$\begin{gathered} \text { HUTNICTWO } \\ \text { METALI } \\ \text { NIEŻELAZNYCH } \end{gathered}$	NORMA BRANZOWA	BN-85
	Stopy oporowe na oporniki Wyznaczanie współczynnika zmiany oporu elektrycznego pod wpływem narażeń cieplnych	0890-02/05
		Grupa katalogowa 0359

1. WSTEP

1.1. Przedmiot normy. Przedmiotem normy jest sposób określania i metoda pomiaru współczynnika zmiany oporu elektrycznego pod wpływem narażeń cieplnych stopów oporowych na oporniki.
1.2. Zakres stosowania normy. Norma dotyczy metody badania drutów i taśm ze stopów oporowych przeznaczonych na oporniki pomiarowe i oporniki stanowiące elementy różnego rodzaju aparatów elektrycznych.

2. OKREŚLENIA I ZALEŻNOŚCI PODSTAWOWE

2.1. Narażenia cieplne są to różne oddziaływania wywierane na metale i stopy przez zmiany temperatury otoczenia lub przez przepływ prądu elektrycznego. Narażenia cieplne moga powodować wyraźne zmiany ich własności elektrycznych.
2.2. Współczynnik zmian oporu pod wpływem narażeń cieplnych K_{c} jest określony zależnością, wyrażoną w procentach

$$
K_{c}=\frac{R_{c}-R_{o}}{R_{o}} \cdot 100
$$

gdzie:
R_{c} - opór elektryczny w temperaturze otoczenia po narażeniu cieplnym, Ω,
R_{o} - opór elektryczny w temperaturze otoczenia przed narażeniem cieplnym, Ω.

3. POBIERANIE I PRZYGOTOWANIE PRÓBEK

3.1. Pobieranie i liczba próbek - wg BN-82/ 0890-02/01, p. 2.1.
3.2. Wymiary próbek - wg $\mathrm{BN}-82 / 089(0)-(02 / 01$, p. 2.2.
3.3. Postać i stan próbek. Do badań stosuje siç próbki w postaci drutów lub taśm w stanie wyżarzonym, nawinięte na korpusach ceramicznych.
3.4. Przygotowanie próbek. Próbki z drutów i taśm należy nawijać na korpusy ceramiczne. Końcówki muszą być zabezpieczone przed odwijaniem za pomocą metalowych (mosiężnych) taśm skręcanych wkrętami. Taśmy zabezpieczające nie powinny wpływać na warunki nagrzewania próbki oraz nie mogą zawierać jej końcówek.

Sposób ułożenia zwojów - wg BN-82/0890-02/01, p. 3.2.
3.5. Starzenie próbek. Próbki przygotowane w wyżej podany sposób należy poddać sztucznemu starzeniu w temperaturach:

- dla miedzioniklu MNM401 (konstantan) $200^{\circ} \mathrm{C} / 4 \mathrm{~h}$,
- dla brązu manganowego BMN123 (manganin) $140^{\circ} \mathrm{C} / 6 \mathrm{~h}$.

4. APARATURA

4.1. Aparatura do pomiaru oporu elektrycznego --wg BN-84/0890-02/01, p. 2.3.
4.2. Aparatura do pomiaru temperatury. Temperaturę próbek podczas narażeń cieplnych należy mierzyć miernikiem z czujnikiem termoelektrycznym, termintorowym lub innym o możliwie małej bezwładności cieplnej. Błąd pomiaru temperatury nie może być większy od $\pm 5^{\circ} \mathrm{C}$. Miernik temperatury powinien reagować na zmiany temperatury z szybkością nie mniejsza niż $500^{\circ} \mathrm{C} / \mathrm{min}$.

Czujnik miernika powinien być odizolowany galwanicznie od próbki.
4.3. Źródła temperatur. Źródłem temperatur jest układ do bezpośredniego nagrzewania próbki za pomoca przepływu prądu zmiennego o częstotliwości sieciowej 50 Hz .

Próbka umieszczona jest w komorze temperatur z atmosferą powietrza lub gazu obojętnego. Zaleca się stosowanie komór z atmosferą gazu obojętnego, np. czystego argonu.

Zależnie od gatunku badanęgo materiału źródło powinno umożliwiać jego nagrzewanie do temperatury od 0 do +140 lub $+300^{\circ} \mathrm{C}$. Zaleca się stowanie źródeł

[^0]temperatur umożliwiających uzyskiwanie szybkości narastania temperatury w granicach od 100 do $300^{\circ} \mathrm{C} / \mathrm{min}$.

