ,∫
Sn×Sm

h, jn,m (t1, ..., tn)hc1c2
n,m

(
t1, ..., tn
τ1, ...,τm

)
hi,

n,m (τ1, ...,τm)dt1...dtndτ1...dτm,

where (ei),
(
e j
)

are an orthonormal basis in L2 (Sn [0,T ]), L2 (Sm [0,T ]) respectively.
Moreover, the infimum in (28) is achieved on the elements
hc1

n ,hc2
m , such that

(Hn,m)(Hn,m)T hc1
n = λc1hc1

n (30)

(Hn,m)T (Hn,m)hc2
m = λc2hc2

m (31)

i.e., hc1
n ,hc2

m are eigenvectors of the matrices (Hn,m)(Hn,m)T and (Hn,m)T (Hn,m)
respectively and λc1 , λc2 are the greatest eigenvalues of these matrices.

Proof. We have the expansions

ϕ = ∑αiei, ψ = ∑β je j

Denote

h, jn,m (t1, ..., tn) =
∫

Sm[0,T ]
hn,me jdτ1...dτm,

hi,
n,m (τ1, ...,τm) =

∫
Sm[0,T ]

eihn,mdt1...dtn,

for which we have

hc1
n (t1, ..., tn) =

∫
Sm[0,T ]

hn,mψdτ1...dτm

= ∑β j

∫
Sm[0,T ]

hn,me jdτ1...dτm = ∑β jh, jn,m (t1, ..., tn) ,
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hc2
n (τ1, ...,τm) =

∫
Sn[0,T ]

ϕhn,mdt1...dtn

= ∑αi

∫
Sm[0,T ]

eihn,mdt1...dtn = ∑αihi,
n,m (τ1, ...,τm) .

Thus ∥∥hc1c2
n,m −hc1

n ⊗hc2
m

∥∥2
L2(Sn×Sm)

=

∥∥∥∥∥hc1c2
n,m −∑

i, j
αiβ jh, jn,m⊗hi,

n,m

∥∥∥∥∥
2

L2(Sn×Sm)

=
∥∥hc1c2

n,m

∥∥2
L2(Sn×Sm)

−2∑
i, j

αiH
n,m
i, j β j

+ ∑
i, j,p,q

αiβ jαpβq
〈
h, jn,m⊗hi,

n,m,h
,q
n,m⊗hp,

n,m
〉

=
∥∥hc1c2

n,m

∥∥2
L2(Sn×Sm)

−2α
T Hn,m

β

+ ∑
i, j,p,q

(
αi
〈
hi,

n,m,h
p,
n,m
〉

αp
)(

β j
〈
h, jn,m,h

,q
n,m
〉

βq
)

=
∥∥hc1c2

n,m

∥∥2
L2(Sn×Sm)

−2α
T Hn,m

β +α
THn,m

αβ
T H n,m

β , (32)

where (
Hn,m

i,p

)
=

(〈
hi,

n,m,h
p,
n,m
〉)(

H n,m
j,q

)
=

(〈
h, jn,m,h

,q
n,m
〉)

.

Taking infimum in (32) with respect to the sequence α = (ai), we get

α = Hn,m β

‖β‖2 (33)

where β = (β j). Substitution (33) into (32) gives∥∥hc1c2
n,m

∥∥2
L2(Sn×Sm)

−
∥∥∥∥Hn,m β

‖β‖

∥∥∥∥2

(34)

hence to prove (29) it is enough to show that infimum with respect to β of (34)
exists. From J.B. Conway (2007, see Proposition 4.7, pp. 43) we know, that
the operator

(Hn,m f )(t1, ..., tn),
∫

Sm

hc1c2
n,m

(
t1, ..., tn
τ1, ...,τm

)
f (τ1, ...,τm)dτ1...dτm

is compact and ‖Hn,m‖2 ≤
∥∥hc1c2

n,m

∥∥2
L2(Sn×Sm)

. Note that the relationship between this

operator Hn,m and the matrix Hn,m =
(

Hn,m
i, j

)
, namely

Hn,m
i, j =

∫
Sn

ei (t1, ..., tn)
(
Hn,me j)(t1, ..., tn)dt1...dtn =

〈
ei,Hn,me j〉

L2(Sn)
.
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Since
(
ei⊗ e j

)
is a basis for L2 (Sn×Sm) we get

∑
i, j

∣∣∣〈ei,Hn,me j〉
L2(Sn)

∣∣∣2 = ∑
i, j

∣∣∣〈hc1c2
n,m ,ei⊗ e j〉

L2(Sn×Sm)

∣∣∣2
= ∑

i, j

∣∣∣Hn,m
i, j

∣∣∣2 ,
what says that matrix Hn,m is the representation of Hn,m in basis

(
ei⊗ e j

)
and

‖Hn,m‖ = ‖Hn,m‖. Hence, taking infimum with respect to β of (34), we get (29).
Now we are going to show that ‖Hn,m‖ is the greatest eigenvalue of Hn,m. For
Hn,m = 0 it is obvious, so assume ‖Hn,m‖2 > 0 is not the eigenvalue of (Hn,m)T (Hn,m).
Since (Hn,m)T (Hn,m) : L2 (Sm) → L2 (Sm) is compact and self-adjoint hence
by the Fredholm alternative an operator(

‖Hn,m‖2 I− (Hn,m)T (Hn,m)
)−1

: L2 (Sm)→ L2 (Sm) (35)

exists and it is continuous. Thus, there exists α > 0, such that for x ∈ L2 (Sm)\{0}
we have ∥∥∥∥‖Hn,m‖2 x

‖x‖
− (Hn,m)T (Hn,m)

x
‖x‖

∥∥∥∥≥ α

hence
inf
{∥∥∥‖Hn,m‖2 e− (Hn,m)T (Hn,m)e

∥∥∥ ;‖e‖= 1
}
≥ α

On the other hand, if ‖e‖= 1, then

2‖Hn,m‖2
(
‖Hn,m‖2−‖Hn,me‖2

)
= 2‖Hn,m‖2

(
‖Hn,m‖2−

〈
e,(Hn,m)T (Hn,m)e

〉)
= ‖Hn,m‖4−2‖Hn,m‖2

〈
e,(Hn,m)T (Hn,m)e

〉
+‖Hn,m‖4

≥ ‖Hn,m‖4−2‖Hn,m‖2
〈

e,(Hn,m)T (Hn,m)e
〉
+
∥∥∥(Hn,m)T (Hn,m)e

∥∥∥2

=
∥∥∥‖Hn,m‖2 e− (Hn,m)T (Hn,m)e

∥∥∥2
≥ α

2.

Thus

0 = ‖Hn,m‖2−‖Hn,m‖2 = ‖Hn,m‖2− sup
{
‖Hn,me‖2 ;‖e‖= 1

}
= inf

{
‖Hn,m‖2−‖Hn,me‖2 ;‖e‖= 1

}
≥ α

2‖Hn,m‖2 > 0,

what is impossible. Hence ‖Hn,m‖2 is the eigenvalue of (Hn,m)T (Hn,m). To see
that it is the greatest, note that

λ =

〈
x,(Hn,m)T (Hn,m)x

〉
‖x‖2 ≤ ‖Hn,m‖2
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for any eigenvalue. We denote this eigenvalue by λc2 and the corresponding eigen-
vector by hc2

m . This finish the proof of (31). For (30) the reasoning is similar.
Having defined what we mean by the strength of bi-coupling on a subspace

of order (n,m) of the chaos space L2
(
(Ω,z,P) ,R2

)
, we now give the general

definition.

Definition 10 Strength of bi-coupling between x,y is defined by

ST (x,y) =
∣∣hc1c2

0 −hc1
0 hc2

0

∣∣+ ∑
n+m≥1

Sn,m
T (x,y) . (36)

Conclusion 11 >From (28)(29) follows that for all n,m≥ 0

‖Hn,m‖2 ≤
∥∥hc1c2

n,m

∥∥2
L2(Sn×Sm)

hence

0≤ ST (x,y)≤ ∑
n,m≥0

∥∥hc1c2
n,m

∥∥2
L2(Sn×Sm)

= E [c1 (x(T ))c2 (y(T ))]
2 < ∞. (37)

Conclusion 12 According to the famous results of Norbert Wiener included in his
book (1958, see Chapter 10 and 11), the kernels hc

n,m of the chaos expansion can be
find due to the orthogonality relations (18). The identification process is described
in this book in details. Having the kernels identified one may apply the results
included in Theorems 6 and 9 to settle the bi-coupling question. Further results
can be used for numerical evaluation of the phenomena.
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Abstract 

A method of selecting independent variables in an econometric model known as 

the method of capacity of information bearers (the Hellwig method) is a very simple con-

cept. Unfortunately, its computational complexity grows exponentially along with 

the number of potential independent variables what can make the method practically unus-

able unless appropriate software is used. However, formulas used in the method, at least in 

the form most often presented in literature are not “uniform” and that is why their literal 

implementation into computer software may encounter remarkable difficulties. In particu-

lar, spreadsheets, despite a large number of built-in statistical features, are apparently not 

a good tool for some calculations in the field, including those required by the Hellwig 

method. This paper shows a simple transformation of the formulas used in the Hellwig 

method which makes an implementation of the method in spreadsheets very easy. It is 

compatible with most popular spreadsheet programs (both commercial and free) and ap-

propriate for both educational purposes and analysis of real-world econometric models. 

The implementation was illustrated with a simple example with real-world data. 

1 Introduction – key ideas of the Hellwig method 

The method of capacity of information bearers (also called the method of op-

timal choice of predictors or, after its author, the Hellwig method) is of one 

methods of selecting independent variables for an econometric model. As many 

others, the method consists in selecting such variables which are strongly corre-

lated with the dependent variables and, simultaneously, weakly correlated with 

other independent variables (Hellwig 1968, 1969). The selection of variables 

requires “testing” all of 12 −=
kL  combinations of k potential independent 

variables (“zero” combination i.e. rejecting all the variables is not considered). 

The following notation (based on Nowak 1994, p.23) will be used: 

                                                 
1
 Lublin University of Technology, Faculty of Management, Department of Quantitative Methods 

in Management,  Nadbystrzycka 38, 20-618 Lublin, e-mail: p.kowalik@pollub.pl 
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• l – number of a combination ( Ll ,...,2,1= ); 

• lk – number of variables in the l th
 combination; 

• j – number of a variable in the l th
 combination ( lkj ,...,2,1= ); 

• jr – correlation of the j th
 independent variable with the dependent variable;  

• ijr – correlation of the j th
 independent variable with other independent vari-

ables included in the l th
 combination jiki l ≠= ,,...,2,1 ; 

The individual capacity of information bearer (later referred to as individual 

capacity of information) ljh  for the j th
 independent variable ( lkj ,...,2,1= ) in 

the l th
 combination Ll ,...,2,1=  is defined as  

.

1
,1

2

∑
≠=

+

=
lk

jii

ij

j

lj

r

r
h

 
The integral capacity of information bearer (later referred to as integral ca-

pacity of information) for the l th
 combination is the sum of the abovementioned 

individual capacities of information bearers for the l th
 combination: 

.
1

∑
=

=

lk

j

ljl hh

 
The combination of independent variables for which the maximum of integral 

capacity is attained is chosen to the econometric model. 

Both individual and integral capacities of information are normalized i.e. they 

are included in the [0;1] interval. They increase as the independent variables are 

strongly correlated with the dependent variable and the independent variables 

are weakly correlated one to another. 

2 Transforming the formulas into a “spreadsheet-friendly” 

form 

Any algorithm or formula which is claimed to be useful in practical appli-

cation must be considered in connection with some fundamental questions. How 

to perform calculations: with what software and hardware, at what cost, how 

long will those calculations last? Without answering those questions a theoreti-

cally very useful method may turn out to be of no use to a practitioner. 

When creating econometric models, spreadsheet can be used as easily availa-

ble, well-known and rich of built-in statistical features. However, some calcula-

tions in the field including the Hellwig method are rather hard to perform in 

spreadsheets if appropriate formulas are implemented literally i.e. as exact 

equivalents of the mathematical notation. Due to rules of using spreadsheets, all 
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the necessary formulas, whose numbers grows exponentially along with k – 

the number of potential independent variables, must be placed simultaneously in 

spreadsheet cells. Moreover, formulas for individual capacities of information 

are not “uniform” because of combination-dependent indexes of summation. It 

means that the spreadsheet equivalents of the mathematical formulas presented 

earlier cannot be placed into cells by copying of some “initial formula” or by 

using array formulas. In other words, if one follows the definition literally, 

the formula for each individual capacity of information should be placed “manu-

ally” in a cell what is time-consuming and may result in many mistakes. Howev-

er, it is possible to transform formulas for individual capacities of information 

into a more “spreadsheet-friendly” form. The following additional notations are 

needed. 

• 2

YR  – vector (or matrix ]1[ k× ) of squared correlations of independent varia-

bles with the dependent variable (elements are denoted by 2

jr ); 

• 
AR  – matrix of absolute values of correlations of independent variables  

• 
kC  – matrix ( ][ kL × ) of zeroes and ones which is a numerical description 

of all the possible combinations of choice 1,2…,k  independent variables out 

of k potential independent variables.  

• 
lic  – entries of 

kC  where l  (the number of a row) stands also for the number 

of a combination (1 on position i stands for selecting the variable 
iX  and 0 

for rejecting the variable); 

• 
IH - matrix ( ][ kL × ) of individual capacities of information; 

• H  - 12 −
k -element vector of integral capacities of information 

lh . 

The entries of 
IH - individual capacities of information for the l

th
 combination 

can be expressed by “uniform” formulas 

,

1

2

∑
=

=
k

i

ijli

jlj

lj

rc

rc
h

kj ,...,2,1=

 

The number „1” from the definition was replaced with || iir  which are all obvi-

ously equal to 1. The main difference to compare with the definition is that se-

lection of correlations which “occur” in an individual capacity of information is 

done by multiplication by 0-1 coefficients of the combination, not by the combi-

nation-dependent index of summation. 

The above transformation is almost identical with that already presented in 

Kowalik 2010 and 2012. The only difference is that in this paper 
ljc  coefficients 

are placed in formulas for 
ljh , not for 

lh . 
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3 Entering the formulas to a spreadsheet 

After introducing the transformations defined in the previous chapter, now it 

is possible to present consecutive steps of implementation of the Hellwig method 

in a spreadsheet. The steps will be illustrated with a simple real-world example 

concerning influence of five factors on production volumes of construction ag-

gregates (Bajorek, Kiernia-Hnat, Skrzypczak 2012). It is worth notifying that 

the authors of the quoted paper mention explicitly “non-uniform” formulas as 

one of the disadvantages of practical usage of the Hellwig method. This paper is 

just an attempt to get rid of this disadvantage.  

The steps of implementation are the following. 

1) Calculating 2

YR  - the vector of squared correlations of the dependent variable 

with independent variables. 

2) Calculating 
AR  - the matrix of absolute values of correlations of independ-

ent variables. 

3) Generating 
kC - the matrix of 0-1 combinations. 

4) Calculating 
IH - the matrix of individual capacities of information. 

5) Calculating H - the matrix of integral capacities of information. 

6) Finding the combination matching the maximal integral capacity of infor-

mation. 

  

 

Fig. 1. Values of variable placed in an Excel 2010 spreadsheet 

Source: Bajorek, Kiernia-Hnat, Skrzypczak 2012, p. 15 

The values of the dependent variable are located in A2:A6 and the values 

of the independent variables in B2:F8 (see Fig.1). Formulas in cells are grouped 

according to the steps mentioned earlier. English names of spreadsheet functions 

are used. Comma is used as the decimal separator and semicolon as the separator 

of arguments of spreadsheet functions. Screenshots were made in Microsoft 

Excel 2010. The compatibility was tested in the following spreadsheet software: 

Microsoft Excel 2002 to 2010, OpenOffice.org 3.2.0, LibreOffice 4.01, Gnumer-

ic 1.10.16 and IBM Lotus Symphony 3.0.1. No array formulas were used.  
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In descriptions of formulas the phrase the first cell of the range stands for 

the top-left cell of the range under consideration (in case of single-row ranges it 

is the left-most cell and in case of single-column ranges it is the top-most cell). 

Ad. 1. 
2

YR  - the vector of squared correlations of the dependent variable with 

independent variables. 

Data from the example 

Enter =CORREL($A2:$A8;B2:B8)^2 into the cell B10. Next, copy B10 to 

C10:D10. 

General rule 

Content of the first cell of the range (entered by the user) 

=CORREL (range for the dependent variable; range for the independent vari-

able 1X )^2 

The first argument of CORREL must have the $ signs at letters and the sec-

ond argument must not have the $ signs at letters. Entering the $ signs at num-

bers (in any argument) does not matter. Behind the closing bracket there must be 

symbols for the power operation i.e. ”^2”.  

Copying 

Copy the cell with the above formula right to 1−k  adjacent cells.  

Ad 2. AR  - the matrix of absolute values of correlations of independent varia-

bles 

Data from the example 

Enter =ABS(CORREL(B$2:B$6;OFFSET($B$2:$B$6;0;$A12-1))) into    

the cell B12. Next copy B12 to B12:F16.  

Auxiliary data from the example 

Numbers 1,2,3,4,5 were entered in A12:A16 (the column left to B12:F16 – 

the range for the correlation matrix) as well as in B11:F11 (the row above 

B12:F16). The numbers in A12:A16 are used to create references necessary to 

„extract” particular columns by using the OFFSET function. The numbers in 

B11:F11 are not actually used in calculations – they are just added for better 

readability. 

General rule 

It is necessary to prepare some auxiliary data in the spreadsheet. The first one 

is a vertical range of numbers k,...,2,1  increasing downward (preferably located 

just left to the range of the correlation matrix). The second one is a horizontal 

range of numbers k,...,2,1  increasing rightward (preferably located just over 

the range of the correlation matrix). The horizontal range is not actually used in 

calculations – it is just added for better readability. 

Content of the first cell of the range (entered by the user) 

=ABS(CORREL(range for the independent variable 1X ;OFFSET(range for 

the independent variable 1X ;0; first cell of the vertical auxiliary range -1))) 
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The first argument of CORREL must have the $ signs at numbers only. 

The first argument of OFFSET must have the $ signs at both letters and num-

bers. Finally, the third argument of OFFSET i.e. the address of the first cell 

of the vertical auxiliary range must have the $ sign at the letter only. References 

to all the pairs of vectors of the values of independent variables are created by 

changes of cell addresses while copying. The second argument of CORREL is 

created by using the OFFSET function. The OFFSET function in the considered 

context returns the reference to the range whose size (numbers of rows and 

colums) is identical to that of the first argument of the function. The relative 

location with respect to the first cell of the first argument (“offset”) is defined by 

the second argument (“vertical offset”, constantly equal to 0 here) and the third 

argument (“horizontal offset”, which is calculated by values of the vertical auxil-

iary range minus one and equal to 0,1,…, 1−k ). Absolute values of correlations 

are calculated by using the ABS function 

Copying  

Copy the cell with the above formula right to 1−k  adjacent cells. The result-

ing k-element row range copy down to 1−k  adjacent rows. Finally, the resulting 

range must have k rows and k columns. 

 

 

Fig. 2. Values of correlations calculated by formulas (defined in items 1 and 2) in an Excel 

2010 spreadsheet 

Source: own calculations 

Ad. 3. 
kC - the matrix of 0-1 combinations. 

Data from the example 

Enter =INT(MOD($I19/(2^(J$18-1));2)) into the cell J19. Next, copy J19 to 

J19:N49. 

Auxiliary data from the example 

The numbers 1,2,3,4,5 were entered in J18:N18 (the row above J19:N49 – 

the range for the 0-1 matrix). The numbers 1,2,…31 were entered in I19:I49 

(the column left to J19:N49) 
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General rule 

It is necessary to prepare some auxiliary data first. The first one is a vertical 

range of numbers 12,...,2,1 −
k  (i.e. numbers of combinations) increasing down-

ward (preferably located just left to the range of the 0-1 matrix). The second one 

is a horizontal range of numbers k,...,2,1  (numbers of variables) increasing 

rightward. 

“Generating” all the 0-1 combinations representing all the possible combina-

tions of k independent variables is equivalent to binary notation of numbers 

12,...,2,1 −=
k

l  (k digits with leading zeroes e.g. for 5=k  
210 010019 = ). 

The binary representation of a number is calculated by dividing remainders 

of division of 0121
2/,2/,...,2/,2/ llll

kk −−  by 2 and rounded the results down to 

integers. Remainders are calculated with the MOD function and rounded with 

the INT function. 

The results (binary representations) are returned in the reversed order e.g. 9 is 

10010 instead of 01001. The reason is that using the reversed order of divisions 

( 1210
2/,2/,...,2/,2/

−− kk
llll ) results in simplification of spreadsheets formulas. 

The order of digits in binary representations does not really matter, however, as 

long as all the representations and, what follows, all the combinations are calcu-

lated. 

Content of the first cell of the range (enter by the user). 

=INT(MOD(first cell of the auxiliary vertical range/(2^(first cell of the auxil-

iary vertical range-1));2)) 

The first cell address in the first argument of MOD must have the $ sign at 

the letter and the second cell address must have the $ sign at the number. 

Copying  

Copy the cell with the above formula right to 1−k  adjacent cells. The result-

ing k-element row range copy down to 22 −
k  adjacent rows. Finally, the result-

ing range must have 12 −
k  rows and k columns. 

Ad. 4. 
IH - the matrix of individual capacities of information. 

Data from the example 

Enter =J19*B$9/MMULT($J19:$N19;B$12:B$16) into the cell B19. Next, 

copy B19 to B19:F49.  

General rule 

The matrix is an array of quotients. Dividends are the elements of vector 2

YR  

multiplied by corresponding entries of a row of the 0-1 combination matrix 
kC . 

Divisors are the entries of the matrix product 
Ak RC , i.e. sums of products 

of rows of 
kC  and columns of 

AR . They are calculated by using the MMULT 

function (formally each of those sums of products is the matrix product of a row 

matrix and a column matrix). 
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Content of the first cell of the range (entered by the user) 

=first cell of the 0-1 combination matrix=1*first cell of the range of squared 

correlations of the dependent variable with independent variables/MMULT(first 

row of the 0-1 combination matrix; first column of the matrix of absolute values 

of correlations);0)  

The address of the first cell of the 0-1 combination matrix must not have 

the $ signs at all. The address of the first cell of the range of squared correlations 

must have the $ signs at numbers only. The first argument of MMULT must 

have the $ signs at the letters only. The second argument of MMULT must have 

the $ signs at the numbers only. 

Ad 5. H - the matrix of integral capacities of information 

Data from the example 

Enter =SUM(B19:F19) into the cell G19. Next, copy G19 to G20:G49. 

General rule 

Integral capacities of information are calculated as sums of individual capaci-

ties of information for each combination. 

Content of the first cell of the range (entered by the user) 

=SUM(first row of the matrix of individual capacities of information) 

No $ signs required. 

Copying  

The cell with the above formula should be copied down to 22 −
k  adjacent 

cells. 

Ad. 6. Finding the combination matching the maximal integral capacity of in-

formation 

Data from the example 

Enter =MAX(G19:G49) into the cell G50.  

Enter =MATCH(G50; G19:G49;0) into the cell G51. No copying required. 

General rule 

The maximum of integral capacities of information is found by using 

the MAX function, whose argument is the range of all the integral capacities 

of information calculated in Item 5. The MATCH function finds the number 

of the best combination by looking for the position of the maximal integral ca-

pacity of information in the array of all the integral capacities of information. 

