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Chapter 1

Control of fractional-order
dynamic systems under
uncertainty

A. Chikrii, I. Matychyn, K. Gromaszek, A. Smolarz

1.1 Summary

In this chapter we explore the linear non-homogeneous fractional-order dif-
ferential systems with classical Riemann-Liouville [9], the Caputo regularized
[33, 16], and Miller-Ross [2] sequential derivatives. Solutions to these sys-
tems are presented in the form of Cauchy formula analogs by the use of the
Mittag-Leffler generalized matrix functions [12].

We also treat sequential derivatives of special form [16]. Their relation to
the Riemann-Liouville and Caputo fractional derivatives and to each other
is established.

Differential games of approach for the systems with the fractional derivatives
of Riemann-Liouville, Caputo, as well as with the sequential derivatives are
studied. The Method of Resolving Functions [34, 35, 15, 14] allows to derive
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sufficient conditions for solvability of the mentioned game problems. These
conditions are based on the modified Pontryagin’s condition [34]. The results
are illustrated on a model example where a dynamic system of order π pursues
another system of order e. The case of plain matrix is also examined, where
asymptotic representation of the scalar Mittag-Leffler generalized function
are employed.

The problem of group pursuit, which illustrates on an example the situation
of encirclement by Pshenichnyi [6], is studied separately.

1.2 Introduction

Operations of fractional differentiation and integration go back a long way.
It seems likely that most straightforward way to their definitions is associ-
ated with the Abel integral equation and the Cauchy formula for multiple
integration of functions. These issues are widely covered in the monograph
[9], also one can use the book [2]. Various kinds of fractional derivatives
were generated by the needs of practice. Detailed historical review of this
subject matter is contained in [9]. The fractional derivatives under study,
namely, Riemann-Liouville, Caputo, Miller-Ross, and Hilfer also have their
own specifics. The Riemann-Liouville fractional derivative has singularity at
the origin. Therefore, the trajectories of corresponding differential system
start at the infinity, which seems not always justified from the physical point
of view. That is why Caputo regularized derivatives appeared, in which this
defect was eliminated. This means that the trajectories of corresponding
systems do not arrive at the infinity at any finite moment of time. However,
both the Riemann-Liouville and the Caputo fractional operators do not pos-
sess neither semigroup nor commutative properties, which are inherent to
the derivatives of integer order. This gap is filled by the Miller-Ross frac-
tional derivatives, which, in particular, make it feasible to lower the order
of a system of differential equations by increasing their number. Hilfer frac-
tional derivatives provide a framework that encompasses both the Riemann-
Liouville and Caputo derivatives as particular cases.

Representations of solutions of the above mentioned fractional order linear
non- homogeneous systems play an important role in the mathematical con-
trol theory and the theory of dynamic games [35, 15, 14]. Some formulas can
be found in [2, 7]. In [12], by introducing of the Mittag-Leffler generalized
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matrix functions, an analogue of the Cauchy formula was derived in the case
of Riemann-Liouville and Caputo fractional derivatives for order 0 < α < 1
(without the help of the Laplace transform). Corresponding formulas for
derivatives of arbitrary order can be found in [16].

It seems likely that research into the game problems for the fractional-order
systems go back to the paper [12]. The basic method in these studies is the
method of resolving functions [34, 35, 15, 12, 13, 14, 16, 11]. This method
is sometimes called the method of the inverse Minkowski functionals. Orig-
inally, the method was developed to solve the group pursuit problems (see
[6, 34, 25]). In the paper [25] it is referred to as the method of the guaran-
teed position non-deterioration. The method of resolving functions is based
on the Pontryagin condition or its modifications. This method is sufficiently
universal: it allows exploring the conflict-controlled processes for objects
of different inertia as well as of oscillatory and rotary dynamics, the game
problems under state constraints, integral constraints of control, and game
problems with impulse controls [34, 11]. The method of resolving functions
fully substantiates the classical rule of parallel pursuit [34]. The gist of the
method consists in constructing of special measurable set-valued mappings
with closed images and their support functions. These functions integrally
characterize the course of the conflict-controlled process [34, 13]. They are re-
ferred to as the resolving functions. Instead of the Filippov-Castaing lemma,
Λ × B-measurability [13, 17] and resulting superpositional measurability of
certain set-valued mappings and their selections is employed to substantiate
a measurable choice of the pursuer’s control.

1.3 Riemann-Liouville and Caputo Fractional

Derivatives

Let Rm be the m-dimensional Euclidean space, R+ the positive semi-axis,
and f(t), f : R+ → Rm, an absolutely continuous function.

Here we consider fractional derivatives of arbitrary order. Suppose n − 1 <
α < n, n ∈ N (N stands for the set of natural numbers) and let the fractional
part of α be denoted by {α} and its integer part by [α]. Thus, [α] = n− 1,
{α} = α − n + 1. The Riemann-Liouville fractional derivative of arbitrary
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order α (n− 1 < α < n, n ∈ N) is defined as follows [9]:

Dαf(t) =
(
d
dt

)[α]
D{α}f(t) =

=
(
d
dt

)[α] 1
Γ(1−{α})

d
dt

∫ t
0

f(τ)

(t−τ){α}dτ =

= 1
Γ(n−α)

(
d
dt

)n ∫ t
0

f(τ)
(t−τ)α−n+1dτ.

(1.1)

Lemma 1 Let n− 1 < α < n, n ∈ N, and the function f(t) have absolutely
continuous derivatives up to the order (n − 1). Then the following formula
is true

Dαf(t) =
n−1∑
k=0

tk−α

Γ(k − α+ 1)
f (k)(0) +

1

Γ(n− α)

∫ t

0

f (n)(τ)

(t− τ)α−n+1
dτ. (1.2)

Proof. The proof is by induction on n.

Let for n− 2 < α < n− 1

Dαf(t) =
n−2∑
k=0

tk−α

Γ(k − α+ 1)
f (k)(0)+

1

Γ(n− 1− α)

∫ t

0

f (n−1)(τ)

(t− τ)α−n+2
dτ. (1.3)

Then for n−1 < α < n, taking into account {α} = {α−1} and [α−1] = [α]−1
for non-integer α, we obtain

Dαf(t) =

(
d

dt

)[α]

D{α}f(t) =
d

dt

(
d

dt

)[α]−1

D{α}f(t) =
d

dt
Dα−1f(t).

Since n− 2 < α− 1 < n− 1, we can employ the equation (1.3):

Dαf(t) =
d

dt
Dα−1f(t) =

=
d

dt

(
n−2∑
k=0

tk−α+1

Γ(k − α+ 2)
f (k)(0) +

1

Γ(n− α)

∫ t

0

f (n−1)(τ)

(t− τ)α−n+1
dτ

)
.

Integrating by parts, we find that

Dαf(t) =
d

dt
(
n−2∑
k=0

tk−α+1

Γ(k − α+ 2)
f (k)(0) +

tn−α

Γ(n− α)(n− α)
f (n−1)(0)+
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+
1

Γ(n− α)(n− α)

∫ t

0

f (n)(τ)

(t− τ)α−n
dτ) =

n−2∑
k=0

(k − α+ 1)tk−α

Γ(k − α+ 2)
f (k)(0)+

+
(n− α)tn−α−1

Γ(n− α)(n− α)
f (n−1)(0) +

(n− α)
Γ(n− α)(n− α)

∫ t

0

f (n)(τ)

(t− τ)α−n+1
dτ =

=
n−1∑
k=0

tk−α

Γ(k − α+ 1)
f (k)(0) +

1

Γ(n− α)

∫ t

0

f (n)(τ)

(t− τ)α−n+1
dτ,

which was to be proved.

As before, the integral term in (1.2) is the regularized Caputo derivative of
order α (n− 1 < α < n, n ∈ N):

D(α)f(t) =C
0 D

α
t f(t)

= 1
Γ(n−α)

∫ t
0

f (n)(τ)
(t−τ)α+1−ndτ

= Dαf(t)−
∑n−1

k=0
tk−α

Γ(k−α+1)
f (k)(0).

(1.4)

1.4 The Miller-Ross Sequential Derivatives

Both the Riemann-Liouville and Caputo derivatives possess neither semi-
group nor commutative property, i.e. in general,

Dα+βf(t) ̸= DαDβf(t),

DαDβf(t) ̸= DβDαf(t),

where Dα stands for the Riemann-Liouville or Caputo fractional differentia-
tion operator of order α.

This fact motivated introduction by [24] of sequential derivatives, defined as
follows:

D|α|f(t) = Dα1Dα2 . . .Dαmf(t),

where α = (α1, α2, . . . , αm) is an m-tuple, |α| = α1 + α2 + . . . + αm, and
function f(t) is sufficiently smooth. In general, the operator Dα underlying
sequential Miller-Ross derivative can be either the Riemann-Liouville or Ca-
puto or any other kind of integro-differentiation operator. In particular, in
the case of integer αi it is conventional differentiation operator

(
d
dt

)αi .
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It should be noted that the Riemann-Liouville and Caputo fractional deriva-
tives in their turn can be considered as particular cases of sequential deriva-
tives. Indeed, suppose n − 1 < α < n and denote p = n − α, then, by
definition (1.1),

Dαf(t) =
(
d
dt

)n−1
Dα−n+1f(t) =

(
d
dt

)n
D−pf(t),

D(α)f(t) = D(α−n+1)
(
d
dt

)n−1
f(t) = D−p ( d

dt

)n
f(t),

(1.5)

where D−p is the Riemann-Liouville left-sided integral of order p = n − α,
0 < p < 1, also denoted by Jp:

D−pf(t) = Jpf(t) =
1

Γ(p)

∫ t

0

f(τ)

(t− τ)1−p
dτ.

Hereafter we assume that J0 is the identity operator, i.e. J0f(t) = f(t). It
should be noted, that for existence of the Riemann-Liouville integral it is
sufficient that the function f(t) is locally integrable on R+ [29].

The Miller-Ross sequential derivatives make it possible to lower the order of
fractional differential equations.

Here we suggest an example of constructing sequential derivatives in order
to establish their relation to the Riemann-Liouville and Caputo derivatives.
Let us choose some ν, n− 1 < ν < n, n ∈ N, and let us study the case when

α = (j, ν − n+ 1, n− 1− j) = (j, {ν}, [ν]− j), j = 0, . . . , n− 1.

Obviously |α| = ν. Let us introduce the following notation

Dνj f(t) =
(
d

dt

)j
D{ν}

(
d

dt

)[ν]−j

f(t) =

(
d

dt

)j
Dν−n+1

(
d

dt

)n−1−j

f(t),

D(ν)
j f(t) =

(
d

dt

)j
D({ν})

(
d

dt

)[ν]−j

f(t) =

(
d

dt

)j
D(ν−n+1)

(
d

dt

)n−1−j

f(t),

where j = 0, 1, . . . , n− 1.

The following lemma shows a relationship between the sequential derivatives
Dνj f(t), D

(ν)
j f(t) and classical derivatives of Riemann-Liouville and Caputo.
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Lemma 2 Let n− 1 < ν < n, n ∈ N, and the function f(t) have absolutely
continuous derivatives up to the order (n− 1). Then the following equalities
hold true

D(ν)
0 f(t) = D(ν)f(t) = Dνf(t)−

∑n−1
k=0

tk−ν

Γ(k−ν+1)
f (k)(0),

D(ν)
1 f(t) = Dν0f(t) = D(ν)f(t) + tn−1−ν

Γ(n−ν)f
(n−1)(0)

= Dνf(t)−
∑n−2

k=0
tk−ν

Γ(k−ν+1)
f (k)(0),

. . . . . . . . .

D(ν)
j f(t) = Dνj−1f(t) = D(ν)f(t) +

∑n−1
k=n−j

tk−ν

Γ(k−ν+1)
f (k)(0)

= Dνf(t)−
∑n−1−j

k=0
tk−ν

Γ(k−ν+1)
f (k)(0),

. . . . . . . . .

D(ν)
n−1f(t) = Dνn−2f(t) = D(ν)f(t) +

∑n−1
k=1

tk−ν

Γ(k−ν+1)
f (k)(0)

= Dνf(t)− t−ν

Γ(1−ν)f(0),

Dνn−1f(t) = D(ν)f(t) +
∑n−1

k=0
tk−ν

Γ(k−ν+1)
f (k)(0) = Dνf(t).

Proof. It is evident that

D(ν)
0 f(t) = D(ν−n+1)

(
d

dt

)n−1

f(t) =
1

Γ(n− ν)

∫ t

0

f (n)(τ)

(t− τ)ν+1−ndτ,

whence, by virtue of (1.4),

D(ν)
0 f(t) = D(ν)f(t) = Dνf(t)−

n−1∑
k=0

tk−ν

Γ(k − ν + 1)
f (k)(0).

Let j = 1, . . . , n− 1, then

D(ν)
j f(t) =

(
d

dt

)j
D(ν−n+1)

(
d

dt

)n−1−j

f(t) =

=

(
d

dt

)j
1

Γ(n− ν)

∫ t

0

f (n−j)(τ)

(t− τ)ν+1−ndτ =

=

(
d

dt

)j−1
1

Γ(n− ν)
d

dt

∫ t

0

f (n−j)(τ)

(t− τ)ν+1−ndτ =

=

(
d

dt

)j−1

Dν−n+1

(
d

dt

)n−j
f(t) = Dνj−1f(t).
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On the other hand, in virtue of (1.4)

D(ν)
j f(t) = Dνj−1f(t) =

(
d

dt

)j
1

Γ(n− ν)

∫ t

0

f (n−j)(τ)

(t− τ)ν+1−ndτ =

=

(
d

dt

)j
D(ν−j)f(t) =

(
d

dt

)j [
Dν−jf(t)−

n−1−j∑
k=0

tk−ν+j

Γ(k − ν + j + 1)
f (k)(0)

]
=

= Dνf(t)−
n−1−j∑
k=0

tk−ν

Γ(k − ν + 1)
f (k)(0).

The equality

Dνn−1f(t) = D(ν)f(t) +
n−1∑
k=0

tk−ν

Γ(k − ν + 1)
f (k)(0) = Dνf(t)

is the direct consequence of (1.1) and Lemma 1. Taking into account the

equalities D(ν)
j f(t) = Dνj−1f(t) and setting D(ν)

n f(t) = Dνf(t) one can intro-
duce common notation

Dν
j f(t) = D

(ν)
j f(t) = Dνj−1f(t),

where n − 1 < ν < n, j = 0, . . . , n. It goes without saying that Dν
0f(t) =

D(ν)f(t) and Dν
nf(t) = Dνf(t). In the sequel the formula

Dν
j f(t) =

(
d

dt

)j
D(ν−j)f(t) (1.6)

will be of use.

The Laplace transform is a powerful tool formulated to solve a wide variety
of initial-value problems. The strategy is to transform the difficult differ-
ential equations into simple algebra problems where solutions can be easily
obtained. One then applies the Inverse Laplace transform to retrieve the
solutions of the original problems.

For a function f(t), f : R+ → Rm, its Laplace transform is denoted as
L{f(t); s} obtained by the following integral:

L{f(t); s} =
∫ ∞

0

f(t)e−stdt,

where s ∈ C (C stands for the set of complex numbers). The Laplace trans-
form of f(t) exists whenever the following conditions hold true [1]:
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1. f(t) is measurable and bounded, hence locally summable;

2. There exists real constants K, a, such that ∥f(t)∥ ≤ Keat, which im-
plies that f(t)e−st is integrable on R+ (in symbols f(t)e−st ∈ L1(R+)).

Hereafter, ∥ · ∥ stands for the Euclidean norm in Rm.

If the Laplace transform of f(t) is F (s), then f(t) is said to be the Inverse
Laplace Transform of F (s) or L−1{F (s)} = f(t), where L−1 is called the
Inverse Laplace Transform Operator.

The following formulas for the Laplace transforms of the Riemann-Liouville
and Caputo fractional derivatives hold true [27]:

L{Dαf(t); s} = sαF (s)−
n−1∑
k=0

skDα−k−1f(t)|t=0, (1.7)

L{D(α)f(t); s} = sαF (s)−
n−1∑
k=0

sα−k−1f (k)(0). (1.8)

For integer n the following formula is true:

L{f (n)(t); s} = snF (s)−
n−1∑
k=0

skf (n−k−1)(0). (1.9)

Using (1.6), (1.8), (1.9), one can derive Laplace transform of the derivative
Dν
j f(t):

L{Dν
j f(t); s} = L

{(
d
dt

)j
D(ν−j)f(t); s

}
=

= sjL
{
D(ν−j)f(t); s

}
−
∑j−1

k=0 s
k
(
d
dt

)j−k−1
D(ν−j)f(t)|t=0 =

= sjL
{
D(ν−j)f(t); s

}
−
∑j−1

k=0 s
kDν−k−1

j−k−1f(t)|t=0 =

= sνF (s)−
∑n−j−1

l=0 sν−l−1f (l)(0)−
∑j−1

k=0 s
kDν−k−1

j−k−1f(t)|t=0.

(1.10)

Setting
∑−1

l=0 s
ν−l−1f (l)(0) = 0,

∑−1
k=0 s

kDν−k−1
j−k−1f(t)|t=0 = 0, and taking into

account that Dν−k−1
n−k−1f(t) = Dν−k−1f(t), one can see that (1.7), (1.8) are
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particular cases of (1.10):

L{Dν
0f(t); s} = L{D(ν)f(t); s},

L{Dν
nf(t); s} = L{Dνf(t); s}.

1.5 Hilfer’s Derivative

Hilfer’s derivative is another generalization encompassing both the Riemann-
Liouville and Caputo derivatives as particular cases.

According to [27], let us introduce the fractional derivative of order α, 0 <
α ≤ 1, and type µ, 0 ≤ µ ≤ 1, in the following way:

Dα,µf(t) = Jµ(1−α)
d

dt
J (1−µ)(1−α)f(t).

At µ = 0 this definition yields classic Riemann-Liouville derivative and at
µ = 1 – the Caputo regularized derivative.

Note that the definition of the Hilfer derivative can be extended to higher
orders. Let n − 1 < α < n, n ∈ N, and the function f has absolutely
continuous derivatives up to the order n. Let us set the derivative of order
α and type µ, 0 ≤ µ ≤ 1, to be equal

Dα,µf(t) = Jµ(n−α)
dn

dtn
J (1−µ)(n−α)f(t). (1.11)

In virtue of (1.5), at µ = 0 we, as before, obtain the Riemann-Liouville
derivative of arbitrary order α

Dα,0f(t) = Dαf(t) =
dn

dtn
Jn−αf(t), (1.12)

and at µ = 1 – the Caputo derivative

Dα,1f(t) = D(α)f(t) = Jn−α
dn

dtn
f(t).

To derive the Laplace transform of the higher-order Hilfer derivative (1.11),
we employ (1.9) and the formula:

L{Jαf(t); s} = s−αF (s), (1.13)



1.6 The Mittag-Leffler Generalized MatrixFunction 13

Then, in view of (1.9), (1.13), we obtain

L{Dα,µf(t); s} = L

{
Jµ(n−α)

dn

dtn
J (1−µ)(n−α)f(t); s

}
=

= sµ(α−n)L

{
dn

dtn
J (1−µ)(n−α)f(t); s

}
= sµ(α−n)[snL{J (1−µ)(n−α)f(t); s}+

−
n−1∑
i=0

si
dn−i−1

dtn−i−1
J (1−µ)(n−α)f(t)|t=0].

Finally, we have

L{Dα,µf(t); s} = sαF (s)−
n−1∑
i=0

sµ(α−n)+i
dn−i−1

dtn−i−1
J (1−µ)(n−α)f(t)|t=0. (1.14)

By virtue of (1.12), the equation (1.14) yields for for µ = 0 the Laplace
transform (1.7) of the Riemann-Liouville derivative. For µ = 1, we obtain
from (1.14) the Laplace transform (1.8) for the Caputo derivative of arbitrary
order α, n− 1 < α < n.

1.6 The Mittag-Leffler Generalized Matrix

Function

In [12] the Mittag-Leffler generalized matrix function was introduced:

Eρ(B;µ) =
∞∑
k=0

Bk

Γ(kρ−1 + µ)
,

where ρ > 0, µ ∈ C, and B is an arbitrary square matrix of order m.

The Mittag-Leffler generalized matrix function plays important role in study-
ing the linear systems of fractional order. Denote by I the identity matrix
of order m. The following lemma allows to find the Laplace transforms of
expressions involving the Mittag-Leffler matrix function.

Lemma 3 Let α > 0, β > 0, and let A be an arbitrary square matrix of
order m. Then the following formula is true:

L
{
tβ−1E 1

α
(Atα; β); s

}
= sα−β(sαI − A)−1.
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Proof. Taking into account definitions of the Mittag-Leffler generalized ma-
trix function, Gamma-function, and substituting τ = st, we obtain:

L
{
tβ−1E 1

α
(Atα; β); s

}
=

∫ ∞

0

e−sttβ−1E 1
α
(Atα; β)dt

=

∫ ∞

0

e−sttβ−1

∞∑
k=0

Aktαk

Γ(αk + β)
dt =

∞∑
k=0

Ak

Γ(αk + β)

∫ ∞

0

e−sttαk+β−1dt

=
∞∑
k=0

Ak

Γ(αk + β)sαk+β

∫ ∞

0

e−τταk+β−1dτ =
∞∑
k=0

Aks−(αk+β).

Now let us show that
∑∞

k=0A
ks−(αk+β) = sα−β(sαI −A)−1. The last formula

is equivalent to the equation

∞∑
k=0

Aks−(k+1)α = (sαI − A)−1. (1.15)

Let us multiply both sides of (1.15) by (sαI − A) (either on the left or on
the right, it makes no difference as these matrices commute). We obtain

∞∑
k=0

Aks−(k+1)α(sαI − A) =
∞∑
k=0

Aks−kα −
∞∑
k=0

A(k+1)s−(k+1)α = I.

Since the inverse matrix is unique, this completes the proof.

1.7 Fractional Order Systems, Cauchy For-

mula

Suppose g(t), g : R+ → Rm, is a measurable and bounded function, then
g(t)e−st ∈ L1(R+), s ∈ C. Thus, g(t) is Laplace transformable.

Consider a dynamic system whose evolution is described by the equation:

Dαz = Az + g, n− 1 < α < n, (1.16)

under the initial conditions

Dα−kz(t)|t=0 = z0k1, k = 1, . . . , n. (1.17)
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Hereafter, the state vector z belongs to the m-dimensional real Euclidean
space Rm, A is a square matrix of order m.

Lemma 4 The trajectory of the system (1.16), (1.17) has the form:

z(t) =
n∑
k=1

tα−kE 1
α
(Atα;α− k+1)z0k1 +

∫ t

0

(t− τ)α−1E 1
α
(A(t− τ)α;α)g(τ)dτ.

(1.18)

Proof. Let us apply the Laplace transform to (1.16), taking into account
(1.7). We get:

sαZ(s)−
n∑
k=1

sk−1z0k1 = AZ(s) +G(s),

or

Z(s) =
n∑
k=1

sk−1(sαI − A)−1z0k1 + (sαI − A)−1G(s). (1.19)

Let us apply the inverse Laplace transform to (1.19). Taking into account
Lemma 3 we have

z(t) =
n∑
k=1

tα−kE 1
α
(Atα;α− k+1)z0k1 +

∫ t

0

(t− τ)α−1E 1
α
(A(t− τ)α;α)g(τ)dτ.

Which was to be proved.

Now consider a dynamic system of fractional order in the sense of Caputo
described by the equation:

D(α)z = Az + g, n− 1 < α < n, (1.20)

under the initial conditions

z(k)(0) = z0k2, k = 0, . . . , n− 1. (1.21)

Lemma 5 The trajectory of the system (1.20), (1.21) has the form:

z(t) =
n−1∑
k=0

tkE 1
α
(Atα; k+1)z0k2+

∫ t

0

(t−τ)α−1E 1
α
(A(t−τ)α;α)g(τ)dτ. (1.22)
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Proof. Let us apply the Laplace transform to (1.20). Taking into account
(1.8), we deduce:

sαZ(s)−
n−1∑
k=0

sα−k−1z0k2 = AZ(s) +G(s),

or

Z(s) =
n−1∑
k=0

sα−k−1(sαI − A)−1z0k2 + (sαI − A)−1G(s). (1.23)

Now apply the inverse Laplace transform to (1.23). Then, in view of Lemma
3, we have:

z(t) =
n−1∑
k=0

tkE 1
α
(Atα; k + 1)z0k2 +

∫ t

0

(t− τ)α−1E 1
α
(A(t− τ)α;α)g(τ)dτ.

It should be noted that the formulas (1.18), (1.22) in some specific cases were
obtained in [10, 29], by a different method.

Now, let us study systems involving sequential derivatives of special formDα
j .

Consider a dynamic system whose evolution is described by the equation:

Dα
j z = Az + g, n− 1 < α < n, j ∈ {0, 1, . . . , n} (1.24)

under the initial conditions

Dα−k−1
j−k−1 z(t)|t=0 = z̃0k, k = 0, . . . , j − 1,

z(l)(0) = z0l , l = 0, . . . , n− j − 1.
(1.25)

Lemma 6 The trajectory of the system (1.24), (1.25) has the form:

z(t) =

n−j−1∑
l=0

tlE 1
α
(Atα; l + 1)z0l +

j−1∑
k=0

tα−k−1E 1
α
(Atα;α− k)z̃0k+

+

∫ t

0

(t− τ)α−1E 1
α
(A(t− τ)α;α)g(τ)dτ.

Proof. Let us apply the Laplace transform to the system (1.24) with account
of (1.10). Then we obtain:

sαZ(s)−
n−j−1∑
l=0

sα−l−1z0l −
j−1∑
k=0

skz̃0k = AZ(s) +G(s),
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or

Z(s) =

n−j−1∑
l=0

sα−l−1(sαI −A)−1z0l +

j−1∑
k=0

sk(sαI −A)−1z̃0k + (sαI −A)−1G(s).

(1.26)

Applying the inverse Laplace transform to (1.26) and taking into account
Lemma 3, we find:

z(t) =

n−j−1∑
l=0

tlE 1
α
(Atα; l + 1)z0l +

j−1∑
k=0

tα−k−1E 1
α
(Atα;α− k)z̃0k+

+

∫ t

0

(t− τ)α−1E 1
α
(A(t− τ)α;α)g(τ)dτ.

Which was to be proved.

Finally, let us study systems involving Hilfer derivatives of order α and type
µ. Consider a dynamic system whose evolution is described by the equation:

Dα,µz = Az + f, n− 1 < α < n, 0 ≤ µ ≤ 1, (1.27)

under the initial conditions

di

dti
J (1−µ)(n−α)z(t)|t=0+ = ẑ0i , i = 0, . . . , n− 1. (1.28)

Lemma 7 The trajectory of the system (1.27), (1.28) has the form:

z(t) =
n−1∑
i=0

ti−(1−µ)(n−α)E 1
α
(Atα; i− (1− µ)(n− α) + 1)ẑ0i+

+

∫ t

0

(t− τ)α−1E 1
α
(A(t− τ)α;α)f(τ)dτ.

Proof. Applying the Laplace transform to the both sides of (1.27), we obtain:

sαZ −
m−1∑
i=0

sµ(α−m)+iẑ0m−i−1 = AZ + F,

whence:

Z(s) =
m−1∑
i=0

sµ(α−m)+i(sαI − A)−1ẑ0m−i−1 + (sαI − A)−1F (s).
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In view of Lemma 3 and of the obvious equality
∑m−1

i=0 ai =
∑m−1

i=0 am−1−i,
the inverse Laplace transform yields:

z(t) =
n−1∑
i=0

ti−(1−µ)(n−α)E 1
α
(Atα; i− (1− µ)(n− α) + 1)ẑ0i+

+

∫ t

0

(t− τ)α−1E 1
α
(A(t− τ)α;α)f(τ)dτ.

1.8 Game Problem Statement

In this section a statement for the problem of approaching the terminal set
will be given for conflict-controlled processes, the dynamics of which is de-
scribed using fractional derivatives of Riemann-Liouville, Caputo, and Miller-
Ross.

Consider conflict-controlled process whose evolution is defined by the frac-
tional order system:

Dαz = Az + φ(u, v), n− 1 < α < n. (1.29)

Hereafter Dα stands for the operator of fractional differentiation in the sense
of Riemann-Liouville, Caputo, Miller-Ross, or Hilfer. It will be clear from
the context which type of the fractional differentiation operator is meant.
Here, as before, z ∈ Rm, A is a square matrix of order m. The control block
is defined by the jointly continuous function φ(u, v), φ : U ×V → Rm, where
u and v, u ∈ U , v ∈ V , are control parameters of the first and second players
respectively, and the control sets U and V are from the set K(Rm) of all
nonempty compact subsets of Rm.

WhenDα is the operator of fractional differentiation in the sense of Riemann-
Liouville, i.e. Dα = Dα, the initial conditions for the process (1.29) are given
in the form: (1.17). In this case denote : z0 = (z011, . . . , z

0
n1). When the

derivative in (1.29) is understood in Caputo’s sense Dα = D(α), the initial
conditions are of the form (1.21) and z0 = (z002, . . . , z

0
n−12). For sequential

derivatives of special form Dα = Dα
j the initial conditions are given by (1.25)

and z0 = (z̃00 , . . . , z̃
0
j−1, z

0
0 , . . . , z

0
n−j−1). Finally, if Dα stands for the Hilfer
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fractional differentiation operator i.e. Dα = Dα,µ for some 0 ≤ µ ≤ 1, then
the initial conditions are of the form (1.28) and we denote z0 = (ẑ00 , . . . , ẑ

0
n−1).

Along with the process dynamics (1.29) and the initial conditions a terminal
set of cylindrical form is given:

M∗ =M0 +M, (1.30)

where M0 is a linear subspace of Rm, M ∈ K(L), and L = M⊥
0 is the

orthogonal complement of the subspace M0 in Rm.

When the controls of the both players are chosen in the form of Lebesgue
measurable functions u(t) and v(t) taking values from U and V respectively,
the Cauchy problem for the process (1.29) with corresponding initial values
has a unique absolutely continuous solution [24, 29].

Consider the following dynamic game. The first player aims to bring a tra-
jectory of the process (1.29) to the set (1.30), while the other player strives
to delay the moment of hitting the terminal set as much as possible. We
assume that the second player’s control is an arbitrary measurable function
v(t) taking values from V , and the first player at each time instant t, t ≥ 0,
forms his control on the basis of information about z0 and v(t):

u(t) = u(z0, v(t)), u(t) ∈ U. (1.31)

Therefore, u(t) is Krasovskii’s counter-control [39] prescribed by the O. Hajek
stroboscopic strategies [26].

By solving the problem stated above we employ the Method of Resolving
Functions [34, 12]. Usually this method implements the pursuit process in
the class of quasistrategies. However in this paper we use the results from
[13] providing sufficient conditions for the termination of the pursuit in the
aforementioned method with the help of counter-controls.

1.8.1 Method of Resolving Functions

Denote Π the orthoprojector from Rm onto L. Set φ(U, v) = {φ(u, v) : u ∈
U} and consider set-valued mappings:

W (t, v) = Πtα−1E 1
α
(Atα;α)φ(U, v), W (t) =

∩
v∈V

W (t, v)
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defined on the sets R+ × V and R+, respectively. The condition:

W (t) ̸= ∅, t ∈ R+, (1.32)

is usually referred o as Pontryagin’s condition. This condition reflects some
kind of first player’s advantage in resources over the second player. In the
case when the condition (1.32) fails, i.e. for some t ∈ R+, W (t) = ∅, we will
use the modified Pontryagin’s condition. It consists in rearranging resources
in favor of the first player. Namely, at the moments when W (t) = ∅ the
players’ control resources are equalized and the resource consumed for this
action is then subtracted from the terminal set. Formally the procedure is
arranged as follows. A measurable bounded with respect to t matrix function
C(t) is introduced. Consider set-valued mappings:

W ∗(t, v) = Πtα−1E 1
α
(Atα;α)φ(U,C(t)v),

W ∗(t) =
∩
v∈V

W ∗(t, v),

M(t) =M
∗
−−

∫ t

0

τα−1ΠE 1
α
(Aτα;α)φ∗(τ, U, V )dτ,

where φ∗(t, u, v) = φ(u, v)− φ(u,C(t)v) and X
∗
−−Y = {z : z + Y ⊂ X} =∩

y∈Y (X− y) is the Minkowski (geometrical) subtraction [8]. By the integral
of the set-valued mapping we mean the Aumann integral, i.e. a union of
integrals of all possible measurable selectors of the given set-valued mapping
[30]. Hereafter, we will say that the modified Pontryagin condition is fulfilled
whenever a measurable bounded matrix function C(t) exists such that:

W ∗(t) ̸= ∅ ∀t ∈ R+, (1.33)

M(t) ̸= ∅ ∀t ∈ R+. (1.34)

Thus, Pontryagin’s condition (1.32) is replaced with the conditions (1.33),
(1.34). Obviously, as C(t) = I, the condition (1.34) is fulfilled by default
and the condition (1.33) coincides with the condition (1.32), since in this
case W ∗(t) ≡ W (t). It follows that modified Pontryagin’s condition (1.33),
(1.34) is, generally speaking, less restrictive assumption than Pontryagin’s
condition (1.32).

By virtue of the properties of the process (1.29) parameters the set-valued
mapping φ(U,C(t)v), v ∈ V , is continuous in the Hausdorff metric. There-
fore, taking into account the analytical properties of the Mittag-Leffler gen-
eralized matrix function, the set-valued mappingW ∗(t, v) is measurable with
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respect to t, t ∈ R+, and closed with respect to v, v ∈ V . Then [4] the set-
valued mappingW ∗(t) is measurable with respect to t and closed-valued. Let
P (Rm) be the collection of all nonempty closed subsets of space Rm. Then
it is evident that:

W ∗(t, v) : R+ × V → P (Rm),

W ∗(t) : R+ → P (Rm).

In this case the measurable with respect to t set-valued mappings W ∗(t, v),
W ∗(t) are said to be normal [30].

It follows from the condition (1.33) and from the measurable choice theorem
[4] that there exists at least one measurable selection γ(·) such that γ(t) ∈
W ∗(t), t ∈ R+. Denote by Γ the set of all such selections.

Let us also denote by g(t, z0) the solution of homogeneous system: Dαz = Az,
obtained from (1.29) by setting φ(u, v) ≡ 0. Thus, when Dα is the Riemann-
Liouville fractional differentiation operator (Dα = Dα):

g(t, z0) =
n∑
k=1

tα−kE 1
α
(Atα;α− k + 1)z0k,

where:
z0k = Dα−kz(t)|t=0, k = 1, . . . , n.

For the Caputo regularized fractional derivative (Dα = D(α)), we have:

g(t, z0) =
n−1∑
k=0

tkE 1
α
(Atα; k + 1)z0k,

where:
z0k = z(k)(0), k = 0, . . . , n− 1.

And for the sequential derivatives Dα = Dα
j , we obtain:

g(t, z0) =

n−j−1∑
l=0

tlE 1
α
(Atα; l + 1)z0l +

j−1∑
k=0

tα−k−1E 1
α
(Atα;α− k)z̃0k,

where:
z̃0k = Dα−k−1

j−k−1 z(t)|t=0, k = 0, . . . , j − 1,

z0l = z(l)(0), l = 0, . . . , n− j − 1.
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In the case of the Hilfer derivative Dα = Dα,µ the solution to the homoge-
neous system takes on the form:

g(t, z0) =
n−1∑
i=0

ti−(1−µ)(n−α)E 1
α
(Atα; i− (1− µ)(n− α) + 1)ẑ0i ,

where:

ẑ0i =
di

dti
J (1−µ)(n−α)z(t)|t=0+, i = 0, . . . , n− 1.

Let us introduce the function:

ξ(t) = Πg(t, z0) +

∫ t

0

γ(τ)dτ, t ∈ R+,

where γ(·) ∈ Γ is a certain fixed selection. By virtue of the assumptions
made, the selection γ(·) is summable.

Consider the set-valued mapping:

ℜ(t, τ, v) = {α ≥ 0 : [W ∗(t− τ, v)− γ(t− τ)]
∩

α[M(t)− ξ(t)] ̸= ∅},

defined on ∆ × V , where ∆ = {(t, τ) : 0 ≤ τ ≤ t < ∞}. Let us study its
support function in the direction of +1:

ρ(t, τ, v) = sup{ρ : ρ ∈ ℜ(t, τ, v)}, (t, τ) ∈ ∆, v ∈ V.

This function is called the resolving function [34].

Taking into account the modified Pontryagin condition (1.33), (1.34), the
properties of the conflict-controlled process (1.29) parameters, as well as
characterization and inverse image theorems, one can show that the set-
valued mapping ℜ(t, τ, v) is Λ × B-measurable [4, 10] with respect to τ , v,
τ ∈ [0, t], v ∈ V , and the resolving function ρ(t, τ, v) is Λ× B-measurable in
τ , v by virtue of the support function theorem [4] when ξ(t) /∈M(t).

It should be noted that for ξ(t) ∈M(t) we have ℜ(t, τ, v) = [0,∞) and hence
ρ(t, τ, v) = +∞ for any τ ∈ [0, t], v ∈ V .

Denote:

T =

{
t ∈ R+ :

∫ t

0

inf
v∈V

ρ(t, τ, v)dτ ≥ 1

}
. (1.35)
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If for some t > 0 ξ(t) /∈ M(t), we assume the function inf
v∈V

ρ(t, τ, v) to be

measurable with respect to τ , τ ∈ [0, t]. If it is not the case, then let us
define the set T as follows:

T =

{
t ∈ R+ : inf

v(·)

∫ t

0

ρ(t, τ, v(τ))dτ ≥ 1

}
.

Since the function ρ(t, τ, v) is Λ × B-measurable with respect to τ , v, it is
superpositionally measurable [17, 3]. If ξ(t) ∈ M(t), then ρ(t, τ, v) = +∞
for τ ∈ [0, t] and in this case it is natural to set the value of the integral in
(1.63) to be equal +∞. Then the inequality in (1.63) is fulfilled by default.
In the case when the inequality in braces in (1.63) fails for all t > 0, we set
T = ∅. Let T ∈ T ̸= ∅.

Condition 1 [13] The set ℜ(T, τ, v) is convex-valued (or has values star-
shaped with respect to the origin) for all τ ∈ [0, T ], v ∈ V .

Theorem 1 Let for the game problem (1.29), (1.30) there exist a bounded
measurable matrix function C(t) such that the conditions (1.33), (1.34) hold
true and the set M be convex. If there exists a finite number T , T ∈ T ̸= ∅,
such that the condition 1 is fulfilled, then the trajectory of the process (1.29)
can be brought to the set (1.30) from the initial position z0 at the time instant
T using the control of the form (1.31).

Proof. Let v(τ), v : [0, T ] → V , be an arbitrary measurable function. We

first consider the case when ξ(T ) /∈M(T ). Denote ρ(T ) =
∫ T
0

inf
v∈V

ρ(T, τ, v)dτ

and set:

ρ∗(T, τ) =
1

ρ(T )
inf
v∈V

ρ(T, τ, v).

Since ρ(T ) ≥ 1 due to (1.35) and Condition 1 is fulfilled, the function ρ∗(T, τ),
0 ≤ ρ∗(T, τ) ≤ ρ(T, τ, v), τ ∈ [0, T ], v ∈ V , is a measurable selection for each
of the set-valued mappings ℜ(T, τ, v), v ∈ V , i.e. ρ∗(T, τ) ∈ ℜ(T, τ, v),
τ ∈ [0, T ], v ∈ V . Consider the multivalued mapping:

U(τ, v) = {u ∈ U :

Π(T − τ)α−1E 1
α
(A(T − τ)α;α)φ(u,C(T − τ)v)+

−γ(T − τ) ∈ ρ∗(T, τ)[M(T )− ξ(T )]}. (1.36)
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Since the function ρ∗(T, τ) is measurable due to the assumptions made,
M(T ) ∈ K(Rm), as M ∈ K(Rm), and the vector ξ(T ) is bounded, it fol-
lows that the mapping ρ∗(T, τ)[M(T )− ξ(T )] is measurable with respect to
τ . Moreover, the left-hand side of the inclusion in (1.36) is Λ×B-measurable
with respect to (τ, v) and continuous in u. This implies [21] that the mapping
U(τ, v) is Λ×B-measurable. Thus, according the theorem on measurable se-
lection it contains an Λ × B-measurable selection u(τ, v), which, in turn, is
a superpositionally measurable function. Set the first player’s control to be
u(τ) = u(τ, v(τ)), τ ∈ [0, T ].

In the case when ξ(T ) ∈ M(T ) we construct the first player’s control as
follows. Let us set ρ∗(T, τ) ≡ 0 in (1.36) and denote by U0(τ, v) the set-
valued mapping obtained in such a way from U(τ, v). Let us choose the first
player’s control in the form u0(τ) = u0(τ, v(τ)), τ ∈ [0, T ], where u0(τ, v) is
a measurable selection of the mapping U0(τ, v).

Let us show that in each case treated above the trajectory of the process
(1.29) hits the terminal set at the time instant T .

We have:

Πz(T ) = Πg(T, z0) +

∫ T

0

(T − τ)α−1ΠE 1
α
(A(T − τ)α;α)φ(u(τ), v(τ))dτ.

(1.37)

Consider the case ξ(T ) /∈M(T ). Let us add and subtract from the right-hand
side of (1.37) the following vectors:∫ T

0
(T − τ)α−1ΠE 1

α
(A(T − τ)α;α)φ(u(τ), C(T − τ)v(τ))dτ,∫ t

0
γ(T − τ)dτ.

(1.38)

Taking into account the control rule of the first player, we obtain from (1.37)
the following inclusion:

Πz(T ) ∈ ξ(T )
[
1−

∫ T

0

ρ∗(T, τ)dτ

]
+

∫ T

0

ρ∗(T, τ)M(T )dτ+

+

∫ T

0

(T − τ)α−1ΠE 1
α
(A(T − τ)α;α)φ∗(T − τ, u(τ), v(τ))dτ.

Since M(T ) is a convex compact set, as M ∈ coK(Rm), and ρ∗(T, τ) is a
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non-negative function and
∫ T
0
ρ∗(T, τ)dτ = 1, it follows that:∫ T

0

ρ∗(T, τ)M(T )dτ =M(T ) ;

hence:

Πz(T ) ∈M(T ) +

∫ T

0

(T − τ)α−1ΠE 1
α
(A(T − τ)α;α)φ∗(T − τ, u(τ), v(τ))dτ.

From which, taking into account the definition of the Minkowski subtraction
and the form of the set M(T ), follows the inclusion Πz(T ) ∈M .

Now assume ξ(T ) ∈M(T ). Adding and subtracting from the right-hand side
of (1.37) the vectors (1.38) and taking into account the first player’s control
rule we obtain:

Πz(T ) = ξ(T ) +

∫ T

0

(T − τ)α−1ΠE 1
α
(A(T − τ)α;α)φ∗(T − τ, u(τ), v(τ))dτ ∈

∈M(T ) +

∫ T

0

(T − τ)α−1ΠE 1
α
(A(T − τ)α;α)φ∗(T − τ, u(τ), v(τ))dτ.

Which implies the inclusion Πz(T ) ∈M or z(T ) ∈M∗.

1.9 Comparison with Pontryagin’s first direct

method

As mentioned in [34], the singular case when the resolving function becomes
infinite is closely related to the Pontryagin first direct method. Let us state
the result more precisely. Let us introduce the function:

P (z0) = min

{
t ≥ 0 : g(t, z0) ∈M(t)−

∫ t

0

W ∗(τ)dτ

}
.

Theorem 2 Suppose that in game (1.29)–(1.30) there exists a measurable
bounded matrix function C(t) such that the modified Pontryagin condition
holds. Then the trajectory of process (1.29) can be brought to the set (1.30)
from the initial position z0 at the moment P (z0) using the control of the form
u(t) = u(z0, v(t)).
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The proof is similar to the proof of Theorem 1.

Assertion 1 Suppose that for conflict-controlled process (1.29)-(1.30) with a
bounded measurable matrix function C(t) the modified Pontryagin condition
holds. Then for the inclusion:

g(t, z0) ∈M(t)−
∫ t

0

W ∗(τ)dτ (1.39)

to be true, it is necessary and sufficient that there exists a summable in τ ,
τ ∈ [0, t], selection γ(τ) of the set-valued map W ∗(τ) such that:

ξ(t) ∈M(t). (1.40)

The proof of this assertion follows from the definition of the function ξ(t)
and integral of a set-valued map.

This directly implies that there exists a measurable selection γ(t), γ(t) ∈
W ∗(t), such that:

T (z0, γ(·)) ≤ P (z0) ∀z0,

where T (z0, γ(·)) = inf T.

Remark 1Inclusion (1.40) or (1.39) directly implies that the function ρ(t, τ, v)
becomes infinite for all τ ∈ [0, t], v ∈ V .

1.10 Separate Dynamics

Let us consider the case when the dynamics of each player is described by
a separate fractional differential equation. Suppose that the motion of the
first player hereafter referred to as the pursuer is described by the equation:

Dαx = Ax+ u, x ∈ Rm1 , n1 − 1 < α < n1. (1.41)

Dynamics of the second player whom we will refer to as the evader, is given
by the equation:

Dβy = By + v, y ∈ Rm2 , n2 − 1 < β < n2. (1.42)
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Here A and B are square matrices of order m1 and m2, respectively, U ∈
K(Rm1), V ∈ K(Rm2). Let us note that the system (1.41), (1.42) is not a
particular case of the process (1.29), since the numbers α and β are arbitrary.
It is assumed that the initial conditions for the systems (1.41), (1.42) are
given in the form corresponding to the operators Dα, Dβ and defined by the
initial state vectors x0, y0 of the pursuer and evader, respectively.

The terminal set is defined by the ε-distance by the first s (where s ≤
min(m1,m2)) components of the vectors x and y, i.e. the game is said to be
terminated as soon as:

∥x− y∥s ≤ ε. (1.43)

Here ε is a fixed number, 0 ≤ ε <∞.

Let us introduce orthoprojectors Π1 : Rm1 → Rs, Π2 : Rm2 → Rs, which keep
the first s coordinates in the vectors x, y, respectively, and discard the other
coordinates. Then the inequality (1.43) can be rewritten in the form:

∥Π1x− Π2y∥ ≤ ε. (1.44)

We will refer to the situation when the inequality (1.43) or equivalently (1.44)
holds true as a capture.

In virtue of Lemmas 4-7, the trajectories of systems (1.41), (1.42) are of the
form:

x(t) = gx(t, x
0) +

∫ t

0

(t− τ)α−1E 1
α
(A(t− τ)α;α)u(τ)dτ,

y(t) = gy(t, y
0) +

∫ t

0

(t− τ)β−1E 1
β
(B(t− τ)β; β)v(τ)dτ,

where gx(t, x
0) and gy(t, y

0) are general solutions to the homogeneous systems
Dαx = Ax, Dβy = By, respectively, with initial positions x0, y0.

Following the scheme of the method of resolving functions, let us consider
the set-valued maps:

W1(t, v) = tα−1Π1E 1
α
(Atα;α)U − tβ−1Π2E 1

β
(Btβ; β)C1(t)v;

W1(t) = tα−1Π1E 1
α
(Atα;α)U

∗
− tβ−1Π2E 1

β
(Btβ; β)C1(t)V. (1.45)
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Here C1(t) is a matrix function to equalize the control resources. Along with
the set-valued map W1(t) the modified Pontryagin condition involves the
map:

M1(t) = εS
∗
−−

∫ t

0

τβ−1Π2E 1
β
(Bτβ; β)(C1(τ)− I)V dτ, (1.46)

where S is a closed ball of the unit radius centered at the origin.

The modified Pontryagin condition is fulfilled if for some measurable bounded
function C1(t) the set-valued maps defined by (1.45), (1.46) are nonempty
for all t ≥ 0.

Let us choose a measurable selection γ1(t) (γ1(t) ∈ W1(t) ∀t ≥ 0) in W1(t)
and set:

ξ1(t) = Π1gx(t, x
0)− Π2gy(t, y

0) +

∫ t

0

γ1(τ)dτ.

As before, let us introduce the set-valued map:

ℜ1(t, τ, v) = {ρ ≥ 0 : [W1(t− τ)− γ1(t− τ)]
∩
ρ[M1(t)− ξ(t)] ̸= ∅},

ℜ1 : ∆× V → 2R+ ,

and its support function in the direction +1 (resolving function):

ρ1(t, τ, v) = sup{ρ : ρ ∈ ℜ1}, ρ1 : ∆× V → R+.

On the basis of the resolving function, let us define the set:

T1 =

{
t ≥ 0 :

∫ t

0

inf
v∈V

ρ1(t, τ, v)dτ ≥ 1

}
.

Let T ∈ T1 ̸= ∅.

Condition 2 The map ℜ1(T, τ, v) is convex-valued for all τ ∈ [0, T ], v ∈ V .

Theorem 3 Let for the game (1.41)-(1.44) with separated dynamics of the
players there exist a bounded measurable matrix function C1(t), t ≥ 0, such
that the set-valued maps W1(t) and M1(t) are nonempty-valued for all t ≥ 0.
If there exists a finite number T , T ∈ T1 ̸= ∅, such that Condition 2 is
fulfilled, then the capture in game (1.41)-(1.44) occurs at the moment T .

The proof is similar to that of Theorem 1 taking into account the specific
character of the problem (1.41)-(1.44).
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1.11 Example of a Pursuit Game for Systems

of Fractional Order π and e

Here we consider an example of fractional order pursuit-evasion dynamic
game. Let the dynamics of the first player whom we will refer to as Pursuer
and denote by P be described by the equation:

Dπx = u, |u| ≤ 1, (1.47)

where π = 3, 14159 . . . is the ratio of a circle’s circumference to its diameter.

The dynamics of the second player whom we will refer to as Evader and
denote E,is governed by the equation:

Dey = v, |v| ≤ 1, (1.48)

where e = 2, 71828 . . . is the base of the natural logarithm.

Here as before Dα is the operator of fractional differentiation of order α in
the sense of Riemann-Liouville, Caputo, Miller-Ross, or Hilfer. The phase
vectors x and y define the current position in Rm of the pursuer and the
evader, respectively. We suppose that x = x(t) is triple and y = y(t) is
twice absolutely continuously differentiable on R+ functions of time t, i.e.
x(t) ∈ AC3(R+), y(t) ∈ AC2(R+). The control vectors u = u(t), v = v(t),
u, v ∈ Rm are measurable functions of time t.

Since A and B are m×m zero matrices, E 1
π
(Atπ; π) = 1

Γ(π)
I and

E 1
e
(Bte; e) = 1

Γ(e)
I.

If the differentiation is taken in the sense of Riemann-Liouville, i.e. Dα = Dα,
the initial conditions for (1.47), (1.48) are of the form:

Dπ−1x(t)|t=0 = x011, D
π−2x(t)|t=0 = x021,

Dπ−3x(t)|t=0 = x031, D
π−4x(t)|t=0 = x041

and:

De−1y(t)|t=0 = y011, D
e−2y(t)|t=0 = y021, D

e−3y(t)|t=0 = y031,

respectively. In this case we denote:

x0 = (x011, x
0
21, x

0
31, x

0
41), y

0 = (y011, y
0
21, y

0
31),
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gx(t, x
0) =

tπ−1

Γ(π)
x011 +

tπ−2

Γ(π − 1)
x021 +

tπ−3

Γ(π − 2)
x031 +

tπ−4

Γ(π − 3)
x041,

gy(t, y
0) =

te−1

Γ(e)
y011 +

te−2

Γ(e− 1)
y021 +

te−3

Γ(e− 2)
y031.

Now suppose that Dα stands for the operator of fractional differentiation in
the sense of Caputo, i.e. Dα = D(α). Then the initial conditions for (1.47),
(1.48) can be written down the form:

x(0) = x002, ẋ(0) = x012, ẍ(0) = x022,
...
x (0) = x032

and:
y(0) = y002, ẏ(0) = y012, ÿ(0) = y022,

respectively. We denote:

x0 = (x002, x
0
12, x

0
22, x

0
32), y

0 = (y002, y
0
12, y

0
22),

gx(t, x
0) = x002 + tx012 +

t2

2
x022 +

t3

6
x032,

gy(t, y
0) = y002 + ty012 +

t2

2
y022.

If Dπ = Dπ
i for some i, i ∈ {1, 2, 3}, and De = De

j , j ∈ {1, 2}, the initial
conditions for (1.47), (1.48) take on the form:

Dπ−k−1
i−k−1 x(t)|t=0 = x̃0k, k = 0, . . . , i− 1,

x(l)(0) = x0l , l = 0, . . . , 3− i,

De−r−1
j−r−1y(t)|t=0 = ỹ0r , r = 0, . . . , j − 1,

y(s)(0) = y0s , s = 0, . . . , 2− j,

and:

x0 = (x̃00, . . . , x̃
0
i−1, x

0
0, . . . , x

0
3−i), y

0 = (ỹ00, . . . , ỹ
0
j−1, y

0
0, . . . , y

0
2−j),

gx(t, x
0) =

3−i∑
l=0

tl

l!
x0l +

i−1∑
k=0

tπ−k−1

Γ(π − k)
x̃0k,

gy(t, y
0) =

2−j∑
s=0

ts

s!
y0s +

j−1∑
r=0

te−r−1

Γ(e− r)
ỹ0r .
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Finally, suppose that Dπ = Dπ,µ1 and De = De,µ2 for some µ1, µ2 ∈ [0, 1].
Then the initial conditions are of the form:

x̂00 = J (1−µ1)(4−π)x(t)|t=0+, x̂
0
1 =

d

dt
J (1−µ1)(4−π)x(t)|t=0+,

x̂02 =
d2

dt2
J (1−µ1)(4−π)x(t)|t=0+, x̂

0
3 =

d3

dt3
J (1−µ1)(4−π)x(t)|t=0+,

ŷ00 = J (1−µ2)(3−e)y(t)|t=0+, ŷ
0
1 =

d

dt
J (1−µ2)(3−e)y(t)|t=0+,

ŷ02 =
d2

dt2
J (1−µ2)(3−e)y(t)|t=0+,

and we have:
x0 = (x̂0, x̂1, x̂2, x̂3), y

0 = (ŷ0, ŷ1, ŷ2),

gx(t, x
0) =

t−(1−µ1)(4−π)

Γ(1− (1− µ1)(4− π))
x̂0 +

t1−(1−µ1)(4−π)

Γ(2− (1− µ1)(4− π))
x̂1+

+
t2−(1−µ1)(4−π)

Γ(3− (1− µ1)(4− π))
x̂2 +

t3−(1−µ1)(4−π)

Γ(4− (1− µ1)(4− π))
x̂3,

gy(t, y
0) =

t−(1−µ2)(3−e)

Γ(1− (1− µ2)(3− e))
ŷ0 +

t1−(1−µ2)(3−e)

Γ(2− (1− µ2)(3− e))
ŷ1+

+
t2−(1−µ2)(3−e)

Γ(3− (1− µ2)(3− e))
ŷ2.

The goal of the pursuer is to achieve the fulfillment of the inequality:

∥x(T )− y(T )∥ ≤ ε, ε > 0, (1.49)

for some finite time instant T . The goal of the evader is to prevent the
fulfillment of the inequality (1.49) or, provided it is impossible, to maximally
postpone the time instant T .

The use of the Method of Resolving Functions described above makes it
possible to derive sufficient condition for the solvability of the formulated
pursuit problem.

Here Π1 = Π2 = I. The set-valued mappings (1.45) for this example take on
the form:

W1(t, v) =
tπ−1

Γ(π)
U − te−1

Γ(e)
C1(t)v =

tπ−1

Γ(π)
S − te−1

Γ(e)
C1(t)v,
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W1(t) =
∩
v∈V

W1(t, v) =
tπ−1

Γ(π)
S

∗
−− te−1

Γ(e)
C1(t)S,

where the matrix function C1(t) equalizing control resources can be chosen
in the form:

C1(t) = c1(t)I,

c1(t) =


Γ(e)
Γ(π)

tπ−e if 0 ≤ t<
(

Γ(π)
Γ(e)

) 1
π−e

1 if t ≥
(

Γ(π)
Γ(e)

) 1
π−e

(1.50)

Then:

W1(t) =

 {0} if 0 ≤ t<
(

Γ(π)
Γ(e)

) 1
π−e(

tπ−1

Γ(π)
− te−1

Γ(e)

)
S if t ≥

(
Γ(π)
Γ(e)

) 1
π−e

So, W1(t) ̸= ∅ for all t ≥ 0. Further,

M1(t) = εS
∗
−
∫ t
0
τe−1

Γ(e)
(c1(τ)− 1)V dτ

=


[
ε−

∣∣∣ tπ

Γ(π+1)
− te

Γ(e+1)

∣∣∣]S if 0 ≤ t<
(

Γ(π)
Γ(e)

) 1
π−e[

ε−
∣∣∣∣ (Γ(π)/Γ(e)) π

π−e

Γ(π+1)
− (Γ(π)/Γ(e))

e
π−e

Γ(e+1)

∣∣∣∣]S if t ≥
(

Γ(π)
Γ(e)

) 1
π−e

Thus, the modified Pontryagin condition holds if:

ε ≥

∣∣∣∣∣(Γ(π)/Γ(e))
π

π−e

Γ(π + 1)
− (Γ(π)/Γ(e))

e
π−e

Γ(e+ 1)

∣∣∣∣∣
=

(Γ(π)/Γ(e))
e

π−e

Γ(e+ 1)
− (Γ(π)/Γ(e))

π
π−e

Γ(π + 1)
≈ 0.358787.

Let us choose γ1(t) ≡ 0 as a measurable selection of W1(t). Then:

ξ1(t) = Π1gx(t, x
0)− Π2gy(t, y

0).

Denote:

m(t) =


ε−

∣∣∣ tπ

Γ(π+1)
− te

Γ(e+1)

∣∣∣ if 0 ≤ t<
(

Γ(π)
Γ(e)

) 1
π−e

ε−
∣∣∣∣ (Γ(π)/Γ(e)) π

π−e

Γ(π+1)
− (Γ(π)/Γ(e))

e
π−e

Γ(e+1)

∣∣∣∣ if t ≥
(

Γ(π)
Γ(e)

) 1
π−e



1.11 Example of a Pursuit Game for Systems of Fractional . . . 33

then:
M1(t) = m(t)S.

Consider resolving function:

ρ1(t, τ, v) = sup{ρ ≥ 0 : W1(t− τ, v)
∩

ρ[M1(t)− ξ1(t)] ̸= ∅}.

This function can be evaluated as the greater root of the quadratic equation
in ρ: ∥∥∥∥ρξ1(t)− (t− τ)e−1c1(t− τ)

Γ(e)
v

∥∥∥∥ =
(t− τ)π−1

Γ(π)
+ ρm(t).

Solving this equation, we find:

ρ1(t, τ, v) =

(t−τ)e−1c1(t−τ)
Γ(e)

(ξ1(t), v) +
(t−τ)π−1

Γ(π)
m(t) +

√
∆1

∥ξ1(t)∥2 −m2(t)
,

where:

∆1 =

(
(t− τ)e−1c1(t− τ)

Γ(e)
(ξ1(t), v) +

(t− τ)π−1

Γ(π)
m(t)

)2

+

(
(t− τ)2π−2

Γ2(π)
− (t− τ)2e−2c21(t− τ)

Γ2(e)
∥v∥2

)(
∥ξ1(t)∥2 −m2(t)

)
.

At v = − ξ1(t)
∥ξ1(t)∥ the minimum value is attained:

min
∥v∥≤1

ρ1(t, τ, v) =

(t−τ)π−1

Γ(π)
− (t−τ)e−1c1(t−τ)

Γ(e)

∥ξ1(t)∥ −m(t)
. (1.51)

In virtue of continuity of the numerator and denominator in (1.51), time of
(1.47)–(1.49) game termination can be found as the least positive root of the
equation: ∫ t

0

[
τπ−1

Γ(π)
− τ e−1

Γ(e)
c1(τ)

]
dτ = ∥ξ1(t)∥ −m(t). (1.52)

The equation (1.52) can be simplified taking into account form of the func-

tions c1(t) andm(t). Indeed, it follows from (1.50) that for 0 ≤ t <
(

Γ(π)
Γ(e)

) 1
π−e
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the integrand is equal to zero and the game cannot be terminated on this
interval.

Suppose t ≥
(

Γ(π)
Γ(e)

) 1
π−e

. Then:∫ t

0

[
τπ−1

Γ(π)
− τ e−1

Γ(e)
c1(τ)

]
dτ =

∫ t

(Γ(π)
Γ(e) )

1
π−e

[
τπ−1

Γ(π)
− τ e−1

Γ(e)

]
dτ ,

and equation (1.52) for obtaining the time of game termination takes on its
final form:

tπ

Γ(π + 1)
− te

Γ(e+ 1)
+ ε = ∥ξ1(t)∥.

This equation always has a positive solution since its left-hand side increases
at the rate of O(tπ), while the growth rate of the right-hand side is not greater
than O(t3).

1.12 Game with Plain Matrix. Asymptotic

Representation of the Scalar. Mittag-

Leffler Functions

Consider a conflict-controlled process, evolution of which is defined by the
system of fractional order in the sense of Caputo:

D(α)z = λz + u− v, z ∈ Rm, u ∈ aS, v ∈ S, a > 1, (1.53)

where λ is a real number, n− 1 < α ≤ n, with initial conditions:

z(i)(0) = z0i , i = 0, . . . , n− 1, (1.54)

and terminal set M∗ = εS, ε ≥ 0. Obviously, here A = λI, φ(u, v) = u− v,
U = aS, V = S, M0 = {0}, and M = εS. Therefore, L =M⊥

0 = Rm and the
orthoprojector Π is an identity operator. Since for the matrix A = λI:

E1/α(A;µ) = E1/α(λ;µ)I,

solution to the Cauchy problem for the system (1.53) with the initial condi-
tions (1.54) has the form (1.22):

z(t) =
n−1∑
i=0

tiE 1
α
(λtα; i+1)z0i +

∫ t

0

(t− τ)α−1E 1
α
(λ(t− τ)α;α)(u(τ)− v(τ))dτ.
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According to the Method of Resolving Functions, let us check fulfillment of
Pontryagin’s condition:

W (t, v) = tα−1E 1
α
(λtα;α)(aS − v), W (t) =

∣∣∣tα−1E 1
α
(λtα;α)

∣∣∣ (a− 1)S,

hence the Pontryagin condition holds true. Let us set γ(t) ≡ 0, then:

ξ(t) =
n−1∑
i=0

tiE 1
α
(λtα; i+ 1)z0i .

The resolving function has the form:

ρ(t, τ, v) = sup{ρ ≥ 0 :

(t− τ)α−1E 1
α
(λ(t− τ)α;α)(aS − v)∩

ρ[εS − ξ(t)] ̸= ∅}. (1.55)

Denote w(t) = tα−1E 1
α
(λtα;α). The resolving function (1.55) can be found

explicitly as the larger root of the quadratic equation in ρ:

∥w(t− τ)v − ρξ(t)∥ = aw(t− τ) + ρε,

which implies:

ρ(t, τ, v) =
w(t− τ)[(ξ(t), v) + aε] + |w(t− τ)|

√
∆2

∥ξ(t)∥2 − ε2
,

here ∆2 = ((ξ(t), v)+ aε)2− (|v|2− a2)(∥ξ(t)∥2− ε2). The resolving function
ρ(t, τ, v) attains its minimum value:

min
∥v∥≤1

ρ(t, τ, v) = w(t− τ) a− 1

∥ξ(t)∥ − ε

at v = − ξ(t)
∥ξ(t)∥ . Then the time of game termination is determined as the

smallest positive root of the equation:

(a−1)
∫ t

0

(t−τ)α−1E 1
α
(λ(t−τ)α;α)dτ =

∥∥∥∥∥
n−1∑
i=0

tiE 1
α
(λtα; i+ 1)z0i

∥∥∥∥∥−ε. (1.56)



36 Control of fractional-order dynamic systems under uncertainty

Taking into account:∫ t

0

(t− τ)α−1E 1
α
(λ(t− τ)α;α)dτ = tαE 1

α
(λtα;α+ 1),

we obtain the equation:

tαE 1
α
(λtα;α+ 1) =

∥∥∥∑n−1
i=0 t

iE 1
α
(λtα; i+ 1)z0i

∥∥∥− ε
a− 1

for determination of termination time for the game (1.53), (1.54).

It is natural to assume that for t = 0 the vector z00 = z(0) does not belong
to the ball εS. In this case at t = 0 the left-hand side of (1.56) equals zero
and the right-hand side is positive.

Let us investigate the rate of growth of each side of the equation (1.56) as
t→∞. If α < 2 for any µ, λ > 0, and p ∈ N we have:

E 1
α
(λtα;µ) =

1

α
(λtα)

1−µ
α e(λt

α)
1
α −

p∑
j=1

(λtα)−j

Γ(µ− jα)
+O((tα)−1−p).

Applying this asymptotic formula, we obtain:

tαE 1
α
(λtα;α+ 1) =

1

α
λ−1eλ

1
α t − λ−1 + . . . ,

tiE 1
α
(λtα; i+ 1) =

1

α
λ−

i
α eλ

1
α t −

i
α∑
j=1

λ−jti−jα

Γ(i+ 1− jα)
+ . . .

Hence,

lim
t→∞

tαE 1
α
(λtα;α+ 1)∥∥∥∑n−1

i=0 t
iE 1

α
(λtα; i+ 1)z0i

∥∥∥− ε =
1
α
λ−1∥∥∥∑n−1

i=0
1
α
λ−

i
α z0i

∥∥∥ =
1∥∥∥∑n−1

i=0 λ
1− i

α z0i

∥∥∥ .
Therefore, the root of the equation (1.56) exists if:

a− 1 >

∥∥∥∥∥
n−1∑
i=0

λ1−
i
α z0i

∥∥∥∥∥ . (1.57)
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Now consider the case when λ < 0, α < 2, and µ is arbitrary. Then for any
natural p:

E 1
α
(λtα;µ) = −

p∑
j=1

(λtα)−j

Γ(µ− jα)
+O((tα)−1−p).

Applying this asymptotic representation, we get:

tαE 1
α
(λtα;α+ 1) = −λ−1 − λ−2t−α

Γ(1− α)
+ . . . ,

E 1
α
(λtα; 1) = − λ−1t−α

Γ(1− α)
+ . . . ,

tE 1
α
(λtα; 2) = −

1
α∑
j=1

λ−jt1−jα

Γ(2− jα)
+ . . . ,

so,
lim
t→∞

tαE 1
α
(λtα;α+ 1) = −λ−1,

lim
t→∞

∥∥∥∥∥
n−1∑
i=0

tiE 1
α
(λtα; i+ 1)z0i

∥∥∥∥∥ = 0.

Thus, equation (1.56) has a finite positive root for any initial conditions.

If α ≥ 2, the following asymptotic formulas are to be applied:

E 1
α
(λtα;µ) = 1

α
λ

1−µ
α t1−µ

∑
| arg λ+2πn|≤απ

2
e

2πin(1−µ)
α exp(e

2πin(1−µ)
α λ

1
α t)+

−
∑p

j=1
(λtα)−j

Γ(µ−jα) +O((tα)−1−p),

(1.58)
where p ≥ 1 is an arbitrary integer and the first sum is taken over n =
0,±1,±2, . . . such that | arg λ+ 2πn| ≤ απ

2
.

Now suppose that λ > 0 and α ∈ [2, 4). Then arg λ = 0 and the first sum
in (1.58) consists of a single term that corresponds to n = 0. Hence, for
sufficiently large values of t we have:

E 1
α
(λtα;µ) =

1

α
λ

1−µ
α t1−µeλ

1
α t + . . . ,

whence:

E 1
α
(λtα;α+ 1) =

1

α
λ−1t−αeλ

1
α t + . . . ,
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tαE 1
α
(λtα;α+ 1) =

1

α
λ−1eλ

1
α t + . . . ,

E 1
α
(λtα; i+ 1) =

1

α
λ−

i
α t−ieλ

1
α t + . . . ,

tiE 1
α
(λtα; i+ 1) =

1

α
λ−

i
α eλ

1
α t + . . . .

Then taking into account the asymptotic representations obtained above, we
have:

lim
t→∞

tαE 1
α
(λtα;α+ 1)∥∥∥∑n−1

i=0 t
iE 1

α
(λtα; i+ 1)z0i

∥∥∥− ε =
1∥∥∥∑n−1

i=0 λ
1− i

α z0i

∥∥∥ .
Thus, a positive finite root of equation (1.56) exists if the inequality (1.57)
holds true.

In conclusion, we examine the case when λ = 0. Then the equation (1.56)
takes on the form:

tα

Γ(α+ 1)
=

∑n−1
i=0

ti

i!
z0i − ε

a− 1
. (1.59)

At t = 0 the left-hand side of this equation equals zero and its right-hand
side is positive as the initial state of the dynamic system in question does not
belong to the terminal set: z00 > ε. As t → ∞, the growth rate of the left-
hand side is O(tα) while the right-hand side increases at the rate of O(tn−1).
Since α > n − 1, the equation (1.59) has a positive solution for any initial
conditions such that z00 > ε.

1.13 Group Pursuit

Let the motion of an object z = col(z1, . . . , zµ), zi ∈ Rmi , in the state space
Rm, m = m1 + . . . + mµ, be described by the fractional-order differential
equations:

Dαzi = Aizi + φi(ui, v), 0 < α ≤ 1, i = 1, . . . , µ. (1.60)
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Here Dα stands for the fractional differentiation operator in the sense of
Riemann-Liouville or Caputo, Ai is a square matrix of order mi, the control
block is defined by the jointly continuous functions φi(ui, v), φi : Ui × V →
Rmi , where ui and v, ui ∈ Ui, v ∈ V , are control parameters of the i-th
pursuer and evader respectively, and the control sets Ui and V are from the
set K(Rmi).

Let gi(t, z
0
i ) be the solution to the homogeneous system Dαzi = Aizi. Thus,

when Dα is the Riemann-Liouville fractional differentiation operator (Dα =
Dα):

gi(t, z
0
i ) = tα−1E 1

α
(Atα;α)z0i ,

where:
z0i = Dα−1zi(t)|t=0.

For the Caputo regularized fractional derivative (Dα = D(α)), we have:

gi(t, z
0
i ) = E 1

α
(Atα; 1)z0i ,

where:
z0i = zi(0).

The terminal set M∗ consists of the sets M∗
1 , . . . ,M

∗
µ, M

∗
i ⊂ Rmi , such that:

M∗
i =M0

i +Mi, (1.61)

where M0
i is a linear subspace of Rmi and Mi is a convex compact set from

the orthogonal complement Li to the subspace M0
i in Rmi .

The dynamic game (1.60), (1.61) is said to be terminated if for some i the
inclusion zi ∈M∗

i holds true.

Denote by Πi the orthoprojector from Rmi onto Li. Consider the following
set-valued maps:

Wi(t, v) = Πit
α−1E 1

α
(Atα;α)φi(Ui, v),

Wi(t) =
∩
v∈V

Wi(t, v), i = 1, . . . , µ, t ∈ R+, v ∈ V.

Condition 3 The maps Wi(t) are nonempty-valued for all i = 1, . . . , µ,
t ∈ R+.
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Due to the assumptions on the parameters of the process (1.60), the maps
Wi(t, v) are measurable with respect to t and closed-valued with respect to v,
v ∈ V . Hence [2], the maps Wi(t) are measurable and closed-valued on R+.
Condition 3 and the measurable selection theorem [2] imply that there exists
a measurable selection γi(·), γi(t) ∈ Wi(t), t ≥ 0, for each i, i = 1, . . . , µ. Let
us fix these selections and set:

ξi(t, zi) = Πigi(t, zi) +

∫ t

0

γi(τ)dτ. (1.62)

Consider the set-valued maps:

ℜi(t, τ, zi, v) = {ρ ≥ 0 : [Wi(t− τ, v)− γi(t− τ)]
∩

ρ[Mi − ξi(t, zi)] ̸= ∅}

and their support functions in the direction of +1:

ρi(t, τ, zi, v) = sup{ρ : ρ ∈ ℜi(t, τ, zi, v)}, ρ : ∆× V → R+,

where ∆ = {(t, τ) : 0 ≤ τ ≤ t < ∞}. As before, these functions are called
resolving [34].

Taking into account Condition 3, the properties of the process (1.60) param-
eters, as well as characterization and inverse image theorems, one can show
that the set-valued mappings ℜi(t, τ, zi, v) are Λ×B-measurable [4] with re-
spect to τ , v, τ ∈ [0, t], v ∈ V , and the resolving functions ρi(t, τ, zi, v) are
Λ×B-measurable in τ , v, by virtue of the support function theorem [4] when
ξi(t, zi) /∈Mi.

It should be noted that for ξi(t, zi) ∈ Mi we have ℜi(t, τ, zi, v) = [0,∞) and
hence ρi(t, τ, zi, v) = +∞ for any τ ∈ [0, t], v ∈ V .

Since ρi(t, τ, zi, v) are Λ × B-measurable in τ , v, they are superpositionally
measurable [17], i.e. ρi(t, τ, zi, v(τ)) is measurable for any measurable v(τ),
v(τ) ∈ V .

Denote:

Tµ(z) = inf

{
t ≥ 0 : inf

v(·)
max
i

∫ t

0

ρi(t, τ, zi, v(τ))dτ ≥ 1

}
. (1.63)

If the inequality in braces fails for all t ≥ 0, we set Tµ(z) = +∞. If for some i

ρi(t, τ, zi, v) = +∞ for τ ∈ [0, t], v ∈ V , we assume that
∫ t
0
ρi(t, τ, zi, v(τ))dτ =

+∞ and the inequality in (1.63) is fulfilled automatically.
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Theorem 4 Suppose Condition 3 holds for the pursuit game (1.60), (1.61)
and Tµ(z

0) < ∞ for some initial state z0 = (z01 , . . . , z
0
µ). Then for at least

one i a trajectory of (1.60) can be driven from the initial state z0i to the
corresponding set M∗

i at the moment Tµ(z
0).

Proof. Denote T = Tµ(z
0). Let v(τ), v : [0, T ] → V , be an arbitrary

measurable function.

Consider the case ξi(T, z
0
i ) /∈ Mi for all i = 1, . . . , µ. Let us introduce the

check function:

hµ(t) = 1−max
i

∫ t

0

ρi(T, τ, z
0
i , v(τ))dτ.