5. PRZEBIEG POMIARU

5.1. Wykonanie badań

5.1.1. Układ do badań. Układ do badań zawiera dwa podstawowe elementy. Jeden stanowi zespół umożliwiający wytwarzanie narażeń cieplnych, drugi obejmuje zespół pomiarowy. Schemat blokowy układu przedstawiono na rysunku.

Schemat układu do badania drutów i taśm z zastosowaniem komory temperatur oraz zasilacza prądu zmiennego do nagrzewania próbek Z - źródło zasilania, P_{z} - przełącznik zasilania, R - badany opór, P_{p} - przełącznik układu pomiarowego, $M-$ układ do pomiaru oporu, A - amperomierz prądu zmiennego, K - komora temperatur, M_{i} - miernik temperatur
5.1.2. Przebieg badania. Przygotowaną zgodnie z 3.4 próbkę należy umieścić w komorze temperatur w atmosferze gazu obojętnego lub powietrza. Po odczekaniu 1 h w celu wyrównania temperatur należy wykonać pomiar oporu elektrycznego R_{o} próbki zgodnie z BN-84/0890-02/02. Następnie należy włączyć ogrzewanie i nagrzewać próbkę do $+140^{\circ} \mathrm{C}$ lub $+170^{\circ} \mathrm{C}$ w przypadku manganinu oraz $280 \div 300^{\circ} \mathrm{C}$ w przypadku konstantanu. Po osiągnięciu wymaganej temperatury próbkę należy przetrzymać w tej temperaturze przez 2 h , a następnie chłodzić do temperatury otoczenia. Po zakończeniu tego cyklu należy powtórzyć tę operację ponownie. Po zakończeniu ponownego cyklu należy odczekać 12 h w celu ustabilizowania temperatury i wykonać pomiar oporu elektrycznego \boldsymbol{R}_{c} próbki. W tym celu należy przełączyć przełącznik na pomiar. Temperatura otoczenia powinna wynosić $23 \pm 5^{\circ} \mathrm{C}$.
5.2. Obliczanie wyników. Do obliczania wyników należy zastosować zależność wg 2.2. Pomiar oporu elektrycznego należy wykonać z błędem nie przekraczającym $0,2 \%$. Całkowity błąd uzyskanych wyników nie powinien przekraczać $0,5 \%$.

Dopuszczalne wartości współczynników zmian oporu elektrycznego pod wpływem narażeń cieplnych podano w normach przedmiotowych.
5.3. Zapis wyników. Wyniki badań i obliczeń należy ujmować w tablicy, której zalecany wzór podano w Informacjach dodatkowych p. 4.

K O N I E C

INFORMACJE DODATKOWE

1. Instytucja opracowująca normẹ - Instytut Metali Nieżelaznych, Gliwice.

2. Normy związane

BN-82/0890-02/01 Stopy oporowe na oporniki. Badania właściwości fizycznych. Pobicranie i przygotowanie próbek
BN-84/0890-02/02 Stopy oporowe na oporniki. Badania właściwości
fizycznych. Pomiar oporu elektrycznego, obliczanie oporu jednostkowego, wyznaczanie oporu elektrycznego właściwego
3. Autorzy projektu normy - mgr inż. Zbigniew Gdula, inż. Józef Kruszec, mgr inż. Leszek Siarzewski - Instytut Metali Nieżelaznych, Gliwice.
4. Zalecany wzór zapisu wyników

Wytwórca:	
Rodzaj materiału:	
Nr próbki	Data badania:
Stan materiału:	
Średnica próbki: mm	Dhugość próbki m
Szerokość próbki: mm	Długość próbki m
Grubość próbki: mm	
Powierzchnia przekroju: mm^{2}	
Temperatura maksymalna narażenia cieplnego ${ }^{\circ} \mathrm{C}$	
Opór elektryczny R_{o}......... Ω	
Opór elektryczny R_{c}............ Ω	
Współczynnik zmiany oporu $K_{c} \ldots \ldots \ldots \ldots$	

[^0]: Zgłoszona przez Instytut Metali Nieżelaznych
 Ustanowiona przez Dyrektora Instytutu Metali Nieżelaznych dnia 28 sierpnia 1985 r. jako norma obowiązująca od dnia 1 lipca 1986 r.
 (Dz. Norm. i Miar nr 2/1986 poz. 5)