Content of cells (entered by the user) 

=MAX(range of all the integral capacities of information) 

=MATCH(address of the cell with MAX described above; range of all the in-

tegral capacities of information;0). Zero as the third argument stands for exact 

matching when looking for the value from the first argument).  

The final result of calculations is shown in Fig. 3. 
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Fig. 3. Values of capacities of information (calculated by formulas defined in items 4 and 5) 

and the final result – the maximal integral capacity of information and the number of the 

corresponding combination (calculated by formulas defined in item 6) in an Excel 2010 

spreadsheet 

Source: own calculations 

The maximal value of integral capacity of information is equal to 

0.935953235. This value is attained for combination 16 (00001) what means 

selecting 5X . The result of calculations in Bajorek, Kiernia-Hnat, Skrzypczak 

2012 – 0.913 (what, according to the authors, means selecting 41, XX ) - is in-

correct. It might have been caused by mistakes in calculations of results of com-

plicated “original” formulas. 

4 Summary 

A method of implementation of the Hellwig method in spreadsheets de-

scribed in this paper can be efficiently used for educational purposes but also for 

small sized real world problems. Obviously, spreadsheet software has many 
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restrictions connected with the maximal sizes of single portions of data which 

can be processed in one file. Nevertheless, the presented approach may be inter-

esting for many researchers because spreadsheets are widely available (also as 

free software) and relatively easy to use. The cited example shows how using 

a proper computational tool for can help to avoid mistakes which may happen 

when processing even relatively small-size input data. Additionally, the compu-

tational methods presented in the paper are of much wider importance than 

the Hellwig method itself. Namely, spreadsheet are missing the easy way 

of calculating correlation or covariance matrices and the concept presented here 

is an answer to this disadvantage. Easy method of generating 0-1 combinations 

may also be useful for many users. 
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Optimal route and control for the LQG problem
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Abstract

This paper presents a routing problem of linear system with Gaussian distur-
bances. The linear quadratic control problem was reduced to determining the opti-
mal trajectory , which must be tracked by linear system.The general aim of optimal
route determining consist in minimization of composite cost function. Moreover, it
is compared the optimal route for linear system with trajectory, on which the system
was controlled optimally. To illustrate those paths a numerical example is included.

1 Introduction

Finding the shortest (or the cheapest/fastest) route is a very important class of opti-
mization problems because of their practical applicability in many fields of human
activity. Among the most commonly known examples there are the following:
the shortest path problem (SSP), the travelling salesman problem (TSP), the ve-
hicle routing problem (VRP) and their extensions. They consist in visiting some
or all nodes in a network when minimizing the total weight of arcs connecting
the visited nodes. All those problems are linear and deterministic, nevertheless
even with such - often very restrictive - assumptions, they may be hard to solve.
The deterministic features are not only fixed weights assigned to arcs (distances,
unit costs, travel times) but also fixed locations of nodes and availability of arcs.
The stochastic shortest path problem with recourse (SSPPR) is an example
of a problem with randomly available arcs. Going further, if an object is affected
by random disturbances, we consider optimal routing without any specific nodes
and arcs. Optimal routing is performed then by finding some route, called a tra-
jectory, which is represented by its "geometrical" shape rather than by a "logical"
sequence of nodes.

The control, navigation, stabilization, learning, identyfication, cost minimiza-
tion etc. problems for various systems are widely considered in literature. (see

1Technical University of Lublin, Faculty of Management, Department of Quantitative Methods
in Management, Nadbystrzycka 38, 20-618 Lublin, e-mail: e.kozlovski@pollub.pl
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e.g. M. Aoki, 1967; S. Azuma, M.S. Sakar and G.J. Papas, 2012; T. Banek
and E. Kozłowski, 2005, 2006; Z. Bubnicki, 2000; Y. Chena, T. Edgarb and
V. Manousiouthakisa, 2004; F. Kozin, 1972; E. Kozłowski, 2011; G.N. Saridis,
1995; J. Zabczyk, 1996). Each of these tasks is characterized by necessity of cont-
rolling the object in order to achieve some aim. These tasks are connected with
some optimization tasks. By solving optimization tasks the control law of the sys-
tem can be determined in the explicit or-non explicit form. As a result, we can con-
trol the object to perform the control aim. Sometimes, in order to achieve the aim
the system should be moved after a certain path (trajectory). (see e.g. S. Azuma,
M.S. Sakar and G.J. Pappas, 2012; B. Yuan, M. Orlowska and S. Sadig, 2007;
M.S. Machmoud, 2011; M.K. Mainali, K. Shimada, S. Mabu and K. Hirasawa,
2008). Thus, the problem arises when there are many guide paths. Which of these
trajectories is optimal? In this way, we have the problem of system navigating,
where first we must determine the landmarks and next we must lead the system
in such a way to mimic these marks (points). The tasks of optimal control and
route are dual ones. Namely, if the control law is known, then we can specify
the path after where you want the object to move, and if it is know the optimal
trajectory then we can control so that the object imitated it.

In the case considered in the paper, a problem of movement and control
of linear systems is presented whose main optimality criterion is to minimize
the overall cost. Obviously, for a fixed horizon the energy (control) and land-
marks are evenly distributed out over time.The general aim of paper is to present
the problem of determining the optimal trajectory (path/route) for controlled sys-
tem (the object, e.g a robot). To solve above problem this paper exploits an idea
of dynamic programming. The solution of the presented task gives the optimal
trajectory as a set of landmarks (statemarks). Additionally the optimal control
for a LQC problem is presented. The numerical simulation for a simple linear sys-
tem shows that the differences between the optimal route and the simulated path
for optimal control are negligible.

The paper is organized as follows. In section II the linear quadratic routing
problem is formulated and the idea of conversion from control to navigation is out-
lined. Next, the solution of routing problem is provided in section III. The section
IV presents an example, which illustrates the controls and track for a dual tasks.

2 Linear quadratic routing problem

Sometimes for dynamical systems it is better to determine the optimal route (path)
instead controls. Next the system must be controlled so as to follow a designated
path. Therefore, the task consists in determining the optimal trajectory, after which
we want to move the system with minimal cost. In this case the routing means



Optimal route and control for the LQG problem 43

determining the set of points (marks, landmarks), which must be tracked by system
to satisfy the aim. The objective function represents the total costs, which are
the sum of control costs and costs associated with not to hit the point (target). Let
(Ω,F ,P) be a complete probability space. Suppose that w1,w2, ... are independent
n-dimensional random vectors on this space, with normal N(0, In) distribution. We
assume that all the above mentioned objects are stochastically independent and
an initial state ‖y0‖< ∞.

Let the stochastic linear system is described by a state equation

yi+1 = yi−Bui +Cξ +σwi+1, (1)

where i = 0, ...,N − 1, yi ∈ Rn, B ∈ Rn×k, C ∈ Rn×l and σ ∈ Rn×n. Below we
assume that the parameters of linear system ξ ∈Rk are unknown and has a normal
distribution N (m,Q). On probability space (Ω,F ,P) we define a family of sub-
σ -fields Yj = σ {yi : i = 0,1, ..., j}.

The classical aim of control consists in optimization of performance criterion.
Let for the time i the value uT

i Rui presetnts a cost of control and the value yT
τ Qyτ

prezents a heredity function as losses (add costs) associated with not to hit to target.
For the linear quadratic control problem the aim of control is to minimize the total
cost, which is a sum of costs and losses. Then, the task is to find

inf
u∈U

E

{
N−1

∑
i=0

uT
i Rui + yT

NQyN

}
, (2)

where Yj-measurable vector u j ∈ Rl is called a control action, and u = (u0,u1, ...)
an admissible control and the class of admissible controls is denoted by U .

The main aim is to move the system from state y0 to state origin coordinates
col (0,0, ...,0). The system should be carried out (controlled) at the cheapest cost.
On the other hand, when we need to determine an optimal route, then the task (2)
should be formulated in a slightly different form. Let det

(
BT B

)
6= 0. When we

want to move the system (1) from state yi to yi+1, i = 0,1, ...,N−1 then the control
has a form

ui =−
(
BT B

)−1
BT (yi+1− yi−Cξ −σwi+1) . (3)

Thus, the task (2) may be replaced by

inf
y∈Y

E
N−1

∑
i=0

[
(yi+1− yi−Cξ −σwi+1)

T K (yi+1− yi−Cξ −σwi+1)+ yT
NQyN

]
, (4)

where
K = B

(
BT B

)−1
R
(
BT B

)−1
BT .

We see, that the objective function of task (4) represents the total cost, which
is composed of costs of transformation the system (1) along the trajectory y0,y1, ...,yN
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and cost of losses associated with not to hit to target. Thus the task (4) consist
in determinig the optimal path on wich the total cost is least.

3 Optimal route determining

By solving the task (4) we obtain a set of admissible points (marks) y=(y0, ...,yN−1)
for which the infimum is attained. The sequence {yi}0≤i≤N presents a route (opti-
mal path, trajectory), after which the system (1) should move. The theorem below
presents the method of determining of optimal route, which must be tracked
by a system.

Theorem 1 Let

A j = K−KT (K +A j+1)
−1 K, (5)

L j = KC−KT (K +A j+1)
−1 (KC+L j+1) , (6)

M j =
(
M j+1 +CT KC

)
+(KC+L j+1)

T (K +A j+1)
−1 (KC+L j+1) , (7)

Z j = Z j+1 + tr (A j+1H j)− tr
(
CT KCΣ j

)
−2tr

(
L j+1 (Σ j−Σ j+1)CT )

−tr
(
(KC+L j+1)

T (K +A j+1)
−1 (KC+L j+1)Σ j

)
. (8)

where AN = Q, LN , MN are matrix zero, ZN = 0 and

Σ j = E
(
(ξ −E (ξ |Fj))(ξ −E (ξ |Fj))

T
∣∣∣Yj

)
,

H j = CΣ jCT +σσ
T .

If det (K +Ai+1) 6= 0 for i = 0,1, ...,N−1 then the optimal state (mark, position)
for the time j+1 based on information available to time j is

E
(

y j+1
∣∣Yj
)
= (K +A j+1)

−1 (Ky j +(KC+L j+1)E
(
ξ
∣∣Yj
))

(9)

and the total cost is

inf
y∈Y

E

[
N−1

∑
i=0

(yi+1− yi−Cξ −σwi+1)
T K (yi+1− yi−Cξ −σwi+1)

+yT
NQyN

]
=W0 (y0) , (10)

where

WN (yN) = yT
NQyN , (11)

Wi (yi) = yT
j A jy j +2yT

j L jE
(
ξ
∣∣Yj
)
+E

{
ξ

T M jξ
∣∣Yj
}
+Z j. (12)
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Proof. First we define the Bellmann’s function as

WN (yN) = yT
NQyN

and

Wi (yi) = min
yi+1

E
{
(yi+1− yi−Cξ −σwi+1)

T K (yi+1− yi−Cξ −σwi+1)

+Wi+1 (yi+1)|Yi} (13)

for j = 0,1, ...,N−1. At time N−1 from (13) we have

WN−1 (yN−1) = min
yN

E
{

yT
N (K +Q)yN−2yT

NK (yN−1 +Cξ +σwN)

+2yN−1KCξ +ξ
TCT KCξ

∣∣YN−1
}
+ yT

N−1KyN−1 + tr
(
σ

T Kσ
)

= min
yN

{
E
(

yT
N

∣∣YN−1
)
(K +Q)E (yN |YN−1)

−2E
(

yT
N

∣∣YN−1
)

K (yN−1 +CE (ξ |YN−1 ))
}
+ tr ((K +Q)HN−1)

+2yN−1KCE (ξ |YN−1 )+ tr
(
σ

T Kσ
)
−2tr

(
CT KCΣN−1 +σ

T Kσ
)

+E
{

ξ
TCT KCξ

∣∣YN−1
}
+ yT

N−1KyN−1.

The expected optimal state (position, mark) at time N based on information avai-
lable to time N−1 is

E (yN |YN−1) = (K +Q)−1 K (yN−1 +CE (ξ |YN−1 ))

and

WN−1 (yN−1) = yT
N−1

(
K−KT (K +Q)−1 K

)
yN−1

+2yT
N−1

(
I−KT (K +Q)−1

)
KCE (ξ |YN−1 )

+E
{

ξ
TCT

(
K +KT (K +Q)−1 K

)
Cξ

∣∣∣YN−1

}
+ tr ((K +Q)HN−1)

−tr
(

CT KT (K +Q)−1 KCΣN−1

)
−2tr

(
CT KCΣN−1

)
− tr

(
σ

T Kσ
)

= yT
N−1AN−1yN−1 +2yT

N−1LN−1E (ξ |YN−1 )+E
{

ξ
T MN−1ξ

∣∣YN−1
}
+ZN−1.
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We assume, that equation (12) is true for i+1. From (12) - (13) and the properties
of condition expectation we have

Wj (y j) = min
y j+1

E
{
(y j+1− y j−Cξ −σw j+1)

T K (y j+1− y j−Cξ −σw j+1)

+yT
j+1A j+1y j+1 +2yT

j+1L j+1E
(
ξ
∣∣Yj+1

)
+E

{
ξ

T M j+1ξ
∣∣Yj+1

}
+Z j+1

∣∣Yj
}

= min
y j+1

{
E
(

yT
j+1
∣∣Yj
)
(K +A j+1)E

(
y j+1

∣∣Yj
)

−2E
(

yT
j+1
∣∣Yj
)(

Ky j +(KC+L j+1)E
(
ξ
∣∣Yj
))}

+E
{

ξ
T (M j+1 +CT KC

)
ξ
∣∣Yj
}
+ tr ((K +A j+1)H j)+ yT

j Ky j

+2y jKCE
(
ξ
∣∣Yj
)
+Z j+1 + tr

(
σ

T Kσ
)

−2tr
(
CT KCΣ j +σ

T Kσ
)
−2tr

(
L j+1 (Σ j−Σ j+1)CT ) .

Thus, the expected optimal state (position) at time j+1 is

E
(

y j+1
∣∣Yj
)
= (K +A j+1)

−1 (Ky j +(KC+L j+1)E
(
ξ
∣∣Yj
))

and finally

Wj (y j) = yT
j Ky j +E

{
ξ

T (M j+1 +CT KC
)

ξ
∣∣Yj
}
+2y jKCE

(
ξ
∣∣Yj
)

−
(
Ky j +(KC+L j+1)E

(
ξ
∣∣Yj
))T

(K +A j+1)
−1 (Ky j +(KC+L j+1)E

(
ξ
∣∣Yj
))

+Z j+1 + tr ((K +A j+1)H j)−2tr
(
CT KCΣ j

)
−2tr

(
L j+1 (Σ j−Σ j+1)CT )

−tr
(
σ

T Kσ
)
= yT

j

(
K−KT (K +A j+1)

−1 K
)

y j

+2yT
j

(
KC+KT (K +A j+1)

−1 (KC+L j+1)
)

E
(
ξ
∣∣Yj
)

+E
{

ξ
T
((

M j+1 +CT KC
)
+(KC+L j+1)

T (K +A j+1)
−1 (KC+L j+1)

)
ξ

∣∣∣Yj

}
+Z j+1− tr

(
σ

T Kσ
)
+ tr ((K +A j+1)H j)−2tr

(
CT KCΣ j

)
−2tr

(
L j+1 (Σ j−Σ j+1)CT )− tr

(
(KC+L j+1)

T (K +A j+1)
−1 (KC+L j+1)Σ j

)
= yT

j A jy j +2yT
j L jE

(
ξ
∣∣Fj
)
+E

{
ξ

T M jξ
∣∣Yj
}
+Z j,

what finish the proof.

Remark 2 The equation (9) gives formula (recipe, rule) how to determine the op-
timal route (state- or land-marks) for time j+1 if the system (1) to time j traveled
the way (path, track) y0, ....,y j.

Remark 3 The random vector ξ in system (1) has a normal N (m,Σ) . From
the theory of filtering conditionally normal sequences (see R.Sh. Liptser and
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A.N. Shiryaev, 1978), the conditional distribution P
(
dξ
∣∣Yj
)

has a normal distri-
bution N (m j,Σ j) , where the conditional expectation m j = E

(
ξ
∣∣Yj
)

and the con-

ditional covariance matrix Σ j = E
(
[ξ −m j] [ξ −m j]

T ∣∣Yj

)
are given by formulas

m j =

(
I +Σ

j−1

∑
i=0

CT (
σσ

T )−1
C

)−1

×

(
m+Σ

j−1

∑
i=0

CT (
σσ

T )−1
[y j+1− y j +Bu j]

)
(14)

and

Σ j =

(
I +Σ

j−1

∑
i=0

CT (
σσ

T )−1
C

)−1

Σ. (15)

4 Linear quadratic control problem

Let us consider a linear system, which is described by the state equation (1).
The optimal control of linear system (1) for the task (2) contains in follow

Theorem 4 If the matrices R and Q are positive-definite,
det
(
R+BT Q j+1B

)
6= 0 and Q j is defined as

Q j = Q j+1−Q j+1B
[
R+BT Q j+1B

]−1
BT Q j+1,

for any j = 0, ...,N−1, where QN = Q, then
a). the optimal control of stochastic system (1) is

u∗j =
[
R+BT Q j+1B

]−1
BT Q j+1

[
y j +(N− j)BE

(
ξ
∣∣Yj
)]
, (16)

b). the value of performance criterion is

inf
u∈U

E

{
N−1

∑
i=0

uT
i Rui + yT

NQyN

}
=

N−1

∑
j=0

tr
(
CT Q j+1CΣ j

)
+(y0 +NBE (ξ |Y0 ))

T Q0 (y0 +NBE (ξ |Y0 ))+
N

∑
j=1

tr
(
σ

T Q jσ
)

+
N−1

∑
j=0

(N− j+1)(N− j−1) tr
(
CT Q j+1C (Σ j−Σ j+1)

)
, (17)

where for any j = 0, ...,N−1 matrices Σ j is defined by (15) .

Proof of this theorem we can find in E. Kozłowski, 2010.
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5 Numerical example

Let us determine the optimal route and controls for a linear system with state equa-
tion

yi+1 = yi−Bui +σwi+1, (18)

where the initial state y0 is (53;32) and the fixed horizon N = 10. This system
must be moved to origin coordinates. Let us assume Q = I and

R =

[
2 0.4

0.3 1.5

]
, B =

[
7 0.53

0.5 9

]
, σ =

[
0.4 0.02
0.02 0.6

]
.

Remark 5 The optminal route (trajectory, set of ladmarks) for the system (18) is

E
(

y j+1
∣∣Yj
)
= (K +A j+1)

−1 Ky j (19)

j = 0,1, ...N−1, where A j is defined as (5)

Remark 6 When we want to plane a trajectory (route, path) at time t = 0 then we
must determine optimal route conditioned on σ−field Y0

E
(

y j+1
∣∣Y0
)
= (K +A j+1)

−1 KE
(

y j
∣∣Y0
)

or in dynamical form

E
(

y j
∣∣Y0
)
=
(
(K +A j+1)

−1 K
) j

y0.

Remark 7 When the optimal route for the linear system is known and calculated
as (19) then from (18) the expected control conditioned on σ−field Yj is

ũ j = E
(

u j
∣∣Yj
)
=−

(
BT B

)−1
BT (E (y j+1

∣∣Yj
)
− y j

)
(20)

=
(
BT B

)−1
BT
(

I− (K +A j+1)
−1 K

)
y j.

For this case the route planning E
(

y j
∣∣F0
)
, simulated states y j and landmarks

E
(

y j+1
∣∣Yj
)

(expected optimal states conditioned on information to time j), opti-
mal controls u j are given in the table 1. We see that the route planning, simulated
states, landmarks are very close to each other, the differences between them are
negligible.

The table 2 presents the values of optimal controls u∗j and the expected controls
ũ j for j = 0,1, ...,9. The optimal controls are calculated from (16), but the expected
controls are calculated from (20). Also, we see that the optimal and expected
controls are similar.
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Table 1. The similation of states y j, trace planning E
(

y j
∣∣Y0
)

and landmarks
E
(

y j
∣∣Yj−1

)
for linear system

j E
(

y j
∣∣Y0
)

y j E
(

y j
∣∣Yj−1

)
0 (53,32) (53,32) ——
1 (42.46,36.00) (46.56,32.44) (42.46,36.00)
2 (33.58,36.96) (39.98,33.12) (37.65,34.66)
3 (26.26,35.52) (34.37,32.26) (32.56,33.15)
4 (20.32,32.22) (28.11,30.85) (28.32,30.19)
5 (15.57,27.47) (22.48,27.59) (23.15,26.54)
6 (11.74,21.65) (17.10,23.43) (18.35,21.38)
7 (8.552,15.03) (12.67,18.94) (13.43,15.61)
8 (5.711,7.893) (8.756,13.47) (8.93,9.399)
9 (2.907,0.499) (4.788,6.386) (4.155,1.405)

10 (0.114,0.011) (0.367,−0.24) (0.202,0.118)

Table 2. The optimal controls u∗j and expected controls ũ j for linear system

j u∗j ũ j

0 (0.920,−0.172) (1.545,−0.531)
1 (0.894,−0.044) (1.299,−0.319)
2 (0.855,0.095) (1.064,−0.063)
3 (0.819,0.219) (0.851,0.183)
4 (0.757,0.351) (0.675,0.442)
5 (0.692,0.455) (0.540,0.659)
6 (0.619,0.547) (0.461,0.843)
7 (0.571,0.639) (0.457,1.035)
8 (0.558,0.710) (0.558,1.309)
9 (0.605,0.663) (0.605,0.663)

6 Conclusion

In this article, the optimal track problem of stochastic discrete-time linear system
with quadratic objective function for fixed horizon was presented. The described
problem is an the idea of conversion from control to navigation of linear system.
The tasks of optimal control and optimal route are dual. To determine optimal tra-
jectory the algorythm dynamic programming was used. As a result we have a set
of landmarks. To perform aim the system (robot, object) must track the optimal
path (trajectory).

The extension of described problem can be used, for example, to the source
seeking problem, route determinig with reach information, plannig navigation,
perfect tracking etc.
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 Analysis of average exchange rates  

Keywords: exchange rates, linear autoregression, absolute relative error, periodic components, 

normal distribution, gamma distribution. 

Abstract 

The quantitative analysis of the average exchange rates is discussed in this article. 

The study was undertaken in order to establish the existence of possible quantitative regu-

larities in the observed variables. The distributions of the average exchange rates 

of the chosen currency as well as the distributions of the random disturbances of first order 

autoregression models are analyzed. The results for these models are compared to the re-

sults for the model in which the regression coefficient equals 1. The existence of the peri-

odic components in the random disturbances of each model is also analyzed. 

1 Introduction 

Studying of financial markets has a long tradition and continues to arouse 

much excitement. In this paper the average exchange rates in years 2003-2011 

(2281 observations) of ten chosen currencies published by the National Bank 

of Poland such as: the US dollar (USD), the euro (EUR), the Danish krone 

(DKK), the Hong Kong dollar (HKD), the Japanese yen (JPY), the rand (ZAR), 

the Russian ruble (RUB), the Swiss franc (CHF), the pound sterling (GBP), 

the International Monetary Fund (XDR) in relation to the Polish zloty (PLN) are 

analyzed (NBP Archive 2013). The 1
st
 order autoregressive model: 

 
ttt bb εβ +=

−1
, 2280,...,2,1=t  (1) 

where tb  is t
th
 observation of the average exchange rate of chosen currency in 

relation to PLN, β  is the regression coefficient and tε  is a random disturbance 

for the t
th
 observation, is used in this analysis. 
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Three versions of model (1) for ten chosen currencies will be discussed: M1, 

M2, M3. In the first version M1, the parameter β  is estimated with the most 

important method of the Least Squares (LSM), in the second one, M2 – with 

the method of the Least Absolute Relative Error Estimation (LAREEM), where-

as in the third one, M3, we accept arbitrarily 1=β . The rests of the latter model 

correspond to the daily quotation rises of the average exchange rates for chosen 

currencies. 