Resolving functions ρi(T, τ, z
0
i , v(τ)) are Λ × B-measurable in τ , v, hence,

superpositionally measurable [14], i.e. ρi(T, τ, z
0
i , v(τ)) are measurable in τ .

Thus, hµ(t) is continuous, non-increasing, and hµ(0) = 1. Since hµ(T ) ≤ 0,
there exists a time instant t∗, t∗ ∈ (0, T ], such that:

hµ(t∗) = 0. (1.64)

Let us introduce the set-valued maps:

Ui(τ, v) = {ui ∈ Ui : (T − τ)α−1ΠiE 1
α
(A(T − τ)α;α)φi(ui, v)− γi(T − τ)

∈ ρi(T, τ, z0i , v)[Mi − ξi(T, z0i )]}, i = 1, . . . , µ. (1.65)

By virtue of the inverse image theorem, the maps Ui(τ, v) are Λ×B-measurable,
hence, according to the measurable selection theorem, in Ui(τ, v) there ex-
ists at least one Λ×B-measurable selection ui(τ, v) that is superpositionally
measurable. Let us set the pursuers’ controls on the interval [0, t∗) to be
ui(τ) = ui(τ, v(τ)).

Due to (1.64), there exists a number i∗ such that:

1−
∫ t∗

0

ρi∗(T, τ, z
0
i∗ , v(τ))dτ = 0. (1.66)

Setting in (1.65) ρi(T, τ, z
0
i , v) ≡ 0 for τ ∈ [t∗, T ], we obtain the following

set-valued maps:

U0
i (τ, v) = {ui ∈ Ui : (T−τ)α−1ΠiE 1

α
(A(T−τ)α;α)φi(ui, v)−γi(T−τ) = 0}.
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As before, by the theorem on measurable selection, in U0
i (τ, v) there exists

at least one Λ × B-measurable selection u0i (τ, v) that is superpositionally
measurable. Let us set control of the i∗-th pursuer on the interval [t∗, T ] to
be ui∗(τ) = u0i∗(τ, v(τ)). The controls of the other pursuers we assume to be
arbitrary.

Now suppose there exists i such that ξi(T, z
0
i ) ∈ Mi. In this case we set the

control of the i-th pursuer to be:

ui(τ) = u0i (τ, v(τ)), τ ∈ [0, T ].

The controls of the other pursuers are assumed to be arbitrary.

Again, consider the case ξi(T, z
0
i ) /∈ Mi for all i = 1, . . . , µ. It follows from

(1.66) and from the equality ρi∗(T, τ, z
0
i∗ , v) ≡ 0, τ ∈ [t∗, T ], that:

∫ T

0

ρi∗(T, τ, z
0
i∗ , v(τ))dτ = 1. (1.67)

According to the Cauchy formulas (1.18), (1.22),

Πi∗zi∗(T )=Πi∗gi∗(t, z
0
i∗)+

∫ T

0

(T−τ)α−1Πi∗E 1
α
(A(T−τ)α;α)φi∗(ui∗(τ), v(τ))dτ.

Adding and subtracting
∫ T
0
γi∗(T − τ)dτ from the right-hand side and taking

into account the pursuers’ control laws described above, we obtain:

Πi∗zi∗(T )∈ξi∗(T, z0i∗)
[
1−
∫ T

0

ρi∗(T, τ, z
0
i∗ , v(τ))dτ

]
+

∫ T

0

ρi∗(T, τ, z
0
i∗ , v(τ))Mi∗dτ.

Taking into account (1.67) and the fact that integral of a uniformly bounded
compact-valued map is a convex compact set (Aumann’s theorem [5]), we
finally get the inclusion Πi∗zi∗(T ) ∈Mi∗ .

If for some i ξi(T, z
0
i ) ∈ Mi, then taking into account the i-th pursuer’s

control law and (1.62) we obtain the inclusion Πizi(T ) ∈Mi.
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1.14 Encirclement

Consider a game of pursuit involving µ pursuers:

Dαxi = ui, ∥ui∥ ≤ 1, i = 1, . . . , µ , (1.68)

and one evader:
Dαy = v, ∥v∥ ≤ 1 . (1.69)

Here Dα, 0 < α ≤ 1, as before, stands for the fractional differentiation
operator in the sense of Riemann-Liouville or Caputo, xi, y ∈ Rm, m > 1.
The game is assumed to be terminated if xi = y for some i.

Let us reduce this problem to the form (1.60), (1.61). Set zi = xi − y. Then
equations (1.68), (1.69) take on the form:

Dαzi = ui − v, zi ∈ Rm, ∥ui∥ ≤ 1, ∥v∥ ≤ 1 , (1.70)

with the terminal set consisting of the sets:

M∗
i =M0

i =Mi = {zi : zi = 0}, i = 1, . . . , µ . (1.71)

In this case Li = Rm, Πi = I are the identity operators, and Ai are zero
matrices of order m. Hence:

E 1
α
(Atα; 1) = 1, E 1

α
(Atα;α) =

1

Γ(α)
.

Let us check the fulfillment of Condition 3:

Wi(t, v) =
tα−1

Γ(α)
S − tα−1

Γ(α)
v, Wi(t) = {0} ̸= ∅, i = 1, . . . , µ ,

where S stands for the closed unit ball centered at the origin in Rm. The
equality Wi(t) = {0} implies γi(t) ≡ 0 for all i = 1, . . . , µ.

Consider the case when Dα denotes fractional differentiation operator in the
sense of Riemann-Liouville, i.e. Dα = Dα. Then ξi(t, zi) = tα−1

Γ(α)
zi. The

resolving functions are of the form:

ρi(t, τ, zi, v) = sup

{
ρ ≥ 0 : −ρ t

α−1

Γ(α)
zi ∈

(t− τ)α−1

Γ(α)
(S − v)

}
=
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= sup
{
ρ ≥ 0 : −ρtα−1zi ∈ (t− τ)α−1(S − v)

}
.

Their values can be obtained explicitly as the greater root of the following
quadratic equation in ρ:

∥(t− τ)α−1v − ρtα−1zi∥ = (t− τ)α−1 ,

whence:

ρi(t, τ, zi, v) =

(t− τ)α−1

[
(v · zi) +

√
(v · zi)2 + ∥zi∥2(1− ∥v∥2)

]
tα−1∥zi∥2

.

Denote ρ̃i(zi, v) =
v·zi+
√

(v·zi)2+∥zi∥2(1−∥v∥2)
∥zi∥2

, then:

ρi(t, τ, zi, v) =

(
t− τ
t

)α−1

ρ̃i(zi, v) .

The time of the game termination can be determined from (1.63). Denote
∆µ−1 the standard (µ− 1)-simplex. The following inequalities hold true:

inf
v(·)

max
i

∫ t

0

ρi(t, τ, zi, v(τ))dτ = inf
v(·)

max
ρ∈∆µ−1

µ∑
i=1

ρi

∫ t

0

ρi(t, τ, zi, v(τ))dτ

≥ inf
v(·)

µ∑
i=1

1

µ

∫ t

0

ρi(t, τ, zi, v(τ))dτ =
1

µ
inf
v(·)

∫ t

0

µ∑
i=1

ρi(t, τ, zi, v(τ))dτ

≥ 1

µ

∫ t

0

min
∥v∥≤1

max
i
ρi(t, τ, zi, v)dτ =

1

µ

∫ t

0

min
∥v∥≤1

max
i

(
t− τ
t

)α−1

ρ̃i(zi, v)dτ

=
t

µα
min
∥v∥≤1

max
i
ρ̃i(zi, v) .

This implies the following estimation of the game termination time:

Tµ(z) ≤
αµ

δ(z)
, (1.72)
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where:
δ(z) = min

∥v∥≤1
max
i
ρ̃i(zi, v).

Now suppose Dα denotes fractional differentiation operator in the sense of
Caputo, i.e. Dα = D(α). Then ξi(t, zi) = zi. The resolving functions are of
the form:

ρi(t, τ, zi, v) = sup

{
ρ ≥ 0 : −ρzi ∈

(t− τ)α−1

Γ(α)
(S − v)

}
.

Their values can be obtained explicitly as the greater root of the following
quadratic equation in ρ:∥∥∥∥(t− τ)α−1

Γ(α)
v − ρzi

∥∥∥∥ =
(t− τ)α−1

Γ(α)
,

whence:

ρi(t, τ, zi, v) =

(t− τ)α−1

[
v · zi +

√
(v · zi)2 + ∥zi∥2(1− ∥v∥2)

]
Γ(α)∥zi∥2

=
(t− τ)α−1

Γ(α)
ρ̃i(zi, v) .

The following inequalities hold true:

inf
v(·)

max
i

∫ t

0

ρi(t, τ, zi, v(τ))dτ = inf
v(·)

max
ρ∈∆µ−1

µ∑
i=1

ρi

∫ t

0

ρi(t, τ, zi, v(τ))dτ

≥ inf
v(·)

µ∑
i=1

1

µ

∫ t

0

ρi(t, τ, zi, v(τ))dτ =
1

µ
inf
v(·)

∫ t

0

µ∑
i=1

ρi(t, τ, zi, v(τ))dτ

≥ 1

µ

∫ t

0

min
∥v∥≤1

max
i
ρi(t, τ, zi, v)dτ =

1

µ

∫ t

0

min
∥v∥≤1

max
i

(t− τ)α−1

Γ(α)
ρ̃i(zi, v)dτ

=
tα

µΓ(α+ 1)
min
∥v∥≤1

max
i
ρ̃i(zi, v) .
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Combining this result with (1.63) one obtains the following estimation for
the game termination time:

Tµ(z) ≤
(
µΓ(α+ 1)

δ(z)

)1/α

. (1.73)

As δ(z) ≥ 0 for all z ∈ Rµm, it suffices to determine the states z such that
δ(z) > 0, in order to ensure Tµ(z) < +∞ in both (1.72) and (1.73).

Let us set:

σ(z) = min
∥v∥=1

max
i

(
zi
∥zi∥

· v
)
.

One can readily see that σ(z) > 0 if and only if δ(z) > 0. Indeed, if
σ(z) > 0, then having treated separately the cases ∥v∥ = 0 and ∥v∥ =
1 one immediately obtains δ(z) > 0. If δ(z) > 0, then, in particular,
min∥v∥=1 maxi ρ̃i(zi, v) > 0, which implies σ(z) > 0.

On the other hand, the following assertion is true.

Lemma 8 The function σ(z) > 0 if and only if the origin of the space Rm

belongs to the interior of the convex hull of the points zi/∥zi∥, i = 1, . . . , µ:

0 ∈ intco

{
zi
∥zi∥

}
.

Proof. Suppose 0 ∈ intco
{

zi
∥zi∥

}
. This inclusion can be rewritten in terms of

support functions as follows:

0 < max
i

(
zi
∥zi∥

· v
)
∀v, ∥v∥ = 1,

or

min
∥v∥=1

max
i

(
zi
∥zi∥

· v
)

= σ(z) > 0 .

The sufficiency can be proved using the same reasoning in the opposite di-
rection.

Corollary 1 0 /∈ intco
{

zi
∥zi∥

}
if and only if σ(z) ≤ 0.
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Corollary 2 The pursuit game (1.70), (1.71) can be terminated in a finite
time if and only if:

0 ∈ intco

{
z0i
∥z0i ∥

}
. (1.74)

Proof. Suppose 0 ∈ intco
{

z0i
∥z0i ∥

}
. Then by Lemma 8 σ(z0) > 0, hence

δ(z0) > 0. By virtue of the estimations (1.72), (1.73), this implies that the
game termination time Tµ(z

0) is finite.

Now let 0 /∈ intco
{

z0i
∥z0i ∥

}
. This implies σ(z0) ≤ 0 and the set:

V0 =

{
∥v∥ = 1 : max

i

(
z0i
∥z0i ∥

· v
)
≤ 0

}
,

is non-empty. Let v0 ∈ V0 then ρ̃i(z
0
i , v0) = 0 for all i = 1, . . . , µ.

First consider the case when Dα is the Riemann-Liouville fractional differ-
entiation operator. Then:

ρi(t, τ, z
0
i , v0) =

(
t− τ
t

)α−1

ρ̃i(z
0
i , v0) = 0, i = 1, . . . , µ, 0 < τ < t.

This implies, by definition of ρi(t, τ, z
0
i , v0), that:{

−ρi
tα−1

Γ(α)
z0i

}∩ (t− τ)α−1

Γ(α)
(S − v0) = ∅ ∀ρi > 0, 0 < τ < t, i = 1, . . . , µ,

or

ρi
tα−1

Γ(α)
z0i +

(t− τ)α−1

Γ(α)
(S − v0)

∩
{0} = ∅.

By setting ρi =
α(t−τ)α−1

tα
in the latter expression, we derive:

0 /∈ tα−1

Γ(α)
z0i +

tα

Γ(α+ 1)
(S − v0) .

Taking into account (1.18) and:

tα

Γ(α+1)
(S − v0) =

∫ t
0

(t−τ)α−1

Γ(α)
(S − v0)dτ

=
{∫ t

0
(t−τ)α−1

Γ(α)
(u(τ)− v0)dτ : u(τ) ∈ S

}
,

(1.75)
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we obtain zi(t) ̸= 0 for all i = 1, . . . , µ, t > 0, i.e. the game cannot be
terminated in finite time.

Now suppose Dα stands for the Caputo fractional differentiation operator.
In this case:

ρi(t, τ, z
0
i , v0) =

(t− τ)α−1

Γ(α)
ρ̃i(z

0
i , v0) = 0, i = 1, . . . , µ, 0 < τ < t.

This implies, by definition of ρi(t, τ, z
0
i , v0), that:

−ρiz0i /∈
(t− τ)α−1

Γ(α)
(S − v0) ∀ρi > 0, 0 < τ < t, i = 1, . . . , µ,

or

0 /∈ ρiz0i +
(t− τ)α−1

Γ(α)
(S − v0).

By setting ρi =
α(t−τ)α−1

tα
in the latter expression, we get:

0 /∈ z0i +
tα

Γ(α+ 1)
(S − v0).

Combining this result with (1.22) and (1.75), we get zi(t) ̸= 0 for all i =
1, . . . , µ, t > 0, i.e. the game cannot be terminated in finite time.

Remark 2 In the case of the Caputo fractional derivative, i.e. when Dα =
D(α), the condition (1.74) implies that the initial position of the evader lies
within the interior of the convex hull of the pursuers’ initial positions. This
’encirclement’ condition coincides with the one for the integer-order pursuit
game [34].

1.15 Bagley-Torvik Equation

From the practical point of view, of considerable interest is the equation of
the form:

az′′ + bDα,µz + cz = f, 0 < ν < 2,

describing oscillations with fractional damping. Equations of such kind arise
in describing vibrations of a plane wing in supersonic gas flow [28] resulting



1.15 Bagley-Torvik Equation 49

in the flutter-type phenomena, nano-dimensional sensors [20], etc. At α = 3
2

this equation is called the Bagley-Torvik equation and describes the motion
of a rigid plate in a Newtonian fluid [32].

In describing physical phenomena and processes, as a rule, the Caputo deriva-
tive corresponding to the type µ = 1 is used, since in this case the initial
conditions have clear physical interpretation. Consider the Bagley-Torvik
equation involving the Caputo derivative:

ay′′(t) + bD(3/2)y(t) + cy(t) = f(t) (1.76)

under the initial conditions:

y(0) = y0, y′(0) = y′0. (1.77)

Denote z1(t) = y(t), z2(t) = D(1/2)y(t), z3(t) = y′(t), z4(t) = D(3/2)y(t).
Then, as shown in [15], D(1/2)z1 = z2, D

(1/2)z2 = z3, D
(1/2)z3 = z4, D

(1/2)z4 =
y′′. Therefore, the equation (1.76) under the initial conditions (1.77) is equiv-
alent to the system: 

D(1/2)z1 = z2
D(1/2)z2 = z3
D(1/2)z3 = z4
D(1/2)z4 = 1

a
(−cz1 − bz4 + f)

or, in matrix form:
D(1/2)z = Az +Bf , (1.78)

where:

A =


0 1 0 0
0 0 1 0
0 0 0 1
−c/a 0 0 −b/a



, B =


0
0
0

1/a

, z =

z1
z2
z3
z4

 under the initial conditions:

z(0) = z0 = col(y0, 0, y
′
0, 0) .

By virtue of (1.22), the solution to this system is given by the formula:

z(t) = E2(A
√
t; 1)z0 +

∫ t

0

E2

(
A
√
t− τ ; 1

2

)
B
f(τ)dτ√
t− τ

.
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Now suppose that in the equation (1.76) f(t) = u(t) − v(t), where u, v are
controls of the first and the second players, respectively, and |u| ≤ r, r > 1,
|v| ≤ 1. We assume that the first player strives to bring the system into the
state z1 = 0, while the goal of the second player is the opposite. In such case
the system (1.78) takes on the form:

D(1/2)z = Az + ū− v̄,

where ū = Bu, v̄ = Bv, ū ∈ rBS, v̄ ∈ BS, S = [−1, 1].

The terminal set is M∗ = {z ∈ R4 : z1 = 0}. Then M0 = {z ∈ R4 : z1 = 0},
L = {z ∈ R4 : z2 = z3 = z4 = 0}, M = {0}, Π = {πij}, where:

Π =


1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 .

Then W (t, v)= 1√
t
ΠE2

(
A
√
t; 1

2

)
B(rS − v), W (t)= r−1√

t
ΠE2

(
A
√
t; 1

2

)
BS ̸=∅

and the condition (1.32) is straightforwardly satisfied. Set γ(t) ≡ 0, then
ξ(t) = ΠE2(A

√
t; 1)z0. The resolving function is defined as follows:

ρ(t, τ, v) = max{ρ ≥ 0 : −ρΠE2(A
√
t; 1)z0

∈ 1√
t−τΠE2

(
A
√
t− τ ; 1

2

)
B(rS − v)}.

To find the guaranteed time of the game termination, it is necessary to study
the resolving function. In general case this is a complicated problem, as it
depends on specific form of the generalized Mittag-Leffler matrix functions
E2(A

√
t; 1) and E2

(
A
√
t; 1

2

)
. However, in some particular cases the problem

can be simplified. For example, let us set c = 0 in (1.76) and denote p = − b
a
.

Then the matrix A takes on the form A =


0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 p

. Then, it can be

easily verified that:

A2 =


0 0 1 0
0 0 0 1
0 0 0 p
0 0 0 p2

 , Ak =


0 0 0 pk−3

0 0 0 pk−2

0 0 0 pk−1

0 0 0 pk

 , k = 3, 4, . . . ,
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Hence,

E2(A
√
t; 1) =

∞∑
k=0

Ak
√
tk

Γ(k/2 + 1)
=

=


1

√
t

Γ(3/2)
t p−3E2(p

√
t; 1)− p−3 −

√
t

p2Γ(3/2)
− t

p

0 1
√
t

Γ(3/2)
p−2E2(p

√
t; 1)− p−2 −

√
t

pΓ(3/2)

0 0 1 p−1E2(p
√
t; 1)− p−1

0 0 0 E2(p
√
t; 1)

 ,

E2

(
A
√
t;
1

2

)
=

∞∑
k=0

Ak
√
tk

Γ((k + 1)/2)
=

=


1

Γ(1/2)

√
t t

Γ(3/2)
p−3E2(p

√
t; 1/2)− 1

p3Γ(1/2)
−

√
t

p2
− t

pΓ(3/2)

0 1
Γ(1/2)

√
t p−2E2(p

√
t; 1/2)− 1

p2Γ(1/2)
−

√
t
p

0 0 1
Γ(1/2)

p−1E2(p
√
t; 1/2)− 1

pΓ(1/2)

0 0 0 E2(p
√
t; 1/2)

 .

Which in combination with the equalities:

Γ

(
1

2

)
=
√
π, Γ

(
3

2

)
=

1

2
Γ

(
1

2

)
=

√
π

2
,

E2(z; 1) = ez
2

erfc(−z),

E2

(
z;

1

2

)
= zE2(z; 1) +

1

Γ(1/2)
= zez

2

erfc(−z) + 1√
π
,

where erfc(z) = 2√
π

∫∞
z
e−t

2
dt is the complementary error function, yields:

E2(A
√
t; 1) =


1 2

√
t
π

t ep
2t

p3
erfc(−p

√
t)− 1

p3
− 2

p2

√
t
π
− t

p

0 1 2
√

t
π

ep
2t

p2
erfc(−p

√
t)− 1

p2
− 2

p

√
t
π

0 0 1 ep
2t

p
erfc(−p

√
t)− 1

p

0 0 0 ep
2terfc(−p

√
t)

 ,
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E2

(
A
√
t;
1

2

)
=


1√
π

√
t 2t√

π

√
tep

2t

p2
erfc(−p

√
t)−

√
t

p2
− 2t

p
√
π

0 1√
π

√
t

√
tep

2t

p
erfc(−p

√
t)−

√
t
p

0 0 1√
π

√
tep

2terfc(−p
√
t)

0 0 0 p
√
tep

2terfc(−p
√
t) + 1√

π

 .

Denote:
ξ1(t) =

{
ΠE2(A

√
t; 1)z0

}
1
= y0 + ty′0,

ω(t) =
{

1√
t
ΠE2

(
A
√
t; 1

2

)
B
}

1
=

= 1
a

[
ep

2t

p2
erfc(−p

√
t)− 1

p2
− 2

√
t

p
√
π

]
,

where {x}1 stands for the first component of the vector x. Then the resolving
function can be found as the greatest positive root of the following equation
in ρ:

|ω(t− τ)v − ρξ1(t)| = |ω(t− τ)|r.

Upon solving this equation we find that:

ρ(t, τ, v) =
ω(t− τ)
ξ1(t)

(v ± r),

we write ’+’ or ’−’ in the parentheses depending on whether the expression
ω(t − τ)/ξ1(t) is positive or negative. In view of physical meaning of the
Bagley-Torvik equation, we have a > 0, b > 0, hence p < 0. Note also that
since ω(0) = 0 and ω′(t) = 1

a
(2− erfc(p

√
t))ep

2t > 0, it follows that ω(t) > 0
for all t > 0. Thus:

inf
v
ρ(t, τ, v) =

(r − 1)ω(t− τ)
|ξ1(t)|

.

The guaranteed time of the game termination, therefore, can be found from
the relationship:∫ t

0

inf
v∈V

ρ(t, τ, v)dτ =

∫ t

0

(r − 1)ω(t− τ)
|ξ1(t)|

dτ = 1.

Consider the integral:∫ t

0

(r − 1)ω(t− τ)
|ξ1(t)|

dτ =
r − 1

|ξ1(t)|

∫ t

0

ω(τ)dτ =
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=
r − 1

a|ξ1(t)|

∫ t

0

[
ep

2τ

p2
erfc(−p

√
τ)− 1

p2
− 2
√
τ

p
√
π

]
dτ =

=
r − 1

a|ξ1(t)|

[
1

p2

∫ t

0

ep
2τerfc(−p

√
τ)dτ − t

p2
− 4
√
t3

3p
√
π

]
.

Let us integrate by parts the integral in brackets. We set u = erfc(−p
√
τ),

dv = ep
2τ . Then:

du =
pe−p

2τdτ√
πτ

, v =
ep

2τ

p2
,

and: ∫ t

0

ep
2τerfc(−p

√
τ)dτ =

ep
2t

p2
erfc(−p

√
t)− 1

p2
− 1

p
√
π

∫ t

0

dτ√
τ
=

=
ep

2t

p2
erfc(−p

√
t)− 1

p2
− 2
√
t

p
√
π
.

Finally, we see that the time of the game termination can be found from the
equation:

ep
2t

p4
erfc(−p

√
t)− 1

p4
− 2
√
t

p3
√
π
− t

p2
− 4
√
t3

3p
√
π
=
a|ξ1(t)|
r − 1

.

This equation always has a solution since its left-hand side vanishes at t = 0
and has the growth rate of O(t3/2), while the right-hand side is positive at
the initial instant and growing linearly in t.
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Chapter 2

Algorithms of parallel
computations

O. Khimich, K. Gromaszek, A. Kotyra

2.1 Introduction

Increasing demands imposed on the quality of project solutions and using of
new constructive materials generate a need for the solving of radically new
scientific and engineering problems as well as for the carrying out of unique
calculations. Need is growing for new methods and approaches related to the
construction and investigation of correct computer models which adequately
reflect realistic functioning of objects being investigated. These factors result
the considerable increase in the volume of information being processed which,
in turn, causes the growth of requirements to the computational resources,
including requirements to run times of problems.

Run times of problems are determined by four factors: element base, com-
puter’s structure and architecture, problems’ solving algorithms and quality
of composed programs.

Since an increase in the clock rate for the available processors is reaching its
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limiting value, the paralleling of computations is the main reserve for increase
in computers’ performance.

High performance indicators of computers are gained at the expense of inte-
grating of the great number of processors and arrangement of massive mul-
tiprocessing. Such computers are designed on the basis of open system ide-
ology. The openness of systems involves the standardization of interfaces,
scalability of equipment as well as portability of the software.

The present results of investigations on the development of parallel algo-
rithms for the solving of basic classes of problems of the computational math-
ematics: linear algebraic systems, algebraic eigenvalue problem, initial-value
problems for systems of ordinary differential equations, non-linear equations
and systems as well as software described in monographs [6, 7].

At present a great deal of works (for example, [11, 9, 8, 10, 12]) are de-
voted to the problem of paralleling of algorithms for the solving of basic
classes of problems of the computational mathematics. Performed analysis
has demonstrated that creation of efficient algorithms requires taking into
account parallel computers’ architecture, while investigation of them should
be carried out with taking into account available computing resources (the
limited number of processors on which parallel processes could be carried
out; account of interaction times, synchronization and volumes of memory).
Moreover, even within one class of parallel computers the program imple-
mentation should take into account peculiarities of computers’ architecture
and their inter-processor communications.

Algorithms and programs implementing them proposed in the monograph
ensure the satisfying of basic requirements to parallel algorithms and pro-
grams for MIMD-computers parallelism, scalability and loyalty. Parallelism
implies ability to perform a lot of actions simultaneously that is very impor-
tant for programs implemented on several processes. Scalability enables to
perform programs by using different number of processes. Loyalty character-
izes a need for accessing local data more often than accessing remote data.
Significance of these characteristics is determined by ’cost of remote access
to memory/cost of local access to memory’ ratio. This ratio is a key to the
increasing of programs’ efficiency on the distributed memory architectures to
which the intelligent MIMD-computer belongs.

Algorithms under consideration also investigate and solve problems directly
related to the arrangement of parallel computations, including:
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1. efficient paralleling of computations,

2. determining of efficient scheme of the initial information decomposition,

3. determining both of the topology and amount of processors required
for the efficient solving of problem,

4. the ensuring of uniform loading of all processors being used for the
solving of problem (balancing of processes),

5. synchronization of exchanges between processes,

6. minimization of exchanges between processes.

From the algorithmic point of view, all known sequential algorithms (meth-
ods) are prototypes of most known parallel algorithms (with some exception,
for example, in case of banded matrices with narrow bandwidth during the
solving of linear algebraic systems). In fact, under such an approach each
processor simultaneously implements sequential computational schemes over
local data block obtained as a result of the initial data decomposition by
means of employing some or other method. It is fundamentally important
that with such an adaptive approach to parallel algorithms, the succession
of results obtained in the theory of computational methods is preserved (ac-
curacy, convergence, complexity, etc.)

From this point of view, the typical phenomenon is evolution undergone by
parallel algorithms (in problems of linear algebra) based on elementary one-
and two-sided Jacoby transformations (known to be the best representatives
of the sequential algorithms with respect to the economy) to methods based
on Givens’ and Householders transformations – primary methods in the hi-
erarchical list among orthogonal sequential algorithms with respect to the
efficiency. On the one hand, this fact is associated with natural parallelism
of algorithms based on the Jacobi rotations, while, on the other hand, it is
associated with Haydn’s effect which lowers efficiency of Givens’ and House-
holder’s methods for the linear algebra problems with common technique for
the storing of matrices (by means of one-dimensional block column distribu-
tion between processes). In this case each process works only with one block
of matrix columns. The k-th column is distributed to the process numbered
k/tc, where tc=n/p is the maximum number of columns distributed to the
process. This scheme doesn’t ensure sufficient balancing of the processes’
loading since as soon as first tc columns be processed the zero process will
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stop its work. Similarly one-dimensional block column method of distributing
doesn’t ensure good balancing of processes.

An idea of cyclic technique for the storing and processing of matrices is
a notable step towards improvement of the processes’ balancing and hence
improvement of performance of computational algorithms and leads to the
balancing scheme for the matrix triangulation and tri-diagonalization algo-
rithms. The idea of column (row) – cyclic way of the matrix storing and pro-
cessing was independently proposed in the number of works (see, for example,
[8]), including [10]. Thus, according to row-column scheme the matrix is dis-
tributed between p processors as follows: the i-th process works with rows
numbered i, i+p, i+2p. This scheme by maintaining the same order of rows’
(columns’) processing as in sequential triangulation and tri-diagonalization
algorithms provides the changing by 1 of the process’s number when passing
from some row to the next. Thus, in the process of algorithms’ implemen-
tation similarly the same amount of computations is gained in each process,
i.e. the influence of Haidn’s effect is almost excluded.

Such situation is typical not only for algorithms based on orthogonal trans-
formations, but also for Gauss, Cholesky and some other algorithms used for
the matrix reduction to one standard forms characteristic feature of them
is gradual (from step to step) decrease in dimensions of the matrix being
processed.

The third scheme (column block-cyclic) is a compromise between schemes
described above. By choosing the block size equal to n, columns are broken by
blocks sized nb and distributed in a cyclic manner. This implies that column
k will be processed in the process with logical number [(k-1)/nb] mod p.
In fact this scheme involves previous two schemes for the data storing with
nb = tc = n/p and nb = 1. For nb greater than 1 this results in the somewhat
worse balancing of processes compared to the cyclic distribution of columns,
but in so doing the total time of system’s latency decreases since the amount
of data exchanges between processes decreases.

The fourth scheme (two-dimensional block-cyclic distribution) involves the
precious schemes as particular cases. Along with good balancing and latency
indicators, one of the significant indicators of advisability of such matrix
distributing and processing is the possibility to apply block procedures from
standard library programs of BLAS and BLACS [12].

Thus, the efficiency of algorithms to a large extent is determined by the fol-
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lowing: scheme of the initial data distribution between processors; agreement
between problem’s solution algorithm and computer architecture; topology
of inter-processor communication.

The quality of parallel algorithms can be estimated by such criteria as accel-
eration coefficient Sp and efficiency coefficient Ep:

Sp = T1/Tp, Ep = Sp/p ,

where p is the number of processors involved in the solving of problem on
MIMD-computer; Tp is the time required for the solving of problem on the
MIMD-computer with p processes; T1 is the time required for the solving
of the same problem on hypothetical mono-processor computer possessing
performance inherent in mono-processor computer and operating memory
equal to the total memory used by p processes.

In addition to notations introduced above further we are going to make use
of the following notations:

t – average time required for the performing of one arithmetic operation,

to – time required for exchange by one machine word between two
processes,

tc – time required for the establishing of connections between two pro-
cesses:

τo = to/t, τc = tc/t .

Construction of parallel algorithms assumes that information required for the
implementation of the computational algorithm is stored and processed either
in the operating memory of the hypothetical mono-processor computer or in
the overall memory of the MIMD-computer on which p processes are carried
out, i.e. computational process is carried out without using the external
memory.

Parallel algorithms intended for the solving of problems are presented in
terms of processes rather than processors. Process is an independent ’thread’
of management possessing its own (not interesting with any other) memory.
Each process is implemented on one core (or physical on-core processor). In
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the general case, several processes can be carried out on one core (or physical
one-core processor). In this case the control system is assumed to manage
the scheduling of execution of processes. Parallel algorithms implemented in
program and presented here have been developed and tested for the case ’one
processor per one core’ by using interaction in pairs and collective exchanges.

Processes may communicate in pairs by means of either ’point-to-point’ –
type exchanges or collective communications. In parallel algorithms the fol-
lowing collective communications are used most often:

1. broadcasting – one of processes from the communicating group sends
data to all processes of this group,

2. multi -gathering of the number (array of numbers) – all processes
from the communicating group sends equal portions of data to all pro-
cesses of this group; in so doing operations, for example, addition or
choosing of the maximum value, etc, are performed over corresponding
components of data obtained from different processes,

3. multi-gathering of vector – all processes of the communicating group
sends equal portions of data to one process of this group, and a vector
if formed from the obtained data in the process.

These collective communications can be verified by means of functions from
the library of parallel programming environment MPI (see for example [13]):
MPI – Bcast – for broadcasting; MPI – Reduce – for multi-gathering of ar-
ray of numbers; MPI – Gather – for multi-gathering of vector; MPI – Allre-
duce, MPI – Allgather – for multi-gathering and subsequent broadcasting
of array or vector, respectively. As a rule, tree-algorithm is used in the im-
plementation of the functions which for one operation of multi-gathering or
multi-casting produces the minimum number of communications (synchro-
nizations) equal to log2p (p – the number of processes in group) between
pairs of process from the group.

Parallel algorithms have been implemented by means of programs written
in the programming language C for the MPI-standard parallel programming
environment. Parallel algorithms and programs described here were tested
on intelligent workstation from the Inparcom-family both in the operating
environment Linux and in the inter-processor communication environment
MVAPICH optimized for Infiniband.
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2.2 Linear algebraic systems

2.2.1 Methods for the solving of linear algebraic sys-
tems

The solving of LAS with real matrices can be carried out by either direct or
iterative methods. Direct methods for the solving of problems:

Ax = b , (2.1)

with the following real matrices are dealt with:

• LAS with dense square non-singular general matrix,

• LAS with symmetric positive definite matrix.

Symmetric positive definite matrix is a matrix all eigenvalues of which are
positive, while positive semi-definite matrix is a matrix with some eigenvalues
equal to zero.

Consider some direct methods for solving LAS on the basis of which par-
allel algorithms for MIMD-computers were created. Most direct methods
are based on the idea of sequential equivalent transformations of particular
system for the sake of excluding unknowns from the part of equations. As
a result, the original system (2.1) of order n is transformed into equivalent
system:

An−1x = bn−1 , (2.2)

with matrix An−1 of simpler form, for example, triangular or diagonal. Thus,
it will be not difficult to solve the equivalent system (2.2).

A process of equivalent transformations may be presented as sequential pre-
mul- tiplication of matrix A and right-hand side b by matrices Mi (i =
1, 2, . . . , n − 1), in so doing one multiplication results in the annulments of,
at least, one element of the matrix being transformed. Then:

An−1 =MA, bn−1 =Mb , (2.3)

where M = Mn−1,Mn−2, . . . ,M1. Matrices Mi may be triangular, orthogo-
nal.
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Various modifications of elimination methods are in essence methods for de-
composition of the matrix A into product of triangular matrices, triangular
or orthogonal matrices and so on. Indeed, from (2.3) it follows that A = LU
if L =M−1 and U = An−1.

Gauss method is one of the most efficient methods for solving of linear
systems with non-singular general matrices. Algebraic basis for the Gauss
elimination is a statement that for square non-linear matrix A of order n
there exists unique lower triangular matrix L with units on the principal
diagonal and unique upper triangular matrix U such that LU = A and
det(A) = u1, u22, . . . , unn.

During the solving of system with non-singular matrix by Gauss method the
following three sub-problems can be separated:

1. LU -decomposition of system’s matrix:

A = LU , (2.4)

2. solving of LAS with lower triangular matrix (this problem is often re-
ferred to as a forward substitution):

Ly = b , (2.5)

3. solving of LAS with upper triangular matrix (backward substitution):

Ux = y . (2.6)

LU -decomposition of system’s matrix (2.5) consists of (n−1) steps. At the
s-th (s = 1, 2, ..., n−1) step a diagonal block of order n−s+1 located in

lower right-hand corner of the matrix A(s−1) is transformed. Element a
(s−1)
ss is

referred as to a pivotal element of the s-th step. For the successful implemen-
tation of Gauss method all pivotal elements should be non-zero. Besides, the
proximity of pivotal elements to zero can result in large error in the computed

solution. In order to ensure the fulfillment of conditions
∣∣∣a(s−1)
ss

∣∣∣ ≥ ε > 0 for

all s = 1, 2, ..., n−1 the largest modulus (pivotal) elements should be chosen
at each step either in the entire block of matrix A(s−1) being transformed or
in the first row of this block or in its first column. By permutation of rows



2.2 Linear algebraic systems 65

and/or columns of matrix A(s−1) the pivotal element is placed on the position

of the element a
(s−1)
ss .

As a rule, for solving of LAS with symmetric positive definite ma-
trix various versions of Cholesky method are used based on the following
theorem. If A is a symmetric positive definite then there exists real non-
singular lower triangular matrix L such that LLT = A.

In the solving of system with symmetric positive definite matrix by LLT -
version of Cholesky method, similarly as in Gauss method, the following
three sub-problems may be separated:

1. LLT -decomposition of system’s matrix,

2. solving of LAS lower triangular matrix:

Ly = b ,

3. solving of LAS with upper triangular matrix:

LTx = y .

During the LLT -decomposition of symmetric positive definite matrix n square
roots are to be evaluated. To avoid this LDLT -version of Cholesky can be
employed. In this case:

A = LDLT , (2.7)

where L is a lower triangular matrix with units at the principal diagonal,
while D is positive definite diagonal matrix. This decomposition can easily
be transformed into LLT -decomposition: A = (LD1/2)(LD1/2)T . In the
LDLT -version of Cholesky method the following three sub-problems may
be separated:

1. LDLT -decomposition of system’s matrix,

2. the solving of LAS with upper triangular matrix:

Ly = b , (2.8)

3. the solving of LAS with upper triangular matrix:

LTx = D−1y . (2.9)
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2.2.2 Parallel algorithms for the solving of linear sys-
tems

Algorithms with parallel arrangements of computations will be further re-
ferred to as parallel algorithms. For the implementation on MIMD-computers
of methods described in paragraph 2.2.1 the following parallel algorithms are
required:

1. LU -decomposition of non-singular general matrix (2.4),

2. the solving of LAS with lower (2.8) and upper (2.9) triangular matrices.

Row-cyclic parallel algorithms for triangular decomposition of dense
non-singular matrix.

For solving LAS (2.1) with square non-singular matrix the LU -decomposition
(2.4) of the Gauss method is employed while for system with symmetric
positive definite matrix the LDLT-decomposition (2.7) of Cholesky method
is used.

In the version of LU -decomposition algorithm being used U is an upper
triangular matrix, while, lower triangular matrix L with units on principal
diagonal isn’t formed explicitly. Thus, LU -decomposition is carried out for
s = 1, 2, . . . , n− 1 by following formulas:

usj = a
(s−1)
sj , j = s, s+ 1, . . . , n;mss = (uss)

−1) ,

mis = a
(s−1)
is mss, a

(s)
ij = a

(s−1)
ij − usjmis, i, j = s+ 1, . . . , n) , (2.10)

unn = a(n−1)
nn ,mnn = (unn)

−1 .

The LDLT -decomposition (2.7) of symmetric matrix is carried out for s =
1, 2, . . . , n− 1 by following formulas (d1 = a11):

tis = ais −
s−1∑
k=1

tiklsk (i = s+ 1, . . . , n) ,

ls+1,k = ts+1,k/dk(k = 1, . . . , s) , (2.11)

ds+1 = as+1,s+1 −
s∑

k=1

ts+1,k ls+1,k .
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Distribution of data and results. Efficient paralleling of triangular
decomposition algorithms for Gauss and Cholesky method is based both on
row-cyclic scheme for the distribution of matrix elements between processes
[8, 10] and on natural parallelism essential for matrix-vector operations.

Row-cyclic distribution scheme consists in the following: elements of rows
numbered k, k + p, k + 2p, ..., (k = 1, 2, . . . , p, p – the number of
processes being used) are distributed in succession to process with logical
number k − 1. This scheme is used for distributing elements of the original
matrix A of system (2.1), triangular matrices L and U, diagonal matrix D,
right-hand side of system b and results of solving systems with triangular
matrices y and x.

In the case of symmetric matrix of LAS all matrix elements are to be pre-
determined. In so doing computations are carried out so that only elements
of lower matrix triangle be modified.

Row-cyclic parallel algorithm for LU -decomposition (2.4) of dense non-
singular matrix (Gauss method) with column pivoting for s = 1, 2,
. . . , n−1 consists in following sequence of operations:

1. each process simultaneously and independently of other processes choos-
es maximum elements among elements a

(s−1)
is (i ≥ s) of the s-th column

distributed to this process,

2. each process searches for pivotal element of the s-th column (maximum
element among maximum elements found by each process) by means
of broadcasting and multi-gathering operations in the introduction to
this monograph),

3. permutation both of row in which the pivotal element is located and
the s-th row,

4. modification of permutation vector for right-hand sides,

5. broadcasting of the s-th row (containing the pivotal element) to all
processes,

6. each process according to the row-cyclic distribution scheme modifies
matrix A(s−1) by formulas (2.10).

As a result of performing LU – factorization each process contains local
parts of matrices L and U that can be stored on the place of corresponding
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local parts of the original matrix A. Besides, vector of row’s permutations is
formed which is used in the calculation of solution of system (2.5).

Row-cyclic parallel algorithm. LDLT -decomposition (2.7) of dense sym-
metric matrix (Cholesky method) for s = 1, 2,. . . , n−1 consists in the
following sequence of operations:

1. by means of broadcasting operation the array of elements lsk (k =
1, . . . , s− 1) and ds of the s-th row matrices L and D are broadcasted
to all processes,

2. each process by virtue of (2.11) evaluates values tis(i = s + 1, . . . , n)
according to scheme of distributing elements of the original matrix A,

3. values of elements ls+1,k(k = 1, . . . , s − 1) of the (s+1)-th row of the
matrix L and ds+1 are evaluated by formulas (2.41) by process to which
(s+1)-th row of matrices is distributed.

Efficiency of algorithms. In order to estimate efficiency, i.e. coefficients
of acceleration and efficiency (see introduction) of the parallel algorithm it’s
necessary to evaluate expenses of computing resources for p parallel processes
and compare them with expenses required for the sequential version of the
algorithm under consideration.

As it is known the total number of arithmetic operations required for the
LU -decomposition (2.4) of square matrix by Gauss method is estimated by
value O1 = 2n3/3 +O(n2).

The number of arithmetic operations performed by one process at the s-th
step of algorithm (s = 1, 2, . . . , n−1) is approximately equal to:

n− s
p

(2n− 2s+ 1) + 1 .

Then the number of arithmetic operations performed by each of p processes

for n−1 steps is estimated by value Op =
2n3

3p
+O

(
n2

p

)
.

Generally, the s -th step of parallel algorithm requires the performing of the
following operations: for the column pivoting – one multi-gathering and one
broadcasting of one double machine word; for the permutation of rows: one
exchange by array consisting of n elements between two process one broad-
casting of array consisting of n−s+1 elements. Hence, the total number
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of synchronization is evaluated by value Oc ≈ n(3 + 3 log2 p), while the to-
tal amount of data by which the chosen processes exchanges approximately
amounts to Oo ≈ 0, 5(n + 1)n log2 p + n2 double words in case of employing
’tree’-algorithm for broadcasting and multi-gathering [13].

Thus, execution time of parallel algorithm for the LU – decomposition (2.4)
under consideration is estimated by value Tp = (Op + Ocτc + Ooτo)t, where
t is time required for the performing of one arithmetic operation, while τc
and τo are determined in the introduction. Time required for the performing
of corresponding sequential algorithm is estimated by value T1 = O1t. Then
for n >>p coefficients of acceleration and efficiency of parallel row-cyclic
algorithm of the LU – decomposition (2.4) can be estimated as follows:

Sp ≡
T1
Tp
≈ p

(
1 +

3p (log2p+ 2)

4n
τ1

)−1

, Ep =
Sp
p
,

where τ1 = τo +
6log2p+2
n(log2p+2)

τc. If
3p(log2p+2)

4n
τ1 << 1, then Ep ≈ 1− 3p(log2p+2)

4n
τ1.

Similarly efficiency of parallel row-cyclic algorithm for the LDLT – decom-
position of Cholesky method for dense symmetric matrix can be estimated.

As it is known, the total number of arithmetic operations required to the
LDLT – decomposition (2.7) of Cholesky method for dense symmetric matrix
is estimated by value: O1 = n3/3 + O(n2), while the number of arithmetic
operations performed by each of p processes with taking into account non-
uniform loading of processes data exchange by value:

Op =
n2 (n/3 + 1, 5p− 1)

p
+O (n) .

At the s-th step of parallel algorithm one operation of broadcasting of the
array consisting of s elements is performed by each process. Hence, the total
number of exchanges is estimated by value Oc ≈ n log2 p, and at that the
total number of data by which processes exchange approximately amounts
to Oo ≈ 0, 5n2 log2 p double words.

Then with n >> p coefficients of acceleration and efficiency of parallel row-
cyclic algorithm of the LDLT – decomposition (2.7) can be estimated as
follows:

Sp ≈ p

(
1 +

4, 5p− 3

n
+

3plog2p

2n
τ2

)−1

, Ep =
Sp
p
,
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where τ2 = τ> + 2
n
τA. If

4,5p−3
n

+ 3plog2p
2n

τ2 << 1, then:

Ep ≈ 1− 4, 5p− 3

n
− 3plog2p

2n
τ2.

Row-cyclic parallel algorithms for the solving of linear algebraic
systems with triangular matrices.

After the performing of LU – decomposition (2.4) or LDLT – decomposition
(2.7) the solving of LAS (2.1) reduces to the solving of systems with lower
and upper triangular matrices (2.5), (2.6) or (2.8), (2.9), respectively.

It should be noted once more that during the LU – decomposition the lower
triangular matrix L is not formed explicitly. With taking into account this
fact the solving of linear algebraic systems (2.5) with lower triangular matrix
is carried out for s = 1, 2, . . . , n−1 according to the following formulas
(notations from (2.10)):

ys = b(s−1)
s , b

(s)
i = b

(s−1)
i −misys (i = s+ 1, . . . , n) , (2.12)

with yn = b
(n−1)
n .

LAS (2.6) with upper triangular matrix for s = n, n−1, ..., 2 is solved as
follows (notations from (2.10), (2.12)):

xs = y(n−s)s , y
(n−s+1)
i = y

(n−s)
i − uisxs (i = 1, . . . , s− 1) , (2.13)

where y
(0)
i = yi/uii (i = 1, 2, . . . , n) and x1 = y

(n−1)
1 .

The solving of LAS (2.8) with lower triangular matrix obtained as a result
of LDLT – decomposition (2.7) of the symmetric matrix is carried out for
s = 1, 2, . . . , n− 1 by formulas analogous to (2.12):

ys = b(s−1)
s , b

(s)
i = b

(s−1)
i − lisys (i = s+ 1, . . . , n) , (2.14)

where yn = b
(n−1)
n , while the solving of LAS (2.9) with upper triangular

matrix is evaluated as follows
(
xn = yn

dn

)
:

xi =
yi
di
−

n∑
k=i+1

lkixk (i = n− 1, . . . , 2, 1) . (2.15)
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Formulas (2.11)−(2.15) are given for the case of one right-hand side. If
the number of right-hand sides of system (2.1) q > 1, then in this case
components of vectors in these formulas should be replaced by elements of
corresponding rows both of matrices of right-hand sides and solutions of
systems.

Distribution of data and results. As stated in previous paragraph, the
row-cyclic scheme is employed for the inter-processor distribution elements
of triangular matrices L and U, diagonal matrix D, as well as right-hand side
b and results y and x of solving systems (2.5), (2.6) or (2.8) with triangular
matrices.

Elements of matrix LT of system (2.9) are distributed between processes by
row-cyclic scheme.

Row-cyclic parallel algorithm. For the solving of system (2.5) Ly = b
the so-called column algorithm is employed which for s = 1, 2,. . . , n−1
consists of the following sequence of operations:

1. by means of broadcasting operation the array q of elements of the s-the
row of matrix of the solution y is broadcasted to all processes (for the
definition of the broadcasting operation see introduction),

2. each process performs modification (2.12) of values b
(s)
i (i = s+1, . . . , n)

according to scheme for the distribution of elements of the right-hand
side b.

The same algorithm is employed for the solving of system (2.8) with formula
(2.12) replaced by (2.14), while LAS (2.6) with upper triangular matrix is
solved by the same algorithm in which s = n, n−1, ..., 2, and modifications
are carried out according to (2.13).

Column-cyclic parallel algorithm. For the solving of system (2.9)
LTx = D−1y the inner products algorithm is employed which for i = n−1,
n−2, ..., 1 consists of the following sequence of operations (first put xn =
yn/dn):

1. each process according to scheme for distribution both of elements of
matrix L and solution x by formula (2.15) evaluates partial sums re-
quired for finding i -th row of solutions xi,k (k = 1, . . . , q);
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2. a process to which i -th row of solutions xi,k (k = 1, . . . , q) has been
distributed carries out multi-gathering of partial sums evaluated by all
process (for definition of multi-gathering see introduction).

Efficiency of algorithms. The total number of arithmetic operations
required for the solving of LAS with triangular matrix and q right-hand sides
is estimated by value O1 = qn2+O(qn). The number of arithmetic operations
performed by each of p processes during the solving of systems (2.5) or (2.8)

Ly = b is estimated by value Op ≈ qn|n−1|
p

, while during the solving of

systems (2.6) Ux = y or (2.9) LTx = D−1y – by value Op ≈ qn(n+p−1)
p

.

Each step of both parallel algorithms involves the performing of either one
broadcasting operation or one multi-gathering array consisting of q elements.
Hence, the total number of data by which the process exchanges approxi-
mately amounts to Oc ≈ n log2 p double words.

Then with n >> p and n >> q acceleration and efficiency coefficients of
parallel algorithms under consideration for the solving of LAS with triangular
matrices may be estimated as follows:

Sp ≈ p

(
1 +

p log2p

n
τ3

)−1

or Sp ≈ p

(
1 +

p− 1

n
+
p log2p

n
τ3

)−1

,

where τ3 = τo +
1
q
τc. Ep =

Sp

p
; if p log2p

n
τ3 << 1 then:

Ep ≈ 1− p log2p

n
τ3 or Ep ≈ 1− p− 1

n
− p log2p

n
τ3.

Two-dimensional block-cyclic parallel algorithms for the solving of
LAS with dense non-singular matrices.

Block algorithm for the solving of LAS enable to reduce implementation of
algorithms to the performing of operations in processes over separate blocks
of matrices which they are broken into instead of performing operations over
separate elements of matrices. As a rule, dimensions of blocks are determined
with taking into account the volume of computers’ cache memory [12]. This
provides high speed of matrix-vector operations.

Consider first how the following block algorithms for solving LAS with dense
matrices can be implemented on computer with sequential arrangement of
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computations: LU – decomposition of non-singular matrix and LLT – de-
composition of positive definite matrix.

Block algorithm for LU-decomposition. During the solving of LAS
Ax=b (2.1) algorithm for LU – factorization reduces matrix Ato the form
A=PLU, where P – is a matrix of permutations, L is a lower triangular
matrix (with units on principal diagonal) while U is an upper triangular
matrix. This enables to replace the solving of one system (2.1) with general
matrix by the solving of two LAS Ly=b and Ux=y with triangular matrices.

Let us assume that n-th order matrices A, L and U are to be divided into
square blocks of order s.

At the k -th step of algorithm (k = 1, 2, . . . ) let us represent a sub-matrix
A(k) (diagonal block of matrix A) of order r = n−(k−1)s which contains the
last r rows and r columns of the matrix A in the form:(
A11 A12

A21 A22

)
=P

(
L11 0
L21 L22

)(
U11 U12

0 U22

)
=P

(
L11U11 L11U12

L21U11 L21U12 + L22U22

)
,

where block A11 is of size s×s, block A12 − s×(r−s), block A21− (r−s)×s
and block A22− (r−s)×(r−s).

Let us carry out a sequence of Gauss transformations (see paragraph 2.2.1)
on the part of matrix (Fig. 2.1) consisting of blocks A11 and A21:

lim =
aim
amm

, lij = aij − limamj , (2.16)

where i = 1, s, m = 1, s, j = m+ 1, r.

As a result, we get matrices L11, L21. Further let us find from them unknown
matrices U11 and Ã22 (the latter is formed on the place of A22):

U12 ← (L11)
−1A12 , (2.17)

Ã22 ← A22 − L21U12 = L22U22 . (2.18)

Further, the value of k is increased by 1 and computations are repeated for
the new value of k, the matrix Ã22 being considered as a sub-matrix A(k).

It is easily seen that total number of arithmetic operations required for the
block LU – decomposition (2.4) of square matrix by Gauss method is esti-
mated, as in the case of non-block version, by value O1 ≈ 2n3/3 +O(n2).
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Figure 2.1: Scheme of implementation of the block algorithm for LU – decom-
position

Block algorithm for the LLT -factorization. In the solving of LAS
Ax=b (2.1) with symmetric positive definite matrix the LLT – factorization
algorithm reduces matrix Ato the form A = LLT , where L is a lower and LT

– an upper triangular matrices.

Similarly as in the previous case we’ll consider n-th order matrices A and L
which are broken into s-th order square blocks.

At the k -th step of block algorithm for the LLT – decomposition under
consideration (k = 1, 2, . . . ) the sub-matrix A(k) of order r = n−(k−1)s
(diagonal block of matrix A) which contains last r rows and r columns of
the matrix A may be presented in the form:(

A11 AT21
A21 A22

)
=

(
L11 0
L21 L22

)(
LT11 LT21
0 L22

)
=

(
L11L

T
11 L11L

T
21

L21L
T
11 L21L

T
21 + L22L

T
22

)
,

where block A11 is of size s×s, A12− s×(r−s), block A21− (r−s)×s, block
A22− (r−s)×(r−s).

For the implementation of algorithm the following operations are to be per-
formed at each step:

1. perform LLT – decomposition A11 (see paragraph 2.2.1) and get the
matrix L11,

2. modify matrix L21 by formula:

L̃21 = L21 ·
(
LT11
)−1

,
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3. modify matrix A22 by formula:

Ã22 = A22 − L̃21 · L̃T21 .

Hence, at the k -th step a transformed part of the matrix L is obtained. At
the next step the matrix Ã22 is transformed (Fig. 2.2).

Figure 2.2: Scheme of implementation of the block algorithm for LLT −
−factorization

In this case the total number of arithmetic operations required for the block
LLT – decomposition (2.7) is estimated by the value O1 = n3/3 + O(n2)
similarly as in the case of non-block version.

Distribution of data and results. Two-dimensional block-cyclic distri-
bution of matrix elements between processes is used in the solving of LAS
with dense non-singular matrices by parallel block algorithms.

For the distribution of original n-th order matrix A between p processes it
should be represented in the form:

A =


A11 A12 ... A1p

A21 A22 ... A2p

... ... ... ...
Aq1 Aq2 ... Aqp

 ,
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where:

Aij =


Aij Aij+p ... Aij+(p−1)p

Ai+qj Ai+qj+p ... Ai+qj+(p−1)p

... ... ... ...
Ai+(q−1)qj Ai+(q−1)qj+p ... Ai+(q−1)qj+(p−1)p

 .

Here Aij is a block of elements of the matrix A of order s.

Matrix of the system is distributed between processes so that Aij ∈ Pij,
where i and j are Cartesian coordinates of process on the two-dimensional
p×q grid. Let us illustrate such distribution by the following example.

Let n=8, s=2, p=2, q=2, then for the matrix:

A =


a11 a12 ... a18
a21 a22 ... a28
... ... ... ...
a81 a82 ... a88

 ,

its block representation has a form: A =


A11 A12 A13 A14

A21 A22 A23 A24

A31 A32 A33 A34

A41 A42 A43 A44

,

where Aij =

(
a2i−1,2j−1 a2i−1,2j

a2i,2j−1 a2i,2j

)
.

In this case block-cyclic distribution for the matrix A takes the form:

A =

(
A11 A12

A21 A22

)
,

where

A11=

(
a11 a13
a31 a33

)
, A12=

(
a12 a14
a32 a34

)
, A21=

(
a21 a23
a41 a43

)
, A22=

(
a22 a24
a42 a44

)
.

Thus, each process Pij contains elements of the matrix A∗
ij as well as corre-

sponding blocks of matrix of the right-hand sides.
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Each vector of right-hand sides is distributed cyclically by p×q blocks be-
tween processes of the first column of processes’ grid. Hence, process Pk1 con-
tains elements numbered ks, ks+1, ks+2, . . . , ks+s−1, (k+p)s, (k+p)s+1,
(k+p)s+2, . . . , (k+p)s+s−1, . . . , where s is the number of blocks equal to
its counterpart in the matrix distribution. Without loss of generality, let us
assume that n

pqs
is an integer.

Two-dimensional block-cyclic parallel algorithm for LU-facto- riza-
tion. Consider the implementation of this algorithm at the k -th step. Taking
into account the fact that algorithm is determined by formulas (2.16), (2.17),
let us draw reader’s attention to the data exchanges between processes. A
process which contains block A11 will be called a leading process of the k -th
step. Then algorithm is implemented as follows:

1. in the s-step cycle the Gauss transformation over blocks A11 and A12

is performed, i.e. maximum element in sought in the leading column;
exchange by elements of the leading row and row containing maximum
elements is carried out; the leading and all subsequent rows are trans-
formed according to (2.2); as a result of transformation, blocks A11 and
A12 are located on the place of blocks L11 and L12 , respectively,

2. the matrix (L11)
−1 is evaluated (since L11 is completely contained in the

leading process, (L11)
−1 is evaluated within the limits of one process);

then (L11)
−1 is broadcasted to all processes of the corresponding row of

the process’ grid, i.e. if Pij is the leading process then (L11)
−1 is sent

to processes Pil, l = 1, p,

3. processes independently on each other evaluate a product of the ob-
tained block (L11)

−1 by blocks A12 distributed to them according to
(2.3); as a result elements of A12 are replaced by elements of U12,

4. blocks L21 are broadcasted horizontally over the rows of the processes’
grid, while U12 are broadcasted vertically over columns. After this a
transformation of the corresponding blocks of matrix A22 according to
(2.4) takes place in every process.

Two-dimensional block-cyclic parallel algorithm for LLT -facto-
rization. At each step of algorithm the following sequence of operations
is to be performed:
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1. process Pij containing block A11 carries out decomposition of this block
thus evaluating L11 (see 2.2.1),

2. process Pij broadcasts the block L11 to processes Pmj, m = 1, q, i.e.
carries out vertical broadcasting over grid of processes,

3. processes Pmj, m = 1, q independently on each other modify corre-

sponding parts of sub-matrix L21 according to L̃21 = L21 ·
(
LT11
)−1

,

4. processes Pmj,m = 1, q broadcast corresponding blocks of matrix L̃21 to
all processes in horizontal direction over grid of processes and perform
their transposing so that all process receive all parts of sub-matrices
L̃21, L̃

T
21, required for the forming of product L̃21L

T
21,

5. all processes simultaneously perform modification of their parts of sub-
matrix A21: Ã21 = A21 − L̃21L̃

T
21.

Efficiency of two-dimensional block-cyclic parallel algorithms. Co-
efficients of acceleration and efficiency of algorithms will be determined ac-
cording to formulas Spq =

T1
Tpq

, Epq =
S
pq
,where pq is the number of processes;

T1 is the time required for the performing of algorithm on one process; Tpq is
the time required for the performing of algorithm on the grid (p×q) of pro-
cesses. To determine Tpq let us make use of formula Tpq = Nt +Mto +Qtc,
where N is the number of arithmetic operations (addition and multiplica-
tion); M is the number of exchanges; Q is the number of inter-processes
synchronizations.

For two-dimensional block-cyclic parallel algorithm for LU – factorization
the number of arithmetic operations is mainly determined by stages 3 and 4
of the algorithm and is estimated by value N ≈ 2n3/(3pq).

To evaluate coefficients of acceleration and efficiency for this algorithm it’s
necessary to determine basic components for the amount of processes per-
formed at the k -th step of algorithm. The broadcasting of matrices (L11)

−1,
L21, U12 requires (p−1)s2 and ((p−1)(n−ks)/q+(q−1)( n−ks)/p)s transfers
of elements. Then after k steps we get M ≈ n2(p+q)(p+q−1)/ (2pq ). In so
doing at each step Q = 4n(p+q−2)/s synchronizations is performed. Thus,
we have:

Tpq ≈
2n3t

3pq
+
n2(p+ q)(p+ q − 1)

2pq
to +

4n(p+ q − 2)

s
tc .
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Hence, for coefficients of acceleration and efficiency we get:

Spq =
T1
Tpq
≈ pq

(
1 +

3(p+ q)(p+ q − 1)

4n
τo +

6pq(p+ q − 2)

sn2
τc

)−1

,

Epq =
S

pq
≈
(
1 +

3(p+ q)(p+ q − 1)

4n
τo +

6pq(p+ q − 2)

sn2
τc

)−1

.

Let us analyze coefficients of acceleration and efficiency for two-dimensional
block-cyclic parallel algorithm for LLT – factorization. Principal term in
the expression of the number of arithmetic operations for this algorithm is
determined mainly by implementation of the last stage and with taking into
account the symmetry of the matrix, it can be written as follows:

N ≈
n/s∑
k=1

(
(n− ks)2

pq
s

)
≈ n3

3pq
.

A considerable volume of exchanges is performed at the stage 4:

M ≈ 1

2

n/s∑
k=1

(
(p− 1)

(n− ks)
q

+ (q − 1)
(n− ks)

p

)
s ≈ n2(p2 + q2)

4pq
.

The number of synchronizations is determined by value Q ≈ 2n(p+2q−2)/s.

Thus, we have:

Tpq =
n3t

3pq
+
n2(p2 + q2)

4pq
to +

2n(p+ 2q − 2)

s
tc .

Hence, for coefficients of acceleration and efficiency we get estimates:

Spq =
T1
Tpq

= pq

(
1 +

3(p2 + q2)

4n
τo +

6pq(p+ 2q − 2)

sn2
τc

)−1

,

Epq =
S

pq
=

(
1 +

3(p2 + q2)

4n
τo +

6pq(p+ 2q − 2)

sn2
τc

)−1

.

Two-dimensional block-cyclic algorithms presented here possess both well
balancing of processes’ loading and possibility of the efficient control over
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the using of various levels memory. Considerable improvement in time re-
quired for the performing of algorithms takes place with such choice of blocks’
dimension that could be completely contained in the computer’s cache mem-
ory.

As the number of processes is increases, acceleration of algorithms grows.
The obtained dependencies of coefficients of acceleration and efficiency both
on the matrix dimension and parameters of the process grid indicate that not
always the increase in the number of processes leads to decrease in problems’
execution times. So, in case of relatively small dimension of matrix the
inter-process data exchanges take much of time required for the execution of
algorithm.

The obtained formulas make it possible to draw a conclusion on the depen-
dence of algorithms’ efficiency on the dimension of process grid. So, with
the same total number of processes the sum p + q may take different value.
Obviously for the sake of greater efficiency it is advisable to choose such
dimension of grid for which this sum is minimal.

2.3 Algebraic eigenvalue problem

2.3.1 Methods for the solving of algebraic eigenvalue
problem (AEVP) with symmetric matrices

This paragraph deals with methods for the solving of problem:

Ax = λx , (2.19)

where A – is n –th order real square matrices,

– full standard AEVP with tri-diagonal symmetric matrix A,

– full standard AEVP with dense symmetric matrix A.

To evaluate all eigenvalues and eigenvectors of real tri-diagonal symmet-
ric matrix the QL-method with implicit shift is employed which for T1 ≡ A
and s = 1, 2, . . . is determined by following relations [2]:

Qs(Ts − ksI) = Ls, Ts+1 = LsQ
T
s + ksI = QsTsQ

T
s , (2.20)
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where Qs is an orthogonal and Ls is a lower triangular matrices; ks is a shift
corresponding to the least in module eigenvalue of the 2×2 leading block
of the matrix Ts. Matrix Qs is usually a product of matrices of elementary
plane rotations:

QT
s = P

(s)
1 P

(s)
2 · · ·P

(s)
n−1 (s = 1, 2, . . .) . (2.21)

The iterative process continues until absolute values of all off-diagonal ele-
ments become less than the given quantity. Then diagonal elements will be
approximate eigenvalues. Columns of the products of transposed matrices
Qs of (2.22):

Z = Q ·QT
1Q

T
2 · · ·QT

s · · · , (2.22)

will be approximate eigenvectors, here Q ≡ I, if T1 ≡ A or is determined
from A = QT1Q

T .

During the evaluating of all eigenvalues and eigenvectors of real dense sym-
metric matrix the following three items could be mentioned:

1. reduction of the original symmetric matrix to tri-diagonal symmetric
form,

2. evaluation of all eigenvalues (coinciding with eigenvalues of the original
matrix) and eigenvectors of tri-diagonal symmetric matrix by the above
described QL-method with implicit shift,

3. evaluation of eigenvectors of the original matrix.

The reduction of the original symmetric matrix A(0) ≡ A to tri-diagonal sym-
metric matrix T1 enables to replace the evaluation of eigenvalues of arbitrary
symmetric matrix by evaluation of eigenvalues of tri-diagonal matrix. There
exists the sufficient number of practicable procedures for the reduction of
matrix to tri-diagonal form.

For reduction of the original symmetric matrix to tri-diagonal symmetric
form the Householder’s transformations may be used and n−2 two-sided
elementary transformation of reflection are required:

A(i) = P (i)A(i−1)P (i) (i = 1, 2, ..., n− 2) , (2.23)
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where orthogonal matices P (i) = I + si ui ui T while vectors ui and factors
si are determined so that for each i = 1, 2,..., n−2 the following conditions
hold:

a
(i)
n−i+1,j = a

(i)
j,n−i+1 = 0 (j = 1, . . . , n− i− 1) , (2.24)

or (by analogy with reduction of rectangular matrix to two-diagonal form):

a
(i)
i,j = a

(i)
j,i = 0 (j = i+ 2, . . . , n) . (2.25)

Then T1 ≡ A(n−2) .

The evaluation of all eigenvectors of the original matrix (dense symmetric)
is carried out by accumulating of elementary transformations of reflection:

Q = P (3)P (2) . . . P (n−2) , (2.26)

and rotation (2.22). Then columns of the matrix X = QZ are approximate
eigenvectors of the original matrix.

2.3.2 Parallel algorithms for solving of algebraic eigen-
value problem

Analysis of methods intended for the solving of problems presented in para-
graph 2.3.1 has shown that the following parallel algorithms are required for
the solving of these problems on parallel computers:

1. reduction of dense symmetric matrix to tri-diagonal symmetric matrix
by means of two-sided elementary transformations of reflection (2.23),

2. accumulation of elementary transformations of rotation (2.26),

3. QL – method with implicit shift (2.20) and accumulation of elementary
transformations of rotation (2.21), (2.22) for the solving of full AEVP
with tri-diagonal symmetric matrix.
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Row-cyclic parallel algorithm for the reduction of dense symmetric
matrix to the tri-diagonal symmetric matrix.

This algorithm of the Householder’s method is similar to row-cyclic algorithm
for the reduction of rectangular matrix to two-diagonal form described in
section 2.2. Here we are going to deal with algorithm implementing another
version of reduction starting from the lower right-hand corner. In such a
situation orthogonal matrices P (i) of elementary transformations of reflection
(2.23) are formed so that conditions (2.24) hold.

Two-sided transformations (2.23) together with conditions (2.24) can be writ-
ten as follows:

A(i) = A(i−1) + uiv
T
i + viu

T
i (i = 1, 2, . . . , n− 2) , (2.27)

where

ui =
(
a
(i−1)
k,1 , . . . , a

(i−1)
k,k−2, a

(i−1)
k,k−1 − ek, 0, . . . , 0

)T
, vi = wi + ciui ,

ek = −sign(a(i−1)
k,k−1)σi, wi = siA

(i−1)ui, ci = 0, 5siw
T
i ui, (2.28)

si =
(
eka

(i−1)
k,k−1 − σ

2
i

)−1

, σ2
i =

k−1∑
j=1

(
a
(i−1)
k,j

)2
, (k = n− i+ 1) .

Thus, on each step (for each i) a square sub-matrix A(i−1) of order n − i is
modified; this matrix includes element a

(i−1)
1,1 and this enables condition (2.24)

to hold, while elements a
(i)
n−i,n−i and a

(i)
n−i+1,n−i = a

(i)
n−i,n−i+1 are, respectively,

diagonal and off-diagonal elements of tri-diagonal matrix T1 ≡ A(n−2). As
transformations are carried out, the symmetry of the original matrix A and
all matrices A(i) is taken into consideration.

Distribution of data and results. Despite the fact that original matrix A
is symmetric and for the performing of transformations (2.27), (2.28) suffice
it to have elements both of principal diagonal of the matrix and, for example,
of its lower triangle, but it is advisable to specify all matrix elements. In so
doing computations are arranged so that only elements of lower triangle of
the matrix are modified and the rest of elements may be used, for example,
for the evaluation of residual.

For the arrangement of parallel computations matrices A(i), including the
original matrix A(0), are distributed between processes by row-cyclic scheme:
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elements of matrix rows numbered k, k+p, k+2p, ..., are located in process
with logical number k−1, where k = 1, 2,. . . , p, p is the number of processes.
The result of reduction – diagonal a

(n−2)
j,j (j = 1, 2,. . . , n) and off-diagonal

a
(n−2)
j,j+1 ≡ a

(n−2)
j+1,j (j = 1, 2,. . . , n−1) elements of tri-diagonal matrix T1 ≡

A(n−2) – are evaluated by each process. Besides, non-zero elements ui are
located on the position of elements of lower triangle of the original matrix
according to their inter-process distribution. To perform both intermediate
computations according to formulas (2.28) and inter-process data exchanges
three arrays for the locating of vectors ui, vi and wi of (2.27) are required.

Algorithm. Row-cyclic parallel Householder’s algorithm for the reduction of
dense symmetric matrix to tri-diagonal symmetric matrix for i = 1, 2,. . . , n−2
consists of the following sequence of operations:

1. (a) by means of broadcasting operation one-dimensional array of ele-

ments a
(i−1)
k,1 , . . . , a

(i−1)
k,k−1, a

(i−1)
k,k of the k -th matrix row is sent to

all processes (k = n− i+ 1, definition of broadcasting operator
see in Introduction),

(b) all processes simultaneously evaluate values σ2
i and ek ≡ a

(i)
k,k−1 of

(2.28), form the reflection vector ui and then evaluate value si of
(2.28),

(c) each process evaluates the array of the first n−i elements of vec-
tor of partial sums of the product A(i−1)ui of symmetric matrix
given both by lower triangle and elements of principal diagonal by
row-cyclic scheme by vector; simultaneously each process performs
multi-gathering of array of the first n−I components of the vector
A(i−1)ui (definition of multi-gathering operation for the array of
numbers is given in Introduction),

2. all process simultaneously form the first n−i elements of the vector wi
according to (2.26),

3. all processes simultaneously evaluate the value ci and form the first n−i
elements of the vector vi according to (2.28),

4. each process according to row-cyclic scheme of distribution of elements
of the matrix A(i−1) performs modification (2.27) of the lower triangle

of its sub-matrix of order n−I which contains element a
(i−1)
1,1 .
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After performing of all these operations for all i = 1, 2,. . . , n−2 elements
a
(n−2)
2,1 , a

(n−2)
2,2 and a

(n−2)
1,1 are to be sent to all processes. Thus, after performing

of all operations involved in algorithm under consideration each process will
form two n-dimensional vectors of diagonal and off-diagonal elements of tri-
diagonal symmetric matrix A(i−2).

Efficiency of algorithm. The total number of arithmetic operations re-
quired for the reduction of dense symmetric matrix to tri-diagonal symmetric
matrix by Householder’s method is estimated by value:

O1 ≈ 4n3/3 , (2.29)

while the number of arithmetic operations performed by each of p processes
– by value:

Op ≈
4n3 + 12n2p

3p
.

On each step of i – cycle two operations of broadcasting of one-dimensional
arrays of n− i elements each, and one operation of multi-gathering of (n− i)-
dimensional vector are performed. Hence, the total number of exchanges
is estimated by value Oc ≈ 3n log2 p and at that the amount of data by
which processes exchange constitutes approximately Oo ≈ 1.5n2 log2 p double
words.

Then coefficients of acceleration and efficiency of row-cyclic parallel algorithm
for the reduction of dense symmetric matrix to tri-diagonal symmetric matrix
are estimated as follows:

Sp ≈ p

(
1 +

3p

n
+

1.125p log2 p

n
τ1

)−1

, Ep =
Sp
p
, (2.30)

where τ1 = τo +
2
n
τc. If

3p
n
+ 1,125p log2 p

n
τ1 >> 1 then:

Ep ≈ 1− 3p

n
− 1, 125p log2 p

n
τ1 . (2.31)

Block cyclic parallel algorithm for the reduction of dense symmet-
ric matrix to tri-diagonal symmetric matrix.

Besides factors taken into consideration in (2.31), the efficiency of algorithm
for the reduction of dense symmetric matrix to tri-diagonal symmetric ma-
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trix is considerably affected by arrangement of work with operating memory.
In up-to-date processors this memory is of the complicated architecture and
rate of addressing to the various-levels operating memory (reading or writ-
ing) considerably differs. At the same time during the modification of matrix
A(i−1) (2.27) very often we have to address the slowest basic operating mem-
ory that results in considerable increase in the execution times. This problem
can be resolved by modification of algorithm – the using of block performing
of transformations (2.27).

Consider a version of block algorithm where orthogonal matrices P (i) of el-
ementary transformations of reflection (2.23) are formed so that conditions
(2.25) hold. Then (in contrast to (2.28)) the reflection vector ui and scalar
values σi, si are formed differently. Thus, instead of (2.28) we have:

ui =
(
0, . . . , 0, a

(i−1)
i,i+1 − ei+1, a

(i−1)
i,i+2 , . . . , a

(i−1)
i,n

)T
, vi = wi + ciui , (2.32)

ei+1 = −sign(a(i−1)
i,i+1 )σi, wi = siA

(i−1)ui, ci = 0.5siw
T
i ui , (2.33)

si =
(
ei+1a

(i−1)
i,i+1 − σ2

i

)−1

, σ2
i =

n∑
j=i+1

(
a
(i−1)
i,j

)2
. (2.34)

In the block version of Householder’s method for the reduction of dense
symmetric matrix to tri-diagonal form according to [2] instead of using both
of the reflection vector ui and vector vi the rectangular matrices both of
vectors ui and vectors vi are used in (2.27). These rectangular matrices are
formed as follows:

U
(1)
I = uI−s+1, U

(r)
I =

(
U

(r−1)
I , uI−s+r

)
,

V
(1)
I = vI−s+1, V

(r)
I =

(
V

(r−1)
I , vI−s+r

)
,

(2.35)

where r = 2, . . . , s, s – size of block. Now the matrix transformations are
carried out as follows:

AI = A(I−s) + U
(s)
I V

(s)
I

T
+ V

(s)
I U

(s)
I

T
,

A(n−2) = A(N) + U
(n−N−2)
N+s V

(n−N−2)
N+s

T
+ V

(n−N−2)
N+s U

(n−N−2)
N+s

T
,

(2.36)
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where I = s, 2s, . . . , N, n−2, N = Ts, T = (n−3)/s (here the value of a is
equal to integer part of quantity a). In this case, similarly as in row-cyclic
version, in fact only n−I-th order of the matrix A(I−s) is transformed which
contains matrix element a

(I−s)
n,n . During the evaluating of reflection vectors ui

and vectors wi the following representation of the matrix A(i) (I−s < i ≤ I )
is used:

A(i) = A(I−s) + U
(r)
I V

(r)
I

T
+ V

(r)
I U

(r)
I

T
(r = i+ s− I) . (2.37)

In so doing the direct transformation of the entire matrix is not carried out,
and only necessary elements are evaluated for example vector A(i−1)ui is
evaluated as follows:

A(i−1)ui = A(I−s)ui + U
(r−1)
I

(
V

(r−1)
I

T
ui

)
+ V

(r−1)
I

(
U

(r−1)
I

T
ui

)
. (2.38)

where: (r > 1).

Distribution of data and results. Despite the fact that, similarly as
in the case or row-cyclic algorithm, suffice it to have elements of principal
diagonal of the matrix and, for example, elements of its upper triangle for
the performing of transformations (2.33)-(2.38) still it is advisable to pre-
assign all elements of the matrix but only elements of upper triangle are to
be modified. The row-cyclic scheme of distribution matrices A(I) between
processes including the matrix A(0) is also employed here for the arrangement
of parallel computations. Similarly as in non-block algorithm the results of
reduction are diagonal a

(n−2)
j,j (j = 1, 2,. . . , n) and off-diagonal a

(n−2)
j,j+1 ≡ a

(n−2)
j+1,j

(j = 1, 2,. . . , n−1) elements of the tri-diagonal matrix T1≡A(n−2) – are
computed by each process, while non-zero elements of vectors ui are stored
on the places of elements of upper triangle of the original matrix according
to their distribution between processes.

For the performing of the intermediate computations by formulas (2.33),

forming both of the rectangular matrix of reflection U
(s)
I and rectangular

matrix V
(s)
I , (2.35) as well As data exchanges between processes, each process

requires two arrays to locate vectors ui, wi of (2.33) and two arrays for the

storing of rectangular matrices U
(s)
I , V

(s)
I .

Algorithm. During the reduction of dense symmetric matrix to tri-diagonal
symmetric matrix by means of block-cyclic parallel Householder’s algorithm
for each I = s, 2s, . . . , N, n−2:
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1. first, each process forms rectangular matrices U
(s)
I and V

(s)
I (2.35),

2. further each process according to distribution scheme of elements of
the matrix A(I−s) performs modification (2.36) of the upper triangle of

its n−I order sub-matrix which contains element a
(I−s)
n,n .

During the forming of rectangular matrices U
(s)
I and V

(s)
I (2.35) for each

i = I−s+1, . . . , I the following sequence of operations (I = s, 2s, . . . ,N, n−2)
is performed enabling to form vectors ui and vi:

1. by means of broadcastings operation the one-dimensional array of el-
ements a

(i−1)
i,i , a

(i−1)
i,i+1 , . . . , a

(i−1)
i,n of the i -th matrix row is sent to all

process (the definition of the broadcasting operation is given in the
Introduction),

2. all processes simultaneously compute values σ2
i and ei ≡ a

(i)
i,i+1 of (2.33),

form the reflection vector ui and then compute the value si of (2.33),

(a) each process computes an array of last n−i elements of the vector
of partial sums of the product A(i−1)ui of symmetric matrix given
both by upper triangle and elements of principal diagonal accord-
ing to row-cyclic scheme by vector according to formula (2.38),

3. all processes simultaneously perform the multi-gathering of array con-
taining last n−i components of vector A(i−1)ui (definition of multi-
gathering operation for the array of numbers is given in the Introduc-
tion),

4. simultaneously all processes compute the last n−i elements of vector
wi according to (2.33),

5. all processes simultaneously compute the value ci and form last n−i
elements of the vector vi according to (2.33),

6. a process containing elements of the (i+1)-th matrix row compute el-

ements a
(i)
i+1,i+1, . . . , a

(i)
i+1,n if i < I with taking into account (2.37).

Similarly as in row-cyclic algorithm, elements a
(n−2)
n−1,n−1, a

(n−2)
n−1,n and a

(n−2)
n,n

computed according to the distribution scheme should be broadcast to all
processes.
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Efficiency of algorithm. As noted above, the total number of arith-
metic operations required for the reduction of dense symmetric matrix to tri-
diagonal symmetric matrix by Householder’s method is estimated by value
O1 ≈ 4n3/3. The number of arithmetic operation of block cyclic algorithm
performed by each of p processes is estimated by quantity:

Op ≈
4n3 + 6n2ps

3p
.

As to algorithm dealt with, similarly as for the row-cyclic algorithm, the total
number of exchanges is estimated by Oc ≈ 3n log2 p, while total amount
of data by which processes involved in computations exchange constitutes
approximately Oo ≈ 1.5n2 log2 p double words.

Then coefficients of acceleration and efficiency of block cyclic parallel algo-
rithm for the reduction of dense symmetric matrix to tri-diagonal symmetric
matrix are estimated as follows:

Sp ≈ p

(
1 +

1, 5ps

n
+

1, 125p log2 p

n
τ1

)−1

, Ep =
Sp
p
, (2.39)

where τ1 = τ> + 2
n
τA. If

1,5ps
n

+ 1,125p log2 p
n

τ1 >> 1, then:

Ep ≈ 1− 1, 5ps

n
− 1, 125p log2 p

n
τ1 . (2.40)

The using of one-dimensional block cyclic scheme, i.e. distribution of q rows
in succession to each process instead of using the row-cyclic data distribution
scheme decreases the number of exchanges but increases non-balancing of
processors’ loading.

Row-cyclic parallel algorithm for the accumulation of elementary
reflection transformations.

The forming of matrix of elementary reflection transformations Q (2.26) can
be carried out as follows:

Q(i) = P (k)Q(i−1) ≡ Q(i−1) + ukw
T
k (i = 1, 2, . . . , n− 2) , (2.41)
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where Q(0) ≡ I, Q(0) ≡ Q(n−2),

wk = skQ
T
(i−1)uk, sk = (ei+2uk,i+1)

−1 . (2.42)

The reflection vector uk is determined in (2.28), ei+1 ≡ ti+1,i is an off-
diagonal element of the tri-diagonal matrix T1 ≡ A(n−2), k = n−i−1. Thus,
a process of forming of the matrix of elementary refection transformations
(2.26), (2.41), (2.42) is analogues to the process of forming of matrices of the
left- or right-hand elementary reflection transformations which is described
in section 2.3.1, but the process starts from the left-hand upper corner of the
matrix.

Distribution of data and results. Array of off-diagonal elements of
matrix T1 and reflection vectors uk formed during the reduction of symmetric
matrix to tri-diagonal form are employed as initial data in the forming of
matrix Q (2.37), (2.38). Non-zero elements of these vectors are stored on the
position of elements of lower triangle of the original matrix according to their
row-cyclic distribution between processes. In so doing elements of vector uk
are placed on the position of elements of (i+2)-th row of the original matrix.

The result of computations – square matrix Q – is distributed by between
processes by row-cyclic scheme. It can be located either the position of the
original matrix or separately if the original matrix is required for further
computations.

For the carrying out intermediate computations by formulas (2.37), (2.38)
and data exchanges between processes three arrays for storing vectors are
required: one array for uk and two arrays for wk.

Algorithm. Row-cyclic algorithm for the accumulating of elementary reflec-
tion transformations for i = 1, 2,. . . , n−2 consists of the following sequence
of operations:

1. by means of the broadcasting operation one-dimensional array consist-
ing of i+1 non-zero elements of the reflection vector uk is sent to all
processes (k = n−i−1, definition of the broadcasting operation is given
in the Introduction),

2. all processes simultaneously compute the value sk of (2.38),
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3. each process computes the array of the first (i+1) elements of vector
of partial sums of the product QT

(i−1)uk of the square matrix given by
column cyclic scheme by vector,

4. simultaneously each process performs multi-gathering of array of the
first i+1 components of the vectorQT

(i−1)uk (definition of multi-gathering

operation of the array of numbers is given in the Introduction),

5. all processes simultaneously form the first i+1 elements of vector wk
according to (2.39),

6. each process according to the row-cyclic scheme of distribution of ele-
ments of the matrix Q(i−1) performs modification (2.37) of its square

sub-matrix of order i+1 which contains element q
(i−1)
1,1 .

Efficiency of algorithm. The total number of arithmetic operations re-
quired for the forming of matrix by elementary reflection transformations Q
(2.36) is estimated by value:

O1 ≈ 4n3/3 , (2.43)

while the number of arithmetic operations performed by each of p processes
is estimated by value:

Op ≈
4n3 + 1.5n2p

3p
. (2.44)

On each step of the i-cycle the following operations are performed: two
operations of broadcasting of one-dimensional arrays, each consisting of i+1
elements and one multi-gathering operation of the (i+1)-dimensional array.
Hence, the total number of exchanges is estimated by value Oc ≈ 3n log2 p,
and at that the total amount of data by which processes exchange constitutes
approximately Oo ≈ 1.5n2 log2 p double words.

Then coefficients of acceleration and efficiency of row-cyclic parallel algorithm
for the forming of matrix of elementary reflection transformations Q (2.36)
are estimated as follows:

Sp ≈ p

(
1 +

0.375p

n
+

1.125p log2 p

n
τ1

)−1

, Ep =
Sp
p
, (2.45)

where τ1 = τo +
2
n
τc. If

0.375p
n

+ 1.125p log2 p
n

τ1 >> 1 then:

Ep ≈ 1− 0.375p

n
− 1.125p log2 p

n
τ1 . (2.46)
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Block cyclic parallel algorithm for the accumulating of elementary
reflection transformations.

During the forming of matrix Q of elementary reflection transformations
(2.49) dealt with in paragraph 2.3.2 computations are carried out by formulas:

Q(t) = I + U
(t)
n−2W

(t)
n−2

T
,

Q(I) = Q(I−s) + U
(s)
K W

(s)
K

T
(I = t+ s, t+ 2s, . . . , n− 2) ,

(2.47)

here Q ≡ Q(n−2), K = n−I+s−1, t = n−Ts−1, T = (n−3)/s (the value of
a is equal to the integer part of number a),

U
(1)
K = uK , U

(r)
K =

(
uK−r+1, U

(r−1)
K

)
,

W
(1)
K = wK , W

(r)
K =

(
wK−r+1,W

(r−1)
K

)
,

(2.48)

wk = skQ
T
(i−1)uk, sk = (ek+2uk,k+1)

−1 , (2.49)

r = 2, . . . , s, the reflection vector uk is determined in (2.33), ei+1 ≡ ti+1,i

is an off-diagonal element of tri-diagonal matrix T1 ≡ A(n−2), k = n−i−1.
In this case, similarly as in the block version of algorithm for the reduction
of symmetric matrix to tri-diagonal form the following product QT

(i−1)uk is
used:

Q(i−1)
Tuk = Q(I−s)

Tuk +W
(r−1)
K

(
U

(r−1)
K

T
uk

)
. (2.50)

Distribution of data and results. In the algorithm under consideration
the distribution of data and results is similar to that described in the previous
paragraph 2.3.2 for row-cyclic algorithm. Difference consists in the following:
non-zero elements of the reflection vectors uk are stored on the place of
elements of upper triangle of the original matrix according to their row-cyclic
distribution between processes. In so doing elements of vector uk are located
on the place of elements of the k -th row of the original matrix. Another
difference is that for the carrying out both of intermediate computations by
formulas (2.48)-(2.50) and inter-process data exchanges each process requires
two arrays for storing vectors ui of (2.33) and wi of (2.49) as well as two arrays

for storing rectangular matrices U
(s)
K , W

(s)
K .
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Algorithm. Initially, in processes, where next to last and last rows of ma-
trix are located, the assignations qn−1,n−1 = qn,n = 1, qn−1,n = qn,n−1 = 0
are performed. Further, for the forming of matrix Q (2.26) by block cyclic
parallel algorithm for I = t, t+s, t+2s, . . . , n−2:

1. each process forms the rectangular matrices U
(s)
K and W

(s)
K (2.48),

2. whereupon each process according to distribution scheme for elements
of the matrix Q(I) performs modification of its lower right-hand square
block of order I+1.

Forming (2.48) of rectangular matrices U
(s)
K and W

(s)
K for each i = I−s+1,

. . . , I (or i = 1, . . . , t, if I = t) is performed by means of the following
sequence of operating which enables to form vector wk, (I = t, t+s, t+2s,
. . . , n−2):

1. by means of the broadcasting operation an one-dimensional array con-
taining i+1 non-zero elements of the reflection vector uk is sent to all
processes (k = n−i−1, definition of the broadcasting operation is given
in the Introduction),

2. all processes simultaneously compute the value sk of (2.49),

3. each process computes an array of the last i+1 elements of vector of
partial sums of the product QT

(i−1)uk (2.50) of the square matrix given
by column cyclic scheme by vector,

4. each process simultaneously with other processes performs the multi-
gathering of the array containing i+1 components of the vectorQT

(i−1)uk
(definition of multi-gathering operation of the array of numbers is given
in the Introduction),

5. all processes simultaneously form the last i+1 elements of vector wk
according to (2.46),

6. according to the distribution scheme of matrix elements the following
assignations are performed qk,k = 1, qk,j = qj,k = 0 where j = k+1,
. . . , n.
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Efficiency of algorithm. As noted in the previous paragraph, the total
number of arithmetic operations required for the forming of matrix Q of ele-
mentary reflection transformations (2.26) is estimated by value O1 ≈ 4n3/3.
The number of arithmetic operations required for the performing of block
cyclic algorithm under consideration by each of p processes is estimated by
value:

Op ≈
4n3 + 1.5n2s (p+ 11)

3p
.

Similarly, as for row-cyclic algorithm, the total number of exchanges is es-
timated by value Oc ≈ 3n log2 p, and at that the total amount of data by
which processes exchange constitutes approximately Oo ≈ 1.5n2 log2 p double
words.

Then for coefficients of acceleration and efficiency of the block cyclic parallel
algorithm for the forming of matrix of elementary reflection transformations
Q (2.51) the following estimates are valid:

Sp ≈ p

(
1 +

0.375s (p+ 11)

n
+

1.125p log2 p

n
τ1

)−1

, Ep =
Sp
p
, (2.51)

where τ1 = τo +
2
n
τc. If

0,375s(p+11)
n

+ 1,125p log2 p
n

τ1 >> 1 then:

Ep ≈ 1− 0.375s (p+ 11)

n
− 1.125p log2 p

n
τ1 . (2.52)

2.3.3 Parallel QL-algorithm for tri-diagonal real sym-
metric matrices

QL-method with implicit shift for the evaluating of all eigenvalues of tri-
diagonal symmetric matrix is similar to QR-method with implicit shift for
evaluating of singular values of upper two-diagonal matrix; this method is
dealt with in section 2.3.1. Similarly as QR-algorithm for two-diagonal ma-
trix it is not advisable to parallel QR-algorithm for tri-diagonal matrix due
to relations of efficiency; it is advisable that each process completely evaluate
all approximate eigenvalues. It is also advisable to form in parallel elements
of matrix of eigenvectors according to (2.21), (2.22).

Distribution of data and results. According to the foregoing all diagonal
and off-diagonal elements of tri-diagonal symmetric matrix are stored in each
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process. Moreover, all evaluated approximate eigenvalues are also stored in
each process.

Since each separately taken (elementary) right-hand plane rotation used in
the evaluating of matrix of eigenvectors by formulas (2.21), (2.22) consists
of in-pair transformations of only two elements belonging to columns being
modified) of each row, and parameters of plane rotation are evaluated by
each process, elements of matrix of eigenvectors being formed are distributed
between processes by row-cyclic scheme. In this case there is no need in
inter-process data exchange during the forming of matrices of eigenvectors.

Algorithm. At each iteration s = 1, 2, of parallel QR-algorithm the follow-
ing operations are performed:

1. simultaneously without data exchanges each process computes the value
of the shift ks; in succession form matrices of plane rotations P

(s)
j

(j = 1, 2, . . . , m < n) and modify tri-diagonal matrix Ti according
to (2.20),

2. simultaneously according to the distribution scheme and without data
exchanges each process modifies elements of eigenvectors’ matrix of
eigenvectors being formed,

3. simultaneously without data exchanges each process verifies a criterion
for the attaining of the given accuracy in the evaluating of the next
approximate eigenvalue.

Modification of matrix of eigenvectors being formed can be carried out im-
mediately after the forming of every matrix of plane rotations P

(s)
j or at the

end of every iteration. After performing of the next approximate eigenvalue
the order of matrix being processed is decreased by one.

Efficiency of algorithm. Parallel algorithm is design so that all compu-
tations be carried out without inter-process data exchanges. The number
of arithmetic operations performed by each of p processes is approximately
p times less than that in computations in mono-process mode. Hence, co-
efficient of acceleration of parallel QL-algorithm, similarly as in the case of
parallel algorithm described in section 2.3.1, is close to p, while coefficient of
efficiency – to unity.
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2.4 Non-linear equations and systems

2.4.1 Statements of problems with approximate initial
data

Problem on finding of real roots of non-linear equation. Let f(x)
be continuous in the interval [a, b] function of one real variable x. Numerical
problem of finding in the interval [a, b] of real roots of the equation:

f (x) = 0, a ≤ x ≤ b , (2.53)

with approximate initial data consists in the separation of roots, their ap-
proximate evaluation within the given accuracy and estimating the reliability
of results (i. e. estimating of module of deviation |x − x̄| of exact value of
root of the equation with approximate initial data from exact value of root
of the equation with accurate initial data) under condition |f̄ (x̄) – f (x)|<
∆, where f̄ (x̄) = 0 is a non-linear equation with accurate initial data; ∆ is
an estimate for error in the specification of function f (x).

Problem on finding solutions of SNE. Problems on finding solutions
of systems of non-linear equations with approximate initial data are posed
as follows: it is required to find a solution of system of n equations:

f(x) = 0 , (2.54)

in the given region G = {ai ≤ xi ≤ bi (i=1, 2,. . . ,.n)}, where:

x = (x1, x2, . . . , xn)
T , f (x) = (f1 (x) , f2 (x) , . . . , fn (x))

T ; x is an n-dimensional
vector being sought, and estimate its reliability under assumption that vector-
function f (x ) satisfies all necessary conditions for the existence of unique
solution in the regionG and for this region the inequality ∥φ (ν)− f (ν) ∥ ≤
∆ holds, where φ (y) = 0 is an accurate system of non-linear equations; ν
is an arbitrary vector from the region G ; and ∆ is an estimate for error in
formulas for the evaluation of vector-function f (x ).
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2.4.2 Methods for the solving of SNE

In most cases non-linear equations and systems are solved by iterative meth-
ods. In so doing a region is to be specified in which it is required to find
the following: a solution, the required value ε which is used in the chosen
termination criterion for iterative processes and restriction from above for
the number of iterations being performed. The lather is related to the fact
that no solution of the system may be in the region under consideration and
at that the cycling of the iterative process may happen.

To estimate both an accuracy of problem with approximately given initial
data and reliability of the obtained results it is necessary to determine char-
acteristics of equation or system of equations in the neighborhood of solution.

Characteristics of equation in the neighborhood of a root are determined
by the value of module of the derivative

∣∣f ′ (x(k)) ∣∣, while characteristics of

system of equations in the neighborhood of solution – by norm
∥∥∥H−1(k)

∥∥∥ of

the matrix inverse to Jacobi matrix which is evaluated by formula H(k) =

H
(
x(k)
)

=

{
∂ fi(x(k))

∂ xj

}n
i, j=1

, k is the number of iteration. Tending of the

mentioned values to zero indicates that solution may turn out to be non-
unique in this neighborhood (in particular, a root of the function may be
multiple).

To terminate iterative process for the solving of SNE one should proceed as
follows: at first, the holding of condition

∥∥f (x(k)) ∥∥ ≤ ε is verified and only
if at some iteration it holds then a change to the verification of condition:∥∥f (x(k)) ∥∥ ≤ ε∥∥∥H−1(k)

∥∥∥ , (2.55)

for systems of equations occurs.

This condition ensures the holding of the inequality
∥∥x(k) − x

∥∥ ≤ ε for
systems of equations where x denotes an exact solution of problem (2.54) with
approximate data. For one equation it is necessary to verify the condition:∣∣f (x(k)) ∣∣ ≤ ε

∣∣f ′ (x(k)) ∣∣ , (2.56)

which ensures the given accuracy of the obtaining of the value of root
∣∣x(k) − x∣∣ ≤
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ε of the equation (2.53) with approximate data.

For approximations obtained in such a manner the following estimates are
valid:

∣∣x(k) − x̄
∣∣ ≤ ε +

∆

| f ′ (x) |
. (2.57)

For one equation (x̄ is an exact root of the accurate equation) and:∥∥x(k) − x̄∥∥ ≤ ε +
∥∥H−1(k)

∥∥ ∆ , (2.58)

for system of equations (x̄ is an exact solution of accurate system of equa-
tions). Within estimates (2.57), (2.58) the approximate nature of initial data
of the problem being solved and approximate character of the evaluation of
solutions by iterative methods are taken into consideration.

For the evaluation of roots of non-linear equation a method for roots’ sepa-
ration with their subsequent finding by bisection method is employed.

For the evaluation of solutions of SNEs the iterative methods are employed
based to some extent on classic Newton’s method possessing the quadratic
rate of convergence.

Iterative process is said to converge if the following estimate:∥∥x(k+1) − x̄
∥∥ ≤ c

∥∥x(k) − x̄∥∥α ,
holds, where c is some quantity bounded from above; α is an order of con-
vergence of the method. If α = 2 the quadratic rate of convergence of the
iterative process is attained, if 1< α < 2 then iterative process converges
over-linearly.

Parallel algorithms for the solving of SNE by Newton’s method as well as
its modifications referred to as quasi-Newton’s methods are to be dealt with
below:

1. Burdakov’s method [2] which with special choice of the iterative pa-
rameter ensures the global convergence to one of system’s solution on
the basis of given initial approximation,
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2. Dennis-Moore’s method [3] in which the Jacobi matrix and its inverse
are evaluated on the basis of the initial approximation and then this
inverse matrix is corrected by iterative formula within the iterative
process,

3. Broyden’s method [1] in which the Jacobi matrix is evaluated on the ba-
sis initial approximation which is further corrected by iterative formula
within the iterative process,

4. Powell’s method [4] is used for the solving of SNE with symmetric Ja-
cobi matrix; in this method the Jacobi matrix is evaluated on the basis
of initial approximation and further this method is corrected within
the iterative process by iterative formula.

Quasi-Newton’s methods are known to possess the over-linear rate of con-
vergence. Formulas for the implementation of these methods will be given
during the consideration of their corresponding parallel algorithms.

2.4.3 Parallel algorithms for the solving of non-linear
equations and systems

Evaluation of roots of one equation. For the numerical solving of
equation (2.53) the computer algorithm, which combines steadiness (failure-
free work) of the bisection method with asymptotic rate of convergence of
secants’ method for the case of smooth functions.

Prior to the starting of computations the following data should be specified:
the interval [a, b] in which the roots are to be evaluated, function f(x) and
error in its specification ∆.

Thereupon the interval [a, b] is to be broken into p parts, where p is the
number of processors chosen for the evaluation of roots of the equation; a, b
are final points of the given interval. Coordinates of intervals [ai, bi] where i
= 1, ..., p of the length equal to h = b−a

p
are evaluated in the corresponding

processes. Then each process simultaneously with others:

1. chooses size of the initial step hi0 by formula:

hi0 =
0,01
|f(ai | , (i = 1,..., p) ,
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2. evaluates step size at interval by formula:

hi =
0,01·hi0

|f(bi)−f(ai) | ≤ 0, 001 (i = 1,..., p) ,

3. evaluates values of function f (x ) at intervals’ subdivision points x =

ai + j hi, where j = 1,. . . k, k =
[
bi−ai
hi

]
.

Doing so, it should be taken into account that if at any point x of the
interval’s [aj, bj] subdivision (j = 1,. . . ,k) a value of function f (x ) is equal
to zero, then thus evaluated roots of the equation are written into array of
the result.

If, after all, f(aj) · f(bj) < 0 (j = 1, . . . , k) then this interval contains at
least one root of the equation.

Further each of p processes independently of other processes performs the
following actions in intervals containing at least one root of the equation:

1. computes roots of equations by the same algorithm,

2. writes the computed values of roots into array of results.

Accuracy of the obtained solutions x(k) with respect to exact solutions of
accurate equations is estimated by formula (2.57). The evaluation of root in
the interval [aj, bj] containing odd number roots of the equations is carried
out by the following algorithm:

1. the initial approximation is chosen by formula:

x(0) =
aj + bj

2
,

2. then either interval [aj, x
(0)] or [x(0), bj] at the ends of which the func-

tion f(x) takes values of different signs is chosen and midpoint of this
interval is taken as x(0) and so on.

Midpoint of the last interval is taken as an approximate solution of the ap-
proximate equation. It should be noted that for such implementation of
algorithm for finding roots of equation the coefficient of its efficiency in most
cases will be close to 1.
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2.4.4 Solving of systems of non-linear equations

During the solving of SNE by any method (mainly the iterative one) the bulk
of arithmetic operations falls within the evaluation of values of the vector-
function f(x). Therefore during the arrangement of computations on parallel
computers the arithmetic operations involved in the evaluation of vector-
function f(x) should be paralleled first of all that will enable to parallel
the evaluation of the approximation to Jacobi matrix and the solving of the
corresponding LAS.

The automatic partitioning of the evaluation of values of components of the
system’s vector-function by p blocks (p is the number of processes in use)
is carried out as follows: the relation n

p
= q where a is an integer part of

the number a; n is an order of the system; whereupon the quantity s =
p (q + 1) − n is evaluated; then the last s processes will process blocks each
containing q equations, while the first p−s processes will process blocks of
(q+1) equations each.

Doing so it should be taken into account that in some very seldom cases
rules for the evaluation of components of system’s vector function differ very
much. In these cases systems of equations cannot possess high order, and
therefore it is not reasonable to solve them on MIMD-computers. In most
cases evaluation of components of the vector-function is subordinated to cer-
tain constructional regulations and such systems may be of the sufficiently
high order.

Let us describe, as an example, one of possible ways of vector-function’s
specification in C language.

For example, in order to solve the system:

n∑
j=1

xj−0.5 (3n+ 1)+2x2i−2

(
1 + 2

i

n
+

(
i

n

)2
)

= 0 (i = 1, 2, . . . , n)

a program for the evaluation of function values has a form:
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void f (int n, int l, int m, double *x, double *y)

{ double ss, sss, fv;

int i, j;

for( i=l; i<m; i++)

{ ss=0.;

sss=i+1;

for( j=0; j<n; j++) ss+=x[j];

fv=ss-0.5*(3.*n+1.)+2.*x[i]*x[i]-2.*(3.+2.*sss/n +

(sss/n)*(sss/n));

y[i-l] = fv;

}

}

Here:

1. n denotes an order of system of non-linear algebraic equations,

2. l denotes the initial number of equation in each separately taken pro-
cess used for the evaluation both of values of the vector-function and
corresponding rows of matrix approximating the Jacobi matrix,

3. m−1 is a final number of equation in each separately taken process
used for the evaluation both of values of the vector-function and corre-
sponding rows of matrix approximating the Jacobi matrix,

4. x denotes a vector of variables,

5. y is a value of vector-function at the point x.

Values l and m for each process are evaluated prior to call of program for
the evaluation of values of the vector-function.

If system of non-linear equations is of non-regular structure, then each equa-
tion is to be marked by label ’case k :’ (k is an integer) and function is to
be called according to the above-described rule by means of ’switch (i)’ op-
erator. Some other techniques for the specification of vector-function are
also possible, but calls of programs for their evaluation should correspond to
descriptions of functions as demonstrated in the above example.

After simultaneous computation of values of the corresponding components
of vector x processes should exchange the computed values since, as a rule,
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all components of vector x are required for the evaluation of values of the
vector-function at the next iteration.

Such way for the specification of vector-function possesses the following ad-
vantages:

1. as a rule, SNE of high order possess regular structure and it is neces-
sary only to write a loop header and equation depending on the loop
parameter,

2. during the implementation of hidden parallelism principle the evalu-
ation of values of the vector-function is automatically distributed be-
tween chosen processes,

3. approximation to the Jacobi matrix is also evaluated by blocks and
therefore for the solving of LAS of the form (2.54) one of versions of
block Gauss method (see section 2.3.1) is employed.

For the solving of SNE by methods to be dealt with below the following
information is to be specified:

1. the number of processes,

2. order of system of non-linear equations,

3. x(0) – initial approximation to the solution,

4. lower and upper boundaries of the region where the solution is to be
sought,

5. ε – quantity used in termination criterions for the iterative process and
determining an accuracy of the obtained approximation,

6. maximal number of iterations to be performed,

7. a subroutine for the evaluation of values of the vector-function.

Newton’s method. Generally, the Newton’s method, provided that value
x(k) is known, is implemented by formulas:

x(k+1) = x(k) + w(k) (k = 0, 1, . . .) , (2.59)
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where the correction w(k) = x(k+1) − x(k) is evaluated as a solution of LAS:

H(k)w(k) = −αkf
(
x(k)
)
, (2.60)

andH(k) = H
(
x(k)
)
is the Jacobi matrix of SNE; k is the number of iteration.

At the beginning the parameter αk is taken to be unity.

Further we’ll distinguish between systems of two kinds: system of small order
that can be solved in one process and systems of high order – otherwise.
However it is advisable to solve systems of small order by Newton’s method
simultaneously on all processes starting from different initial approximations
in order to obtain some set of solutions.

In this case, provided that iterative process starts from the same initial ap-
proximations on mono-process and parallel computers, the coefficient of effi-
ciency in most cases will be approximately equal to the unity. For the solving
of systems of high order the first p−s processes will compute

(q + 1)-th rows of the Jacobi matrix and the same number of components of
the vector-function f

(
x(k)
)
, while the rest s processes will compute q rows of

the Jacobi matrix and the same number of components of the vector-function
f
(
x(k)
)
.

Then a parallel algorithm for the Newton’s method is implemented on the
MIMD-computer with the use of p processes according to the following com-
putational scheme:

1. the following data are sent to each process: pre-specified initial approx-
imation x(0), quantity ε > 0 used within the termination criterion for
the iterative process; boundaries of region in which the solution is to
be sought; and the limiting number of iterations,

2. all processes simultaneously evaluate components of the vector-function
f
(
x(0)
)
distributed to them and corresponding rows of the matrix

H
(
x(0)
)
,

3. at each iteration:

(a) LAS (2.56) is solved by parallel algorithms intended for its solving
(see, for example, section 2.3.1),
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(b) the next approximation to the solution x(k+1) (k = 0, 1,. . .) is
evaluated on the basis of solution of LAS,

(c) the gathering of computed components of the next approximation
is carried out in order to form a full vector in all processes with
simultaneous synchronization of computations,

(d) corresponding components of vector-function f
(
x(k+1)

)
and rows

of the matrix H
(
x(k+1)

)
(k = 0, 1...) are evaluated by means of

using either analytical form of derivatives (if it is not difficult to
evaluate them) or their finite-difference analogs,

(e) the quantities:

φ
(j)
k+1 =

m−1∑
i=l

(
f
(k+1)
i

)2
(j = 0, 1, . . . , p− 1) , (2.61)

are evaluated, where j is the logical number of process; l is the
initial number of equation in each separately taken process which
is used for the evaluation both of values of the vector-function
and corresponding rows of matrix approximating the Jacobi ma-
trix; m−1 is the final number of equation in each separately taken
process which is used for the evaluation of values of the vector-
function and corresponding rows of matrix approximating the Ja-
cobi matrix,

(f) for the obtaining of the value of φk+1 =
∥∥f (x(k+1)

) ∥∥ all φ
(j)
k+1

are summed in some process (for example, in zero one, j is the
logical number of process):

φk+1 =

√√√√p−1∑
j=0

φ
(j)
k+1 , (2.62)

(g) if φk+1 ≥ φk the parameter αk is halved, values of all components
of vector of corrections w(k) are reduced in half, the new value of
x(k+1) is evaluated and iterative process is continued from the item
’a’,

(h) if φk+1 < φk then the termination criterion for the iterative pro-
cess φk+1 ≤ ε is verified on the starting iterations; if on the certain
iteration this condition is fulfilled then formula (2.55) is further
employed by each process for the verification of termination crite-
rion for the iterative process; it is this iteration where the criterion
is verified for the attaining of the limiting number of iterations the
exceeding of which results in termination of the iterative process,
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(i) if condition (2.55) is fulfilled the iterative process ends; otherwise
it is continued from item ’a’.

Note that verifications (2.55) require the evaluation of matrix inverse to Ja-
cobi matrix. However, since the Jacobi matrix varies only slightly within the
neighborhood of solution it is not reasonable to evaluate it on each iteration,
suffice it to evaluate this matrix once every several iterations.

After successful termination of the iterative process an error in the obtained
solution of the problem with approximate initial data with respect to exact
solution of system with accurate initial data is evaluated by formula (2.58).

Let us estimate efficiency of this algorithm. Let it be necessary to perform
NG arithmetic operations for the evaluation of one element of the matrix
H(x) and Nf arithmetic operations for the evaluation of the component of
the vector-function f (x ), while the solving of LAS on mono-processor and
MIMD-computers requires times η1 and ηp respectively.

Determine times required for the performing of one iteration on mono-processor
and MIMD-computers:

T1 ≈ cqt+ η1, Tp ≈ cqt+ c1(to + tc) + ηp . (2.63)

Here c = NGn + Nf , c1 = [log2 p] , c1(to + tc) is time required for the
in-pairs communication of processes and data exchange between them. Then
the coefficient of efficiency for the above implementation of Newton’ method
is evaluated by formula:

Ep ≈
1 + η1/cnt

Q
, (2.64)

where Q = 1 + c1/cn(to + tc) + ηpp/cnt. Denote by t, to, tc times for: the
performing of one arithmetic operation, exchange by one number and link-
age of communication between processes for performing of the required data
exchanges, respectively.

Quasi-Newton’s methods:

Burdakov’s method. Burdakov’s method is globally convergent i.e. a
choice of the iteration parameter within this method is carried out so as to
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ensure convergence of the iterative process starting from any initial approx-
imation to one of system’s solutions. Algorithm for Burdakov’s method is
implemented according to the following scheme.

Each of p processes computes the required number of values of components
both of the vector-function and rows of the Jacobi matrix as well as norm of
vector-function used in termination criterion of the iterative processes. Dis-
tribution of data between processes is carried out automatically in similarly
the same manner as described in Newton’s method.

Iterative formula of Burdakov’s method is the following:

x(k+1) = x(k) − αk
(
H(k)

)−1
f
(
x(k)
)
,

where αk is an iteration parameter specially evaluated according to [2] and
the Jacobi matrix H(k)is evaluated by means of finite differences.

Iterative process in Burdakov’s method for the most part coincides with
implementation of Newton’s method and therefore, coefficient of its efficiency
is the same than that in the Newton’s method. Error in the computed
solution of SNE with respect to exact solution of accurate system of equations
is estimated by formula (2.58).

Dennis-Moore method. With pre-specified initial data and on the basis
of starting approximation to solution the Dennis-Moore method evaluates
the Jacobi matrix and determines its inverse. Further, in course of the it-
erative process the evaluating of approximations to system’s solution this
inverse matrix is corrected, so instead of solving linear algebraic system only
multiplication of matrix by vector is carried out at each iteration.

The Dennis-Moore method is implemented for k = 0, 1,. . . by formula:

x(k+1) = x(k) − B(k) f
(
x(k)
)
,

(2.65)

B(k+1) = B(k) +

(
w(k) −B(k)y(k)

)
w(k)TB(k)

w(k)TB(k)y(k)
,

where B(k) =
(
H(k)

)(−1)
, w(k) = x(k+1) − x(k), y(k) = f

(
x(k+1)

)
− f

(
x(k)
)
.

Parallel algorithm for this method is implemented by the following compu-
tational scheme.
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1. The following initial data are pre-assigned in each of p processes: start-
ing approximation to the solution of system, quantity ϵ to be used in
termination criterion for the iterative process for estimating the accu-
racy of the obtained result and boundaries of region where the solution
is to be sought. First, the appropriate number of values both the
vector-function and rows of the Jacobi matrix are computed. Compu-
tations are automatically distributed between processes in similar the
same manner as described for the Newton’s method. Then a matrix
inverse to Jacobi matrix is evaluated and at that computations in pro-
cesses are distributed by blocks containing the same number of rows
as in original matrix. Processes exchange values of components of the
vector-function for the forming of full vector in each of them.

2. For k = 0, 1, . . . each process:

(a) computes values of corresponding components of the vector x(k+1)

and vector is gathered in all processes,

(b) computes values of components of the vector-function f
(
x(k+1)

)
and this vector is gathered in all processes,

(c) verifies the fulfillment of termination criterion for the iterative
process:

∥∥f (x(k+1)
) ∥∥ =

√√√√ n∑
i=1

f 2
i (x(k+1)),

if the condition is fulfilled the iterative process comes to end, oth-
erwise computations are continued from item ’d’; the condition of
the attaining of the limiting number of iterations is also verified
here, and in so doing the iterative process is terminated if this
limiting number of iterations is exceeded,

(d) computes values of vectors w(k) , y(k) as well as values of compo-
nents of vectors B(k)y(k) and w(k) − B(k)y(k),

(e) computes vector-rows w(k)T B(k) to be added up and carries out
the gathering of vector-row with the summing up,

(f) computes products w(k)T B(k) y(k) to be added up and carries out
the gathering of the product in all processes with summing up,

(g) computes block of corresponding rows of the matrix B(k+1) by
formula (2.65) and comes back to ’a’ for the carrying out compu-
tations for the next values of k.
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After completion of the iterative process an accuracy of the obtained solution
with respect to exact solution of accurate system of equations is estimated
by formula (2.58).

Let us determine the time required for the performing of one iteration on the
mono-processor and MIMD-computers: T1 = (9n2 + 7n + nNf ) t, where
n is an order of the system; t is time required for the performing of one
arithmetic operation and Nf is the number of arithmetic operations required
for the evaluation of value of one component of the vector-function. As to
multi-processor computer, time required for the performing of one iteration
is equal to:

Tp = (9n+ 1 +Nf )c1t+ (4 + 2p)nt+ (3toc1 + nto + 2tc)c2 , (2.66)

where p is the number of processes, c1 =
n
p
is an integer part of the relation

c2 = log2 p; to is time of the inter-process exchange by one number; tc is the
time for the communication linkage between two processes.

Therefore the coefficient of efficiency for parallel algorithm for this method
is:

Ep ≈
(
1 +

(4 + 2p) np− 6n+ p (2τoc1 + nτo + 2τc) c2
9n2 + 7n+ nNf

)−1

,

where τo and τc are relations of the exchange time and communication linkage
time between two processes to the time required for the performing of one
arithmetic operation.

Broyden’s method. On the basis of starting approximation to the solution
the Broyden’s method the Jacobi matrix is evaluated. Further, in course of
the iterative process for the evaluating of approximations to system’s solution
this matrix is corrected by means of the iterative process and used for the
solving of linear algebraic system on each iteration.

Broyden’s method for k = 0, 1, . . . is implemented by formulas:

B(k)w(k) = −f
(
x(k)
)
,

x(k+1) = x(k) + w(k) ,

y(k) = f
(
x(k+1)

)
− f

(
x(k)
)
,

B(k+1) = B(k) +

(
y(k) −B(k)w(k)

)
w(k)T

w(k)Tw(k)
, (2.67)
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where w(k) = x(k+1) − x(k), y(k) = f
(
x(k+1)

)
− f

(
x(k)
)
.

Parallel algorithm for this method is implemented by the following compu-
tational scheme:

1. Each of p processes on the basis of initial data computes the corre-
sponding number of values of components both of the vector-function
and of the Jacobi matrix,

2. Further, for k = 0, 1, . . . each process:

(a) by means of any parallel algorithm solves LAS for the evaluating
of w(k) and this vector is gathered in all processes,

(b) computes x(k+1) simultaneously with other processes,

(c) computes a value of the vector-function f
(
x(k+1)

)
distributed be-

tween processes,

(d) verifies the termination criterion for the iterative process∥∥f(x(k+1)
)∥∥ ≤ ε

∥B(k)−1∥ , where
∥∥f(x(k+1)

)∥∥=√∑n
i=1 f

2
i (x

(k+1)).

If this condition is fulfilled the iterative process comes to end,
while otherwise it returns to the item ’e’; the condition of the
attaining of the limiting number of iterations is also verified here,
and in so doing the iterative process is terminated if this limiting
number of iterations is exceeded,

(e) computes a value of the vector y(k) distributed between processes,

(f) computes a block of corresponding rows of the matrix B(k+1) by
formula (2.67) and performs passage to the item ’a’ with the next
value of k.

After completion of the iterative process a declination of the obtained solution
from exact solution of accurate system of equations is estimated by formula
(2.58).

Let us determine time required for the performing of one iteration on mono-
processor computer: T1 = (Ns + 11n2 + 5n + nNf ) t, where n is an order
of system; t is time for the performing of on arithmetic operation; Nf is
the number of arithmetic operations required for the computing of value of
one component of the vector-function, while Ns is the number of arithmetic
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operations required for the solving of LAS. As to multi-processor computer,
time required for the performing of one iteration constitutes:

Tp =

(
Ns

p q
+ 3n+ c1(4n+ 2 +Nf )

)
t+ (tc + c1to)c2 , (2.68)

where p is the number of processors; c1 =
n
p
is an integer part of the relation

c2 = log2 p to is time for the inter-process exchange by one number; tc
is the time for the communication linkage between two processes; Ns is the
number of arithmetic operations required for the solving of LAS; coefficient
of efficiency of algorithm fort he solving of LAS is denoted by q.

Therefore coefficient of efficiency of parallel algorithm implementing this
method can be written as follows:

Ep ≈
Ns + 4n2 + 5n + nNf

Ns

q
+ 4n2 + 3pn + 2n + nN

f
+ c2 (pτc + nτo)

,

where τo and τc are relations of the exchange time and communication linkage
between two processes respectively, to the time required for the performing
of one arithmetic operation.

2.5 Initial-value problems for systems of or-

dinary differential equations

2.5.1 Statements of problems with approximate initial
data

During the computer modeling of real-life phenomena and processes by means
of systems of ordinary differential equations (SODE) a need is often generated
for the solving of initial-value problems the initial data for which (formulas
for the evaluating of right-hand sides of SODE and initial conditions) are
given approximately. Approximate nature of these data can be caused by
the following reasons:

1. errors in the initial conditions’ specification since they as results of
various measurements are not accurate,
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2. errors in formulas for the evaluation of right-hands sides; these errors
are caused by the fact that right-hand sides are some approximations
to right-hand sides of realistic systems of differential equations; besides,
very often right-hand sides are approximated by simpler functions for
the sake of economy of amount of arithmetic operations during their
evaluation on each step of integration,

3. in some cases the solution is evaluated from equivalent equations non-
resolvable explicitly with respect to the solution being sought,

4. employment of numerical (discrete) integration method and rounding-
off numbers during computations,

5. introduction of errors during discretization of various type dynamic
problems by means of finite-element method in spatial variables.

The above-mentioned errors present some difficulties in investigating and
solving of this type of problems. An answer to the question concerning the
effect of errors on the solution is given by theory on the stability of solutions
to SODEs.

The initial-value problem for the n-th order SODE in the interval [t0, T ] will
be considered in the form:

du

dt
= f (u) ,

u (t0) = u(0) , (2.69)

where u = (u1, u2, . . . , un)
T is a vector being sought, while the right-hand

side is an n-dimensional function f (u) = (f1 (u) , f2 (u) , . . . , fn (u))
T .

The right-hand sides of the system are considered to be continuous. Sys-
tem of the form (2.69) is considered to be a system written in general form
because with the explicit dependence of the right-hand on t it’s possible to
introduce extra component of the vector u (for example un+1, if order of
system (2.1) is equal to n), extra equation dun+1/dt = 1 and extra initial
condition un+1(t0) = t0 and thus reduce the available problem to that written
in form (2.69). Problem (2.69) is a problem with approximate data.
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Along with this problem let us consider problem with accurate initial in the
interval t ∈ [t0, T ]:

d v

d t
= φ (v) ,

v (t0) = v(0) , (2.70)

where v is an n-dimensional vector and φ (v) – n-dimensional vector-function.

Generally, for problems (2.69)-(2.70) the additional inequalities:

∥φ (w)− f (w) ∥ ≤ ∆,
∥∥u(0) − v(0)∥∥ ≤ δ , (2.71)

should be given for arbitrary values w(t) determining accuracy of the prob-
lem’s initial-data pre-assignation.

2.5.2 Method for the SODE solution

One of the important characteristics of differential problems presenting a
severe difficulty during the numerical solving of problems of the form (2.69)
is stiffness.

By ’stiff’ problem we mean such a problem components of whose solution
vector are stable (i.e. there is no eigenvalue of the Jacobi matrix having
large positive real part in some interval where solution is being sought) and,
at least, some components of the solution vector are strongly stable (i.e. at
least one eigenvalue of the Jacobi matrix possesses large in modulus negative
real part in some interval where the solution is sought). Fundamental tools
for solving of initial-value problems for SODE are numerical methods.

The following methods are employed for the solving of common (’non-stiff’)
SODE:

(I) 4-th order Runge-Kutta method as most wide-spread and extensively
used method for practical numerical calculations,

(II) 5(6)-th order Runge-Kutta method [4] which can be used for some con-
trol calculations and comparison of the obtained solution with solutions
obtained by 4-th order Runge-Kutta method,
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(III) Euler-Cauchy method which is stable for purely implicit eigenvalues of
the Jacobi matrix,

(IV) Adams methods of order up to 12-th [5]: almost always ensuring the
required accuracy of the solution and somewhat minimizing the solution
time at the expense of automatic choice both of length of the integration
step size and method’s order.

The following methods will be used for the solving of ’stiff’ SODE:

(V) Gear’s methods of orders up to 5-th possessing the same positive char-
acteristics as Adams’ methods.

Computational formulas for the above-mentioned methods will be given dur-
ing the implementation of parallel algorithms in form of computational schemes
and estimating the efficiency of algorithms’ implementation on parallel com-
puters.

During the constructing of numerical methods for the solving of initial-
value problems the original differential problem is replaced (approximated)
by discrete problem which contains additional discretization parameter, an
algorithm and convenient for the computer implementation computational
scheme for the solving of discrete problem are constructed and questions
related to the numerical stability of solution method and convergence of dis-
crete problem’s solution to the solution of original differential problem are
investigated.

It is shown that error in the numerical solution of problem (2.69) at any
point of integration interval is estimated by formula:∥∥ z(k+1)

∥∥ ≤ ρk
∥∥ z(k)∥∥ + ψ(k) , (2.72)

where z(k) = y(k) − u(tk), y(k) is the solution of difference problem obtained
by numerical method at the point tk; u(tk) is the solution of problem (2.69) at
the same point; ψ(k) is a norm of the error in the approximation of differential
equation by difference equation, while ρk is an estimate of norm of step-to-
step passage operator.

The condition 0 < ρk ≤ 1 ensures stability of the numerical method, while
condition ψ(k) ≤ ε (1 − ρk) provides given accuracy of the solution, i.e. ful-
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fillment of inequality
∥∥y(k) − u(tk+1)

∥∥ ≤ ε at each point of the integration
interval.

Quantities ρk and ψ
(k) depend both on the length of integration step hk and

the numerical method in use. For example, for the 1st order explicit method:

ρk =
∥∥I + hkH(y(k))

∥∥ , ψ(k) =
h2k
2

max
1≤j≤n

∣∣∣∣∣fj
(
y(k+1)

)
− fj

(
y(k)
)

hk

∣∣∣∣∣ ,
where I is an identity matrix; H(y(k)) is the Jacobi matrix for system (2.69);
this matrix is negatively determined for problems possessing asymptotically
stable solutions.

The length of the integration step for each numerical method is evaluated
both from stability conditions and conditions for the attaining of solution’s
accuracy.

If integration step is chosen from these conditions then
∥∥y(k+1)−u (tk+1)

∥∥ ≤ ε
condition holds at each point tk+1 of the integration interval. Then the
declination of the numerical solution of problem (2.69) with approximate
data from exact solution of problem (2.70) with accurate data is estimated
by formula: ∥∥y(k+1) − v (tk+1)

∥∥ ≤ ε+ δ + (tk+1 − t0)∆. (2.73)

It should be taken into account that actually two last addends have a form∏k+1
i=0 ρiδ +

∑k
i=0 hi

∏k+1
j=i+1 ρj∆. And since for stable integration methods

ρi is always less than 1, the performing of large number of integration steps
results in that fact that product ρi tends to zero. In this formula this product
is replaced by 1, i.e. in (2.73) the estimate from above for the error is given.
Practical error is considerably lesser.

The following techniques for the determining both of Lipschitz constant at
any k -th integration step and approximation to evaluates of Jacobi matrix is
employed:

(VI) a vector:

w(k) =

{
ε
(
1 + f

(
y(k)
))

when ε
(
1 + f

(
y(k)
))
̸= 0,

ε f
(
y(k)
)
, otherwise
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is constructed,

(VII) a value H
(
y(k)
)
w(k) = f

(
y(k) + w(k)

)
− f

(
y(k)
)
is evaluated,

(VIII) from the identity B(k)(0)w(k) ≡ H
(
y(k)
)
w(k) the diagonal matrix (vec-

tor) B(k)(0) is evaluated,

(IX) a vector is constructed by the rule x
(k)
i = (−1)i−1 w

(k)
i (i = 1, 2, . . . , n),

(X) the diagonal matrix B(k)(3) is evaluated by formula:

fi(y(k)+x(k))−fi(y(k))
x
(k)
i

= B
(1)
i (i = 1, 2, . . . , n),

(XI) the diagonal matrix B(k) is evaluated by formula:

B
(k)
i =

{
B

(k)(0)
i when B

(k)(0)
i ×B(k)(1)

i < 0,

min
(
B

(k)(0)
i , B

(k)(1)
i

)
otherwise

(i = 1, 2,. . . , n); components of the diagonal matrix approximate eigen-
values of the Jacobi matrix,

(XII) the Lipschitz constant Lk = max
1≤i≤n

∣∣∣B(k)
i

∣∣∣ is evaluated; if it is bounded

the solution exists and is unique,

(XIII) a length of the integration step hk = 2/Lk is evaluated; whereupon one
step of integration is performed; all subsequent lengths of integration
steps are evaluated by means of formulas similar to (2.7).

In doing so the information obtained during the evaluation of Lipschitz con-
stant is used. For example, for the 1-st explicit method the quantity ρk (with
taking into account the obtained values) is evaluated by relevant formula.

2.5.3 Parallel algorithms for the solving of initial-value
problems for SODE

For most numerical methods the number of arithmetic operations required on
one step of integration during the solving of problem (2.69) is mainly deter-
mined by the number of operations required for the evaluation of right-hand
sides of system of equations. Therefore, for most methods the evaluation of
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right-hand sides is to be parallelized first of all. Based on this paralleliza-
tion the evaluation of Jacobi matrix is automatically parallelized. However,
if the number of arithmetic operations required for evaluation of vector of
right-hand sides is insignificant, it is advisable to carry out the computation
of solution of initial-value problems for SODE either on one or two processes.

The number of components of vector-function to be evaluated on one process
is determined as follows: the ratio n

p
= g is evaluated, where a is an integer

part of the number a; n is an order of system of equations; p is the number of
processes performed on MIMD-computer; further the value s = p (g + 1)−n
is valuated; then in the last s processes the right-hand sides will be computed
by blocks, each block containing q = g equations, while in the first p − s
processes the right-hand sides will be computed by blocks of q = g+1 equa-
tion each. This enables to perform automatic distribution of computation of
components of the SODE’s vector-function on p processes.

The following function may serve as a template of program on C for the
evaluation of components of vector-function of SODE’s right-hand sides:

void diffun(int n, int l, int m, double t, double *y, double *f)

{.....

for ( i = l; i < m; i++) {

.....

}

}.

Each process computes l-th trough (m − 1)-st components of the vector-
function. In so doing l = kq, m = (k+1) q−1, where k is the logical number
of process, k = 0, 1, ..., p−1; t is an independent variable; y is dependent
variable (solution); f is vector of the values of those components of the
vector-function which were computed by the k -th process at the point t.

For all numerical methods intended for the integration of SODE the following
initial data are to be pre-assigned in order indicated below:

1. order of system of ordinary differential equations,

2. the number of output points,

3. starting point of the integration interval,
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4. final point of the integration interval,

5. required accuracy of computations,

6. error in the initial data pre-specification,

7. error in formulas for the evaluation of right-hand sides,

8. initial values of the solution vector,

9. array containing coordinates of solution’s output points.

4-th order Runge-Kutta method. On the i -th step of integration (i.e.
for the evaluation of solution at point ti =

∑i−1
j=0 hj) the classical 4-th order

Runge-Kutta method is implemented by formulas:

y(i+1) = y(i) + (k1 + 2k2 + 2k3 + k4)/6 , (2.74)

where:

k1 = hif(ti, y
(i)),

k2 = hif(ti + hi/2, y
(i) + 0.5k1),

k3 = hif(ti + hi/2, y
(i) + 0.5k2),

k4 = hif(ti + hi, y
(i) + k3) (i = 0, 1, 2, ...) . (2.75)

On each step of integration this method requires four-fold computation of
the vector-function f (t, y). The 4-th order Runge-Kutta method is the most
widespread method for the numerical solving of initial-value problems for
SODE.

Parallel algorithm of the 4-th order Runge-Kutta method on p processes is
implemented according to the following computational scheme:

1. initial data are sent to each of p processes,

2. the following computations (in the indicated order) are carried out
in the interval of integration starting from the initial value of inde-
pendent variable to the coordinate of output point for each value of
ti =

∑i−1
j=0 hj(i=0, 1, 2,...):
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(a) diagonal matrix
{
B

(0)
j

}
(j = 1, 2,. . ., n) is evaluated by algo-

rithm described in the previous paragraph; system’s right-hand
sides are always computed by blocks in each process and immedi-
ately gathered in all processes in order to form full vector in each
process,

(b) a predicted length of the integration step is evaluated by formula:

hi = 2/ max
1≤i≤n

∣∣∣B (i)
j

∣∣∣,
(c) ¯̄y(i+1) is evaluated by double integration with step length equal to

hi/2 and ȳ(i+1) is evaluated by integration with step length equal
to hi according to formulas (2.74) and (2.75); during computa-
tions by formulas (2.75) right-hand sides of the system are always
evaluated by blocks and immediately gathered in all processes in
order to form a full vector in each processes,

(d) an error caused by the approximation of system of differential
equations by numerical integration formulas (2.74), (2.75) is eval-
uated:

ψ(i+1) = max
1≤j≤n

∣∣∣ ȳ(i+1)
j − ¯̄y

(i+1)
j

∣∣∣ ,
(e) two values ρ

(1)
i and ρ

(2)
i are evaluated by formula:

ρi =

∣∣∣∣ 1 + hiB
(i)
j +

h2i
2
B

(i) 2

j

h3i
6
B

(i) 3

j +
h4i
24
B

(i) 4

j

∣∣∣∣ ,
for minimum and maximum values of B

(i)
j ; max (ρ

(1)
i , ρ

(2)
i ) is cho-

sen as value of ρi ,

(f) an improved length of the integration step is evaluated by formula:

hnew = hi
5

√
ε |1− ρi|
ψ(i+1)

,

proceeding from the satisfying of criterion for the attaining of
required accuracy,

(g) the following value:

hi =

{
hnew , if hnew ×

∣∣B(i)
∣∣ ≤ 2.78529,

2.78529/
∣∣B(i)

∣∣ otherwise, ,
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is chosen as the length of the integration step, where | B(i) | =
max
1≤i≤n

∣∣∣B (i)
j

∣∣∣,
(h) the condition ti+hi > tp ; is verified if it is fulfilled then hi = tp−ti

is chosen as length of the integration step, where tp is a coordinate
of the solution’s output points otherwise length of the integration
step is not corrected,

(i) for the obtaining of solution y(i+1) at the point ti+1 = ti + hi the
integration is carried out by formulas (2.74), (2.75) with already
computed length of the integration,

(j) the condition for the termination of the process of solving of the
initial-value problem for SODE ti+1 > T is verified, if it is fulfilled
the process of solving the problem is over, otherwise the process
of solving is continued beginning from the item ’a’.

On the evaluation calculation of solution at output the point the following
information is saved: a solution vector, Lipschitz constant and estimate for
the solution’s error evaluated by formula (2.73).

Let us estimate the efficiency coefficient for this implementation of parallel
algorithm for the 4-th order Runge-Kutta method.

After the computation of vector-function it is necessary to exchange infor-
mation so that the computed vector be available in every process, i.e. Multi-
gathering of vector’s components should be carried out. Let us denote by T2
time required for multi-gathering:

T2 = log 2 p tc +

(
s (s+ 1) + p2 − 1

2

)
q to, s =

[
p+ 1

2

]
.

Time required for the evaluation of vector-function on the MIMD-compu-
ter is equal to T3 = qtf where tf is average time required for the computa-
tion of one component of the vector-function on mono- and multi-processor
computers. A choice of the next integration step requires time equal to
T6 = 2s(tc + to). Then efficiency coefficient of parallel algorithm for the 4-th
order Runge-Kutta method is determined as follows:

Ep =
45 t+ 12 tf + 9 t/n

45 t+ 12 tf + 9 t/n+ 12T2 + T6
.
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Here the following notations are introduced: to – time for exchange by one
number between processes; tc – communication linkage time between two
processes; t – time required for the performing of one arithmetic operation.

Algorithm described above for the solving of initial-value problem for SODE
enables to obtain a solution of the problem within a priori given accuracy in
all points of the integration interval, i.e. it ensures the obtaining of solution
of the problem with global accuracy.

The 5(6)-th order Runge-Kutta method. This method belongs to
method of Runge-Kutta type. It enables to carry out a control over the
error arising during the evaluation of solution of the initial-value problem for
SODE on every step and thus to use this information for the evaluation of
such length of the integration step enables to attain the given local error in
the solution.

For this method right-hand sides will be considered in the form f (t, y) since
computational formulas involve coefficients of parameter t different from co-
efficients of the parameter y.

Formulas for the evaluation of solution at the point ti+1 proceeding from
known solution at the point ti are the following:

1. for the 5-th order method:

y(i+1) = y(i) + hi

5∑
j=0

γj kj , (2.76)

2. for the 6-th order method:

ȳ(i+1) = y(i) + hi

7∑
j=0

γ̄j kj , (2.77)

where k0 = f(ti, y
(i)), kj = f

(
ti + αjhi, y

(i) + hi
∑j−1

ν=0 βjνkν

)
(j = 1,

2, . . ., 7).

Let us give values of coefficients:

α1 = 1/6, α2 = 4/15, α3 = 2/3, α4 = 4/5, α5 = 1, α6 = 0, α7 = 1,
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γ0 = 31/384, γ1 = 0, γ2 = 1125/2816, γ3 = 9/32, γ4 = 125/768,

γ5 = 5/66, γ̄0= 7/1408, γ̄1 = 0, γ̄2 = 1125/2816, γ̄3= 9/32,

γ̄4 = 125/768, γ̄5 = 0, γ̄6 = 5/66, γ̄7= 5/66,

and non-zero values of the following coefficients:

β10 = 1/6, β20 = 4/75, β30 = 5/6, β40 = −8/5, β50 = 361/320,

β60 = 11/640, β70 = 93/640, β21 = 16/15, β32 = 5/2, β42 = −4,

β52 = 407/128, β62 = 11/256, β72 = 803/256, β43 = 16/25,

β53 = 11/80, β63 = 11/160, β73 = −11/160, β54 = 55/128,

β64 = 11/256, β74 = 99/256, β76 = 1.

Principal term of the local error on each step of integration is evaluated by
formula:

Mi = 5hi(k0 + k5 − k6 − k7)/66 . (2.78)

Parallel algorithm for the 5(6)-th order Runge-Kutta method on p processes
is implemented by the following computational scheme.

1. The initial data are sent to each of p processes.

2. Diagonal matrix
{
B

(0)
j

}
(j = 1, 2,. . ., n) is evaluated by algorithm de-

scribed in the previous paragraph; in each process the right-hand sides
of system are always evaluated by blocks and immediately gathered in
all processes in order to form a full vector in each process.

3. Length of the integration step is predicted by formula h0=2/max
1≤i≤n

∣∣∣B(0)
j

∣∣∣
and g = 1/375h0.

4. Further the following computations are carried out in the indicated
order over the integration interval starting from the initial value of
independent variable to the co-ordinate of output point for each value
of ti =

∑i−1
j=0 hj (i=0, 1, 2,...):
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(a) ¯̄y(i+1) computed according to formulas (2.10) and ȳ(i+1) is eval-
uated according to formulas (2.11) with length of the integra-
tion step hi; during computations according to these formulas the
right-hand sides of system are always computed by blocks and im-
mediately gathered in all processes in order to form a full vector
in each process,

(b) ψ(i+1) = max
1≤i≤n

∣∣∣ ȳ(i+1)
j − ¯̄y

(i+1)
j

∣∣∣ is evaluated,
(c) if ψ(i+1) < 0.5ε, then ȳ(i+1) is chosen as a solution and co-ordinate

ti is increased by the length of the integration step,

(d) if ψ(i+1) < 1× 10−12 then hi+1 = g is chosen as length of the next

integration step, otherwise s = hi 6

√
ε

ψ(i+1) is evaluated and if s >

2 hi then hi+1 = 2hi is chosen else hi+1 = s; if at that hi+1 > g
then length of the integration step is chosen as follows: hi+1 = g,

(e) if ψ(i+1) ≥ 0.5ε then hi+1 = 6

√
ε

2ψ(i+1) ,

(f) the condition for running over the integration interval until the
output point is attained hi+1 ≥ tp is verified; if this condition is
fulfilled the results are saved and integration is continued on the
next interval until the next output point is attained,

(g) if ti+1 + hi+1 > T a length of the integration step is corrected
hi+1 = T−ti+1 following which the solving of problem is continued
from the item ’a’.

Upon evaluation of solution the following information is printed at the output
point: solution, Lipschitz constant and solution’s error estimate evaluated by
formula (2.73).

Let us estimate coefficient of efficiency for this implementation of parallel
algorithm for the 5(6)-th order Runge-Kutta method. After computation
of vector-function processes should exchange information so that the com-
puted vector be available in each process, i.e. multi-gathering of vector’s
components should be carried out

Coefficient of efficiency of this parallel algorithm on one step of integration
is determined by formula:

Ep =

(
1 +

(p− 1) n+ 0.5p (p+ 1) τc + p q τo 2
0.5(p+1) + 13n τf

127n+ 13n τf

)−1

,
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where τc and τo are relations of the communication linkage time between
two processes and time required for the exchange by one number between
them, respectively, to time required for the performing of one arithmetic
operation, while τf is relation of average time required for the computation
of one component of the vector-function to time required for the performing
of one arithmetic operation.

Euler-Cauchy method. On the i-th step integration this method is imple-
mented by formulas:

y(i+1)(0) = y(i) + hi f
(
y(i)
)
,

(2.79)

y(i+1)(k) = y(i) + 0.5hi
(
f
(
y(i)
)
+ f

(
y(i+1)(k−1)

))
,

k = 1, 2, 3, . . . is the number of iteration, ti+1 = ti + hi (i=0, 1, 2, ...).

The main advantage of this method is the fact that it is stable for purely
imaginary eigenvalues of Jacobi matrix and therefore can be used for calcu-
lation of oscillation processes ensuring the second order of accuracy. Parallel
algorithm for this method on p processes is implemented by the following
computational scheme:

1. initial data are sent to each of p processes,

2. further on each step of integration:

(a) diagonal matrix
{
B

(0)
j

}
(j = 1, 2,. . ., n) is computed by algorithm

described in the previous paragraph; right-hand sides of system
are always evaluated by blocks and immediately gathered in order
to form a full vector in each process,

(b) a length of integration step is evaluated by formula:

h0 = 1/

(
2 max
1≤i≤n

∣∣∣B (0)
j

∣∣∣) ,

proceeding from conditions of method’s stability and convergence
of the iterative process on the integration step,

(c) the condition for running over the integration interval until the
output point is attained ti+1 ≥ tp is verified; if this condition is
fulfilled the results are saved and integration is continued on the
next interval until the next point is attained,
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(d) if ti+1 + hi+1 > T then the integration step’s length is corrected
ti+1 = T − ti+1,

(e) 10 iterations are performed according to formula (2.79) since after
10 iterations initial error reduces by a factor of 106; in addition
the condition

∥∥y(i+1)(k) − y(i+1)(k−1)
∥∥ ≤ 1 × 10−7 is verified at

each iteration and if it is fulfilled the iterative process is finished
at this iteration,

(f) y(i+1)(k) is considered to be a solution at point ti+1 and computa-
tions are continued beginning from item ’a’.

Upon computation of solution at the output point the following information
is to be printed: the solution, Lipschitz constant as well as solution’s error
estimate evaluated by formula (2.73).

Coefficient of efficiency of this method on one step of integration is:

Ep ≈
5 t+ tf + S2 ( t+ tf )

5 t+ tf + S2 ( t+ tf ) + S1 S2 T2
,

where t is time required for the performing of one arithmetic operation; tf
is an average time required for the computation of one component of the
vector-function; S1 = p/n, S2 is the number of iterations; time required for
gathering of vector in all processes is:

T2 = log 2 p tc +

(
s (s+ 1) + p2 − 1

2

)
q to, s =

[
p+ 1

2

]
,

tc and to are times required for the communication linkage and exchange by
one number between two processes, respectively.

Adam’s methods of order up to 12-th. These methods belong to linear
multi-step methods and have the form:

y(i) = y(i−1) + h

m∑
s=0

b−sf
(
ti − shi−1, y

(i−s)) , m ≥ 0,

where m is method’s order. Coefficients for these methods are given in [5].
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Implementation of parallel algorithm for the se methods in the form of general
computational scheme is based on the same ideas those employed as a basis
for the implementation of computational schemes of the above-mentioned
methods. Therefore only some general remarks will be given on the imple-
mentation of computational scheme without presenting the computational
scheme itself.

1. Because of the fact that Adam’s methods are multi-step methods the
computation of groups of components of SODE’s right-hand sides vec-
tor, similarly as in the above-described methods, is distributed between
processes, but multi-gathering of the computed vector is not performed.

2. Groups of components of the solution vector are computed in parallel
in processes, and multi-gathering of the solution vector in al processes
is performed only prior to the computation of the right-hand sides of
SODE’s.

3. Norms of errors are also computed in processes by parts with subse-
quent summing of these parts for the obtaining of the full norm.

4. The solving of problem always begins from the 1-st order method.

5. Starting length of the integration step is always evaluated in the same
manner as in 4-th order Runge-Kutta method, for example.

6. In the process of further searching for the solution in case of unsat-
isfactory length of the integration step, i.e. such length that doesn’t
ensure the attaining of given accuracy of the obtaining of approximate
solution even if 3−5 iterations for the refining of solution have been
performed, length of the integration step is 10 times reduced and at-
tempts to obtain the required solution are repeated until the proper
length of the integration step is found.

7. If method of a certain order in one step of integration without iterative
refinement yields a solution whose error is less than given accuracy, then
order of this method is increased by 1 with simultaneous increase in the
integration step’s length. The step’s length is increased proportionally
to the ’reduced accuracy to norm of solution’s error’ ratio for the chosen
step-size.

8. After the performing of every integration step the condition are verified
for the attaining both of output point and final point of the integration.
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9. For every output of results it is necessary to compute both the Lipschitz
constant and solution error determined by formula (2.73) with taking
into account approximate nature of data.

Coefficient of efficiency of this method (if its order doesn’t change) is as
follows:

Ep ≈
p ((2m+ 2 + tf ) n+ t)

T6
.

Here the notations introduced above are used, in particular, T6 = 2s (tc +
to), s =

[
p+1
2

]
; m is the method’s order.

Gear’s methods of order up to 5-th. These methods are linear multi-
step methods with prediction and correction of solution and employed for the
integration of ’stiff’ SODE. Gear’s methods are based on multi-step Curtis-
Hirshfelder. The m-th order method is determined as follows:

y(k) =
m∑
j=1

αj y
(k−j) + ηhkf

(
tk, y

(k)
)

(k = 0, 1, . . .) , (2.80)

where m is an order of the method; hk is the integration step’s length; αj
and η are coefficients given in [5].

Implementation of parallel algorithm for these methods in form of general
computational scheme is the same as that of the Adams’s method. All re-
marks made as to implementation of Adam’s methods are valid for Gear’s
methods. However, some extra comments should be made.

Formulas for the obtaining a solution to ’stiff’ problems are implicit, there-
fore it is necessary to solve system of non-linear algebraic equations for the
obtaining of solution. A procedure of solving non-linear system requires con-
siderable expenses compared to methods intended for the solving of ’non-stiff’
problems and this procedure is suitable for ’stiff’ problems only due to the
fact that during their solving the integration step’s length turns out t be
considerably greater than that for the Runge-Kutta and Adam’s methods.
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Let us apply it to the 1-st order implicit method:

y(k+1) = y(k) + hkf(y
(k+1)) (k = 0, 1, . . .) ,

(2.81)

y(0) = u(0) .

This starting formula is transformed into the calculation formula:

y(k+1) = y(k) +
hkf

(
y(k)
)

1− hkB(k)
, y(0) = u(0) , (2.82)

where diagonal matrix B(k) is evaluated, for example, in the manner de-
scribed in paragraph 2.5.2. Such symbolic notation is used only because a
denominator of each solution’s component turns into a number. Besides,
in the general case the denominator has a form 1 − αhkB

(k), and in par-
ticular, for the second order method the coefficient α = 2/30. Instead of
ε
(
1 + f

(
y(k)
))

the following expression:

0, 1
(
hk f

(
y(k) + hk f

(
y(k)
))
− hk f

(
y(k)
))
,

can be used as increments.

The next step of integration is evaluated similarly as for Adam’s method.
For such implementation of these methods the coefficient of efficiency of
algorithm for Gear’s methods on parallel computer is the same as that of
Adam’s method.

2.6 Intelligent software for investigating and

solving of problems with approximate ini-

tial data

By intelligent software for the solving of a certain class of problems we’ll
mean a set of program tools enabling to:

1. formulate a problem in computer in terms of the subject area language
(further referred to as a computer problem),
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2. investigate mathematical characteristics of computer problem with ap-
proximate initial data,

3. choose both method and efficient algorithms for the solving of computer
problem according to the revealed characteristics as well as according
to mathematical and engineering characteristics of computer,

(a) determine the number of processes required for the efficient solving
of problem and choose an appropriate topology of inter-processor
communications for the MIMD-computer,

(b) form executable code of parallel program implementing chosen
solution algorithms,

(c) solve the computer problem,

(d) investigate reliability of the obtained results and evaluate esti-
mates both for inherited and computational errors in the obtained
solution of the computer problem.

Composition of the intelligent software Inparsoft as well as its interaction
with applications software is depicted in Fig. 2.3.

At the structural level Inparsoft consists of the intelligent software Inpartool
intended for the automatic investigating and solving of problems (copyright
certificate No. 23462 as of 17.01.2008 issued by State department of intel-
lectual property) and library Inparlib consisting of intelligent programs for
investigating and solving problems of the computational mathematics (copy-
right certificate No. 17213 as of 11.07.2006 issued by State department of
intellectual property).

At the functional level Inparsoft is, on one hand, an instrumental tool for the
investigating and solving of basic classes of problems of the computational
mathematics listed above and, on the other hand, parallel programs included
in Inparlib library serve as material (as reuse programs) for the creation of
applications software for the solving of scientific and engineering problems.
From the user’s point of view, Inpartool is a product of the end user, while
Inparlib is an instrumental tool of a user-developer of applications software.
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Figure 2.3: Scheme of Inparsoft’s composition and its interaction with applica-
tions software

2.6.1 Intelligent software Inpartool

Conception of Inpartool. In the computer solving of most scientific
and engineering problems the solving of one or several problems belonging to
basic classes of the computational mathematics is of fundamental importance,
namely:

1. linear algebraic systems,

2. algebraic eigenvalue problem,

3. non-linear equations and systems,

4. initial-value problems for systems of ordinary differential equations.

In so doing the main characteristic feature is an approximate nature of the
initial data of problems being solved.

It should be emphasized that due to error in the initial data the mathe-
matical problem should be considered as a problem with a priori unknown
characteristics. Therefore for the efficient solving of mathematical problem
with approximate initial data the following should be carried out:
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1. investigation of the correctness of problem, i.e. existence and unique-
ness of its solution,

2. determination of region of the solution’s stability,

3. estimation of an inherited error in solution of the problem, i.e. assess-
ment of influence of approximate initial data on the solution.

A problem, either input into or formed in the computer (a computer prob-
lem) which in the final analysis is solved, always has an approximate nature
with respect to original problem due to errors occurring during inputting of
the numerical data into computer and performing of arithmetic operations
over them in the computer. These errors are caused, in particular, by the
following:

1. continuum of real numbers is approximated by finite set of rational
numbers in computer (even during the input of numerical data the
rounding-off errors arise),

2. a phenomenon of ’machine zero’ gives rose to a number of difficulties
during the implementation of computational algorithms (any computer
has the least positive number which can be represented in it); all num-
bers less in modulus than this number are replaced by zero,

3. as a rule due to finite length of machine words in computer the asso-
ciative, distributive and commutative laws of mathematics are violated
during performing of floating-point arithmetic operations.