2 Least Absolute Relative Error Estimation Method 

(LAREEM) 

The Least Absolute Relative Error Estimation Method has been used since 

relatively recently (Ashar and Wallace 1963, Hyb and Kaleta 2004, Chen et 

al. 2010). A short description of the theoretical basis of this method for linear 

model of the form: 

 ttppttt XXXY εααα ++++= ,,22,11 ... , 

for Nt ,...2,1=  where 0>tY , we published in Rzymowski and Surowiec 2011. 

In the case of model (1) in the form 

 ttt XY εβ +=  (2) 

with the dependent variable tY and with one explanatory variable tX  it is possi-

ble to create explicit formulae for the regression coefficient β  and the relative 

error tδ . 

For the variables tX , tY  taking positive values only, for ,,...2,1 Nt =  we are 

looking for such a parameter R∈β , which minimizes the size of the rela-

tive error 

 .1 β
β

δ

t

t

t

tt
def

t
Y

X

Y

XY
−=

−
=  

Speaking a little more, we are looking for such a parameter R∈
*

β  which min-

imizes the size of 

 β

t

t

Nt Y

X
−

=

1max
,...2,1

. 

Therefore we are looking for such a parameter ,* R∈β  for which  

 .1max min1max
,...2,1

*

,...2,1
ββ

β
t

t

NtR
t

t

Nt Y

X

Y

X
−=−
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It is possible to prove, that the unknown parameter R∈
*

β  of model (2) is 

given by the formula 

 ,
2*

−+
+

=

χχ

β  (3) 

where 

 ,min
,...2,1

t

t

Nt Y

X

=

−
=χ  ,max

,...2,1
t

t

Nt Y

X

=

+
=χ  (4) 

and the relative percentage error of model (2) is equal to 

 %.100
*

−+

−+

+

−
=

χχ

χχ
δ  (5) 

In addition to this, for all Nt 1,2,...,= , we have 

 ,100 **
δ

β
δ ≤

−
≤−

t

tt

Y

XY
 

 *
*

,...2,1
100min δ

β
−=

−

=
t

tt

Nt Y

XY
 and .100max

*
*

,...2,1
δ

β
=

−

=
t

tt

Nt Y

XY
  

3 Results 

The results of our research concern the analysis of models of the average ex-

change rates of the chosen currencies in versions M1, M2, M3, the analysis 

of distributions of the average exchange rates as well as the distributions 

of the random disturbances of first order autoregression models of the average 

exchange rates in versions M1, M2, M3. We also present the results concerning 

the harmonic analysis of the random disturbances of first order autoregression 

models of the average exchange rates.  

3.1   Models 

Table 1 presents the appropriate regression coefficients for M1 and M2 mod-

els and relative error percentage for M1, M2 and M3 models for the chosen cur-

rencies in years 2003-2011. 

The regression coefficients and relative percentage errors for models M2 for 

the chosen currencies in years 2003-2011 were obtained with the LAREEM, us-

ing patterns (3), (4) and (5). On the basis of the data from Table 1 one can con-

clude that the relative percentage errors for the uncomplicated M3 model are 

comparable to M1 model. The relative errors for M2 models for all analyzed 

currencies are not more than 9%, and the relative errors in the models M1 and 

M3 are larger on average by 0.5% from M2 models errors. In addition one can 

observe that the relative errors in the models M1 and M3 are close to each other 

with an accuracy of 0.005% on average.  
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Table 1. Regression coefficients for models M1 and M2 and relative percentage errors for 

models M1, M2 and M3 in years 2003-2011 

Currencies 1Mβ  
2Mβ  

1Mδ  
2Mδ  

3Mδ  

1 USD 0.9999 0.9940 6.97% 6.33% 6.98% 

1 EUR 1.0000 0.9960 4.70% 4.28% 4.70% 

1 DKK 1.0000 0.9965 4.68% 4.32% 4.68% 

1 HKD 0.9999 0.9934 7.01% 6.32% 7.03% 

100 JPY 1.0001 1.0042 9.32% 8.95% 9.33% 

1 ZAR 0.9999 0.9936 6.18% 5.51% 6.19% 

1 RUB 0.9999 0.9995 4.94% 4.90% 4.95% 

1 CHF 1.0001 0.9872 8.13% 6.73% 8.11% 

1 GBP 0.9999 0.9971 4.81% 4.51% 4.82% 

1 XDR 1.0000 0.9986 4.58% 4.44% 4.59% 

Source: own elaboration 

Figure 1a presents the nature of the changes over time of the regression coef-

ficients and Figure 1b presents nature of the changes over time of the relative 

percentage errors for M1, M2, M3 models for USD. One can see that the chang-

es of the values of regression coefficients and the changes of the values 

of the relative percentage errors for M1 and M3 models are comparable in the 

entire analyzed period 2003-2011 (see Table 1) as well as in subsequent years 

of this period (see Figure 1). 
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Figure 1. Nature of the changes over time in years  2003-2011 of a) regression coefficients  

b) relative errors for M1, M2, M3 models for USD. 

Source: own elaboration 

Looking at Figure 1 a) and 1 b) one can see the coincidence in chang-

es of the regression coefficients of M2 model and the relative percentage 

errors. This coincidence occurs for all the analyzed currencies. The big-

gest change of values of the regression coefficients of M2 model and 

a) b) 
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the relative percentage errors has occurred in 2008 for the analyzed cur-

rencies with the exception of the JPY for which this change has occurred 

earlier, namely in 2007. One can see it in Figure 2 a), 2 b). The noticeable 

change of value of the regression coefficient of the M2 model confirms 

the collapse of the value of exchange rates for all analyzed currencies in 

2008.  
βΜ2

 USD

 EUR

 DKK

 HKD

 JPY

 ZAR

 RUB

 CHF

 GBP

 XDR2003 2004 2005 2006 2007 2008 2009 2010 2011

0,975

0,980

0,985

0,990

0,995

1,000

1,005

1,010

1,015

δΜ2

 USD

 EUR

 DKK

 HKD

 JPY

 ZAR

 RUB

 CHF

 GBP

 XDR2003 2004 2005 2006 2007 2008 2009 2010 2011

0,00

0,01

0,02

0,03

0,04

0,05

0,06

0,07

0,08

0,09

 

Figure 2. Value of a) regression coefficients b) relative errors for M2 models for ten curren-

cies in subsequent years of the period 2003-2011 

Source: own elaboration  

3.2 Distributions 

In this section we present the results concerning the distributions of the aver-

age exchange rates of the ten chosen currencies as well as the results concerning 

the distributions of the random disturbances of first order autoregression models 

in versions M1, M2, M3 of the average exchange rates. 
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Fig. 3. Probability Plot for normal distribution for average exchange rates in years 2003-

2011 for a) USD,EUR,JPY,CHF GBP,XDR b) DKK,HKD,ZAR,RUB with Shapiro-Wilk Test  

Source: Own elaboration  

On the basis of the Probability Plot for the normal distribution for the average 

exchange rates in years 2003-2011 presented in Figure 3 one can conclude that 
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none of the distributions of the average exchange rate is a normal distribution 

during that period. 

The analysis of distributions of random disturbances of the M1, M2 and M3 

models for USD in years 2003-2011 is presented in Figure 4 a) and 4 b). One 

can conclude that the distributions of random disturbances of M1, M2 and M3 

models are very similar and they are not the normal distributions. 
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Fig. 4. A) Frequency Distribution with normal distribution b) Probability – Probability Plot 

for normal distribution for  M1, M2 and M3 model for average exchange rates for USD in 

years 2003-2011 

Source: own elaboration  

The Figures 5, 6 and 7 present the Probability-Probability Plots. In these fig-

ures the x-axis represents Theoretical Cumulative Distribution Function,           

the y-axis represents Observed Cumulative Distribution Function. 

The results presented in Figure 5 and 6 relate to the chosen average exchange 

rates and the positive values of sequences of residuals for M2 models only. We 

also analyzed the sequences of residuals for M1 and M3 models. 

One can see in Figure 5 and 6 that the distributions of the average exchange 

rates of the chosen currencies as well as the distributions of positive values 

of the random disturbances of first order autoregression models of the average 

exchange rates in versions M2 in the entire period 2003-2011 (see Figure 5) and 

in subsequent years in period 2003-2011 considered separately for USD only 

(see Figure 6) have the distribution close to Gamma distribution. 

Furthermore, one can assume that the Gamma distribution for positive values 

of random disturbances of M2 model persists in time, but Gamma distribution 

for average exchange rate for USD has not this property. We observed these 

properties not only for average exchange rate for ten chosen currencies and for 

positive values of the random disturbances of M2 models of the average ex-

change rates of ten chosen currencies but also for negative values of the random 

disturbances of first order autoregression models of the average exchange rates 

taken with a minus sign and for the absolute values for these residuals without 

zero value. 
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USD_M2 Rozkład: Gamma(0,915755, 0,0209758)
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Fig. 5. Probability-Probability Plots for Gamma distribution for average exchange rates and 

for positive random disturbances of M2 models for a) USD, b) EUR, c) DKK, d) HKD 

 e) JPY, f) ZAR, g) RUB, h) CHF, i) GBP j) XDR in years 2003-2011 

Source: own elaboration  
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Fig. 6. Probability-Probability Plots for Gamma distribution for average exchange rates and 

for positive random disturbances of M2 models for USD in the following years from the pe-

riod 2003-2011  

Source: own elaboration  

In Figure 6, which presents the exchange rates for USD, one cannot observe 

the Gamma distribution in 2003. 
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Fig. 7. Probability-Probability Plot for normal distribution for average exchange rates and 

for positive random disturbances of M2 model for USD in 2003 

Source: own elaboration  
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A better distribution for exchange rates of this currency and for positive val-

ues of the random disturbances of M2 model of this currency in 2003 is a normal 

distribution. One can observe it in Figure 7. 

Unfortunately, the normal distribution for the average exchange rate for USD 

does not persist over time. 

3.3   Harmonic analysis 

In this section, the existence of periodic components in the random disturb-

ance of M1, M2 and M3 models is analyzed. We do not consider the existence 

of periodic components in the quotations of average exchange rates of chosen 

currencies due to the fact it is very probable that those periodic components can 

have long periods. In order to search the periodicities of harmonic components 

the standard methods presented in many econometrics textbooks (Chow 1995) 

are used. 

For random disturbances of model (2), for every 2/ ,...,2,1 Nkk ≤=  one 

defines: 
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of model (2). 

Table 2 presents the values of periods for random disturbances for 1
st 

order 

autoregressive M2 model for all analyzed currencies in years 2003-2011. 

A shaded cell indicates that 1
st 

order autoregressive M2 model for analyzed cur-

rency (column) can be described by the given period (row). 

To summarize the results included in Table 2, one can observe some regulari-

ties in the analyzed currencies. 

• We can divide all analyzed currencies into two groups. The first group con-

sists of the currencies which all have the periods of 2.5 weeks (13.73 days) 

and 1.5 weeks (7.73 days). The second group consists of the currencies with 

some quite unique periods, i.e. different from periods of other currencies. 

USD, EUR, DKK, HKD, XDR belong to the first group, JPY, ZAR, RUB be-

long to the second one. GBP has the period of 5.15 days which does not oc-

cur in other currencies and it has also the period equal to 10 days, similarly as 

USD, HKD and XDR. 
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In addition: 

• USD and HKD have the same periodic components; the same phenomenon 

occurs for EUR and DKK. 

• RUB, CHF, GBP and XDR are the currencies which also have long periods 

(over 75 days). 

All analyzed currencies have a period of 2.02 days. 

Table 2. Regression coefficients for models M1 and M2 and relative percentage errors for 

models M1, M2 and M3 in years 2003-2011 

Period USD EUR DKK HKD JPY ZAR RUB CHF GBP XDR 

2.02           

2.38           

3.23           

5.15           

5.39           

6.83           

7.73           

8.29           

10.00           

13.73           

15.20           

Source: own elaboration 

4 Conclusions 

The obtained results are the following: 

1. The results presented in Table 1 confirm the popular sentence: the best 

forecast for the next day for exchange rate is today’s exchange rate. 

2. The distributions of the exchange rate for all currencies are unstable in 

time. The distributions of the positive random disturbances of the first or-

der autoregression models of type M1, M2 and M3 are much more stable 

and they are similar to the gamma distribution. However, the standard as-

sumption in econometrics textbooks is that the sequences of residuals for 

econometric models have a normal distribution. This also applies to 

the absolute values of these sequences of residuals. 

3. The maximum values of relative percentage errors in all models, which are 

estimated by the method of Least Absolute Relative Errors Estimation, are 

less than 9%. For half of the models the maximum values of relative per-

centage errors, which are estimated by this method, are less than 5% (see 

Table 1). 

4. The results obtained for M3 model are similar to the results obtained for 

M1 model. 
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5. In the majority of cases analyzed currencies (see Table 2) one can state oc-

curring the same periods. This contradicts the independence of successive 

increases in the average daily exchange rates 

In conclusion we can state that some obtained results suggest certain limita-

tions of the applicability of the standard models of financial mathematics in rela-

tion to currency market. 

Bibliography 

Ashar V. G., Wallace T. D., A sampling Study of Minimum Absolute Deviations 

Estimators, “Operations Research”, 1963 vol. 11, pp. 747-758. 

Chen K., Guo S., Lin Y., Ying Z., Least Absolute Relative Error Estimation, 

Journal of American Statistical Association, 2010 vol. 105(491), pp. 1104-1112. 

Chow G. C., Ekonometria, Warszawa, PWN, 1995. 

Hyb W., Kaleta J., Porównanie metod wyznaczania współczynników modelu ma-

tematycznego na przykładzie prognozy liczby ludności świata, Przegląd naukowy 

Inżynieria i Kształtowanie Środowiska,, 2004, vol. 2(29), pp. 94-99. 

Rzymowski W., Surowiec A., Autoregression models for unemployment rate, 

[in:] Rola Informatyki w naukach ekonomicznych i społecznych, Innowacje 

i implikacje interdyscyplinarne, ed. Z. E. Zieliński, Kielce, WSH, 2011, vol. 2, 

pp. 262-273. 

NBP Archive of average exchange rates, http://www.nbp.pl/home.aspx? 

c=/ascx/archa.ascx, accessed 4th June 2013. 



 



 

 

Witold Rzymowski
1
, Tomasz Warowny

2
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Abstract 

A special kind of two-person games with incomplete information is considered in 

the paper. The result of the game can be win or loss and the result is uncertain for both 

players. Prior to the game, one player, let's call him player A (attacker), assesses 

the strength, capabilities, etc. of his opponent B (defender). Probability of A's accession to 

the game depends on this evaluation. If A joins the game, B has to take part in it. Probabil-

ity of A's winning depends then upon the real power of B. Before A joins the game, 

the player B can allocate part of his forces on the additional activities, which we call 

a bluff, reducing their own strength, but at the same time reducing the probability of A's 

accession to the game. Player B's aim is to minimize the probability of A's winning. We 

construct a mathematical model of this type of games and investigate the desirability of us-

ing a bluff. 

1 Introduction 

In many areas of human activities the result of actions of a specific entity, 

say player B, depends on his actions and the actions of others. Furthermore, as-

sessment of ability (strength, capacity, etc.) of a given player B, made by other 

players, may have a significant impact on their performance, and thus also on the 

outcome of player B. Player B, allocating a part of his resources to cause a false 

assessment of the situation by other participants in the game, can sometimes get 

a better result than the one generated by his real possibilities. These additional 

B's activities we call a bluff.   

Actions resulting in an erroneous assessment of the opponent are a common 

element of warfare. In past centuries Tatars escaped often from the battlefield in 

order to pull an opponent in a prepared trap. Obviously the result of the battle 

with a well-prepared opponent is uncertain and the losses can be very large. 

Simulated battle with simulated escape does not require a great loss and a chance 

                                                 
1
 Lublin University of Technology, Faculty of Fundamentals of Technology, Department of Ap-

plied Mathematics, Nadbystrzycka 38, 20-618 Lublin, e-mail: w.rzymowski@pollub.pl 
2
 Lublin University of Technology, Faculty of Management, Department of Quantitative Methods 

in Management,  Nadbystrzycka 38, 20-618 Lublin, e-mail: t.warowny@pollub.pl 



64                                                                           Witold Rzymowski, Tomasz Warowny  

of winning the battle on a prepared area with disorganized pursuing enemy is 

much better. The only exception was sometimes the Polish hussars prepared es-

pecially for the battles with the Tatars. 

During the Second World War, before the invasion in Normandy, the Allies 

conducted wide-ranging measures to confuse the Germans about the place 

of a planned attack. Such action was undertaken to increase the initial advantage 

for the Allies. But, on the other hand, it probably cost a lot of resources and hu-

man efforts, which could reduce the effectiveness of attack if the Germans had 

discovered its real place.  

In some cases, while doing business in a competitive environment, a compa-

ny does not want to reveal its actual position in the market. To do this, it carries 

out some additional measures such as lowering prices of traded goods to in-

crease sales ("limit pricing", see: Malawski et al 1997, p. 82), increasing expend-

itures on advertising or presenting a fake image of the company in the media. 

The purpose of it is to deceive the competing companies in such a way that 

the position of the deceiving company in the eyes of its competitors becomes 

greater than it is really.  

In the animal world we can also encounter some kind of bluff. Some species 

of tropical frogs, in the moment of danger, inflate and take the vivid coloration 

to present the aggressor the illusion that they are more dangerous than they real-

ly are. Other animals, such as the antelope for example, are doing short runs with 

high jumps to discourage predators to initiate the chase. In doing so, they lose 

some of their energy which is necessary to a possible escape in case the predator 

has not abandoned the attack. 

A good example of the use of bluff is poker game. Player, despite his weak 

position, can confuse opponents by aggressive manoeuvrings suggesting his 

much better position. This behaviour leads sometimes to a victory, but it also 

weakens the ability to continue the game if the opponents do not fear the bluff 

and decide to continue. 

A simplified model of the use of bluffing in poker was presented in the book 

Von Neumann, Morgenstern 1967 (already recognized as a classic item) dealing 

with the theory of games and economic behaviour. Currently, there are many 

items concerning the strategies of bluffing in card games, see e.g. Caro 2003, 

Hansen 2003, Sklansky 1999. An interesting item concerning provocations is 

Karwat 2007. However, it is difficult to find an item with mathematical ap-

proach to the problem of the use of bluff or provocation in games. 

This paper presents the model of two-person games with incomplete infor-

mation. We consider a game with player A (attacker) and player B (defender). 

Roughly speaking, player B is bluffing in order to avoid playing. However, if 

player A joins the game, player B will also have to adhere to it. The aim of the 

player B is to minimize the probability of winning of his opponent. 
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2 Bluff 

Two players can take part in the game: attacker A and defender B. The game 

can be won by either player A or player B, but A does not need to take part in 

the game. However, if A decides to take part in the game then B will have to 

take part as well. Prior to the game, player A assesses the strength (power, pos-

sible efficiency, etc.) of the player B on a scale from 0 to 1. If [ ]1,0∈z  stands for 

such an evaluation then probability of the accession of A to the game is equal to 

( )zq , where ( ) 10 =q  and [ ] [ ]1,01,0: →q  is a decreasing function. Probability 

of winning for the player A will then depend on the real power [ ]1,0∈r  

of the player B, which can be different from its evaluation z . We shall denote 

this probability by ( )rp , where ( ) 10 =p  and [ ] [ ]1,01,0: →p  is a decreasing 

function. The probability that the player A joins the game and win is therefore 

equal to 

( ) ( ) ( )rpzqrzP ⋅=, . 

Let [ ]1,0∈s  denote the initial, real the strength (power, possible efficiency, 

etc.) of the player B. Allocating part of their capabilities for additional activities 

(bluff), player B can lead to a reassessment of its forces to the level of ( ) ssz ≥ . 

On the other hand, additional activities can reduce initial strength of the player B 

to a level ( ) ssr ≤ . As a result, the probability that the player A joins the game 

and win will equal 

( ) ( )( ) ( )( ) ( )( )srpszqsrszP ⋅=, . 

Player B's aim is to minimize the probability ( ) ( )( )srszP , , which leads to 

the problem 

 
[ ]

( )( ) ( )( )srpszq
s

⋅
∈ 1,0
min . (1) 

We will consider functions zrqp  , , ,  of a special form and introduce an ad-

ditional auxiliary parameter [ ]1,0∈σ , which can be interpreted as the intensity 

of bluffing. Given ( )1,0, ∈ba . Let us define, for arbitrary [ ]1,0, ∈yx , 

( ) byyq −= 1  

and  

( ) axxp −= 1 . 

Clearly ( ) ( ) 100 == pq  and both p  and q  are decreasing functions. Next, for 

arbitrary [ ]1,0, ∈σs , we set                                                                      

                       σσ )1(),( sssz −+=  and ssr )1(),( σσ −= . 
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If 0=σ , which means that B does not bluff, we obtain 

ssrsz == ),(),( σσ , 

so that the strength of B and its assessment by player A coincide with initial val-

ue s . 

If 1=σ , which means that B consumes over all of his strength to bluffing, 

we obtain 

1),( =σsz  and 0),( =σsr . 

In this case 

( ) ( )0111 pbq =<−= . 

Therefore A will take part in the game with probability ( ) 11 <q  and will then 

this game with probability ( ) 10 =p . 

If 10 << σ , then 

   ( ) ( ) ssssz >−+= σσ 1, , when 1<s  

   ( ) ( ) sssr <−= σσ 1, ,    when 0>s , 

which is consistent with the above description of the properties of the functions 

z  and r . 

Setting now 

( ) ( )( )( )sassbsP )1(1)1(1, σσσ −−−+−= , [ ]1,0, ∈σs , 

we change general problem (1) to the following problem 

 
[ ] [ ]

( )σ
σ

,minmin
1,01,0

sP
s ∈∈

.  (2) 

The solution to the problem (2) will be given in next section. This section will be 

finished with 

Example 1 

Suppose that, for all [ ]1,0, ∈rz , 

( ) zzq 7,01−=  and rrp 6,01)( −= . 

Let 8,0=s  be the initial strength of the player B. 

(a) If B does not bluff ( 0=σ ) then player A's probability of accession to 

the game is equal to 

( )( ) ( ) 44,08,07,017,01, =⋅−=−== ssqszq σ  
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and A will then win possible game with the probability 

( )( ) ( ) 52,08,06,016,01, =⋅−=−== sspsrp σ . 

Therefore the probability that the player B will lose the game is equal to 

( )( ) ( )( ) 229,052,044,0,, =⋅=σσ szpszq . 

(b) Suppose now that the player B will bluff with intensity 4,0=σ . This 

will increase its ranking to 

( ) ( ) ( ) 88,08,014,08,04,0;8,0, =−⋅+== zsz σ , 

which in turn will decrease A's probability of accession to the game to 

( )( ) 384,088,07,01, =⋅−=σszq . 