Thus, characteristics of computer problem may differ from characteristics
of its corresponding original problem. Therefore, computer methods and
technologies (described in previous sections) are required for the investigating
and solving of computer problems together with reliability estimates of the
obtained results.

During the solving of problems on MIMD-computers, problems arise, as well,
related to the efficient parallelization of solution algorithms taking into ac-
count both mathematical and engineering characteristics of computer, in-
cluding structure of inter-processor communication, and characteristics of
the system software, including parallel programming systems.
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Difficulties mentioned above (for the end user) occurring during the solving
of problems on MIMD-computers can be overcome by means of the intelligent
software Inpartool intended for the solving of basic classes of problems of the
computational mathematics.

The intelligent software Inpartool has been created on the basis of the fol-
lowing conceptual theses:

1. investigating of mathematical characteristics and solving of problems
with approximate initial data,

2. automatic choice of efficient algorithms according to the revealed char-
acteristics of problems being solved as well as according to mathemat-
ical and engineering characteristics of MIMD-computer,

3. investigation of reliability of computer solution,

4. implementation of the hidden parallelism principle.

The hidden parallelism principle consists in the following:

1. automatic control over distribution and re-distribution of information
between processes; excluding of Hyden’s effect,

2. automatic determination of number of processes required for the effi-
cient solving of problem,

3. automatic construction of the efficient topology of inter-process com-
munications.

Estimates both for coefficient of acceleration Sp and coefficient of efficiency Ep
of parallel algorithms are serve as mathematical foundation for the hidden
parallelism principle enabling to automatically distribute information and
determine the required number of processes (these estimates are given in
previous sections).

Thus, for the end user the same technology for the solving of problems as on
mono-processor (personal) computer is provided on MIMD-computer.

Inpartool consists of four separate components each intended for the inves-
tigating and solving of problems belonging to one of four above-mentioned
fundamental classes of problems of the computational mathematics.
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As to class ’Linear algebraic systems’, in addition to investigating and solving
of LAS together with reliability estimates for the obtained results, Inpartool
also allows solving of the following problems: inversion/pseudo-inversion of
matrix together with estimates for results’ reliability, evaluation of matrix
condition number, singular-value decomposition of matrix, evaluation of the
matrix rank. These problems can be solved for the following types of matri-
ces: dense non-singular, dense symmetric positive definite, banded symmetric
positive definite, banded symmetric positive semi-definite, rectangular of the
arbitrary rank.

As to class ’algebraic eigenvalue problem’, the following problems can be
solved and investigated: full standard AEVP Ax = λx with tri-diagonal
symmetric matrix; full standard AEVP with dense symmetric matrix; par-
tial standard AEVP (finding of several minimal eigenvalues and their cor-
responding eigenvectors) with banded symmetric positive definite matrix;
partial generalized AEVP Ax = λBx with banded symmetric positive defi-
nite matrices. For the all above-mentioned problems Inpartool investigates
reliability of the obtained results.

As to class ’Systems of non-linear equations’ Inpartool solves the following
problems: finding of all roots of one equation in the given interval; evaluation
of solution of system of equations in the given region. In the neighborhood
of solution being sought (a root of one equation or system’s solution) char-
acteristics of problem are investigated and on this basis the inherited and
computational errors of the obtained solution of the problem are estimated.
When employing automatic solution procedure a globally convergent method
is used while during the interactive solution procedure a list of iterative meth-
ods is proposed to the user for choice.

As to class ’Systems of ordinary differential equations’, the initial-value prob-
lems for the 1-st SODE are investigated and solved. Inpartool enables to
integrate both common and ’stiff’ SODE with accuracy of different order,
including any a priori given accuracy. Inpartool always investigates whether
a system of ordinary differential equations is ’stiff’ or not, evaluates the Lip-
schitz constant, estimates both computational and inherited errors in the
obtained solution of the problem. At the automatic solution procedure In-
partool chooses numerical method for the solving of problem according to
the revealed characteristics of problem. At the interactive solution proce-
dure user gets information about SODE’s characteristics and list of numer-
ical methods is proposed to user enabling to evaluate o solution of problem
within the required accuracy.
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2.6.2 Examples of solving of problems by means of In-
partool

Some computational potentialities of Inpartool will be illustrated below on
the example of some test problems.

Problem 1

Investigate and solve LAS Ax = b, where:

A = (aij), aii = n− i, aij = n+ 1−max(i, j)

(i, j = 1,. . ., n, n = 3w + 1, w = 1, 2, . . . );

b = {bi}n1 , b1 = n− 1, b2 = n− 2, bi = n+ 1− i, (i > 2) .

Exact solution of the system is:

x = ( 0 1 0 ... 0 )T .

Thus, matrix A has the form:

A =


n− 1 n− 1 n− 2 ... 2 1
n− 1 n− 2 n− 2 ... 2 1
n− 2 n− 2 n− 3 ... 2 1
... ... ... ... ... ...
2 2 2 ... 1 1
1 1 1 ... 1 0

 ,

while its second column is a vector of the right-hand side b. The input data
for LAS are given accuracy, i.e. maximal relative errors both in the matrix
elements and right-hand side are equal to zero.
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Protocol of automatic investigating and solving of problem 1 by
Inpartool

P R O B L E M:

solving of the linear algebraic system

with a symmetric positive defined matrix

D a t a :

- matrix dimension = 1000

- number of the right-hand side

of the systems = 1

- maximum relative error

of the matrix elements = 0.00000e+00

- maximum relative error

of elements of the right-hand sides = 0.00000e+00

P r o c e s s o f i n v e s t i g a t i n g

a n d s o l u t i o n m e t h o d:

- Cholesky decomposition

R E S U L T S:

!!! THE MATRIX IS NOT POSITIVE DEFINED !!!

Number of processors: 4

M e t h o d:

- Gauss elimination with partial pivoting

R E S U L T S:

!!! THE MATRIX IS MACHINE-SINGULAR !!!

Number of processors: 4

M e t h o d:

- singular value decomposition of a general matrix

R E S U L T S:

SOLUTION WAS CALCULATED

first 4 components of solution (vector 1) are:

-3.7747582837255322e-010 1.0000000000000031e+000

3.8857805861880479e-010 3.6489927986770073e-010

The vecror(s) of solution are successfully stored

in the file result.out

Error estimations: 4.99145e-08

P r o p e r t i e s:

- estimation of conditional number: 7.49316e+07

- matrix rank: 999

Number of processors: 12

From this protocol the fact is obvious that since the system’s matrix is sym-
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metric then an algorithm for the Cholesky method, as the most economic
method for such matrices (see section 2.3.1), was chosen as test algorithm
for the investigating of this problem by means of Inpartool. However, in
the process of investigation the matrix turned out to be not positive definite
and algorithm for the Gauss method was chosen for further investigation of
problem by means of Inpartool. During this investigation of LAS the matrix
turned out to be singular. For such kind of LAS a generalized solution of the
computer problem can be evaluated by using of matrix singular-value decom-
position (see section 2.3.1). The problem was solved together with reliability
estimates for the obtained solution. During the process of problem’s investi-
gating and solving the number of processes optimal for each algorithm was
chosen automatically, an efficient topology was constructed and data were
distributed between processes according to the solution algorithm.

Problem 2

Evaluate 8 minimal eigenvalues and their corresponding eigenvectors of the
generalized eigenvalue problem with banded symmetric positive definite ma-
trices A and B.

Matrices A and B were obtained during the finite-element discretization of
eigenvalue problem for the Laplace operator in rectangular whose one side is
fixed. In this case the matrices are block tri-diagonal:

A =


A1 A2 0
A2 2A1 A2

. . . . . . . . .

A2 2A1 A2

0 A2 2A1

 , B =


2B1 B1 0
B1 4B1 B1

. . . . . . . . .

B1 4B1 B1

0 B1 4B1

 ,

A1 =


a2 f 0
f 2a2 f

. . . . . . . . .

f 2a2 f
0 f a2

 , A2 =


g a1 0
a1 2g a1

. . . . . . . . .

a1 2g a1
0 a1 g

 ,
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B1 =


2c0 c0 0
c0 4c0 c0

. . . . . . . . .

c0 4c0 c0
0 c0 2c0

 ,

a1 = − (c1 + c2) ,
a2 = 2 (c1 + c2) ,
f = c1 − 2c2,
g = c2 − 2c1 ,

c0 =
1

36NxNy

, c1 =
Ny

6Nx

, c2 =
Nx

6Ny

,

where Nx, Ny are numbers’ of rectangular region’s partitioning in horizonatal
and vertical directions, respectively. The order of square blocks A1, A2 and
B1 is equal to Nx+1, the number of such blocks in matrices A and B is Ny.
Thus, the order of matrices A and B is n = (Nx+1)Ny, while semi-bandwidth
of these matrices is m = Nx + 2 (the band width is 2m+ 1 = 2Nx + 5).

Exact eigenvalues of Problem 2 are evaluated by formula:

λ̃kl=
1

c0

(
c2(1− sk)
2 + sk

+
c1(1− tl)
2 + tl

)
,

where sk = cosπ k
Nx

, tl = cos (l−0.5)π
Ny

, 0 ≤ k ≤ Nx, 1 ≤ l ≤ Ny.

Protocol describing the process of solving of Problem 2 by method of iter-
ations on the sub-space (see section 2.3.2) is given below with Nx = 319,
Ny = 50, i.e. n = 16 000, while the semi-bandwidth is m = 321 (a full
bandwidth is equal to 643). The problem was solved on 16 processes.
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Protocol of automatic investigating and solving of problem 2 by
Inpartool

P R O B L E M :

Solving of Partial Generalized

Eigenvalue Problem

for Band Symmetric Matrices

INPUT PARAMETERS:

order of matrices = 16000

bandwise of matrix A = 643

bandwise of matrix B = 643

maximal relative errors:

of matrix A elements = 0.000e+00

of matrix B elements = 0.000e+00

number of minimal eigenvalues

to calculate = 8

Exact eigenvalues

2.467604042554091e+00 1.233728821340764e+01

2.222305254921369e+01 3.209273672006724e+01

4.194729797545172e+01 6.170274648211132e+01

6.181196631645549e+01 7.168165048730904e+01

9.130050516997107e+01 1.012916602493531e+02

1.110559536766307e+02 1.213906838857423e+02

2.011944685514055e+02 3.015383945680863e+02

1.312603680565959e+02 2.110641527222591e+02

P r o c e s s o f r e s e a r c h a n d s o l u t i o n

of the problem

M e t h o d : Subspace Iterations

matrix blocksize = 10

number of processors = 16

R e s u l t s : SOLUTION WAS CALCULATED

by 16 iterations (mit=32)

All calculated eigenvalues are minimal

Eigenvalues (calculated) Estimates of Errors

2.467604042574461e+00 4.493e-15

1.233728821342248e+01 2.096e-12

2.222305254923304e+01 2.674e-15

3.209273672008100e+01 3.727e-12

4.194729797546218e+01 5.368e-10

6.170274648216704e+01 4.187e-07

6.181196631647476e+01 6.440e-09

7.168165048952910e+01 2.728e-06
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Problem 3 Solve a system of non-linear equations:

n−1∑
j=0

xj − 0.5 (3n+ 1) + 2x2i − 2

(
1 + 2

i

n
+

(
i

n

)2
)

= 0 ,

in the region D = {−1000 ≤ xi ≤ 1000} (i = 0, 1, 2, . . . , n−1).

Exact solution of this problem is xi = 1 + i+1
n
, the starting approximation

was chosen to be 1 + 0.5
(
i+1
n

)
(i = 0, 1, 2, . . . , n−1).

The problem 3 was solved by Burdakov method (see section 2.4) with n = 100,
limiting number of iterations it = 100, given accuracy ε = 10−10, error in
function’s pre-assignation δ = 10−10 . The problem was solved on 4 pro-
cesses.

Protocol of automatic investigating and solving of problem 3 by
Inpartool

read n = 100 - order of the system

read it = 100 - the limiting number of iterations

read eps= 1.000000e-10 - the given accuracy

read del= 1.000000e-10 - accuracy of the obtained solution

read a[i] - left border of the area

-1.0000000000e+03 -1.0000000000e+03 -1.0000000000e+03

-1.0000000000e+03 -1.0000000000e+03 -1.0000000000e+03

-1.0000000000e+03 -1.0000000000e+03 -1.0000000000e+03

-1.0000000000e+03

read b[i] - right border of the area

1.0000000000e+03 1.0000000000e+03 1.0000000000e+03

1.0000000000e+03 1.0000000000e+03 1.0000000000e+03

1.0000000000e+03 1.0000000000e+03 1.0000000000e+03

1.0000000000e+03

read x[i] - initial approximation

1.0000000000e+00 1.0500000000e+00 1.1000000000e+00

1.1500000000e+00 1.2000000000e+00 1.2500000000e+00

1.3000000000e+00 1.3500000000e+00 1.4000000000e+00

1.4500000000e+00
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T h e p r o t o c o l o f t h e d e c i s i o n

Task was solved by Burdakov method on 4 processors

The results of the computation are written in a file

result_bur.out

The number of the executed iterations it = 4

The given accuracy eps = 5.4760572666e-15

Accuracy of the obtained solution del = 1.0000005476e-08

Residuals on a sequence of iterations new =

2.7293374767e+00 2.4199117540e-02 2.1327656368e-06

4.8584631731e-12

Solution

1.0100000000e+00 1.1100000000e+00 1.2100000000e+00

1.3100000000e+00 1.4100000000e+00 1.5100000000e+00

1.6100000000e+00 1.7100000000e+00 1.8100000000e+00

1.9100000000e+00

Problem 4 In the interval [0; 0,004] solve the following system of ordinary
differential equations:

dui
dt

= −
n−1∑
j=0

uj − ui + n (1 + t) + 2 + t ,

under the initial conditions ui(0) = 1, (i = 0, 1, 2, . . . , n− 1).

ui = 1 + t, (i = 0, 1, 2, . . . , n− 1) .

A protocol describing the solving of Problem 4 by Adams’ method is given be-
low (see section 2.5) for error n = 4 000 and initial data error δ1 = δ2 = 10−10.
The integration step’s length has been chosen from condition that solution’s
error should not exceed ε = 10−6. The problem was solved on 16 processes.

Protocol of automatic investigating and solving of problem 4 by
Inpartool

The problem is non-stiff

The problem is being solved by 12-th order

ADAMS methods order of system n= 4000
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the number of processors 16

point t= 4.000000e-02

At this point the local Lipschitz constant L= 4.041011e+03

Solution = 1.040000e+00 1.040000e+00 1.040000e+00 1.040000e+00

At this point the solution is obtained with accuracy

delta= 1.000000e-06

2.6.3 Library of intelligent programs Inparlib

Purpose and creation principles of Inparlib library. By the intelli-
gent program we’ll mean a program which during the problem’s solution pro-
cess verifies agreement between solution algorithm and characteristics of the
computer problem; in automatic mode forms efficient processes configuration
according to the number of processes in use; distributes data between pro-
cesses; solves the problem and estimates reliability of the obtained computer
solution or yields indicator of reason of refusal in the solving the problem.

Intelligent programs included in Inparlib library implement the solving of the
same classes of the computational mathematics as Inpartool. From the end
use’s point of view, library programs are re-use components for the solving
of application problems for which problem or problems of the computational
mathematics are components of the solution processes.

Programs (program modules) of Inparlib are based on the following princi-
ples:

1. parallelism,

2. scalability,

3. modularity,

4. efficient utilization of cache-memory.

Parallelism ensures the simultaneous performing of operations that is essen-
tial for programs which are performed on several processes.

Scalability provides possibility to change the number of processes in use.
Modularity reflects an extent of decomposition of complicated objects on
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simpler components. Modular structure of programs ensures the using of the
same program modules in different programs.

Investigation of various algorithms for the solving of problems of the com-
putational mathematics has demonstrated that their efficiency considerably
depends on the efficiency of employing of processes’ cache-memory. During
the performing of any algorithm the latest instructions and data are saved in
the cache-memory, so cycles and operations over arrays of data are performed
considerably more rapidly. If the required data are not available in the cache-
memory the process performing a task is to address to the main operating
memory that considerably slows down the performing of algorithm. At that
the program could be made more efficient if loop operations implementing
matrix-vector operations be performed with unfolding of inner loop with
taking into account the length of computer’s instruction pipeline. Therefore
algorithms for programs included in Inparlib library are implemented with
taking into account dimensions both of the cache-memory and instruction
pipeline of Inparcom’s processors.

Programs included in Inparlib library implement:

1. investigation of characteristics of computer problems with appropriate
initial data,

2. verification of agreement between revealed characteristics of computer
problem and solution algorithm,

3. construction of Inparcom’s processor topology,

4. solving of problem,

5. investigating of reliability of the obtained results, including evaluation
of estimates for the inherited and computational errors.

As to linear algebraic systems, Inparlib’s program modules enable to investi-
gate and solve problems with different structure matrices, estimate solution’s
reliability, invert matrices, evaluate singular values and matrix rank as well
as to estimate the matrix condition numbers.

Program modules included in Inparlib enable to investigate and solve both
full standard and partial standard or generalized algebraic eigenvalue prob-
lem with various structure symmetric matrices (dense, banded or profile). By
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means of Inparlib’s programs one may investigate reliability of the obtained
results and evaluate estimates for errors in solutions.

Programs included in Inparlib enable to investigate and solve of non-linear
algebraic and transcendental equations; at that the local condition number of
function f (x ) and local condition number of vector-function F (x ) are deter-
mined; termination criterions for iterative processes ensuring the obtaining
of computer solution within the given accuracy are implemented; solution’s
error is estimated with taking into account approximate nature of the initial
data.

For the investigating and solving of the initial-value problems for systems
of ordinary differential equations Inpartool contains programs enabling to
integrate both common and ’stiff’ systems of equations within various order
of accuracy, including a priori given accuracy. Inparlib’s program modules
enable to investigate ’stiffness’ of systems of ordinary differential equations,
evaluate both Lipschitz constant and error in the obtained solution with
taking into account approximate initial data.
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Chapter 3

Multiprocessor computing
structures

V. Tulchinsky, O. Perevozchikova, W. Surtel,
A. Smolarz

3.1 Introduction

Since the beginning of modern computing, most computer programs have
been written using a serial programming model. Apart from a brief era of
parallel programming in the late ’80s on systems such as Thinking Machines
and MasPAR, serial programming has been the predominant programming
model for more than 50 years. But with the availability of new, powerful
data parallel processors, such as the General-Purpose Graphics Processing
Units (GPGPU, also referred to as GPU), as well as the arrival of highly
multi-core Central Processing Units (CPU), the serial programming model
faces significant sailing challenges. The emerging world of highly parallel
systems requires a programming model that scales to the new generation of
parallel architectures that are already coming onto the market.

The starting point for the new parallel programming era is probably 1994
when Thomas Sterling and Donald Becker at NASA developed a high-perfor-
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mance parallel computing cluster Beowulf. Beowulf was compound of inex-
pensive personal computer hardware with free and open source software.
Since publication in 1997 ’Beowulf HOWTO’ of Jacek Radajewski and Dou-
glas Eadline the Beowulf-like clusters rapidly became deployed worldwide,
chiefly in support of scientific computing. As result High Performance Com-
puting (HPC) from privileged use of rare supercomputers for solution of
extraordinary mostly research problems has come to be applied to various
scientific, engineering and business tasks.

Traditional ’single-core’ CPU hit a fundamental performance limitation in
early 2000 due to power and implementation difficulties. Until this wall was
reached, applications could move seamlessly from one generation of processor
to the next and take advantage of the increased clock speed without needing
to change anything in their code. Now, however, the major CPU manu-
facturers have shifted to a multi-core strategy. High-end commodity CPUs
today are quad-core x86 processors. Gulftown which first release under the
brand name Core i7 980X was in the first quarter of 2010 contains 6 cores
with hyper-threading and so serves up to 12 threads in parallel. Two such
processors can convert usual PC in a powerful enough hardware engine suit-
able for efficient parallel service of multiple asynchronous requests to host
a web-server, a database server an application server as well as for a small
scale HPC calculations.

More direct way to explicitly parallel microprocessor architecture was se-
lected by an alliance of Sony Computer Entertainment, Toshiba, and IBM,
known as STI. They combined a general-purpose PowerPC based core of
modest performance with vector coprocessor elements which greatly acceler-
ate multimedia and uniform data processing applications. The architectural
design and first implementation were carried out at the STI Design Center
in Austin, Texas in 2001-2004. The developed Cell Broadband Engine Ar-
chitecture, commonly abbreviated CBEA in full, Cell BE or Cell in part was
first commercialized in Sony’s PlayStation 3 game console (2005). In May
2008, an Opteron- and PowerXCell 8i-based supercomputer, the IBM Road-
runner system, became the world’s first system to achieve one petaFLOPS,
and was the fastest computer in the world until fall 2009. The world’s three
most energy efficient supercomputers, as represented by the Green500 list,
are similarly based on the PowerXCell 8i.

Stream processor architectures became new players in the HPC game little
after the Cell. Stream processors extend the capabilities of vector processors
by adding a layer to the register hierarchy, and adding a layer of instruction
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sequencing that enables them to operate in record (rather than operation)
order. The idea was first implemented in 2003 at Stanford University Graph-
ics Lab. Stream architecture computer Merrimac used it to give an order of
magnitude more performance per unit cost than cluster-based scientific com-
puters built that time from the same technology. In late 2006, NVIDIA and
ATI (acquired by AMD in 2006) began marketing GPU boards as stream-
ing coprocessor boards. Both companies released software to expose the
processor to application programmers. Since then the hardware has grown
more powerful and the available software has become more high-level and
developer-friendly.

GPGPU exceeded alternative parallel architectures by proposing hundreds
threads and up to thousand time speedup for dedicated computations. The
stream software development appeared to be more simple and intuitive than
for vector computers, digital signal processors (DSP) and transputers. As
result GPGPU market primary based on NVIDIA CUDA architecture have
raised so rapidly that IBM currently promotes Cell BE as a compromise of
CPU and GPU concepts.

Processing dependent computing has flourished under the wealth of software
applications that have been written to take advantage of these new modern
processors, and as a society, we have eagerly integrated these advances into
our daily lives. Businesses perhaps now more than ever rely on computers
to process transactions, data, and a plethora of other information, and home
users have begun using their computers for much more than typing and
games. Universities have also capitalized on this growth in computational
power and are just beginning to realize the potential in harnessing massive
amounts of computational power for aiding research.

The more computation resources are available the more computation power
is desirable. Grid computing is the concept behind harnessing the resources
of multiple computers/cluster over a network, and using that power to solve
very big compute-intensive problems. Grid computing is currently a hot topic
amongst corporate and academic circles, and is most prominent in fields
where massive amounts of processing are done on a daily basis. Some of
these fields include nuclear physics, physical chemistry, biomedical research,
scientific simulation.

In the most general form a modern computing system is a heterogeneous grid
of clusters combined of CPU/GPU nodes. Its efficient utilization requires
cooperation of multiple technologies.
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The section 3.2 introduces parallel computing. The next three sections de-
scribe modern parallel hardware, parallel programming tools and grid mid-
dleware. More general questions of performance estimates and program en-
gineering for parallel software are discussed in the sections 3.7-3.8. Massive
parallel data processing is examined in the last section of the chapter.

3.2 Subject and Jargon of Parallel Comput-

ing

As parallel computers become larger and faster, it becomes feasible to solve
problems that previously took too long to run. Parallel computing is used in a
wide range of fields, from bioinformatics (to do protein folding) to economics
(to do simulation in mathematical finance). Here we present and briefly
describe main concepts of parallel computing [29].

Task. The first step in designing a parallel program is to break the problem
up into tasks. A task is a sequence of instructions that operate together as
a group. This group corresponds to some logical part of an algorithm or
program. For example, consider the multiplication of two N-order matrices.
Depending on how we construct the algorithm, the tasks could be (1) the
multiplication of subblocks of the matrices, (2) inner products between rows
and columns of the matrices, or (3) individual iterations of the loops involved
in the matrix multiplication. These are all legitimate ways to define tasks
for matrix multiplication; that is, the task definition follows from the way
the algorithm designer thinks about the problem.

Unit of execution (UE). To be executed, a task needs to be mapped to
a UE such as a process or thread. A process is a collection of resources
that enables the execution of program instructions. These resources can
include virtual memory, I/O descriptors, a runtime stack, signal handlers,
user and group IDs, and access control tokens. A more high-level view is
that a process is a ’heavyweight’ unit of execution with its own address
space. A thread is the fundamental UE in modern operating systems. A
thread is associated with a process and shares the process’s environment.
This makes threads lightweight (that is, a context switch between threads
takes only a small amount of time). A more high-level view is that a thread
is a ’lightweight’ UE that shares an address space with other threads. We
will use unit of execution or UE as a generic term for one of a collection of
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possibly concurrently executing entities, usually either processes or threads.
This is convenient as less depended from a particular architecture.

Processing unit (PU). We use the term processing unit as a generic term
for a hardware element that executes a stream of instructions. The element
of hardware considered to be a PU depends on the context. For example,
some programming environments view each workstation in a cluster of SMP
workstations as executing a single instruction stream; in this situation, the
PU would be the workstation. A different programming environment running
on the same hardware, however, might view each processor of each worksta-
tion as executing an individual instruction stream; in this case, the PU is the
individual processor, and each workstation contains several PUs. In GPGPU
case PU is usually associated with a single core able to execute a work thread.

Load balancing. To execute a parallel program, the tasks must be mapped
to UEs, and the UEs to PUs. How the mappings are done can have a signif-
icant impact on the overall performance of a parallel algorithm. It is crucial
to avoid the situation in which a subset of the PUs is doing most of the
work while others are idle. Load balancing is the process of allocating work
to PUs, either statically or dynamically, so that the work is distributed as
evenly as possible.

Synchronization. In a parallel program, due to the non-determinism of task
scheduling and other factors, events in the computation might not always
occur in the same order. For example, in one run a task might read variable
x before another task reads variable y; in the next run with the same input,
the events might occur in the opposite order. In many cases, the order in
which two events occur does not matter. In other situations, the order does
matter, and to ensure that the program is correct, the programmer must
introduce synchronization to enforce the necessary ordering constraints.

Synchronous versus asynchronous. We use these two terms to quali-
tatively refer to how tightly coupled in time two events are. If two events
must happen at the same time, they are synchronous; otherwise they are
asynchronous. For example, message passing (that is, communication be-
tween UEs by sending and receiving messages) is synchronous if a message
sent must be received before the sender can continue. Message passing is
asynchronous if the sender can continue its computation regardless of what
happens at the receiver, or if the receiver can continue computations while
waiting for a receive to complete.
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Fine-grained, coarse-grained, and embarrassing parallelism. Appli-
cations are often classified according to how often their subtasks need to
synchronize or communicate with each other. An application exhibits fine-
grained parallelism if its subtasks must communicate many times per second;
it exhibits coarse-grained parallelism if they do not communicate many times
per second, and it is embarrassingly parallel if they rarely or never have to
communicate. Embarrassingly parallel applications are considered the easiest
to parallelize.

Race conditions. A race condition is a kind of error peculiar to parallel
programs. It occurs when the outcome of a program changes as the rela-
tive scheduling of UEs varies. Because the operating system and not the
programmer controls the scheduling of the UEs, race conditions result in
programs that potentially give different answers even when run on the same
system with the same data. Race conditions are particularly difficult errors
to debug because by their nature they cannot be reliably reproduced. Test-
ing helps, but is not as effective as with sequential programs: a program
may run correctly the first thousand times and then fail catastrophically on
the thousand-and-first execution – and then run again correctly when the
programmer attempts to reproduce the error as the first step in debugging.

Race conditions result from errors in synchronization. If multiple UEs read
and write shared variables, the programmer must protect access to these
shared variables so the reads and writes occur in a valid order regardless
of how the tasks are interleaved. When many variables are shared or when
they are accessed through multiple levels of indirection, verifying by inspec-
tion that no race conditions exist can be very difficult. Tools are available
that help detect and fix race conditions, such as ThreadChecker from In-
tel Corporation, and the problem remains an area of active and important
research.

Deadlocks. Deadlocks are another type of error peculiar to parallel pro-
grams. A deadlock occurs when there is a cycle of tasks in which each task is
blocked waiting for another to proceed. Because all are waiting for another
task to do something, they will all be blocked forever. As a simple example,
consider two tasks in a message-passing environment. Task A attempts to
receive a message from task B, after which A will reply by sending a message
of its own to task B. Meanwhile, task B attempts to receive a message from
task A, after which B will send a message to A. Because each task is waiting
for the other to send it a message first, both tasks will be blocked forever.
Fortunately, deadlocks are not difficult to discover, as the tasks will stop at
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the point of the deadlock.

3.2.1 Computer architecture classification

Flynn’s taxonomy (Fig. 3.1) is the most common way to characterize different
computer architectures. It was proposed by Michael J. Flynn in 1966 [40].

a) b) c) d)

Figure 3.1: Flynn’s taxonomy of computer architectures

Single Instruction, Single Data stream (SISD)

A sequential computer which exploits no parallelism in either the instruction
or data streams. Examples of SISD architecture are PDA like PocketPC.
The old time machines like Intel 8086 based PCs or historical mainframes
were really serial. But more recent ones were not pure SISD. Even Intel
80386 pipelined instructions, and the Pentium of 1993 was the superscalar
processor.

Multiple Instruction, Single Data stream (MISD)

Multiple instructions operate on a single data stream. Uncommon archi-
tecture which is generally used for fault tolerance. Heterogeneous systems
operate on the same data stream and must agree on the result. Examples
include the Space Shuttle flight control computer.

Single Instruction, Multiple Data streams (SIMD)

A computer which exploits multiple data streams against a single instruction
stream to perform operations which may be naturally parallelized. For ex-
ample, an array (vector) processor or GPU (at the warp/work-group level).
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Both AMD Brook+ and NVIDIA CUDA (since Fermi) provide concurrent
execution of multiple kernels and so are beyond of SIMD limitations.

Multiple Instruction, Multiple Data streams (MIMD)

Multiple autonomous processors simultaneously executing different instruc-
tions on different data. Distributed systems are generally recognized to be
MIMD architectures.

Some further divide the MIMD category into the following categories:

• Single Program, Multiple Data (SPMD)

Multiple autonomous processors simultaneously executing the same program
(but at independent points, without synchronism that SIMD imposes) on
different data. Also referred to as ’Single Process, Multiple Data’. SPMD
is the most common style of parallel programming. The term was originally
coined by G.F. Pfister.

• Multiple Program Multiple Data (MPMD)

Multiple autonomous processors simultaneously operating at least 2 indepen-
dent programs. Typically such systems pick one node to be the ’host’ (’the
explicit host/node programming model’) or ’master’ (the ’Master/Worker’
strategy), which runs one program that farms out data to all the other nodes
which all run a second program. Those other nodes then return their results
directly to the master.

The MIMD category of Flynn’s taxonomy is too broad to be useful on its
own. With a few marginal exceptions all modern computers tend to the
MIMD architecture. So MIMD is typically decomposed according to memory
organization (Fig. 3.2).

Shared Memory refers to a large block of random access memory that can
be accessed by all PUs uniformly. A shared memory system is relatively
easy to program since all processors share a single view of data and the
communication between processors can be as fast as memory accesses to a
same location. The issue with shared memory systems is that many CPUs
need fast access to memory and will likely cache memory, which has two
complications:



3.2 Subject and Jargon of Parallel Computing 155

Figure 3.2: Classification of MIMD Parallel Computers by memory (RAM) access

1. CPU-to-memory connection becomes a bottleneck. Shared memory
computers cannot scale very well. Most of them have ten or fewer
processors,

2. cache coherence: Whenever one cache is updated with information that
may be used by other processors, the change needs to be reflected to
the other processors, otherwise the different processors will be working
with incoherent data. Such coherence protocols can, when they work
well, provide extremely high-performance access to shared information
between multiple processors. On the other hand they can sometimes
become overloaded and become a bottleneck to performance.

Shared memory typically corresponds to Symmetric Multiprocessing (SMP)
computer architecture where two or more identical processors or cores are
connected to a single shared main memory and are controlled by a single
Operation System (OS) instance. SMP systems allow any processor to work
on any task no matter where the data for that task are located in memory,
provided that each task in the system is not in execution on two or more
processors at the same time; with proper OS support, SMP systems can
easily move tasks between processors to balance the workload efficiently.

The Burroughs B5500 first implemented SMP in 1961. Then SMP architec-
ture was popular among mainframes. Nowadays most entry and mid-level
servers use between two and eight processors. High-end systems, with sixteen
or more processors, are also available. Cluster nodes are commonly multi-
processor/multicore SMP. Though, shared memory architecture exists only
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at some level of abstraction as cash memory of CPUs is not shared.

Non-Uniform Memory Access (NUMA) logically follow in scaling from
SMP architectures. Since ’70s CPUs operate considerably faster than the
main memory to which they are attached. Limiting the number of mem-
ory accesses provided the key to extracting high performance from a modern
computer. NUMA attempts to address this problem by providing separate
memory for each processor, avoiding the performance hit when several pro-
cessors attempt to address the same memory. For problems involving spread
data (common for servers and similar applications), NUMA can improve the
performance over a single shared memory by a factor of roughly the number
of PUs (or separate memory banks). Of course, more than one processor
may require the same data. To handle these cases, NUMA systems include
additional hardware or software to move data between banks. This opera-
tion has the effect of slowing down the EUs attached to those banks, so the
overall speed increase due to NUMA will depend heavily on the nature of the
tasks run on the system at any given time. NUMA commercial development
came in work by Burroughs, Convex Computer, Silicon Graphics, Sequent
Computer Systems, Data General and Digital during the ’90s.

Nearly all CPU architectures use a small amount of very fast non-shared
memory known as cache to exploit locality of reference in memory accesses.
With NUMA, maintaining cache coherence across shared memory has a sig-
nificant overhead. Although simpler to design and build, non-cache-coherent
NUMA systems become prohibitively complex to program in the standard
von Neumann architecture programming model. As a result, most NUMA
computers sold to the market use special-purpose hardware to maintain cache
coherence, and thus class as ’cache-coherent NUMA’, or ccNUMA. Typically,
this takes place by using inter-processor communication between cache con-
trollers to keep a consistent memory image when more than one cache stores
the same memory location. For this reason, ccNUMA performs poorly when
multiple processors attempt to access the same memory area in rapid succes-
sion. Operating-system support for NUMA attempts to reduce the frequency
of this kind of access by allocating processors and memory in NUMA-friendly
ways and by avoiding scheduling and locking algorithms that make NUMA-
unfriendly accesses necessary. Alternatively, cache coherency protocols such
as the MESIF protocol attempt to reduce the communication required to
maintain cache coherency.

In a Distributed Memory system there is typically some form of intercon-
nection that allows programs executed on each separated PU to interact with
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each other. The interconnect can be organized with point to point links or
via a switching network. The network topology is a key factor in determin-
ing how the multi-processor machine scales. The links between nodes can be
implemented using some standard network protocol (for example Ethernet),
using bespoke network links (used in for example the Transputer), or using
dual ported memories.

The key issue in programming distributed memory systems is how to dis-
tribute the data over the memories. Depending on the problem solved, the
data can be distributed statically, or it can be moved through the nodes.
Data can be moved on demand, or data can be pushed to the new nodes in
advance.

Data can be kept statically in nodes if most computations happen locally,
and only changes on edges have to be reported to other nodes. An example
of this is simulation where data is modeled using a grid, and each node
simulates a small part of the larger grid. On every iteration, nodes inform
all neighboring nodes of the new edge data.

Cluster and computational grid systems are typical examples of distributed
memory systems at some level of abstraction.

Hybrid Systems combine features of multiple memory architectures. With
some insight any real hardware system can be assigned to this class. For
example, a distributed memory cluster typically consists of shared memory
SMP nodes which are really of NUMA class if account low level hardware
issues like the cache memory. GPGPU as well integrates different types of
classical memory architecture: local/private memory of cores corresponds
to distributed memory architecture as well as the whole GPU device being
viewed as a PU, shared/local memory of a compute unit resembles shared
memory architecture at thread block/work group level, but in use together
with global/constant data cache provides NUMA features at the device level.

Contrariwise, the software development environments traditionally tried to
hide these implementation difficulties. In CPU-based parallel programming
either pure SMP/shared or pure distributed memory model is proposed.
(Naturally there are sophisticated approaches to account real hardware ar-
chitecture.) But both GPGPU and Cell programming require accounting of
their hybrid architecture specificity.
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3.2.2 Classification of parallel software development
tools

In 1988 four distinct paths for application software development on parallel
computers were identified by McGraw and Axelrod [26]:

1. extend an existing compiler to translate sequential programs into par-
allel programs,

2. extend an existing language with new operations that allow users to
express parallelism,

3. add a new language layer on top of an existing sequential language,

4. define a totally new parallel language.

Currently two additional approaches became popular:

1. provide an Application Program Interface (API) to utilize existent com-
pilers in concurrent execution environments,

2. create efficient parallel solutions (libraries, objects, services) for typical
problems to be called from sequential programs.

Compiler extension

Design parallelizing compilers that exploit parallelism in existing programs
written in a sequential language.

1. Advantages:

(a) billions of dollars and thousands of years of programmer effort
have already gone into legacy programs,

(b) automated parallelization can save money and labour,

(c) it has been an active area of research for over twenty years.

2. Disadvantages:
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(a) pits programmer and compiler in game of hide and seek. The
programmer hides parallelism in loops and control structures, and
the compiler might irretrievably lose some parallelism.

ParaWise (previously known as CAPTools) takes an existing serial FOR-
TRAN 77, FORTRAN 90 or FORTRAN 95 code and automatically gener-
ates parallel programs for OpenMP, MPI, PVM and Cray SHMEM. Modern
general purpose compilers such as Intel and Portland Group vectorize cycles
to use low level data parallelism of modern CPUs.

Programming language extension

Extend a sequential language with constructions of parallel programming.

1. Advantages:

(a) easy to learn as is based on a wide known language,

(b) gives programmers flexibility with respect to program develop-
ment.

2. Disadvantages:

(a) requires development of new compilers, but on the base of existent
ones,

(b) Some parallel language extensions such as C* were not adapted
as standard compromising severely portable code.

The recent developments of this type were inspirited by the emerging stream
architecture. Brook of the Stanford University Graphics group’s in the forms
of BrookGPU and ATI/AMD Brook+ is used for GPGPU on the base of
OpenGL v1.3+, DirectX v9+ or AMD’s Close to Metal for the computa-
tional backend and runs on both Microsoft Windows and Linux. Unlike Oc-
cam and CHILL Brook is not a completely new language but rather a dialect
of ANSI C with small deviations related to specification of multiple GPU
memory types. Its short history looks to be finishing with AMD transition
to Khronos group’s OpenCL (Open Computing Language), that is another
C dialect currently supporting all main OS, GPU and Cell hardware. The
strongest competitor in the GPGPU area, NVIDIA’s CUDA, was initially
a C dialect, but since v.3 proposes full-scale C++ with similar extensions.
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The title ’C/C++ Language Extensions for Cell Broadband Engine Archi-
tecture’ says for itself. It is another C++ dialect for the hardware-specific
parallel programming. Among the listed C/C++ extensions OpenCL only is
standard and portable.

Parallel programming layer

Let us consider a parallel program consisting of two layers. The bottom layer
contains the core of the computation which manipulates its portion of data
to gets its result. The upper layer controls creation and synchronization of
processes. A compiler would then translate these two levels into code for
execution on parallel machines.

1. Advantages:

(a) allows users to depict parallel programs as directed graphs with
nodes depicting sequential procedures and arcs representing data
dependencies among procedures.

2. Disadvantages:

(a) requires programmer to learn and use a new parallel programming
system.

The most common example is OpenMP. OpenMP programmer adds special
pragma / comment instructions in the sequential program to express its
parallel behavior. A program can be converted from a sequential to parallel
form in reliable stepwise manner. Besides, any changes can be easy debugged
with use of its persisting sequential version.

Another approach is represented by Linda coordination language. It tar-
gets parallel program development from scratch. First the program parallel
skeleton is developed with use of only 6 Linda operators. Then the skele-
ton is translated to a sequential language for further development. Whereas
message-passing models require tightly-coupled processes sending messages
to each other in some sequence or protocol, Linda processes are decoupled
from other processes, communicating only through the tuplespace; a process
need have no notion of other processes except for the kinds of tuples con-
sumed or produced (data coupling). Linda implementations can be found for
Prolog, Ruby (Rinda), Python, C, Smalltalk, Java, TCP and Lisp. There are
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other close initiatives like JavaSpaces, TSpaces and a visual language called
Graphical Calculus of Communicating Systems (GCCS).

Specialized language

Develop a parallel language from scratch. Let the programmer express par-
allel operations explicitly.

1. Advantages:

(a) explicit parallelism means programmer and compiler are now allies
instead of adversaries.

2. Disadvantages:

(a) requires development of new compilers. It typically takes years
for vendors to develop high-quality compilers for their parallel
architectures,

(b) user resistance – few programmers want to learn another language.

The programming languages Occam (the late 1980s’ Inmos transputer pro-
gram language) and CHILL (CCITT language used in telecommunications
switches) are such famous examples. Despite promoting both those tools
have failed to expand. A free CHILL compiler bundled with GCC up to ver-
sion 2.95 was removed from the later versions. In late 1999 CCITT stopped
maintaining the CHILL standard, but it was later supported by ISO. The
last revision of the ’CHILL — The ITU-T programming language’ standard
is ISO/IEC 9496:2003.

Application program interface

Extend a sequential language with API functions that allow programmers
to create, terminate, synchronize and communicate with parallel processes.
This does not suppose development of specialized compilers but rather uti-
lization of existing language mechanisms for expression of concurrency.

1. Advantages:

(a) easiest, quickest, and least expensive implementation since it only
requires the development of a subroutine library,
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(b) gives programmers flexibility with respect to program develop-
ment,

(c) Libraries meeting the MPI standard exist for almost every parallel
computer.

2. Disadvantages:

(a) compiler is not involved in generation of parallel code therefore it
cannot flag errors,

(b) it is very easy to write parallel programs that are difficult to debug.

MPI, PVM, BSPlib, Titanium for Java are typical examples. It’s impor-
tant to highlight that some parallel programming tools such as fork/spawn
functions, sockets, events have been available from sequential languages for
decades. POSIX threads are among the most used tools of parallel program-
ming. API tools are attributed sometimes to the programming language
extension class.

Parallel mathematical libraries

Exploit high-performance parallel implementations of mathematical methods
from serial programs. Avoid parallel programming at all.

1. Advantages:

(a) easiest and quickest for application development from scratch,

(b) reliability, verified performance, easiest debug,

(c) gives programmers ready-to-use efficient solutions for typical prob-
lems.

2. Disadvantages:

(a) nothing but solutions of typical problems can be paralleled,

(b) need to fit and learn a library for almost every new parallel com-
puter architecture and class of problems,

(c) overheads for the data transformation into formats of each partic-
ular function.
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Scientific and technical HPC problems can be frequently reduced to com-
puter solutions of classical math problems or their combinations. From this
viewpoint one can concentrate efforts on high performance solution of those
problems and neglect paralleling other program parts.

Common types of problems found in parallel computing applications are:

1. dense linear algebra,

2. sparse linear algebra,

3. spectral methods (such as Cooley-Tukey fast Fourier transform),

4. n-body problems (such as Barnes-Hut simulation),

5. structured grid problems (such as Lattice Boltzmann methods),

6. unstructured grid problems (such as found in finite element analysis),

7. Monte Carlo simulation,

8. combinational logic (such as brute-force cryptographic techniques),

9. graph traversal (such as sorting algorithms),

10. dynamic programming,

11. branch and bound methods,

12. graphical models (such as detecting hidden Markov models and con-
structing Bayesian networks),

13. finite-state machine simulation.

Many libraries support parallel linear algebra implementations for computer
clusters: PLAPACK, ScaLAPACK, MKL, HSL, Inparsoft. Some of them
solve other math problems like systems of non-linear or differential equations.
MATLAB Distributed Computing Server Perform MATLAB and Simulink
computations on computer clusters and server farms. In the GPGPU area
NVIDIA proposes CUDPP for some data parallel primitive operations, cuFFT
for Fast Fourier Transforms, and cuBLAS for linear algebra. AMD also pro-
vides the AMD Computation and Math Library (ACML), comprised of BLAS
and LAPACK for linear algebra, FFT, math transcendental, and pseudo-
random number generation libraries. STI Center of Competence for the Cell
Broadband Engine Processor at Georgia Tech proposes free Cell optimized
libraries for FFT, MPEG, compression, encryption, and some other software.
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3.3 Parallel Computing Hardware

The history of the microprocessor over the last 40 years describes the greatest
period of sustained technical progress the world has ever seen. Moore’s Law,
which describes the rate of this progress, has no equivalent in transportation,
agriculture, or mechanical engineering. The first thirty years of the micropro-
cessor focused almost exclusively on serial workloads: compilers, managing
serial communication links, user-interface code, and so on. More recently,
CPUs have evolved to meet the needs of parallel workloads in markets from
financial transaction processing to computational fluid dynamics.

CPUs are easy to program, because compilers evolved right along with the
hardware they run on. Software developers can ignore most of the com-
plexity in modern CPUs; microarchitecture is almost invisible, and compiler
magic hides the rest. Multicore chips have the same software architecture as
older multiprocessor systems: a simple coherent memory model and a sea of
identical computing engines. But CPU cores continue to be optimized for
single-threaded performance at the expense of parallel execution. This fact is
most apparent when one considers that integer and floating-point execution
units occupy only a tiny fraction of the die area in a modern CPU [14].

Figure 3.3 shows the portion of the die area used by ALUs in the Core i7
processor (the chip code-named Bloomfield) based on Intel’s Nehalem mi-
croarchitecture.

With such a small part of the chip devoted to performing direct calculations,
it’s no surprise that CPUs are relatively inefficient for HPC applications.
Most of the circuitry on a CPU, and therefore most of the heat it generates,
is devoted to invisible complexity: those caches, instruction decoders, branch
predictors, and other features that are not architecturally visible but which
enhance single-threaded performance.

At the heart of this focus on single-threaded performance is a concept known
as speculation. At a high level, speculation encompasses not only specula-
tive execution (in which instructions begin executing even before it is possible
to know their results will be needed), but many other elements of CPU de-
sign. Caches, for example, are fundamentally speculative: storing data in
a cache represents a bet that the data will be needed again soon. Caches
consume die area and power that could otherwise be used to implement and
operate more execution units. Whether the bet pays off depends on the
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Figure 3.3: Intel’s Core i7 CPU. Red outlines highlight the portion of each core
occupied by execution units

nature of each workload. Similarly, multiple execution units, out of order
processing, and branch prediction also represent speculative optimizations.
All of these choices tend to pay off for code with high data locality (where the
same data items, or those nearby in memory, are frequently accessed), a mix
of different operations, and a high percentage of conditional branches. But
when executing code consisting of many sequential operations of the same
type – like scientific workloads – these speculative elements can sit unused,
consuming die area and power.

The market demands general-purpose processors that deliver high singlethreaded
performance as well as multi-core throughput for a wide variety of workloads
on client, server, and HPC systems. This pressure has given us almost three
decades of progress toward higher complexity and higher clock rates. This
progress hasn’t always been steady. Intel cancelled its Tejas processor, which
was rumored to have a 40-stage pipeline, and later killed off the entire Pen-
tium 4 NetBurst product family because of its relative inefficiency. The
Pentium 4 ultimately reached a clock rate of 3.8 GHz in the 2004 Prescott
model, a speed that Intel has been unable to match since. In the more re-
cent Core 2 (Conroe/Penryn) and Core i7 (Nehalem) processors, Intel uses
increased complexity to deliver substantial performance improvements over
the Pentium 4 line, but the pace of these improvements is slowing. Each new
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generation of process technology requires ever more heroic measures to im-
prove transistor characteristics; each new core microarchitecture must work
disproportionately harder to find and exploit instruction-level parallelism
(ILP).

As these challenges became more apparent in the 1990s, CPU architects be-
gan referring to the ’power wall’, the ’memory wall’, and the ’ILP wall’ as
obstacles to the kind of rapid progress seen up until that time. It may be
better to think of these issues as mountains rather than walls – mountains
that begin as mild slopes and become steeper with each step, making fur-
ther progress increasingly difficult. Nevertheless, the inexorable advance of
process technology provided CPU designers with more transistors in each
generation.

By 2005, the competitive pressure to use these additional transistors to de-
liver improved performance (at the chip level, if not at the core level) drove
AMD and Intel to introduce dual-core processors. Since then, the primary
focus of PC processor design has been continuing to increase the core count
on these chips. That approach, however, has reached a point of diminish-
ing returns. Dual-core CPUs provide noticeable benefits for most PC users,
but are rarely fully utilized except when working with multimedia content
or multiple performance-hungry applications. Quad-core CPUs are only a
slight improvement, most of the time. Recently there is a six-core CPU, but
it will likely be difficult to sell most desktop customers on the value of the
additional cores. Selling further increases will be even more problematic.

3.3.1 Networks for cluster computing

The well known Moore’s law gives us an estimation that the number of
transistors on a chip doubles every two years. In addition, Moore’s law also
means decreasing cost of manufacturing and therefore price of the product
decreases for consumers. From 1993 to 2000, Internet and the number of
networked hosts with graphical user interface grew rapidly and the price of
personal computer decreased at the same time with network equipment.

After year 2000 the evolution has continued even faster. There have been
only three years between Ethernet standards from 100 Mbit/s to 1 Gigabit
and four years from 1 Gbit/s to 10 Gigabit. 100 Gigabit Ethernet standard
IEEE 802.3ba approval is scheduled for June 2010, that is just 3 years after
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10 Gigabit one. The network bandwidth raise has surpassed the Moore’s law.

These changes created synergy with wide distribution of Beowulf HPC clus-
ter architecture. As Beowulf clusters consist of commodity hardware their
performance was initially restricted by big communication overheads. To
minimize them, initial Beowulf design was based on hypercube of coupled
Gigabit Ethernet inter-node connections.

HPC requests for high interconnect speed stimulated significant changes in
LAN communication technologies. The first was Myrinet, ANSI/VITA 26-
1998, a high-speed local area networking system designed by Myricom to
be used as an interconnect between multiple machines to form computer
clusters [40]. Myrinet had much lower protocol overhead than standards
such as Ethernet, and therefore provided better throughput, less interference,
and lower latency while using the host CPU. Although it can be used as a
traditional networking system, Myrinet is often used directly by programs
that ’know’ about it, thereby bypassing a call into the operating system.

Myrinet physically consists of two fibre optic cables, upstream and down-
stream, connected to the host computers with a single connector. Machines
are connected via low-overhead routers and switches, as opposed to con-
necting one machine directly to another. Myrinet includes a number of
fault-tolerance features, mostly backed by the switches. These include flow
control, error control, and ’heartbeat’ monitoring on every link. The fourth-
generation Myrinet of 2005, called Myri-10G, supports a 10 Gbit/s data rate
and is interoperable with 10 Gigabit Ethernet on the physical layer (cables,
connectors, distances, signaling). In 2005 Myrinet was used by 28.2% of
Top500 supercomputers, but later its part has reduced to 1.4% under the
press of Infiniband and 10 Gigabit Ethernet.

The Virtual Interface Architecture (VIA) is an abstract model of a user-level
zero-copy network, and is the basis for InfiniBand and iWARP [40]. Created
by Microsoft, Intel, and Compaq, the original VIA sought to standardize the
interface for high-performance network technologies known as System Area
Networks (SANs; not to be confused with Storage Area Networks).

In traditional networks such as Ethernet, the network as a shared resource is
protected by the kernel, which presents a tremendous performance bottleneck
when latency is an issue. A virtual network protected across process bound-
aries has been implemented by a network interface card (NIC). The virtual
interface (VI) of VIA refers to this network and is merely the destination of
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the user’s communication requests. Communication takes place over a pair
of VIs, one on each of the processing nodes involved in the transmission. In
the ’kernel-bypass’ communication, the user manages its own buffers.

Another facet of traditional networks is that arriving data is placed in a
pre-allocated buffer and then copied to the user-specified final destination.
Copying large messages can take a long time, and so eliminating this step
is beneficial. With direct memory access (DMA) a device can access main
memory directly while the CPU is free to perform other tasks. In a network
with remote direct memory access (RDMA), the sending NIC uses DMA
to read data in the user-specified buffer and transmit it as a self-contained
message across the network. The receiving NIC then uses DMA to place the
data into the user-specified buffer. There is no intermediary copying and all
of these actions occur without involvement of the CPUs, which has an added
benefit of lower CPU utilization.

For the NIC to actually access the data through DMA, the user’s page must
be in memory. In VIA, the user must ’pin-down’ its buffers before transmis-
sion, so as to prevent the OS from swapping the page out to the disk. This
action – one of the few that involves the kernel – ties the page to physical
memory. To ensure that only the process that owns the registered memory
may access it, the VIA NICs require permission keys known as ’protection
tags’ during communication.

Acceleration of communications provided conditions for the extensive raise
of cluster size and performance. HPC clusters quickly increased up to hun-
dreds and even thousand nodes. As result power consumption and related
space/conditioning limitations became a bottleneck of further performance
increasing.

These changes has destroyed Intel Itanium as too hot and reinforced concept
of ’green computing’ in the HPC domain. The issue of insufficient perfor-
mance of a single PC node returned on the new level.

3.3.2 Specialized microprocessor architectures

The illusion of a flat and uniformly accessible memory provided by tradi-
tional CPUs is increasingly costly to maintain. Latencies to main memory,
in spite of designer’s best efforts range in the several hundreds of cycles and
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approach a thousand cycles in multi-GHz SMP systems. With such a large
penalty associated with a cache miss, managing memory locality becomes the
main factor determining software performance. Developers of compilers and
high performance software alike spend much of their time reverse-engineering
and defeating the sophisticated mechanisms that automatically bring data
on to and off the chip. Given the large number of transistors devoted to
these mechanisms this is an unsatisfactory situation. Power limitations and
limitations on main memory access latency stimulate a re-evaluation of mi-
croprocessor architecture.

Green computing primary targeted to minimal impact on the environment
also strives to achieve economic viability and improved system use, while
abiding by our social and ethical responsibilities. Thus, green IT includes
the dimensions of environmental sustainability, the economics of energy ef-
ficiency, and the total cost of ownership, which includes the cost of disposal
and recycling. For the HPC clusters with their minimalist node design the
power necessary for cooling is the main source of the environment impact.
CPU is commonly a hottest heater on the motherboard, despite its small size,
because of extremely high power density raising with transition to smaller
elements (Fig. 3.4). The technology restrictions related to this effect are
known as a ’power wall’.

The Cell processor architecture [17] incorporated many new ideas to
improve microprocessor efficiency. On the Cell processor an 64-bit Power
Processor Element (PPE), a traditional CPU of IBM Power Architecture, is
combined with multiple Synergistic Processor Elements (SPEs) and associ-
ated memory transfer mechanisms. Memory translation and protection of
Cell are consistent with the Power Architecture. It supports multiple oper-
ating systems and virtualization. In particular real-time operating systems
(such as an embedded or game OS) and non-real time OS (such as Linux)
multiple Cell processors can run simultaneously alike Power processors. The
PPE virtualization layer governs the allocation of resources including the
SPEs to the various OS partitions. Unlike PPE, the SPEs operate only on
their local memory called local store (LS). Code and data must be transferred
into the associated LS for an SPE to execute or operate on LS addresses. Each
the LS address have an alias in the PPE address map, and synchronization
transfers between the SPE LSs and the memory are coherent. As result a
pointer to a data structure that has been created on the PPE can be passed
to an SPE and the SPE can use this pointer to issue a DMA command to
bring the data structure into its LS in order to perform operations on it.
If after operating on this data structure the SPE (or PPE) issues a DMA
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Figure 3.4: Power density of desktop Intel x86 CPUs

command to place it back in non-LS memory, the transfer is again coherent
in the system according to the normal Power memory ordering rules.

Lower speed of SPEs together with the big multilevel register/local cache
memory and asynchronous DMA to the global RAM help to bypass the
fundamental for SMP ’memory wall’.

Cell processor architecture addresses the ’power wall’ problem by reducing
transistor energy stream through decreasing the operating voltage, optimiza-
tion of the chip design (smaller channel length) and the technology (limited
oxide thickness scaling). Besides, the SPE cores are relatively simple and
due to absent speculation execute less transistor switching per command.

Vector conveyer operations of multiple concurrent SPEs compensate lower
speed of individual threads; high design frequency attack the ’frequency wall’
for embarrassingly parallel and fine-grained operations.
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Equivalents of the Power processor locking instructions, as well as a memory
mapped mailbox per SPE, are used for synchronization and mutual exclusion.
Figure 4.5 shows the Cell processor with highlighted execution units of both
PPE and SPEs to compare with a multicore Intel processor (Fig. 3.5).

Figure 3.5: IBM’s PowerXCell 8i of Cell architecture. Red outlines highlight the
portion of each core occupied by execution units

While the Cell architecture looks revolutionary in comparison with the tra-
ditional one, it is just a halfhearted measure from the GPGPU stream view-
point.

GPGPU programming evolved as a way to perform non-graphics process-
ing on graphics-optimized SIMD architectures, typically by running carefully
crafted shader code against data presented as vertex or texture information
and retrieving the results from a later stage in the pipeline. Though some-
times awkward, GPGPU programming showed great promise.

There were attempts to build chip-scale parallel processors in the 1990s, but
the limited transistor budgets in those days favored more sophisticated single-
core designs. The real path toward GPU computing began, not with GPUs,
but with nonprogrammable 3D-graphics accelerators. Multi-chip 3D ren-
dering engines were developed by multiple companies starting in the 1980s,
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but by the mid-1990s it became possible to integrate all the essential ele-
ments onto a single chip. From 1994 to 2001, these chips progressed from
the simplest pixel-drawing functions to implementing the full 3D pipeline:
transforms, lighting, rasterization, texturing, depth testing, and display.

In late 2006, NVIDIA and ATI (acquired by AMD in 2006) began marketing
GPU boards as streaming coprocessor boards [18]. Both companies released
software to expose the processor to application programmers. Since then the
hardware has grown more powerful and the available software has become
more high-level and developer-friendly. Streaming architecture have radical
changed rate of computing units per chip (see Fig. 3.6). Since most of the cir-
cuitry within each core is dedicated to computation, rather than speculative
features meant to enhance single-threaded performance, most of the die area
and power consumed by Fermi goes into the application’s actual algorithmic
work [14].

Figure 3.6: NVIDIA’s Fermi GPU consists of 32 streaming multiprocessors
(SMs), each consisting of 32 cores. Green highlights the portion of GPU occu-
pied by execution units
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Unlike the early attempts at chip-scale multiprocessing back in the ’90s,
NVIDIA Tesla and AMD FireStream were high-volume hardware platforms
right from the beginning. General purpose computing with GPUs became
feasible when vendors made it possible to program them without using graph-
ics primitives. Higher level control has gradually become available, to the
point where now both NVIDIA and AMD offer a tool chain based on a slightly
enhanced version of C. The basic programming model is to write ordinary C
code that runs on the CPU for sequential operations and for control, with
the parallel code segregated into kernels (data parallel functions) that run in
parallel on the GPU.

Although GPU computing is only a few years old now, it’s likely there are
already more programmers with direct GPU computing experience than have
ever used a Cray. NVIDIA says it has shipped over 100 million CUDA-
capable chips. Academic support for GPU computing is also growing quickly.
NVIDIA says over 200 colleges and universities are teaching classes in CUDA
programming; the availability of OpenCL will drive that number even higher.

GPU computing isn’t meant to replace CPU computing. Each approach
has advantages for certain kinds of software. As explained earlier, CPUs
are optimized for applications where most of the work is being done by a
limited number of threads, especially where the threads exhibit high data
locality, a mix of different operations, and a high percentage of conditional
branches. GPU design aims at the other end of the spectrum: applications
with multiple threads that are dominated by longer sequences of computa-
tional instructions. Over the last few years, GPUs have become much better
at thread handling, data caching, virtual memory management, flow control,
and other CPU-like features, but the distinction between computationally
intensive software and control-flow intensive software is fundamental.

Here are some impressive reports from HPC community members succeeded
with GPU, all reporting a speedup of two orders of magnitude or more:

• 1080x: Monte Carlo simulation of photon migration,

• 675x: stochastic differential equations,

• 470x: k nearest neighbor search,

• 420x: generalized harmonic analysis,

• 340x: power system simulation,
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• 300x: cone beam computed tomography,

• 270x: Particle swarm optimization,

• 263x: FHD-spiral MRI reconstruction,

• 250x: N-body simulation,

• 172x: support vector machine training and classification,

• 169x: signal and image reconstruction,

• 130x: quantum chemistry two-electron integral evolution,

• 120x: 3D particle Boltzmann solver,

• 109x: sliding window object detection,

• 100x: visualization of volumetric white matter connectivity,

• 100x: prestack seismic data interaction,

• 100x: folding@home,

• 100x: pricing and risk management of exotic financial structures,

• 100x: incompressible Navier-Stokes solver.

While GPGPU allows high performance solution of many problems it is not
suitable for solution of many others. In fact only embarrassingly parallel
applications with few memory volume per atomic task are guaranteed to
be efficiently paralleled on GPUs. Fine grained applications are frequently
suitable for GPUs, but device-level memory use significantly decreases per-
formance.

3.4 Parallel Programming

The section introduces popular software development tools for the described
hardware architectures. We have selected OpenMP for shared memory com-
puters as more relevant for HPC than POSIX threads and MPI for dis-
tributed memory computers as more universal and wider distributed than
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PVM. Choice of GPU programming tool is more complex: OpenCL is recog-
nized as a standard cross-platform program interface for both Cell and GPUs,
but NVIDIA dominates on the stream processor market, and its CUDA im-
plementation completely fitted to hardware can provide some performance
benefits for NVIDIA’s GPUs. Despite this we have selected OpenCL. Be-
sides, to avoid language mix issues all the next samples are in C, that is
common for the listed platforms.

To discuss the implementation issues we will use a simple N-Body simula-
tion. This algorithm is used frequently in demonstrations of computational
performance and is an interesting algorithm for several reasons. First, the
simulation of the motion of particles subject to particle-particle interactions
represents a general class of algorithms with applications ranging from chem-
istry to astrophysics. Second, the scaling of the algorithm is O(N)2 in com-
putation and O(N) in communication, where N is the number of particles.
This makes N a convenient tuning parameter for studying the performance
of different architectures. For small or large N, one expects an architecture to
be relatively communication or compute bound, respectively, and, measured
performance can provide valuable information about an underlying architec-
ture. Finally, the algorithm is relatively simple and easy to implement mak-
ing it useful for a tutorial such as this one. The back-ground physics is well
known to wide audience. The sequential C version of the N-Body simulation
program follows. The code fragment contains just a function implementing
the algorithm itself. Other related stuff like main(), data initialization and
output is omitted.

#include <stdio.h>

#include <math.h>

#define eps 1.0e-12

int nbody(int n, double dt,

double m[], double x[], double y[], double z[],

double vx[], double vy[], double vz[],

double xnew[], double ynew[], double znew[])

{

double ax, ay, az, dx, dy, dz, d2, f, invr, invr3;

int i, j, num_impacts, impact;

num_impacts=0;

for(i=0; i<n; i++) { /* Foreach particle "i" ... */

ax=ay=az=0.0; impact=0;
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for(j=0; j<n; j++) { /*Loop over all particles "j"*/

if(j==i) continue;

dx=x[j]-x[i]; dy=y[j]-y[i]; dz=z[j]-z[i];

d2 = dx*dx+dy*dy+dz*dz;

invr = 1.0/sqrt(d2+eps);

invr3 = invr*invr*invr;

f = m[j]*invr3;

ax += f*dx; /* accumulate the acceleration from */

ay += f*dy; /* gravitational attraction */

az += f*dz;

if(d2<=eps) impact=1; /*close particles*/

}

num_impacts+=impact; /*number of impacts*/

/* update position of particle "i": */

xnew[i] = x[i] + dt*vx[i] + 0.5*dt*dt*ax;

ynew[i] = y[i] + dt*vy[i] + 0.5*dt*dt*ay;

znew[i] = z[i] + dt*vz[i] + 0.5*dt*dt*az;

/* update velocity of particle "i": */

vx[i] += dt*ax; vy[i] += dt*ay; vz[i] += dt*az;

}

return num_impacts;

}

3.4.1 OpenMP for Multiprocessor/Multicore Shared
Memory SMP

OpenMP [34] is a collection of compiler directives and library functions that
are used to create parallel programs for shared-memory computers. OpenMP
is combined with C, C++, or Fortran to create a multithreading program-
ming language; that is, the language model is based on the assumption that
the UEs are threads that share an address space. Its support under both
Windows and Linux is provided by the general purpose compilers.

The formal definition of OpenMP is contained in a pair of specifications, one
for Fortran and the other for C/C++. They differ in some minor details, but
for the most part, a programmer who knows OpenMP for one language can
pick up the other language with little additional effort.

OpenMP is based on the fork/join programming model. An executing OpenMP
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program starts as a single thread. At points in the program where parallel
execution is desired, the program forks additional threads to form a team
of threads. The threads execute in parallel across a region of code called
a parallel region. At the end of the parallel region, the threads wait until
the full team arrives, and then they join back together. At that point, the
original or master thread continues until the next parallel region (or the end
of the program).

OpenMP was designed around two key concepts: sequential equivalence and
incremental parallelism. A program is said to be sequentially equivalent when
it yields the same1 results whether it executes using one thread or many
threads. A sequentially equivalent program is easier to maintain and, in most
cases, much easier to understand (and hence write). Incremental parallelism
refers to a style of parallel programming in which a program evolves from
a sequential program into a parallel program. A programmer starts with
a working sequential program and finds pieces of code that are worthwhile
to execute in parallel. Thus, parallelism is added incrementally. At each
phase of the process, there is a working program that can be verified, greatly
increasing the chances that the project will be successful.

It is not always possible to use incremental parallelism or to create sequen-
tially equivalent OpeniMP programs. Sometimes a parallel algorithm re-
quires complete restructuring of the analogous sequential program. In other
cases, the program is constructed from the beginning to be parallel and there
is no sequential program to incrementally parallelize. Also, there are parallel
algorithms that do not work with one thread and hence cannot be sequen-
tially equivalent. Still, incremental parallelism and sequential equivalence
guided the design of the OpenMP API and are recommended practices.

OpenMP is an explicitly parallel programming language. The compiler doesn’t
guess how to exploit concurrency. Any parallelism expressed in a program
is there because the programmer directed the compiler to ’put it there’. To
create threads in OpenMP, the programmer designates blocks of code that
are to run in parallel. This is done in C and C++ with the pragma:

#pragma omp directive-name [clause[ clause] ... ]

Each pragma relates to a structured block that is either the next C statement
or the next sequence of C statements put in braces { and }. An OpenMP
program is not allowed to branch into or out of a structured block. To
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attempt to do so is a fatal error generally caught at compile time. Likewise,
the structured block cannot contain a return statement. The only branch
statements allowed are those that shut down the entire program (exit() in
C). Some examples of OpenMP pragmas in C or C++ follow:

#pragma omp parallel private(ii, jj, kk)

#pragma omp barrier

#pragma omp for reduction(+:result)

When using the parallel construct alone, every thread executes the same
block of statements. There are times, however, when we need different code
to map onto different threads. This is called worksharing.

The most commonly used worksharing construct in OpenMP is the construct
to split loop iterations between different threads. Designing a parallel algo-
rithm around parallel loops is an old tradition in parallel programming. This
style is sometimes called loop splitting. In this approach, the programmer
identifies the most time-consuming loops in the program. Each loop is re-
structured, if necessary, so the loop iterations are largely independent. The
program is then parallelized by mapping different groups of loop iterations
onto different threads. For example, consider the described program part:

#include <stdio.h>

#include <math.h>

#define eps 1.0e-12

int nbody(int n, double dt,

double m[], double x[], double y[], double z[],

double vx[], double vy[], double vz[],

double xnew[], double ynew[], double znew[])

{

double ax, ay, az, dx, dy, dz, d2, f, invr, invr3;

int i, j, num_impacts, impact;

num_impacts=0;

#pragma omp parallel for private(i,j,num_close)\textbackslash

private(ax,ay,az,dx,dy,dz,d2,f,invr,invr3)\textbackslash

reduce(+,num_impacts)
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for(i=0; i<n; i++) { /* Loop is converted to fork */

ax=ay=az=0.0; impact=0;

for(j=0; j<n; j++) { /*Loop over all particles "j"*/

if(j==i) continue;

dx=x[j]-x[i]; dy=y[j]-y[i]; dz=z[j]-z[i];

d2 = dx*dx+dy*dy+dz*dz;

invr = 1.0/sqrt(d2+eps);

invr3 = invr*invr*invr;

f = m[j]*invr3;

ax += f*dx; /* accumulate the acceleration from */

ay += f*dy; /* gravitational attraction */

az += f*dz;

if(d2<=eps) impact=1; /*close particles*/

}

num_impacts+=impact; /*number of impacts*/

/* update position of particle "i" */

xnew[i] = x[i] + dt*vx[i] + 0.5*dt*dt*ax;

ynew[i] = y[i] + dt*vy[i] + 0.5*dt*dt*ay;

znew[i] = z[i] + dt*vz[i] + 0.5*dt*dt*az;

/* update velocity of particle "i" */

vx[i] += dt*ax; vy[i] += dt*ay; vz[i] += dt*az;

} /* Join is supposed to be executed here */

return num_impacts;

}

Just one OpenMP pragma has been used to parallelize the code. The function
can be paralleled by OpenMP without any changes in other parts of the
program source code.

The pragma directive parallel means beginning of parallelized block. This
time it contains the only statement for(i=0; i<n; i++){...}. The pragma
directive for means the loop have to be vectorized. These directives can be
set separately with the same effect:

#pragma omp parallel { #pragma omp parallel for

#pragma omp for = for(...) {

for(...) {...} ...

} }
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The pragma directive private specifies which variables to be cloned for each
thread. In C++ case any variables declared in a parallel region are cloned.
Other variables are shared.

Several other clauses change how variables are shared between threads. The
most commonly used ones follow.

1. firstprivate(list). Just as with private, for each name appearing in
the list, a new private variable for that name is created for each thread.
Unlike private however, the newly created variables are initialized with
the value of the variable that was bound to the name in the region of
code preceding the construct containing the firstprivate clause. This
clause can be used on both parallel and the worksharing constructs.

2. lastprivate(list). Once again, private variables for each thread are
created for each name in the list. In this case, however, the value of
the private variable from the sequentially last loop iteration is copied
out into the variable bound to the name in the region following the
OpenMP construct containing the lastprivate clause. This clause
can only be used with the loop-oriented workshare constructs.

The final clause used in the sample is the reduction clause. A reduction
is an operation that, using a binary, associative operator, combines a set of
values into a single value. Reductions are very common and are included in
most parallel programming environments. In OpenMP, the reduction clause
defines a list of variable names and a binary operator. For each name in the
list, a private variable is created and initialized with the value of the identity
clement for the binary operator (for example, zero for addition). Each thread
carries out the reduction into its copy of the local variable associated with
each name in the list. At the end of the construct containing the reduction
clause, the local values are combined with the associated value prior to the
OpenMP construct in question to define a single value. This value is assigned
to the variable with the same name in the region following the OpenMP
construct containing the reduction.

In the example, the reduction clause was applied with the + operator to
compute a summation and leave the result in the variable ’num impacts’.

Although the most common reduction involves summation, OpenMP also
supports reductions with the standard C/C++ operators *, -, &, |, ˆ, &&,
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and ||. The C and C++ languages do not include a number of useful intrin-
sic functions such as ’min’ or ’max’ within the language definition. Hence,
OpenMP can not provide reductions in such cases; if they are required, the
programmer must code them explicitly by hand.

Variables generally can appear in the list of only a single data clause. The
exception is with lastprivate and firstprivate, because it is quite pos-
sible that a private variable will need both a well-defined initial value and a
value exported to the region following the OpenMP construct in question.

In this example the runtime system is allowed to select the number of threads.
This is the most common approach. It is possible to change the operating
system’s default number of threads to use with OpenMP applications by
setting the OMP_NUM_THREADS environment variable. The number of threads
to be used can also be set inside the program with the num_threads clause.
For example, to create a parallel region with three threads, the programmer
would use

#pragma omp parallel num_threads(3)

Many OpenMP programs can be written using only the parallel and parallel
for constructs. There are algorithms, however, where one needs more careful
control over how variables are shared. When multiple threads read and write
shared data, the programmer must ensure that the threads do not interfere
with each other, so that the program returns the same results regardless
of how the threads are scheduled. This is of critical importance since as a
multithreaded program runs, any semantically allowed interleaving of the in-
structions could actually occur. Hence, the programmer must manage reads
and writes to shared variables to ensure that threads read the correct value
and that multiple threads do not try to write to a variable at the same time.

The major synchronization constructs in OpenMP are the following.

– flush defines a synchronization point at which memory consistency is
enforced. Basically, a modern computer can hold values in registers or
buffers that are not guaranteed to be consistent with the computer’s
memory at any given point. Cache coherency protocols guarantee that
all processors ultimately see a single address space, but they do not
guarantee that memory references will be consistent at every point in
time. The syntax of flush is:
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#pragma omp flush [(list)]

where list is a comma-separated list of variables that need to be
flushed. If the list is omitted, all variables visible to the calling thread
will be flushed. Programmers only rarely need to call flush because it is
automatically inserted at most points where it is needed. Typically it is
used only by programmers building their own low-level synchronization
primitives,

– barrier provides a synchronization point at which the threads wait
until every member of the team has arrived before any threads continue.
The syntax of a barrier is:

#pragma omp barrier

A barrier can be added explicitly, but it is also implied where it makes
sense (such as at the end of parallel or worksharing constructs). A bar-
rier implies a flush.

By default, there is an implicit barrier at the end of any OpenMP
workshare construct; that is, all the threads wait at the end of the
construct and only proceed after all of the threads have arrived. This
barrier can be removed by adding a nowait clause to the worksharing
construct:

#pragma omp for nowait

– critical implements a critical section for mutual exclusion. In other
words, only one thread at a time will execute the structured block
within a critical section. The other threads will wait their turn at the
top of the construct. The syntax of a critical section is:

#pragma omp critical [(name)]{a structured block}

where name is an identifier that can be used to support disjoint sets
of critical sections. A critical section implies a call to flush on entry to
and on exit from the critical section.
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The example code may be rewritten using critical section instead of reduction:

#include <stdio.h>

#include <math.h>

#define eps 1.0e-12

int nbody(int n, double dt,

double m[], double x[], double y[], double z[],

double vx[], double vy[], double vz[],

double xnew[], double ynew[], double znew[])

{

double ax, ay, az, dx, dy, dz, d2, f, invr, invr3;

int i, j, num_impacts, impact;

num_impacts=0;

#pragma omp parallel for private(i, j, num_close)

private(ax, ay, az, dx, dy, dz, d2, f, invr, invr3)

for(i=0; i<n; i++) { /* Loop is converted to fork */

ax=ay=az=0.0; impact=0;

for(j=0; j<n; j++) { /*Loop over all particles "j"*/

if(j==i) continue;

dx=x[j]-x[i]; dy=y[j]-y[i]; dz=z[j]-z[i];

d2 = dx*dx+dy*dy+dz*dz;

invr = 1.0/sqrt(d2+eps);

invr3 = invr*invr*invr;

f = m[j]*invr3;

ax += f*dx; /* accumulate the acceleration from */

ay += f*dy; /* gravitational attraction */

az += f*dz;

if(d2<=eps) impact=1; /*close particles*/

}

#pragma omp critical

{

num_impacts+=impact; /*number of impacts*/

}

/* update position of particle "i" */

xnew[i] = x[i] + dt*vx[i] + 0.5*dt*dt*ax;

ynew[i] = y[i] + dt*vy[i] + 0.5*dt*dt*ay;

znew[i] = z[i] + dt*vz[i] + 0.5*dt*dt*az;

/* update velocity of particle "i" */

vx[i] += dt*ax; vy[i] += dt*ay; vz[i] += dt*az;
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} /* Join is supposed to be executed here */

return num_impacts;

}

As much as possible, the syntax of OpenMP is expressed through compiler
directives. Certain features of the language, however, can only be handled
with runtime library functions. The function prototypes are in the omp.h

include file. Of the functions within the runtime library, the most commonly
used ones are the following:

– omp_set_num_threads(int new_num_threads) takes an integer argu-
ment and requests that the OS provide that number of threads in sub-
sequent parallel regions,

– omp_get_num_threads() returns the actual number of threads in the
current team of threads,

– omp_get_thread_num() returns the ID of a thread, where the ID ranges
from 0 to the number of threads minus 1. The thread with ID of 0 is
the master thread,

– omp_init_lock(omp_lock_t *lock). Initialize the lock,

– omp_destroy_lock(omp_lock_t *lock). Destroy the lock, thereby
freeing any memory associated with the lock,

– omp_set_lock(omp_lock_t *lock). Set or acquire the lock. If the
lock is lice, then the thread calling omp_set_lock() will acquire the
lock and continue. If the lock is held by another thread, the thread
calling omp_set_lock() will wait on the call until the lock is available,

– omp_unset_lock(omp_lock_t *lock). Release the lock so some other
thread can acquire it,

– omp_test_lock(omp_lock_t *lock). Test or inquire if the lock is
available. If it is, then the thread calling this function will acquire
the lock and continue. The test and acquisition of the lock is done
atomically. If it is not, the function returns nonzero integer and the
calling thread continues. This function is used so a thread can do useful
work while waiting for a lock.
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The lock functions use an opaque data type omp_lock_t defined in the omp.h.
The lock functions guarantee that the lock variable itself is consistently up-
dated between threads, but do not imply a flush of other variables.

The key to performance in a loop-based parallel algorithm is to schedule the
loop iterations onto threads such that the load is balanced between threads.
OpenMP compilers try to do this for the programmer. Although compil-
ers are excellent at managing data dependencies and are very effective at
generic optimizations, they do a poor job of understanding, for a particular
algorithm, memory access patterns and how execution times vary from one
loop iteration to the next. To get the best performance, programmers need to
tell the compiler how to divide the loop iterations among the threads. This
is accomplished by adding a schedule clause to the for or do worksharing
constructs. The schedule clause takes the form:

#pragma omp for schedule(sched [,chunk])

where sched is cither static, dynamic, guided or runtime and chunk is an
optional integer parameter.

– schedule (static [,chunk]). The iteration space is divided into
blocks of size chunk. If chunk is omitted, then the block size is selected
to provide1 one approximately equal-sized block per thread. The blocks
are dealt out to the threads that make up a team in a round-robin
fashion. For example, a chunk size of 2 for 3 threads and 12 iterations
will create 6 blocks containing iterations (0,1), (2,3), (4,5), (6,7), (8,9),
and (10,11) and assign them to threads as [(0,1), (6,7)] to one thread,
[(2,3), (8,9)] to another thread and [(4,5), (10,11)] to the last thread.

– schedule (dynamic [,chunk]). The iteration space is divided into
blocks of size chunk. If chunk is omitted, the block size is set to 1.
Each thread is initially given one block of iterations to work with. The
remaining blocks are placed in a queue. When a thread finishes with
its current block, it pulls the next block of iterations that need to be
computed off the queue. This continues until all the iterations have
been computed.

– schedule (guided [,chunk]). This is a variation of the dynamic
schedule optimized to decrease scheduling overhead. As with dynamic
scheduling, the loop iterations are divided into blocks, and each thread
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is assigned one block initially and then receives an additional block
when it finishes the current one. The difference is the size of the blocks:
for the first block it is implementation-dependent, but large; block size
is decreased rapidly for subsequent blocks, down to the value specified
by chunk. This method has the benefits of the dynamic schedule, but
by starting with large block sizes, the number of scheduling decisions
at runtime, and hence the parallel overhead, is greatly reduced.

– schedule (runtime). The runtime schedule stipulates that the actual
schedule and chunk size for the loop is to be taken from the value of
the environment variable OMP SCHEDULE. This lets a programmer
try different schedules without having to recompile for each trial.

The definition of the full OpenMP API is only 50 pages of text. The speci-
fication also includes more than 25 panes of examples.

3.4.2 MPI for Distributed/Shared Memory Clusters

MPI (Message Passing Interface) [MPI] is the standard programming envi-
ronment for distributed-memory parallel computers. The central construct
in MPI is message passing: one process packages information into a mes-
sage and sends that message to another process. MPI, however, includes far
more than simple message passing. MPI provides routines to synchronize
processes, sum numbers distributed among a collection of processes, scatter
data across a collection of processes, and much more.

MPI was created in the early 1990s to provide a common message-passing
environment that could run on clusters, NUMA computers, MPPs, and even
shared-memory machines including SMPs. MPI is distributed in the form
of a library, and the official specification defines bindings for C and Fortran,
although bindings for other languages have been defined as well. The over-
whelming majority of MPI programmers today use MPI version 1.1 (released
in 1995). The specification of an enhanced version, MPI 2.0, with paral-
lel I/O, dynamic process management, one-sided communication, and other
advanced features was released in 1997. Unfortunately, it was such a com-
plex addition to the standard that for the long time, only a handful of MPI
implementations supported MPI 2.0. When it has been already widely imple-
mented its main features became outdated. For example parallel file systems
are better administrated and provide usually higher I/O performance than
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MPI-IO. As their simultaneous use creates additional overheads MPI-IO is
rarely used on modern clusters. Most MPI programs are developed in the
boundaries of MPI 1.1 functions.

The MPI approach is based on two core elements: process groups and a
communication context. A process group is a set of processes involved in
a computation. In MPI, all the processes involved in the computation are
launched together when the program starts and belong to a single group. As
the computation proceeds, however, the programmer can divide the processes
into subgroups and precisely control how the groups interact.

A communication context provides a mechanism for grouping together sets of
related communications. In any message-passing system, messages must be
labeled so they can be delivered to the intended destination or destinations.
The message labels in MPI consist of the ID of the sending process, the ID
of the intended receiver, and an integer tag. A receive statement includes
parameters indicating a source and tag, either or both of which may be wild
cards. The result, then, of executing a receive statement at process i is the
delivery of a message with destination i whose source and tag match those
in the receive statement.

While straightforward, identifying messages with source, destination, and
tag may not be adequate in complex applications, particularly those that
include libraries or other functions reused from other programs. Often, the
application programmer doesn’t know any of the details about this borrowed
code, and if the library includes calls to MPI, the possibility exists that
messages in the application and the library might accidentally share tags,
destinations IDs, and source IDs. This could lead to errors when a library
message is delivered to application code, or vice versa. One way to deal with
this problem is for library writers to specify reserved dial users must avoid
in their code. This approach has proved cumbersome, however, and can lead
to error because it requires programmers to carefully read and follow the
instructions in the documentation.

The elegant MPI’s solution to this problem is based on the notion of commu-
nication contexts. Both send and receive belong to a communication context,
and only those communication events that share a communication context
will match. Hence, even if messages share a source, a destination, and a
tag, they will not be confused with each other as long as they have different
contexts. Communication contexts are dynamically created and guaranteed
to be unique.
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In MPI the process group and communication context are combined into a
single object called a communicator. At program startup, the runtime system
creates a common communicator called MPI_COMM_WORLD.

MPI is the most commonly used API for parallel programming. MPI’s low-
level constructs are closely aligned to the MIMD model of parallel computers.
This allows MPI programmers to precisely control how the parallel computa-
tion unfolds and write highly efficient programs. Perhaps even more impor-
tant, this lets programmers write portable parallel programs that run well on
shared-memory machines, massively parallel supercomputers, clusters, and
even over a grid. MPI required much more coding to implement parallel
version of the N-Body algorithm. Nevertheless, the changes in the nbody

function itself are small:

#include <stdio.h>

#include <math.h>

#define eps 1.0e-12

int nbody(int n, int first, int last, double dt,

double m[], double x[], double y[], double z[],

double vx[], double vy[], double vz[],

double xnew[], double ynew[], double znew[])

{

double ax, ay, az, dx, dy, dz, d2, f, invr, invr3;

int i, j, num_impacts, impact;

num_impacts=0;

for(i=first; i<=last; i++) { /* For selected particles */

ax=ay=az=0.0; impact=0;

for(j=0; j<n; j++) { /*Loop over all particles "j"*/

if(j==i) continue;

dx=x[j]-x[i]; dy=y[j]-y[i]; dz=z[j]-z[i];

d2 = dx*dx+dy*dy+dz*dz;

invr = 1.0/sqrt(d2+eps);

invr3 = invr*invr*invr;

f = m[j]*invr3;

ax += f*dx; /* accumulate the acceleration from */

ay += f*dy; /* gravitational attraction */

az += f*dz;

if(d2<=eps) impact=1; /*close particles*/

}
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num_impacts+=impact; /*number of impacts*/

/* update position of particle "i": */

xnew[i] = x[i] + dt*vx[i] + 0.5*dt*dt*ax;

ynew[i] = y[i] + dt*vy[i] + 0.5*dt*dt*ay;

znew[i] = z[i] + dt*vz[i] + 0.5*dt*dt*az;

/* update velocity of particle "i": */

vx[i] += dt*ax; vy[i] += dt*ay; vz[i] += dt*az;

}

return num_impacts;

}

MPI constructions and functions are mostly used in main().

#include <stdio.h>

#include <mpi.h> /* MPI functions, structures & constants */

#define BUF_LEN 10000; /* for memory allocation */

#define NUM_STEPS 100; /* number of simulation steps */

#define DT 0.0001; /* time step of the simulation */

/* external functions */

int nbody(int n, int first, int last, double dt,

double m[], double x[], double y[], double z[],

double vx[], double vy[], double vz[],

double xnew[], double ynew[], double znew[]);

int init_data(int buf_len, double * buf); /* it’s easy */

/* the program entry point */

int main(int argc, char* argv[]) {

int thread, num_threads, first, last;

double *buf, *m, *x, *y, *z, *vx, *vy, *vz;

double *xnew, *ynew, *znew, *tmp;

int n, buf_len, n_impacts, s, k;

/*necessary MPI initialisation*/

if(MPI_Init(&argc, &argv) != MPI_SUCCESS) {

return 1; /* exit on MPI initialization error */

}

/* get the number of all running EUs */

MPI_Comm_size(MPI_COMM_WORLD, & num_threads);

/* get the ID number of this EU */

MPI_Comm_rank(MPI_COMM_WORLD, & thread);
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/* allocate buffer */

buf=calloc(BUF_LEN,sizeof(double));

if(buf==NULL) { /* exit on memory error */

MPI_Abort();/* interruption of the MPI program */

return 2;

}

if(thread==0) { /* input or generate particles */

n = init_data(BUF_LEN,buf); /* number of particles */

}

/* distribute the number of particles from 0 thread */

MPI_Bcast(&n,1,MPI_INT,0,MPI_COMM_WORLD);

/* prepare buffer pointers */

m=buf; x=m+n; y=x+n; z=y+n; vx=z+n; vy=vx+n; vz=vy+n;

xnew=vz+n; ynew=xnew+n; znew=ynew+n;

buf_len=n*10; /* number of logical buffers = 10 */

//{{main part

for(s=0; s<NUM_STEPS; s++) { /* main loop */

/* distribute the input data from 0 thread */

MPI_Bcast(tmp,buf_len,MPI_DOUBLE,0,MPI_COMM_WORLD);

/* calculate particle diapason for the EU */

first=n*thread/num_threads;

last=(n+1)*thread/num_threads-1;

/* run simulation */

k=nbody(n, first, last, DT, m, x, y, z,

vx, vy, vz, xnew, ynew, znew);

/* synchronization */

MPI_Barrier(MPI_COMM_WORLD);

/* exchange of coordinate buffers */

tmp=x; x=xnew; xnew=tmp;

tmp=y; y=ynew; ynew=tmp;

tmp=z; z=znew; znew=tmp;

}

MPI_Reduce(& k, & n_impacts, 1, MPI_DOUBLE,

MPI_SUM, 0, MPI_COMM_WORLD); /* sum from all trace */

//}}main part

if(thread==0) { /* print result */

printf("%d of %d particles stick together with other"

"due to %d impacts\n",n_impacts,n,n_impacts/2);

}

free(tmp);
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MPI_Finalize(); /* correct finish of a MPI program */

return 0; /* exit */

}

All MPI programs include a few basic elements. Consider the above program.
We will explore the elements of MPI required to turn this into a parallel
program where multiple processes execute the function. First, the function
prototypes for MPI need to be defined. This is done with the MPI include
file:

#include <mpi.h>

Next, the MPI environment must be initialized. As part of the initializa-
tion, the communicator shared by all the processes is created. As mentioned
earlier, this is called MPI_COMM_W0RLD:

MPI_Init(&argc, &argv);

The command-line arguments are passed into MPI_Init so the MPI environ-
ment can influence the behavior of the program by adding its own command-
line arguments (transparently to the programmer). This function returns an
integer status flag used to indicate success or failure of the function call.
With very few exceptions, all MPI functions return this flag. Possible values
of this flag are described in the MPI include file, mpi.h.

Although not required, almost every MPI program uses the number of pro-
cesses in the group and the rank of each process in the group to guide
the computation. This information is found through calls to the functions
MPI_Comm_size and MPI_Comm_rank.

When the MPI program finishes running, the environment needs to be cleanly
shut down. This is done with this function:

MPI.Finalize();

If at any point within a program a fatal condition is detected, it might be nec-
essary to shut down the program. If this is not done carefully, processes can
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be left on some of the nodes. These processes, called orphan processes, can
in principle stay around ’forever’ waiting for interaction with other processes
within the group. The following function tells the MPI runtime environment
to make a best-effort attempt to shut down all the processes in the MPI
program:

MPI_Abort();

Earlier discussed point-to-point communication is not, however, necessary
for any MPI program. I our example we didn’t use pairwise message passing
at all. Instead according to SPMD model we have used a set of operations
in which all the processes in the group work together to carry out a complex
communication. These collective communication operations are extremely
important in MPI programming. In fact, many MPI programs consist pri-
marily of collective operations.

The most commonly used collective operations include the following:

– MPI_Barrier(MPI_COMM group). A barrier defines a synchronization
point at which all processes must arrive before any of them are allowed
to proceed. For MPI, this means that every process using the indi-
cated communicator must call the barrier function before any of them
proceed. The only parameter of this function is a group communicator,

– MPI_Bcast(void *buff, int count, MPI_TYPE type, int source,
MPI_COMM group). A broadcast sends a message from one process of
rank source to all the processes in a group. Data are copied so from
buff of the sending process to buff of each other process of the group.
The buff points to array of count items of a specified type. The
most commonly used types are MPI_DOUBLE, MPI_INT, MPI_LONG, and
MPI_FLOAT,

– MPI_Reduce(void *inbuff, void *outbuff, int count, MPI_TYPE

type, int destination, MPI_COMM group). A reduction operation
takes a set of values (in the buffer pointed to by inbuff) spread out
around a process group and combines them using the indicated bi-
nary operation. To be meaningful, the operation in question must
be associative. The most common examples for the binary function
are summation and finding the maximum or minimum of a set of val-
ues. Notice that the final reduced value (in the buffer pointed to by
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outbuff) is only available in the indicated destination process. If the
value is needed by all processes, there is a variant of this routine called
MPI_All_reduce().

The same program can be paralleled using point-to-point MPI communica-
tions. To do this let’s rewrite the main part:

//{{main part

MPI_Status status;

if(thread==0) { /* the master thread */

for(s=0; s<NUM\_STEPS; s++) { /* main loop */

/* distribute the input data from 0 thread */

MPI_Bcast(tmp,buf_len,MPI_DOUBLE,0,MPI_COMM_WORLD);

/* calculate particle diapason for the EU */

for(k=0; k<min(n, num_threads); k++) {

first=k*thread/num_threads;

MPI_Send(&first,1,MPI_INT,k,77,MPI_COMM_WORLD);

}

for(; k<n; k++) {

MPI_Recv(&last,1,MPI_INT,MPI_ANY_SOURCE,88,MPI_COMM_WORLD,

&status);

/* from any thread */

first=k*thread/num_threads;

MPI_Send(&first,1,MPI_INT,status.MPI_SOURCE,77,

MPI_COMM_WORLD);

/* to the thread */

n_impacts+=last;

}

for(k=0; k<min(n, num_threads); k++) {

MPI_Recv(&last,1,MPI_INT,MPI_ANY_SOURCE,88,MPI_COMM_WORLD,

&status);

/* from any thread */

n_impacts+=last;

}

for(k=0; k<n; k++) {

first = s+1<NUM_STEPS? -1: -2;

MPI_Send(&first,1,MPI_INT,k,77,MPI_COMM_WORLD);

}
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/* exchange of coordinate buffers */

tmp=x; x=xnew; xnew=tmp;

tmp=y; y=ynew; ynew=tmp;

tmp=z; z=znew; znew=tmp;

}

}

else { /* a worker thread */

/* distribute the input data from 0 thread */

MPI_Bcast(tmp,buf_len,MPI_DOUBLE,0,MPI_COMM_WORLD);

for(;;) {

MPI_Recv(&first,1,MPI_INT,0,77,MPI_COMM_WORLD,&status);

if(first==-2) break; /* finish of computations */

if(first==-1) { /* a new step */

/* distribute the input data from 0 thread */

MPI_Bcast(tmp,buf_len,MPI_DOUBLE,0,MPI_COMM_WORLD);

}

else { /* run simulation */

first=last;

n_impacts=nbody(n, first, last, DT, m, x, y, z,

vx, vy, vz, xnew, ynew, znew);

MPI_Send(&n_impacts,1,MPI_INT,0,88,MPI_COMM_WORLD);

}

}

//}}main part

The above code looks both more complex and less efficient then the previous
one. Nevertheless, there are multiple tasks, especially in heterogenic clusters,
which benefit from dynamic load balancing. The code implements ’mas-
ter/worker’ strategy using the most commonly used message-passing MPI
functions MPI_Send/MPI_Receive:

– MPI_Send (void *buff, int count, MPI_TYPE type, int dest,
int tag, MPI_COMM group) sends buff of count items of type
MPI_TYPE to the process of rank dest from the communication group
group and immediately proceed. The message is identified by a user
selected integer number tag.

– MPI_Recv (void *buff, int count, MPI_TYPE type, int source,
int tag, MPI_COMM group, MPI_Status * stat) waits for and re-
ceives a message identified by the number tag. The message identifier
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tag, the number of receiving items count, and the item type type, as
well as the communicator group must fit to the same parameters of the
sending MPI_Send. Instead of specification of the sending process rank
one may set source to the predefined value MPI_ANY_SOURCE. In this
case the rank of sending process can be obtained later as the value of
MPI_SOURCE member of the stat structure.

They are the blocking send/receive routines to send a message from one
process to another. ’Blocking’ means that the receive function waits for the
sending data. Most MPI programmers use only these standard point-to-point
message-passing functions. However, there are about 20 other functions in
MPI for point-to-point communication. This large set of message-passing
functions provides the controls needed to optimize the use of communication
buffers and specify how communication and computation overlap. Proba-
bly the most important of these advanced message-passing routines are the
nonblocking or asynchronous communication functions.

Learning MPI can be intimidating. It is huge, with more than 125 different
functions even in MPI 1.1. The large size of MPI does make it complex,
but most programmers avoid this complexity and use only a small subset
of MPI. Many parallel programs can be written with just six functions:
MPI Init, MPI Comm Size, MPI Comm Rank, MPI Send, MPI Recv, and
MPI Finalize.

3.4.3 OpenCL for GPU, Cell, SMP CPU and Hetero-
geneous Computing

Stream computing language such as OpenCL, CUDA or Brook+ may be
called an ’assembly code’ of parallel programming. Efficient GPGPU com-
puting requires accounting of much more implementation details than appli-
cation programmers have got accustomed.

OpenCL [OCL] execution model is very similar to other stream language’s
one. It is based on queued SPMD and multilevel distributed memory. The
main EU called ’kernel’ uses its 1D, 2D or 3D integer ’coordinate’ in index-
space of elements called work-items to select a data part to process or to
modify its behavior.

Although there is no requirement that implementations of OpenCL rely on
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a multi-threaded execution model, it is useful to make this connection con-
ceptually since many programmers are familiar with threads, and kernels
must be written to support such an execution model, i.e., they must be
thread-safe. Using the language of threads, work-items can be thought of
as enumerated threads, where the index-space defines the enumeration. As
an example, if one needed to process each pixel in a two-dimensional (2D)
image, the OpenCL index-space would map to the 2-D array of pixels and
the programmer would write a kernel that would be executed, possible in
parallel, for each pixel. 1D kernel index directly corresponds to rank of MPI.
Typical for GPGPU 2D index identifies PU by its row and column numbers.
3D coordinates help to deal with 3D data grids. OpenCL program contains
of either one or multiple kernels.

OpenCL is comprised of two parts designed to facilitate the programming of
heterogeneous platforms with co-processors. In order to program the actual
co-processor device OpenCL provides a C-like language for writing compu-
tational kernels, which implement the core computational algorithms. The
execution of the kernel code is controlled by the host platform through a
runtime API that allow the programmer to orchestrate the execution of the
kernels and provides all supporting facilities necessary to do this efficiently
in an inherently asynchronous computing environment.

In contrast to other GPGPU programming tools OpenCL can run kernels on
a collection of devices of different nature (CPUs, GPUs, Cell, etc.). The host
code required to orchestrate the execution of OpenCL kernels provides for
the ability to control the operations on the host plus multiple co-processor
devices.

One of the most significant issues for such an architecture is memory man-
agement and OpenCL provides a memory management model (Fig. 3.7) that
allows relaxed memory consistency. This places the burden on the program-
mer to ensure that the memory used in operations that are generally con-
current and asynchronous remains consistent. OpenCL provides a platform
layer designed to enable support for a range of devices, which the program-
mer may query for and, if present, determine their respective capabilities and
utilize accordingly.

Many elements of the OpenCL programming model can be thought of as op-
erating system functionality moved into user-space since the API provides for
careful control of (enumerated) threads within an inherently asynchronous
concurrent environment. This is very similar to the basic operation of a
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Figure 3.7: Multilevel memory model of OpenCL

generic UNIX kernel. As a result, many of the concepts familiar to the man-
agement of threads within an operating system apply conceptually to the
OpenCL programming model, e.g., memory consistency, locking and syn-
chronization, work queues, event lists, etc. Being designed to run kernels on
various separated devices OpenCL provides restricted synchronization abili-
ties (Fig. 3.8).

Figure 3.8: Synchronization in OpenCL
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As in the MPI example let’s start from the nbody function implementation,
that means from the kernel source file ’nbody\_kern.cl’. The kernel code
is very different from what we had:

__kernel void nbody (

float dt1,

__global float4* pos_old,

__global float4* pos_new,

__global float4* vel,

__local float4* pblock /* is used to optimize speed */ )

__global int *n_impact )

{

const float eps = 1.0e-12;

const float4 dt = (float4)(dt1,dt1,dt1,0.0f);

int gti = get_global_id; /* global work item rank*/

int n = get_global_size; /* global size is equal

to the number of particles */

int ti = get_local_id; /* the work item \# in workgroup*/

int nt = get_local_size; /* a workgroup size */

int nb = n/nt; /* the number of workgroups */

float4 p = pos_old[gti]; /* current particle’s x,y,z,m */

float4 v = vel[gti]; /* current particle’s vx,vy,vz */

float4 a = (float4)(0.0f,0.0f,0.0f,0.0f);

int impact = 0;

for(int jb=0; jb < nb; jb++) { /* For each block ... */

pblock[ti] = pos_old[jb*nt+ti]; /* Cache ONE particle */

barrier(CLK_LOCAL_MEM_FENCE); /* Wait for others */

for(int j=0; j<nt; j++) { /* For ALL cached particles */

float4 p2 = pblock[j]; /* Read a cached particle */

float4 d = p2 - p;

float d2 = d.x*d.x + d.y*d.y + d.z*d.z;

if(d2<=eps) impact=1;

float invr = rsqrt(d2 + eps);

float f = p2.w*invr*invr*invr; /* p2.w contains m */

a += f*d; /* Accumulate acceleration */

}

barrier(CLK_LOCAL_MEM_FENCE); /* Wait for others */

}
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p += dt*v + 0.5*f*dt*dt*a;

v += dt*a;

pos_new[gti] = p;

vel[gti] = v;

n_impact[gti] = impact;

}

The qualifier __kernel denote the fact this function is kernel. An OpenCL
program can include both kernels and ordinary functions (to be called from
kernels). Two other qualifiers __global and __local correspond to differ-
ent levels of shared memory in the OpenCL memory model (Fig. 3.7). All
variables without those qualifies are private ones of a work item (EU).

Of the many OpenCL vector data types, float4 is probably the most com-
mon. It was used since times when GPUs were just graphics accelerators.
In large part due to this history, the four components of a float4 can be
referenced using the suffix .x, .y, .z, and .w, respectively. (OpenCL also
provides a more generic notation .s0, .s1, .s2, .s3 that can be general-
ized to larger vectors).

The use of vector data types in OpenCL is not a mere convenience, but is
important for performance since an architecture may have a natural vector
width within its processing cores. As an example, both the AMD/ATI and
NVIDIA GPU architectures have had a natural type of float4 and efficient
implementations on these architectures must exploit this through small SIMD
or SSE-like constructions. OpenCL provides extensive support for vector
data types to enable the programmer to exploit vector operations on the
underlying architecture of different co-processor devices.

For our N-Body program we pack the particle coordinates and particle mass
into a four-vector as {x, y, z, m}, and the three velocity components are
packed into a four-vector with the last component ignored: {vx, vy, vz, -}.

The technique of packing the particle mass into the fourth component of the
’position vector’ may create a degree of syntactic confusion since one must
remember that the mass has been put there in defiance of the obvious inter-
pretation of the variable name pos. This is unavoidable without performance
loose.

This time kernel is designed for 1D index space. So get_global_id(0)

corresponds to MPI rank, and get_global_size(0) corresponds to MPI
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size. The local (workgroup) rank from get_local_id(0) and size from
get_local_size(0) are used for memory access optimization.

Initially all the particle data are located in the device global memory. The
kernel first copies its ’own’ particle data in private variables. Then it imple-
ments computing by blocks of size equal to the workgroup size.

First to fill the block buffer pblock each kernel copies just one value from
the global pos_old to the local shared array pblock. After passing the first
barrier all the block data are put in the local memory by parallel efforts of
the workgroup members to be used in farther computing.

Within the internal for loop each work item computes accumulated impulse
of the cached particles on its ’own’ one. The code is very similar to the or-
dinary C code with two exceptions: intensive use of the float4 vector oper-
ations and application of the OpenCL function rsqrt() meaning 1/sqrt().
OpenCL contains a big number of math functions for both vector and scalar
values.

OpenCL is different from CUDA and Brook+ in that OpenCL does not
provide a standalone compiler for creating device ready binary code. The
OpenCL interface provides methods for compiling kernels given a string con-
taining the kernel code at runtime (clCreateProgramWithSource). Once a
kernel is compiled it can be launched on the device. The host-side support of
OpenCL kernels is extremely complex because of the universal and multilayer
approach [31]. To simplify it David Richie from Brown Deer Technology [4]
has developed the Standard Compute Layer Library (libstdcl) which provides
a simple host-side interface to the OpenCL API for parallel programming of
heterogeneous platforms with co-processor devices. It is designed to support
the most typical use-cases in a style inspired by familiar and traditional UNIX
APIs for C programming. The libstdcl library implemented by Brown Deer
Technology is freely available and distributed under the GNU Lesser General
Public License (LGPL). The next sample codes are based on libstdcl.

The host-side of OpenCL presents a hierarchy of constructs that must be
set-up and managed in order to execute computational kernels. In practical
terms, setting up OpenCL for running a relatively simple program requires
the following steps:

1. create a context cl_context containing the target devices. As a com-
mon example, the programmer can create a context to contain all GPU
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devices. The devices belonging to a given context are identified by a
device list cl_device_id,

2. create command queues cl_command_queue for each device in the con-
text,

3. create memory objects cl_mem needed to share memory with the co-
processor devices,

4. load and link one or more computational kernels cl_kernel. In the
simplest approach one can build a program cl_program based on ker-
nels in a .cl file and the compile and link all kernels for all devices in
a context. Note that just-in-time (JIT) compilation is an important
aspect of the OpenCL.

Executing the computational kernels then generally involves these additional
steps:

1. define an index-space NDRange over which the kernel is to be executed,

2. set the arguments of the kernel – in a sense you must explicitly ’push’
the arguments onto an imaginary stack before executing a kernel. The
analogy to a stack breaks down somewhat since setting the arguments
need not be in order,

3. ensure that the memory to be used by the kernel is consistent, i.e.,
make sure all data is where it is needed. This can be accomplished
with memory operations that are enqueued on one of the command
queues for a particular device,

4. enqueue a kernel for execution on one of the command queues for a
particular devices,

5. monitor the associated event cl_event corresponding to the enqueued
operation. This also applies to the memory operations referred to in
step 3,

6. read back any results needed on the host. This is not too different from
step 3.

The main host-side C99 code based on libstdcl follows:
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#include <stdio.h>

#include <stdcl.h> /*functions, types, constants of libstdcl*/

/* a simple data initialization not detailed here: */

void nbody_init(int n,cl_float4* pos,cl_float4* vel);

/* the program entry point: */

int main(int argc, char** argv) {

int step, i, impact;

int n = 8192; /* MUST be a power of two for simplicity */

float dt = 0.0001;

int nstep = 100; /* the number of simulation steps */

int nthread = 64; /* chosen for ATI Radeon HD 5870 */

if (!stdgpu) exit(-1); /* No GPGPU device is available */

cl_float4* pos1 = (cl_float4*)clmalloc(stdgpu,

n*sizeof(cl_float4),0); /* allocate memory for GPU */

cl_float4* pos2 = (cl_float4*)clmalloc(stdgpu,

n*sizeof(cl_float4),0); /* allocate memory for GPU */

cl_float4* vel = (cl_float4*)clmalloc(stdgpu,

n*sizeof(cl_float4),0); /* allocate memory for GPU */

cl_int* nimpact = (cl_int*)clmalloc(stdgpu,

n*sizeof(cl_int),0); /* allocate memory for GPU */

nbody_init(n,pos1,vel); /* fill the input data arrays */

/* open and compile the OpenCL kernel file: */

void* h = clopen(stdgpu,"nbody_kern.cl",CLLD_NOW);

cl_kernel krn = clsym(stdgpu,h,"nbody",CLLD\_NOW);

/* define 1D index space: */

clndrange_t ndr = clndrange_init1d(0,n,nthread);

/* assign the kernel function arguments but pos1/pos2: */

clarg_set(krn,0,dt);

clarg_set_global(krn,3,vel);

clarg_set_local(krn,4,nthread*sizeof(cl_float4));

clarg_set_global(krn,5,nimpact);

/* assign the kernel function arguments but pos1/pos2: */

for(step=0; step$<$nstep; step++) {

/* assign the kernel function arguments pos1/pos2: */

clarg_set_global(krn, 1, (step&1)? pos2: pos1);

clarg_set_global(krn, 2, (step&1)? pos1: pos2);

if(step<nstep)

/* run the kernel on GPGPU */

clfork(stdgpu},0,krn,&ndr,CL_EVENT_NOWAIT);

}
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/* synchronization barrier: */

clwait(stdgpu,0,CL_KERNEL_EVENT|CL_EVENT_RELEASE);

/* synchronization of GPU/RAM content of arrays: */

if(nstep & 1) {

clmsync}(stdgpu,0,pos2,CL_EVENT_WAIT|CL_EVENT_RELEASE);

memcpy(pos1, pos2, n*sizeof(cl_float4)); }

else clmsync(stdgpu,0,pos1,CL_EVENT_WAIT|CL_EVENT_RELEASE);

clmsync}(stdgpu,0,nimpact,CL_EVENT_WAIT|CL_EVENT_RELEASE);

for(impact=i=0; i<n; i++) impact+=nimpact[i];

printf("%d of %d particles stick together with other"

"due to %d impacts\n", impact, n, impact/2);

clclose}(stdgpu,h); /* release of the compiled kernel */

/* memory release: */

clfree(pos1); clfree(pos2); clfree(vel); clfree(nimpact);

return 0;

}

Several default contexts provided by libstdcl similar to the default I/O
streams of stdio are suitable for the typical OpenCL applications. They are:

• stddev – all devices for a given platform supported by OpenCL,

• stdcpu – all multicore CPU processors for a given platform supported
by OpenCL,

• stdgpu – all GPU processors for a given platform supported by OpenCL,

• stdrpu – all reconfigurable processors for a given platform supported
by OpenCL.

The set of functions clopen(), clsym(), clclose() provide a convenient
interface capable of dynamically loading CL programs embedded within the
executable as well as from an external file. The function clopen() loads
the CL source or binary program file named by the NULL-terminated string
filename and returns an opaque handle that may be used as a reference in
subsequent calls. If filename is a NULL pointer then a handle for the main
program executable is returned. The funcion clsym() takes a handle to a
CL source or binary program and a NULL-terminated kernel function name
and returns the associated CL kernel. A CL context pointer and device
number must be specified to identify the appropriate CL kernel to return. If
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handle is NULL then all CL pro- grams loaded into the specified CL context
are searched. The function clclose() decrements the reference count on
the associated handle. If the reference count drops to zero then the CL
program is unloaded. It returns the reference count on success and -1 on
error. The supplementary function clerror() returns a human readable
string describing the most recent error that has occurred as a result of a call
to any of the functions.

It is worth pointing out that the overall interface of clopen() and clsym()

will likely be convenient to programmers already familiar with the functions
dlopen() and dlsym() for conventional shared libraries. This is not an ac-
cident since the interface for loading OpenCL code was modeled after these
calls. It is also worth noting that libstdcl facilitates the embedding of OpenCL
code directly within the executable, which would make the specification of
the separate .cl file unnecessary. Here we use the ’separate file model’ to
emphasize the just-in-time (JIT) nature of OpenCL programs, where the
machine code generation must be deferred until runtime, when actual copro-
cessor device present is identified. In this example, the backend compiler will
perform a JIT compilation and target our GPU at runtime.

Memory management functions of libstdcl implement allocating and man-
aging memory that may be shared between the host and CL coprocessor de-
vices. Memory may be allocated with clmalloc() and used transparently as
the global memory for kernel execution on a CL device. The programmer uses
a single pointer representing the allocated memory which may be reattached
to various CL contexts using clmattach() and clmdetach(). Memory con-
sistency can be maintained using the clmsync() function which synchronizes
memory between host and CL coprocessor device.

Executing a kernel on a particular CL coprocessor device is supported us-
ing clfork() which allows both blocking and non-blocking execution behav-
ior. Before executing a kernel one must assign values to the kernel function
arguments. This can be unfamiliar to ordinary C programmers since it rep-
resents a syntactically verbose call model of the OpenCL API. The functions
clarg_set(), clarg_set_global() and clarg_set_local() are used to
set the argument identified by its sequential number to the kernel referred
by the first parameter of each the function. Among them clarg_set() is
used for setting arguments of intrinsic type such as cl_int, cl_float or
cl_float4, etc. The next one clarg_set_global() is used for setting ar-
guments of pointers to global memory allocated using a call to clmalloc()

and attached to the CL context of the target kernel.
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The last one clarg_set_local() associates arguments with pointers to the
device local memory of specified size in bytes.

Management of asynchronous multi-device operations is implemented
through events. The function clwait() can be used to block on selected
events within one of several per device event lists managed transparently.
The function behavior is modified using combinations of the next flags:

• CL_KERNEL_EVENT blocks on events in the ordered kernel event list,

• CL_MEM_EVENT blocks on events in the ordered memory event list,

• CL_EVENT_RELEASE forces clwait() to release all events on upon com-
pletion for all events on which it blocks.

If this flag is not used the programmer is responsible for releasing the
returned event using clReleaseEvent().

3.5 Computational Grid

An important part of supercomputer tasks represents solution of very big
scientific problems. For economic reasons research labs usually do not have
own computational resources of necessary for those tasks performance. More-
over, even the most power world supercomputers sometimes can’t solve such
a task for reasonable time and cost. To solve big problems multiple coop-
erating labs may join their computational resources. Grid computing is a
technology primary devoted to solution of computation intensive problems
by virtual organizations of independent trusted partners.

From the hardware viewpoint a grid is the collaboration of computers from
multiple administrative domains for a common goal. Grid computing is a
special type of distributed parallel computing that relies on complete com-
puters or computer clusters connected to a network (private, public or the
Internet) by conventional network interfaces, such as Ethernet. This is in
contrast to the traditional notion of a supercomputer, which has many pro-
cessors interconnected by a high-speed local network or a computer bus.

From the software development viewpoint a grid is not another program-
ming tool, API or infrastructure. The application programs are not supposed
to be rewritten or recompiled for grid. Instead grid proposes middleware for
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automated distribution of input data and computational programs over the
Internet, for the job execution on fitted computers in corresponded system
environments, and for collection of the computation results in the speci-
fied place. Sequential programs can be used in grid calculations as well as
GPGPU and cluster ones. Grid use means rather specification and adminis-
tration efforts then software development.

The real and specific problems that underlay the grid concept are coordi-
nated resource sharing and problem solving in dynamic, heterogeneous, multi-
institutional virtual organizations. The sharing that we are concerned with
is not primarily file exchange but rather direct access to computers, soft-
ware, data, and other resources, as is required by a range of collaborative
problem-solving and resource brokerage strategies emerging in industry, sci-
ence, and engineering. This sharing is, necessarily, highly controlled, with
resource providers and consumers defining clearly and carefully just what
is shared, who is allowed to share, and the conditions under which sharing
occurs. A set of individuals and/or institutions defined by such sharing rules
form what we call a Virtual Organization (VO). Some examples of VOs are:
the application service providers, storage service providers, cycle providers,
and consultants engaged by a car manufacturer to perform scenario evalua-
tion during planning for a new factory; members of an industrial consortium
bidding on a new aircraft; a crisis management team and the databases and
simulation systems that they use to plan a response to an emergency situ-
ation; and members of a large, international long-term high energy physics
collaboration. Each of these examples represents an approach to computing
and problem solving based on collaboration in computation- and data-rich
environments.

Architecture. The users interact with the Grid Resource Broker to solve
problems, which in turn performs resource discovery, scheduling, and the
processing of application jobs on the distributed grid resources. The grid
resource management is internally based on information from Catalogs of
Grid Monitoring Architecture (e.g., Relational GMA, R-GMA). Another key
components of a grid are Computing Elements which take control over calcu-
lations on subordinated Worker Nodes through Local Resource Management
System and are themselves managed as resources by a Workload Manage-
ment System via Grid Gates. Storage Elements take control over data storing
through the Local Transfer Service and are managed themselves by a Storage
Resource Manager. Logging and Bookkeeping System provide information
about both the grid system and job state.
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To access the grid services an end-user have to become a member of a VO.
Then he or she interacts with grid applications and/or web portals which are
supported by the VO (Fig. 3.9).

Figure 3.9: General grid interface architecture

The grid applications/portals provide the user with tools to script an ex-
ecution plan (an abstract job) containing a sequence of program runs in
specified environments together with related data transition operations, to
control the execution state, to analyze resource availability, and so on. These
tools ether are parts of a Grid Middleware or were implemented using the
grid middleware API.

The grid middleware implementations are big complex distributed software
systems. ARC (Advanced Resource Connector) and gLite are two of the
major production-ready grid middleware solutions being used by hundreds
researchers every day. The ARC middleware was born from the Nordic Coun-
cil of Ministers’ supported project ’Nordic Testbed for Wide Area Comput-
ing and Data Handling’ which ran in 2001-2003 and gave rise to the Nor-
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duGrid collaboration. gLite’s history is more complex and indirect. The
gLite middleware is a deployment ready software stack built from compo-
nents of other middlewares. The most important are those from European
Data Grid (EDG) project, followed by elements of AliEn and the middleware
developed by the EGEE project, gLite itself. In addition, gLite in its vari-
ous versions often offers several different solutions for the same middleware
component, simplifying transition from one implementation to another. The
third by distribution grid middleware is UNICORE (UNiform Interface to
COmputer REsources) funded by the German Ministry of Education and
Research.

The most basic building block of all the above middlewares is the Globus
Toolkit v.2.6 (GT2). Globus by itself is not a deployment ready grid solu-
tion, rather it is a toolkit for building other grid middleware. GT2 defines a
security scheme (GSI – Globus Security Infrastructure) for user authentica-
tion, authorization and delegation of rights on the base of Virtual Organisa-
tion Membership Service (VOMS). The scheme is based on X509 certificates
and short lived proxy certificates inspired by the Kerberos 5 security frame-
work. GT2 also defines protocols for file transfer (GSIFTP), job submission
by secure Globus Resource Allocation Manager (GRAM) and an information
system based on LDAP (MDS – Monitoring and Discovery Service). Finally,
GT defines a resource specification language, RSL.

Current Globus Toolkit version 4 is deeply integrated with web service ar-
chitecture. Despite its known advantages, it don’t have enough popular 3rd
party middleware implementations.

Even though all listed middlewares are based on the same technology, there
are substantial architectural and implementational divergences. An ordinary
user faces difficulties trying to cross the boundaries of the systems (see Tab.
3.1).

Interoperability. The ARC and gLite middleware projects shared a com-
mon background in the early stages of the EDG project to primarily enable
the data acquisition and processing of the experiments on the Large Hadron
Collider at CERN and, by achieving this goal, also enable the use of the
middleware by other research communities. One of the LHC experiments,
the ATLAS experiment, has conducted several production test runs of its
application-specific software. One of these, ATLAS Data Challenge 2, used
resources in US and Europe and as such had to use several middlewares.
For this purpose a meta-scheduler, the ATLAS Production System, was cre-
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Table 3.1: Protocols, languages and tool of different grid middlewares [8]

Globus Toolkit 4 ARC gLite 3 UNICORE6
Job Management GRAM GridManager WMS (WM) WF-engine
Local Services Local Task LRMS CE TSF, TSS, JMS

Scheduler Adapter (PBS, Condor)
Job Specification RSL XRSL JDL AJO, JSDL
Data Management GridFTP+RFT SE, GridFTP SE, GridFTP, FTS SMS, GridFTP
Catalogs-Replicas DRS (RLS) SSE (RLS, RC, . . . ) LFC, SRM

Information Services WebMDS, Index, LIS, IS, RP (LDAP)R-GMA, L&B, DGAS WS-resources
Aggregat. Trigger

Security GSI, VOMS, GSI, VOMS GSI, VOMS, SSL, X.509,
WS-Security WS-Security UUDB

Web-Services + (NOX+) +/- +
ARCLib (C/C++),

API/SDK +(e.g., CoG Kits) JARCLib(Java), +(for all subsystems) GPE, GridBeans
DataMove

ated, enabling job-submission to the three grids: Grid3 (now OSG), gLite
and ARC. It is the desire to streamline this work into actual interoperability
between several grids that motivates the OSG LCG interoperability as well
as this activity.

Functionality. Grids can be used for the variety of services [3]:

• Computational services. These are concerned with providing se-
cure services for executing application jobs on distributed computa-
tional resources individually or collectively. Resources brokers provide
the services for collective use of distributed resources. A grid providing
computational services is often called a Computational Grid. Some ex-
amples of computational grids are: NASA IPG, the World Wide Grid,
and the NSF TeraGrid.

• Data services. These are concerned with proving secure access to dis-
tributed datasets and their management. To provide a scalable storage
and access to the data sets, they may be replicated, catalogued, and
even different datasets stored in different locations to create an illusion
of mass storage. The processing of datasets is carried out using compu-
tational grid services and such a combination is commonly called Data
Grids. Sample applications that need such services for management,
sharing, and processing of large datasets are high-energy physics and
accessing distributed chemical databases for drug design.

• Application services. These are concerned with application man-
agement and providing access to remote software and libraries trans-
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parently. The emerging technologies such as web services are expected
to play a leading role in defining application services. They build on
computational and data services provided by the grid. An example
system that can be used to develop such services is NetSolve.

• Information services. These are concerned with the extraction and
presentation of data with meaning by using the services of computa-
tional, data, and/or application services. The low-level details handled
by this are the way that information is represented, stored, accessed,
shared, and maintained. Given its key role in many scientific endeavors,
the Web is the obvious point of departure for this level.

• Knowledge services . These are concerned with the way that knowl-
edge is acquired, used, retrieved, published, and maintained to assist
users in achieving their particular goals and objectives. Knowledge is
understood as information applied to achieve a goal, solve a problem, or
execute a decision. An example of this is data mining for automatically
building a new knowledge.

3.6 Parallel Program Efficiency: Performance

and Scalability

Availability of big scale parallel systems has fueled interest in investigating
the performance of parallel computers containing a large number of pro-
cessors. While solving a problem in parallel, it is reasonable to expect a
reduction in execution time that is commensurable with the amount of pro-
cessing resources employed to solve the problem. The scalability of a parallel
algorithm on a parallel architecture is a measure of its capacity to effectively
utilize an increasing number of processors. Scalability analysis of a parallel
algorithm-architecture combination can be used for a variety of purposes.
It may be used to select the best algorithm-architecture combination for a
problem under different constraints on the growth of the problem size and
the number of processors. It may be used to predict the performance of a
parallel algorithm and a parallel architecture for a large number of processors
from the known performance on fewer processors. For a fixed problem size,
it may be used to determine the optimal number of processors to be used
and the maximum possible speedup that can be obtained. The scalability
analysis can also predict the impact of changing hardware technology on the
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performance and thus help design better parallel architectures for solving
various problems.

The scalability analysis is usually based on several assumptions and termi-
nology.

• Parallel System is the combination of a parallel architecture and a
parallel algorithm implemented on it. The parallel computers assumed
to be homogeneous in the scalability analysis; i.e., all processors and
communication channels are identical in speed.

• Problem Size W is a measure of the number of basic operations
needed to solve the problem. There can be several different algorithms
to solve the same problem. To keep the problem size unique for a
given problem, we define it as the number of basic operations required
by the fastest known sequential algorithm to solve the problem on a
single processor. Problem size is a function of the size of the input.
For example, for the problem of computing an N-point FFT, W =
O(N logN).

• According to our definition, the sequential time complexity of the
fastest known serial algorithm to solve a problem determines the size
of the problem. If the time taken by an optimal (or the fastest known)
sequential algorithm to solve a problem of size W on a single processor
is T1, then T1 ∝ W , or T1 = tcW , where tc is a machine dependent
constant.

• Serial Fraction σ: the ratio of the serial component of an algorithm
to its execution time on one processor. The serial component of the
algorithm is that part of the algorithm which cannot be parallelized
and has to be executed on a single processor.

• Parallel Execution Time TP : the time elapsed from the moment a
parallel computation starts, to the moment the last processor finishes
execution. For a given parallel system, TP is normally a function of the
problem size W and the number of processors p, and we will sometimes
write it as TP (W, p).

• Speedup S: the ratio of the serial execution time of the fastest known
serial algorithm T1 to the parallel execution time of the chosen algo-
rithm TP . For a fixed size problem:
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Speedup (p) =
Performance (p)

Performance (1)
=
Time (1)

Time (p)
or Sp =

T1
Tp

It is a well known fact that given a parallel architecture and a problem in-
stance of a fixed size, the speedup of a parallel algorithm does not continue
to increase with increasing number of processors. As early as in 1967, Gene
Amdahl [2] made the observation that if s is the serial fraction in an al-
gorithm, then its speedup is bounded, no matter how many processors are
used. This statement, now popularly known as Amdahl’s Law, has been
used by Amdahl and others to argue against the usefulness of large scale
parallel computers.

Amdahl’s Law expressers an speedup of an ideally paralleled problem with a
fixed serial fraction on an ideal parallel computer with neither synchroniza-
tion nor communication overheads:

Sp =
T1
Tp

=
T1

σT1 + (1− σ)T1/p
=

1

σ + (1− σ) /p
⇒ S∞ =

1

σ
.

The Amdahl’s speedup dependency on the number of processors and the
serial fraction is shown in Fig. 3.10.

The negative effect of Amdahl’s Law is obvious even for small numbers: if
95% of a program is ideally paralleled by 20 PUs the speedup is:

Sp =
1

σ + (1− σ) /p
=

1

0.05 + 0.95/20
= 10.26,

two times worse than one may achieve.

Actually, in addition to the serial fraction, the speedup obtained by a parallel
system depends upon a number of factors such as the degree of concurrency
and overheads due to communication, synchronization, redundant work etc.
For a fixed problem size, the speedup saturates either because the overheads
grow with increasing number of processors or because the number of proces-
sors eventually exceeds the degree of concurrency inherent in the algorithm.

Nevertheless, Gustafson, Montry and Benner [15, 16] were the first to exper-
imentally demonstrate that by scaling up the problem size one can obtain
near-linear speedup on as many as 1024 processors. Gustafson et al. in-
troduced a new metric called scaled speedup to evaluate the performance
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on practically feasible architectures. This metric is defined as the speedup
obtained when the problem size is increased linearly with the number of pro-
cessors. If the scaled-speedup curve is good (e.g., close to linear w.r.t. the
number of processors), then the parallel system is considered scalable. The
formula is now known as Gustafson-Barsis’ or Gustafson’s Law:

Speedup (p) =
Performance (p)

Performance (1)
=
Work (p)

Work (1)
,

for a fixed time problem, hence scaled speedup:

Sp =
Wp

W1

=
σW1 + (1− σ) pW1

W1

= σ + (1− σ) p .

Two generalized notions of scaled speedup were considered by Gustafson
[16], Worley [41] and Sun & Ni [37]. They differ in the methods by which the
problem size is scaled up with the number of processors. In one method, the
size of the problem is increased to fill the available memory on the parallel
computer. The assumption here is that aggregate memory of the system will
increase with the number of processors. In the other method, the size of the
problem grows with p subject to an upper-bound on execution time. Wor-
ley found that for a large class of scientific problems, the time-constrained

Figure 3.10: Amdahl’s Law



214 Multiprocessor computing structures

speedup curve is very similar to the fixed-problem-size speedup curve. He
found that for many common scientific problems, no more than 50 processors
can be used effectively in current generation multicomputers if the parallel
execution time was to be kept fixed. For some other problems, Worley found
time-constrained speedup to be close to linear, thus indicating that arbitrar-
ily large instances of these problems can be solved in fixed time by simply
increasing p. In [12], Gupta and Kumar identified the classes of parallel
systems which yield linear and sub-linear time-constrained speedup curves.

The scaled speedup concept has rehabilitated the massive parallel computing
after Amdahl’s ’attack’. From application viewpoint Gustafson-Barsis’ Low
answers the next questions:

1. a parallel program being run on 10 PUs spends 3% of time executing
the serial code. How much has it been accelerated?

Sp = σ + (1− σ) p = 0.03 + 0.97 · 10 = 9.73 ,

2. what is the maximal serial fraction for 7 times speedup by use of 8
PUs? The answer is Sp = σ + (1− σ) p ⇒ p − Sp = σ (p− 1) ⇒ σ =
p−Sp

p−1
= 8−7

8−1
= 1

7
≈ 14%.

The concept of ’work size’ sometimes need to be cleared up. Consider the
matrix multiplication problem: multiplying two n-by-n matrices. The ma-
trices contains of M (n) = 3n2 elements and the multiplication requires
C (n) = O (n3) floating point operations. What of the listed values n,
n (n+ 1) or n3 is the work size? The answer is grounded on equity of the Am-
dahl’s and Gustafson’s prediction of speedup Sp = p for an ideally paralleled
solution of the problem (σ = 0). As result:

Work (p)

Work (1)
=
Time (1)

Time (p)
⇒ Work (p) =

Work (1) · Time (1)
Time (p)

=
const

T ime (p)
=

= O

(
C (n)

p

)
= O

(
n3

p

)
.

So the work size here is a number of necessary arithmetic operations, not the
data size itself. The relations between Amdahl’s and Gustafson-Barsis’ Laws
are shown in Tab. 3.2.
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Table 3.2: Comparison of Amdahl’s and Gustafson-Barsis’ Laws

Amdahl’s Approach Gustafson’s Ap-
proach

What is constrained? Work Computation time

What is changed with p? Computation time Work

What is a scale for the se-
rial fraction?

Computation time of a
serial program

Computation time of
either a serial or a par-
allel program

What is the depen-
dency of execution time
from number of PUs for
a fixed serial fraction?

What is the depen-
dency of speedup from
serial fraction for a
fixed number of PUs?

Both the laws deal with scaling of a problem. Their approach can be gener-
alized if account other possible resource constrains, e.g. memory constrains:

Speedup (p) =
Performance (p)

Performance (1)
=

Throughput (p)

Throughput (1)
=
Work (p) /Time (p)

Work (1) /Time (1)
.

Let scale up the problem such that the memory usage per processor is fixed
– so implicitly the problem size gets larger as more processors are used. In
fact, execution time can be increased when more processors are used, i.e.,
Time(p)>Time(1), because problem size can get very large.

By now we assumed use of ideal parallel computers. In reality a parallel im-
plementation always leads to some additional delays due to synchronization,
memory access issues or communication expenses. The next concepts deal
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with these overheads.

1. Total Parallel Overhead To: the sum total of all the overhead in-
curred due to parallel processing by all the processors. It includes
communication costs, non-essential work and idle time due to synchro-
nization and serial components of the algorithm. Mathematically,

To = pTP − T1.

In order to simplify the analysis, we assume that To is a non-negative
quantity. This implies that speedup is always bounded by p. For in-
stance, speedup can be superlinear and To can be negative if the mem-
ory is hierarchical and the access time increases (in discrete steps) as
the memory used by the program increases. In this case, the effective
computation speed of a large program will be slower on a serial pro-
cessor than on a parallel computer employing similar processors. The
reason is that a sequential algorithm usingM bytes of memory will use
only M/p bytes on each processor of a p-processor parallel computer.
The core results of the paper are still valid with hierarchical memory,
except that the scalability and performance metrics will have discon-
tinuities, and their expressions will be different in different ranges of
problem sizes. The flat memory assumption helps us to concentrate on
the characteristics of the parallel algorithm and architectures, without
getting into the details of a particular machine.

For a given parallel system, To is normally a function of both W and
p and so its precise declaration is To(W, p).

2. Efficiency E: the ratio of speedup S to the number of processors p.
Thus,

E =
T1
p TP

=
1

1 + To/T1
. (3.1)

Kumar and Rao [23] developed a scalability metric relating the problem
size to the number of processors necessary for an increase in speedup
in proportion to the number of processors. This metric is known as the
isoefficiency function. If a parallel system is used to solve a problem
instance of a fixed size, then the efficiency decreases as p increases. The
reason is that To increases with p. For many parallel systems, if the
problem size W is increased on a fixed number of processors, then the
efficiency increases because To grows slower than W. For these parallel
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systems, the efficiency can be maintained at some fixed value (between 0
and 1) for increasing p, provided that W is also increased. We call such
systems scalable parallel systems [27]. For some parallel systems, the
maximum obtainable efficiency Emax is less than 1. Even such parallel
systems are considered scalable if the efficiency can be maintained at
a desirable value between 0 and Emax.

For different parallel systems, W should be increased at different rates with
respect to p in order to maintain a fixed efficiency. For instance, in some
cases, W might need to grow as an exponential function of p to keep the
efficiency from dropping as p increases. Such parallel systems are poorly
scalable. The reason is that on these parallel systems, it is difficult to obtain
good speedups for a large number of processors unless the problem size is
enormous. On the other hand, if W needs to grow only linearly with respect
to p, then the parallel system is highly scalable. This is because it can easily
deliver speedups proportional to the number of processors for reasonable
problem sizes.

The rate at which W is required to grow w.r.t. p to keep the efficiency fixed
can be used as a measure of scalability of the parallel algorithm for a specific
architecture. If W must grow as fE(p) to maintain an efficiency E, then
fE(p) is defined to be the isoefficiency function for efficiency E and the plot
of fE(p) vs. p is called the isoefficiency curve for efficiency E. Equivalently,
if the relationW = fE(p) defines the isoefficiency curve for a parallel system,
then p should not grow faster that f−1

E (W ) if an efficiency of at least E is
desired.

In Kumar and Rao’s framework, a parallel system is considered scalable if
its isoefficiency function exists; otherwise the parallel system is unscalable.
The isoefficiency function of a scalable system could, however, be arbitrarily
large; i.e., it could dictate a very high rate of growth of problem size w.r.t.
the number of processors. In practice, the problem size can be increased
asymptotically only at a rate permitted by the amount of memory available
at each processor. If the memory constraint does not allow the size of the
problem to increase at the rate necessary to maintain a fixed efficiency, then
the parallel system should be considered unscalable from a practical point of
view.

For example let’s return to square matrices multiplication. The time com-
plexity of the sequential algorithm is T1 = O (n3). The only overhead is
performing the broadcast/all-gather operations, and so for the rectangular
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block summing algorithm and the blocked shared memory access:

To = O

((
n · n√

p

)
· p
)

= O
(
n2√p

)
.

For isoefficiency conditions O (n3) ≥ O
(
n2√p

)
⇒ n3 ≥ Cn2√p⇒ n ≥ C

√
p.

Furthermore, given the memory utilizationM (n) = 3n2, the scalability func-

tion is given by M(n)
p

=
3(C√

p)
2

p
= 3C2 = const, that means the algorithm is

highly scalable.

Less overhead efficient version of this algorithm may suppose full matrices
broadcasting. In this case To = O (n2p), O (n3) ≥ O (n2p) ⇒ n3 ≥ Cn2p ⇒
n ≥ Cp, M (n) /p = 3C2p that means the algorithm is not highly scalable.
(To maintain constant efficiency, memory utilization per processor must grow
linearly with the number of processors).

Isoefficiency analysis has been found to be very useful in characterizing the
scalability of a variety of parallel systems. An important feature of isoeffi-
ciency analysis is that in a single expression, it succinctly captures the effects
of characteristics of a parallel algorithm as well as the parallel architecture on
which it is implemented. By performing isoefficiency analysis, one can test
the performance of a parallel program on a few processors, and then predict
its performance on a larger number of processors.

Isoefficiency is a helpful tool for theoretical verification of parallel algorithms
and architectures. But it says nothing about nature of experimentally ob-
served overheads, and so is worse suitable for optimization of real programs.
To fill this gap Karp and Flatt [20] introduced experimentally determined se-
rial fraction σ (p) as a new metric (widely recognized as Karp-Flatt Metric)
for measuring the performance of a parallel system on a fix-sized problem. If
Sp is the speedup on a p-processor system, then serial fraction is defined as

σ (p) =
1/Sp − 1/p

1− 1/p
.

Smaller values of σ (p) are considered better. The constant value of σ (p) is
possible if the loss in speedup is only due to serial component (i.e., if there are
no other overheads). Linear approximation of σ (p) rates slowdown impact
of serial fraction vs. overheads (Tab. 3.3).
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Table 3.3: Karp-Flatt Metric

The serial fraction dominates in the speedup limiting

p 2 3 4 5 6 7 8

Sp 1.8 2.5 3.1 3.6 4.0 4.4 4.7

σ (p) 0.1 0.1 0.1 0.1 0.1 0.1 0.1

The overheads dominate in the speedup limiting

p 2 3 4 5 6 7 8

Sp 1.9 2.6 3.2 3.7 4.1 4.5 4.7

σ (p) 0.07 0.075 0.08 0.085 0.09 0.095 0.1

If the value of σ (p) decreases with increasing p, then Karp and Flatt consider
it to be explained by phenomena such as superlinear speedup effects or cache
effects.

The Karp-Flatt Metric can be used as a pure scalability flag with some
restrictions. If serial fraction increases with the number of processors, then
it is considered as an indicator of rising communication overhead, and thus an
indicator of poor scalability. On the contrary, [22] shows that serial fraction
can decrease for perfectly normal programs. Assuming that the serial and
the parallel algorithms are the same, σ (p) can be approximated by To/pT1:
Sp =

T1
TP

= T1p
T1+To

, for big p, 1− 1
p
≈ 1⇒ σ (p) ≈ 1

Sp
− 1

p
= To+T1

pT1
− 1

p
= To

pTS
.

For a fixed W (and hence fixed TS), σ (p) will decrease provided To grows
slower than O (p). This happens for some fairly common algorithms such
as parallel FFT on a SIMD hypercube. Also, the parallel algorithms for
which σ (p) increases with p for a fixed W are not uncommon. For instance,
for computing vector dot products on a hypercube To > O (p) and hence
σ (p) increases with p if W is fixed. But as shown in [13], this algorithm-
architecture combination has an isoefficiency function of O (p log p) and can
be considered quite scalable.

The 4 described asymptotic estimates (Amdahl’s and Gustafson-Barsis’ Law,
isoefficiensy and Karp-Flatt Metrics) make up a ’gentleman’s set’ of highly
parallel system performance and scalability measures. Many other ideas,
metrics and approaches are reviewed in survey [21].
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3.7 Paradigms of Parallel Programming

There is no simple recipe for designing parallel algorithms. However, one
can benefit from a methodological approach. It allows the programmer to
focus on machine-independent issues such as concurrency early in the design
process and machine-specific aspects later.

The history of parallel design methodologies had started in ’70s. The first
generation methodologies appeared when parallel computers were rare and
high cost specialized solutions for extremely important problems and do-
mains. At that time parallel algorithms were developed by first class re-
searchers and prominent engineers. They understood underlying concepts
and implementation details very well, but the area of general purpose par-
allel algorithms was not yet mature. So the most important issues targeted
performance and scalability analysis, so the methodologies of this type were
build upon theoretical models of a parallel computer. Among them the most
influenced are the next three approaches.

PRAM (Parallel Random Access Machine), a descendent of Random Access
Machine, is a theoretical model of parallel computation in which an arbitrary
but finite number of processors can access any value in an arbitrarily large
shared memory in a single time step [1]. Introduced in the 1970s it still re-
mains popular since it is theoretically tractable and gives algorithm designers
a common target. The three most important variations on this model are:

• EREW (exclusive read exclusive write) where any memory location
may be access only once in any one step,

• CREW (concurrent read exclusive write) where any memory location
may be read any number of times during a single step but written to
only once after the reads have finished,

• CRCW (concurrent read concurrent write) where any memory location
may be written to or read from any number of times during a single
step. Some rule or priority must be given to resolve multiple writes.

PRAM cannot be emulated optimally on all architectures. Problem lies in
the assumption that every processor can access the memory simultaneously
in a single step. For example in hypercube messages must take several hops
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between source and destination and it grows logarithmically with the ma-
chines size. As a result any hypercube network cluster will experience a
logarithmic slowdown relative to the PRAM model as its size increases.

BSP (Bulk Synchronous Parallel) model was proposed in 1989. BSP allows
for the programmer to design an algorithm as a sequence of large step (su-
persteps in the BSP language [5]) each containing many basic computation
or communication operations done in parallel and a global synchronization
at the end, where all processors wait for each other to finish their work before
they proceed with the next superstep.

BSP comprises of a computer architecture, a class of algorithms, and a func-
tion for charging costs to algorithms. The BSP computer consists of a collec-
tion of processors, each with private memory, and a communication network
that allows processors to access each others memories. BSP satisfies all re-
quirements of a useful parallel programming model:

• simple enough to allow easy development and analysis of algorithms,

• realistic enough to allow reasonably accurate modelling of real-life par-
allel computing,

• there exists a portability layer in the form of BSPlib,

• it has been efficiently implemented in the Oxford BSP toolset and
Paderborn University BSP library.

Currently being used as a framework for algorithm design and implemen-
tation on clusters of PCs, networks of workstations, shared-memory mul-
tiprocessors and large parallel machines with distributed memory. BSPlib
currently provide convertor from BSP to MPI-2, so MPI can be used for
programming in the BSP style.

The Task/Channel model of Ian Foster (1990) represents a parallel compu-
tation as a set of tasks that may interact with each other by sending messages
through channels [10]. It can be viewed as a directed graph where vertices
represent tasks and directed edges represent channels. A task is a program,
its local memory, and a collection of I/O ports. It can send local data val-
ues to other tasks via output ports, it also receives data values from other
tasks via input ports. A channel is a message queue that connects one task’s
output port with another task’s input port. Data values appear at the input
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port in the same order as they were placed in the output port of the channel.
Tasks cannot receive data until it is sent (i.e. receiving is blocked). Sending
is never blocked.

The Foster’s approach include a four stage design process commonly referred
to as PCAM:

• partitioning – the process of dividing the computation and data into
pieces,

• communication – the pattern of send and receives between tasks,

• agglomeration – process of grouping tasks into larger tasks to simplify
programming or improve performance,

• mapping – the processes of assigning tasks to processors.

Task/channel with PCAM encourages parallel algorithm designs that maxi-
mize local computations and minimize communications.

The PCAM marked an important change in parallel software development
audience which took part in late ’80s. With parallel computers distribut-
ing especially in the scientific research area, people not familiar with HPC
became involved in concurrent programming. Since that time program engi-
neering aspects of parallel have come on foreground scene.

The RAS (Result, Agenda, Specialist) model answered those changed by
proposing a technology to write a parallel program for problems of few typ-
ical classes [7]. It was introduced in 1990 by Nicholas Carriero and David
Gelernter. The RAS procedure targets most common cases of natural paral-
lelism:

1. choose a pattern that is most natural to the problem,

2. write a program using the method that is most natural for that pattern,
and

3. if the resulting program is not efficient, then transform it methodically
into a more efficient version.
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RAS helps to envision parallelism in terms of Result, Agenda or Specialists.

1. Result focused on the shape of the finished product. Result means
planning a parallel application around a data structure yielded as the
final result. We get parallelism by computing all elements of the result
simultaneously. It is a good starting point for any problem whose goal
is to produce a series of values with predictable organization and inter-
dependencies. If all the values are independent then all computations
start in parallel. However, if some elements cannot be computed until
certain other values are known, then those tasks are blocked. As a
simple example consider adding two matrices of equal size.

2. Agenda focused on the list of tasks to be performed. Agenda means
planning a parallel application around a particular agenda of tasks, and
then assign many processes to execute the tasks. The Agenda paral-
lelism adapts well to many different problems. The most flexible is the
master-worker paradigm in which a master process initializes the com-
putation and creates a collection of identical worker processes. Each
worker process is capable of performing any step in the computation.
Workers seek a task to perform and then repeat. When no tasks re-
main, the program is finished. An example could be a circuit simulation
where each element is realized by a separate process.

3. Specialist focused on the make-up of the work. Plan an application
around an ensemble of specialists connected into a logical network of
some kind. Parallelism results in all nodes being active simultane-
ously – much like pipe-lining. Specialist parallelism involves programs
that are conceived in terms of a logical network in which each node
executes an autonomous computation and inter-node communication
follows predictable paths. An example could be a circuit simulation
where each element is realized by a separate process.

The main conclusion from RAS success was that most parallel applications
can be classified into well defined programming paradigms. Each paradigm
is a class of algorithms that have the same control structure. Experience
suggests that there are a relatively few paradigms underlying most parallel
programs. The choice of paradigm is determined by the computing resources
which can define the level of granularity and type of parallelism inherent in
the program which reflects the structure of either the data or application.
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The most systematic definition of the paradigms comes from a technical re-
port from the University of Basel (1993) entitled BACS (Basel Algorithm
Classification Scheme). The factors which BACS have used to characterize
a parallel algorithm include the process properties (structure, topology, exe-
cution), the interaction properties, the data properties (partitioning, place-
ment). The following paradigms have been identified and described:

• Task-Farming (aka Master/Worker, Manager/Worker, Master/Slave),

• Single Program Multiple Data (SPMD),

• Data Pipelining (aka functional decomposition, data-flow parallelism:
each PU executes a small part of the total algorithm, data units se-
quentially pass from one PU to another),

• Divide and Conquer (a problem is divided into two or more subprob-
lems. Each subproblem is solved independently and may be divided
the same manner),

• Speculative Parallelism (Employed when it is difficult to obtain paral-
lelism through any one of the previous paradigms. Deals with complex
data dependencies which can be broken down into smaller parts using
some speculation or heuristic to facilitate the parallelism).

A most comprehensive modern methodology of parallel programming devel-
oped by Timothy Mattson, Beverly Sanders and Berna Massingill is called
PLPP (Pattern Language for Parallel Programming) [29, 35]. Despite its
sounding name, the pattern language is not a programming language. It is an
embodiment of design methodologies which provides domain specific advise
to the application designer.

Design Pattern is a description of a good solution to a recurring problem in
a particular context. The conception was introduced in 1977 by Christopher
Alexander for city planning and architecture. Usually design patterns are
presented in a prescribed format:

– Pattern Name,

– Pattern Context,

– Pattern Goals & Constraints,
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– Solution.

In 1987 by Beck and Cunningham have first brought it to software engineer-
ing. Design patterns for object-oriented programming have been released
by Gamma, Helm, Johnson and Vlissides in 1994 [11]. MacDonald, Szafron
and Schaeffer were first to apply patterns for parallel programing [25], but
Mattson, Sanders and Massingill have applied patterns more consistently,
comprehensively and with high refinement.

PLPP consists of a set of patterns that guide the programmer through the
entire process of developing a parallel program, including patterns that help
find the concurrency in the problem, patterns that help find the appropriate
algorithm structure to exploit the concurrency in parallel execution, and
patterns describing lower-level implementation issues.

The pattern language is organized into four design spaces:

1. Finding Concurrency . This design space includes high-level pat-
terns that help find the concurrency in a problem and decompose it
into a collection of tasks,

2. Algorithm Structure . This design space contains patterns that help
find an appropriate paralleling paradigm to exploit the concurrency
that has been identified,

3. Supporting Structures. This design space represents an intermedi-
ate stage between the Algorithm Structure and Implementation Mech-
anisms design spaces. Two important groups of patterns in this space
are those that represent program-structuring approaches and those that
represent commonly used shared data structures,

4. Implementation Mechanisms . The design space design space con-
tains patterns that describe lower-level implementation issues. It con-
cerned with how the patterns of the higher-level spaces are mapped
into particular programming environments. It is used to provide de-
scriptions of common mechanisms for process/thread management and
interaction.

Design patterns of PLPP are presented in a prescribed format:

– problem,
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– context,

– forces (goals and constraints),

– solution,

– examples.

Before starting to work with the patterns, the algorithm designer must first
consider the problem to be solved and make sure the effort to create a parallel
program will be justified: is the problem sufficiently large, and the results
sufficiently significant, to justify expending effort to solve it faster? If so,
the next step is to make sure the key features and data elements within
the problem are well understood. Finally, the designer needs to understand
which parts of the problem are most computationally intensive, since it is on
those parts of the problem that the effort to parallelize the problem should
be focused.

Generally one starts at the top in the Finding Concurrency design space
and works down through the other design spaces in order until a detailed
design for a parallel program is obtained. Sometimes it is necessary to iterate
back and forth among the patterns in one design space or among design
spaces. Once the preliminary analysis is complete, the patterns in the Finding
Concurrency design space can be used to start designing a parallel algorithm.

Table 3.4: The design space ’Finding Concurrency’

Decomposition Patterns

’Task Decomposition’ Pattern ’Data Decomposition’ Pattern

Dependency Analysis Patterns

The ’Group Tasks’ Pattern

The ’Order Tasks’ Pattern

The ’Data Sharing’ Pattern

The ’Design Evaluation’ Pattern

The patterns in this design space can be organized into three groups (Tab. 3.4).
First the Decomposition group patterns are used to decompose the problem
into pieces that can execute concurrently. Either task or data decomposition
is considered.
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Table 3.5: Summary of the Decomposition group design patterns

Pattern: Task Decomposition
Problem: How can a problem be de-
composed into tasks that can exe-
cute concurrently?
Context: In some cases the problem
will naturally break down into a col-
lection of independent (or nearly in-
dependent tasks). In this case it is
easiest to start with the task decom-
position pattern.
In other cases, tasks are difficult to
isolate, and decomposition of data
becomes a better starting point. It’s
not always clear, and both decompo-
sitions eventually need to be consid-
ered.
Forces:
flexibility – allow to adapt to differ-
ent implementations
efficiency – need enough tasks to
keep PEs busy, but beware complex
decomposition
simplicity – tradeoff between com-
plex enough for efficiency, and sim-
ple enough for debug and mainte-
nance
Solution:
(1) Try to ensure that tasks are suf-
ficiently independent so that depen-
dency management will be a small
fraction of execution time
(2) Try to identify as many tasks as
possible (we can always merge them
later)
(3) Try to ensure that a balanced
load is possible (based on task gran-
ularity and dependencies)

Pattern: Data Decomposition
Problem: How can a problem’s data
be decomposed into units that can
be operated on relatively indepen-
dently?
Context: The designer should iden-
tify the most computationally inten-
sive parts of the problem, the key
data structures used, and how data
is used during the problem solution.
Start with data decomposition if:
The most computationally inten-
sive part of the problem is or-
ganized around manipulating large
data structure(s)
-or-
Similar operations are being applied
to different parts of the data struc-
ture such that different parts can be
updated relatively independently
Forces: flexibility, efficiency, and
simplicity
Solution: If task-based decomposi-
tion is already done, the data de-
composition is driven by the de-
mands of the tasks. If well de-
fined data can be associated with
tasks then this is simple. If start-
ing with data decomposition, look at
the central data structures defining
the problem and see if they can be
broken down into chunks that can
be operated on concurrently.
Examples: array-based computa-
tions – update segments of the ar-
ray; recursive data structures – de-
compose a tree into sub-trees

Then Dependency Analysis patterns are applied to group the tasks and find
dependencies related to timing or synchronization. At last Design Evaluation
pattern is used to verify whether the decomposition principle is right selected
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and to determine if the design is ready to proceed to the Algorithm Structure
design space.