Simultaneously, intensity 4,0=σ  decreases B's real power to 

( ) ( ) ( ) 48,08,04,014,0;8,0, =−== rsr σ  

which in turn increases probability of winning possible game by the player A to 

( )( ) 712,048,06,01, =⋅−=σsrp . 

Consequently, the probability that the player B will lose the game is equal to 

( )( ) ( )( ) 273,0712,0384,0,, =⋅=σσ srpszq . 

Comparing cases (a) and (b) we see that bluffing does not need to be 

a good strategy in the game  

3 Solution 

We are now going to solve the problem (2). If ( )1,0∈s  then 

( ) ( ) ( ) ( )( )( ) ( )( )asasassbbsassabssP −−+−−−−+−−= 111111, 2
σσσ  

is a square trinomial with respect to the variable σ  with negative factor at 2
σ . 

If 0=s  or 1=s  then ( )σ,sP  is a linear function with respect to the variable σ . 

Therefore, for each [ ]1,0∈s , the function ( ) [ ] RsP →⋅ 1,0: ,  is concave. Since 

each concave function attains its minimum at the boundary of its domain we 

have 
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[ ] [ ]

( )

[ ]

( ) ( ){ }

[ ]

( )( ){ }.1,11minmin

1,,0,minmin

,minmin   

1,0

1,0

1,01,0

bbsas

sPsP

sP

s

s

s

−−−=

==

=

∈

∈

∈∈

σ
σ

 

Note that 

( ) ( ) ( )( ) ( ) RsbaabsbsassPsf
def

∈++−=−−== s  ,1110, 2 , 

is a square trinomial with respect to the variable s  with positive factor at 2
s  and 

   ( ) bf −>= 110 , 

   ( ) ( )( ) bbaf −<−−= 1111 . 

Moreover, both roots 
a

1
 and 

b

1
 of f  are greater than 1, so that the equation 

( ) bsf −=1  

has a unique solution ( ) ( )1,0,00 ∈= bass . It is easy to check that 

( )
( )

ab

abbaba
bass

2

4
,

22

00

−+−+
==  

is such a solution (see Fig. 1). 

 

Fig. 1. Plot of functions f  and g   

Source: own elaboration  

( )sf  

1 

1 

1-b 

0s  

( )sg   b−1
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Consequently 

[ ] [ ]

( )
( )( )



≤≤−−

≤≤−

=
∈∈ .0  when   ,11

,0  when   ,1              
,minmin

0

0

1,01,0 ssbsas

ssb
sP

s
σ

σ

 

4 Remarks 

1. The player B should bluff with the maximal intensity in the case of 0ss < , be-

cause of 

 ( ) ( )( ) ( ) [ )0,0 ,0,111,1 sssPbsassPb ∈=−−<=− . 

2. Bluffing is not necessary (and even can be harmful) in the case of 0ss > , be-

cause of 

 ( ) ( )( ) ( ) ( ]1, ,0,111,1 0sssPbsassPb ∈=−−>=− . 

3. We have 

( )
( )

( ) ( )

( )

( ) ( )

( )

( )
22

22

2
222

22

2222

22

0

4

2
            

           

42

4ba

             

42

44

              

2

4
,

abbaba

b

abbabaab

abba

abbabaab

abbabaabbaba

ab

abbaba
bas

−+++

=

=








−+++








−+−+

=

=








−+++








−+++






−+−+

=

=
−+−+

=

 

 

for each ( )1,0∈a , so 

( ) 0,lim 0
0

=
→

bas
b

. 

When b  approaches 0, then probability ( )zq  approaches 1 in the whole interval 

[ ]1,0 . Thus (see Fig. 1) bluffing becomes effective only for small s , which is 

consistent with intuition. 
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4. Similarly as it was done in the cited book (Von Neumann, Morgenstern 1967) 

we considered here a very special and simple model of bluffing. Modelling 

the use of bluff in real conflicts is interesting but rather difficult problem. Our 

model can be viewed as a first step in this direction. 

Example 2 

In the case of qp,  from Example 1 we have 

( )
6941,0

7,06,02

7,06,047,06,07,06,0 22

0 =

⋅⋅

⋅⋅−+−+
=s  

and 

[ ] [ ]

( )





≤≤+⋅−⋅

≤≤

=
∈∈ .16941,0  when   ;13,142,0

,6941,00when             ;3,0             
,minmin

2
1,01,0 sss

s
sP

s
σ

σ

 

By Remark 1 bluffing can be effective only for 6941,00 =< ss , which explains 

results of Example 1. 

Example 3 

Army Command B expects an attack by an army of A. Analysts of B have esti-

mated the value of military capabilities sufficient to repel any attack, but also 

found that the real potential of a defensive army B is 70 percent ( 7,0=s ) of this 

sufficient value. For the lack of time, the military potential can no longer be in-

creased. Army Command B must make one of two decisions: 

- wait for an attack without further action; 

- perform the action the enemy disinformation, which consists of additional 

motion of troops, sending false messages, creating dummy weapons, etc. 

These activities may increase the defence capability assessment ( )z  carried 

out by an army of A, but also undermine the effectiveness of any self-

defence ( )r . 

Analysts have estimated the probability of B army attack as 

( ) zzq 8,01−= . 

A probability of winning by the army of A in case of attack is estimated as 

rrp 9,01)( −= . 

We have 9,0=a , 8,0=b . 

Calculating the value of 0s , we get: 



Bluff in games                                                                                                                   71 

( )

( )
.65,0

8,09,02

8,09,048,09,08,09,0
    

2

4

22

22

0

=

⋅⋅

⋅⋅−+−+
=

=
−+−+

=

ab

abbaba
s

 

Because 0ss > , the command of the army should decide not to carry out addi-

tional activities misinforming the opponent. The minimum value of the probabil-

ity that the opponent will proceed to attack and win is then equal 

[ ]

( ) ( ) ( )( ) ( )( ) 16,07,08,017,09,01110,,min
1,0

=⋅−⋅−=−−==
∈

bsassPsP σ
σ

. 

If the command of the army B, however, decides to bluff, then the probability 

of failure would be the value of 

[ ]

( ) ( ) 2,011,,min
1,0

=−==
∈

bsPsP σ
σ

. 
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 Modelling the variability  

of the controlled environmental noise hazard levels  

by the ARMA processes 
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Abstract 

A new method of processing the results of noise measurements for the needs of estima-

tion of long-term noise indicators is proposed in the paper. It is based on using the ARMA 

processes – autoregressive-moving average processes – in modelling the results. It enables 

an estimation of the expected value of sound level and variance, which can be used in un-

certainty assessments of the realized evaluates. The presented approach is illustrated by 

calculation examples related to the data of the continuous noise monitoring in one 

of the urban areas. 

1 Introduction 

Problems of assessing acoustic hazards of the environment are subjects to 

mandatory obligations (Box, Jenkins, Reinsel 2008, Brockwell, Davis 2002, 

Brown, Mayer 1961) which require performing statistic control inspections, 

connected with the selection of the proper forecasting method of acoustic haz-

ards in the analysed areas. Realization of these processes should take into ac-

count several measuring and calculating conditions determining the way of esti-

mation the expected values of the controlled noise indicators as well as methods 

of their uncertainty assessments. Currently binding estimation procedures 

of noise indicators (Brown, Mayer 1961) are derived from the classic solutions 

of statistic conclusions. Their estimating rules (Guide to the Expression of Un-

certainty Measurement 1995) are related to assumptions of the equivalence 

of the results of the random control test and the normal probability distribution 

of occurrence of these results, and also to the condition that successive meas-
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urements , 1,...,
i

x i n=  are statistically independent one of another, what means 

they are uncorrelated. When the environment hazard state control is realized on 

the bases of random tests, these assumptions are generally accepted without 

wider analyses and discussions of their reliability. This concerns mainly the cor-

rectness of the assumptions that the results of sound level measurements are 

of the normal distribution and that they are uncorrelated. The first one, being 

the result of physical properties of the measured value and the observed - in 

practice - asymmetry of the density of probability distribution of the results is 

generally difficult to be accepted. The second one is of a small likelihood due to 

often occurring measuring disturbances of relatively high levels, which influence 

successive results of random tests as well as conditions of performing these tests 

for the needs of the long-term noise indicators estimation. 

Abovementioned limitations of the current estimation methods of long-term 

noise indicators generated the need of looking for new modelling attempts. In 

some papers (Regulation of the Minister of Environment 2007, Bal 2010, Batko, 

Bal 2008) the attention was paid to the possibility of estimation of noise indica-

tors and their uncertainty assessments by modelling the control tests results by 

means of time series models, especially by adaptation trend models from 

the R.G. Brown’s method perspective (Batko, Knapik 2013). 

Positive results obtained in this model approach induced the authors to con-

tinue this way of looking for new estimation solutions.  

The aim of the hereby paper is the presentation of this model concept with 

taking into account the formalism of the ARMA processes, which describes 

a broader class of possible modelling solutions, which have already found nu-

merous applications (Batko, Bal 2008). Its presentation, in relation to modelling 

the variability of assessing measurements of the controlled noise indicators to-

gether with the analysis of its suitability for the probabilistic characteristics 

of estimation, constitutes the subject of the hereby paper. 

2 Description of the applied ARMA method in modelling  

the measurement results of the controlled noise indicators 

The assessment of acoustic hazards in areas requiring protection and related 

to them selection of environmental acoustic protection solutions is conditioned 

by knowledge of long-term average sound levels 
( )j

LTL  at times of the day: 1=j , 

i.e. in hours [6.00 -18.00], in the evening: 2=j , hours: [18.00-22.00] and at 

night: 3=j , hours: [22.00-6.00] - during the whole calendar year.  

The 
( )j

LTL  values for individual times: 1, 2,3j = , are determined as:  
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( )

( )

, , ,

365
0.1

1

1
10log 10

365

j

A eq LT kLj
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k

L
=

 
=  

 
∑   (0.1) 









= ∑

=

365

1

)(
)(

,,,1.0
365

1
log10

k

Lj

LT

j
kLTeqAL                (1) 

from equivalent sound A  levels (
, ,A eq TL  ) [dB/A] in the k

th
 day of the calen-

dar year, in the considered reference time period 
( )j

T proper for the examined 

time: 1, 2,3j = .  

The long-term day-evening-night level 
DEN

L , being the basic indicator for 

the selection the realization strategy of the environment acoustic protection, is 

calculated from their values  

 

 

( ) ( ) ( )

{ }

( ) ( )

( )

1 2 3

, , , , , ,

0.1 100.1 50.1

, , :

1
10log 12 10 4 10 8 10

24

NED

A eq LT D A eq LT E A eq LT N

LLL

DEN

L L L L L L

L
++

= = =

 
= ⋅ + ⋅ + ⋅  

 (2) 

The knowledge of the expected value and variance related to the results 

of  the  equivalent sound level 
)(

,,

j

teqAL  at the determined time: 1, 2,3j =  

of the controlled day 1, 2,...,t n=  during the calendar year is necessary in such 

an estimation process.  

Their values 
( )

, ,

j

A eq tL , 1, 2,...,t n=  can be connected with the time series 

{ , }
t

X t Z∈  representing them (Brown, Mayer 1961), i.e. a sequence of random 

variables. They are determined by results of the successive ‘momentary’ control 

observations 1{ ,..., }
n

x x  describing the environment acoustic state. It can be as-

sumed that the probabilistic structure of the control results changes can be 

shaped by the additive process. Such a mechanism can be expressed as: 

 .
t t t t

X µ ϕ ξ= + +   (0.2) 

Thus, its structure can be shaped by the factor influencing the average level, 

i.e. 
t

µ related to the constant tendency forcing the level of the analysed noise  

indicators in the given area, the cyclic component 
t

ϕ  - representing periodical 

changes related to recurrent characteristic forcing (influencing changes 

of the controlled noise indicators) and the residual component representing ran-

dom disturbances (or imperfections of model descriptions) 
t

ζ  of the expected 
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value being zero and variance: 
2

ζ
σ . The most often, it is assumed that the distri-

bution of disturbances related to the model error 
t

ζ  is ( )
20,N
ζ

σ .  

In contrast to the classic model of the statistic random control test (generally 

recommended in the estimation of the controlled parameter and its uncertainty, 

Guide to the Expression of Uncertainty Measurement, 1995) assuming that suc-

cessive control results are random variables with a normal distribution, in 

the approach proposed in Regulation of the Minister of Environment 2007, Bal 

2010, Batko, Bal – Pyrcz 2006 the presence of a certain mechanism forcing 

changes of control results is assumed. This mechanism is subjected to random 

disturbances of expected values being zero and variances 
2

ζ
σ . 

The problem of estimating the expected value and variance of the analysed 

noise indicators is reduced (in such an approach) to the identification and esti-

mation of the structure of time series. This requires the proper estimates: ˆ
t

µ , ˆ
t

ϕ  

for 
t

µ  and 
t

ϕ  components, which should ensure the correct variability descrip-

tion of successive control tests. 

In order to increase the effectiveness of the obtained evaluations, in relation 

to the proposition given in papers (Regulation of the Minister of Environment 

2007, Bal 2010, Batko, Bal – Pyrcz 2006), an introduction of a sufficiently broad 

class of models enabling a proper description of properties of process realiza-

tions is appropriate.  

We assume that the component 
t

ϕ  responsible for cyclic fluctuations can be 

neglected (Batko, Bal 2008) and we limit ourselves to the class of stationary 

models. Those models can be approximated by means of the ( ),ARMA p q  

models, definitions of which are given below. 

A stochastic process { },tX t Z∈ is called the ( ),ARMA p q process if: 

 t t tX µ ξ= +           (4) 

where:  

0 1 1 ...t t p t pX Xµ φ φ φ
− −

= + + + , 
1 1 ...t t q t q tZ Z Zξ θ θ

− −
= + + + , ),0(~}{ 2

σNZ t . 

.Two groups of solutions are utilised in the identification and estimation pro-

cesses of the ARMA  model parameters. The first group determines solutions 

based on the sample autocorrelation function (ACF) and on the partial autocorre-

lation function (PACF). Comparisons of individual autocorrelation functions 

with the theoretical representatives – resulting from the ARMA  processes prop-

erties – are being done on their bases. The second group constitutes methods 

based on comparisons of the estimated models with using information criteria 

(among others: Akaike, Schwarz). However, they require additional assumptions 

concerning the nature of the mechanism generating random disturbances. It is 
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assumed the most often that { }tX  is the zero-mean Gaussian time series. Tech-

nical details concerning the classic estimation of the ARMA  process parameters 

with the application of the Maximum Likelihood Method can be found e.g. in 

Batko, Bal 2008 or Batko, Knapik 2013. The authors of the hereby paper (see 

Box, Jenkins, Reinsel 2008) propose the application of the robust statistical pro-

cedures for identification of the orders and estimation of unknown parameters 

of the ( ),ARMA p q  model.  

The modelling process, understood in the above way, can be applied for the 

description of variability of the monitored noise indicators. In this approach 

the ( ),ARMA p q  model allows the evaluation of the expected sound level, 

since it is represented by 0ϕ̂  - the ARMA model estimate. This solution is justi-

fied from the formal point of view. 

In the empirical part we will show the example of the average of the equiva-

lent sound level estimation. 

3 Results of the modelling experiments 

The proposed modelling formalism was assigned to the results of the contin-

uous noise monitoring carried out in the town of Kielce. Their data are contained 

in the database of the acoustic monitoring system developed in the Department 

of Mechanics and Vibroacoustics (www.monitoringakustyczny.pl). The bases 

of the realised analyses constituted three time series. Each represented the origi-

nal time-history of the results of the sound level measurements 
,A iL  taken in     

1-second intervals in three discussed periods j. Each series was formed by join-

ing the corresponding to each other series from the 7-days period. Their graph-

ical presentation is given in Figures 1 - 3. 

Next, the identification and estimation procedure of the ARMA  process pa-

rameters, described in Bal 2010, was applied on the bases of the considered time 

series. The best model from the ARMA  class for the description of time series 

of the day time noise indicators (6:00-18:00) is the ( )5,2ARMA  model. In case 

of series of the evening noise indicators (18:00-22:00), it is the ( )2,5ARMA  

model. For the series corresponding the night (22:00-6:00) the best model is, 

similarly as for the evening, the ( )2,5ARMA  model.  

Examples of simulations of the modelling description for variability 

of the sound level results for the day, evening and night - are presented in Fig-

ures 1-3 and the corresponding theoretical sound level obtained on the basis 

of ARMAmodels in Figures 4-6.  
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Fig. 1. Variability of the sound level (in dB/A) for series j = 1 

Source: Own research 

 

 

Fig. 2. Variability of the sound level (in dB/A) for series j = 2 

Source: Own research 

 

Fig. 3. Variability of the sound level (in dB/A) for series j=3. 

Source: Own research 
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Fig. 4. Theoretical variability of the sound level \\ (in dB/A) for series j=1 

Source: Own research 

 

Fig. 5. Variability of the sound level (in dB/A) for series j=2 

Source: Own research 

 

Fig. 6. Variability of the sound level (in dB/A) for series j=3  

Source: Own research 
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The expected sound level representing the control process is determined by 

the estimator of the intercept of the best fitted to the data class model. The re-

sults for the considered time series are given in the table below. 

Table 1. Evaluation of the average sound level for the considered series together with the 

corresponding standard deviation 

Series 1j =
 

2j =
 

3j =
 

Evaluation of the 

average sound level 

(Standard error) 

66.17 [dB(A)] 

 

(0.042) 

62.64 [dB(A)] 

 

(0.12) 

57.06 [dB(A)] 

 

(0.13) 

Source: own research 

It is worth mentioning that the evaluations, given in the Table above, are in 

agreement with the results obtained on the widerly controlled data. The highest 

value i.e. 66.17 [dB(A)] is obtained for the sound level corresponding with 

hours: 6:00-18:00. The standard deviation related to the evaluation of the ex-

pected sound level equals 0.04 [dB(A)], which means that the expected sound 

level can differ by 0.04 [dB(A)] from the estimate. The second value, 62.64 

[dB(A)], corresponds the evening time: 18:00-22:00. In this case, the expected 

sound level can differ, on average, by 0.12 [dB(A)] from the estimated value. 

The lowest value corresponds to the night (57.06 [dB(A)]). The standard devia-

tion equals in this case 0.13 [dB(A)]. It is also worth noting that standard devia-

tions, related to the estimation of the expected sound level, are in each case very 

small. 

4 Conclusions 

The proposed and shown in the paper procedure of the modelling the varia-

bility of the environment monitored sound levels by the ARMA processes pro-

vides the formally adequate mathematical tool, ensuring the estimation 

of the expected sound level variability and the accuracy of such estimations. The 

results of the simulation investigation indicate its usefulness for obtaining diag-

nostics information on the environment hazard. The essential improvement 

of the estimation accuracy can be obtained by using longer time series in the de-

scribed algorithm. These can be obtained by combining the results of noise mon-

itoring from more measuring days. Although the proposed estimating approach 

to long-term noise indicators can be considered more complex than the one cur-

rently applied it is characterized by a higher universalism. It is not limited by 

the restrictions pointed out in the introduction. However, its broader implemen-

tations in the environment acoustic control practice will require developing 

the software dedicated solely to this solution. 
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Asymptotic Behaviour of Diffusions on Graphs

Keywords: fast diffusions, Markov processes, convergence of semigroups

Abstract
We investigate fast diffusions on finite directed graphs. We prove results in a way

dual to presented in A. Bobrowski (2012), A. Bobrowski and K. Morawska (2012)
and obtain an asymptotic behaviour of a diffusion semigroup on a graph in L1 as
the diffusion speed increases and the probability of a particle passing through a ver-
tex decreases.

1 Introduction

Assume that G is a directed graph in R3 without loops, and there is a Markov
process on G which on each edge behaves like a Brownian motion with given
variance. Moreover, assume that each vertex is a semipermeable membrane with
given permeability coefficients, i.e. for each vertex there are non-negative numbers
pi j describing the probability of a particle passing through the membrane from
the ith to the jth edge.

In A. Bobrowski (2012), A. Bobrowski and K. Morawska (2012), the au-
thors prove that if the diffusion speed increases to infinity at the same rate as the
permeability coefficient decreases to zero, then we obtain a limit process which
is a Markov chain on the vertices of the line graph of G .

The aim of this paper is to prove a similar asymptotic result but in a different
space. In A. Bobrowski (2012), A. Bobrowski and K. Morawska (2012), the au-
thors deal with the space of continuous functions on a graph G . Here we investigate
diffusions on the space of Lebesgue integrable functions on a graph G .

One may wish to mimic the original proof of the continuous case but this is
not fully possible. In particular, in the space of continuous functions on a graph
there exists an isomorphism transforming boundary conditions associated with the
original process to much simpler Neumann boundary conditions. Because of that,
one can obtain the limit for the isomorphic semigroups which leads to required

1Department of Mathematics, Technical University of Lublin, Nadbystrzycka 38,
20-618 Lublin, e-mail: a.gregosiewicz@pollub.pl
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Figure 1: Diffussion on a graph becomes a Markov chain on the vertices
of the line graph.

asymptotics. What is crucial, in the space of integrable functions such isomor-
phism does not exist. However, there is an isomorphism of the Sobolev space W 2,1

in a way similar to the isomorphism in the space of continuous functions, which
leads to different approach via the Kurtz theorem.

2 Continuous case

As in A. Bobrowski (2012), let G = (V ,E ) be a finite geometric graph (D. Mug-
nolo (2007)) without loops, where V ⊂ R3 is the set of vertices and E is the set
of edges of finite lengths. The number of edges is N and the edges are seen as C1

curves connecting vertices. Let N = {1, . . . ,N}. For i ∈N , by convention, we
call the initial and terminal vertices of the ith edge Ei its “left” and “right” end-
points. We denote them by Li and Ri, respectively. Moreover, let Vi, i ∈N denote
the vertex V ∈ V as an endpoint of the ith edge. If V is not an endpoint of this
edge, we leave Vi undefined.

Let S =
⋃

i∈N Ei be a disjoint union of the edges. What is in particular im-
portant, since by convention Vi 6= Vj for i, j ∈N , i 6= j, in S there can be many
“copies” of the same vertex, treated as an endpoint of different edges. Then S
is a disconnected compact topological space, and we denote by C(S) the space
of continuous functions on S with the standard supremum norm. If f ∈C(S), then
we may identify f = ( fi)i∈N where fi is a member of C(Ei). The latter space is
isometrically isomorphic to the space C[0,di] where di is the length of the ith edge.

Let σ ∈C(S) be defined by σ(p) = σi for p ∈ Ei where σi are given positive
numbers. Define the operator A in C(S) by

A f = σ f ′′, (1)

on the domain composed of twice continuously differentiable functions, satisfying
the transmission conditions described below.
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For each i∈N , let li and ri be non-negative numbers describing the possibility
of passing through the membrane from the ith edge to the edges incident in the left
and right endpoints, respectively. Also, let li j and ri j, j 6= i be non-negative num-
bers satisfying ∑i 6= j li j 6 li and ∑i 6= j ri j 6 ri. These numbers determine the prob-
ability that after filtering through the membrane from the ith edge a particle will
enter the jth edge.

By default, if E j is not incident with Li, we put li j = 0. In particular, by con-
vention li j f (Vj) = 0 for f ∈C(S) if Vj is not defined. The same remark concerns
ri j. In these notations, the transmission conditions mentioned above are as follows:
if Li =V , then

f ′(Vi) = li f (Vi)−∑
j 6=i

li j f (Vj), (2)

where f ′(Vi) is the right-hand derivative of f at Vi and if Ri =V , then

− f ′(Vi) = ri f (Vi)−∑
j 6=i

ri j f (Vj), (3)

where f ′(Vi) is the left-hand derivative of f at Vi.
It is showed in A. Bobrowski (2012) that the operator A generates a Feller

semigroup {etA, t > 0} in C(S). Moreover, the semigroup is conservative if and
only if ∑ j 6=i li j = li and ∑ j 6=i ri j = ri, for i ∈ N . What is more, the following
theorem is proved.

Theorem 2.1. Let (κn)n>1 be a sequence of positive numbers converging to in-
finity and let operators An be defined by (1) with σ replaced with κnσ and with
the domain composed of C2(S) functions satisfying the transmission conditions (2)
and (3) with permeability coefficients (i.e., all li, ri, li j and ri j’s) divided by κn.
Then,

lim
n→∞

etAn f = etQP f , f ∈C(S), t > 0,

where P is the projection of C(S) on the space C0(S) of functions that are constant
on each edge, given by P f =

(
d−1

i
∫

Ei
f
)

i∈N , while Q is the operator in C0(S)
which may be identified with the matrix (qi j)i, j∈N with qi j = σid−1

i (li j + ri j) for
i 6= j and qii = −σid−1

i (li + ri). The limit here is strong and almost uniform in
t ∈ (0,∞); for f ∈C0(S), the formula holds for t = 0 as well and the limit is almost
uniform in t ∈ [0,∞).

3 Adjoint of the operator A

Using the same identification as in the previous section, we will now consider
the space L1(S) = {ϕ : ϕ = (ϕi)i∈N , ϕi ∈ L1(Ei)}. Here L1(Ei) is the space
of Lebesgue integrable functions on Ei. Let W 2,1(S) be the Sobolev space,
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i.e. the space composed of functions ϕ ∈ L1(S) such that ϕ , ϕ ′ are weakly differen-
tiable and ϕ ′,ϕ ′′ ∈ L1(S). We define the operator A∗ in L1(S) by

A∗ϕ = σϕ
′′ (4)

with domain composed of members of W 2,1(S) satisfying the transmission condi-
tions

σ jϕ
′(L j) = σ jl jϕ(L j)−

∗

∑
i∈IL

j

[
σili jϕ(Li)+σiri jϕ(Ri)

]
,

σ jϕ
′(R j) =

∗

∑
i∈IR

j

[
σili jϕ(Li)+σiri jϕ(Ri)

]
−σ jr jϕ(R j),

(5)

for j ∈N . Here, IL
j and IR

j are the sets of indexes i 6= j of edges incident in L j

and R j, respectively. The asterisk in the sums denotes the fact that, since there are
no loops, at most one of the terms σili jϕ(Li) and σiri jϕ(Ri) is taken into account.

Lemma 3.1. If f ∈ D(A) and ϕ ∈ D(A∗), then∫
S

ϕA f =
∫

S
(A∗ϕ) f . (6)

Proof. Integrating by parts, we obtain∫
Ei

ϕ f ′′ = ϕ(Ri) f ′(Ri)−ϕ
′(Ri) f (Ri)+ϕ

′(Li) f (Li)−ϕ(Li) f ′(Li)

+
∫

Ei

ϕ
′′ f

for i ∈N . Hence, equality (6) holds if and only if

∑
i∈N

[
ϕ(Ri) f ′(Ri)−ϕ

′(Ri) f (Ri)+ϕ
′(Li) f (Li)−ϕ(Li) f ′(Li)

]
= 0, i ∈N . (7)

Since f belongs to D(A), the transmission conditions (2) and (3) are satisfied. Thus
condition (7) holds if and only if

∑
i∈N

σiϕ(Ri)

[
∑
j 6=i

ri j f (Ri j)− ri f (Ri)

]
− ∑

i∈N
σiϕ

′(Ri) f (Ri)

+ ∑
i∈N

σiϕ(Li)

[
∑
j 6=i

li j f (Li j)− li f (Li)

]
+ ∑

i∈N
σiϕ

′(Li) f (Li) = 0,

where Li j and Ri j are, by definition, respectively left and right ends of Ei, seen
as members of E j. Changing the order of summation, the last equality becomes

∑
j∈N

∑
i 6= j

σiri jϕ(Ri) f (Ri j)− ∑
j∈N

σ j f (R j)
[
r jϕ(R j)+ϕ

′(R j)
]

+ ∑
j∈N

∑
i6= j

σili jϕ(Li) f (Li j)− ∑
j∈N

σ j f (L j)
[
l jϕ(L j)−ϕ

′(L j)
]
= 0.
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Notice that Li j is either L j or R j or is left undefined, and the same holds for Ri j.
Thus we can rewrite the last condition in the form

∑
j∈N

f (R j)

{ ∗

∑
i∈IR

j

[
σiri jϕ(Ri)+σili jϕ(Li)

]
−σiriϕ(Ri)−σiϕ

′(Ri)

}

+ ∑
j∈N

f (L j)

{ ∗

∑
i∈IL

j

[
σiri jϕ(Ri)+σili jϕ(Li)

]
−σ jl jϕ(L j)+σ jϕ

′(L j)

}
= 0,

which is true, since ϕ satisfies the transition conditions (5).

Keeping in mind the Riesz representation theorem, the above lemma shows
that the operator A∗ is in a way “adjoint” to A. More precisely, A∗ is the part
of the adjoint operator of A in L1(S).

4 Operator A∗ generates a sub-Markov semigroup

As we said before, we know from A. Bobrowski (2012) that A generates a Feller
semigroup in C(S). We will prove that operator A∗ generates a sub-Markov semi-
group {etA∗ , t > 0} in L1(S), i.e. a semigroup of operators such that for a non-
negative ϕ ∈ L1(S) we have etA∗ϕ > 0 and

∫
S etA∗ϕ 6

∫
S ϕ for t > 0. Since the do-

main of A∗ is dense in L1(S) (see the remarks after Theorem 5.1) this is equiva-
lent to all the resolvents being sub-Markov (see A. Lasota, M.C. Mackey (1985),
Corollary 7.8.1), which by definition means that the operators λ (λ −A∗)−1 are
sub-Markov for λ > 0.

Lemma 4.1. For all λ > 0 there exists the resolvent (λ −A∗)−1 and the following
equality ∫

S
ϕ(λ −A)−1 f =

∫
S

f (λ −A∗)−1
ϕ, f ∈C(S), ϕ ∈ L1(S), (8)

holds.

Observe that if the resolvent of A∗ exists, then equality (8) becomes obvious
since A∗ is the part of the adjoint of A in L1(S). However, the existence of (λ −
A∗)−1 is not obvious. We will prove Lemma 4.1 in a moment.

It is well known, (see e.g. A. Lunardi (1985), Theorem 3.1.3) that the operator
G in L1(a,b) given by Gϕ = ϕ ′′ with the domain composed of functions ϕ ∈
W 2,1(a,b) satisfying the Neumann boundary conditions, i.e. ϕ ′(a) = ϕ ′(b) = 0,
is sectorial with angle π/2. It is also easy to see that the domain of G is dense
in L1(a,b). Indeed, assume that ϕ ∈ C2[a,b], and let ϕn ∈ C2[a,b], n > 1, be
given by ϕn(x) = 1(a,b)(x)exp

{ −1
n(x−a)(b−x)

}
ϕ(x). Then ϕ ′n(a) = ϕ ′n(b) = 0 and

‖ϕ −ϕn‖L1(a,b)→ 0 as n→ ∞ by the Lebesgue dominated convergence theorem.
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Since C2[a,b] ⊂W 2,1(a,b) is dense in L1(a,b), this proves that D(G) = L1(a,b).
Hence, by K.J. Engel, R. Nagiel (2000), Theorem II.4.6, the operator G generates
a equi-bounded analytic semigroup in L1(a,b).

Lemma 4.2. For G defined above,

lim
t→∞

etG
ϕ = lim

λ→0+
λ (λ −G)−1

ϕ =
1

b−a

∫ b

a
ϕ (9)

for ψ ∈L1(a,b), λ > 0, where
∫ b

a ϕ is identified with the constant function on (a,b).

Proof. For simplicity, we will assume that a = 0 and b = 1.
Since G is sectorial, it suffices to show the second equality. For ν ∈ R let

eν ∈ C(R) be defined by eν(x) = e−νx. Given λ > 0, ψ ∈ L1(0,1), the unique
solution ψ ∈ D(G) of λψ−ψ ′′ = ϕ is of the form

ψ(x) =
1

2µ

∫ 1

0
eµ(|x− y|)ϕ(y)dy+ c1e−µ(x)+ c2eµ(x), (10)

where µ =
√

λ . Moreover, constants c1,c2 are chosen so that ψ ′(0) = ψ ′(1) = 0.
Precisely, we have

c1 =
ξ1e−µ +ξ2

µ(eµ − e−µ)
, c2 =

ξ1eµ +ξ2

µ(eµ − e−µ)
, (11)

where

ξ1 =
1
2

∫ 1

0
eµ(y)ϕ(y)dy, ξ2 =

1
2

∫ 1

0
eµ(1− y)ϕ(y)dy.

Thus, by the Lebesgue dominated convergence theorem, we have

lim
µ→0+

µ
2c1 = lim

µ→0+
µ

2c2 =
1
2

lim
µ→0+

(ξ1 +ξ2).

Finally, since

lim
µ→0+

µ

∫ 1

0
eµ(|x− y|)ϕ(y)dy = 0,

we have

lim
λ→0+

λψ = lim
µ→0+

(ξ1 +ξ2) =
∫ 1

0
ϕ,

which completes the proof.

Lemma 4.3. The part G0 of G in W 2,1(a,b) is a sectorial operator in W 2,1(a,b)
with angle π

2 , i.e. for each δ ∈ (0,π/2] the sector

Σ π

2 +δ = {λ ∈ C\{0} : |argλ |< π/2+δ}

is contained in the resolvent set ρ(G0) of G0 and there exists M > 0 such that

‖(λ −G0)
−1‖L (W 2,1) 6

M
|λ |

, λ ∈ Σ π

2 +δ .
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Proof. Without loss of generality we may assume that a = 0 and b = 1. For
δ ∈ (0,π/2) let λ = |λ |eiθ , θ ∈ (−π/2− δ ,π/2 + δ ), and set µ =

√
λ such

that m := Re µ > 0. Given ϕ ∈W 2,1(0,1), the unique solution ψ ∈W 2,1(0,1)
of λψ−ψ ′′ = ϕ satisfying the Neumann boundary conditions is defined by (10).
Rewrite (11) in the form

c1 =
1

2µ

1
1− e−2µ

∫ 1

0
(eµ(2+ y)+ eµ(2− y))ϕ(y)dy,

and

c2 =
1

2µ

1
1− e−2µ

∫ 1

0
(eµ(y)+ eµ(2− y))ϕ(y)dy.

Then (10) takes the form

ψ(x) =
1

2µ

1
1− e−2µ

∫ 1

0

[
eµ(|x− y|)− eµ(2+ |x− y|)+ eµ(2− x+ y)

+ eµ(2− x− y)+ eµ(x+ y)+ eµ(2+ x− y)
]
ϕ(y)dy.

Expanding 1
1−e−2µ into the geometric series, we obtain

ψ(x) =
1

2µ
∑
n∈Z

∫ 1

0

(
eµ(|2n+ x− y|)+ eµ(|2n+ x+ y|)

)
ϕ(y)dy. (12)

By changing variables in the integral, we get

ψ(x) =
1

2µ
∑
n∈Z

∫ x

x−1
eµ(|2n+ t|)ϕ(x− t)dt

+
1

2µ
∑
n∈Z

∫ x+1

x
eµ(|2n+ t|)ϕ(t− x)dt.

Differentiating the above under the integral sign leads to

ψ
′(x) =

1
2µ

∑
n∈Z

∫ x

x−1
eµ(|2n+ t|)ϕ ′(x− t)dt

− 1
2µ

∑
n∈Z

∫ x+1

x
eµ(|2n+ t|)ϕ ′(t− x)dt,

since all the “non-integral” terms cancel out. Similarly,

ψ
′′(x) =

1
µ

∑
n∈Z

eµ(|2n+ x|)ϕ ′(0)− 1
µ

∑
n∈Z

eµ(|2n−1+ x|)ϕ ′(1)

+
1

2µ
∑
n∈Z

∫ x

x−1
eµ(|2n+ t|)ϕ ′′(x− t)dt

+
1

2µ
∑
n∈Z

∫ x+1

x
eµ(|2n+ t|)ϕ ′′(t− x)dt.
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Now, returning to the original variables, we can write

ψ
′(x) =

1
2µ

∑
n∈Z

∫ 1

0

(
eµ(|2n+ x− y|)− eµ(|2n+ x+ y|)

)
ϕ
′(y)dy, (13)

and

ψ
′′(x) =

1
µ

∑
n∈Z

eµ(|2n+ x|)ϕ ′(0)− 1
µ

∑
n∈Z

eµ(|2n−1+ x|)ϕ ′(1)

+
1

2µ
∑
n∈Z

∫ 1

0

(
eµ(|2n+ x− y|)+ eµ(|2n+ x+ y|)

)
ϕ
′′(y)dy.

(14)

In order to estimate the W 2,1 norm of ψ , we at first estimate
C1 =C1(y) := ∑n∈Z

∫ 1
0

∣∣eµ(|2n+ x− y|)
∣∣dx for y ∈ [0,1]. Observe that

∫ 1

0

∣∣eµ(|2n+ x− y|)
∣∣dx =


1
m

(
2− e−my− e−m(1−y)

)
, n = 0,

1
m e−2mnemy(1− e−m), n > 1,
1
m e2mne−my(em−1), n 6−1.

Hence

C1 6
1
m

[
2+

e−m(2−y)

1+ e−m +
e−my

1+ em

]
6

4
m
.

Very similar calculations show that

C2 := ∑
n∈Z

∫ 1

0

∣∣eµ(|2n+ x+ y|)
∣∣dx 6

1
m

[
e−my

1+ e−m +
emy

1+ em

]
6

2
m
.

Since m =
√
|λ |cos(θ/2) >

√
|λ |cos(π

4 + δ

2 ), by the Fubini theorem applied
to (12) we have

‖ψ‖L1(0,1) 6
3

|λ |cos(π

4 +
δ

2 )
‖ϕ‖L1(0,1).

In the same way, by (13) we obtain

‖ψ ′‖L1(0,1) 6
3

|λ |cos(π

4 +
δ

2 )
‖ϕ ′‖L1(0,1).

Moreover, by the fact that ϕ ′ ∈W 1,1(0,1) and the Sobolev embedding theorem,
ϕ ′ ∈C[0,1] and ‖ϕ ′‖C[0,1]6M‖ϕ ′‖W 1,1(0,1) for some constant M > 0. Thus, by (14),

‖ψ ′′‖L1(0,1) 6
6M

|λ |cos(π

4 +
δ

2 )
(‖ϕ ′‖W 1,1(0,1)+‖ϕ

′′‖L1(0,1)),

since we can assume that M > 1
2 . Finally, for λ ∈ Σ π

2 +δ ,

‖ψ‖W 2,1(0,1) 6
12M

|λ |cos(π

4 +
δ

2 )
‖ϕ‖W 2,1(0,1),

which completes the proof.
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Let G j be a version of G in L1(E j), j ∈N and let B be the operator in L1(S)
defined by Bϕ = σϕ ′′ with the domain composed of functions ϕ = (ϕ j) j∈N where
ϕ j ∈ D(G j). Since B is equal to G j on each E j, operator B generates a strongly
continuous analytic semigroup {etB, t > 0} and the same is true for operators κnB,
n > 1. Moreover, by (9), the following limit

lim
n→∞

λ (λ −κnB)−1
ϕ =: Pϕ, ϕ ∈ L1(S),

exists, and Pϕ = P(ϕ j) j∈N =
(
d−1

j
∫

E j
ϕ j
)

j∈N . Evidently, rangeP is the space
of functions that are constant on each E j. Let us denote this space by L1

0(S).
Rewrite conditions (5) in the form

ϕ
′(L j) = FL, jϕ,

ϕ
′(R j) = FR, jϕ,

j ∈N , where the functionals FL, j,FR, j ∈ (W 2,1(S))∗ are given by

FL, jϕ = l jϕ(L j)−
∗

∑
i∈IL

j

[
σi

σ j
li jϕ(Li)+

σi

σ j
ri jϕ(Ri)

]
,

FR, jϕ =
∗

∑
i∈IR

j

[
σi

σ j
li jϕ(Li)+

σi

σ j
ri jϕ(Ri)

]
− r jϕ(R j).

Using functions similar to [α,β ] 3 x 7→ 1
γ
(x−α)2 sinγ(x− β ), we can pick

hL, j,hR, j ∈W 2,1(E j), j ∈N with an arbitrarily small norm such that hL, j(L j) =
hL, j(R j)= hR, j(L j)= hR, j(R j)= 0 and h′L, j(L j)= h′R, j(R j)= 1, h′L, j(R j)= h′R, j(L j)=

0. Let J be the bounded linear operator W 2,1(S)→W 2,1(S) given by

Jϕ =
(
(FL, jϕ)hL, j +(FR, jϕ)hR, j

)
j∈N ,

and for κ 6= 0 define Iκ : W 2,1(S)→W 2,1(S) by

Iκ = IW 2,1(S)−
1
κ

J.

Here, IW 2,1(S) is the identity operator in W 2,1(S). Then, it is easy to observe (see
A. Bobrowski (2012), Lemma 3.1) that Iκ is an isomorphism of W 2,1(S) with the
inverse

I−1
κ = IW 2,1(S)+

1
κ

J. (15)

Let K : W 2,1(S)→W 2,1(S) be defined as J with h’s replaced by their second deriva-
tives, i.e.

Kϕ =
(
(FL, jϕ)h′′L, j +(FR, jϕ)h′′R, j

)
j∈N .

Finally, let Ã = σK.
We are now able to show that the resolvent of A∗ exists, as claimed in Lemma 4.1.
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Proof of Lemma 4.1. We proceed exactly as in A. Bobrowski (2012) pp. 1507-
1508. Let B̃ = I1A∗0I−1

1 , where A∗0 is the part of A∗ in W 2,1(S), be the operator
in W 2,1(S). We have

A∗0I−1
1 = B0 +σK, (16)

where B0 is the part of B in W 2,1(S). Moreover, D(B̃) = D(B0), and by (16),
for ϕ ∈ D(B),

B̃ϕ = Bϕ +Cϕ +Dϕ,

where Cϕ = −J(σϕ ′′) = −JB0ϕ and Dϕ = σKϕ − J(σKϕ). Observe that if
ϕ ∈ D(B0),

‖Cϕ‖W 2,1(S) 6 M‖B0ϕ‖W 2,1(S),

for M := ‖J‖, i.e. the operator C is B0-bounded. Moreover,

M 6 max
j∈N
{max(‖hL, j‖W 2,1(S),‖hR, j‖W 2,1(S))} ·max

j∈N
{‖FL, j‖+‖FR, j‖}.

We will now prove that the operator B0 +C is sectorial. By Lemma 4.3, B0 is sec-
torial with angle π/2, i.e. there exists M̃ > 0 such that ‖(λ −B0)

−1‖6 M̃/|λ | for
λ ∈ Σπ/2+δ , δ ∈ (0,π/2]. Hence, using the fact that
B0(λ −B0)

−1 = λ (λ −B0)
−1− IW 2,1(S), we have

‖C(λ −B0)
−1‖6 M‖λ (λ −B0)

−1− IW 2,1(S)‖6 M(M̃+1).

Thus, if we pick hL, j,hR, j, j ∈N in such a way that ‖J‖6 1
M̃+1

, then
q := ‖C(λ−B0)

−1‖< 1 which implies λ ∈ ρ(B0+C). Therefore we have the Neu-
mann series expansion

(λ −B0−C)−1 = (λ −B0)
−1

∞

∑
i=0

[C(λ −B0)
−1]i,

which implies

‖(λ −B0−C)−1‖6 M̃
1−q

1
|λ |

.

This means that B0 +C is sectorial and, being densely defined, generates an ana-
lytic semigroup in W 2,1(S). What is more, the operator D is bounded since J and
K are. Hence, by K.J. Engel, R. Nagiel (2000, Proposition III.1.12) the opera-
tor B̃ generates an analytic semigroup in W 2,1(S) and so does A∗0. In particular,
(λ −A∗0)D(A0) =W 2,1.

Finally, observe that the operator A∗ is dissipative. Let A# be the adjoint op-
erator of A. Since ‖(λ − A)−1‖ 6 1

λ
, we also have

∥∥[(λ − A)−1
]∗∥∥ = ‖(λ −

A#)−1‖6 1
λ

in the dual space C[0,1]∗=Mb([0,1]) of regular Borel measures. Thus
‖(λ −A#)µ‖ > λ‖µ‖Mb

for µ ∈ D(A#) ⊂ Mb([0,1]). Assume that µ is an abso-
lutely continuous measure with respect to the Lebesgue measure, i.e. there exists
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ϕµ ∈ L1(0,1) such that µ(E)=
∫

E ϕµ for any Borel measurable set E ⊂ [0,1]. Then
‖µ‖Mb

= ‖ϕµ‖L1(0,1). By Lemma 3.1 we know that
∫

S ϕ(λ −A) f =
∫

S f (λ −A∗)ϕ
for f ∈ D(A), ϕ ∈ D(A∗) and hence (λ −A#)µ = (λ −A∗)ϕµ for absolutely con-
tinuous µ ∈Mb([0,1]). This implies ‖(λ −A∗)ϕ‖ > λ‖ϕ‖L1(0,1), ϕ ∈ D(A∗) and
proves that A∗ is dissipative. Furthermore, A∗ is also a closed operator. Thus, since
W 2,1(S) = range(λ −A∗0) ⊂ range(λ −A∗) is dense in L1(S), we have range(λ −
A) = L1(S) by K.J. Engel, R. Nagiel (2000, Proposition II.3.14(iii)), which com-
pletes the proof.

Theorem 4.4. The operator A∗ generates a sub-Markov semigroup. Moreover,
if the semigroup generated by A is conservative, then A∗ generates a Markov semi-
group, i.e. we have

∫
S etA∗ϕ =

∫
S ϕ for non-negative ϕ ∈ L1(S).

Proof. By the remarks preceding the theorem, we are left with proving that
λ (λ −A∗)−1 are sub-Markov for λ > 0.

Let us now prove that if ψ > 0, ψ ∈ L1(S), then (λ −A∗)−1ψ > 0, for λ > 0.
Suppose, contrary to our claim, that there exist a function ψ > 0, a set Γ⊂ S with
positive Lebesgue measure and a real number δ > 0 such that (λ −A∗)−1ψ <−δ

a.e. on Γ for some λ > 0. Without loss of generality, we may assume that Γ

is a subset of some edge Ei. Then, for a given ε > 0 we choose an open set G
and a closed set Γ′ such that Γ′ ⊂ Γ⊂ G⊂ Ei and µ(G\Γ′)< ε . By the Urysohn
lemma, there exists a continuous real function 0 6 f 6 1 with f ≡ 1 on Γ′ and
f ≡ 0 outside G. Since A generates a Feller semigroup, we have (λ −A)−1 f > 0,
hence

0 6
∫

S
(λ −A)−1 f ·ψ =

∫
S

f · (λ −A∗)−1
ψ

=
∫

Γ′
f · (λ −A∗)−1

ψ +
∫

G\Γ′
f · (λ −A∗)−1

ψ

6−δ µ(Γ′)+
∫

G\Γ′
(λ −A∗)−1

ψ.