Table 3.6: The design space ’Algorithm Structure’

Major Organizing Principle

Organization by Data
    Decomposition

Organization by Tasks Organization by Flow
          of Data

The

and
’Divide

Conquer’ 
Pattern

The
’Task

Parallelism’
Pattern

The
’Geometric

Decomposition’
Pattern Pattern

Data

The The

Pattern Coordination’
’Event−based

The

Pattern

’Recursive
’

’Pipeline’

recursive regular asynchronouslinear recursive linear

The patterns of to the Algorithm Structure design space generally correspond
to main paradigms of BACS (with exception of Speculative Parallelism not
suitable for patterning). But they are classified more strictly and reduced
to a nice symmetric scheme (Tab. 3.6) provided obvious guidelines for the
pattern selection.

The Finding Concurrency and Algorithm Structure design spaces focus on
algorithm expression. At some point, however, algorithms must be trans-
lated into programs. The patterns in the Supporting Structures design space
(Fig. 4.17) address that phase of the parallel program design process, repre-
senting an intermediate stage between the problem-oriented patterns of the
Algorithm Structure design space and the specific programming mechanisms
described in the Implementation Mechanisms design space.

The items in the Implementation Mechanisms design space are not presented
as patterns since in many cases they map directly onto elements within par-
ticular parallel programming environments. They were included to provide
a complete path from problem description to code. Instead descriptions of
available implementation approaches and tools are presented.

Parallel programming issues were deeply developed since 1970s years. Some
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Table 3.7: The design space ’Supporting Structures’

Program Structuring Patterns

Correspondence to the se-
lected algorithm structure:

’SPMD’
Pattern

’Master/Worker’
Pattern

’Loop
Parallelism’
Pattern

’Fork/Join’
Pattern

Task Parallelism **** **** **** **
Divide and Conquer *** ** ** ****
Geometric Decomposition **** * *** **
Recursive Data ** *
Pipeline *** * ****
Event-based Coordination ** * ****

Patterns Representing Data Structures

’Shared Data’ ’Shared Queue’ ’Distributed Array’
Pattern Pattern Pattern

Table 3.8: The design space ’Implementation Mechanisms’

Implementation Mechanisms

The ’UE Management’ Pattern

The ’Synchronization’ Pattern

The ’Communication’ Pattern

theoretical models were introduced and multiple toolkits and libraries were
implemented. Their number was estimated as about 250 in the middle of
1990s [9]. Modern approaches like PLPP or Object-Oriented Parallel System
[38] generalize the long time experience of High Performance Computing.
They help to find concurrency and to develop parallel programs on the base
of a small number of ready detailed patterns.

3.8 Massive Parallel Data Processing

I/O bottlenecks have always been a major issue in Computer Science. As
early as 1967, Amdahl addressed the issue of storage and computation effi-
ciency. Almost forty years later, this lack of performances is confirmed in
[36] and this trend is likely to continue.

Data intensive applications have imposed specific constraints due to cluster
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architectures and their different access patterns. First studies of [6] and
[30] characterized parallel I/O accesses and observed recurrence forms and
determined patterns: huge amounts of small and non-contiguous requests.
The proposed solutions to reduce congestion issues and improve I/O access
performances can be classified in two categories: Parallel File systems and
Parallel I/O Libraries. The former tries to find the best trade-offs between
parallel I/O and efficient exploitation of hardware capabilities whereas the
latter is focused on parallel I/O aspects and portability constraints. [24]
overview both the approaches. Interesting I/O framework for grid systems
is proposed in [33].

An execution time model for data-intensive parallel computations

The massive dataset processing by each of N synchronous parallel processes
is presented as an alternation of calculations and I/O operations [39]. Other
S processes or devices wait for I/O requests from the calculation processes,
put them in the infinite queue and execute in the FIFO order. Communica-
tion overheads not related to I/O are negligibly small. The time of i steps
execution

TN = max
n=1..N

(tn0 + ωn1 + τn1 + tn1 + ωn2 + τn2 + tn2 + ...+ ωni + τni + tni ) ,

where calculation time for the i-th step of n-th computing process is tni ,
necessary I/O operation time is τni and related waiting time is ωni . The model
behavior depends on the proportion of computations to I/O. The next two
extremes are examined:

• weak load when the I/O processes have time to serve the queue before
beginning the next I/O step (∀ i

∑
n τ

n
i << tni+1) and

• full load when the queue raises at each step (∀ i
∑

n τ
n
i ≥ tni+1).

Let cN = µ (
∑

i t
n
i ) is the average computation time, and dN = µ (

∑
i τ

n
i ) is

the average I/O time.

For the partitioning data distribution policy under weak load:

µ (TN) =
1

2
cN + dN +

√
1

4
c2N + d2N

µ (τ 2)

2µ (τ)2
. (3.2)
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For the sharing or duplication data distribution policy under weak load:

µ (TN) = cN + dN + (N − 1) τSmax. (3.3)

In the case of full load regardless of the data distribution policy:

µ (TN) = NdN + tconst, where tconst = t10 + tNi . (3.4)

Experiments corroborate an assertion the program execution time bottom
close to the intersection of weak load and full load diagrams: for example see
Fig. 3.11 of Duplex Wave Migration [19] calculation time.

The first set of plots (A, B) compares the performance of migration with
pre-calculated time cubes with the theory. The second set (C, D) demon-
strates use of the weak and full load diagram crosspoint as an estimate for
the computational time diagram cusp that is a best fit for the number of
computing processes. Despite a big variation of the experimental diagrams
in the right branches because of caching and communicational effects the
really useful left branches and cusp points are predicted with high precision
on the sequential run results.

Data compression effect on speedup

Under assumption of big data sets dN >> tconst and dN >> τSmax. For
efficient parallel calculations N >> 1. In such conditions at the execution
time bottom cN/dN ≈ N − 1.

The equation works in two directions. For a ’black box’ program it allows
to estimate resource distribution for the best N experimentally found by
multiple runs. For open source or internally developed program the execution
time bottom allows to approximate the best N by statistic analysis of few
runs.

Let analyze the performance changes caused by use of a compression pro-
cedure. Denote compression average velocity v = qN/dN and average rate
r > 1. Compression isoefficiency can be estimated as:

E = (
k − 1

k
+
cN
dN

)

/
(v +

cN
dN

) .

The bigger compression isoefficiency the higher calculation acceleration is:

• compression accelerates calculations for any number of PUs if E ≥ 1,
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A. Sharing B. Partitioning

C. Disk caching effect on partitioning D. Communication effect on parti-
tioning

Figure 3.11: Massive data processing experiments

• compression impedes calculations for a cluster of NmaxPUs if E <
N/Nmax,

• if E < 1compression is not efficient for number of PUs less than E ·N .

In the case of known best N , E can be rewritten as E =
N− 1

k

N+v−1
. Big data
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sets are very common for the industry. Despite advances in file storage hard-
ware development and success of parallel file systems I/O still is a common
bottleneck for parallel computations. In such cases application of more PUs
can even impede the whole calculations. Data compression decreases both
the network and storage load. As result the computation acceleration can
exceed anticipated magnitude. Besides, compression provides conditions to
increase the cluster PU number without overheating the storage and so mul-
tiplies performance effect. Because of such double effect data compression
can be generally recommended for acceleration of cluster computations for
seismic data processing.

Simple estimates of this section help to compare and select compression al-
gorithms for particular hardware-software complex using some recordable
information about already passed jobs. Their application together with for-
mulas of performance forecasting can help administrators in balancing load
of a cluster when multiple applications run simultaneously.

3.9 Conclusion

This chapter briefly discussed current (2010) state of art in the area of Mul-
tiprocessor Computing Structures. Only the most valuable and prospective
(from the author’s viewpoint) representatives of each hardware/software ar-
chitecture are described. Some closely related issues of performance/scalability
analysis and parallel programming are presented to help understand the gen-
eral considerations put in background of the modern HPC systems.
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Chapter 4

3D BEM Froward Problem for
Diffusive Optical Tomography

T. Grzywacz, J. Sikora, S. Wójtowicz, P. Komada

4.1 Introduction

In recent years Optical Tomography (OT) has emerged as a highly active and
viable field of research, due to advances both in measurement technology and
in theoretical and practical understanding of the nature of the image of re-
construction problem. For recent reviews see [32, 50, 23, 5, 3, 21, 12]. An
increasingly active topic within this field is the development of an efficient
and accurate method for calculating the intensity of light internal to, and on
the boundary of an object under experimental investigation, sometimes re-
ferred to as the Forward Problem. Existing methods are either deterministic,
based on the solutions to governing equations, or stochastic based on simula-
tions of the individual scattering and absorption events undertaken by each
photon. The former includes analytical expressions based on Green func-
tions [3], and numerical methods based on Finite Difference method (FDM)
or Finite Element Methods (FEM) [6, 44, 43, 34, 31]. However, a generally
applicable model of the forward problem in three-dimensional space is still
not a fully solved problem.



242 3D BEM Froward Problem for Diffusive Optical Tomography

In this chapter we introduce another standard technique for solution of Par-
tial Differential Equations (PDE) in general geometries: the Boundary Ele-
ment Method (BEM), which has received substantial attention in numerical
modelling of fields [26, 15, 33, 16, 19, 48, 29]. The advantages and disadvan-
tages of BEM are well known [10, 11, 13, 20] and they will not be repeated
here, but instead we will concentrate on some specific features useful in OT.
Recently BEM has been used in Diffusing-wave spectroscopy for determining
the correlation function for different boundary conditions and source proper-
ties in a cone-plate geometry[48], but has received very little attention in OT.

Like Finite Element Method (FEM), the Boundary Element Method (BEM)
provides a general numerical tool for the solution of complex engineering
problems. In the last decades, the range of its applications has remarkably
been enlarged. This chapter is dealing with the application of BEM to Op-
tical Tomography, a new – to our best knowledge – field of application.

Nevertheless, the BEM still demands an explicit expression of a fundamental
solution, which is only known in simple cases. Therefore, in Optical Tomog-
raphy BEM is restricted to a diffusion approximation of transport equation.

But hopefully this restriction can be lifted in future, as just recently an
alternative BEM-formulation, based on the Fourier transform, has been re-
leased [18]. The new formulation only needs the Fourier transform of the
fundamental solution, which can be constructed, in contrast to the funda-
mental solution itself, for all linear and homogeneous differential operators
by a simple matrix inversion of the transformed differential operator. Hence,
the realm of applications of BEM can be extended remarkably.

In recent Optical Tomography applications, researcher’s attention is focused
on three-dimensional problems. They are a lot more difficult than those
defined in the two-dimensional space. Mainly due to the geometry which
demands a sophisticated discretization with enormously big number of un-
knowns. Such problems are named ’Large Scale Problems’.

BEM is characterized by the boundary-only property of the algorithm. This
property reduces the number of unknowns in BEM as compared to those
in methods of the domain type such as Finite Difference Method (FDM) or
Finite Element Method (FEM). However, the reduced number of unknowns
does not necessarily lead to improved efficiency, because BEM generally pro-
duces a full asymmetric matrix of coefficients, while the matrices for FDM
or FEM are usually sparse and very often symmetric.
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Because of this drawback, BEM has so far been considered to be less efficient
than these domain type competitors in large scale problems. However, the
situation is changing with the recent breakthrough introduced by the so-
called “fast-BEMs”’ based on techniques such as multiple methods [14], panel
clustering, the use of wavelet bases, etc.

The fast BEMs can compute potential functions at the all collocation points
with O(N) − O(N(logN)m) (m ≥ 0) operations in problems with N un-
knowns.

This is a dramatic improvement over the conventional BEMs which have
O(N2) number of operations. Development of the fast BEM is certain to
further enhance the status of BEM as a solver of large scale problems.

4.2 Singular and nearly singular integrals

In three dimensional boundary element analysis, computation of integrals is
an important aspect since it governs the accuracy of the analysis and also
because it usually takes the substantiable part of the CPU time.

The integrals which determine the influence matrices, the internal field and
its gradients contain nearly singular kernels of order 1/Rα (α = 1, 2, 3, ...)
where R is the distance between the source point and the integration point
on the boundary element [22].

For planar elements, analytical integration may be possible [33]. However, it
is becoming increasingly important, in practical boundary element codes, to
use curved elements, such as the isoparametric elements, to model general
curved surfaces [46]. Since analytical integration is not possible for general
isoparametric curved elements, one has to rely on numerical integration.

When the distance between the source point and the element over which the
integration is performed is sufficiently large, compared to the element size,
the standard Gauss-Legendre quadrature formula works efficiently.

However, when the source is actually on the element, the kernel becomes sin-
gular and the straight forward application of the Gauss-Legendre quadrature
formula breaks down. These integrals will be called singular integrals. Sin-
gular integrals occur when calculating the diagonals of the coefficient matrix.
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When the source is not on the element, but very close to the element, al-
though the kernel is regular in the mathematical sense, the value of the kernel
changes rapidly in the neighborhood of the source point. In such case the
standard Gauss-Legendre quadrature formula is not practical, since it would
require a huge number of integration points to achieve the required accuracy.

These integrals will be called nearly singular integrals. Nearly singular
integrals occur in practice when calculating influence matrices for thin struc-
tures, where distances between different elements can be very small compared
to the element size. Such situation is very common for scull or CSF layer
modelling in Impedance or Optical Tomography. They also occur when cal-
culating the field or its derivatives at the internal point, very close to the
boundary element. Numerous research works have already been published
on this subject, for example [1, 19, 22, 27, 28, 15, 35], and they may be clas-
sified as in Table 4.1. Let briefly review the methods which using the kernel

Table 4.1: Methods of integration for singular and nearly singular integrals in
three dimensional Boundary Element Method

No. Singular integrals No. Nearly singular integrals

I Analytical (for planar elements only)

II Numerical

1 Weighted Gauss 1 Element subdivision

2 Singularity subtraction and 2 Variable transformation
Taylor expansion 2a Double exponential transformation

3 Variable transformation 2b Cubic transformation

4 Coordinate transformation
4a Triangle to quadrilateral 3 Coordinate transformation
4b Polar coordinates 3a Polar coordinates
5 Finite part integrals and modification

1/R as the weight function for generating the Gauss integration points. The
singularity subtraction with Taylor expansion method [1] expands the singu-
lar kernel by the local parametric coordinates. The main terms containing
the singularity are subtracted and integrated analytically and the remaining
well behaved terms are integrated by Gaussian quadrature.

Then there are the coordinate transformation methods. The first type is the
method of transforming a triangular region into a quadrilateral region, so
that the node corresponding to the singularity is expanded to an edge of the
quadrilateral, so that the singularity is weakened. This method is used in the
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following chapters (see for example 4.4.2). The second type is the method of
using polar coordinates (r,Θ) around the source point in the parameter space
[13]. This introduces a Jacobian which cancels the singularity 1/R type. For
higher singularities of order 1/R2, which appears in elastostatic (out of the
scope of this book), the method for calculating finite part integrals may be
used.

Nearly singular integrals turn out to be more difficult and expensive to cal-
culate compared to singular integrals. They are becoming more and more
important in practical boundary element codes, since the ability and effi-
ciency to calculate nearly singular integrals governs the code’s versatility in
treating objects containing thin structures (scull or CSF layer of the human
head). The reader interested in this particular problem may consult [22]
where a new quadrature scheme for the accurate and efficient evaluation of
these nearly singular integrals is presented.

4.3 Governing equations

Let consider the Poisson’s equation in three-dimensional space:

∇2Φ(r) = b , (4.1)

where the Φ stands for the arbitrary potential function like temperature or
electric potential.

On the surface of the volume the Robin boundary conditions are imposed:

∂Φ(r)

∂n
= mRΦ(r) + nR , (4.2)

where mR and nR are known Robin boundary condition coefficients.

The fundamental solution for 3D space is:

G(|r− r′|) = 1

4πR
, (4.3)

where R = |r− r′| is a distance between r and r′, given by

R = |r− r′| =
√

(x− x′)2 + (y − y′)2 + (z − z′)2 . (4.4)
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We can use Green’s theorem [3] in its second form to derive an integral
equation applicable on the surface:

Φ(r) +

∫
Γ

∂G(|r− r′|)
∂n

Φ(r′)dΓ(r′) =

∫
Γ

G(|r− r′|)∂Φ(r
′)

∂n
dΓ(r′) +

+

∫
Ω

bG(|r− r′|)dΩ(r′) . (4.5)

To make this equation a truly ’boundary-only’ equation, we move the interior
load point r to the boundary which results in the following modification of
the previous equation:

c(r)Φ(r) +

∫
Γ

∂G(|r− r′|)
∂n

Φ(r′)dΓ(r′) =

∫
Γ

G(|r− r′|)∂Φ(r
′)

∂n
dΓ(r′) +

+

∫
Ω

bG(|r− r′|)dΩ(r′) . (4.6)

The function c(r) can be calculated by surrounding the boundary point r by
a small sphere of radius ε and taking each term of Eq. (4.6) in the limit as
ε→ 0.

ϕ

γ

Γ−Γ ε

ε

x

y

z

dψ

ε
n

ϕd

0
ψ

Figure 4.1: Hemisphere around the boundary point for 3D problems

However, as shown in previous sections for the two-dimensional problems,
the term c(r) does not need to be calculated explicitly, and can be obtained
indirectly by utilizing some simple physical considerations [10]. In particular,
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we have c(r) = 1/2 when the observation point lies on a smooth surface,
which is the case considered in a frame of this chapter.

To calculate the kernel of the first integral in Eq. (4.6), the Green’s function
is differentiated with respect to the unit normal at the point r′, as follows:

∂G(|r− r′|)
∂n

=
∂G

∂R

(
∂R

∂n

)
=
∂G

∂R

[
∂R

∂x

(
∂x

∂n

)
+
∂R

∂y

(
∂y

∂n

)
+
∂R

∂z

(
∂z

∂n

)]
, (4.7)

where the derivatives of the coordinates x, y and z with respect to the unit
outward normal n in point r′ are the components of the outward normal as
follows:

nx =
∂x

∂n
, ny =

∂y

∂n
, nz =

∂z

∂n
, (4.8)

and

∂R

∂x
=
x′ − x
R

,
∂R

∂y
=
y′ − y
R

,
∂R

∂z
=
z′ − z
R

. (4.9)

Therefore, the first kernel can be written as follows:

∂G(|r− r′|)
∂n

=
−1
4πR3

[(x′ − x)nx + (y′ − y)ny + (z′ − z)nz] . (4.10)

To solve the three-dimensional problem numerically, the surface has to be
discretized into elements. The zero linear and quadratic order elements were
used.

The numerical implementation of three-dimensional problems follows the
similar procedure to that of two-dimensional problems [45].

4.3.1 Jacobian

To study boundary elements which are two-dimensional structures placed in
the 3D space, first we need to define the way in which we can pass from the
xyz global Cartesian system to the ξ1, ξ2, ξ3 system defined over the element,
where ξ1, ξ2 are oblique coordinates and ξ3 is in the direction of the normal.
The transformation for a given function u is related through the following: ∂u

∂ξ1
∂u
∂ξ2
∂u
∂ξ3

 =


∂x
∂ξ1

∂y
∂ξ1

∂z
∂ξ1

∂x
∂ξ2

∂y
∂ξ2

∂z
∂ξ2

∂x
∂ξ3

∂y
∂ξ3

∂z
∂ξ3


 ∂u

∂x
∂u
∂y
∂u
∂z

 , (4.11)



248 3D BEM Froward Problem for Diffusive Optical Tomography

where the square matrix is the Jacobian matrix (or Jacoby matrix).

Transformation of this type allows us to describe differentials of surface in
the Cartesian system in terms of the curvilinear coordinates. A differential
of area will be given by:

dΓ = |n| dξ1dξ2 =
∣∣∣∣ ∂r∂ξ1 × ∂r

∂ξ2

∣∣∣∣ dξ1dξ2 =√nx2 + ny2 + nz2 dξ1dξ2 , (4.12)

where

nx=
∂y

∂ξ1

∂z

∂ξ2
− ∂y

∂ξ2

∂z

∂ξ1
, ny=

∂z

∂ξ1

∂x

∂ξ2
− ∂z

∂ξ2

∂x

∂ξ1
, nz=

∂x

∂ξ1

∂y

∂ξ2
− ∂x

∂ξ2

∂y

∂ξ1
.(4.13)

where x, y, z are the coordinates of the points r or r′ and ξi define the local
curvilinear coordinate system.

This mapping introduces the Jacobian1J proportional to the magnitude of
the area of the mapped boundary element [10].

4.3.2 Integration of non-singular integrals over the tri-
angle

After discretization of the boundary surface onto boundary elements the
integral equation Eq. (4.6) will take the form:

c(r)Φ(r) +
M−1∑
j=0

∫
Γj

∂G(|r− r′|)
∂n

Φ(r′)dΓj(r
′) =

=
M−1∑
j=0

∫
Γj

G(|r− r′|)∂Φ(r
′)

∂n
dΓj(r

′) +

∫
Ω

bG(|r− r′|)dΩ(r′) , (4.14)

where Γj is the j-th boundary triangle and M is the number of nodes of the
particular element.

1Jacobian is shorthand for determinant of Jacoby matrix.
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And next can be written in terms of local coordinates ξ1, ξ2:

c(r)Φi(r) +
M−1∑
j=0

Φj(r
′)

ξ1=1∫
ξ1=0

ξ2=1−ξ1∫
ξ2=0

∂G(|r− r′|)
∂n

NjJj(ξ1, ξ2)dξ1dξ2 =

=
M−1∑
j=0

∂Φj(r
′)

∂n

ξ1=1∫
ξ1=0

ξ2=1−ξ1∫
ξ2=0

G(|r− r′|)NjJj(ξ1, ξ2)dξ1dξ2 + (4.15)

+

∫
Ω

bG(|r− r′|)dΩ(r′) ,

where Nj = 1 for the zero order triangle.

The numerical integration rules discussed in this section, perform well when
the distance from the source point is relatively far from the element being
integrated. Two-dimensional integrals over the triangle can be evaluated by
application of the following equation:

∫ 1

0

∫ 1−ξ1

0

f(ξ1, ξ2)dξ1dξ2 =

g−1∑
i=0

wif(ξ1i, ξ2i) , (4.16)

where g is the total number of Gaussian integration points.

The abscissas and associated weights are given in Table 4.2 [13, 56].

4.4 Second-order interpolation functions

As with many numerical methods, the accuracy of the solution obtained
with the BEM, increases with the number of discretization points and/or
surface elements at the cost of increased computation time and memory
requirements. In this section following [19], it will be shown how the accuracy
of the BEM could be improved if second-order interpolation functions for the
potential Φ and ∂Φ

∂n
variation over the surface elements and for the shape of

these surface elements are introduced.
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Table 4.2: Gauss points and weights over the triangle

n i ξ1 ξ2 wi

1 1./3. 1./3. -9./32.
4 2 0.6 0.2 25./96.

3 0.2 0.6 25./96.
4 0.2 0.2 25./96.

1 0.3333333333333333 0.3333333333333333 0.1125000000000000
2 0.0597158717897698 0.4701420641051151 0.0661970763942531
3 0.4701420641051151 0.0597158717897698 0.0661970763942531

7 4 0.4701420641051151 0.4701420641051151 0.0661970763942531
5 0.7974269853530873 0.1012865073234563 0.0629695902724136
6 0.1012865073234563 0.7974269853530873 0.0629695902724136
7 0.1012865073234563 0.1012865073234563 0.0629695902724136

1 0.06308901449150223 0.87382197101699554 0.025422453185103408
2 0.87382197101699554 0.06308901449150223 0.025422453185103408
3 0.06308901449150223 0.06308901449150223 0.025422453185103408
4 0.24928674517091042 0.50142650965817920 0.058393137863189683
5 0.50142650965817920 0.24928674517091042 0.058393137863189683

12 6 0.24928674517091042 0.24928674517091042 0.058393137863189683
7 0.31035245103378440 0.63650249912139870 0.041425537809186787
8 0.63650249912139870 0.31035245103378440 0.041425537809186787
9 0.05314504984481695 0.63650249912139870 0.041425537809186787
10 0.63650249912139870 0.05314504984481695 0.041425537809186787
11 0.05314504984481695 0.31035245103378440 0.041425537809186787
12 0.31035245103378440 0.05314504984481695 0.041425537809186787

4.4.1 Triangular boundary elements

Let focus our attention on six nodes triangular isoparametric element pre-
sented in Fig. 4.2. The basis interpolation functions (so called the shape
functions) are given by the following formulas:

N0(ξ1, ξ2) = −ξ3(1− 2ξ3), N1(ξ1, ξ2) = 4ξ1ξ3,

N2(ξ1, ξ2) = −ξ1(1− 2ξ1), N3(ξ1, ξ2) = 4ξ1ξ2, (4.17)

N4(ξ1, ξ2) = −ξ2(1− 2ξ2), N5(ξ1, ξ2) = 4ξ2ξ3,

where ξ3 = 1− ξ1 − ξ2.

The first derivatives of the standard interpolation functions with respect to
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Figure 4.2: Global and local coordinates of the six nodes triangle

the ξ1 and ξ2 are given by:

∂N0(ξ1, ξ2)

∂ξ1
= 1− 4ξ3,

∂N0(ξ1, ξ2)

∂ξ2
= 1− 4ξ3,

∂N1(ξ1, ξ2)

∂ξ1
= 4(ξ3 − ξ1),

∂N1(ξ1, ξ2)

∂ξ2
= −4ξ1,

∂N2(ξ1, ξ2)

∂ξ1
= −1 + 4ξ1,

∂N2(ξ1, ξ2)

∂ξ2
= 0, (4.18)

∂N3(ξ1, ξ2)

∂ξ1
= 4ξ2,

∂N3(ξ1, ξ2)

∂ξ2
= 4ξ1,

∂N4(ξ1, ξ2)

∂ξ1
= 0,

∂N4(ξ1, ξ2)

∂ξ2
= −1 + 4ξ2,

∂N5(ξ1, ξ2)

∂ξ1
= −4ξ2,

∂N5(ξ1, ξ2)

∂ξ2
= 4(ξ3 − ξ2).

In contrast with the three-node triangular element, the quadratic variation
in ξ1, ξ2 of the functions N0, . . . , N5 allows the creation of curved surfaces
with curved edges.

4.4.2 Numerical integration of singular integrals

There are two main approaches for singular integration: integration by reg-
ularization and by subtraction and series expansion. Subtraction and series
expansion method of calculating the singular integrals is described by Hall



252 3D BEM Froward Problem for Diffusive Optical Tomography

in the monograph [20] and for optics by Ripoll in [39]. The regularization
method is described in [11], and is a convenient way to handle higher or-
der elements such as the isoparametric types considered here. However, a
detailed comparison of the two methods is outside the scope of this book.

In the following sections the mapping procedures, which are essential for the
regularizing method, will be presented. Singular points are denoted by circle
surrounding a particular node.

The standard integration rules gives an exact results except when the load
point is near to or coincident with one of the nodes of the element. The
singularity occurs in this case, so that special treatment of the integration
is required. Two of the most effective methods will be described. These are
the regularization method and the subtraction/expansion method. As it was
for 2D case the exact integration is not possible for the quadratic boundary
elements.

In the following figures the mapping procedure, when the singular point
(surrounded by a circle) is presented in the nodes 0, 1 or 2. At first, three-
dimensional Cartesian space is mapped into a local two-dimensional Carte-
sian space by interpolation functions.

x =
5∑
i=0

Ni(ξ1, ξ2)xi, y =
5∑
i=0

Ni(ξ1, ξ2)yi, z =
5∑
i=0

Ni(ξ1, ξ2)zi. (4.19)

If the singularity is in the vertex nodes then the element in local coordinates
system ξ1, ξ2 is mapped into a standard square (see Fig. 4.3), but when
singularity is in one of the mid-side nodes than triangle is divided into two
subtriangles and then such triangles are mapped into a standard squares
(subelement coordinates)(see Fig. 4.3). The transformation from local ele-
ments to subelements coordinates is given by the following expressions:

ξ1 =
2∑
i=0

Mi(η1, η2)ξ1i, ξ2 =
2∑
i=0

Mi(η1, η2)ξ2i, (4.20)

where η1 and η2 are the local coordinate of the subelement and the shape
functions are given by:

M0(η1, η2) =
(1 + η1)(1− η2)

4
, M1(η1, η2) =

(1 + η1)(1 + η2)

4
,

M2(η1, η2) =
1− η1

2
. (4.21)
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Figure 4.3: The singular point (circled) in: a) the node 0, b) the node 1, c) the
node 2

To integrate numerically an arbitrary function over the standard square,
the conventional Gaussian quadrature scheme can be easily carried out there
[11]. The regularization method transforms triangular domain into a square,
in that way introduces a further Jacobian which cancels out the singularity
of the integrand.

Node 0

Based on Eq. (4.20) the transformation is:

ξ1 =
(1 + η1)(1− η2)

4
, ξ2 =

(1 + η1)(1 + η2)

4
. (4.22)

A regularizing Jacobian Jr(η1, η2), will be associated with the change of vari-
ables which is given by:

Jr =

∣∣∣∣∣ ∂ξ1
∂η1

∂ξ1
∂η2

∂ξ2
∂η1

∂ξ2
∂η2

∣∣∣∣∣ = 1 + η1
8

. (4.23)
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Node 1

For subtriangle T1:

ξ1 =
1− η1

4
, ξ2 =

(1 + η1)(1− η2)
4

, JrT1 =
1 + η1
16

. (4.24)

For subtriangle T2:

ξ1 =
2− (1 + η1)η2

4
, ξ2 =

(1 + η1)(1 + η2)

4
, JrT2 =

1 + η1
16

. (4.25)

Node 2

ξ1 =
1− η1

2
, ξ2 =

(1 + η1)(1− η2)
4

, Jr =
1 + η1

8
. (4.26)

The mapping procedure when the singular point is in the nodes 3, 4 or 5.
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Figure 4.4: The singular point (circled) in: a) the node 3, b) the node 4, c) the
node 5
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Node 3

For subtriangle T1:

ξ1 =
2 + (1 + η1)η2

4
, ξ2 =

1− η1
4

, JrT1 =
1 + η1
16

. (4.27)

For subtriangle T2:

ξ1 =
1− η1

4
, ξ2 =

2− (1 + η1)η2
4

, JrT2 =
1 + η1
16

. (4.28)

Node 4

ξ1=
(1 + η1)(1 + η2)

4
, ξ2 =

1− η1
2

, Jr =
1 + η1

8
. (4.29)

Node 5

For subtriangle T1:

ξ1=
(1 + η1)(1 + η2)

4
, ξ2 =

1− η1
4

, JrT1 =
1 + η1
16

. (4.30)

For subtriangle T2:

ξ1=
(1 + η1)(1− η2)

4
, ξ2=

2 + (1 + η1)η2
4

, JrT2 =
1 + η1
16

. (4.31)

In the Fig. 4.5 it is illustrated how splitting and mapping procedure concen-
trates the Gaussian points around the singularity node.

4.4.3 More precise numerical integration of singular
integrals

For the isoparametric triangular quadratic element the singular integration
procedure was already presented in section 4.4.2 for Laplace equation. In
case of diffusion equation the situation is more complicated, because in order
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Figure 4.5: The Gaussian quadrature points used on the square mapped back to
the flat triangle space (ξ1, ξ2) when the singulaity is located in the node no. 1

to achieve the same level of accuracy, better integration procedure of singular
integrands is needed.

That is why a new mapping procedure will be shown. This procedure is
similar to the previous one only for the first two nodes. The rest nodes can
be treated in a similar way.

To gain sufficient precision of calculations, each element containing a sin-
gularity is divided not into two sub-elements (see Fig. 4.3) but into four
sub-triangles T0, T1, T2 and T3. Those sub-elements containing the singu-
lar point, for example T0 in Fig. 4.6 and sub-triangles T0, T1 and T2 in
the same figure are mapped again into a square (coordinates η1, η2). Sub-
triangles which do not contain the singular point are numerically integrated
using for example the seven point Gaussian quadrature rule for triangles (see
Table 4.2) [13, 55, 56].

The second transformation introduces Jacobian Jr or JrT0 , JrT1 , JrT2 (see
Fig. 4.6), according to the singularity position. Fig. 4.7 illustrates how
the splitting and mapping procedures concentrate the Gaussian quadrature
points around the singularity node. The mathematical expressions are given
below.

The isoparametric triangular element from the x, y, z global coordinates sys-
tem is mapped to the local coordinates system ξ1, ξ2 by Eq. (4.19).

First let consider the singularity at node 0 and than at node 1:
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Figure 4.6: Isoparametric triangle subdivision in case when the singular point is
located in: a) the node 0, b) the node 1

Node 0 (Fig. 4.6)

The transformation from a sub-triangle T1 to a standard square is:

ξ1 =
(1 + η1)(1− η2)

8
, ξ2 =

(1 + η1)(1 + η2)

8
. (4.32)

The Jacobian Jr(η1, η2), will be associated with the change of variables which
is given by:

Jr =

∣∣∣∣∣ ∂ξ1
∂η1

∂ξ1
∂η2

∂ξ2
∂η1

∂ξ2
∂η2

∣∣∣∣∣ = 1 + η1
32

. (4.33)
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Figure 4.7: The Gaussian point concentration around the singularity located at
the node 1

Node 1 (Fig. 4.6)

For sub-triangle T1:

ξ1 =
1− η1

4
, ξ2=

(1+η1)(1−η2)
8

, JrT1 =
1 + η1
32

. (4.34)

For sub-triangle T2:

ξ1=
(1+η1)(3−η2)

8
+
1−η1
4

, ξ2=
(1+η1)(1+η2)

8
, JrT2 =

1 + η1
32

. (4.35)

For sub-triangle T3:

ξ1=
(1+η1)(1−η2)

8
+
1−η1
4

, ξ2=
1+η1
4

, JrT3 =
1 + η1
32

. (4.36)

The similar procedure can be used for the next nodes – 2, 3, 4 and 5, using
the transformation from a local coordinates system of the particular element
ξ1, ξ2 to sub-element coordinates η1, η2 given by Eq. (4.20) and Eq. (4.21).

4.4.4 Quadrilateral boundary elements

Let consider eight nodes quadrilateral isoparametric element presented in
Fig. 4.8.
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The shape functions are given by the following formulas:

N0(ξ1, ξ2)=−(1− ξ1)(1− ξ2)(1 + ξ1 + ξ2)/4, N1(ξ1, ξ2)=(1− ξ21)(1− ξ2)/2,
N2(ξ1, ξ2)=−(1 + ξ1)(1− ξ2)(1− ξ1 + ξ2)/4, N3(ξ1, ξ2)=(1 + ξ1)(1− ξ22)/2,
N4(ξ1, ξ2)=−(1 + ξ1)(1 + ξ2)(1− ξ1 − ξ2)/4, N5(ξ1, ξ2)=(1− ξ21)(1 + ξ2)/2,

N6(ξ1, ξ2)=−(1− ξ1)(1 + ξ2)(1 + ξ1 − ξ2)/4, N7(ξ1, ξ2)=(1− ξ1)(1− ξ22)/2.

The first derivatives of the standard interpolation functions with respect to
the ξ1 and ξ2 are given by:

∂N0(ξ1, ξ2)

∂ξ1
= (1− ξ2)(2ξ1 + ξ2)/4,

∂N1(ξ1, ξ2)

∂ξ1
= −ξ1(1− ξ2),

∂N2(ξ1, ξ2)

∂ξ1
= (1− ξ2)(2ξ1 − ξ2)/4,

∂N3(ξ1, ξ2)

∂ξ1
= (1− ξ22)/2,

(4.37)

∂N4(ξ1, ξ2)

∂ξ1
= (1 + ξ2)(2ξ1 + ξ2)/4,

∂N5(ξ1, ξ2)

∂ξ1
= −ξ1(1 + ξ2),

∂N6(ξ1, ξ2)

∂ξ1
= (1 + ξ2)(2ξ1 − ξ2)/4,

∂N7(ξ1, ξ2)

∂ξ1
= −(1− ξ22)/2,

x

y

z

0

r

n

ξ
1

0
1

ξ
2
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3
4

7

6
5

Figure 4.8: Local coordinates of the quadrilateral boundary element
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∂N0(ξ1, ξ2)

∂ξ2
= (1− ξ1)(2ξ2 + ξ1)/4,

∂N1(ξ1, ξ2)

∂ξ2
= −(1− ξ21)/2,

∂N2(ξ1, ξ2)

∂ξ2
= (1 + ξ1)(2ξ2 − ξ1)/4,

∂N3(ξ1, ξ2)

∂ξ2
= −ξ2(1 + ξ1),

(4.38)

∂N4(ξ1, ξ2)

∂ξ2
= (1 + ξ1)(2ξ2 + ξ1)/4,

∂N5(ξ1, ξ2)

∂ξ2
= (1− ξ21)/2,

∂N6(ξ1, ξ2)

∂ξ2
= (1− ξ1)(2ξ2 − ξ1)/4,

∂N7(ξ1, ξ2)

∂ξ2
= −ξ2(1− ξ1).

4.4.5 Integration of non-singular integrals over
the square

Three-dimensional boundary element analysis involves the integration of cer-
tain functions over the surface of boundary elements. For quadratic elements
we can characterize the generic integration task by:

I =

∫ +1

−1

∫ +1

−1

f(ξ1, ξ2)dξ1dξ2 =
n∑
i=1

(
n∑
j=1

f(ξ1j, ξ2i)wj

)
wi . (4.39)

Values of the Gaussian integration points and weights coefficients are listed
in the Table 4.3.

Table 4.3: Gauss points and weights

n i ξ1 ξ2 wi

1 -0.77459666924148337704 -0.77459666924148337704 0.55555555555555555556
3 2 0.0 0.0 0.88888888888888888889

3 +0.77459666924148337704 +0.77459666924148337704 0.55555555555555555556
1 -0.86113631159495257522 -0.86113631159495257522 0.34785484513745385737
2 -0.33998104358485626480 -0.33998104358485626480 0.65214515486254614263

4 3 +0.33998104358485626480 +0.33998104358485626480 0.65214515486254614263
4 +0.86113631159495257522 +0.86113631159495257522 0.34785484513745385737
1 -0.93246951420315202781 -0.93246951420315202781 0.17132449237917034504
2 -0.66120938646626451366 -0.66120938646626451366 0.36076157304813860757

6 3 -0.23861918608319690863 -0.23861918608319690863 0.46791393457269104739
4 +0.23861918608319690863 +0.23861918608319690863 0.46791393457269104739
5 +0.66120938646626451366 +0.66120938646626451366 0.36076157304813860757
6 +0.93246951420315202781 +0.93246951420315202781 0.17132449237917034504
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4.4.6 Integration of singular integrals over the square

The standard integration rules (see Table 4.3) give an exact result except
when the load point is near to or coincident with one of the nodes of the
element. The singularity occurs in this case, so a special treatment of the
integration is required. Two of the most effective methods will be described.
These are the regularization method and the subtraction/expansion method
[49]. As it was for 2D case, the exact integration is not possible for the
quadratic boundary elements.

In the following figures the mapping procedure, when the singular point
(surrounded by a circle) is in the nodes 0, 1 or 2, is presented. At first,
three-dimensional Cartesian space is mapped into a local two-dimensional
Cartesian space by interpolation functions.

x =
7∑
i=0

Ni(ξ1, ξ2)xi, y =
7∑
i=0

Ni(ξ1, ξ2)yi, z =
7∑
i=0

Ni(ξ1, ξ2)zi. (4.40)

Then the standard square element in local coordinates system ξ1, ξ2 is di-
vided into two or three triangular subelements, depending on the location
of the singular point, as it is shown in Fig. 4.9. Lastly, those sub-triangles
are mapped into the standard square again, so the conventional Gaussian
quadrature scheme can be easily carried out there.

The regularization method using transformation of a triangular domain into
a square and in that way introduces a further Jacobian which cancels out
the singularity of the integrand.

Node 0

For triangle T1:

ξ1 = η1, ξ2 =
−1 + η1 + (1 + η1)η2

2
. (4.41)

For triangle T2:

ξ1 =
−1 + η1 − (1 + η1)η2

2
, ξ2 = η1. (4.42)

A regularizing Jacobian JrT1 = JrT2 = Jr(η1, η2), is associated with the
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Figure 4.9: The singular point in the node 0 (left), the singular point in the node
1 (middle) and the singular point in the node 2 (right)

change of variables and is given by

Jr =

∣∣∣∣∣ ∂ξ1
∂η1

∂ξ1
∂η2

∂ξ2
∂η1

∂ξ2
∂η2

∣∣∣∣∣ = 1 + η1
2

. (4.43)

Node 1

For triangle T1:

ξ1 = −
1 + η1

2
, ξ2 =

−1 + η1 − (1 + η1)η2
2

, JrT1 =
1 + η1

4
. (4.44)

For triangle T2:

ξ1 =
1 + η1

2
, ξ2 =

−1 + η1 + (1 + η1)η2
2

, JrT2 =
1 + η1

4
. (4.45)
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For triangle T3:

ξ1=−
(1+η1)η2

2
, ξ2 = η1, JrT3 =

1 + η1
2

. (4.46)

Node 2

For triangle T1:

ξ1 =
1− η1 − (1 + η1)η2

2
, ξ2 = η1. (4.47)

For triangle T2:

ξ1 = −η1, ξ2 =
−1 + η1 − (1 + η1)η2

2
. (4.48)

As it was in case of the node 0 the regularizing Jacobian Jr(η1, η2) for triangle
T1 and for the triangle T2 is the same and is given by:

Jr =
1 + η1

2
. (4.49)

The mapping procedure when the singular point is placed in the nodes 3, 4
or 5 are presented below.

Node 3

For triangle T1:

ξ1 =
1− η1 + (1 + η1)η2

2
, ξ2 = −

1 + η1
2

, JrT1 =
1 + η1

4
. (4.50)

For triangle T2:

ξ1 =
1− η1 − (1 + η1)η2

2
, ξ2 =

1 + η1
2

, JrT2 =
1 + η1

4
. (4.51)

For triangle T3:

ξ1 = −η1, ξ2=−
(1 + η1)η2

2
, JrT3=

1 + η1
2

. (4.52)
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Figure 4.10: Singularity in the node 3 (left), in the node 4 (middle) and in the
node 5 (right)

Node 4

For triangle T1:

ξ1 =
1− η1 + (1 + η1)η2

2
, ξ2= −η1. (4.53)

For triangle T2:

ξ1 = −η1, ξ2=
1− η1 − (1 + η1)η2

2
. (4.54)

A regularizing Jacobian Jr(η1, η2) for both sub-triangles is given by:

Jr =
1 + η1

2
. (4.55)



4.4 Second-order interpolation functions 265

Node 5

For triangle T1:

ξ1 = −
1 + η1

2
, ξ2 =

1− η1 − (1 + η1)η2
2

, JrT1 =
1 + η1

4
. (4.56)

For triangle T2:

ξ1 =
1 + η1

2
, ξ2 =

1− η1 + (1 + η1)η2
2

, JrT2 =
1 + η1

4
. (4.57)

For triangle T3:

ξ1=
(1 + η1)η2

2
, ξ2 = −η1, JrT3 =

1 + η1
2

. (4.58)

Node 6

For triangle T1:

ξ1 =
−1 + η1 + (1 + η1)η2

2
, ξ2 = −η1. (4.59)

For triangle T2:

ξ1 = η1, ξ2 =
1− η1 + (1 + η1)η2

2
. (4.60)

A regularizing Jacobian Jr(η1, η2), is associated with the change of variables
and is given by:

Jr =
1 + η1

2
. (4.61)

Node 7

For triangle T1:

ξ1 =
−1 + η1 + (1 + η1)η2

2
, ξ2 = −

1 + η1
2

, JrT1 =
1 + η1

4
. (4.62)
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Figure 4.11: Singularity in the node 6 and in the node 7

For triangle T2:

ξ1 =
−1 + η1 − (1 + η1)η2

2
, ξ2 =

1 + η1
2

, JrT2 =
1 + η1

4
. (4.63)

For triangle T3:

ξ1 = η1, ξ2=
(1 + η1)η2

2
, JrT3 =

1 + η1
2

. (4.64)

In the Fig. 4.12a and in the Fig. 4.12b it is illustrated how splitting and
mapping procedure concentrates the Gaussian points around the singularity
nodes in first two cases.
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Figure 4.12: The Gaussian points concentration around: a) the singular node 0,
b) the singular node 1

4.5 Treatment of Boundary Conditions

When the boundary conditions are imposed on the whole boundary, the
number of unknowns is reduced from 2N to N . We can distinguish the
following cases:

1. Dirichlet boundary conditions,

2. Neumann boundary conditions,

3. Robin boundary conditions,

4. Mixed boundary conditions.

All of those cases will be described in the following sections.

4.5.1 Dirichlet boundary conditions

For Dirichlet boundary conditions vector ΦΦΦ = ΦΦΦD containing discrete values
of photon density function ΦΦΦ, is specified and the vector ∂ΦΦΦ

∂n
is unknown.

Then the matrix form of integral equation AΦΦΦ = B∂ΦΦΦ
∂n

+q can be rearranged
to the following form:

B
∂ΦΦΦ

∂n
= AΦΦΦD − q = CD . (4.65)
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4.5.2 Neumann boundary conditions

In this case the vector ∂ΦΦΦ
∂n

= (∂ΦΦΦ
∂n
)N is known and vector ΦΦΦ is unknown:

AΦΦΦ = (B
∂ΦΦΦ

∂n
)N + q = CN . (4.66)

4.5.3 Robin boundary conditions

Robin boundary conditions (see Eq. (4.2)) express linear dependency of both
vectors ΦΦΦΦΦΦΦΦΦ and ∂ΦΦΦΦΦΦΦΦΦ

∂n
. So the procedure is as follows: define ∂ΦΦΦΦΦΦΦΦΦ

∂n
as a function of

vector ΦΦΦΦΦΦΦΦΦ and then introduce to matrix form of integral equation:

(A+
1

2αD
B)ΦΦΦ = q = CR . (4.67)

4.5.4 Mixed boundary conditions

When on some part of the boundary surface the Dirichlet boundary con-
ditions and on the rest of the surface the Robin boundary conditions are
imposed, then the rearranging process is a little more complicated. Let as-
sume that first m1 rows of vector ΦΦΦ are the Dirichlet boundary conditions
and the remain part m−m1 are of the Robin type.[

A11 A12

A21 A22

] [
ΦΦΦΦΦΦΦΦΦD

ΦΦΦΦΦΦΦΦΦ

]
=

[
B11 B12

B21 B22

] [
∂ΦΦΦΦΦΦΦΦΦ
∂n

− 1
2αD

ΦΦΦ

]
+

[
q1

q2

]
. (4.68)

After some mathematics final system of equations has the following form:[
(A12 +

1
2αD

B12) −B11

(A22 +
1

2αD
B22) −B21

] [
ΦΦΦΦΦΦΦΦΦ
∂ΦΦΦ
∂n

]
=

[
−A11ΦΦΦD + q1

−A21ΦΦΦD + q2

]
. (4.69)

4.6 Non-homogeneity

Basically the BEM method is designed for the solution in the homogeneous
areas. However very often we have to find out the solution inside the regions
which are spatially homogeneous. Then each region is considered separately
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and the solution is ”sewed” (see Eq. (4.70)) on an interface or on the interfaces
if we have more than two subregions. Such approach is general and describes
2D and 3D problems. Let introduce the superscripts (i) denoting the i-th
region.

The photon density and the current of photons along the nodes on the inter-
face must therefore satisfy the following conditions:

Φ
(i−1)
Γi

= Φ
(i)
Γi
, D(i−1)∂Φ

(i−1)

∂n

∣∣∣∣
Γi

= − D(i)∂Φ
(i)

∂n

∣∣∣∣
Γi

. (4.70)

The system of equations describing the solution in the structure consisting
of n subregions is:

c(r)Φ(1)(r) +

∫
Γ

∂G(1)(|r− r′|, ω)
∂n

Φ(1)(r′)dΓ(r′) =

=

∫
Γ

G(1)(|r− r′|, ω)∂Φ
(1)(r′)

∂n
dΓ(r′)−

ns∑
s=1

QsG
(1)(|rs − r|, ω),

...
...

... (4.71)

c(r)Φ(n−1)(r) +

∫
Γ

∂G(n−1)(|r− r′|, ω)
∂n

Φ(n−1)(r′)dΓ(r′) =

=

∫
Γ

G(n−1)(|r− r′|, ω)∂Φ
(n−1)(r′)

∂n
dΓ(r′),

c(r)Φ(n)(r)+

∫
Γ

∂G(n)(|r− r′|, ω)
∂n

Φ(n)(r′)dΓ(r′)=

=

∫
Γ

G(n)(|r− r′|, ω)∂Φ
(n)(r′)

∂n
dΓ(r′).

If we limit ourselves to regions consisted of homogeneous subregions (layers)
enclosed one inside the others (see Fig. 4.13), then the boundary might be
divided to external Γi and internal one Γi+1. The set of integral equations
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nΩn

Γ

Figure 4.13: Cross-section of the region under consideration as a set of concentric
spheres

(4.71) may be presented in the matrix form:

A
(1)
11 A

(1)
12 . . . . . . 0 0

A
(1)
21 A

(1)
22 . . . . . . 0 0

...
...

. . .
...

...
...

0 0 . . . A
(n−1)
11 A

(n−1)
12 0

0 0 . . . A
(n−1)
21 A

(n−1)
22 0

0 0 . . . 0 0 A
(n)
11





ΦΦΦ
(1)
Γ1

ΦΦΦ
(1)
Γ2

...

ΦΦΦ
(n−1)
Γn−1

ΦΦΦ
(n−1)
Γn

ΦΦΦ
(n)
Γn


=

(4.72)

=



B
(1)
11 B

(1)
12 . . . . . . 0 0

B
(1)
21 B

(1)
22 . . . . . . 0 0

...
...

. . .
...

...
...

0 0 . . . B
(n−1)
11 B

(n−1)
12 0

0 0 . . . B
(n−1)
21 B

(n−1)
22 0

0 0 . . . 0 0 B
(n)
11





Jn
(1)
Γ1

Jn
(1)
Γ2

...

Jn
(n−1)
Γn−1

Jn
(n−1)
Γn

Jn
(n)
Γn


+



q1
(1)

q2
(1)

...
0
0
0


,

where Jn
(i)
Γi=Γ1∪Γ2

means ∂ΦΦΦ(i)

∂n

∣∣∣
Γi=Γ1∪Γ2

= mRΦΦΦ
(i)
Γi=Γ1∪Γ2

. Usually in DOT

vector nR = 0 for Robin boundary conditions.

Horizontal and vertical lines separate coefficients of the matrices of the same
subregions. The final subregion contrary to the previous subregions poses
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one sphere boundary only.



A
(1)
11 A

(1)
12 . . . 0 0 0

A
(1)
21 A

(1)
22 . . . 0 0 0

...
...

. . .
...

...
...

0 0 . . . A
(n−1)
11 A

(n−1)
12 0

0 0 . . . A
(n−1)
21 A

(n−1)
22 0

0 0 . . . 0 0 A
(n)
11





ΦΦΦΦΦΦΦΦΦ
(1)
Γ1

ΦΦΦΦΦΦΦΦΦ
(1)
Γ2

...

ΦΦΦΦΦΦΦΦΦ
(n−1)
Γn−1

ΦΦΦΦΦΦΦΦΦ
(n−1)
Γn

ΦΦΦΦΦΦΦΦΦ
(n)
Γn


=

(4.73)

=



B
′(1)
11 B

(1)
12 . . . . . . 0 0

B
′(1)
21 B

(1)
22 . . . . . . 0 0

...
...

. . .
...

...
...

0 0 . . . B
(n−1)
11 B

(n−1)
12 0

0 0 . . . B
(n−1)
21 B

(n−1)
22 0

0 0 . . . 0 0 B
(n)
11





ΦΦΦ
(1)
Γ1

JnJnJn
(1)
Γ2

...

Jn
(n−1)
Γn−1

Jn
(n−1)
Γn

Jn
(n)
Γn


+



q1
(1)

q2
(1)

...
0
0
0


,

where B
′(1)
11 and B

′(1)
21 are modified by Robin boundary conditions.

Both side of equations (4.73) poses unknowns. That is why we need to
rearrange it using interface boundary conditions (4.70) for i = 1, 2, . . . , n−1.
As the nodes potential collected in vector ΦΦΦ is continuous on the interface
and Jn

(2)
Γ2

= −Jn
(1)
Γ2

the upper indices will be omitted. In order to focuss our
attention let us assume that number of subregions is n = 4. Not loosing
generality of consideration it would be more easy to understand process of
rearranging matrix of coefficients. Finally we get the following system of
equations:



A
(1)
11 −B

′(1)
11 A

(1)
12 −B(1)

12 0 0 0 0

A
(1)
21 −B

′(1)
21 A

(1)
22 −B(1)

22 0 0 0 0

0 A
(2)
11 +B

(2)
11 A

(2)
12 −B(2)

12 0 0

0 A
(2)
21 +B

(2)
21 A

(2)
22 −B(2)

22 0 0

0 0 0 A
(3)
11 +B

(3)
11 A

(3)
12 −B(3)

12

0 0 0 A
(3)
21 +B

(3)
21 A

(3)
22 −B(3)

22

0 0 0 0 0 A(4) B(4)





ΦΦΦΓ1

ΦΦΦΓ2

Jn
(1)
Γ2

ΦΦΦΓ3

Jn
(2)
Γ3

ΦΦΦΓ4

Jn
(3)
Γ4


=



q1
(1)

q2
(1)

0
0
0
0
0


.

Extending our consideration to n subregions we will get the final form of set
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of equations:

A
(1)
11−B

′(1)
11 A

(1)
12 −B

(1)
12 0 . . . 0 0 0

A
(1)
21−B

′(1)
21 A

(1)
22 −B

(1)
22 0 . . . 0 0 0

0 A
(2)
11 +B

(2)
11 A

(2)
12 . . . 0 0 0

0 A
(2)
21 +B

(2)
21 A

(2)
22 . . . 0 0 0

...
...

...
...

. . .
...

...
...

0 0 0 0 . . . +B
(n−1)
11 A

(n−1)
12 −B(n−1)

12

0 0 0 0 . . . +B
(n−1)
21 A

(n−1)
22 −B(n−1)

22

0 0 0 0 . . . 0 A(n) B(n)





ΦΦΦΓ1

ΦΦΦΓ2

Jn
(1)
Γ2

ΦΦΦΓ3

...

Jn
(n−2)
Γn−1

ΦΦΦΓn

Jn
(n−1)
Γn


=



q1
(1)

q2
(1)

0
0
...
0
0
0


.

4.7 Index mismatched diffusive/diffusive in-

terfaces

In a previous section we have considered the common case when the refrac-
tive indices are equal to each other and are constant throughout both media.
However, in practice, existing refractive index2 mismatch causes some prob-
lems and the boundary conditions Eq. (4.70) can not be imposed [39, 17].

For refracting index mismatched (n0 ̸= n1) along diffusive/diffusive interfaces
the following boundary conditions have to be imposed:

ΦΓi
− −

(
n1

n0

)2

ΦΓi
+ = CnJn ,

(4.74)

Jn = −D0

∂ΦΓi
+

∂n

∣∣∣∣
Γi

= −

(
−D1

∂ΦΓi
−

∂n

∣∣∣∣
Γi

)
,

where the total flux at the boundary must be continuous i.e., Jn = JnΓ+
1
=

JnΓ−
1
and where: Cn =

2−R1→0
J −R0→1

J

R1→0
Φ

.

In case when refracting index n0 = n1 one gets R1→0
J = 1 and R1→0

Φ = 0.5
and Cn = 0 obtaining again conditions defined by Eq. (4.70). As it is stated

2The speed of all electromagnetic radiation in vacuum is the same, approximately 3·108
m/s, and is denoted by c. Therefore, if v is the phase velocity of radiation of a specific
frequency in a specific material, the refractive index is given by n = c

v .
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in [39] the most common range of refractive indices in biological media is
1.3 < n < 1.5 and therefore maximum expected value for n1 > n0 is Cn ∼ 5.
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Figure 4.14: Interface between
diffusive regions with different
refractive indices
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Figure 4.15: Cross-section of
spherical region with the inter-
face

In such cases it is suggested to implement approximate interface conditions

which are valid as long as we can consider
(
n1

n0

)2
ΦΓi

+ >> CnJn and this

condition holds when the refractive indices are within the range mentioned
above.

4.7.1 Approximate interface conditions

Let start with a simplified version of the boundary/interface conditions (Eq.
(4.74)). Then the approximate interface conditions will be expressed as fol-
lows:

ΦΓi
− ≃

(
n1

n0

)2

ΦΓi
+ ,

(4.75)

−D0

∂ΦΓi
+

∂n

∣∣∣∣
Γi

= −

(
−D1

∂ΦΓi
−

∂n

∣∣∣∣
Γi

)
.

Let focus our attention on the spherical region with internal interface as
shown in Fig. 4.15. The system of equations describing the solution in the
structure consisting of two subregions is:
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1. An equation for subregion Ω0 bounded by surface Γ0 and surface
Γ+
1 is:

c(r)Φ(0)(r) +

∫
Γ

∂G(0)(|r− r′|, ω)
∂n

Φ(0)(r′)dΓ(r′) =

(4.76)

=

∫
Γ

G(0)(|r− r′|, ω)∂Φ
(0)(r′)

∂n
dΓ(r′)−

ns∑
s=1

QsG
(0)(|rs − r|, ω) ,

where Φ(0) consists of unknowns on the boundary Γ0 – ΦΓ0 and on the
interface Γ+

1 – ΦΓ+
1
(see Fig. 4.15),

for surface Γ0 Robin boundary conditions holds:

ΦΓ0 −mJnΓ0
= 0 , (4.77)

where m = 2A [39, 44]. The coefficient A can be calculated as follows:

A =
2/(1−R0)− 1 + | cosΘc|3

1− | cosΘc|2
, (4.78)

where Θc = arcsin(1/n) and R0 = (n − 1)2/(n + 1)2. For the value of
refractive index n = 1.333 we get A = 2.3645.

2. The second equation for subregion Ω1 bounded by surface Γ−
1 is:

c(r)ΦΓ−
1
(r) +

∫
Γ1

∂G(1)(|r− r′|, ω)
∂n

ΦΓ−
1
(r′)dΓ(r′) =

=

∫
Γ1

G(1)(|r− r′|, ω)
∂ΦΓ−

1
(r′)

∂n
dΓ(r′) , (4.79)

and for the surface Γ1 we impose the approximate interface boundary
conditions (see Eq. (4.75)).

ΦΓ1
− ≃

(
n1

n0

)2

ΦΓ1
+ and JnΓ1

− = −JnΓ1
+ . (4.80)

The above two equations we may rewrite in the following matrix form replac-
ing function Φ and J by the vectors containing their discrete nodal values:
A

(0)
11 A

(0)
12 0 0

A
(0)
21 A

(0)
22 0 0

0 0 A
(0)
33 0

0 0 0 A
(1)
44



ΦΦΦΓ0

ΦΦΦΓ+
1

ΦΦΦΓ0

ΦΦΦΓ−
1

=

B

(0)
11 B

(0)
12 0 0

B
(0)
21 B

(0)
22 0 0

0 0 B
(0)
33 0

0 0 0 B
(1)
44



JnΓ0

JnΓ+
1

JnΓ0

JnΓ−
1

+

q1

(0)

q2
(0)

0
0

.
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Reducing the number of unknowns using approximate interface conditions
and replacing ∂Φ(0)

∂n
by Jn we get:

c(r)Φ(0)(r) +

∫
Γ

∂G(0)(|r− r′|, ω)
∂n

Φ(0)(r′)dΓ(r′) =

= − 1

D0

∫
Γ

G(0)(|r− r′|, ω)JnΓ0
dΓ(r′)−

ns∑
s=1

QsG
(0)(|rs − r|, ω),

ΦΓ0 −mJnΓ0
= 0,

c(r)

(
n1

n0

)2

ΦΓ+
1
(r) +

∫
Γ

∂G(1)(|r− r′|, ω)
∂n

(
n1

n0

)2

ΦΓ+
1
(r′)dΓ(r′) =

= − 1

D1

∫
Γ

G(1)(|r− r′|, ω)
(
−JnΓ+

1

)
dΓ(r′) . (4.81)

Now, eliminating the unknowns JnΓ0
the system of equations in a matrix

form is as follows:
A

(0)
11 A

(0)
12 0

A
(0)
21 A

(0)
22 0

0 0
(
n1

n0

)2
A

(1)
44


ΦΦΦΓ0

ΦΦΦΓ+
1

ΦΦΦΓ+
1

=
 B′(0)

11 B
(0)
12 0

B′(0)
21 B

(0)
22 0

0 0 B
(1)
44


ΦΦΦΓ0

JnJnJnΓ+
1

JnJnJnΓ+
1

+
 q1

(0)

q2
(0)

0

 ,
where B′(0)

11 = B
(0)
11

(
B

(0)
33

)−1

A
(0)
33 .

Now, we have only three group, of unknowns: ΦΦΦΓ0 , ΦΦΦΓ+
1
and JnΓ+

1
. Transfer-

ring unknowns to the left hand side of the system we will finally get:
A

(0)
11 A

(0)
12 −B(0)

12

A
(0)
21 A

(0)
22 −B(0)

22

0
(
n1

n0

)2
A

(1)
44 −B(1)

44


 ΦΦΦΓ0

ΦΦΦΓ+
1

JnΓ+
1

 =

 q1
(0)

q2
(0)

0

 . (4.82)

Let consider two concentric spheres which cross-section is shown in Fig. 4.15.
Their dimensions are: R0 = 25 mm and R0 = 22.5 mm. The amplitude
and phase distribution on the perimeter of the region are presented in the

Fig. 4.16. For approximate interface conditions, when the coefficient
(
n1

n0

)
increases the phase shift decreases significantly (see Fig. 4.16) but amplitude
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Figure 4.16: Left column of the figures-approximate interface conditions results

for refractive index mismatch case
(
n1
n0

)
= 1.33/1.6 = 0.83, refractive index match

case
(
n1
n0

)
= 1.33/1.33 = 1.0 and refractive index mismatch case

(
n1
n0

)
= 1.33/1. =

1.33; the right column of the figures-in linear scale presents enlarged amplitude
distribution to show that graphs on top left are close each to other especially in
logarithmic scale but are not the same

remains almost unchanged for all cases. That seems to be not justified from
physical point of view. That is why we will implement the complete boundary
conditions Eq. (4.74).

4.7.2 Complete interface conditions

If we consider complete or saltus [39] interface boundary conditions then
ΦΓ1

− will read:

ΦΓ1
− =

(
n1

n0

)2

ΦΓ1
+ − CnJnΓ1

+ . (4.83)
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Now, introducing Eq. (4.83) into Eq. (4.79) we will get:

c(r)Φ(0)(r) +

∫
Γ

∂G(0)(|r− r′|, ω)
∂n

Φ(0)(r′)dΓ(r′) =

= − 1

D0

∫
Γ

G(0)(|r− r′|, ω)JnΓ0
dΓ(r′)−

ns∑
s=1

QsG
(0)(|rs − r|, ω),

ΦΓ0 +mJnΓ0
= 0,

c(r)

(
n1

n0

)2

ΦΓ+
1
(r) +

∫
Γ

∂G(1)(|r− r′|, ω)
∂n

(
n1

n0

)2

ΦΓ+
1
(r′)dΓ(r′) =

= c(r)CnJnΓ+
1
+

∫
Γ

∂G(1)(|r− r′|, ω)
∂n

CnJnΓ+
1
dΓ(r′) +

+
1

D1

∫
Γ

G(1)(|r− r′|, ω)JnΓ+
1
dΓ(r′). (4.84)

In a matrix form, the system of integral equations Eq. (4.84) is:
A

(0)
11 A

(0)
12 −B(0)

12

A
(0)
21 A

(0)
22 −B(0)

22

0
(
n1

n0

)2
A

(1)
44 −B′(1)

44 −B
(1)
44


 ΦΦΦΓ0

ΦΦΦΓ+
1

JnΓ+
1

 =

 q1
(0)

q2
(0)

0

 , (4.85)

where the new submatrix B′(1)
44 of the above system is calculated from dis-

cretized form of the following term (see Eq. (4.84)):

c(r)Cn +

∫
Γ

∂G(1)(|r− r′|, ω)
∂n

CndΓ(r
′)

.

Numerically, solving the integral equations Eq. (4.84) requires discretization
of the boundary curve or the boundary surface. In case of curved bound-
ary, the limit of validity of saltus condition expressed in Eq. (4.74), should
be studied, since this expression was originally derived for a locally plane
interface. In the work [39] it was proved that the error committed by using
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the expression Rj→k
Φ,J for a plane interface is never higher than 0.5%. The

Author of [39] for practical applications has used values of the refractive in-
dex n1 between 1.0 and 3.0. Considering our example we can conclude that
we have big enough curvature radius and small enough boundary elements
(the segment is not bigger than 10o), to achieve satisfactory results. Some
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Figure 4.17: BEM with saltus interface conditions results for refractive index
mismatch (Cn = 0.2)-left column and FMC results-right column

typical values of Cn are shown in [39], where we see that in cases in which
n1 < n0, we obtain values of Cn < 2.5. The most relevant case corresponds
to n0 = 1.33, since it is the most common value in biological media.

For calculation we have assumed that Cn = 0.2. The results are very close
to the results presented in Fig. 4.16. In order to emphasis the differences for
different refractive indices all cases were put in one figure.

For comparison, the results achieved with the aid of the Frequency Monte-
Carlo method were also presented (Fig. 4.17 top and bottom right). As we
can see in the Fig. 4.17 the BEM and the FMC results for the cases 1.33

1.6
and

1.33
1.33

are really close for the amplitude and the phase shift. Unfortunately the
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case 1.33
1.0

demand further validation as the results seem to be not correct.

4.8 Numerical examples

All examples presented in this section are selected in such a way to make sure
that boundary element method will provide a reliable result in impedance or
optical tomography.

For Electrical Impedance Tomography (EIT) and its industrial applications
we have to deal with regions possessing sharp edges and corners. For Diffuse
Optical Tomography (DOT) mostly we have to deal with medical applications
where the regions possess rather smooth surfaces without sharp edges and
corners.

That is why we have also studied close placed surfaces of spheres as well as
inhomogeneous regions with refractive index match and mismatch in case
of DOT. Whenever that was possible, results were compared with analytical
solution [3] or with the other numerical methods like the Finite Element [3, 4]
or Monte-Carlo [5]. The main attention is focused on 3D cases but more
interesting 2D examples were also considered (see the previous sections).

4.8.1 Two concentric spheres

Two concentric spheres can be recognized as a simplified numerical model
of the CSF layer of the baby’s head. That is why so much attention will be
devoted to this particular region configuration. We will consider the spherical
object of standard dimensions of 25 mm and the internal embedded sphere
of 24 mm simulating the baby’s head.Our intention is to show haw difficult
such region is for the boundary element method. This investigation we will
start first with Laplace equation next, the more difficult problem of diffusion
equation will be considered. The errors of the solution on the boundary as
well as inside the structure will be controlled.

The region was discretised by 1536 isoparametric 6 nodes triangular bound-
ary elements, that gives 3074 nodes (see Fig. 4.18). Solution for the internal
function and its relative error is shown in Fig. 4.19.
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Figure 4.18: The outer and inner shell meshes (left) and external surface dis-
cretization by 6 nodes isoparametric triangles
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Figure 4.19: Analytical and numerical solution (solid and dotted line respec-
tively) on the left and relative error distribution for potential function Φ inside
the region (right)
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Figure 4.20: Relative error distribution for the dΦ
dn on the external sphere (left)

and relative error distribution for the dΦ
dn on the internal sphere (right)

Comparing results we can see that the potential distribution however insuffi-
ciently precise gives the hope for a satisfactory result if discretization would
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Figure 4.21: The outer and inner shell meshes (left) and external surface for
coarse discretization by quadrilateral boundary element
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Figure 4.22: Analytical and numerical solution (solid and dotted line respec-
tively) (left) and relative error distribution for potential function Φ inside the
region
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Figure 4.23: Relative error distribution for the dΦ
dn on the external sphere (left)

and relative error distribution for the dΦ
dn on the internal sphere

be properly dense. The relative error distributions for the surface values are
presented in the Fig. 4.20. Looking at the results for the isoparametric 6
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nodes triangular boundary elements surprisingly high relative error occurs
for a certain nodes (see Fig. 4.20).
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Figure 4.24: The outer and inner shell meshes (left) and external surface for
dense discretization by quadrilateral boundary element
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Figure 4.25: Analytical and numerical solution (solid and dotted line respec-
tively) on the left and relative error distribution for potential function Φ inside
the region on the right
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Figure 4.26: Relative error distribution for the dΦ
dn on the external sphere (left)

and relative error distribution for the dΦ
dn on the internal sphere (right)
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It is interesting how the precision of thin layers calculation depends on the
kind of the boundary elements. Now the region under consideration was dis-
cretised by 768 isoparametric 8 nodes quadrilateral isoparametric boundary
elements. That gives 2308 nodes. Discretisation of the region is presented in
Fig. 4.21.

The internal field solution and the relative error are shown in the Fig. 4.22.

The relative error distributions for the surface values are presented in the
Fig. 4.23. Results are still unsatisfactory, so in order to investigate the in-
fluence of the discretization on the precision of the solution, this region was
discretised by 3072 isoparametric 8 nodes quadrilateral boundary elements
(see Fig. 4.24). That gives 9220 nodes in total.

The relative error distributions for the surface values are presented in the
figures Fig. 4.25 and Fig. 4.26. This time the relative error for the surface
quantities dropped even below 0.3%.

4.9 Diffusion model for light transport in the

frequency domain

Let consider a domain Ω with boundary Γ . Light transport in scattering
tissue is commonly described by the diffusion approximation to the transport
equation [3], a second order elliptic partial differential equation:

(∇ ·D∇− µa + iω/c)Φ(r, ω) = q0(r, ω) ∀ r ∈ Ω \ Γ , (4.86)

where Φ stands for photon density, diffusion coefficient D = 1
3(µa+µ′s)

, µa
is an absorbing and µ′

s is reduced scattering coefficient, the speed of light
c(r) = c0/ν(r), where ν(r) is the refractive index and c0 is the speed of light
in a vacuum, and q0 is a source of light with modulation frequency ω.

Boundary conditions are usually taken as Robin type [44]:

Φ(r, ω) + 2αD
∂Φ(r, ω)

∂n
= 0, ∀ r ∈ Γ , (4.87)

where coefficient α depends on refractive index.
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In the case where scattering and absorption are homogeneous, Eq. (4.86)
reduces to a Helmholtz equation with complex wave number k =

√
µa
D
− i ω

cD
:

∇2Φ(r, ω)− k2Φ(r, ω) = −q0(r, ω)
D

∀ r ∈ Ω \ Γ , (4.88)

with the same boundary condition as those expressed by Eq. (4.87).

For the diffusion equation the fundamental solution is [3]:

G(|r− r′|, ω) = 1

4π|r− r′|
e−k|r−r′| . (4.89)

The normal derivative of the Green function in a direction n can be written:

n · ∇G = n · ρ
(

−1
4π|r− r′|2

− k

4π|r− r′|

)
e−k|r−r′| , (4.90)

where ρ = r−r′

|r−r′| .

The Boundary Element Method (BEM) proceeds by applying Green theorem
in its second form [10] to derive an integral equation applicable on the surface:

c(r)Φ(r) +

∫
Γ−Γε

∂G(|r− r′|, ω)
∂n

Φ(r′)dΓ(r′) =

=

∫
Γ−Γε

G(|r− r′|, ω)∂Φ(r
′)

∂n
dΓ(r′)−

∫
Ω

q0G(|r− r′|, ω)dΩ . (4.91)

The only difference between Eq. (4.6) and Eq. (4.91) is that the photon
density function Φ and current photon function ∂Φ

∂n
are complex and we have

complex valued Green functions (Eq. (4.89)).

In DOT, concentrated sources are frequently used and are very simple to
handle in BEM. They are a special case for which the function q0 at the
internal point rs becomes:

q0 = Qsδ(rs) , (4.92)

where Qs is the magnitude of the source and δ(rs) is a Dirac delta function
whose integral is equal to 1 over any volume containing the singularity point
rs and zero elsewhere.
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Assuming that a number, ns of these functions exists one can write:

c(r)Φ(r) +

∫
Γ

∂G(|r− r′|, ω)
∂n

Φ(r′)dΓ(r′) =

=

∫
Γ

G(|r− r′|, ω)∂Φ(r
′)

∂n
dΓ(r′)−

ns−1∑
s=0

QsG(|rs − r|, ω) . (4.93)

4.10 Results for 3D space

To test the influence of the discretization in the BEM on the accuracy of
the method, we will use the homogeneous spherical region. To discretize
the surface, two different boundary elements were used: isoparametric six
nodes triangular and isoparametric eight nodes quadrilateral elements. In a
gray color scale the logarithm of the solution on the surface of the sphere is
visualized (see for example Fig. 4.27 and Fig. 4.28).

As a result of the solution of equation (4.86) with Robin boundary condition
(4.87), the amplitude and the phase shift of the photon density Φ on the
circumference of the cross-section of the sphere have been plotted, together
with an analytical solution taken from [3].

Calculations have been performed for the cases of a point source in a sphere
50 mm in diameter. The source was located in a distance rd = 1/µ′

s mm from
the surface, and a refractive index of 1.0 was assumed, so the speed of light
was c = 0.3 mm ps−1. Values for µa of 0.025mm−1 and for µ′

s of 2.0mm−1

were used, which are representative for brain tissue [3]. The modulation
frequency was equal to 200 MHz. In each case the equation (4.67) was solved
with α = 1. In order to achieve the solution of this problem, the GMRES
[42] numerical solver was used.

To discretize the surface, two different boundary elements were used: isopara-
metric quadratic triangular boundary element and in the next sections the
quadrilateral eight nodes boundary element. An important factor in mesh
construction is to make the size of a distance between the nodes of elements



286 3D BEM Froward Problem for Diffusive Optical Tomography

no bigger than the diffusion length3:

Ld =

√
D

µa
=

1

k

∣∣∣∣
ω=0

. (4.94)

Since this quantity is very small especially for near-infrared (NIR) light in
the wavelength range 650 to 1200 nm, the diffusion equation is difficult to
solve numerically.

For the case of isoparametric quadratic triangular elements the sphere surface
had been discretized by 768 triangular boundary elements, which gave rise
to 1538 nodes (see Fig. 4.27).
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Figure 4.27: The sphere surface
discretized by quadratic (six nodes)
triangular elements
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Figure 4.28: The sphere surface
discretized by quadratic quadrilat-
eral elements

Amplitude and a phase shift distribution of Φ against angle Θ for the equa-
torial plane of the sphere are presented in Fig. 4.29. Conformity with the
analytical solution is very good, so it is hard to distinguish both curves.

Similar results were achieved using quadrilateral boundary element described
in the previous section. This time, the surface of the sphere was discretized by
1536 elements with 4610 nodes (Fig. 4.28) providing better results, because
the discretization is twice as dense as for triangular mesh.

3The diffusion length is a distance at which the photon density Φ decreases by a factor
of e, which derives directly from (4.89) when ω = 0.
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Figure 4.29: Comparison of the
photon density results for a isopara-
metric triangular quadratic dis-
cretization (▽) with analytical solu-
tion (solid line) a) log amplitude b)
phase shift as a function of angle Θ
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Figure 4.30: Comparison of
the photon density results for
a quadrilateral discretization (di-
amond) with analytical solution
(solid line) a) log amplitude, b)
phase shift as a function of angle Θ

This is particularly true for the phase shift, where for triangular discretization
we can observe small oscillations (Fig. 4.29), disappearing for more dense
discretization.

Amplitude and a phase shift distribution of Φ against the angle Θ for all two
considered cases are presented in the Fig. 4.29 and Fig. 4.30. The analyti-
cal solution is a solid line but numerical is a line marked with triangles or
diamonds for triangular or quadrilateral discretization, respectively.

In order to validate the numerical results it were compared with the analytical
solution [3], however it is unknown how precise the analytical method is.
That is why to estimate the precision of the numerical method we need some
measure of the accuracy.
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Sometimes authors dealing with the Boundary Element Method express opin-
ion that only simplest boundary element provide acceptable from practical
point of view results. That is why we decided to include some results which
compare results achieved by 3 nodes flat triangle discretization and 6 nodes
isoparametric triangle discretization of the same region with the same num-
ber of nodes. It does’t mean the same number of unknowns as for the flat
triangle the number of unknowns are related to the number of elements but
for isoparametric 6 nodes triangle the number of unknowns are related to the
number of nodes. The timings for both cases solution on a Pentium IV-1.0
GHz computer are collected in Table 4.4.

Table 4.4: Time performance for different kind of elements

type of element time (sec) no of unknowns

triangle const. 22.7 3072
triangle izopar. 4.8 1538

4.10.1 Validation of numerical results and measures of
the accuracy

To estimate the precision of the numerical method we need some measure of
the accuracy. In [30, 19] several measures of the accuracy of the calculated
potential function distributions have been defined. They all compare the
numerical solution against the exact one. The most widely used measure is
the relative difference measure (RDM), which is defined as follows:

RDM =

√∫
S
(Φ− Φexact)2dS∫

S
Φ2
exactdS

. (4.95)

However, such a measure gives us the global error estimation, when in Optical
Tomography we are mainly interested in local error distribution. The relative
error distribution for the amplitude and the phase shift is presented in the
Fig. 4.31.

For the flat triangular approximation we can observe large oscillations in the
vicinity of the point source (see Fig. 4.31b), even though the discretization
was quite dense, the isoparametric case gives more accurate result. That is
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Figure 4.31: Distribution of the relative error for isoparametric triangle (solid
line) and for quadrilateral 8 nodes boundary elements (thick solid line); addi-
tionally by dashed line are marked results for constant triangle: a) for the log
amplitude b) for the phase shift

one of the many reason why in Diffuse Optical Tomography almost exclu-
sively we are using isoparametric boundary elements.

4.10.2 The proximity effect

Because the purpose is to create the 3D BEM model of the baby’s head,
the behavior of the method in case of diffusion equation formulated for the
frequency domain is very important when the surfaces become close to each
other.

In the previous sections the thin layer structures were investigated in case of
Laplace equation. Now we are interested in more complicated case, due to
the fact that all quantities become complex.

Some of the integrals for the thin layers became nearly singular. We need
to know the error which may be introduced by that kind of geometry. For
this purposes we have created the structures with 1 mm, 2 mm and 3 mm
distance between the surfaces in the homogeneous region, for which we know
the analytical solution [3, 5]. In all three cases discretization remains the
same. Comparison of the results are shown in Fig. 4.32 and Fig. 4.33.

Concluding this numerical experiment, we can say that magnitude is much
more sensitive on the distance between the surfaces (gap) then the phase
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Figure 4.32: Thin layers solution for: a) 1 mm gap, b) 2 mm gap, c) 3 mm gap
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Figure 4.33: The amplitude distribution for 1mm gap (one can hardly recognize
the differences between the “exact solution” and the numerical one

shift. The bigger gap the smaller relative error is. Anyway, it is possible to
keep the relative error on a reasonable level if the proper discretization will
be selected, as it was shown in the section 4.8.

4.11 Multilayered model of the neonatal head

Finally, the nonstructural meshes provided by David Holder co-worker were
used [47, 53]. Next results for a four layer head model will be presented.
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The surfaces modeled were the outer skin, the skull, the CSF layer and the
brain. Those surfaces were generated from an MRI scan following tissue
segmentation. The complexity of these meshes is that a volume mesh (like
this) used for a finite element method (FEM) would be very difficult to
construct. The optical parameters and mesh sizes are given in Table 4.5:

Table 4.5: Optical parameters and mesh discretisations for the four layer head
model

µa µ
′
s nodes elements

outer shell 0.0149 0.8 2849 1402
middle shell 0.01 1 3294 1646
inner shell 0.0178 1.25 2098 1048

In this chapter the 3D BEM numerical model for the forward problem for-
mulated for Optical Tomography has been presented. The standard optical
tomography benchmark has been solved for the diffusion equation in order
to highlight the main advantages of BEM which could be useful in OT.

The results were compared with those presented in [3], showing good confor-
mity, even though the BEM mesh was relatively coarse.

As the main advantages of BEM from the optical tomography applications
point of view, the following may be mentioned:

• an easy and precise way to represent a source point (see Eq. (4.93)),

• more easy to generate a good quality 3D boundary mesh than 3D vol-
ume one,

• adaptive mesh refinement as easy as for 2D FEM problems,

• BEM guarantees high and a constant precision of the solution inside
the whole region under consideration for both quantities: Φ and the
gradient of Φ.
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Figure 4.34: Four layer baby head model without a void gap; on the left ampli-
tude, on the right phase
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4.12 Light propagation in diffusive media with

non-scattering regions

The main purpose of this chapter is to develop an efficient method for
mathematical modelling the baby’s head with clear layers. Previously such
a model was created using almost exclusively the FEM, see for example
[4, 9, 8, 7, 25, 38, 37, 39, 41, 40]. In those 2D or 3D models the region under
consideration was treated as spatially homogeneous, in order to avoid too
many finite elements.

So, why do not apply the BEM, which in this particular case provide almost
the same ability, regarding discretization, and has advantages over FEM, as
mentioned before?

Fig. 4.35 illustrate two types of void and the hollow case and the thin layer
will be discussed in this chapter. These have been chosen as they are anal-
ogous to anatomical features one might expect to see in brain, the hollow
regions to the ventricles and the thin layer being analogous to the Sub-
Arachnoid Space (SAS), as illustrated in Fig. 4.36.

Γ1
Γ1

���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������

���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������

���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������

���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������

1 1

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

Γ2

Ω

Ω2

Ω2

Ω

Γ2

ΩΓ 33

Figure 4.35: A diagram illustrating two types of void inclusion a hollow region
(left) and a thin layer region (right)

4.12.1 Governing equations for non-scattering sphere
embedded in a diffusive spherical region

Let consider a spherical domain Ω with boundary Γ . The Boundary Element
Method (BEM) proceeds by applying Green theorem in its second form [10]
to derive an integral equation applicable on the surface Γ = Γ1 ∪ Γ2 (see
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Figure 4.36: A diagram illus-
trating the biological analogies of
the void types
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Figure 4.37: The cross-section of the
region under consideration with a non-
scattering sub-region

Fig. 4.37):

c(r)Φ(r) +

∫
Γ

∂G(|r− r′|)
∂n

Φ(r′)dΓ(r′) = (4.96)

= −
∫
Γ

G(|r− r′|)Jn(r
′)

D
dΓ(r′)−

∫
Ω

q0G(|r− r′|)dΩ

∀ r ∈ Γ1 ∪ Γ2, ∀ r′ ∈ Γ1 ∪ Γ2 ,

where: −Jn(r′)
D

= ∂Φ(r′)
∂n

and c(r) = 1/2 when the observation point lies on
a smooth surface, which is the case considered here. The Green function,
photon density function Φ and photon’s current function Jn are depended on
ω, but in order to simplify the equation, this symbol was skipped.

It is worth to notice that the photon’s current function Jn has an opposite
direction to the outward normal unit vector n and to the ∂Φ

∂n
. It means that

it is directed inside the region.

Boundary conditions on the boundary Γ1 are usually referred to the zero
flux or partial flux boundary conditions [39], and by means of Fick law,
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J(r) = −D∇Φ can be rewritten as:

ΦΓ1(r) + αD
∂ΦΓ1(r)

∂n
= ΦΓ1(r)− αJnΓ1

= 0, ∀ r ∈ Γ1 , (4.97)

where coefficient α = (2−RJ)/RU depends on a refractive index mismatch.
We have assumed that RJ = 1 and RU = 1/2 so α = 2 in case of a refractive
index matched [39]. The variables ΦΓi

and JnΓi
indicates to which part of

boundary Γ they belong.

On the other part of the boundary Γ = Γ2 the non-local boundary condition
between the diffusive and non-scattering media is imposed [39, 41]:

ΦΓ2(r) = αJnΓ2
(r) +

+
1

π

∫
Γ2

[
ΦΓ2(r

′) +
RJ

RU

JnΓ2
(r′)

]
G(|r− r′|)dΓ2(r

′) ∀ r ∈ Γ2 , (4.98)

where G is the radiocity kernel representing diffuse-diffuse propagation of
light in free space which will be explained in details later.

We can rewrite previous equation in a standard BEM way as follows:

1

2
ΦΓ2(r)−

∫
Γ2

1

2π
G(|r− r′|)ΦΓ2(r

′)dΓ2(r
′) =

= JnΓ2
(r) +

∫
Γ2

1

2π
G(|r− r′|)2JnΓ2

(r′)dΓ2(r
′) ∀ r ∈ Γ2 , (4.99)

where:

1

2π
G(|r− r′|) = 1

2π
Γω(|r− r′|)V(r− r′) cos(Θ) . (4.100)

In the above equation V(r− r′) is a Boolean visibility function:

V(r− r′) =

{
1 if r and r′ are mutually visible,
0 otherwise.

(4.101)

In the considered case (see Fig. 4.37) V(r− r′) is equal to unity so can be
skipped, and Γω is expressed as follows:

Γω(|r− r′|) = e[−µa0+i(ωn0/c)]|r−r′|

|r− r′|2
cos(Θ′) , (4.102)
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where:

cos(Θ) = −n · (r− r′)

|r− r′|
, cos(Θ′) = −n′ · (r

′ − r)

|r− r′|
, (4.103)

where n is the unit outward normal vector as indicated in the Fig. 4.38.
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Figure 4.38: Angles illustration for 2D space

The component cos(Θ) cos(Θ′)
π|r−r′|2 is often reffered to as the ’Form Factor’ (see

section 4.13).

For concentrated sources for which the function q0 is defined at the internal
point rs we can write:

q0 = Qsδ(rs) , (4.104)

where Qs is the magnitude of the point source and δ(rs) is a Dirac delta func-
tion whose integral is equal to 1 over any volume containing the singularity
point rs.

Assuming that a number ns of these functions exists, the Eq. (4.96) , Eq. (4.97)
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and Eq. (4.99) are making the system of equations describing our problem:

1

2
ΦΓi

(r) +

∫
Γ

∂G(|r− r′|)
∂n

ΦΓi
(r′)dΓ(r′) =

= −
∫
Γ

G(|r− r′|)
JnΓi

(r′)

D
dΓ(r′)−

ns−1∑
s=0

G(|r− rs|)Qs (4.105)

∀ r ∈ Γ1 ∪ Γ2, ∀ r′ ∈ Γ1 ∪ Γ2, ∀ rs ∈ Ω1 ,

1

2
ΦΓ1(r) = JnΓ1

(r) ∀ r ∈ Γ1 , (4.106)

and:

1

2
ΦΓ2(r)−

∫
Γ2

1

2π
G(|r− r′|)ΦΓ2(r

′)dΓ2(r
′) =

= JnΓ2
(r) +

∫
Γ2

1

2π
G(|r− r′|)2JnΓ2

(r′)dΓ2(r
′) ∀ r ∈ Γ2 , (4.107)

where ΦΓi
(r) = Φ(r)|Γi

, JnΓi
(r) = Jn(r)|Γi

and i = 1, 2.

If we assume that sphere Γ1 and sphere Γ2 have the same number of N
unknowns then the total number of unknowns is equal to 4N .

4.12.2 Matrix form of integral equations

Equations Eq. (4.105) to Eq. (4.107) can be presented in a matrix form:
A11 A12

A21 A22

A31 0
0 A42

[ ΦΦΦΓ1

ΦΦΦΓ2

]
=


B11 B12

B21 B22

I 0
0 B42

[ JnΓ1

JnΓ2

]
+


q1

q2

0
0

 . (4.108)

By including the Robin boundary conditions (Eq. (4.106)) to Eq. (4.105), we
can reduce the number of unknowns to the values ΦΦΦΓ1(r), ΦΦΦΓ2(r) and JnΓ2

(r)
only.
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 A11 A12

A21 A22

0 A42

[ ΦΦΦΓ1

ΦΦΦΓ2

]
=

 B11A31 B12

B21A31 B22

0 B42

[ ΦΦΦΓ1

JnΓ2

]
+

 q1

q2

0

 . (4.109)

If the first column of the right-hand matrix is transferred to the left-hand
side, the unknown vector JnΓ2

would be included to the left hand side ΦΦΦΓ1

and ΦΦΦΓ2 unknowns vectors. Finally we come to the form: A11 −B11A31 A12 −B12

A21 −B21A31 A22 −B22

0 A42 −B42

 ΦΦΦΓ1

ΦΦΦΓ2

JnΓ2

 =

 q1

q2

0

 . (4.110)

4.13 The Form Factor

For the Form Factor enclosed in Eq. (4.100) we will now develop analytic
expressions and numerical approach for the case presented in Fig. 4.37.

1

2π
G(|r− r′|)=e

(−µa0+iωn0
c )|r−r′|

2

cos(Θ)cos(Θ′)

π|r− r′|2
=
e(−µa0+

iωn0
c )|r−r′|

2
g(u,v),(4.111)

where g(u, v) is the standard Form Factor expression; u and v are the stan-
dard parametric representation for a sphere (u ∈< 0, π > and v ∈< 0, 2π >)
[36]:

g(u, v) =
cos(Θ) cos(Θ′)

π|r− r′|2
. (4.112)

4.13.1 The Form Factor calculated analytically

The Form Factor (4.112) for a sphere of radius r2 (see Fig. 4.37 and consult
Fig. 4.38) can be easily calculated analytically:

g(u, v) =
cos(Θ) cos(Θ′)

π|r− r′|2
=

1

4πr22
. (4.113)

The above relation significantly simplifies calculation due to the fact that
integrals in Eq. (4.107) are not singular any more.
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4.13.2 The Form Factor calculated numerically

In case of arbitrary shaped surfaces there is a need to calculate the form
factor numerically. That means (see Eq. (4.112)) that not only both cosine
functions have to be calculated numerically (Eq. (4.103), but also a visibility
function.

cos(Θ) = n · (r− r′)

|r− r′|
=
nx|r− r′|x + ny|r− r′|y + nz|r− r′|z

|r− r′|
,

(4.114)

cos(Θ′) = n′ · (r
′ − r)

|r− r′|
=
n′
x|r′ − r|x + n′

y|r′ − r|y + n′
z|r′ − r|z

|r′ − r|
.

For an isotropic second order triangle the normal vector components in BEM
can be expressed by Eq. (5.9).

Regarding the numerical calculation of the visibility function we have already
tried two basic approaches. The first one when the visibility function (ba-
sically the continuous function) was calculated in each Gaussian numerical
integration point and the second one where was calculated only in the nodes
of the boundary elements. Both approaches producing almost identical re-
sults. However, the first approach seems to be more efficient numerically, so
only this approach will be exploited in the following sections.

4.14 Non-scattering gap between two diffu-

sive regions of a spherical shape

Let study the three-dimensional configuration depicted in Fig. 4.40, where
the outer sphere of fixed radius r1 = 25 mm, filled with a diffusive medium
of parameters µ′

s = 1mm−1 and µa1 = 0.01mm−1 with a non-scattering gap
of outer radius r2 = 20 mm and inner radius r3 = 17 mm between two
diffusive regions. The absorption coefficient for the non-scattering region is
µa0 = 0.005mm−1. In this case the visibility factor V(r− r′) is either unity
if both points r and r′ can be joined by a straight line without intersecting
an interface (i.e., when they are visible to each other) or zero when such a
straight line does not exist. For the case of concentric spheres it may be
calculated analytically.
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Figure 4.39: A diagram illustrating the way of the Form Factor numerical calcu-
lations (doted lines denote the node to Gaussian node visibility matrix calculation)

4.14.1 Form Factor calculated analytically

We now attempt to derive the analytical Form Factor for more interesting
case then the one presented in the previous section, namely that of two
concentric spheres, outer sphere radius r2 and inner sphere radius r3 [38].
Considering any point on the outer sphere we have two cases:

1. the visible point lies on the inner sphere,

2. the visible point lies on the outer sphere.

In case when the visible point is laying on the inner surface the analytical
expression for the Form Factor becomes (see Fig. 4.41):

g(u, v) =
cos(Θ) cos(Θ′)

π|r− r′|2
=

(r2 − r3 cosU)(r3 − r2 cosU)
π(r22 + r23 − 2r2r3 cosU)2

, (4.115)

where:

cosΘ =
r2 − r3 cosU√

r22 + r23 − 2r2r3 cosU
, cosΘ′ =

r3 − r2 cosU√
r22 + r23 − 2r2r3 cosU

,(4.116)
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1

and:

cosU =
r · r′

|r||r′|
. (4.117)

But for the second case, when the visible point is on the outer surface the
expression remains the same as in Eq. (4.113). The visibility matrix image
is shown in Fig. 4.42.

4.14.2 Visibility function calculated analytically

If we are dealing with a regular surfaces as spheres, then the visibility factor
(ref. Eq. (4.100)) may be calculated analytically. Clearly, for a hollow sphere
the visibility function is equal to 1 because all points (nodes of boundary
elements) can see all other points. But for the gap between a concentric
spheres (see Fig. 4.40) it is not that simple. We have to consider three cases:

1. both points r and r′ are on the surface Γ2 (see Fig. 4.43-left) – are
visible if αvis < 2Uco. Angle Uco is the visibility cut-off angle for this
case,
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Figure 4.42: Visibility matrix image calculated analytically (left) and a difference
between the matrix calculated analytically and calculated numerically (right)

2. one of the points is on the surface Γ2 and the other on the surface Γ3

(see Fig. 4.43-right) – are visible if αvis < Uco,

3. both points r and r′ are on the surface Γ3 – are not visible.

It is now possible to calculate the visibility cut-of (Uco|Γ2
and Uco|Γ3

) for
concentric spheres geometry. From geometry (see Fig. 4.40) we have that
Uco|Γ3

= 1
2
Uco|Γ2

= arccos( r3
r2
), giving us a simple expression for the point to

point visibility for all points on the domain boundary in this case.

The angle between two arbitrarily chosen points r and r′ is equal

αvis = arccos
r · r′

|r||r′|
. (4.118)

4.14.3 Visibility function calculated numerically

Visibility function calculated numerically leads to the following basic prob-
lem. We have to find the intersection point (if it exists) between a line
segment defined by two points r and r′ and a planar three vertex facet. Each
boundary element is subdivided by four flat facets in order to simplify the
procedure (see Fig. 4.44). At the beginning we will adopt the brutal force
method which rely on checking if every sub-triangle has an intersection point
with the line segment defined by two points mentioned before.
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Figure 4.44: The boundary element subdivided by four flat sub-triangles

The solution involves the following steps:

1. check that the line and the plane are not parallel,

2. find the intersection of the line, on which the given line segment lies,
with the plane containing the facet,

3. check that the intersection point lies along the line segment,

4. check that the intersection point lies within the sub-triangle.

The intersection point ri is found by substituting the equation for the line
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ri = r − u(r − r′) by the general form of equation for the plane Ax + By +
Cz +D = 0.

Note that the values of A, B, C are the components of the normal to the
plane which can be found by taking the cross product of any two normalized
edge vectors and then D is found by substituting one vertex into the equation
for the plane.

A = z1(y3 − y2) + z2(y1 − y3) + z3(y2 − y1),
B = z1(x2 − x3) + z2(x3 − x1) + z3(x1 − x2),
C = x1(y2 − y3) + x2(y3 − y1) + x3(y1 − y2),
D = −x3A− y3B − z3C, (4.119)

where three vertices r1, r2 and r3 determine the plane.

This gives an expression for u from which the point of intersection can be
found.

u =
Ax+By + Cz +D

A(x− x′) +B(y − y′) + C(z − z′)
. (4.120)

If the denominator above is equal to 0 then the line is parallel to the plane and
they do not intersect. For the intersection point to lie on the line segment,
u must be between 0 and 1. Those conditions allow us an early return.

And last but not least, we need to check whether or not the intersection point
lies within the triangle.

If the point of intersection is inside of the boundary element than the point
r and point r′ are not visible.

4.14.4 Point in triangle test

Boundary elements mesh usually is quite dense so the crucial point of a test
is its efficiency. We will constrain ourself to a triangular elements only due
to the fact that they are the most popular and every quadrilateral boundary
element can be split into two triangular elements.

A common way to check whether a point is in triangle, is to find the vectors
connecting the point to each of the triangle’s three vertices and sum the
angles between those vectors.
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If sum of the angles is 2π then the point is inside the triangle, otherwise it is
not. It works, but it is very slow. We need a faster and much easier method
[51].

Set of the points, let them call A, B and C forms the triangle and lines AB,
BC and CA each split space in half and one of those halves is entirely outside
the triangle. That is what we will take advantage of.

For a point to be inside the triangle ABC it must be below AB and left of
BC and right of AC. If any one of these conditions fails we can return early.
In order to test whether the point is on the correct side of the line we have
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Figure 4.45: Illustration of the point in triangle test

to take the cross product of
−→
AB and

−→
AP (see Fig. 4.45), we will get a vector

pointing out of the plane. On the other hand, if we take the cross product

of
−→
AB and

−−→
AP ′, we will get a vector pointing into the plane.

The question is what direction the cross product should point in? Because the
triangle can be oriented in any way in the 3D space, we need some reference
point – a point that we know is on a certain side of the line. In our case is
just the third point C.

So, any point P where
−→
AB cross

−→
AP does not point in the same direction as−→

AB cross
−→
AC is not inside the triangle. If the cross products do point in the

same direction, than we need to test P with the other lines as well.

If the point was on the same side of AB as C and is on the same side of BC
as A and on the same side of CA as B, then it is in the triangle.
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We can implement this algorithm in the following way:

(Test Point in Triangle.)

function SameSide(p1,p2, a,b)
cp1 = CrossProduct(a-b, a-p1)
cp2 = CrossProduct(a-b, a-p2)
if DotProduct(cp1, cp2) >= 0 then return true
else return false

function PointTriangle(p, a,b,c)
if SameSide(p,a, b,c) && SameSide(p,b, a,c)
&& SameSied(p,c, a,b) then return true
else return false

This algorithm is simple, effective and has no square roots and the other
functions like arc cosines etc.

4.14.5 Integral equations

In case of three surfaces immersed one in the other, as it is presented in
Fig. 4.40, the system of equations will be more complicated:

1

2
ΦΓi

(r) +

∫
Γ

∂G(|r− r′|)
∂n

ΦΓi
(r′)dΓ(r′) =

= −
∫
Γ

G(|r− r′|)
JnΓi

(r′)

D
dΓ(r′)−

ns−1∑
s=0

G(|r− rs|)Qs (4.121)

∀ r ∈ Γ1 ∪ Γ2, ∀ r′ ∈ Γ1 ∪ Γ2, ∀ rs ∈ Ω1 ,

1

2
ΦΓ1(r) = JnΓ1

(r) ∀ r ∈ Γ1 , (4.122)

1

2
ΦΓV

(r)−
∫
ΓV

1

2π
G(|r− r′|)ΦΓV

(r′)dΓV (r
′) =

= JnΓV
(r) +

∫
ΓV

1

2π
G(|r− r′|)2JnΓV

(r′)dΓV (r
′)

∀ r ∪ r′ ∈ ΓV = Γ2 ∪ Γ3 , (4.123)
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and:

1

2
ΦΓ2(r) +

∫
Γ3

∂G(|r− r′|)
∂n

ΦΓ2(r
′)dΓ3(r

′) =

= −
∫
Γ3

G(|r− r′|)JnΓ2
(r′)

D
dΓ3(r

′) ∀ r ∪ r′ ∈ Γ3 . (4.124)

4.14.6 Matrix form of integral equations

Equations Eq. (4.121) to the Eq. (4.124) can be presented in a matrix form:
A11 A12 0
A21 A22 0
A31 0 0
0 A42 A43

0 A52 A53

0 0 A63


 ΦΦΦΓ1

ΦΦΦΓ2

ΦΦΦΓ3

=


B11 B12 0
B21 B22 0
I 0 0
0 B52 B53

0 0 B63


 JnΓ1

JnΓ2

JnΓ3

+


q1

q2

0
0
0
0

.(4.125)

By including the Robin boundary conditions from Eq. (4.122) to the Eq. (4.121)
we can reduce the number of unknowns to the values ΦΦΦΓ1(r), ΦΦΦΓ2(r), ΦΦΦΓ3(r),
JnΓ2

(r) and JnΓ3
(r) only.

A11 A12 0
A21 A22 0
0 A42 A43

0 A52 A53

0 0 A63


 ΦΦΦΓ1

ΦΦΦΓ2

ΦΦΦΓ3

=


B11A31 B12 0
B21A31 B22 0

0 B42 B43

0 B52 B53

0 0 B63


 ΦΦΦΓ1

JnΓ2

JnΓ3

+

q1

q2

0
0
0

. (4.126)
If the first column of the right-hand matrix will be transferred to the left-
hand side, then we have to rearrange the system of equations in such a way
that unknown values should be on the left-hand side and the source terms
on the right-hand side.

A11 −B11A31 A12 −B12 0 0
A21 −B21A31 A22 −B22 0 0

0 A42 −B42 A43 −B43

0 A52 −B52 A53 −B53

0 0 0 A63 −B63




ΦΦΦΓ1

ΦΦΦΓ2

JnΓ2

ΦΦΦΓ3

JnΓ3

 =


q1

q2

0
0
0

. (4.127)
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4.15 Results for the void gap

4.15.1 The steady state

In order to validate the steady state BEM solution, it was compared with
well known Monte Carlo (MC) method. In the Fig. 4.46 there are outcomes
of comparison between the MC and BEM results. In case of 5 mm gap
the visibility cut-off angle is equal to 41.4o and for 3 mm gap the visibility
cut-off angle is equal to 31.7o. Inspecting the figures we can conclude that
discrepancies between BEM and MC methods still need more attention and
investigation.

4.15.2 The frequency domain solution – 100MHz

For the frequency domain the same procedure was applied. This time the
BEM results were compared not only with MC but also with FEM. As we
can see FEM and BEM providing results which are very close each to the
other. Descrepances with MC remains on the similar level as for the steady
state. It could be explained by the fact that BEM and FEM are dealing with
the approximation of the Boltzman equation but MC describe the physics of
the problem. So far the MC solution is recognize asa reference solution.

4.15.3 Multilayered neonatal head model with the CSF
layer

The multi-region strategy described in previous sections was employed. The
target is to create the multilayered baby head numerical model taking into
account the CSF layer. To achieve this goal we have started with the three
layer spherical geometry first than with the three layer structural meshes
generated on a baby’s head. To achieve the structural meshes, parametric
surfaces were generated with the aid of the algorithm based on spherical
harmonics described in [54, 52].

To get a reference point, first the baby’s head discretized by the structural
mesh without a clear layer (Fig. 4.49 – left) and next with the clear layer
(Fig. 4.49 – right).
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Figure 4.46: Amplitude distribution for a region with a non-scattering 5mm gap
(left) and 3mm gap (right), comparison between MC (thick line) and BEM (dotted
line)
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Figure 4.47: Amplitude and a phase shift distribution for a region with a non-
scattering 5mm gap 100MHz, the thick line is a steady state MC, just to see a
differences between the curves; the solid line is a diffusive region only

As we can see from Fig. 4.49, there is a big difference between both solutions.
At the moment, the comparison is only done quantitatively as FEM or MC
solutions do not exist for the baby’s head so far.

4.15.4 Conclusion

The application of the boundary element method to the regions containing
the non-scattering inclusions was presented in this chapter. Such an approach
seems to be more natural than the finite element one, due to the fact that
clear regions introduce to the discrete form of FEM a non-symmetric and
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Figure 4.48: Amplitude and a phase shift distribution for a region with a non-
scattering 3mm gap 100MHz, the solid line is a diffusive region only

fully populated sub-matrix, which cost of loosing the most desiring features
of FEM like sparse and bounded coefficient matrix.

The clear region is not an disadvantage for the BEM and what is more,
the non-local boundary conditions could be treated in the same way as the
multi-region BEM but with a different function as a fundamental solution
(Eq. (4.123)).

All this, as well as the more simple procedure of discretisation of the surfaces
against those ones for the volume discretisation, the Authors are convinced
to the conclusion that the BEM might be an efficient and flexible tool for
neonatal baby’s head modelling in Optical Tomography.

4.16 Domain Decomposition Method for mul-

tilayered spherical model

The image reconstruction problem in DOT is a non-linear ill-posed problem
which requires feasible forward model that describe light propagation within
the medium as accurately as possible. The forward problem in DOT can be
modelled in an frequency domain as a diffusion equation (Helmholtz equa-
tion) with Robin boundary conditions. Additionally, in case of multilayered
geometries the forward problem can be treated as a set of coupled equa-
tions what was presented in previous sections. In this section we present
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Figure 4.49: Baby’s head model without a void gap (left) and with a 3mm void
gap between the second and the third surface (right)

the solution for diffuse light propagation in a four-layer concentric sphere
model using overlapping and non-overlapping Domain Decomposition Meth-
ods (DDM) coupled with some popular methods of solving partial differential
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equations like FEM or BEM. The latter is preferred because it yields not only
the value of the state function but its normal derivative as well. This fact is
beneficial to DDM where these two quantities are strongly exploited.

4.16.1 Introduction

Diffuse Optical Tomography in medicine aims to recover the optical proper-
ties of biological tissue from measurement of the transmitted light made at
multiple points on the surface of the body. This boundary data measure-
ments can be used to recover the spatial distribution of internal absorbtion
and scattering coefficients. It is a non-invasive modality and can generate
images of parameters related to blood volume and oxygenation.

The main topic within this field is the development of an efficient and ac-
curate method for calculating the intensity of light transmitted or reflected
from the object under experimental investigation. A general model of light
propagation can be described using the Radiative Transfer Equation, but a
simpler model that can be derived from this equation in the case of suffi-
ciently high scattering is the diffusion equation with Robin boundary condi-
tions [52]. Existing methods to solve this problem are either deterministic,
based on the solutions to governing equations, or stochastic based on simula-
tions of the individual scattering and absorbtion events undertaken by each
photon. The former include analytical expression based on Green functions
[47], and numerical methods based on Finite Difference Method (FDM) or
Finite Element Methods (FEM).

In this paper it is assumed that the object being studied is considered as
a set of disjoint simply connected regions with constant optical coefficients
within each region, but that may differ between regions. In this case the
diffusion equation can be replaced by a set of Helmholtz equations for each
domain, together with interface conditions. For this problem, analytical so-
lution aren’t easily available. Although volume based PDE solvers such as
FDM or FEM can certainly be applied to this problem, there are often prac-
tical difficulties in constructing meshes for general geometries that respect
the interfaces accurately. In contrast, the use of boundary integral methods
(e.g. BEM) involve only representation of the surface meshes and can be
much easier to implement.
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The problem of Optical Tomography in a highly diffusive body Ω with bound-
ary Γ can be modelled by the use of the diffusion equation in the frequency
domain form:

−∇ · κ(r)∇Φ(r;ω) + µa(r)Φ(r;ω) +
(iω)

c
Φ(r, ω) = q(r;ω) , (4.128)

with Robin boundary conditions:

Φ(m;ω) + 2ακ(m)
∂Φ(m;ω)

∂n
= h−(m;ω), m ∈ Γ , (4.129)

where ω ∈ R+ is the frequency modulation, Φ is the photon density c is the
velocity of light, q is an internal source of light in medium, h− is an incoming
flux, α is a boundary term which incorporates the refractive index mismatch
at the tissue-air boundary, n is the outward normal at the boundary Γ, κ
and µa are the diffusion and absorption coefficients, respectively. We define,
κ = 1

3(µa+µ′s)
, where µ′

s is the reduced scattering coefficient [24, 47]. We use
the notation r for a position vector in Ω andm for a position vector restricted
to the surface Γ.

4.16.2 The four-layer head model

In our research we have taken into consideration a four layer concentric spher-
ical model. The surfaces modelled were the outer skin, the skull and the
brain. The Generalised Minimum Residuals Method (GMRES) was used to
solve the linear matrix equation Kf = b obtained from BEM. Here, f is the
discrete version of the unknown functions f , K is the system matrix, and
b the vector of known coefficients calculated form the light sources in the
problem. Additionally K is a block-bounded asymmetric matrix.

In order to solve equation of 20000 unknowns it takes up to 50 hours to a
64-bit Athlon processor. Taking advantage of DDM [24] as well as BEM
we are able to decrease computation time to minutes. Such improvement is
partly ensured by BEM which provides in each node of the mesh not only
the value of the state function but its normal derivative as well.

Such decomposition is particularly efficient for multilayered geometries in
biomedical applications. In the Fig. 4.50 we can see the solution of the
amplitude of the state function (photon density) on the most external layer
of the 3D BEM model of the neonatal head. In the Fig. 4.50 the same value
is depicted but in concentric spheres model.
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Figure 4.50: Points on the circumference of the sphere from which the values
of the state function are taken for presentation. Cross-section of the model under
consideration with position of the isotropic light source. Color map in both pictures
shows the logarithm of the amplitude of photon density on the boundaries between
regions

Generally, there are two kinds of approaches depending on whether the sub-
domains overlap (Schwarz methods) or are separated (Schur Complement
methods [24]). The latter are called substructuring methods and are based on
non-overlapping decompositions of the region into a set of subdomains. The
number of equations needed to solve this smaller problem is minor, compared
to the whole system. Thus the amount of memory required for allocating
the equations is smaller too. In the Fig. 4.51 a scheme of Dirichlet-Neumann
substructuring algorithm is presented. Arrows indicate the direction of trans-
mission of boundary values over particular subdomains.
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Figure 4.51: Transmission of the boundary conditions in D-N algorithm

In case of overlapping subdomains the decomposition algorithm reduces the
number of sequential steps. It is an advantage form standpoint of ill-posed
problems with low convergence rate problem, which may converge very slow.
The main drwaback of this approach is consuming greater memory resources
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as one iteration refers to two regions simultaneously. In the Fig. 4.52 a
scheme of two-level overlapping algorithm is presented.

Φ1 Φ2

Φ0

Φ3

Ω0

Ω1

Ω2

Ω3

S S

r1

r0

r2

r1

r3

r2

Figure 4.52: Transmission of the boundary conditions in an overlapping D-D
algorithm

The four layer spherical model In our research we have taken into consider-
ation a four layer concentric spherical model. The surfaces modelled were
the outer skin, the skull and the brain. The Generalised Minimum Residuals
Method (GMRES) was used to solve the linear matrix equation Kf = b
obtained from BEM.

In the Fig. 4.54 we can see the solution of the amplitude of the state func-
tion (photon density) on the most external layer of the 3D BEM concentric
spherical model and its cross-section.

4.16.3 Conclusion

We have studied substructuring methods with the Dirichlet – Neumann, Neu-
mann – Neumann and Dirichlet – Dirichlet algorithms as well as two - level
overlapping method. The most promising one from point of view of this work
is overlapping method with transmission Dirichlet boundary condition. How-
ever it is very sufficient when compared with any of substructuring methods.
It converges very fast and the solution appears after merely five iterations
(see Fig. 4.53). The similar error level is obtained after carrying out thirty
iterations of nonoverlapping Dirihlet-Neumann algorithm as it was shown in
Fig. 4.54.

Domain Decompositon Methods are very powrfull tool, which can be applied
to almost every boundary problem. This work involves BEM as a method
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Figure 4.53: Results obtained from the Dirichlet – Dirichlet algorithm

Figure 4.54: Iterations of the Dirichlet – Neumann algorithm applied to four
layer spherical model; single images show the logarithm of the amplitude of photon
density on boundaries between regions
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of solving PDE’s governing the problems discussed here, but DDM can in-
teract with any other method e.g. FEM or FDM. So far, research have been
conducted using spherical models in order to test and validate algorithms.
Obtained results allow applying DDM in much more advanced geometries
and in models composed of higher number of boundary elements than it was
presented in this work. As usual, the only concern is to match the apprio-
priate method up with the problem being tackled. According to the results
of simulations, ill-posed problems (e.g. discussed here DOT in multilayered
environment) require very stable methods because of the insufficient num-
ber of boundary and initial conditions. It is clearly visible (see Fig. 4.54)
that solution undergoes many fluctuation due to the transmission of weak
conditions between decomposed regions. The situation takes turns at using
another method (e.g. Dirichlet – Dirichlet) what is depicted in Fig. 4.53 –
solution becomes acceptable merely after four iterations.
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Chapter 5

Infinite Boundary Elements

J. Sikora, W. Wójcik, M. Pańczyk, A. Kotyra

5.1 Introduction

There are numerous examples where the region of interests extents to infinity
like in geotechnical or wave problems. Sometimes surrounding medium is
important and unbounded e.g. electromagnetic field around an electrical
machine. In other cases distant boundary conditions may not be clearly
defined as for example in the area of medicine when we can not place detectors
on some surfaces. Technical term of infinite is determined by the severity of
the physical phenomena decay. It can be closer to mathematical infinite
continuum concept in geotechnics but can also be measured in millimeters
like in light propagation through some highly vascularized body tissue in
Optical Tomography.

Normally the analyzed area is extended outside the region of interest to
create a distant boundary where conditions and its exact form should not
have a great impact on the results. Wrong boundary conditions or improper
placement of such artificial boundary can introduce an unknown error if the
truncation occurs too near. On the other hand excessive mesh increases
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number of boundary elements and decreases the computational efficiency
especially annoying while calculating inverse problem solution.

A more effective method is to incorporate infinite elements into the conven-
tional BEM analysis. Implementation of such elements can reduce the mesh
and avoid the problem of setting incorrect boundary conditions by creating
an open boundary model.

5.2 Infinite elements classification

There are two main lines of infinite elements development [10, 5, 21, 4, 15]:

1. mapped infinite elements where the element is transformed from
finite to infinite domain,

2. decay functions infinite elements which uses special decay func-
tions in conjunction with ordinary boundary element interpolation func-
tions.

Both types offers similar accuracy. Of course final mesh will consists of
ordinary and infinite boundary elements.

In case of two dimensional infinite boundary elements, used to describe three-
dimensional objects, discussed infinite elements will be narrowed to these
based on 8 node second order quadrilateral isoparametric standard element.
It is reasonable as the transformation of the element to infinity requires higher
order interpolation functions and quadrilateral elements are more convenient
to describe the transformation in one or more directions.
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5.3 Mapped infinite boundary elements

5.3.1 One-dimensional infinite boundary elements

One-dimensional infinite boundary elements are used for two-dimensional ob-
jects. For mapped infinite elements special basis interpolation functions M
are introduced [22, 19, 16] (Fig. 5.1). The infinite basis interpolation func-
tions Mm

i are applied to the geometry and are used to generate the Jacobian
matrix, its inverse, and its determinant. The standard basis interpolation
functions N std

i [21, 5, 4] are applied to the field variables. Basis interpolation

Figure 5.1: Mapped infinite boundary element domain transformation

functions M1
i and M2

i should sum to unity:

M0(ξ) +M1(ξ) = 1. (5.1)

For one-dimensional element like presented in Fig. 5.1, it’s geometry is inter-
polated as:

x =M0x0 +M1x1, where M0 = −
2ξ

1− ξ
, M1 =

1 + ξ

1− ξ
. (5.2)

This yields x = x0 at ξ = −1, x = x1 at ξ = 0 and

x2 = lim
ξ→1

−2ξx0 + (1 + ξ)x1
1− ξ

=∞ .

The infinite basis functions M0 and M1 distribution over the boundary el-
ement are presented in Fig. 5.2. Boundary Integral Equation in discretized
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Figure 5.2: Infinite basis interpolation functions distribution

form including both finite and infinite regions can be written in as follows:

c(r)Φi(r) +
n−1∑
i=0

2∑
k=0

∫ +1

−1

Φ(r′)Nk(ξ)
∂G(|r− r′|)

∂n
JN(ξ)dξ +

+
m−1∑
j=0

1∑
l=0

∫ ∞

−1

Φ(r′)Ml(ξ)
∂G(|r− r′|)

∂n
JM(ξ)dξ = (5.3)

=
n−1∑
i=0

2∑
k=0

∫ +1

−1

∂Φ(r′)

∂n
G(|r− r′|)Nk(ξ)J

N(ξ)dξ +

+
m−1∑
j=0

1∑
l=0

∫ ∞

−1

∂Φ(r′)

∂n
G(|r− r′|)Ml(ξ)J

M(ξ)dξ.

It is to notice that in the above equation (5.3) the third node which tends to
infinity will not take part in the calculations.

5.3.2 Two-dimensional infinite boundary elements

Two-dimensional infinite boundary elements are used for three-dimensional
objects analysis. In that case so called serendipity basis interpolation func-
tions Mm

i are used for geometry transformation [10, 22, 19, 16]. It mapps
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eight node quadrilateral isoparametric boundary element into corresponding
five node infinite boundary element – Fig. 5.3.

There are no exact analogy for mapping functions like in standard interpo-
lation functions i.e. all the shape functions should sum to unity and all the
derivatives to zero or in other words to having unit value of the field variable
at all nodes. Before summing up, mapping functions have to be multiplied
by a constant a, where a is a distance from Zienkiewicz type ’pole’ radial
point to the first node of such one-dimensional element like it is presented by
Bettess ([10] in chapter 4). That is for one infinite positive ξ direction M0 ,
M6 and M7 have to be multiplied by 1 and M1 and M5 by 2. By choosing
eight node quadrilateral boundary elements, serendipity mapping functions
are used. Despite their names procedure for deriving these basis interpolation
functions is quite logical [23, 10]. Eight node quadrilateral boundary element
and it’s transformation into five node mapped infinite element is presented
in Fig. 5.3. It is to notice that infinite boundary element based on 8-node
quadrilateral second order boundary element will consists only from 5 nodes
numbered 0, 1, 5, 6 and 7 like it is presented in Fig. 5.3. Relevant infinite
basis interpolation functions for remaining nodes are as follows:

M0 =
−1− ξ + ξη + η2

1− ξ
, M1 =

1 + ξ

1− ξ
· 1
2
(1− η) ,

M5 =
1 + ξ

1− ξ
· 1
2
(1 + η) , M6 =

−1− ξ − ξη + η2

1− ξ
, (5.4)

M7 =
2

1− ξ
·
(
1− η2

)
.

Serendipity infinite mapping functions distribution is presented in Fig. 5.5.
The first derivatives of the mapping functions 5.4 with respect to ξ and η are
given by:
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∂M7

∂ξ
=

2

(1− ξ)2
(
1− η2

)
,

∂M1

∂ξ
=

1− η
(1− ξ)2

,

∂M5

∂ξ
=

1 + η

(1− ξ)2
,

∂M0

∂ξ
=
−2 + η + η2

(1− ξ)2
,

∂M6

∂ξ
=
−2− η − η2

(1− ξ)2
,

∂M7

∂η
=
−4η
1− ξ

,

∂M1

∂η
= −1

2

1 + ξ

1− ξ
,

∂M5

∂η
=

1

2

1 + ξ

1− ξ
, (5.5)

∂M0

∂η
=

ξ − 2η

1− ξ
,

∂M6

∂η
=

2η − ξ
1− ξ

.

Sometimes it may be necessary to have a two dimensional element which
extends to infinity in two directions. Serendipity mapping functions can be
developed for both ξ and η directions.

Figure 5.3: Serendipity type
mapped infinite boundary element
based on standard 8 node quadrilat-
eral boundary element

Figure 5.4: Serendipity type
mapped infinite boundary corner-
element based on standard 8 node
quadrilateral boundary element

Transformation of 8 node quadrilateral boundary element into relevant 3
node mapped infinite element which extends into infinity in both (positive)
ξ and η directions is presented in Fig. 5.4. Nodes 2− 6 do not figure in the
calculations, and relevant infinite basis interpolation functions for remaining
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nodes 0, 1, 7 are as follows:

M0 =
−4 (1 + ξ + η)

(1− η) (1− ξ)
,

M1 =
1 + ξ

1− ξ
2

1− η
=

2 (1 + ξ)

(1− ξ) (1− η)
, (5.6)

M7 =
2

1− ξ
1 + η

1− η
=

2 (1 + η)

(1− ξ) (1− η)
.

Infinite basis interpolation functions for 5 node element are presented in
Fig. 5.5 and for 3 node element in Fig. 5.6. For debugging purposes, in case
of ordinary basis interpolation functions, it is to check if all basis interpolation
functions sum to unity and all the derivatives to zero. The simple test is to
check if each function has unit value on their own node and zero on the others.
For mapping functions as it is presented in figures 5.5 and 5.6 nodes remaining
in the calculations fulfils that condition but there is no exact analogy for all
nodes. Further tests using Zienkiewicz type of mapped infinite elements [22]
are devised by Bettess [10].

Figure 5.5: Serendipity infinite mapping functions distribution for one infinite di-
rection along positive ξ axis i.e. basis interpolation functions M0,M1,M5,M6,M7,
(Eq. (5.4)), for 5 node mapped infinite boundary element
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Figure 5.6: Serendipity infinite mapping functions distribution for two infinite
direction along positive ξ and η axis i.e. basis interpolation functions M0,M1,M7,
(Eq. (5.6)), for 3 node mapped infinite boundary element

To study boundary elements which are two-dimensional structures placed in
the 3D space, first we need to define the way in which we can pass from the
xyz global Cartesian system to the ξ, η, ζ system defined over the element,
where ξ, η are oblique coordinates and ζ is in the direction of the normal.
The transformation for a given function Φ is related through the following:

 ∂Φ
∂ξ
∂Φ
∂η
∂Φ
∂ζ

 =


∂x
∂ξ

∂y
∂ξ

∂z
∂ξ

∂x
∂η

∂y
∂η

∂z
∂η

∂x
∂ζ

∂y
∂ζ

∂z
∂ζ


 ∂Φ

∂x
∂Φ
∂y
∂Φ
∂z

 , (5.7)

where the square matrix is the Jacobian matrix (or Jacobi matrix).

Transformation of this type allows us to describe differentials of surface in
the Cartesian system in terms of the curvilinear coordinates. A differential
of area will be given by:

dΓ = |n| dξdη =

∣∣∣∣∂r∂ξ × ∂r

∂η

∣∣∣∣ dξdη =
√
nx2 + ny2 + nz2 dξdη, (5.8)
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where:

nx =
∂y

∂ξ

∂z

∂η
− ∂y

∂η

∂z

∂ξ
, ny =

∂z

∂ξ

∂x

∂η
− ∂z

∂η

∂x

∂ξ
, nz =

∂x

∂ξ

∂y

∂η
− ∂x

∂η

∂y

∂ξ
. (5.9)

This mapping introduces the Jacobian1 J proportional to the magnitude of
the area of the mapped boundary element.

The first derivatives of the mapped interpolation functions with respect to
the ξ and η for 3 node mapped infinite element are given by:

∂M0

∂ξ
=

−4 (2 + η)

(1− ξ)2 (1− η)
,

∂M0

∂η
=

−4 (2 + ξ)

(1− ξ) (1− η)2
,

∂M1

∂ξ
=

4

(1− ξ)2 (1− η)
,

∂M1

∂η
=

2 (ξ + 1)

(1− ξ) (1− η)2
, (5.10)

∂M7

∂ξ
=

2 (η + 1)

(1− ξ)2 (1− η)
,

∂M7

∂η
=

4

(1− ξ) (1− η)2
.

The boundary integral equation containing both finite (surface covered by
ordinary 8 node boundary elements) and infinite boundary elements (surface
covered by infinite 5 node mapped boundary elements) after discretization
will take the form:

c(r)Φi(r) +
n−1∑
i=0

7∑
k=0

∫ +1

−1

∫ +1

−1

Φ(r′)Nk(ξ, η)
∂G(|r− r′|)

∂n
JN(ξ, η)dξdη +

+
m−1∑
j=0

4∑
l=0

∫ ∞

−1

∫ +1

−1

Φ(r′)Ml(ξ, η)
∂G(|r− r′|)

∂n
JM(ξ, η)dξdη = (5.11)

=
n−1∑
i=0

7∑
k=0

∫ +1

−1

∫ +1

−1

∂Φ(r′)

∂n
G(|r− r′|)Nk(ξ, η)J

N(ξ, η)dξdη +

+
m−1∑
j=0

4∑
l=0

∫ ∞

−1

∫ +1

−1

∂Φ(r′)

∂n
G(|r− r′|)Ml(ξ, η)J

M(ξ, η)dξdη .

For singularity treatment as one of the most effective, regularization method
[20] was used. The advantage of using that method is that the calculation
schema remains unchanged for infinite elements, except nodes tending to
infinity which does not take part in the calculations.

1Jacobian in this context means determinant of the Jacobi matrix
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5.4 Decay basis functions

5.4.1 One-dimensional infinite boundary elements

The idea of the decay functions infinite elements is to construct new infinite
basis interpolation functions Mi by multiplying standard basis interpolation
functions Ni, known from ordinary boundary elements, by a decay functions
Di [22, 7, 8, 10, 5, 4, 15]. Decay functions Di have to ensure that the element
behaviour at infinity corresponds to the physics of the problem. Relations be-
tween infinite basis interpolation functions Mi, standard basis interpolation
functions Ni and decay functions Di are as follows:

Mi(ξ) = Ni(ξ)Di(ξ), (5.12)

where index i = 0, 1, . . . , 8 represents element node number. Both standard
and infinite basis interpolation functions should have unit value of all nodes,
so decay functions should also be unity at their own nodes:

Di(ξi) = 1. (5.13)

Reciprocal decay functions

Reciprocal decay functions in local coordinates takes the following form [22,
7, 10, 15]:

Di(ξ) =

(
ξi − ξo
ξ − ξo

)n
, (5.14)

where ξo is some origin point, which rule is to avoid a singularity in the
infinite element.

Point ξo must be located outside the infinite element in the opposite direction
to that which extends to infinity. For the element which extends to infinity
in positive ξ direction ξo < −1. Moreover exponent n have to be greater
than the highest power of ξ encountered in M which ensures that ξ → ∞,
Mi → 0. In case the element is extended to infinity in negative ξ direction
decay function remains unchanged:

Di(ξ) =

(
ξo − ξi
ξo − ξ

)n
, (5.15)

but ξo must be > 1.
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Exponential decay functions

Exponential decay functions expressed by e−r form decays to zero faster than
reciprocal. For the decay only in one positive direction of ξ axis more precise
form for the decay function is:

Di(ξ) = e(ξi−ξ)/L, (5.16)

where L is a length which determines the severity of the decay, and ξi ensures
holding the condition (5.13).

In case of decay in the negative ξ direction equation (5.16) becomes:

Di(ξi) = e(ξ−ξi)/L. (5.17)

5.5 Numerical integration

5.5.1 Reciprocal decay functions – Gauss-Legendre

For reciprocal decay it is convenient to map Gauss-Legendre integration rule
from the range of < −1, +1 > to < −1, ∞ > [1, 12, 18, 10]. Following
Davies and Rabinowitz [12] :

∫ b

a

f(x)dx = (b− a)
∫ ∞

0

f

(
a+ bt

1 + t

)
dt

(1 + t2)
. (5.18)

For a = −1 and b = +1 equation (5.18) becomes:

∫ +1

−1

f(x)dx = 2

∫ ∞

0

f

(
t− 1

t+ 1

)
dt

(1 + t2)
, (5.19)

where x = (t− 1)/(t+ 1) and t = 1 + 2x/(1− x).

Defining new variable ξ = t− 1 and t = 1 + ξ for desired range of numerical
integration will be achieved:
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∫ ∞

−1

f(ξ)dξ = 2

∫ +1

−1

f

(
2x

1− x

)
dx

(1− x2)
. (5.20)

It also to set a new variable of integration abscissa and weights:

ξ = 2x/(1− x), (5.21)

and:
Wnew = Wold 2/(1− x)2, (5.22)

where x and Wold are tabulated Gaussa-Legendre abscissa and weights.

5.5.2 Exponential decay functions – Gauss-Laguerre

For exponential decay functions infinite elements it is to transform the stan-
dard Gauss-Laguerre formula (5.23):∫ ∞

0

f(x)e−xdx, (5.23)

to desired for infinite elements integration limits < −1, ∞ > and decay
functions (5.16). For exponential decay function infinite elements, basis in-
terpolation function and its derivatives typical term is:

p(ξ)e−ξ/L. (5.24)

The element matrix is the product of these terms and element has been
extended to infinite. Hence, the typical formula to be integrated is:∫ ∞

−1

q(ξ)e−2ξ/Ldξ. (5.25)

Possible mapping to transfer the (5.25) integration range can be defined as:

t =
2

L
(ξ + 1) , ξ =

L

2
t− 1,

(5.26)

dt

dξ
=

2

L
,

dξ

dt
=
L

2
.
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The integration formula related to standard Gauss-Laguerre becomes:∫ ∞

−1

q(ξ)e−2ξ/Ldξ =

∫ ∞

0

q(ξ)(L/2)e2/Le−tdt, (5.27)

where new abscissa and weights corresponding to tabulated standard are:

ξ =
L

2
t− 1,

and:

Wnew = Wold
L

2
e2/L. (5.28)

For the decay in the negative direction equation corresponding to (5.27) is:∫ +1

−∞
q(ξ)e2ξ/Ldξ =

∫ ∞

0

q(ξ)(L/2)e2/Le−tdt, (5.29)

where ξ = 1− L
2
t .

5.6 Modified boundary integral equation

For infinite boundary elements based on second order isoparametric boundary
element, standard basis interpolation function Nk(ξ) [14, 6, 11, 17, 20, 2] are
used to transform global to local coordinates:

N0(ξ) = −ξ
2
(1− ξ) = 0.5ξ(ξ − 1),

N1(ξ) = (1 + ξ)(1− ξ) = 1− ξ2, (5.30)

N2(ξ) = +
ξ

2
(1 + ξ) = 0.5ξ(ξ + 1).

In conjunction to reciprocal decay functions (5.14) infinite basis interpolation
functions are received:

Mp
0 (ξ) = 0.5ξ(ξ − 1)

(
−1− ξo
ξ − ξo

)3

,

Mp
1 (ξ) =

(
1− ξ2

)( −ξo
ξ − ξo

)3

, (5.31)

Mp
2 (ξ) = 0.5ξ(ξ + 1)

(
1− ξo
ξ − ξo

)3

.
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Figure 5.7: Distribution of basis interpolation functions M0, M1 i M2, using
reciprocal decay functions

The infinite basis interpolation functions, using reciprocal decay functions
(5.31), distribution over the boundary element are presented in Fig. 5.7. The
differentials of the basis interpolation functions (5.31) are as follows:

∂Mp
0 (ξ)

∂ξ
=

(ξo + 1)3 (2ξξo − ξo + ξ2 − 2ξ)

2(ξ − ξo)4
,

∂Mp
1 (ξ)

∂ξ
= −ξo

3 (2ξξo + ξ2 − 3)

(ξ − ξo)4
, (5.32)

∂Mp
2 (ξ)

∂ξ
=

(ξo − 1)3 (2ξξo + ξo + ξ2 + 2ξ)

2(ξ − ξo)4
.

In conjunction of exponential decay functions (5.16), exponential infinite
basis interpolation functions are:

M e
0 (ξ) = 0.5ξ(ξ − 1)e(−1−ξ)/L,

M e
1 (ξ) =

(
1− ξ2

)
eξ/L, (5.33)

M e
2 (ξ) = 0.5ξ(ξ + 1)e(1−ξ)/L.

The infinite basis interpolation functions, using exponential decay functions
(5.33), distribution over the boundary element are presented in Fig. 5.8. The
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Figure 5.8: Distribution for basis interpolation functions M0, M1 i M2, using
exponential decay functions

differentials of basis interpolation functions (5.16) are as follows:

∂M e
0 (ξ)

∂ξ
= −−2xL+ L+ x2 − x

2L
e(−x−1)/L,

∂M e
1 (ξ)

∂ξ
= −2xL+ x2 − 1

L
ex/L, (5.34)

∂M e
2 (ξ)

∂ξ
= −−2xL− L+ x2 + x

2L
e(1−x)/L.

These functions are used either for geometry transformation:

x(ξ) =
2∑

k=0

Mk(ξ)xk =M0(ξ)x0 +M1(ξ)x1 +M2(ξ)x2,

(5.35)

y(ξ) =
2∑

k=0

Mk(ξ)yk =M0(ξ)y0 +M1(ξ)y1 +M2(ξ)y2,

or physical quantities of the object:

Φ(ξ) =
2∑

k=0

Mk(ξ)Φk =M0(ξ)Φ0 +M1(ξ)Φ1 +M2(ξ)Φ2, (5.36)
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and:

∂Φ(ξ)

∂n
=

2∑
k=0

Mk(ξ)
∂Φk

∂n
=M0(ξ)

∂Φ0

∂n
+M1(ξ)

∂Φ1

∂n
+M2(ξ)

∂Φ2

∂n
. (5.37)

Modified boundary integral equation for two-dimensional case:

Figure 5.9: Solution region in local coordinate system for open boundary case

c(r)Φi(r) +
n−1∑
i=0

2∑
k=0

∫ +1

−1

Φ(r′)
∂G(|r− r′|)

∂n
JN(ξ)dξ +

+
m−1∑
j=0

2∑
l=0

∫ ∞

−1

Φ(r′)
∂G(|r− r′|)

∂n
JM(ξ)dξ = (5.38)

=
n−1∑
i=0

2∑
k=0

∫ +1

−1

∂Φ(r′)

∂n
G(|r− r′|)JN(ξ)dξ +

+
m−1∑
j=0

2∑
l=0

∫ ∞

−1

∂Φ(r′)

∂n
G(|r− r′|)JM(ξ)dξ.

where: n – number of standard boundary elements, m – number of infinite
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boundary elements, JN and JM represent Jacobians 2 of the transformation
(5.7) from the global to local coordinate system introduced by basis interpo-
lation functions for finite boundary elements and infinite boundary elements,
respectively. The object is covered by standard boundary elements and the
surrounding by infinite elements.

5.7 Two-dimensional infinite boundary ele-

ments

The idea of constructing basis interpolation functions for two-dimensional
infinite boundary elements is identical like for one-dimensional. Two addi-
tional cases will be considered. First when standard element is transferred
to infinite only in one direction ξ or η and the second when element is ex-
tended to infinity in both directions ξ and η simultaneously (corner element)
– Fig. 5.10

Figure 5.10: Decay functions infinite boundary elements: a) extended to infinity
only along ξ axes and b) along both ξ and η axes

2Jacobian – determinant of Jacobi matrix.
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5.7.1 Decay functions

Reciprocal decay functions

Reciprocal decay functions in local coordinate system [22, 7, 10, 15] for the
decay in positive ξ axis direction is of the form:

Di(ξ) =

(
ξi − ξo
ξ − ξo

)n
, (5.39)

for the decay in both ξ and η directions:

Di(ξ, η) =

(
ξi − ξo
ξ − ξo

)n(
ηi − ηo
η − ηo

)m
, (5.40)

where (ξo, ηo) is an origin point.

This point must be outside the infinite element, in the opposite side to that
which extends to infinity. For the decay in positive ξ direction ξo < −1 and
for η axis ηo < −1. For negative ξ and η directions, ξo > 1 and ηo > 1. It is
necessary to avoid a singularity within the infinite element.

Moreover n and m must be greater than the highest power of ξ and η re-
spectively, encountered in M . This ensures that for ξ → ∞ limξ→∞Mi = 0
and η → ∞ limη→∞Mi = 0. Setting n = 3 i m = 3 from expression (5.40)
for standard basis interpolation function (5.41):

N0(ξ, η) = −(1− ξ)(1− η)(1 + ξ + η)/4,

N1(ξ, η) = (1− ξ2)(1− η)/2,
N2(ξ, η) = −(1 + ξ)(1− η)(1− ξ + η)/4,

N3(ξ, η) = (1 + ξ)(1− η2)/2,
N4(ξ, η) = −(1 + ξ)(1 + η)(1− ξ − η)/4, (5.41)

N5(ξ, η) = (1− ξ2)(1 + η)/2,

N6(ξ, η) = −(1− ξ)(1 + η)(1 + ξ − η)/4,
N7(ξ, η) = (1− ξ)(1− η2)/2,

for infinite elements which are extended in one positive ξ direction, the basis
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interpolation functions becomes:

M0(ξ, η) = −(1− ξ)(1− η)(1 + ξ + η)/4

(
1− ξo
ξ − ξo

)3

,

M1(ξ, η) = (1− ξ2)(1− η)/2
(
−ξo
ξ − ξo

)3

,

M2(ξ, η) = −(1 + ξ)(1− η)(1− ξ + η)/4

(
1− ξo
ξ − ξo

)3

,

M3(ξ, η) = (1 + ξ)(1− η2)/2
(
1− ξo
ξ − ξo

)3

,

M4(ξ, η) = −(1 + ξ)(1 + η)(1− ξ − η)/4
(
1− ξo
ξ − ξo

)3

, (5.42)

M5(ξ, η) = (1− ξ2)(1 + η)/2

(
−ξo
ξ − ξo

)3

,

M6(ξ, η) = −(1− ξ)(1 + η)(1 + ξ − η)/4
(
−1− ξo
ξ − ξo

)3

,

M7(ξ, η) = (1− ξ)(1− η2)/2
(
−1− ξo
ξ − ξo

)3

.

The basis interpolation function (5.42) distribution over the boundary ele-
ment are presented in Fig. 5.11. First derivatives of the basis interpolation
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Figure 5.11: Distribution of basis interpolation functions (5.42)

functions (5.42) with respect to ξ are as follows:

∂M0(ξ, η)

∂ξ
= −(ξo + 1)3 (η − 1) (2ξη + ξoη − 3η + ξ2 + 2ξoξ − 3)

4(ξ − ξo)4
,

∂M1(ξ, η)

∂ξ
=

ξo
3 (ξ2 + 2ξoξ − 3) (η − 1)

2(ξ − ξo)4
,

∂M2(ξ, η)

∂ξ
= −(ξo − 1)3 (η − 1) (−2ξη − ξoη − 3η + ξ2 + 2ξoξ − 3)

4(ξ − ξo)4
,

∂M3(ξ, η)

∂ξ
= −(ξo − 1)3 (2ξ + ξo + 3) (η2 − 1)

2(ξ − ξo)4
,

(5.43)

∂M4(ξ, η)

∂ξ
=

(ξo − 1)3 (η + 1) (2ξη + ξoη + 3η + ξ2 + 2ξoξ − 3)

4(ξ − ξo)4
,

∂M5(ξ, η)

∂ξ
= −ξo

3 (ξ2 + 2ξoξ − 3) (η + 1)

2(ξ − ξo)4
,
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∂M6(ξ, η)

∂ξ
=

(ξo + 1)3 (η + 1) (−2ξη − ξoη + 3η + ξ2 + 2ξoξ − 3)

4(ξ − ξo)4
,

∂M7(ξ, η)

∂ξ
=

(ξo + 1)3 (2ξ + ξo − 3) (η2 − 1)

2(ξ − ξo)4
,

and with respect to η:

∂M0(ξ, η)

∂η
=

(ξo + 1)3 (ξ − 1) (2η + ξ)

4(ξ − ξo)3
,

∂M1(ξ, η)

∂η
= −ξo

3 (ξ2 − 1)

2(ξ − ξo)3
,

∂M2(ξ, η)

∂η
=

(ξo − 1)3 (ξ + 1) (ξ − 2η)

4(ξ − ξo)3
,

∂M3(ξ, η)

∂η
=

(ξo − 1)3 (ξ + 1) η

(ξ − ξo)3
, (5.44)

∂M4(ξ, η)

∂η
= −(ξo − 1)3 (ξ + 1) (2η + ξ)

4(ξ − ξo)3
,

∂M5(ξ, η)

∂η
=

ξo
3 (ξ2 − 1)

2(ξ − ξo)3
,

∂M6(ξ, η)

∂η
= −(ξo + 1)3 (ξ − 1) (ξ − 2η)

4(ξ − ξo)3
,

∂M7(ξ, η)

∂η
=

(ξo + 1)3 (1− ξ) η
(ξ − ξo)3

.

For the decay in both positive ξ and η directions the basis interpolation
function (5.45) are of the form:

M0(ξ, η) = −(1− ξ)(1− η)(1 + ξ + η)/4

(
1− ξo
ξ − ξo

)3(
1− ηo
η − ηo

)3

,

M1(ξ, η) = (1− ξ2)(1− η)/2
(
−ξo
ξ − ξo

)3(−1− ηo
η − ηo

)3

,
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M2(ξ, η) = −(1 + ξ)(1− η)(1− ξ + η)/4

(
1− ξo
ξ − ξo

)3(−1− ηo
η − ηo

)3

,

M3(ξ, η) = (1 + ξ)(1− η2)/2
(
1− ξo
ξ − ξo

)3( −ηo
η − ηo

)3

, (5.45)

M4(ξ, η) = −(1 + ξ)(1 + η)(1− ξ − η)/4
(
1− ξo
ξ − ξo

)3(
1− ηo
η − ηo

)3

,

M5(ξ, η) = (1− ξ2)(1 + η)/2

(
−ξo
ξ − ξo

)3(
1− ηo
η − ηo

)3

,

M6(ξ, η) = −(1− ξ)(1 + η)(1 + ξ − η)/4
(
−1− ξo
ξ − ξo

)3(
1− ηo
η − ηo

)3

,

M7(ξ, η) = (1− ξ)(1− η2)/2
(
−1− ξo
ξ − ξo

)3( −ηo
η − ηo

)3

.

The basis interpolation function (5.45) distribution over the boundary ele-
ment are presented in Fig. 5.12. First derivatives of the basis interpolation

Figure 5.12: Distribution of basis interpolation functions (5.45)
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functions (5.45) with respect to ξ are as follows:

∂M0(ξ, η)

∂ξ
=

(η − 1)(η0 + 1)3 [ξ2 + 2ξξ0 − 3 + η(2ξ + ξ0 − 3)] (ξ0 + 1)3

4(η − η0)3(ξ − ξ0)4
,

∂M1(ξ, η)

∂ξ
= −(η − 1)(η0 + 1)3 (−3 + ξ2 + 2ξξ0) ξ0

3

2(η − η0)3(ξ − ξ0)4
,

∂M2(ξ, η)

∂ξ
=

(η − 1)(η0 + 1)3 [ξ2 + 2ξξ0 − 3− η(2ξ + ξ0 + 3)] (ξ0 − 1)3

4(η − η0)3(ξ − ξ0)4
,

∂M3(ξ, η)

∂ξ
=

(−1 + η2) η0
3(3 + 2ξ + ξ0)(ξ0 − 1)3

2(η − η0)3(ξ − ξ0)4
, (5.46)

∂M4(ξ, η)

∂ξ
=

(η + 1)(η0 − 1)3 [−ξ2 − 2ξξ0 + 3− η(2ξ + ξ0 + 3)] (ξ0 − 1)3

4(η − η0)3(ξ − ξ0)4
,

∂M5(ξ, η)

∂ξ
= −(η + 1)(η0 − 1)3 (3 + ξ2 + 2ξξ0) ξ0

3

2(η − η0)3(ξ − ξ0)4
,

∂M6(ξ, η)

∂ξ
=

(η + 1)(η0 − 1)3 [−ξ2 − 2ξξ0 + 3 + η(2ξ + ξ0 − 3)] (ξ0 + 1)3

4(η − η0)3(ξ − ξ0)4
,

∂M7(ξ, η)

∂ξ
= −(−1 + η2) η0

3(−3 + 2ξ + ξ0)(ξ0 + 1)3

2(η − η0)3(ξ − ξ0)4
,

and with respect to η:

∂M0(ξ, η)

∂η
=

(η0 + 1)3(ξ − 1) [η2 − 3 + (−3 + η0)ξ + 2η(η0 + ξ)] (ξ0 + 1)3

4(η − η0)4(ξ − ξ0)3
,

∂M1(ξ, η)

∂η
= −(−3 + 2η + η0)(η0 + 1)3 (ξ2 − 1) ξ0

3

2(η − η0)4(ξ − ξ0)3
,

∂M2(ξ, η)

∂η
= −(η0 + 1)3(ξ + 1) [η2 − 3 + 2η(η0 − ξ)− (η0 − 3)ξ] (ξ0 − 1)3

4(η − η0)4(ξ − ξ0)3
,

∂M3(ξ, η)

∂η
=

(−3 + η2 + 2ηη0) η0
3(ξ + 1)(ξ0 − 1)3

2(η − η0)4(ξ − ξ0)3
, (5.47)
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∂M4(ξ, η)

∂η
= −(η0 − 1)3(ξ + 1) [η2 − 3 + (3 + η0)ξ + 2η(η0 + ξ)] (ξ0 − 1)3

4(η − η0)4(ξ − ξ0)3
,

∂M5(ξ, η)

∂η
= −(3 + 2η + η0)(η0 − 1)3 (ξ2 + 1) ξ0

3

2(η − η0)4(ξ − ξ0)3
,

∂M6(ξ, η)

∂η
=

(η0 − 1)3(ξ − 1) [η2 − 3 + 2η(η0 − ξ)− (η0 + 3)ξ] (ξ0 + 1)3

4(η − η0)4(ξ − ξ0)3
,

∂M7(ξ, η)

∂η
= −(−3 + η2 + 2ηη0) η0

3(ξ − 1)(ξ0 + 1)3

2(η − η0)4(ξ − ξ0)3
.

Exponential decay functions

Exponential decay functions for infinite element extended only in one positive
ξ axis direction are as follows:

Di(ξ, η) = e(ξi−ξ)/L. (5.48)

Multiplying decay functions (5.48) with standard basis interpolation func-
tions (5.41) exponential infinite basis interpolation functions (5.49) are re-
ceived.

M0(ξ, η) = (ξ − 1) (1− η) (η + ξ + 1) /4 · e(1−ξ)/L,
M1(ξ, η) =

(
1− ξ2

)
(1− η) /2 · e−ξ/L,

M2(ξ, η) = (−ξ − 1) (1− η) (η − ξ + 1) /4 · e(−ξ−1)/L,

M3(ξ, η) = (ξ + 1)
(
1− η2

)
/2 · e(−ξ−1)/L,

M4(ξ, η) = (−ξ − 1) (−η − ξ + 1) (η + 1) /4 · e(−ξ−1)/L, (5.49)

M5(ξ, η) =
(
1− ξ2

)
(η + 1) /2 · e−ξ/L,

M6(ξ, η) = (ξ − 1) (−η + ξ + 1) (η + 1) /4 · e(1−ξ)/L,
M7(ξ, η) = (1− ξ)

(
1− η2

)
/2 · e(1−ξ)/L.