By the Lebesgue dominated convergence theorem and the fact that
(λ −A∗)−1ϕ ∈ L1(S), letting ε → 0 leads to a contradiction.

Finally, let ψ ∈ L1(S). Since A generates a Feller semigroup we have

(λ −A)−1
1S =

∫
∞

0
e−λ tetA

1S dt 6 1S

∫
∞

0
e−λ t dt = 1

λ
1S. (17)

Thus ∫
S

λ (λ −A∗)−1
ψ =

∫
S

λ (λ −A)−1
1S ·ψ 6

∫
S

ψ,

which completes the first part of the proof.
If we assume that the semigroup generated by A is conservative, then inequal-

ity (17) becomes equality, and
∫

S λ (λ −A∗)−1ψ =
∫

S ψ .
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5 Convergence

To prove similar convergence result as in Theorem 2.1, we begin with a theorem
due to Kurtz (cf. S.N. Etheir, T.G. Kurtz (1986), Theorem 7.6). Let An, n > 1 be
the generators of equi-bounded semigroups {etAn , t > 0} in a Banach space X and
suppose that an operator Q generates a strongly continuous semigroup {etQ, t > 0}
such that for x ∈ X the limit

lim
λ→0+

λ (λ −Q)−1x =: Px,

exists. Moreover, assume that (εn)n>1 is a sequence of positive real numbers con-
verging to 0.

Theorem 5.1. Let A be an operator in a Banach space X, D be a subset of its
domain and assume that

(i) if x ∈ D, then (x,A x) ∈Aex where Aex is the extended limit of An, n > 1,

(ii) if y is in a core D′ of Q, then (y,Qy) ∈Bex where Bex is the extended limit
of εnAn, n > 1,

(iii) for X′ := rangeP the operator PA with domain D∩X′ is closable and its
closure PA generates a strongly continuous semigroup in X′.

Then for x ∈ X and t > 0

lim
n→∞

etAnx = etPA Px,

almost uniformly in (0,∞).

As in Theorem 2.1 let (κn)n>1 be a sequence of positive real numbers such
that limn→∞ κn = ∞, and let A∗n be the operator defined by (4) with σ replaced
by κnσ and the domain composed of W 2,1(S) functions satisfying the transmission
conditions (5) with permeability coefficients divided by κn.

In order to verify conditions (i)- (iii) of the Kurtz theorem we need the follow-
ing two lemmas.

Lemma 5.2. We have L1
0(S)⊂ D(Aex), and if u ∈ L1

0(S), then

Aexu = Ãu,

where Aex is the extended limit of A∗n, n > 1.

Proof. Given u ∈ L1
0(S), set ϕn = I−1

κn
u. Then ψn→ u as n→ ∞ by (15), for κ−1

n
converges to 0 and J is bounded. What is more,

A∗nϕn = σκnϕ
′′
n +σ(Jϕn)

′′ = σκnϕ
′′
n +σKϕn.

Hence limn→∞ A∗nϕn = σKu which completes the proof.
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Lemma 5.3. If ϕ ∈ D(B), then

Bexϕ = Bϕ,

where Bex is the extended limit of κ−1
n A∗n

Proof. Observe that if ϕ ∈ D(B), then ϕn := I−1
κn

ϕ ∈ D(A∗n), n > 1. Evidently,
by the same argument as in the previous lemma, we have ϕn → ϕ , n→ ∞, and
hence

lim
n→∞

κ
−1
n A∗nϕn = Bϕ,

as claimed.

We are now ready to apply Theorem 5.1. First, let us observe that for ϕ ∈ W 2,1(S)
and j ∈N , we have∫

E j

(
(FL, jϕ)h′′L, j +(FR, jϕ)h′′R, j

)
= d−1

j FR, jϕ−d−1
j FL, jϕ.

Thus, when ϕ ∈ L1
0(S), we obtain

σPKϕ =
(

σ jd−1
j (FR, jϕ−FL, jϕ)

)
j∈N

=

(
d−1

j

∗

∑
i∈IE

j

[
σili jϕ(Li)+σiri jϕ(Ri)

]
−σ jd−1

j l jϕ(L j)−σ jd−1
j r jϕ(R j)

)
j∈N

=

(
d−1

j

∗

∑
i∈IE

j

σi(li j + ri j)ϕ(Vi)−σ jd−1
j (l j + r j)ϕ(Vj)

)
j∈N

,

where IE
j is the set of indexes i 6= j of edges incident to E j. Hence, we can iden-

tify the operator Q := σ(PK)|L1
0(S)

with the matrix (q ji) j,i∈N , such that q ji =

d−1
j σi(li j + ri j) for j 6= i, and q ji = −σ jd−1

j (l j + r j) for j = i. Since this ma-
trix is finite, the operator Q generates strongly continuous semigroup {etQ, t > 0}.
Therefore the operator PÃ = σPK = Q is closed.

Finally, setting X=L1(S), D=L1
0(S), we check that, by Lemma 5.2, Lemma 5.3

and the above remarks, all the conditions (i), (ii) and (iii) are satisfied with A := Ã,
An := A∗n, Q := Q, P = P, and εn := κ−1

n . Hence we obtain the following “dual”
result to Theorem 2.1.
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Theorem 5.4. Let (κn)n>1, and A∗n be the defined as in the beginning of this sec-
tion. Then,

lim
n→∞

etA∗n f = etQP f , f ∈ L1(S), t > 0.

Moreover, from the proof of the Kurtz theorem, the limit is almost uniform
in t ∈ (0,∞).
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Incomplete moments of non-zero inflated modified power
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Abstract

The paper contains recurrence formulae for lower and upper partial moments
and lower and upper partial descending and ascending factorial moments of non-zero
inflated modified power series distributions.

1 Introduction

Modified power series distributions, introduced by Gupta (1974), form a use-
ful subclass of one-parameter discrete exponential families suitable for modeling
count data. An inflated modified power series distribution is a mixture of a mod-
ified power series distribution and a degenerate distribution at one of the support
points s, with a mixing probability α for the degenerate distribution. This distri-
bution is useful for modeling count data that may have extra observations. Count
data with many zeros are common in a wide variety of disciplines. Application
areas of inflated distributions are diverse and have included manufacturing de-
fects (Lambert, 1992), patent applications (Crepon and Duguet, 1997), road safety
(Miaou, 1994), species abundance (Welsh et al., 1996; Faddy, 1998), medical con-
sultations (Gurmu, 1997), use of recreational facilities (Gurmu and Trivedi, 1996;
Shonkwiler and Shaw, 1996), number of roots produced by a certain species of ap-
ple tree (Ridout, Demétrio, and Hinde, 1998). In probability and statistical liter-
ature one can also find many real and interesting examples of non-zero inflated
distributions (Pandey, 1964-65; Murat and Szynal, 1998). A fair amount of prob-
abilistic and statistical methodology has been developed to deal with such data.

1Department of Mathematics, Technical University of Lublin, Nadbystrzycka 38,
20-618 Lublin, e-mail: m.murat@pollub.pl
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Gupta, Gupta, Thripati (1995) gave recurrence relations for ordinary, factorial and
central moments of zero inflated modified power series distributions, while Murat
and Szynal (1998) obtained recurrence relations for moments of non- zero inflated
modified power series distributions. In the current paper those formulas are com-
pleted with relations for lower and upper partial (incomplete) ordinary moments
and lower and upper partial (incomplete) factorial moments of non-zero inflated
modified power series distribution. Partial moments can be use to define a risk
measure (Stone, 1973; Nawrocki, 1991), to characterize and estimate asymmet-
ric effects of inputs on output distributions (Antile, 2010). They are also applied
to such problems as insurance purchasing (Hamburg and Matlack, 1968), bayesian
point estimation (Britney and Winkler, 1968), inventory theory (Arrow, K. J., Kar-
lin, S. and Scarf, H., 1958), theory of the firm (Horowitz 1970), stopping rules
(Hayes, 1969; DeGroot, 1968).

Section 2 establishes basic notations and definitions. In Section 3 recurrence
relations for lower partial ordinary and factorial moments about a point c are de-
rived. Some illustrative examples are given in Section 4. Upper partial ordinary
and factorial moments about a point c are given in Section 4.

2 Definitions and notations

We begin with definition of an inflated modified power series distribution. Let N
be a set of nonnegative integers and s ∈ N be fixed.

Definition 1 A discrete random variable X is said to have an inflated modified
power series distribution (IMPSD) if its probability mass function is given by

P[X = x] =

{
β +α

[g(θ)]xa(x)
f (θ) , x = s,

α
a(x)[g(θ)]x

f (θ) , x 6= s, x ∈ N; 0 < α ≤ 1,
(1)

where β = 1−α , f (θ) =
∞

∑
x=0

a(x)[g(θ)]x, g(θ) is positive, finite and differentiable

and coefficients a(x) are free of θ .

Next we establish notations and definitions of partial moments. Let c,r ∈ N.

Definition 2 The r-th lower partial moment about c (r-th incomplete moment
on the left about c) is defined by

µr(t) =
t

∑
x=0

(x− c)rP[X = x], t ∈ N. (2)
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Definition 3 The r-th upper partial moment about c (r-th incomplete moment
on the right about c) is defined by

µ
r(t) =

∞

∑
x=t

(x− c)rP[X = x], t ∈ N. (3)

Definition 4 The r-th lower partial descending factorial moment about c (r-th
incomplete descending factorial moment on the left about c) is defined by

µ(r)(t) =
t

∑
x=0

(x− c)(r)P[X = x], t ∈ N, (4)

where y(r) = y(y−1)(y−2) · · ·(y− r+1).

Definition 5 The r-th upper partial descending factorial moment about c (r-th
incomplete descending factorial moment on the right about c) is defined by

µ
(r)(t) =

∞

∑
x=t

(x− c)(r)P[X = x], t ∈ N. (5)

Definition 6 The r-th lower partial ascending factorial moment about c (r-th
incomplete ascending factorial moment on the left about c) is defined by

µ[r](t) =
t

∑
x=0

(x− c)[r]P[X = x], t ∈ N, (6)

where y[r] = y(y+1)(y+2) · · ·(y+ r−1).

Definition 7 The r-th upper partial ascending factorial moment about c (r-th
incomplete ascending factorial moment on the right about c) is defined by

µ
[r](t) =

∞

∑
x=t

(x− c)[r]P[X = x], t ∈ N. (7)

3 Recurrence relations for lower partial moments of IMPSD

In this Section using method introduced by Gupta (1974) we obtain relations
for lower partial moments about c. It is obvious that if t < s then the lower par-
tial moments are independent of a point of inflation s. In this situation recurrence
relations for lower partial moments of IMPSD concur with formulae obtained by
Gupta (1974). So we consider only the situation when a point of inflation s is less
than a limit t.
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Theorem 8 The r+1-th lower partial moment about a point c of IMPSD is given
by

µr+1(t)=
g(θ)
g′(θ)

dµr(t)
dθ

+

(
f ′(θ)
f (θ)

g(θ)
g′(θ)

− c
)

µr(t)−β (s−c)r
(

f ′(θ)
f (θ)

g(θ)
g′(θ)

− s
)
.

(8)

Proof. Observe that for IMPSD with s < t we have

µr(t) = β (s− c)r +α

t

∑
x=0

(x− c)r [g(θ)]
xa(x)

f (θ)
. (9)

Differentiation (9) with respect to θ gives

dµr(t)
dθ

= α

t

∑
x=0

(x− c)ra(x)
x[g(θ)]x−1g′(θ)

f (θ)
−α

t

∑
x=0

(x− c)ra(x)
[g(θ)]x f ′(θ)

[ f (θ)]2

= α
g′(θ)
g(θ)

t

∑
x=0

(x− c)r+1a(x)
[g(θ)]x

[ f (θ)]

+α

(
c

g′(θ)
g(θ)

− f ′(θ)
f (θ)

) t

∑
x=0

(x− c)ra(x)
[g(θ)]x

[ f (θ)]
.

Rearranging (9) we get

α

t

∑
x=0

(x− c)r [g(θ)]
xa(x)

f (θ)
= µr(t)−β (s− c)r.

This gives

dµr(t)
dθ

=
g′(θ)
g(θ)

[
µr+1(t)−β (s− c)r+1]

+

(
c

g′(θ)
g(θ)

− f ′(θ)
f (θ)

)
[µr(t)−β (s− c)r] .

Hence after some simply calculations we get (8).

Putting in (8) c = 0 we get recurrence relations for lower partial moments
of IMPSD.

Corollary 9 The r+1-th lower partial ordinary moment of IMPSD is given by

mr+1(t) =
g(θ)
g′(θ)

dmr(t)
dθ

+
f ′(θ)
f (θ)

g(θ)
g′(θ)

mr(t)−β sr
(

f ′(θ)
f (θ)

g(θ)
g′(θ)

− s
)

(10)

Now we derive recurrence relation for lower partial descending factorial mo-
ments.
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Theorem 10 The r+1-th lower partial descending factorial moment about a point
c of IMPSD is given by

µ(r+1)(t) =
g(θ)
g′(θ)

dµ(r)(t)
dθ

+

(
f ′(θ)
f (θ)

g(θ)
g′(θ)

− c− r
)

µ(r)(t)

−β (s− c)(r)
(

f ′(θ)
f (θ)

g(θ)
g′(θ)

− s
)
. (11)

Proof. For IMPSD with s < t we have

µ(r)(t) = β (s− c)(r)+α

t

∑
x=0

(x− c)(r)
[g(θ)]xa(x)

f (θ)
. (12)

Differentiation (12) with respect to θ gives

dµ(r)(t)
dθ

= α
g′(θ)
g(θ)

t

∑
x=0

(x− c)(r+1)a(x)
[g(θ)]x

[ f (θ)]

+α

(
(c+ r)

g′(θ)
g(θ)

− f ′(θ)
f (θ)

) t

∑
x=0

(x− c)(r)a(x)
[g(θ)]x

[ f (θ)]
. (13)

From (12) it follows

α

t

∑
x=0

(x− c)(r)
[g(θ)]xa(x)

f (θ)
= µ(r)(t)−β (s− c)(r). (14)

Moreover
x(x− c)(r) = (x− c)(r+1)+(x− c)(r)(c+ r). (15)

Combining (14), (15) and (13) we obtain

dµ(r)(t)
dθ

=
g′(θ)
g(θ)

[
µ(r+1)(t)−β (s− c)(r+1)

]
+

(
(c+ r)

g′(θ)
g(θ)

− f ′(θ)
f (θ)

)[
µ(r)(t)−β (s− c)(r)

]
.

After some simply calculations we get (11).
Putting in (11) c = 0 we get recurrence relations for lower descending factorial

moments of IMPSD.

Corollary 11 The r+ 1-th lower partial descending factorial moment of IMPSD
is given by

m(r+1)(t)=
g(θ)
g′(θ)

dm(r)(t)
dθ

+

(
f ′(θ)
f (θ)

g(θ)
g′(θ)

− r
)

m(r)(t)−β s(r)
(

f ′(θ)
f (θ)

g(θ)
g′(θ)

− s
)

(16)

We end this Section with computation lower partial ascending factorial mo-
ments.
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Theorem 12 The r + 1-th lower partial ascending factorial moment about c
of IMPSD is given by

µ[r+1](t) =
g(θ)
g′(θ)

dµ[r](t)
dθ

+

(
f ′(θ)
f (θ)

g(θ)
g′(θ)

− c+ r
)

µ[r](t)

−β (s− c)[r]
(

f ′(θ)
f (θ)

g(θ)
g′(θ)

− s
)
. (17)

Proof. For IMPSD with s < t we have

µ[r](t) = β (s− c)[r]+α

t

∑
x=0

(x− c)[r]
[g(θ)]xa(x)

f (θ)
. (18)

Differentiation (18) with respect to θ gives

dµ[r](t)
dθ

= α

t

∑
x=0

(x− c)[r]a(x)
x[g(θ)]x−1g′(θ)

f (θ)

−α

t

∑
x=0

(x− c)[r]a(x)
[g(θ)]x f ′(θ)

[ f (θ)]2
= α

g′(θ)
g(θ)

t

∑
x=0

(x− c)[r+1]a(x)
[g(θ)]x

f (θ)

+α

[
(c− r)

g′(θ)
g(θ)

− f ′(θ)
f (θ)

] t

∑
x=0

(x− c)[r]a(x)
[g(θ)]x

f (θ)
. (19)

From (18) it follows

α

t

∑
x=0

(x− c)[r]
[g(θ)]xa(x)

f (θ)
= µ[r](t)−β (s− c)[r]. (20)

Moreover
x(x− c)[r] = (x− c)[r+1]− (x− c)[r](c− r). (21)

Combining (20), (21) and (19) we obtain

dµ[r](t)
dθ

=
g′(θ)
g(θ)

[
µ[r+1](t)−β (s− c)[r+1]

]
+

[
(c− r)

g′(θ)
g(θ)

− f ′(θ)
f (θ)

][
µ[r](t)−β (s− c)[r]

]
.

After some simply calculations we get (17).
Putting in (17) c = 0 we get recurrence relations for lower ascending factorial

moments of IMPSD.

Corollary 13 The r + 1-th lower partial ascending factorial moment of IMPSD
is given by

m[r+1](t) =
g(θ)
g′(θ)

dm[r](t)
dθ

+

(
f ′(θ)
f (θ)

g(θ)
g′(θ)

+ r
)

m[r](t)−β s[r]
(

f ′(θ)
f (θ)

g(θ)
g′(θ)

− s
)

(22)
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Remark 14 From (8) and (16) for t → ∞ we can get relations for complete mo-
ments of non-zero IMPSD obtained by Murat and Szynal (1998).

4 Examples

This Section is devoted to illustrative examples of formulae which we obtained
in Section 3. We consider some special cases of IMPSD.

4.1 Inflated generalized Poisson distribution with parameters

Suppose X is a discrete random variable whose probability mass function is given by

P[X = x] =

{
β +α

b(b+ax)x−1

x! θ xe−θ(b+ax), x = s

α
b(b+ax)x−1

x! θ xe−θ(b+ax), x 6= s,
(23)

for x = 0,1,2, ...; θ > 0,| θa |< 1, b > 0.
In this case we have

a(x) =
b(b+ax)x−1

x!
, g(θ) = θe−aθ , f (θ) = ebθ .

Using (10) we get the following recurrence relation for lower partial ordinary mo-
ments for the inflated generalized Poisson distribution

mr+1(t) =
θ

1−aθ

dmr(t)
dθ

+
bθ

1−aθ
mr(t)−β sr

(
bθ

1−aθ
− s
)
, r > 0.

Relations for lower partial descending and ascending factorial moments for in-
flated generalized Poisson distribution we obtain from (16) and (22)

m(r+1)(t) =
θ

1−aθ

dm(r)(t)
dθ

+

(
bθ

1−aθ
− r
)

m(r)(t)−β s(r)
(

bθ

1−aθ
− s
)
,

m[r+1](t) =
θ

1−aθ

dm[r](t)
dθ

+

(
bθ

1−aθ
+ r
)

m[r](t)−β s[r]
(

bθ

1−aθ
− s
)

for r > 0.
Putting in (23) a = 1 and b = 0 we get inflated Poisson distribution with pa-

rameter θ . In this case the relations for lower partial ordinary moments and lower
partial factorial moments are as follows

mr+1(t) =
θ

1−θ

dmr(t)
dθ

−β sr+1,

m(r+1)(t) =
θ

1−θ

dm(r)(t)
dθ

−β s(r)s,

m[r+1](t) =
θ

1−θ

dm[r](t)
dθ

−β s[r]s.

Putting s = 0 we can get partial moments for Poisson distribution.
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4.2 Inflated generalized negative binomial distribution

Let a random variable X has the following probability mass function

P[X = x] =

β +α
nΓ(n+bx)[θ(1−θ)b−1]x

x!Γ(n+bx−x+1)(1−θ)−n , x = s,

α
nΓ(n+bx)[θ(1−θ)b−1]x

x!Γ(n+bx−x+1)(1−θ)−n , x 6= s,

for x = 0,1,2, ...; 0 < θ < 1, | θb |< 1, n > 0.
Here

a(x) =
nΓ(n+bx)

x!Γ(n+bx− x+1)
, g(θ) = θ(1−θ)b−1, f (θ) = (1−θ)−n.

Using (10) we get the following recurrence relation for lower partial ordinary mo-
ments for the inflated negative binomial distribution

mr+1(t) =
θ(1−θ)

1−bθ

dmr(t)
dθ

+
nθ

1−bθ
mr(t)−β sr

(
nθ

1−bθ
− s
)
,

Relations for lower partial descending and ascending factorial moments for in-
flated generalized negative binomial distribution we obtain from (16) and (22)

m(r+1)(t) =
θ(1−θ)

1−bθ

dm(r)(t)
dθ

+

(
nθ

1−bθ
− r
)

m(r)(t)−β s(r)
(

nθ

1−bθ
− s
)
,

m[r+1](t) =
θ(1−θ)

1−bθ

dm[r](t)
dθ

+

(
nθ

1−bθ
+ r
)

m[r](t)−β s[r]
(

nθ

1−bθ
− s
)
,

We have some special cases:
(a) If b = 0 then X has inflated binomial distribution with p.f.

P[X = x] =

{
β +α

(n
x

)
θ x(1−θ)n−x, x = s,

α
(n

x

)
θ x(1−θ)n−x, x 6= s.

In this case

a(x) =
(

n
x

)
, g(θ) =

θ

1−θ
, f (θ) = (1−θ)−n.

Hence we have the following relations for lower partial ordinary and lower partial
factorial moments

mr+1(t) = θ(1−θ)
dmr(t)

dθ
+nθmr(t)−β sr (nθ − s) ,

m(r+1)(t) = θ(1−θ)
dm(r)(t)

dθ
+(nθ − r)m(r)(t)−β s(r) (nθ − s) ,
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m[r+1](t) = θ(1−θ)
dm[r](t)

dθ
+(nθ + r)m[r](t)−β s[r] (nθ − s) .

(b) If b = 1 then X has inflated negative binomial distribution with

a(x) =
(

n+ x−1
x

)
, g(θ) = θ , f (θ) = (1−θ)−n.

In this cases we obtain the relations for lower partial ordinary and factorial mo-
ments

mr+1(t) =
θ(1−θ)

1−θ

dmr(t)
dθ

+
nθ

1−θ
mr(t)−β sr

(
nθ

1−θ
− s
)
,

m(r+1)(t) =
θ(1−θ)

1−θ

dm(r)(t)
dθ

+

(
nθ

1−θ
− r
)

m(r)(t)−β s(r)
(

nθ

1−θ
− s
)
,

m[r+1](t) =
θ(1−θ)

1−θ

dm[r](t)
dθ

+

(
nθ

1−θ
+ r
)

m[r](t)−β s[r]
(

nθ

1−θ
− s
)
.

From above formulae for s = 0 we get relations for partial moments of binomial
and negative binomial distribution, respectively.

4.3 Inflated generalized logarithmic series distribution

Suppose X has the probability mass function

P[X = x] =

β +α
nΓ(bx)[θ(1−θ)b−1]x

xΓ(x)Γ(bx−x+1)[−ln(1−θ)] , x = s,

α
nΓ(bx)[θ(1−θ)b−1]x

xΓ(x)Γ(bx−x+1)[−ln(1−θ)] , x 6= s,
(24)

where x = 1,2, . . . , 0 < θ < 1, 0 < b < θ−1.
It can be seen that

a(x) =
Γ(bx)

xΓ(x)Γ(bx− x+1)
, g(θ) = θ(1−θ)b−1, f (θ) =−ln(1−θ).

In this case relations for lower ordinary and factorial moments we get from (10),
(16) and (22)

mr+1(t) =
θ(1−θ)

1−bθ

dmr(t)
dθ

− θ

(1−bθ) ln(1−θ)
mr(t)

+β sr
(

θ

(1−bθ) ln(1−θ)
+ s
)
,

m(r+1)(t) =
θ(1−θ)

1−bθ

dm(r)(t)
dθ

−
(

θ

(1−bθ) ln(1−θ)
+ r
)

m(r)(t)

+β s(r)
(

θ

(1−bθ) ln(1−θ)
+ s
)
,
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m[r+1](t) =
θ(1−θ)

1−bθ

dm[r](t)
dθ

−
(

θ

(1−bθ) ln(1−θ)
− r
)

m[r](t)

+β s[r]
(

θ

(1−bθ) ln(1−θ)
+ s
)
.

Putting in (24) b = 1 we have inflated Fisher’s logarithmic series distribution.
In this cases the lower partial ordinary and factorial moments fulfil the relations

mr+1(t) = θ
dmr(t)

dθ
− θ

(1−θ) ln(1−θ)
mr(t)+ sr

(
θ

(1−θ) ln(1−θ)
+ s
)
,

m(r+1)(t) = θ
dm(r)(t)

dθ
−
(

θ

(1−θ) ln(1−θ)
+ r
)

m(r)(t)

+β s(r)
(

θ

(1−θ) ln(1−θ)
+ s
)
,

m[r+1](t) = θ
dm[r](t)

dθ
−
(

θ

(1−θ) ln(1−θ)
− r
)

m[r](t)

+β s[r]
(

θ

(1−θ) ln(1−θ)
+ s
)
.

4.4 Inflated lost games distribution

Suppose X has the probability mass function

P[X = x] =

{
β +α

a
2x−a

(2x−a
x

) [θ(1−θ)]x

θ a , x = s,
α

a
2x−a

(2x−a
x

) [θ(1−θ)]x

θ a , x 6= s,

for x = a,a+1, ...; a≥ 1, 0 < θ < 1
2 .

Then

a(x) =
a

2x−a

(
2x−a

x

)
, f (θ) = θ

a, g(θ) = θ(1−θ).

In this case relations for lower ordinary and factorial moments we get from (10),
(16) and (22)

mr+1(t) =
θ(1−θ)

1−2θ

dmr(t)
dθ

+
a(1−θ)

1−2θ
mr(t)−β sr

(
a(1−θ)

1−2θ
− s
)
,

m(r+1)(t) =
θ(1−θ)

1−2θ

dm(r)(t)
dθ

+

(
a(1−θ)

1−2θ
− r
)

m(r)(t)−β s(r)
(

a(1−θ)

1−2θ
− s
)
,

m[r+1](t) =
θ(1−θ)

1−2θ

dm[r](t)
dθ

+

(
a(1−θ)

1−2θ
− r
)

m[r](t)−β s[r]
(

a(1−θ)

1−2θ
− s
)
.
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4.5 Inflated distribution of the number of customers served in a busy
period of the queue M/M/1

Let us consider the following probability function

P[X = x] =

β +α
a

2x−a

(2x−a
x

)[
θ

(1+θ)2

]x (1+θ

θ

)−a
, x = s,

α
a

2x−a

(2x−a
x

)[
θ

(1+θ)2

]x (1+θ

θ

)−a
, x 6= s,

for x = a,a+1, ...; a≥ 1, 0 < θ < 1
2 .

For α = 1 and we obtain distribution of the number of customers served in a busy
period of the queue M/M/1 considered by A. W. Kemp and C. D. Kemp (1968).
The parameter θ is called the traffic intensity. In this case

a(x) =
a

2x−a

(
2x−a

x

)
, f (θ) =

(
1+θ

θ

)a

, g(θ) =
θ

(1+θ)2 .

In this case lower partial moments fulfil recurrence relations

mr+1(t) =
θ(1+θ)

1−θ

dmr(t)
dθ

+
a

θ −1
mr(t)−β sr

(
a

θ −1
− s
)
,

m(r+1)(t) =
θ(1+θ)

1−θ

dm(r)(t)
dθ

+

(
a

θ −1
− r
)

m(r)(t)−β s(r)
(

a
θ −1

− s
)
,

m[r+1](t) =
θ(1+θ)

1−θ

dm[r](t)
dθ

+

(
a

θ −1
+ r
)

m[r](t)−β s[r]
(

a
θ −1

− s
)
.

5 Recurrence relations for upper partial
moments of IMPSD

In this Section using the same method we derive upper partial moments. It is obvi-
ous that for t > s the upper partial moments are independent of a point of inflation
s and recurrence relations for these moments are the same as formulae obtained
by Gupta (1974). So we consider only the situation when a point of inflation s
is greater than a limit t.

Theorem 15 The r+1-th upper partial moment about a point c of IMPSD is given
by

µ
r+1(t)=

g(θ)
g′(θ)

dµr(t)
dθ

+

(
f ′(θ)
f (θ)

g(θ)
g′(θ)

− c
)

µ
r(t)−β (s−c)r

(
f ′(θ)
f (θ)

g(θ)
g′(θ)

− s
)
.

(25)

Putting in (25) c = 0 we get recurrence relations for upper partial moments
of IMPSD.
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Corollary 16 The r+1-th upper partial ordinary moment of IMPSD is given by

mr+1(t) =
g(θ)
g′(θ)

dmr(t)
dθ

+
f ′(θ)
f (θ)

g(θ)
g′(θ)

mr(t)−β sr
(

f ′(θ)
f (θ)

g(θ)
g′(θ)

− s
)

(26)

Now we give relations for upper partial factorial moments. As in the previous
Section, we assume that s > t.

Theorem 17 The r+1-th upper partial descending factorial moment about a point
c of IMPSD is given by

µ
(r+1)(t) =

g(θ)
g′(θ)

dµ(r)(t)
dθ

+

(
f ′(θ)
f (θ)

g(θ)
g′(θ)

− c− r
)

µ
(r)(t)

−β (s− c)(r)
(

f ′(θ)
f (θ)

g(θ)
g′(θ)

− s
)
. (27)

From (27) for c = 0 we obtain recurrence relations for upper descending fac-
torial partial moments of IMPSD.

Corollary 18 The r+ 1-th upper partial descending factorial moment of IMPSD
is given by

m(r+1)(t) =
g(θ)
g′(θ)

dm(r)(t)
dθ

+

(
f ′(θ)
f (θ)

g(θ)
g′(θ)

− r
)

m(r)(t)

−β s(r)
(

f ′(θ)
f (θ)

g(θ)
g′(θ)

− s
)
. (28)

Theorem 19 The r + 1-th upper partial ascending factorial moment about c
of IMPSD is given by

µ
[r+1](t) =

g(θ)
g′(θ)

dµ [r](t)
dθ

+

(
f ′(θ)
f (θ)

g(θ)
g′(θ)

− c+ r
)

µ
[r](t)

−β (s− c)[r]
(

f ′(θ)
f (θ)

g(θ)
g′(θ)

− s
)
. (29)

Corollary 20 The r+ 1-th upper partial descending factorial moment of IMPSD
is given by

m[r+1](t) =
g(θ)
g′(θ)

dm[r](t)
dθ

+

(
f ′(θ)
f (θ)

g(θ)
g′(θ)

+ r
)

m[r](t)

−β s[r]
(

f ′(θ)
f (θ)

g(θ)
g′(θ)

− s
)
. (30)

Remark 21 From (25) and (28) for t → 0 we can get relations for complete mo-
ments of non-zero IMPSD obtained by Murat and Szynal (1998).



Incomplete moments of non-zero inflated modified power series distribution 109

6 Conclusion

Obtained recurrence relations for partial lower and upper moments generalize and
extend formulae for moments established by Gupta, Gupta and Thripati (1986).
They also complement formulae given by Gupta, Gupta and Thripati (1995) and
and Murat and Szynal (1998).
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Ernest Nieznaj 1

A note on mixed moments of random variables governed
by Poisson random measure

Keywords: Poisson random measure, mixed moments, Bell numbers

Abstract

Let (E,E ,µ) be a measurable space with σ− finite measure µ and π Poisson
random measure with intensity measure µ . We assume that Xk and Yk are random
variables of the form

Xk(ω) =
∫

E
fk(x)π(dx;ω), Yk(ω) =

∫
E

fk(x)π̃(dx;ω),

for k = 1, . . . ,n and π̃(x;ω) := π(x;ω)−µ(dx). If mixed moments of Xk and Yk are
finite then we provide formulae for calculating

E(X1X2 . . .Xn), E(Y1Y2 . . .Yn). (1)

In E. Nieznaj (2011) these formulae were proved for characteristic functions, how-
ever in this note we prove (1) in a slightly different way. In particular when we take
fk(x) = f (x), k = 1, . . . ,n we get formulas for EXn and EY n proved in B. Bassan,
E. Bona (1990) and N. Privault (2012).

1 Introduction and main results

Poisson random measure

Recall that X has Poisson distribution P(λ ) with intensity λ > 0, if

P(X = k) = e−λ λ k

k!
, k = 0,1,2, . . . .

We define also distributions P(0), P(∞) by

P(X = 0) = 1, P(X = ∞) = 1.

Throughout this note we assume that (E,E ,µ) is a measurable space with σ−finite
measure µ .

1Department of Mathematics, Technical University of Lublin, Nadbystrzycka 38,
20-618 Lublin, e-mail: e.nieznaj@pollub.pl
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Following J. Zabczyk (2004), J.F.C. Kingman (1993) and K. Sato (1999) we
recall that a Poisson random measure on (E,E ) with intensity measure µ , defined
on a probability space (Ω,F ,P), is a mapping

π : Ω×E → N= {0,1,2, . . .}

such that the following conditions hold:

(i) the random variable π(A) has Poisson distribution with intensity µ(A),
for any A ∈ E ,

(ii) if A1,A2, . . . ,Am are disjoint then π(A1), . . . ,π(Am) are independent and

π(A1∪ . . .∪Am) = π(A1)+ . . .+π(Am),

(iii) for every ω ∈Ω, π(·;ω) is a measure on E.

We can also think of π as a collection of random variables {π(A),A ∈ E } that
satisfy conditions (i) - (iii). The construction and properties of such a measure
is e.g. in J. Zabczyk (2004), J.F.C. Kingman (1993) and K. Sato (1999). We define
also the compensated Poisson measure

π̃(A) := π(A)−µ(A), A ∈ E , µ(A)< ∞.

Note that Eπ(A)= µ(A), Eπ̃(A)= 0, where E denotes the expectation with respect
to P.

Properties of the integral with respect to π and π̃ are contained in the following
theorem, which is comming from J. Zabczyk (2004) (see pp. 64).

Theorem 1 Let f (x) be a measurable function on (E,E ). Then the following hold

(i) if ∫
E
| f (x)|π(dx)<+∞, P−a.s.

then for λ ∈ R1

Eexp
(

iλ
∫

E
f (x)π(dx)

)
= exp

(
−
∫

E
(1− eiλ f (x))µ(dx)

)
(2)

(ii) if f ∈ L1(E) then

E
∫

E
| f (x)|π(dx)<+∞

and
E
∫

E
f (x)π̃(dx) = 0,
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(iii) if f ∈ L1(E)∩L2(E) then

E
∣∣∣∣∫E

f (x)π̃(dx)
∣∣∣∣2 = ∫E

f 2(x)µ(dx). (3)

From the above theorem we conclude that if f ∈ L1(E)∩L2(E) then

Eexp
(

iλ
∫

E
f (x)π̃(dx)

)
(4)

= exp
(
−
∫

E

(
1− eiλ f (x)+ iλ f (x)

)
µ(dx)

)
, λ ∈ R.

Main results

We assume that we are given random variables

Xk(ω) =
∫

E
fk(x)π(dx;ω), k = 1, . . .n,

where f1, . . . , fn are deterministic measurable functions on (E,E ) such that X1, . . . ,Xn

are well defined. For example Theorem 1 can be used to define these random vari-
ables. We have the following theorem, see Lemma 1 in E. Nieznaj (2011) and
B. Bassan, E. Bona (1990).

Theorem 2 Assume that the expectation of X1 . . .Xn is finite, then for n> 2 we have

E(X1X2 . . .Xn)

= ∑
I

∫
∏

i∈{I1}
fi(x)µ(dx) . . .

∫
∏

i∈{Ip}
fi(x)µ(dx)

where the sum runs over all partitions I = {{I1}, . . . ,{Ip}} of the set {1,2, . . . ,n}.

We write shortly ∫
f dµ :=

∫
E

f (x)µ(dx).

For n = 2 we have, see also J.F.C. Kingman (1993),

E(X1X2) =
∫

f1dµ

∫
f2dµ +

∫
f1 f2dµ

and n = 3

E(X1X2X3) =
∫

f1dµ

∫
f2dµ

∫
f3dµ +

∫
f1dµ

∫
f2 f3dµ
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+
∫

f2dµ

∫
f1 f3dµ +

∫
f3dµ

∫
f1 f2dµ +

∫
f1 f2 f3dµ.

Next we consider integration with respect to compensated Poisson measure, so let

Yk(ω) =
∫

E
fk(x)π̃(dx;ω), k = 1, . . .n,

where f1, . . . , fn are measurable functions such that Y1, . . . ,Yn are well defined,
see (3).

We can state now the next theorem, see Lemma 2 in E. Nieznaj (2011) and
Proposition 3.3 in N. Privault (2012).

Theorem 3 Assume that the expectation of Y1 . . .Yn is finite, then for n> 2 we have

E(Y1Y2 . . .Yn)

= ∑
I

∫
∏

i∈{I1}
fi(x)µ(dx) . . .

∫
∏

i∈{Ip}
fi(x)µ(dx)

where the sum runs over all partitions I = {{I1}, . . . ,{Ip}} of the set {1,2, . . . ,n}
such that |{Ik}|> 2 for all k = 1, . . . , p.

Again for example for n = 2 we have E(Y1Y2) =
∫

f1 f2dµ = cov(Y1,Y2), n = 3

E(Y1Y2Y3) =
∫

f1 f2 f3dµ,

and n = 4

E(Y1Y2Y3Y4) =
∫

f1 f2dµ

∫
f3 f4dµ +

∫
f1 f3dµ

∫
f2 f4dµ

+
∫

f1 f4dµ

∫
f2 f3dµ +

∫
f1 f2 f3 f4dµ.

Remark 4 As we have mentioned Theorems 1 and 2 were proved in E. Nieznaj
(2011) for characteristic functions. So if we take fk(x) = χAk(x), Ak ∈ E then

Xk(ω) =
∫

E
χAk(x)π(dx;ω) = π(Ak),

Yk(ω) = π(Ak)−µ(Ak), k = 1, . . . ,n.

and using Theorem 2 we obtain

E(π(A1)π(A2) . . .π(An)) = ∑
I

µ(
⋂

i∈{I1}
Ai) . . .µ(

⋂
i∈{Ip}

Ai), (5)

where the sum runs over all partitions of {1, . . . ,n}.
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2 Proofs of Theorems 2, 3

Proof of Theorem 2

Substituting in (2) λ = 1 and f (x) = t1 f1(x)+ . . . tn fn(x) we have

Φ(t) = Eexp(i(t1X1 + . . . tnXn)) = exp(g(t)),

where t = (t1, . . . , tn) and

g(t) =−
∫

E

(
1− ei(t1 f1(x)+...+tn fn(x))

)
µ(dx), t ∈ Rd .

Observe that Φ
(1)
t1 = Φg(1)t1 , Φ

(2)
t1t2 = Φ[g(1)t1 g(1)t2 +g(2)t1t2 ] and (note that this is the place

where partitions of sets appear)

Φ
(3)
t1t2t3 = Φ[g(1)t1 g(1)t2 g(1)t3 +g(1)t1 g(2)t2t3

+g(1)t2 g(2)t1t3 +g(1)t3 g(2)t1t2 +g(3)t1t2t3 ].

Now it follows by induction that for n> 4 we have

Φ
(n)
t1t2...tn = Φ∑

I
g(|I1|)

I1
g(|I2|)

I2
. . .g(|Ip|)

Ip
, (6)

where the sum runs over all partitions I = {{I1}, . . . ,{Ip}} of the set {t1, t2, . . . , tn},
|{Ik}| denotes the number of elements of {Ik} and g(|Ik|)

Ik
is derivative of g(t1, . . . , tn)

with respect to indices contained in {Ik}. Since

g(1)tl (t) = i
∫

E
ei(t1 f1(x)+...+tn fn(x)) fl(x)µ(dx),

we have

g(1)tl (0) = i
∫

E
fl(x)µ(dx), l = 1, . . .n.

and in general

g(k)tl1 ...tlk
(0) = ik

∫
E

fl1(x) . . . flk(x)µ(dx),

for any l1, . . . , lk ∈ {1, . . . ,n}. Using the formula

inE(X1 . . .Xn) = Φ
(n)
t1t2...tn(0), n> 1,

we conclude the statement of the theorem. �
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Proof of Theorem 3

As in the previous proof let

Φ̃(t) = Eexp(i(t1Y1 + . . . tnYn)) = exp(g̃(t)),

where
g̃(t) =−

∫
E
(1− ei(t1 f1(x)+...+tn fn(x))

+t1 f1(x)+ . . . tn fn(x))µ(dx), t ∈ Rd .

Analougusly we have

g̃(1)tl (t) = i
∫

E
fl(x)(ei(t1 f1(x)+...+tn fn(x))−1)µ(dx),

therefore (here is the only difference between proofs of Theorem 2 and 3)

g̃(1)tl (0) = 0, l = 1, . . .n.

For k > 2 we have

g̃(k)tl1 ...tlk
(0) = ik

∫
E

fl1(x) . . . flk(x)µ(dx), (7)

for any l1, . . . , lk ∈ {1, . . . ,n}. �

3 Application of Theorem 3

Let f ∈ L2(E). Recall that (Ω,F ,P) is a probability space where π is defined and
E is the expectation with respect to P. Using isometry (3) we can define

X f :=
∫

E
f (x)π̃(dx)

as an element of L2(Ω). Namely, let { fn,n > 1} be a sequence of measurable
functions such that fn ∈ L1(E)∩L2(E), n> 1, and

lim
n→∞

∫
E
( f (x)− fn(x))2

µ(dx) = 0.

Thanks to (3) we have

E(X fn−X fm)
2 =

∫
E
| fn(x)− fm(x)|2µ(dx),

hence {X fn ,n > 1} is a Cauchy sequence in L2(Ω) and we define X f as its limit
in that space, i.e.

X f := l.i.m.n→∞X fn .
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Additionally L2 convergence implies

EX f = 0, EX2
f =

∫
E

f 2(x)µ(dx).

Moreover (4) is also true for f ∈ L2(E), e.g. by estimation

|eix−1− ix|6 1
2

x2, x ∈ R.

By L∞(E) we denote the Banach space of measurable functions with the norm

|| f ||L∞(E) = sup essE | f (x)|.

The following result is a consequence of Theorem 3.

Theorem 5 Let f ∈ L2(E)∩L∞(E). Then EXn
f <+∞ for n> 1.

Proof. Observe that for α > 0∫
E
| f (x)|2+α

µ(dx)6 || f ||αL∞(E)

∫
E
| f (x)|2µ(dx)<+∞,

hence by (7) we have
|g̃(k)t (0)|<+∞, k > 2.

The above implies EXn
f <+∞ for every n> 1.�

Remark 6 In the proof of Theorem 5 we have used the following theorem (see
I.I. Gikhman, A.V. Skorokhod 1969, Theorem 2, p. 7): if X is a random variable,
ϕ(t) = Eexp(itX), t ∈ R and |ϕ2n(0)| < +∞ for some n > 1,n ∈ N then
EX2n <+∞ and

i2nEX2n = ϕ
2n(0).

4 Bell numbers and partitions of a set

Bell numbers

Recall that the Bell number Bn is defined as the number of partitions of a set
consisting of n elements, see e.g. G.C. Rota (1964). We define also B0 = 1.
For example B1 = 1,B2 = 2 and the following relation is satisfied

Bn+1 =
n

∑
k=0

(
n
k

)
Bk, n> 1.

Taking Ak = A, A ∈ E , k = 1, . . . ,n in (5) and µ(A) = λ we have

EXn = Tn(λ ), n> 1,

where X ∼P(λ ) and
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Bn(x) :=
n

∑
k=1

S(n,k)xk, x ∈ R, n> 1,

are called the Bell polynomials (or sometimes Touchard polynomials), see N. Pri-
vault (2011) for more details. The Stirling number S(n,k) denotes the number
of partitions of {1, . . . ,n} into k non-empty subsets. So when X ∼P(1), then

EXn =
n

∑
k=1

S(n,k) = Bn, n> 1. (8)

Table 1. Stirling numbers and Bell polynomials, Bn = Bn(1)

n,k 1 2 3 4 5 Bn(λ ) Bn

1 1 - - - - λ 1
2 1 1 - - - λ +λ 2 2
3 1 3 1 - - λ +3λ 2 +λ 3 5
4 1 7 6 1 - λ +7λ 2 +6λ 3 +λ 4 15
5 1 15 25 10 1 λ +15λ 2 +25λ 3 +10λ 4 +λ 5 52

Remark 7 In the literature (8) or sometimes the expression for n−th moment
of P(1)

Bn =
1
e

∞

∑
k=0

kn

k!

is called "Dobinski’s formula" (see G.C.Rota, 1964). Bell numbers can be also
defined by

eex−1 =
+∞

∑
n=0

Bn

n!
xn, B0 := 1.

Additionally the Bell polynomials satisfy the following relation

Bn+1(x) = x
n

∑
k=0

(
n
k

)
Bk(x), n> 1,

with B0(x) = 1, B1(x) = x.

Central moments of Poisson distribution

Now let’s have a look at Theorem 3. We will find the recurrence formula for
the number of partitions of {1, . . . ,n} into subsets containing at least 2 elements.
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This in fact will be the relation between central moments of Poisson distribution.
Let X ∼P(λ ). We introduce the following notation

En(λ ) = E(X−λ )n, n> 1, (9)

with E0 = 1. The characteristic function of X−λ equals

φ(t) = Eeit(X−λ ) = e(e
it−it−1)λ , t ∈ R. (10)

We write
φ(t) = e f (t), f (t) = (eit − it−1)λ .

Since φ ′(t) = φ(t) f ′(t), therefore using the Leibniz formula we get

φ
(n+1)(t) =

n

∑
k=0

(
n
k

)
φ
(n−k)(t) f (k+1)(t), n> 1. (11)

Moreover we have

f ′(0) = 0, and f (n)(0) = inλ , n> 2.

Finally by (11) we obtain the relation

En+1(λ ) = λ

n

∑
k=1

(
n
k

)
En−k(λ ), n> 1, (12)

where E0(λ ) = 1, E1(λ ) = 0. For example we have E2(λ ) = λ , E3(λ ) = λ ,
E4 = 3λ 2 +λ , E5(λ ) = 10λ 2 +λ . Let us denote En := En(1) for n> 1.

Table 2. Comparison of Bn and En

n Bn = EXn E(X−1)n n Bn = EXn E(X−1)n

1 1 0 6 203 41
2 2 1 7 877 162
3 5 1 8 4140 715
4 15 4 9 21147 3425
5 52 11 10 115975 17722
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Modeling of financial markets using structural equations

Keywords: structural equation, factor analysis, stock indices, exchange rates

Abstract

The work is a kind of example of using of structural equations in economics.
The article uses both confirmatory and exploratory variants of structural models.
The use of this tool was dictated by the need to discover or confirm the hypothet-
ical dependencies on the financial market. Considering the individual markets and
exchange rates, we can using structural modeling indicate the strength of the interac-
tion between those factors. Some of the models in the work does not have a counter-
part in the classical statistical methods, such as regression analysis, due to the strong
correlation between the explanatory variables. They were also shown structural mod-
els describing the relationship in terms of time. Database were exchange rates and
stock indices traded on markets around the world in the period from 01.01.1999 to
20.10.2011. All models are characterized by a strong convergence and seem to ex-
plain actually exists dependencies on the financial markets.

1 Introduction

At first we give some arguments justifying the use of structural equation in the ana-
lysis of financial markets.

Nowadays analyzing exchange of currency, stocks, stock indices and com-
modities traded on markets often ask ourselves whether a particular instrument
goes up or down, and possibly by how much. To answer this question analysts use
mainly two methods separately or complementarily, namely fundamental analysis
or technical analysis.

Supporters of the latter are looking for systems based on indicators, oscillators,
candlesticks formations and harmonic patterns or price action.

In all these cases, the systems are upgraded by the analysis of the relationships
between pairs of instruments strongly interacting. Since the all values measured
on the stock markets of all the world are closely related (for example WIG20 is
strongly correlated with S&P500) to finding these relationships really can help

1Department of Mathematics, Technical University of Lublin, Nadbystrzycka 38,
20-618 Lublin, e-mail: d.majerek@pollub.pl, roswoj@gmail.com
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to take the appropriate position in the market. If we analyze the relationship be-
tween the two instruments, a simple correlation should suffice. But when we
examine the flows between several instruments we need to apply more advanced
tool, namely the structural equation.

The second argument in favor of using this tool is that the structural equation
can be used both to discover and confirm links occurred.

2 Structural equation model

The first to be interested in the analysis of paths2 was Sewell Wright in the twenties
of the last century. However, at the beginning of the present century, this method
began to be widely used due to increased computing power, which is necessary
to calculate the parameters of the model.

Figure 1: A structural equation model represented by a path diagram. Squares are
observable variables. Circles are latent variables. Disturbances, although latent vari-
ables, are represented without circles. One-headed arrows represent causal paths.
Two-headed curves represent covariance. Associated with each causal path is a struc-
tural parameter.

In the 1930s, the economist John Maynard Keynes (1936) developed models
of the economy using systems of simultaneous linear equations relating one set of
variables to another set of variables.

Structural Equation Modeling is a very powerful and widely used method
of multivariate techniques. It includes the measurement and structural model. It

2Name comes from the graphical diagram describing the studied phenomenon.
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provides easy interpretation, the ability to predict, discover hidden factors, the con-
firmation of hypothetical models (confirmatory analysis). The essence of this
method is to compare the observed covariance matrix S of the implied covari-
ance matrix Σ(θ)3

Σ(θ) = S , (1)

where θ is the parameter vector. Construction of an appropriate model of SEM4 is
to restore the covariance matrix based on the given model. SEM allows testing of
many types of theoretical models. They can be interpreted as a combination of two
statistical methods: factor analysis and multiple regression.

Factor analysis can be divided into: Exploratory Factor Analysis5 and Con-
firmatory Factor Analysis6. The aim of the first is to find the number of latent
variables and their relation with observable variables. The second method allows
you to test the hypothetical relationships between observable variables and latent
variables.

Speaking of latent variables we mean the phenomena observed, but not making
a quantitative assessment, such as satisfaction with a flight. Mentioned variable
can be measured only by the component variables that the satisfaction of a flight
affected, such as cost and comfort of the flight (whether there is turbulence, and
served meals, etc). In the case of the financial markets the latent variables can be
for example the condition of the U.S. economy, Japanese economy, etc., which
are difficult to evaluate. The role of observable7 variables may play USDJPY,

EURJPY, EURUSD or indices S&P500, NIKKEI, DJIA itp.

2.1 General form of the structural model

The general structural model can be represented as

η = Bη +Γξ +ζ (2)

where η is the vector of endogenous latent factors, ξ is the vector of exogenous
latent factors, ζ is the vector of residuals, B is the matrix of coefficients of the struc-
tural η given η and Γ is the matrix of structural coefficients η given ξ .

The structural model consists also equations describing the relationship be-
tween latent and observable variables:

y =∆yη + ε (3)

x =∆xξ +δ , (4)

3Calculated from the model.
4Structural Equation Model
5EFA
6CFA
7or manifest variables
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where y is a vector of observable endogenous variables, x is a vector of observable
exogenous variables, ∆y and ∆x are matrices of factor loadings and ε , δ are vectors
of measurement errors, respectively of y and x.

The correct form of the model may result from the current knowledge
of the studied phenomenon, then we use a model of the CFA. In case you do not
know the potential cause-and-effect relationships, you can use the EFA to make
such findings.

2.2 Estimating of model parameters

Estimating the parameters of the model is to minimize the of discrepancy function.
To estimate model parameters we can use several methods:

• Ordinary Least Squares Method (OLS) - most commonly used to calculate
the initial model parameters;

• Maximum Likelihood Method (ML) - the most common method of estimat-
ing the model parameters;

• Unweighted Least Squares Method (ULS) - can be applied even if the ma-
trices S and Σ are not positively defined;

• Generalized Least Squares Method (GLS) - allows minor deviation from
a multivariate normal distribution of endogenous and exogenous variables;

• Weighted Least Squares Method (WLS) - method more resistant to deviate
from a multivariate normal distribution of input and output variables than
the GLS method.

2.3 Model Evaluation

Tests or indicators to evaluate the fit of the model can be divided into two groups
(see D. Hooper, J. Coughlan and M.R. Mullen, 2008):

• Absolute fit indices: χ2, RMSEA8, GFI9, RMR10, SRMR11

• Relative fit indices: NFI12, CFI13, TLI14.

8Root Mean Square Error of Approximation
9Goodnes of Fit Index

10Root Mean Square Residual Index
11Standardized Root Mean Square Residual Index
12Normed Fit Index
13Comparative Fit Index
14Tucker-Lewis Index
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In the case of if the above indicators signal the lack of fit of the model to the data,
make another model specification. This operation can be stopped if we have a sat-
isfactory level of fit.

3 Modeling of financial markets using structural
equations

3.1 The data

In the analyzed data sheet has been placed exchange rates from the European Cen-
tral Bank (ECB) from 01.01.1999 to 20.10.2011, and indexes of major stock mar-
kets in the world (FT-SE 100, DAX, S&P 500, CAC 40, DJIA, Nikkei 225,

NASDAQ Composite). Also included variable NEXT(USD) represents the rate
EURUSD lagging by one day in compared to other quotes. It will be used to build
a predictive model. In the same way has been added the variable NEXT(GBP).
Missing data were deleted in cases for the model. In addition, data were divided
into five sub-periods - each with 571 measurements (the total was 2855 cases).
Thus was fulfilled the assumption of sample size for simple models based on
a minimum sample size of N = 500. The division into sub-samples of the time
due to a hypothetical assumption that over the nearly 13 years the force of im-
pacts concerned markets is likely to be changed (which was confirmed by later
studies). This is due to various external factors, such as terrorist attacks, stock
market crashes or ecological disasters. As a result of such events, decreases or in-
creases the force of impact of the local currency and stock exchanges and other
global currency exchange. According to one of the main assumptions of SEM, any
observable variables just before including to the model has been standardized.

The estimated parameters of the following models, are given with an accuracy
of two decimal places, as in the case of the correlation matrix. Statistics of the fit
of the model (ie, χ2, RMSEA and CFI) were given to three decimal places.

3.2 Confirmatory analysis

Starting the search based on the position of the researcher, who has no idea about
the hidden structures (and those that believed not confirmed by confirmatory anal-
ysis), we performed an exploratory factor analysis (T. Asparouhov and B. Muthen,
2009). However, the use of EFA brings some trouble described in the following ex-
ample: researchers found three hidden factors in the data structure. After the EFA
is able to determine the effect of each observable variable on the latent variable.
It would, however, remove from the model the relationships that are relatively very
small (actually not significant). You may then find that the model is no longer fit
to the sample covariance matrix. How to find the hidden depending on the desired
matrix?
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In our research, the answer to this problem, we used the script created in
an R (see J. Fox, 2006), which examines all possible combinations of variables by
the set structure. The program is looking for the optimal variables for confirma-
tory analysis model contains four indicators reported x1, x2, x3, x4 and two factors
hidden factor1, factor2. The best variables are selected on the basis of critical
significance test p χ2. Diagrams for structural models were made in the program
LISREL (see K.G. Joreskog and M. Thillo, 1970).

For example, if you are looking for the variables in the model shown in Figure
2, we create four-dimensional array that stores the value of p test χ2 for each
considered model (of course, the entire array will not be saved). At the end of, we
sort the results descending relative to p, so we can only deal with models similar
to the observed situation and the researcher should only do substantive assessment
of received dependencies.

With this algorithm, we can examine all kinds of hidden structures of two
factors, each with two indicator variables, measure the time of analysis, do
the analysis for each of the sub-periods, consider only significant models, exclude
Heywood’s cases (see S. Kolenikov and K.A. Bollen, 2007). This script deals
with all types of variable data seeking confirmation of the following structure
of measurement model (Figure 2).

X1      

X2      

X3      

X4      

FACTOR1

FACTOR2

You created this PDF from an application that is not licensed to print to novaPDF printer (http://www.novapdf.com)

Figure 2: Measurement model
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Table 1. Correlation matrix of first confirmatory model

GBP FTSE100 CHF DJIA
GBP 1,00 0,27 0,18 0,28

FTSE100 0,27 1,00 0,64 1,00
CHF 0,18 0,64 1,00 0,63
DJIA 0,28 1,00 0,63 1,00

Source: Own elaboration based on ECB data

3.3 The first confirmatory model

Using the mentioned script has been estimated the following model (from 26.02.2004
to 6.09.2006): 

FACTOR1 = 1,00 ·GBP+3,62 ·FT-SE100,
FACTOR2 = 1,00 ·CHF+1,55 ·DJIA,

Cov(FACTOR1,FACTOR2) = 0,18.

χ
2 = 0,000;d f = 1; p = 0,995;RMSEA = 0,000;CFI = 1,000.

The first factor consists two variables: GBP and FT-SE100, and in the second
factor there are hidden: CHF andDJIA. The model is a very good fit to the observed
sample, as evidenced by the low value of χ2 statistic, the high value of p, low
value of RMSEA and high value of CFI. For this reason, and because the scale
of measurement of the latent factors was determined by GBP and CHF, correlation
hidden factors is approximately equal to the correlation GBP and CHF (0.18).
Increased loadings of FT-SE100 and DJIA (respectively 3.62 and 1.55), shows
that the indices are highly correlated, but also that they are strongly correlated
with the GBP and CHF, than the latter between each other.

3.4 The second confirmatory model - volatility impacts in time

The postulated interactions volatility in exchange rates and stock market indices
has been confirmed by the following two models. Both concern the relationship
between the JPY and NIKKEI (indicators for the first latent variable) and DJIA and
DAX (indicators for the second latent variable). For the period from 26.02.2004 to
6.09.2006 of the model has been estimated as follows:

FACTOR1 = 1,00 · JPY+1,24 ·NIKKEI,
FACTOR2 = 1,00 ·DJIA+0,97 ·DAX,

Cov(FACTOR1,FACTOR2) = 0,77.
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Table 2. Correlation matrix of the second confirmatory model (based on data from
26.02.2004 to 6.09.2006)

JPY NIKKEI DJIA DAX
JPY 1,00 0,72 0,77 0,73

NIKKEI 0,72 1,00 0,95 0,93
DJIA 0,77 0,95 1,00 0,88
DAX 0,73 0,93 0,88 1,00

Source: Own elaboration based on ECB data

χ
2 = 1,885;d f = 1; p = 0,170;RMSEA = 0,039;CFI = 0,999.

The same model for the period from 31.03.2009 to 18.10.2011 has been esti-
mated, however, with other parameters:

FACTOR1 = 1,00 · JPY−1,59 ·NIKKEI,
FACTOR2 = 1,00 ·DJIA+1,06 ·DAX,

Cov(FACTOR1,FACTOR2) =−0,59.

χ
2 = 1,338;d f = 1; p = 0,247;RMSEA = 0,024;CFI = 1,000.

Correlation matrix explains the situation. In these sub-periods changed correla-

Table 3. Correlation matrix of the second confirmatory model (based on data from
31.03.2009 to 18.10.2011)

JPY NIKKEI DJIA DAX
JPY 1,00 -0,60 -0,58 -0,64

NIKKEI -0,60 1,00 0,94 0,99
DJIA -0,58 0,94 1,00 0,92
DAX -0,64 0,99 0,92 1,00

Source: Own elaboration based on ECB data

tion JPY with the other variables - from an average of 0.74 to an average of −0.61.
While the other variables remain strongly dependent JPY began to play the oppo-
site role than before in this structure. In both models DAX has a similar coefficient
to DJIA - close to one. This means that, despite the passage of time and evolving
the relationship in markets these variables remain in the same relationship. Other-
wise: changes in global markets, which concerned the observed variables in this
model, probably had a similar effect on the DAX and DJIA.

Similar properties (ie variability of estimated parameters) showed other exam-
ined models, but most estimates in other sub-periods (than the current sub-period
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Table 4. Correlation matrix of the first structural model

JPY CAD NEXT(USD) NEXT(GBP)
JPY 1,00 0,85 0,51 0,52
CAD 0,85 1,00 0,60 0,57

NEXT(USD) 0,51 0,60 1,00 0,70
NEXT(GBP) 0,52 0,57 0,70 1,00

Source: Own elaboration based on ECB data

for which the model was estimated) were divergent. This approach encourages
the consideration of structural time series.

3.5 The first structural model

On the basis of previously performed factor analysis, the researcher can verify
structural model (Figure 3). Similarly as for confirmatory analysis, the following

X1    

X2    

Y1

FACTOR_Y

Y2   

FACTOR_X

Figure 3: Example of a structural model

model has been found. It describes the relationship in foreign exchange markets,
between JPY, CAD and lagged GBP and USD. Model covers the period from
2009-03-31 to 2011-10-18:

FACTOR-X = 1,00 · JPY+1,13 ·CAD,

FACTOR-Y = 1,00 ·NEXT(USD)+1,00 ·NEXT(GBP),
Cov(FACTOR-X,FACTOR-Y) = 0,34.

χ
2 = 1,338;d f = 1; p = 0,091;RMSEA = 0,057;CFI = 0,998.

In this model, all variables enter with similar weights to the latent variables.
RMSEA value is slightly above the threshold value of 0.05, however, other indi-
cators suggest a good fit of the model. In this structure, the relationship between
FACTOR-X and FACTOR-Y is weaker (0.34), than would be the result of the cor-
relation matrix. CAD enters to a latent variable with a larger load than JPY, so it
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is more correlated with the NEXT(USD) and NEXT(GBP). We interpret this as a
slightly greater impact of CAD on the tomorrow’s courses of USD and GBP than
JPY. An image of this situation we can find in the correlation matrix. An impor-
tant advantage of using SEM to evaluate the impact of two variables on two other
variables (in this case, the influence of two currencies rates on other currencies
lagged by one day), as opposed to analysis of pairs of variables, such as using
normal correlation matrix.

3.6 The second structural model

A more sophisticated structural regression model is shown in Figure 4. For the ana-
lyzed data samples failed to find the following set of variables for which the pro-
posed model is significant - model covers the period from 26.02.2004 to 6.09.2006:

X1    

X2    
Y1

FACTOR_Y

Y2   

FACT_X1

FACT_X2

X3    

X4   

Figure 4: Example of structural model with two exogenous latent variables

FACTOR-X1 = 1,00 ·CHF+1,45 ·CAC40,
FACTOR-X2 = 1,00 ·DAX+1,09 ·NASDAQ,

FACTOR-Y = 1,00 ·NEXT(JPY)+0,50 ·NEXT(GBP),
0,94 ·FACTOR-X1+0,21 ·FACTOR-X2 = FACTOR-Y,

Cov(FACTOR-X1,FACTOR-X2) = 0,60,
ErrCov(NEXT(JPY),NEXT(GBP)) = 0,01.

χ
2 = 6,336;d f = 5; p = 0,275;RMSEA = 0,022;CFI = 0,999.

In this model, indicator variables for the two exogenous latent variables are
respectively CHF and CAC40 and DAX and Nasdaq. Endogenous hidden variable
(which can be interpreted as the expected situation in the currency markets)
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Table 5.Correlation matrix of the second structural model

CHF CAC40 DAX NASDAQ NEXT(JPY) NEXT(GBP)

CHF 1,00 0,63 0,61 0,66 0,55 0,19
CAC40 0,63 1,00 0,87 0,95 0,77 0,36
DAX 0,61 0,87 1,00 0,87 0,73 0,33

NASDAQ 0,66 0,95 0,87 1,00 0,81 0,38
NEXT(JPY) 0,55 0,77 0,73 0,81 1,00 0,38
NEXT(GBP) 0,19 0,36 0,33 0,38 0,38 1,00

Source: Own elaboration based on ECB data

is indicated by two (weakly correlated) variables: NEXT(JPY) and NEXT(GBP).
The loadings of exogenous variables are aligned (close to 1), but the impact
of latent variable on the other is much weaker than the first. We have a lower co-
efficient of Nasdaq relative to the value of the coefficient of the CAC40. Nasdaq
is strongly correlated than CAC40 with each of the endogenous variables. How-
ever, its weight in the model is much lower by lower loading of latent variable
(FACTOR-X2), and the less impact of FACTOR-X2 to FACTOR-Y. Such conclu-
sion is possible only on the basis of the correlation matrix. The model indicates
a very low (0.01) correlation error of NEXT(GBP) and NEXT(JPY). This means
that if the values of the endogenous variables deviate, the changes were not related.
A higher correlation between these variables can be assumed that the model lacks
a variable or variables necessary to explain the variability of endogenous factor.

3.7 The third structural model

This model is based on multiple regression. Figure 5 shows the estimated param-
eters of the model with two latent variables. If the investigator determines the
measuring scale latent variables, by determining the individual impact indicator is
chosen separately for each latent variable (for example, JPY and NIKKEI), such
a model has zero degrees of freedom and it is not possible to estimate the fit. How-
ever, in this way, researchers can get initial estimates of parameters and setting
one parameter (for example, GBP), fit indices are then possible to calculate (one
degree of freedom). Measures of fit:

Goodness of Fit Statistics

Degrees of Freedom = 1
Minimum Fit Function Chi-Square = 0.0078 (P = 0.93)

Normal Theory Weighted Least Squares Chi-Square = 0.0078 (P = 0.93)
Chi-Square Difference with 0 Degree of Freedom = 0.00 (P = 1.00)

Estimated Non-centrality Parameter (NCP) = 0.0
90 Percent Confidence Interval for NCP = (0.0 ; 0.69)

Minimum Fit Function Value = 0.00
Population Discrepancy Function Value (F0) = 0.0

90 Percent Confidence Interval for F0 = (0.0 ; 0.00024)
Root Mean Square Error of Approximation (RMSEA) = 0.0



132 Dariusz Majerek, Wojciech Rosa

JPY 1.00

GBP 1.00
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CAD 1.00

FT-SE100 1.00
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DJIA 1.00
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Chi-Square=0.01, df=1, P-value=0.92951, RMSEA=0.000
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Figure 5: Diagram of the third structural model

90 Percent Confidence Interval for RMSEA = (0.0 ; 0.016)
P-Value for Test of Close Fit (RMSEA < 0.05) = 1.00

Expected Cross-Validation Index (ECVI) = 0.065
90 Percent Confidence Interval for ECVI = (0.065 ; 0.065)

ECVI for Saturated Model = 0.046
ECVI for Independence Model = 13.77

Chi-Square for Independence Model with 55 Degrees of Freedom = 39296.33
Independence AIC = 39318.33

Model AIC = 240.01
Saturated AIC = 132.00

Independence CAIC = 39394.86
Model CAIC = 1074.91

Saturated CAIC = 591.20

Normed Fit Index (NFI) = 1.00
Non-Normed Fit Index (NNFI) = 1.00

Parsimony Normed Fit Index (PNFI) = 0.018
Comparative Fit Index (CFI) = 1.00
Incremental Fit Index (IFI) = 1.00
Relative Fit Index (RFI) = 1.00

Critical N (CN) = 2421602.39

Root Mean Square Residual (RMR) = 0.00
Standardized RMR = 0.00

Goodness of Fit Index (GFI) = 1.00
Adjusted Goodness of Fit Index (AGFI) = 1.00
Parsimony Goodness of Fit Index (PGFI) = 0.015

Time used: 0.016 Seconds

Correlation matrix (for standardized variables):

Covariance Matrix

NEXT(USD JPY GBP CHF CAD FT-SE100
-------- -------- -------- -------- -------- --------

NEXT(USD 1.00
JPY 0.66 1.00
GBP 0.75 0.11 1.00
CHF -0.07 0.53 -0.50 1.00
CAD 0.24 0.39 0.06 0.36 1.00
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FT-SE100 -0.25 0.04 -0.50 0.47 -0.48 1.00
CAC40 0.00 0.03 -0.18 0.22 -0.51 0.85
DJIA 0.23 0.07 0.12 0.04 -0.60 0.75
SP500 -0.16 0.20 -0.51 0.62 -0.21 0.86
NIKKEI 0.06 0.19 -0.29 0.33 -0.41 0.87
NASDAQ 0.71 0.35 0.55 -0.10 -0.35 0.31

Covariance Matrix

CAC40 DJIA SP500 NIKKEI NASDAQ
-------- -------- -------- -------- --------

CAC40 1.00
DJIA 0.87 1.00
SP500 0.81 0.58 1.00
NIKKEI 0.93 0.82 0.84 1.00
NASDAQ 0.54 0.79 0.21 0.52 1.00

As you can see both the factor containing the exchange rates as well as factor
including stock indices have a similar impact on the NEXT(USD). Undoubted
advantages of this model are: lack of a variable USD as exogenous variable, no
splitting into sub-periods, the model covers the whole aspect of time, grouping
the exogenous variables into currencies and stocks. This model explain 98 %
endogenous variable.

4 Summary

As you can see describing financial dependencies by structural equation modeling
has many advantages. Combining two methods: linear regression and factor anal-
ysis you can obtain big structures describing complicated relationships between
financial instruments.

Above models shows us that number of shares quoted on financial markets is
characterized by strong dependency. The proposed models are the starting point
for discussions about the use of structural equation in the analysis of financial
markets. It can be modified by adding additional exogenous variables but given
that the relationship between further exchange rates are strong, adding more does
not bring much to the model. However, the addition of the endogenous variables
can cause unidentification of the model.

Based on the above considerations it can be concluded that the application
of structural modeling to explore and confirm the observed dependencies
on the financial markets is justified.
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A Data sheet
Table 1: Sample data from the spreadsheet data from the European Central Bank, including
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