Basis interpolation function (5.48) distribution over the boundary element
are presented in Fig. 5.13. First derivatives of basis interpolation functions
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Figure 5.13: Distribution of basis interpolation functions (5.48)

(5.48) with respect to ξ are as follows:

∂M0(ξ, η)

∂ξ
=

(ξ − 1) (η − 1) (ξ + η + 1) e
1−ξ
L

4L
− (η − 1) (ξ + η + 1) e

1−ξ
L

4

− (ξ − 1) (η − 1) e
1−ξ
L

4
,

∂M1(ξ, η)

∂ξ
= −(ξ2 − 1) (η − 1) e−

ξ
L

2L
+ ξ (η − 1) e−

ξ
L ,

∂M2(ξ, η)

∂ξ
=

(ξ + 1) (η − 1) (ξ − η − 1) e
−ξ−1

L

4L
− (η − 1) (ξ − η − 1) e

−ξ−1
L

4

− (ξ + 1) (η − 1) e
−ξ−1

L

4
,
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∂M3(ξ, η)

∂ξ
=

(ξ + 1) (η2 − 1) e
−ξ−1

L

2L
− (η2 − 1) e

−ξ−1
L

2
,

∂M4(ξ, η)

∂ξ
=

(ξ + 1) (η + 1) (−ξ − η + 1) e
−ξ−1

L

4L
+

(1 + η) (ξ + η − 1) e
−ξ−1

L

4

+
(ξ + 1) (η + 1) e

−ξ−1
L

4
, (5.50)

∂M5(ξ, η)

∂ξ
=

(ξ2 − 1) (η + 1) e−
ξ
L

2L
− ξ (η + 1) e−

ξ
L ,

∂M6(ξ, η)

∂ξ
= −(ξ − 1) (η + 1) (ξ − η + 1) e

1−ξ
L

4L
+

(η + 1) (ξ − η + 1) e
1−ξ
L

4

+
(ξ − 1) (η + 1) e

1−ξ
L

4
,

∂M7(ξ, η)

∂ξ
= −(ξ − 1) (η2 − 1) e

1−ξ
L

2L
+

(η2 − 1) e
1−ξ
L

2
,

and with respect to η:

∂M0(ξ, η)

∂η
= −(ξ − 1) (η − 1) e

1−ξ
L

4
− (ξ − 1) (ξ + η + 1) e

1−ξ
L

4
,

∂M1(ξ, η)

∂η
=

(ξ2 − 1) e−
ξ
L

2
,

∂M2(ξ, η)

∂η
=

(ξ + 1) (η − 1) e
−ξ−1

L

4
+

(ξ + 1) (−ξ + η + 1) e
−ξ−1

L

4
,

∂M3(ξ, η)

∂η
= − (ξ + 1) η e

−ξ−1
L ,

∂M4(ξ, η)

∂η
=

(ξ + 1) (η + 1) e
−ξ−1

L

4
+

(ξ + 1) (ξ + η − 1) e
−ξ−1

L

4
, (5.51)
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∂M5(ξ, η)

∂η
= −(ξ2 − 1) e−

ξ
L

2
,

∂M6(ξ, η)

∂η
=

(ξ − 1) (ξ − η + 1) e
1−ξ
L

4
− (ξ − 1) (η + 1) e

1−ξ
L

4
,

∂M7(ξ, η)

∂η
= (ξ − 1) η e

1−ξ
L .

For the decay in both ξ and η axis positive direction exponential decay func-
tion is described by expression:

Di(ξ, η) = e−(ξ+η−ξi−ηi)/L. (5.52)

For the decay in both ξ and η axis negative direction exponential decay
function is described by expression:

Di(ξ, η) = e(ξ+η−ξi−ηi)/L. (5.53)

Using decay functions (5.52) in conjunction with (5.41) infinite basis inter-
polation functions (5.54) are derived.

M0(ξ, η) = −(1− ξ)(1− η)(1 + ξ + η)/4 · e(−2−ξ−η)/L,

M1(ξ, η) = (1− ξ2)(1− η)/2 · e(−1−ξ−η)/L,

M2(ξ, η) = −(1 + ξ)(1− η)(1− ξ + η)/4 · e(−ξ−η)/L,
M3(ξ, η) = (1 + ξ)(1− η2)/2 · e(1−ξ−η)/L

M4(ξ, η) = −(1 + ξ)(1 + η)(1− ξ − η)/4 · e(2−ξ−η)/L, (5.54)

M5(ξ, η) = (1− ξ2)(1 + η)/2 · e(1−ξ−η)/L,
M6(ξ, η) = −(1− ξ)(1 + η)(1 + ξ − η)/4 · e(−ξ−η)/L,
M7(ξ, η) = (1− ξ)(1− η2)/2 · e(−1−ξ−η)/L.

Basis interpolation function (5.52) distribution over the boundary element
are presented in Fig. 5.14. First derivatives of basis interpolation functions
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Figure 5.14: Distribution of basis interpolation functions (5.52), L = −2

(5.48) with respect to ξ are as follows:

∂M0(ξ, ξ)

∂ξ
=
−
[(
η2 + (2ξ − 1) η − 2ξ

)
L+ (1− ξ) η2 +

(
ξ − ξ2

)
η + ξ2 − 1

]
e(−η−ξ−2)/L

4L
,

∂M1(ξ, ξ)

∂ξ
=

[
(2ξη − 2ξ)L+

(
1− ξ2

)
η + ξ2 − 1

]
e(−η−ξ+1)/L

2L
,

∂M2(ξ, ξ)

∂ξ
=

[(
η2 + (−2ξ − 1) η + 2ξ

)
L+ (−ξ − 1) η2 +

(
ξ2 + ξ

)
η − ξ2 + 1

]
e(−η−ξ)/L

4L
,

∂M3(ξ, ξ)

∂ξ
=
−
[(
η2 − 1

)
L+ (−ξ − 1) η2 + ξ + 1

]
e(−η−ξ+1)/L

2L
, (5.55)

∂M4(ξ, ξ)

∂ξ
=

[(
η2 + (2ξ + 1) η + 2ξ

)
L+ (−ξ − 1) η2 +

(
−ξ2 − ξ

)
η − ξ2 + 1

]
e(−η−ξ+2)/L

4L
,

∂M5(ξ, ξ)

∂ξ
=
−
[
(2ξη + 2ξ)L+

(
1− ξ2

)
η − ξ2 + 1

]
e(−η−ξ+1)/L

2L
,

∂M6(ξ, ξ)

∂ξ
=
−
[(
η2 + (1− 2ξ) η − 2ξ

)
L+ (1− ξ) η2 +

(
ξ2 − ξ

)
η + ξ2 − 1

]
e(−η−ξ)/L

4L
,

∂M7(ξ, ξ)

∂ξ
=

[(
η2 − 1

)
L+ (1− ξ) η2 + ξ − 1

]
e(−η−ξ−1)/L

2L
,
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and with respect to η:

∂M0(ξ, η)

∂ξ
=
−
[(
(2ξ − 2) η + ξ2 − ξ

)
L+ (1− ξ) η2 +

(
ξ − ξ2

)
η + ξ2 − 1

]
e(−η−ξ−2)/L

4L
,

∂M1(ξ, η)

∂ξ
=

[(
ξ2 − 1

)
L+

(
1− ξ2

)
η + ξ2 − 1

]
e(−η−ξ−1)/L

2L
,

∂M2(ξ, η)

∂ξ
=

[(
(2ξ + 2) η − ξ2 − ξ

)
L+ (−ξ − 1) η2 +

(
ξ2 + ξ

)
η − ξ2 + 1

]
e(−η−ξ)/L

4L
,

∂M3(ξ, η)

∂ξ
=
−
[
(2ξ + 2) ηL+ (−ξ − 1) η2 + ξ + 1

]
e(−η−ξ+1)/L

2L
, (5.56)

∂M4(ξ, η)

∂ξ
=

[(
(2ξ + 2) η + ξ2 + ξ

)
L+ (−ξ − 1) η2 +

(
−ξ2 − ξ

)
η − ξ2 + 1

]
e(−η−ξ+2)/L

4L
,

∂M5(ξ, η)

∂ξ
=
−
[(
ξ2 − 1

)
L+

(
1− ξ2

)
η − ξ2 + 1

]
e(−η−ξ+1)/L

2L
,

∂M6(ξ, η)

∂ξ
=
−
[(
(2ξ − 2) η − ξ2 + ξ

)
L+ (1− ξ) η2 +

(
ξ2 − ξ

)
η + ξ2 − 1

]
e(−η−ξ)/L

4L
,

∂M7(ξ, η)

∂ξ
=

[
(2ξ − 2) ηL+ (1− ξ) η2 + ξ − 1

]
e(−η−ξ−1)/L

2L
.

5.8 Numerical examples

5.8.1 2D calculations

To follow the infinite boundary elements incorporation into BEM a simple 2D
example like on left part (see Fig. 5.15) will be presented. It consists of 2 semi
infinite edges perpendicular to each other - horizontal 0X with potential 0V
and vertical 0Y with potential 10V . The mesh is build from 46 standard
elements and 2 infinite elements. To avoid singularity on the potential leap
on the edges contact point (0,0) 2 small elements in that corner have potential
decreasing smoothly from 10V to 5V and then to 0V . Achieved results
were compared with the solution based on standard elements only and a
mesh extended to double distance from the zone of interests (hatched area)
right part in Fig. 5.15. The example has known analytical solution (5.57)
important for the accuracy comparison.
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Boundary and potential smoothing near the edge’s contact point required by
our numerical solution differs from the theoretical solution. That causes an
extra error in the (0,0) point neighbourhood. Values of (∂ϕ(r)/∂n) calculated
in nodes of the boundary mesh for the region of interests are presented in
Fig. 5.16 and the accuracy comparison in Fig. 5.17.

ϕ(x, y) =
V0
π

2 arctg
y

x
,

∂ϕ(x, y)

∂x
=
V0
π

2
y

x2 + y2
, (5.57)

∂ϕ(x, y)

∂y
=
V0
π

2
x

x2 + y2
.

Normal derivative (∂ϕ(r)/∂n) is expressed by (5.58):

∂ϕ(x, y)

∂n
=
V0
π

2

(
x√

x2 + y2
1y −

y√
x2 + y2

1x

)
. (5.58)

Numerical solutions with incorporated infinite elements were compared with
analytical and with numerical where standard boundary elements only were
used (ballooning [9, 15]). The idea of decreasing analyzed area by using
infinite elements is presented in Fig. 5.15. Solution area is marked as hatched
part. Figure 5.16 presents potential normal derivatives in nodes located on
the axes and Fig. 5.17 achieved accuracy. Because of symmetry along y = x,
figures 5.16 and 5.17 represents solution on 0− x axes.

Results for reciprocal and exponential decay infinite elements are almost
the same and very close to these with used mapped infinite elements and
therefore they are difficult to distinguish in figures 5.16 and 5.17. The role
of the model surroundings is only to receive the correct solution in the area
of interest. Therefore, points close to value 1 in figures 5.16 and 5.17 are
omitted in further discussion. Both types of infinite elements offer similar
results and accuracy. Calculation time was twice time shorter for models with
infinite elements comparing to model consisting only of standard boundary
elements (forward problem solution takes 20 sec. instead of 44 sec.).

5.8.2 3D calculations

Four simple theoretical models of human breast were investigated. For all
models one placement of the light source was presented - located near the
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Figure 5.15: The idea of decreasing analyzed area by using infinite elements; the
discretization and shapes of the areas correspond to the two-dimensional compu-
tational model

Figure 5.16: Solutions comparison: theoretical (red line), with standard elements
only (blue line) and with infinite elements incorporated (black line: with o – for
reciprocal decay functions, with x – for exponential decay functions and full line
– for mapped infinite elements)

bottom of the hemisphere model. The first model presented in Fig.5.19 cor-
responds to the pure hemisphere. The second model was extended by adding
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Figure 5.17: Solutions accuracy comparison: with standard elements only (blue
line) and with infinite element incorporated (black line: with o – for reciprocal
decay functions, with x – for exponential decay functions and full line – for mapped
infinite elements)

a cylinder in the bottom (see Fig. 5.20). The intention of this was to avoid
possible errors at the bottom of the hemisphere. Another model develops
that idea by adding the cylinder with identical height but bigger diameter
(see Fig. 5.21). The aim of these models is to eliminate the errors near the
basis circumference. All models were constructed from 1536-second order
8-node quadrilateral boundary elements and 4610 nodes. A half of the ele-
ments covers the hemisphere.
Governing equation for the problem is diffusion approximation of the trans-
port equation [20] (Helmholtz - assuming that scattering and absorption are
homogeneous):

∇2Φ (r, ω)− k2Φ (r, ω) = −q0 (r, ω)
D

, ∀r ∈ Ω/Γ, (5.59)

where Φ stands for photon density, k =
√

µa
D
− j ω

cD
is the complex wave

number, D = [3 (µa + µ′
S)]

−1 [mm−1] is the diffusion coefficient, µ′
S is the

reduced scattering coefficient, µa is the absorbing coefficient, c is the speed of
light in the medium q0 is a source of light (number of photons per volume unit
emitted by concentrated light source located at position r with modulation
frequency ω).
Generally in diffusive optical tomography the distributions of µa and µ′

s are
investigated.
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There are Robin boundary conditions on surfaces [3, 20]:

Φ (r, ω) + 2αD
∂Φ (r, ω)

∂n
= 0, ∀r ∈ Γ. (5.60)

with different coefficients for breast tissue and for skeletal muscles on the ba-
sis [3] imposed. In the analyzed example the following breast tissue properties
were taken [3]: µa = 0.025[mm−1], µ′

s = 2[mm−1], α = 1, f = 100kHz. Last
open boundary model consists of 768 standard boundary elements and 64
infinite mapped elements based on 8-node second order quadrilateral bound-
ary elements [10, 5, 4]. The number of nodes is reduced to 2433 nodes in
that case (see Fig. 5.22). Serendipity infinite mapping functions [10] were

Figure 5.18: Five node mapped infinite boundary element based on 8 node
quadrilateral isoparametric boundary element

used for element transformation like those presented in Fig. 5.18. The rele-
vant boundary integral equation for surfaces covered by standard and infinite
elements can be written as:

C(r)Φ(r) +

∫
Γ

∂G(|r− r′|, ω)
∂n

Φ(r′)dΓ +

∫
Γ∞

∂G(|r− r′|, ω)
∂n

Φ(r′)dΓ∞ =

=

∫
Γ

G(|r− r′|, ω)∂Φ(r
′)

∂n
dΓ+

∫
Γ∞

G(|r− r′|, ω)∂Φ(r
′)

∂n
dΓ∞−

nsrc−1∑
s=0

QsG(|rs − r|, ω)

where Qs is the magnitude of the concentrated source (q0 = Qsδ(rs)) and
nsrc is a number of these sources, Φ stands for the photon density and G is
the fundamental solution for the diffusion equation [3, 20].
In 3D space the fundamental solution for the diffusion equation is:

G (|r− r′| , ω) = 1

4π |r− r′|
e−k|r−r′|. (5.61)
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The normal derivative of the Green function G can be written as:

n · ∇G = n · r− r′

|r− r′|

(
−1

4π |r− r′|2
− k

4π |r− r′|

)
e−k|r−r′|. (5.62)

Figure 5.19: Base model of the
breast - hemisphere

Figure 5.20: Extended model with
additional part of chest, hemisphere
with cylinder on the bottom

Figure 5.21: Extended model with
additional part of chest, hemisphere
with wider cylinder on the bottom

Figure 5.22: Open boundary hemi-
sphere breast model with infinite
boundary elements on the bottom

5.8.3 Results

Values of the module and phase of ∂Φ/∂n at hemisphere circumference cross-
section for y = 0 are presented in figures 5.23 and 5.24, respectively. To
estimate the solution differences, models with extended bottom part – fig-
ures 5.20 , 5.21 and 5.22 were compared to basic hemisphere – figure 5.19.
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Generally three extended models offers similar results, distinctly different
from those achieved for the simple hemisphere in Fig. 5.19. It should be no-
ticed that there is a logarithmic scale in the graph ∂Φ/∂nmodule in Fig. 5.23.
The medium value of approximation differences for module is about 30% and
for phase oscillates about 3%.

Figure 5.23: Module of ∂Φ/∂n(Ψ) for
all models and solution differences re-
lated to hemisphere model

Figure 5.24: Phase of ∂Φ/∂n(Ψ) for
all models and solution differences com-
pared to hemisphere model

5.9 Conclusion

Generally, the three extended breast models (those with additional cylindrical
part on the hemisphere basis or with infinite elements incorporated) offer
similar accuracy – figures 5.23 and 5.24. The worst results were achieved
then using the pure hemisphere model. The medium differences between the
hemisphere and extended models are about 30% and for the module and
about 3% for the phase. Thirty-percent differences are significant enough so
that the definition area of the problem has to be extended. In this case it
includes not only the breast tissue represented by the hemisphere but also a
part of chest with muscles and bones relevant to additional cylindrical part
or ring consisting of infinite elements. It should be noticed that the graph in
Fig. 5.23 of the module ∂Φ/∂n has a logarythmic scale.

The advantage of using infinite elements consists in reducing the calcula-
tion time and keeping the accuracy similar to the accuracy provided by the
extended models.
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Reducing the number of mesh elements almost to 50% is fundamental for
inverse problem solution when the forward problem has to be calculated many
times. All extended models were built from the same number of standard
8-node second order quadrilateral boundary elements. Mesh density on the
additional surface related to cylindrical part of the model was lower than
that on the hemisphere surface. This is a typical practical solution, as the
additional part represents the region outside the zone of interest, and is
included only to improve the accuracy.

Except for the models mentioned above which consist of 1536 elements and
4610 nodes, calculations were performed also for models covered by 384 ele-
ments and 1154 nodes and also 6144 elements and 18434 nodes. The results
calculated from the simplest model built from 384 elements exhibit little os-
cillations rather than smooth character. The model with the highest mesh
density, with 6144 elements, required too much memory and took too long
calculation time without a significant improvement of accuracy. The calcu-
lations took 18 seconds for 384 node models and 4 minutes and 47 seconds in
case of 4160 node models. The model with infinite elements built in total 832
elements that corresponds to the standard model built from 1536 elements
and 4610 nodes required 1 minute and 24 seconds for calculations. Self-made
generator was used to build presented meshes containing only quadrilateral
elements and to create open boundary models with infinite boundary ele-
ments.

Implementation of infinite boundary elements into boundary element method
improves computational efficiency compared to the mesh truncation. The
process of incorporating infinite elements into BEM calculation scheme is
quite logical. Presented application in Optical or Electrical Impedance mam-
mography can be used as a screening examination in breast cancer detection
but infinite elements can be used also for other purposes.
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Chapter 6

BEMLAB-open source,
objective Boundary Element
Method library

J. Sikora, P. Wieleba, W. Wójcik

Nomenclature

Abbreviations

BEM – Boundary Element Method

FEM – Finite Element Method

DOT – Diffuse Optical Tomography

EIT – Electrical Impedance Tomography

CT – Computer Tomography

NMRI – Nuclear Magnetic Resonance Imaging

NIR – Near Infra Red

PDE – Partial Differential Equation
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BIE – Boundary Integral Equation

RTE – Radiative Transfer Equation

Symbols

Γ – Boundary

Ω – Domain

Γj – Boundary element j

φ – Potential [V]; Photon density
[

1
m3

]
n⃗ – Normal vector outward the domain Ω

k – Wave number

G – Fundamental solution, Green function

∂
∂n

– Normal derivative

ω – Frequency of source light intensity modulation

6.1 Introduction

Tomography imaging techniques require proper numerical models. Data
gathered from the hardware are used to create an image of the examined
object internal structure. The inverse problem using the adequate numeri-
cal model is solved and its results compose the picture of the object internal.
The inverse problem allows to find object internal model parameters m using
data d gathered form the boundary of the model using the scan hardware.
The relationship between d and m can be written as:

d = Υ(m) , (6.1)

where Υ is a non-linear operator which represents the numerical model of
the physical problem.

The base unit of the inverse problem is the forward problem which allows
to calculate d based on known m. It is very important to calculate forward
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problems as fast as possible to process further image reconstruction effec-
tively. It is particularly important in Diffuse Optical Tomography (DOT)
and Electrical Impedance Tomography (EIT) where calculations are very
time consuming [11].

The most common tomography techniques in medicine are the X-ray based
Computer Tomography and the Nuclear Magnetic Resonance Imaging (NMRI).
Computer Tomography uses X-rays which are the ionizating radiation. Long
tissues exposure on X-ray based radiation is very dangerous therefore CT
cannot be used frequently. Whereas Nuclear Magnetic Resonance Imaging
uses magnetic field from 0.5 to 2 Tesla. Larger values of magnetic field are
prohibited in medicine because it is not neutral for living organisms. Both
mentioned techniques are volumetric, therefore precise image is obtained and
exact object interior structure is presented.

In contrast to DOT commonly used X-ray based Computer Tomography and
NMRI use fast algorithms. CT uses back-projection while NMRI uses Fourier
Transform based algorithms. Availability of fast algorithms to reconstruct
the image made it possible to popularize these methods in medicine testing.

However CT and NMRI are not ideal testing methods. X-ray based CT can
only be used rarely because of its dangerous influence on tissues. NMRI
is also not neutral for living organisms. Moreover both methods require
devices of big dimensions. NMRI requires extensive cooling, therefore special
installations have to be applied. Diffuse Optical Tomography does not have
drawbacks of CT and NMRI. DOT uses near infrared (NIR) light which is
safe for tissues, which can be exposed to it permanently. The size of optical
scanners is relatively small – they are portable. However DOT cannot be
used for precise volumetric imaging. It also requires much more efficient
processing units. Nowadays used algorithms are very slow therefore they
make it impossible to introduce DOT to every day medical testing.

The main areas of DOT application in medicine are:

• neonatal head testing of brain haemorrhage,

• breast testing for detecting tumours.

Usage of DOT for testing infants brain haemorrhage is especially important.
It is required to test the brain with haemorrhage permanently, so doctors
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could know if it increases or decreases and if applied treatment is appro-
priate. It is also beneficial to use DOT for detecting tumours in breasts.
Nowadays popularly used mammography uses X-ray based ionizating radi-
ation and as testing should be done regularly it is not neutral. Moreover
while the mammography test is taken, breasts are deformed whereas while
using DOT scanners they are not. Despite of fact that the image is not as
precise as that reconstructed using CT or NMRI it is desired to introduce
DOT imaging in the mentioned areas. However the main drawback of DOT
image reconstruction, which is the long time of image reconstruction has to
be solved.

Further sections describe universal, open source and objective software im-
plementing Boundary Element Method (BEM) for solving partial differential
equations, which can be used in tomography applications.

6.2 Radiative Transport Equation in Diffuse

Optical Tomography

Firstly the numerical model for Diffuse Optical Tomography have to be intro-
duced. Near infrared light used in DOT is an electromagnetic wave. There-
fore the light transport phenomenon can be described using Radiative Trans-
port Equation (RTE). Depending on the type of scanner or its work mode
the source of near infrared light can be described as defined in:

• time domain – the signal is in the form of ultra fast impulses,

• frequency domain – the light intensity modulation.

RTE defined in the time domain has the following form:(
š · ∇+µa(r)+µs(r)+

1

c

∂

∂t

)
φ(r, š, t)=µs(r)

n−1∫
s

Θ(š, š′)φ(r, š, t)dš′+q(r, š, t),

(6.2)
and in the frequency domain [13]:(
š · ∇+µa(r)+µs(r)+i

ω

c

)
φ(r, š, ω)=µs(r)

∫
sn−1

Θ(š, š′)φ(r, š, ω)dš′+q(r, š, ω) ,

(6.3)
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where: š – directional vector; Θ(š, š′) – dispersing phase function describing
probability that photon with the beginning direction š′ will have direction š
after the dispersing event occurs; q – source inside the examined domain Ω,
φ – photon density; µa – absorption coefficient; µs – disperse coefficient; r –
geometrical coordinates of the examined point; c – the speed of light in the
medium; t – time; ω – frequency.

The above RTE equation is a precise numerical model for light transport
phenomenon including NIR. However the numerical model based on RTE
is difficult to solve, because of a long time required to obtain results using
nowadays hardware. Monte Carlo is one of the methods which can be used
to solve RTE.

However, the Diffusion Optical Tomography operates on testing objects con-
sisting of tissues, which characterize the following relation:

µ′
s ≫ µa . (6.4)

Tissues absorption coefficient is much smaller then the dispersing coefficient.
Thanks to this fact RTE can be reduced to the diffusion equation without
loss of results quality. Then the diffusion equation in the time domain can
be formed as [1, p. 1535] [9, p. 1780] [10, p. 896]:(

∇ ·D∇− µa −
∂

∂t

)
φ(r, t) = q0(r, t) , (6.5)

and in the frequency domain [11, p. 139] [10, p. 896]:(
∇ ·D∇− µa −

iω

c

)
φ(r, ω) = q0(r, ω) , (6.6)

where D – the diffusion coefficient:

D =
1

3(µa + µ′
s)
. (6.7)

Further discussion will concentrate on a frequency domain because then the
medical testing is shorter. The diffusion equation in the frequency domain
(6.6) can be presented as the Helmholtz equation including the source q0:

∇2φ(r, ω)− k2φ(r, ω) = −q0(r, ω)
D

, where k2 =
µa
D
− i ω

cD
, (6.8)

where: k ∈ C – is the complex wavenumber.
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The collimated source NIR light is supplied to the baby head or the surface
of the breast through the fibre-optic. In the numerical model it is modelled
as the point source located under the surface at the distance of 1

µ′s
.

Forward problem definition requires also setting boundary conditions (BC).
The third kind BC, also known as Robin BC, are used in the DOT model
and they represent the following relationship:

∂φ

∂n
= mRBC φ+ nRBC , (6.9)

where mRBC , nRBC – parameters.

The above Helmholtz Partial Differential Equation (PDE) can be solved us-
ing any applicable method and also Boundary Element Method with title
BEMLAB software.

6.3 Governing equation in Electrical Impe-

dance Tomography

Another considered type of tomography imaging technique is Electrical Impe-
dance Tomography (EIT). EIT uses electrical properties of examined mate-
rials like electrical conductivity σ. The examined object is stimulated using
voltage or current source and the layout of potential on the surface is col-
lected using sensors. These data are used by the reconstruction algorithm
which gives a layout of objects internal. EIT numerical model involves the
Laplace equation [12, p. 112]:

div(gradφ) = 0 . (6.10)

The Laplace PDE can also be solved using Boundary Element Method and
the title BEMLAB software.

6.4 Boundary Element Method

Diffusive Optical Tomography and Electrical Impedance Tomography prob-
lems are popularly solved using Finite Element Method (FEM) [14]. FEM is



6.4 Boundary Element Method 371

the domain method which means that the whole object domain Ω has to be
discretized. One of the FEM alternatives is the Boundary Element Method.
BEM requires only the surface Γ of the examined object to be discretized,
therefore its dimension is smaller by one than in domain methods. The good
quality boundary mesh creation task is much simpler than creating a do-
main mesh. BEM is the method characterized by the square computational
complexity O(N2) [8]. Moreover calculation of φ in any point inside the
examined domain Ω is done without remeshing the domain. The number of
equations in BEM is usually much less than in FEM. BEM has advantages
comparing to FEM, but also there are some drawbacks. When the problem
is characterized with the unsuitable geometry, which means that the number
of boundary elements Γj is close to the number of domain elements Ωj in
FEM, then BEM calculations are slower than in FEM. This is strengthened
by the fact that the left hand side matrix a in the set of linear equations
(6.20) is dense in BEM in contrast to the sparse one in FEM.

Laplace equation (6.10) or Helmholtz equation (6.8) can be solved using
BEM when they are defined as Boundary Integral Equation (BIE). BIE has
the following analytical form:

ciφ+

∫
Γ

φ
∂G

∂n
dΓ =

∫
Γ

∂φ

∂n
GdΓ +

∫
Ω

fGdΩ , (6.11)

where: Ω – the problem domain, Γ – boundary of domain Ω, φ – field function
potential or photon density in DOT, G – Green function, so-called fundamen-
tal solution, n = |n⃗| – length of the normal vector directed outwards to the
boundary element, ∂

∂n
– normal derivative, f – domain (source) function, ci –

coefficient removing or restricting the singularity from the primitive function
of PDE solution.

The Green function G mentioned above varies for each type of PDE and
dimension of the space in which the problem is defined. Selected Green func-
tions for Laplace/Poisson and Helmholtz equations were gathered in table
6.1. It is worth to see that when the value of R decreases to zero (R ↘ 0),
the singularity occurs and special integration procedure has to be taken.

If the problem is to be calculated using BEM, only the boundary Γ of the
examined domain Ω has to be discretized.

In figure 6.1 there is presented an example 2D object, which boundary Γ
was discretized with linear boundary elements. The boundary Γ around the
domain Ω was discretized with 12 boundary elements Γj, where j ∈ ⟨1, 12⟩.
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Table 6.1: Green functions for Laplace / Poisson and Helmholtz PDE

Space
Green functions G(R) for:

dimension Laplace / Poisson PDE Helmholtz PDE

1D G(R) = −1

2
R (6.12) G(R)=− 1

2k
sinh(kR)

(6.13)

2D G(R) =
1

2π
ln

1

R
(6.14) G(R)=

1

2π
K0(kR) (6.15)

3D G(R) =
1

4πR
(6.16) G(R)=

1

4πR
e−kR (6.17)

Figure 6.1: Example 2D boundary mesh with the marked boundary conditions

There are also 12 boundary nodes, where i ∈ ⟨1, 12⟩. Boundary conditions
were also marked in the model. Dirichlet Boundary Conditions (DBC) were
applied on the top and bottom border (known potential φ), whereas Neu-
mann Boundary Conditions were applied on the left and right border of the
model (known potential normal derivative ∂φ

∂n
. As can be noticed the domain

was not discretized. While creating the boundary mesh it is required that the
normal vector to the boundary element n⃗ is directed outward the examined
domain Ω.
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When the domain boundary Γ is discretized the Boundary Integral Equa-
tion (6.11) has to be written in the discretized form. The boundary was
discretized into J boundary elements and it has I nodes. Each element has
K nodes which interpolate potential φ and L nodes which interpolate its
normal derivative ∂φ

∂n
. When the source is defined in the domain Ω, it can

be discretized into D domain elements. The discretized BIE for one domain
problem has the following form:

ci(ri)ui(ri) +
J∑
j=1

K∑
k=1

u
(j)
k

∫
Γj(ξ)

N
(u)
k (ξ)

∂G
(
r(ξ), ri

)
∂n

∣∣∣J (g)
Γj

(ξ)
∣∣∣ dΓj(ξ) =

=
J∑
j=1

L∑
l=1

q
(j)
l

∫
Γj(ξ)

N
(q)
l (ξ)G

(
r(ξ), ri

) ∣∣∣J (g)
Γj

(ξ)
∣∣∣ dΓj(ξ)+

+
D∑
d

∫
Ωd(ζ)

f
(
r(ζ)

)
G
(
r(ζ), ri

) ∣∣∣J (gΩ)
Ωd

(ζ)
∣∣∣ dΩd(ζ) ,

(6.18)

where: N
(u)
k – base interpolation functions for potential φ; N

(q)
l – base inter-

polation functions for potential derivative ∂φ
∂n
;
∣∣∣J (g)

Γj
(ξ)
∣∣∣ – Jacobian of transfor-

mation of geometrical boundary element from the global coordinate system

to the local coordinate system;
∣∣∣J (gΩ)

Ωd
(ξ)
∣∣∣ – Jacobian of transformation of

geometrical domain element from the global coordinate system to the lo-
cal coordinate system; ξ – boundary point local coordinates of transformed
boundary element; ζ – domain point local coordinates of transformed do-
main element; u

(j)
k – potential φ value in the node k of the element j; q

(j)
l –

potential normal derivative ∂φ
∂n

in the node l of the element j.

Normally potential φ and its normal derivative ∂φ
∂n

are interpolated by bound-
ary elements of the same type, which results the following relation: K = L –
number of boundary element nodes is the same for both interpolation func-
tions φ and ∂φ

∂n
.

Matrices are good containers and matrix calculations are clear, therefore BIE
(6.18) can be presented in the matrix form:

Aφφφ = B
∂

∂n
φφφ+ F . (6.19)
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When the Laplace PDE is calculated the vertical vector F responsible for
domain source potential is equal zero: F = 0. Introducing boundary condi-
tions is the next step. BCs are applied to the equation (6.19) which results
in the following set of linear equations:

ax = b , (6.20)

where: x – is the unknown vector composed from unknown boundary poten-

tials u = φ and/or potential normal derivatives q = ∂φ
∂n
: x =

[
φφφ
∂φφφ
∂n

]
. It is

worth to notice that the left hand side matrix a is dense.

The set of equations (6.20) can be calculated using solvers based on LU
decomposition [6], faster GMRES [7, 18] or any other available. As the result
of BEM calculations all potential u = φ and its normal derivative q = ∂φ

∂n

are known in the boundary nodes. Internal node values do not have to be
calculated but if needed their values are calculated using potential and its
normal derivative values from all boundary nodes.

6.4.1 Multi domain problems

The above discretized form of BIE (6.18) is applicable for one domain prob-
lem. But BEM can also solve multi domain problems. Then BIE should be
modified so regions are included.

Figure 6.2: Two domain (Ω(1) and Ω(2)) problem with a marked interface Γ(1:2)

between them

Two domain problem is presented in figure 6.2. There is a boundary Γ(1:2)

named an interface between domains (regions) Ω(1) and Ω(2). There are
also marked external boundaries for particular domains: Γ(1) for Ω(1) and
Γ(2) for Ω(1). This particular notation of boundaries and consequently BIE
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was created specially for the BEMLAB library. Normal vectors n⃗ to the
boundaries were also marked. When the domain Ω(1) is considered the vector
n⃗1 is taken, when the domain Ω(2) is considered the vector n⃗2 is taken.

The Boundary Integral Equation for the multi domain problem made of R
domains created for BEMLAB numerical package has the following form:
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(6.21)
where: Br – is the number of boundaries neighbouring the current region
(domain) r; br – is the current boundary between the current region r and
the neighbour (or external region marked as Ω′, where Ω′ * Ω).

The matrix BIE equation (6.19) and the set of equations (6.20) has the same
form for multi domain problems. However before applying boundary con-
ditions, interface conditions have to be additionally applied to the equation
(6.21). There are two interface continuity conditions on the interface:

Potential continuity – In the interface node the following relationship oc-
curs:

φ1|Γ(1:2) = φ2|Γ(1:2) . (6.22)

Potential normal derivative continuity – In the interface node the fol-
lowing relationship occurs:

m1
∂φ1

∂n

∣∣∣∣
Γ(1:2)

= −m2
∂φ2

∂n

∣∣∣∣
Γ(1:2)

, (6.23)
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where: m1, m2 – are material parameters of particular domains. The
− (minus) sign exists because normal vectors has the same direction
but opposite turns as is marked in Fig. 6.2.

After solving the set of equation (6.20) for multi domain problems, all po-
tential u = φ and its normal derivative q = ∂φ

∂n
values in nodes of external

boundaries Γ(r) and interfaces Γ(r1:r2) are known.

This section includes some basic information about Boundary Element Method,
which were required to model and implement BEMLAB library. There were
presented notation and modelling procedure which make possible to create
the universal BEM software applicable to diverse problems.

6.5 BEMLAB software

The name Boundary Element Method was proposed by C. A. Brebbia in
1970s [2]. The number of applications increased since then and further areas
are being investigated. At the same time development of FEM was much
more rapid and nowadays its role is indisputable. When the computers be-
come more common and high level programming languages arise, lots of ap-
plications implementing FEM were created. There is a broad choice of open
source as well as commercial FEM software. Everyone can choose the one
which is the best for particular applications. This is also one of the reasons
why the FEM is much more popular method for solving PDEs than BEM.

The BEM software availability is much smaller than the broad choice of FEM
one [5, 15]. And unfortunately, only little BEM codes were created for all
the time since the BEM arose. One of the reasons may be the fact that
BEM mathematical description is more complicated. Another one probable
cause is the existence of problematic singularities which have to be taken
into consideration and solved. Because of lack of BEM software applicable
to tomography applications the BEMLAB [17] project was initiated.
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6.5.1 Technology

Licensing

It was decided that the BEMLAB software will be developed using the open
source licence. Some of the reasons why the code is publicly available are: the
intention of creating the community around the project, Boundary Element
Method popularization among engineers and scientists, its further develop-
ment and acceleration.

BEMLAB binary packages and the source code are distributed under GNU
LGPL (Lesser General Public License) license terms. The project provides
universal library and the reference application, which is the easiest way for
solving problems using BEM. There are also auxiliary programs provided to
facilitate engineer’s tasks.

Technology main goals

The licensing and technology were chosen in the way so the BEMLAB project
could be named as a “good open source project”, which comply criteria
described in e.g. [3]. The following aims were set against the project:

• calculation correctness,

• usage easiness,

• further development easiness, by choosing well known technologies.

The numerical software is a special type of software which target group is
relatively small comparing to the system or application software. Therefore
the chosen technology, tools, modelling and development procedures should
be already known to the potential users, so they can be easily engaged to use
the created software. It is particularly important in case of BEM software,
because the method by itself is not widely known.
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Objectivity

BEMLAB software has an objective architecture because it simplifies the
process of modelling, development and further hosting. This also decreases
the entrance level for new developers so they can faster and easier get to know
the project architecture. Moreover there is a Unified Modelling Language
(UML) [4] available, which allows creation of standardized diagrams made of
unified symbols. UML allows creation software requirements and architecture
during the whole process of modelling and development. UML diagrams are
unambiguous therefore all projects participants has a clear view of how the
code will be implemented or is already implemented. Furthermore “pictures”
like diagrams are generally easier assimilated than the code by itself. The
objectivity allows modelling and creating the code which is better adapted
to the reality, than the functional one.

Programming language

Nowadays, many programming languages support object-oriented program-
ming. C++ was chosen as the main programming language used in BEM-
LAB software. Other considered were Java and C#, but both require virtual
machines and their programmes are slower than those written in C++. It
is important that those three programming languages are popular and are
taught in all computer engineering studies of the undergraduate and grad-
uate courses. Nowadays computer companies use them to create software.
Some available BEM codes [15, ?] are written in Fortran which was a popu-
lar language of numerical software. Nowadays it is not popular, commercial
software does not use it and finally it is taught in a scarce scope if not at all.
Moreover functional C and Objective C++ are popular in the open source
community.

Compiler

C++ compilers are available on almost any platform and operating system.
Almost all C/C++ software in Linux/Unix like operating systems use GNU
compilers. BEMLAB reference implementation also uses GNU C++ Com-
piler which is the base compiler among open source software. There are
multithreaded algorithms specially designed and implemented for BEMLAB,
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which fasten BEM calculations on multicore processors and on multiproces-
sor computers. BEMLAB library uses threads introduced in C++0x specifi-
cation. Therefore it is recommended to use GNU Compiler version 4.4.0 or
newer, because C++0x threads are available from that version only. However
up to now it is possible to use previous versions of GNU compilers (tested all
major versions since GNU Compiler 3.3), but with the restriction that mul-
tithreaded algorithms are turned off. This is deprecated but makes possible
to use BEMLAB on older operating systems where newer versions of GNU
Compiler are not yet available. However the code without multithreading
will be completely removed in the future.

Code manager

The most important case for the end user is possibility of using the soft-
ware. The user wants to run the software in the known and the easiest way
possible. Similarly the programmer wants to compile and build the software
efficiently. Code managers come with help to fulfil these requirements. Code
managers allow to automate such tasks like environment configuration, code
compilation, binaries building, installation or source package creation. All
tasks are very important but the environment configuration is worth noting,
because thanks to it the developer does not have to bother how the end user
environment and the operating system are configured. Differences between
platforms and systems distributions are transparent and the code manager
manages with them automatically. Moreover it provides the possibility to
provide user’s special configuration options in the unified way e.g. install the
application in a non standard location. Two code managers were taken into
account:

• the suite of tools: automake, autoconf and libtool, also known as
autotools

• cmake

Finally the first one was used despite of its disadvantages like e.g. difficulty
to programme. However it is much more common, users are used to it and
simply is fair enough. The second one (cmake) is not so popular and maybe it
will not become. The code manager is required to develop the code effectively.
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Version control system

Almost none programming project can obey without Version Control System
(VCS). And not only programming one e.g. this chapter creation (writing)
was carried out with the help of version control system. VCS is designed
to store all versions of particular files. It allows to compare changes, create
branches, merge codes versions. It has the full history of changes made in the
code or document. It allows a group of people to develop the code effectively.
Without the VCS it would be impossible. When the BEMLAB project was
started out two version control systems engines were considered:

• CVS – popular and widely used,

• SVN – newer, somewhat less popular than CVS, but with substantial
advantages and much modern.

Nowadays GIT is obtaining consecutive applications because of its modern
architecture. However it was not mature enough that time and is not yet as
popular as both mentioned above together – support on various operating
systems is still restricted. Finally the SVN was chosen, which has been used
for the whole processed development. Publicly the repository is available
under the address:

svn://svn.bemlab.org/bemlab

Until now SVN is sufficient but the repository migration to GIT cannot be
excluded in the future.

Website

Many open source projects have websites and every “good open source project”
must have one. The website is easily available and is the most popular place
for distributing software and documentation. The community is gathering
around the projects website and available services. This is a very important
part of the project. BEMLAB project has its own domain:

http://bemlab.org/
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There are many web applications available but only actively developed and
with a good support (bug fixes deployment) were considered to be used with
a BEMLAB project. Mainly Content Management Systems (CMS) such as
Joomla or Drupal were considered, and Wiki applications such as MoinMoin
and MediaWiki. Finally MediaWiki [20] was chosen – it is broadly used
(among others byWikipedia) and bug fixes are systematically made available.
Moreover a lot of people know MediaWiki interpreter and it supports LaTeX
equations.

The website and the software also require the logo so they can be easily
recognized. Figure 6.3 presents the logo specially designed for the BEMLAB
project – it presents a discretized surface of sphere, the boundary.

6.5.2 Data Input/Output format

While creating specification for the project it was decided that the calculated
problems will be defined fully using one file format. It was also decided that
the problem can be split among many files. Exchanging data with external
files was a priority.

File format

Taking above into account the text file format compatible with Matlab M-
files was chosen. The example matrix definition named matrix consisting of
2 rows and 3 columns with a marked comment is as follows:

matrix=[1 3 7; 4 6 8]; % comment (2,3)

The choosen file format can easily be converted into Scilab sci-format, by
changing the comment string.

shell% sed -e ’s/%/\/\//g’ file_matlab.m >

file_scilab.sci

The converted file can then be read into scilab:
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scilab-> exec(’file_scilab.sci’)

Furthermore a text file format is more user friendly. It simplifies tasks related
with mesh creation. Text files can easily be edited and manipulated using
standard tools such as text editors (e.g. vi) or line editors (e.g. sed, awk). It
is also easer to write programmes which process data files in script languages
like perl, python, ruby or using the shell interpreter.

Data format

The BEMLAB data format is based on the file format presented above. The
base unit is the matrix. Mesh files are composed of many matrices with
the strictly defined names. The huge advantage of the file format is its
universality. Any number of domains, elements, sources, etc. can be defined
for the calculated problem. The matrix definitions can be specified in files in
any order. A basic example is presented in figure 6.4.

Figure 6.3: BEMLAB logo

Figure 6.4: 2D boundary mesh

This is a two dimensional problem discretized with J = 4 boundary elements.
Potential ujk and its normal derivative qjl were marked in the I = 4 interpo-
lation nodes. One node, constant elements are used to interpolate potential
and its normal derivative K = L = 1 – see equation (6.18). Geometry is
discretized with 2 node linear boundary elements.
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The mesh from figure 6.4 can be defined in BEMLAB data format in the
following form:

nodes=[0,0; 5,0; 10,0; 10,5; 10,10; 5,10; 0,10; 0,5]; %

elementsGeom=[1,3; 3,5; 5,7; 7,1]; % 4

elementsU=[2; 4; 6; 8]; % 4

elementsQ=elementsU;

elementTypeGeom=[’LineLinear’];

elementTypeU=[’LineConst’];

elementTypeQ=elementTypeU;

dirichletElements=[ 1, 3 ]; % 2

dirichletBC=[0; 10]; % 2

neumannElements=[ 2, 4 ]; % 2

neumannBC=[0; 0]; % 2

angleCoefficients=[ 2, 4, 6, 8 ]; % 4

angleCoefficientValues=[ 0.5, 0.5, 0.5, 0.5 ]; % 4

methodType_1=[’poisson’];

where:

• nodes – is the matrix which includes all nodes coordinates defined in
the problem,

• elementsGeom – is the matrix which includes geometrical boundary el-
ements definitions – contains indexes to nodes defined in nodes matrix,

• elementsU – is the matrix which includes definitions of elements inter-
polating potential u = φ – contains indexes to nodes defined in nodes

matrix,

• elementsQ – is the matrix which includes definitions of elements inter-
polating potential normal derivative q = ∂φ

∂n
– contains indexes to nodes

defined in nodes matrix, and usually is equal to elementsU matrix,
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• elementTypeGeom – is the matrix which defines geometrical element
type – here first order linear element is defined: [’LineLinear’],

• elementTypeU – is the matrix which defines type of element interpo-
lating potential u = φ – here first order linear element is defined:
[’LineConst’],

• elementTypeQ – is the matrix which defines type of element inter-
polating potential normal derivative q = ∂φ

∂n
– usually is equal to

elementTypeU matrix,

• dirichletElements – is the matrix which defines elements which has
Dirichlet Boundary Condition defined – here two elements 1 and 3,

• dirichletBC – is the matrix which defines Dirichlet Boundary Con-
dition values (potential u) in consecutive elements defined in matrix

named dirichletElements – here element 1 has the potential u
(1)
1 = 0

defined in node 2 and element 3 has the potential u
(3)
1 = 10 in node 6,

• neumannElements – is the matrix which defines elements which has
Neumann Boundary Condition defined – here two elements 2 and 4,

• neumannBC – is the matrix which defines Neumann Boundary Condition
values (potential normal derivative q) in consecutive elements defined
in matrix named neumannElements – here elements 2 has the value
q
(2)
1 = 0 defined in node 4 and element 4 has the value q

(4)
1 = 0 in node

8,

• angleCoefficients – is the matrix which contains indices of nodes
which interpolate potential u and its normal derivative q and will have
ci coefficient value manually defined – see equation (6.18) – this matrix
is auxiliary for this model,

• angleCoefficientValues – is the matrix which contains values of ci
coefficient for nodes defined in matrix angleCoefficients – here all
ci values are equal 0.5, where i = 1, 2, 3, 4. ci = 0.5 is the default value
therefore angleCoefficients and angleCoefficientValues matrices
don’t have to be defined in this case,

• methodType_1 – is the matrix which contains the name of an integral
kernel which is used to set up BEM matrices: A,B,F.

The above problem defined in the presented file example_2d.m can be solved
using BEMLAB software by issuing the following command:
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% obem_solve -i example_2d.m -m 1234 -o

solution_output.m

The results are written to the output file solution_output.m.

The BEMLAB package also provides programs which can be used for post-
processing tasks like drawing a plot.

6.5.3 BEMLAB architecture

This section presents only selected information about the BEMLAB software
architecture.

Before creating the BEMLAB library architecture the mathematical descrip-
tion of the numerical method has been done (section 6.4). Among others use
case models has been created. One of the diagrams which show the whole
process of any problem modelling is the activity diagram presented in figure
6.5.

Figure 6.5: Activity diagram containing main activities taken while solving prob-
lems defined by Partial Differential Equations, which include preprocessing (first
row), chosen numerical method calculations (second row), and finally postprocess-
ing (third row)

The diagram contains main activities taken during solving problems defined
by Partial Differential Equations. The whole process is divided into three
stages from the numerical software point of view. The following stages in-
clude basic BEM activities presented in the one domain model case for the
simplicity, but extendible in the multi domain one:
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1. Preprocessing – Includes mainly:

• boundary discretization Γ of the problem domain Ω,

• setting boundary conditions on the external boundary of the prob-
lem.

2. Numerical method calculations – Includes activities involving Bound-
ary Element Method tasks, which mainly include:

• BEM matrix generation A,B,F – equation (6.19),

• set of equations generation – the left hand side a and the right
hand side b matrices are generated using among others generated
previously A,B,F matrices and boundary conditions – equation
(6.20),

• set of equations solving – this activity is the most time consuming
and includes running the solver – as a result all unknown boundary
values of potential u and its normal derivative q are known,

• internal values calculations – this activity is optional and run only
when needed, it uses the BEM engine and needs the data required
for previous tasks and calculated boundary values of potential u
and its normal derivative q.

3. Postprocessing – Includes tasks involving usage of results obtained with
numerical method in the previous stage like:

• visualization.

The basic activities of the BEM core included in the BEMLAB library are
marked with a dashed line.

Another diagram which was created during modelling the BEMLAB software
is the component diagram presented in figure 6.6.

The software was divided into: lib – the library, application – reference ap-
plication and tests – testing module.

The main logic is included in the library lib. As the BEMLAB software
implements BEM comprehensively providing the multi physics package, the
lib was divided into several components:
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Figure 6.6: BEMLAB component diagram

• base – Includes containers used accross the library, methods implement-
ing required algorithms like matrix calculations or iterators, implements
methods responsible for the data file format compatible with Matlab
M-files,

• bem – Includes algorithms wich implement boundary element method.
There are main algorithms implementing activities from the diagram
6.5, the equation (6.21), Greens functions, integration kernels calcu-
lations, boundary and interface conditions application, internal point
calculations, etc.,

• integration – Includes required integration algorithms e.g. Gauss Quadra-
ture,

• solver – Includes algorithms used for solving sets of linear equations
(6.20): ax = b ,

• auxiliary – Includes auxiliary algorithms not available in Standard
Template Library (STL) distributed with C++ but required by the
BEMLAB software.

The application component consists of several classes which use the library
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to provide its functionality for the end-user. Using application is the easiest
way to proceede calculations by the end-user.

A very important is the test component. The development cannot be efficient
without broad range of tests. It is especially important in the numerical
software where a small change may have a big impact on the correctness
of calculations. Tests allow to detect mistakes and bugs on the very early
stage. There are several type of tests. Some of them test particular methods
and classes, where the others the library and the application as a whole –
acceptance testing. The whole bunch of tests is run before every commit to
the version control system.

6.5.4 CSparskit2

The longest task which is proceeded during BEM calculations is solving the
set of linear equations as presented in diagram 6.5 and equation (6.20). More-
over the left hand side matrix a is dense in opposite to FEM where it is sparse
and symmetric. Therefore fast algorithms known from FEM cannot be used.
However calculations can be fastened using GMRES algorithms. The Gen-
eralized Minimal Residual Method (GMRES) was proposed by Yousef Saad
[7] in 1980s.

One of the GMRES implementations is the SPARSKIT2 package [19] by
Yousef Saad. The source code is written in Fortran. It was essential to
write a wrapper in C++ to make it use the BEMLAB containers implement-
ing matrix format compatible with Matlab M-files. The C++ wraper was
named CSparskit2 and is available at [18]. CSparskit2 uses BEMLAB base
component (rysunek 6.6) and depends on SPARSKIT2 package.

6.6 The Diffuse Optical Tomography prob-

lem described by means of the baby head

model

Diagnosing and controling head haemorhages in newborn infants especially
premature babies, and woman breast tumour detection are the main areas of
scientists intersest for Diffuse Optical Tomography application (DOT). DOT
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uses near infrared light which wavelength λ is usually from 760 to 830mm.

A three dimensional baby head model is presented in this section. Figure 6.7
presents the model of baby head.

Figure 6.7: Schematic three layers model of baby head

The head is divided into three domains: Ω(1) – scalp, Ω(2) – skull and Ω(3) –
brain. Each domain Ω(r), where r ∈ ⟨1, 2, 3⟩ differs in tissue optical parame-
ters. Boundary Element Method requires only boundaries to be discretized,
therefore only meshes for Γ(1), Γ(2) and Γ(3) boundaries have to be generated.
The boundaries were discretized using six node quadratic triangle.

The NIR source characterized by the frequency modulation of source light
intensity ω = 100MHz is used in this example. The NIR light source is
modelled as the collimated point source placed 1

µ′s
under the model surface.

This is the most accurate mapping of light source [9] as the light dispersion
starts only when the light ray passes the 1

µ′s
length. The point source is

located inside Ω(1) domain in the presented model.

All calculations were done using BEMLAB software. The visualization was
done using BEMLAB programmes. The following figures present direct re-
sults of the modelled forward problem. Figure 6.8a) and b) presents the
layout of photon density on the head surface Γ(1), c) and d) on the skull
surface Γ(1:2) and e) and f) on the brain surface for the amplitude and the
phase shift respectively.

All figures consist of two subfigures were the first one presents amplitude of
photon density and the second one its phase – logarithmic scale was used.
The yellow marker shows the placement of the source point. It is impossi-
ble to calculate such model analytically, because of a non regular geometry.
However it can be stated that the obtained results are correct based on the
correct results obtained for the example geometries where analytical solu-
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tion is known and calculated using the same process. Moreover the obtained
photon density changes on the boundaries in the expected way – amplitude
decreases when the distance from the source increases and the phase value
increases when the distance from the source increases.

6.7 Summary

The BEMLAB software is designed to solve Diffuse Optical Tomography and
Electrical Impedance Tomography problems. Among others it can also be
used for solving electromagnetic problems. BEMLAB is protected by the
open source license, which means that can be freely distributed (binaries
as well as the source code). It has an objective architecture which eases
modelling and development. It uses multi-threaded BEM algorithms which
accelerate calculations on multicore or multiprocessor computers.

The BEMLAB software was designed to be an universal BEM package which
implements various types of boundary elements, Partial Differential Equa-
tions. It can be used to calculate multi domain problems of any geometry
and with any number of domains. It provides an easy to use data format
compatible with Matlab M-files. There are also some auxiliary programmes
for preprocessing and postprocessing provided.

The BEMLAB project aspires to be the platform for Boundary Element
Method improvement. The projects created infrastructure allows to run the
dispersed development. Now, BEMALB is a ready to use software for solv-
ing problems described by PDEs including tomography problems as it was
presented.
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a) b)

c) d)

e) f)

Figure 6.8: Photon density layout presented in logarithmic scale on: a) the head
surface

(
Γ(1)

)
, c) the skull surface

(
Γ(1:2)

)
, e) the brain surface

(
Γ(2:3)

)
; the left

column presents the amplitude and the right column the phase shift
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Part III

Optimization





Chapter 7

Review of modern optimization
methods

V. Harbarchuk, P. Kisala

7.1 Introduction

What is optimization? What is optimal decision? It is principal problem of
this review. In the simplest case, this means solving problems in which one
seeks to minimize or maximize a real function by systematically choosing
the values of real or integer variables from within an allowed set [1]. But
it is correct only for classical mathematics and non correct for problems of
very much directions of modern mathematics, at the same time – for modern
engineering problems as problems of applied mathematic. – What is opti-
mal decision in the game theory? – What is optimal decision in economic
plans? – What is optimal construction of car, computer, house, ship, air-
craft, criptosystem and so on? – About this problems of optimization is
thousands scientific published works. For example, some specific applied and
theoretical problems of modern optimization is published [2-37].Very topical
problems of multiobjective and combinatorial optimization published in [38-
98]. The problems multicriterial optimization, genetic algorithms and so on
– in [99-152]. Any theoretical problems and problems optimal decisions at
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base Pareto-principles published in [153-196]. Some theoretical methods of
optimization – in [197-225] and any applied problems and methods of optimal
decisions is demonstrate in [225-236].

This formulation, using a scalar, real-valued objective function, is probably
the simplest example; the generalization of optimization theory and tech-
niques to other formulations comprises a large area of applied mathematics.
More generally, it means finding ’best available’ values of some objective
function given a defined domain, including a variety of different types of
objective functions and different types of domains [1-37].

Other important mathematicians in the optimization field include: Richard
Bellman, Ronald A. Howard, Leonid Kantorovich, William Karush, Leonid
Khachiyan, Bernard Koopman, Harold Kuhn, Joseph Louis Lagrange, László
Lovász, Arkadii Nemirovskii, Yurii Nesterov, John von Neumann, Boris Polyak,
Lev Pontryagin, James Renegar, Kees Roos, Naum Z. Shor, Michael J. Todd,
Albert Tucker.

7.2 What is an optimum?

We have already said that global optimization is about finding the best pos-
sible solutions for given problems. Thus, it cannot be a bad idea to start out
by discussing what it is that makes a solution optimal. In the above we intro-
duced functions of the form f(a;Y ) which measure the fit of a model instance
with n parameters a to some set of data Y . We are interested in the optimal
choice of parameters, those which give the best fit to the data. This involves
finding the optimum (maximum or minimum) of the function f(a;Y ) with
respect to a. For notational simplicity we will use f(a) = f(a;Y ). Since any
maximum of f(a) is a minimum of f(a) we will only consider minimization.
Formally a is a minimum point of f(a) if there exists a region about a of
radius ϵ such that:

f(a+ x) > f(a) ∀ |x| < ϵ . (7.1)

The maxima and minima of a function can either be global (the highest
or lowest value over the whole region of interest) or local (the highest or
lowest value over some small neighborhood). We are usually most interested
in finding the global optimum (such as the model parameters which give
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the best match to some image data), but this can be very difficult. Often
a problem will have many local optima (perhaps caused by image noise or
clutter) which means that locating the single global optima can be tricky.
The most suitable methods to locate minima depend upon the nature of the
function we are dealing with. There are two broad classes of algorithms. If a
good estimate of the position of the minimum exists we need only use a local
minimizer to improve it and find the optimum choice of parameters. If no
such estimate exists some global method must be used. The simplest would
be to generate a set of possible start points, locally optimize each and choose
the best. However, this may not be the most efficient approach. Often an
application will require both local and global methods. For instance, in a
tracking problem initializing a model on the first frame may require a global
search, but subsequent frames would only require a local search about the
current best estimate. The choice of which local minimization technique to
use will depend upon:

• whether a is one or many-dimensional,

• f(a) can be differentiated efficiently,

• how noisy f(a) is.

In the following we will give an overview of some of the methods for locating
both global and local minima. For a more comprehensive survey, including
algorithmic details.

7.3 Single objective functions

In the case of optimizing a single criterion f , an optimum is either its max-
imum or minimum, depending on what we are looking for. If we own a
manufacturing plant and have to assign incoming orders to machines, we
will do this in a way that minimizes the time needed to complete them. On
the other hand, we will arrange the purchase of raw material, the employ-
ment of staff, and the placing of commercials in a way that maximizes our
profit. In global optimization, it is a convention that optimization problems
are most often defined as minimizations and if a criterion f is subject to
maximization, we simply minimize its negation (−f). A global optimum is
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an optimum of the whole domain X while a local optimum is an optimum of
only a subset of X.

Definition 1. (Global Optimum). A global optimum x∗ ∈ X of one
(objective) function f : X → R is either a global maximum or a global
minimum [8].

Global optimizers are useful when the search space is likely to have many
minima, making it hard to locate the true global minimum. In low dimen-
sional or constrained problems it may be enough to apply a local optimizer
starting at a set of possible start points, generated either randomly or system-
atically (for instance at grid locations), and choose the best result. However
this approach is less likely to locate the true optimum as the ratio of volume
of the search region to number of starting points increases.

Correctly applied, the Simulated Annealing and Genetic Algorithm approaches
described below can explore the search space better than a grid search for
a given number of function evaluations, and are more likely to find the true
global minimum. Note that both these approaches involve a stochastic ele-
ment and so may fail to find the true minimum. In addition, since they are
better at global searching than local optimization, it is usually worthwhile
to ‘polish’ any final solution using one of the local optimizers above. Such
problems regard for example design optimization, data mining, or creating
long-term schedules for transportation crews. These optimization processes
will usually be carried out only once in a long time. Before doing anything
else, one must be sure about to which of these two classes the problem to be
solved belongs.

Even a one-dimensional function f : X = R → R may have more than one
global maximum, multiple global minima, or even both in its domain X.
Take the cosine function for example: It has global maxima xi at xi = 2iπ
and global minima xi at xi = (2i+ 1)π for all i ∈ Z.

The correct solution of such an optimization problem would then be a set
X? of all optimal inputs in X rather than a single maximum or minimum.
Furthermore, the exact meaning of optimal is problem dependent. In single-
objective optimization, it either means minimum or maximum.

Definition 2. (Optimal Set). The optimal set X∗ is the set that contains
all optimal elements [8].
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There are normally multiple, often even infinite many optimal solutions.
Since the memory of our computers is limited, we can find only a finite
(sub-)set of them. We thus distinguish between the global optimal set X∗

and the set X∗ of (seemingly optimal) elements which an optimizer returns.
The tasks of global optimization algorithms are:

• to find solutions that are as good as possible and

• that are also widely different from each other [8].

The second goal becomes obvious if we assume that we have an objective
function f : R → R which is optimal for all x ∈ [0, 10] ⇔ x ∈ X∗. This
interval contains uncountable many solutions, and an optimization algorithm
may yield X∗

1 = {0, 0.1, 0.11, 0.05, 0.01} or X∗
2 = {0, 2.5, 5, 7.5, 10} as result.

Both sets only represent a small subset of the possible solutions. The second
result (X∗

2 ), however, gives us a broader view on the optimal set.

Even good optimization algorithms do not necessarily find the real global
optima but may only be able to approximate them. In other words, X∗

3 =
{−0.3, 5, 7.5, 11} is also a possible result of the optimization process, although
containing two sub-optimal elements.

We will introduce different algorithms and approaches that can be used to
maintain an optimal set or to select the optimal elements from a given set
during an optimization process Multiple Objective Functions Global op-
timization techniques are not just used for finding the maxima or min-
ima of single functions f . In many real-world design or decision making
problems, they are rather applied to sets F consisting of n = |F | objec-
tive functions fi, each representing one criterion to be optimized [8] F =
fi : X → Yi : 0 < i ≤ n, Yi ∈ R.

Algorithms designed to optimize such sets of objective functions are usually
na med with the prefix multi-objective. Multi-objective optimization often
means to compromise conflicting goals. If we go back to our factory example,
we can specify the following objectives that all are subject to optimization:

• minimize the time between an incoming order and the shipment of the
corresponding product,

• maximize profit,



402 Review of modern optimization methods

• minimize costs for advertising, personal, raw materials etc.,

• maximize product quality,

• minimize negative impact on environment.

The last two objectives seem to contradict clearly the cost minimization. Be-
tween the personal costs and the time needed for production and the product
quality there should also be some kind of (contradictive) relation. The ex-
act mutual influences between objectives can apparently become complicated
and are not always obvious.

7.3.1 Artificial Ant Example 1

Example for such a situation is the Artificial Ant problem where the goal is
to find the most efficient controller for a simulated ant. The efficiency of an
ant should not only be measured by the amount of food it is able to pile. For
every food item, the ant needs to walk to some point. The more food it piles,
the longer the distance it needs to walk. If its behavior is driven by a clever
program, it may walk along a shorter route which could not be discovered
by an ant with a clumsy controller. Thus, the distance it has to cover to
find the food or the time it needs to do so may also be considered in the
optimization process. If two control programs produce the same results and
one is smaller (i. e., contains fewer instructions) than the other, the smaller
one should be preferred. Like in the faktory example, the optimization goals
conflict with each other.

From these both examples, we can gain another insight: To find the global
optimum could mean to maximize one function fi ∈ F and to minimize
another one fj ∈ F, (i ̸= j).

Hence, it makes no sense to talk about a global maximum or a global min-
imum in terms of multi-objective optimization. We will thus retreat to the
notation of the set of optima elements x∗ ∈ X∗ ⊆ X.

Since compromises for conflicting criteria can be defined in many ways, there
exist multiple approaches to define what an optimum is. These different
definitions, in turn, lead to different sets X∗.
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7.3.2 Weighted Sums (Linear Aggregation)

The simplest method to define what is optimal is computing a weighted
sum g(x) of all the functions fi(x) ∈ F . Each objective fi is multiplied
with a weight wi representing its importance. Using signed weights also
allows us to minimize one objective and to maximize another. We can, for
instance, apply a weight wa = 1 to an objective function fa and the weight
wb = −1 to the criterion fb. By minimizing g(x), we then actually minimize
the first and maximize the second objective function. If we instead maximize
g(x), the effect would be converse and fb would be minimized and fa would
be maximized. Either way,multi-objective problems are reduced to single-
objective ones by this metod [8].

7.4 Optimization methods classification

For this classification we used [1,2,3,4,5,8,21,22,23,24-28]. Optimal state is
one of the most fundamental principles in our Word [8]. It begins in the
microcosm where atoms in physics try to form bonds1 in order to minimize
the energy of their electrons When molecules form solid bodies during the
process of freezing, they try to assume energy-optimal crystal structures.
These processes, of course, are not driven by any higher intention but purely
result from the laws of physics [8].

The same goes for the biological principle of survival of the fittest which,
together with the biological evolution [8], leads to better adaptation of the
species to their environment. Here, a local optimum is a well-adapted species
that dominates all other animals In its surroundings. Homo sapiens have
reached this level, sharing it with ants, bacteria, flies,cockroaches, and all
sorts of other creepy creatures [8].

As long as human kind exists, we strive for perfection in many areas. We want
to reach a maximum degree of happiness with the least amount of effort. In
our economy, profit and sales must be maximized and costs should be as low
as possible. Therefore, optimization is of the oldest of sciences which even
extends into daily life [8]. If something is important, general, and abstract
enough, there is always a mathematical discipline dealing with it.

The first optimization technique, which is known as steepest descent, goes
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back to Gauss. Historically, the first term to be introduced was linear pro-
gramming, which was invented by L. Kantorovich (1938) and G. Dantzig
(1940). The term programming in this context does not refer to computer
programming (although computers are nowadays used extensively to solve
mathematical problems). Instead, the term comes from the use of program
by the United States military to refer to proposed training and logistics
schedules, which were the problems that Dantzig was studying at the time.
Additionally, later on, the use of the term ’programming’ was apparently
important for receiving government funding, as it was associated with high-
technology research areas that were considered important.

Convex programming studies the case when the objective function is con-
vex and the constraints, if any, form a convex set. This can be viewed as
a particular case of nonlinear programming or as generalization of linear or
convex quadratic programming.

Linear programming (LP), [33,234] – a type of convex programming,
studies the case in which the objective function f is linear and the set of
constraints is specified using only linear equalities and inequalities. Such a
set is called a polyhedron or a polytope if it is bounded.

The Simplex algorithm is an elegant method for linear programming which,
though not strictly ’global’ (in the sense that it searches all parameter space),
is able to crawl out of some local minima to find better minima. It requires
only function evaluations, not derivatives, but unlike Powell’s method it nei-
ther uses line minimizations nor builds an implicit model of the derivative
structure of the function.

This makes it the method of choice for noisy functions. Though slower than
Powell’s, it is more robust. A simplex is the geometrical figure in n dimen-
sions consisting of n+1 vertices. In 2D it is a triangle, in 3D a tetrahedron.
The Simplex Algorithm for minimization takes such a set of n + 1 points
and attempts to move them into a minimum. The simplex formed from the
points should be non-degenerate, it should have a non-zero volume. If your
initial guess is a0 the other n points of the simplex can be initialized as

ai = a0 + λiei , (7.2)

where ei are unit vectors (i = 1 . . . n).

The algorithm then takes a series of steps. It will either:
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• reflect the point with the highest function evaluation in the plane de-
fined by the remaining points,

• reflect and expand to take larger steps,

• contract to shrink the overall volume when it has reached a valley floor
with reflections and expansions.

The overall effect is for the simplex to crawl around the parameter space,
creeping down valleys and shrinking to get to the very bottom of narrow
valleys. Second order cone programming (SOCP) is a convex program,
and includes certain types of quadratic programs.

Semidefinite programming (SDP) is a subfield of convex optimization
where the underlying variables are semidefinite matrices. It is generalization
of linear and convex quadratic programming.

Conic programming is a general form of convex programming. LP, SOCP
and SDP can all be viewed as conic programs with the appropriate type of
cone.

Geometric programming is a technique whereby objective and constraints
expressed as posynomials and equality constraints as monomials can be trans-
formed into a convex program.

Integer programming [18,19,22,24,69,223,227] – studies linear programs
in which some or all variables are constrained to take on integer values.
This is not convex, and in general much more difficult than regular linear
programming.

Quadratic programming [50] – allows the objective function to have quadratic
terms, while the set A must be specified with linear equalities and inequal-
ities. For specific forms of the quadratic term, this is a type of convex
programming.

Nonlinear programming [41] – studies the general case in which the ob-
jective function or the constraints or both contain nonlinear parts. This may
or may not be a convex program. In general, the convexity of the program
affects the difficulty of solving more than the linearity.

Stochastic programming studies the case in which some of the constraints
or parameters depend on random variables.
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Figure 7.1: Golden Section Serach [2]

Robust programming is, as stochastic programming, an attempt to cap-
ture uncertainty in the data underlying the optimization problem. This is
not done through the use of random variables, but instead, the problem is
solved taking into account inaccuracies in the input data.

An elegant and robust method of locating a minimum in such a bracket is
the Golden Section Search. This involves evaluating the function at some
point x in the larger of the two intervals (a, b) or (b, c). If f(x) < f(b) then x
replaces the midpoint b, and b becomes an end point. If f(x) > f(b) then b
remains the midpoint with x replacing one of the end points. Either way the
width of the bracketing interval will reduce and the position of the minima
will be better defined (Fig. 7.1). The procedure is then repeated until the
width achieves a desired tolerance. It can be shown that if the new test point,
x is chosen to be a proportion 3 − 51/2/2 (hence Golden Section) along the
larger sub-interval, measured from the mid-point b, then the width of the
full interval (a, c) will reduce at an optimal rate.

The Golden Section Search requires no information about the derivative of
the function. If such information is available it can be used to predict where
best to choose the new point x in the above algorithm, leading to faster
convergence.

Combinatorial optimization [18,19,24] – is concerned with problems where
the set of feasible solutions is discrete or can be reduced to a discrete one.

Infinite-dimensional optimization studies the case when the set of feasi-
ble solutions is a subset of an infinite-dimensional space, such as a space of
functions.
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Disjunctive programming used where at least one constraint must be
satisfied but not all. Trajectory optimization is the specialty of optimizing
trajectories for air and space vehicles.

In a number of subfields, the techniques are designed primarily for optimiza-
tion in dynamic contexts (that is, decision making over time):

• calculus of variations seeks to optimize an objective defined over many
points in time, by considering how the objective function changes if
there is a small change in the choice path,

• optimal control theory is a generalization of the calculus of variations,

• dynamic programming studies the case in which the optimization strat-
egy is based on splitting the problem into smaller subproblems. The
equation that describes the relationship between these subproblems is
called the Bellman equation [9,10].

Mathematical programming with equilibrium constraints is where the con-
straints include variational inequalities or complementarities.

Multiobjective optimization: adding more than one objective to an op-
timization problem adds complexity. For example, if you wanted to optimize
a structural design, you would want a design that is both light and rigid.
Because these two objectives conflict, a trade-off exists. There will be one
lightest design, one stiffest design, and an infinite number of designs that
are some compromise of weight and stiffness. This set of trade-off designs is
known as a Pareto set. The curve created plotting weight against stiffness
of the best designs is known as the Pareto frontier. A design is judged to
be Pareto optimal if it is not dominated by other designs: a Pareto optimal
design must be better than another design in at least one aspect. If it is
worse than another design in all respects, then it is dominated and is not
Pareto optimal.

Optimization problems are often multi-modal, that is they possess multiple
good solutions. They could all be globally good (same cost function value) or
there could be a mix of globally good and locally good solutions. Obtaining
all the multiple solutions is the goal of a multi-modal optimizer.

Classical optimization techniques due to their iterative approach do not
perform satisfactorily when they are used to obtain multiple solutions, since it
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is not guaranteed that different solutions will be obtained even with different
starting points in multiple runs of the algorithm.

Evolutionary algorithms are however a very popular approach to obtain
multiple solutions in a multi-modal optimization task. See Evolutionary
multi-modal optimization.

Dimensionless optimization (DO) is used in design problems, and consists
of the following steps:

• rendering the dimensions of the design dimensionless,

• selecting a local region of the design space to perform analysis on cre-
ating an I-optimal design within the local design space,

• forming response surfaces based on the analysis.

Optimizing the design based on the evaluation of the objective function, using
the response surface models. An optimization problem can be represented in
the following way: given a function f : A ∈ R from some set A to the real
numbers. Sought: an element x0 in A such that f(x0) ≤ f(x) for all x in A
(’minimization’) or such that f(x0) ≥ f(x) for all x in A (’maximization’).

Such a formulation is called an optimization problem or a mathematical pro-
gramming problem (a term not directly related to computer programming,
but still in use for example in linear programming). Many real-world and
theoretical problems may be modeled in this general framework.

Problems formulated using this technique in the fields of physics and com-
puter vision may refer to the technique as energy minimization, speaking of
the value of the function f as representing the energy of the system being
modeled. Typically, A is some subset of the Euclidean space Rn, often spec-
ified by a set of constraints, equalities or inequalities that the members of A
have to satisfy. The domain A of f is called the search space or the choice set,
while the elements of A are called candidate solutions or feasible solutions.
The function f is called, variously, an objective function, cost function, en-
ergy function, or energy functional. A feasible solution that minimizes (or
maximizes, if that is the goal) the objective function is called an optimal
solution.

Generally, when the feasible region or the objective function of the problem
does not present convexity, there may be several local minima and maxima,
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where a local minimum x∗ is defined as a point for which there exists some
δ > 0 so that for all x such that the expression holds; that is to say, on
some region around x∗ all of the function values are greater than or equal
to the value at that point. Local maxima are defined similarly. A large
number of algorithms proposed for solving non-convex problems – including
the majority of commercially available solvers – are not capable of making
a distinction between local optimal solutions and rigorous optimal solutions,
and will treat the former as actual solutions to the original problem. The
branch of applied mathematics and numerical analysis that is concerned with
the development of deterministic algorithms that are capable of guaranteeing
convergence in finite time to the actual optimal solution of a non-convex
problem is called global optimization [8].

Optimization problems are often expressed with special notation. Here are
some examples: this asks for the minimum value for the objective function
x2 + 1, where x ranges over the real numbers. The minimum value in this
case is 1, occurring at x = 0.

This asks for the maximum value for the objective function 2x, where x
ranges over the reals. In this case, there is no such maximum as the objective
function is unbounded, so the answer is ’infinity’ or ’undefined’.

For the value (or values) of x in the interval that minimizes (or minimize) the
objective function x2 + 1 (the actual minimum value of that function does
not matter). In this case, the answer is x = −1.

This asks for the (x, y) pair (or pairs) that maximizes (or maximize) the
value of the objective function , with the added constraint that x lies in the
interval [−5, 5] (again, the actual maximum value of the expression does not
matter). In this case, the solutions are the pairs of the form (5, 2kπ) and
(−5, (2k + 1)π), where k ranges over all integers.

The satisfiability problem, also called the feasibility problem, is just the
problem of finding any feasible solution at all without regard to objective
value. This can be regarded as the special case of mathematical optimization
where the objective value is the same for every solution, and thus any solution
is optimal.

Many optimization algorithms need to start from a feasible point. One way
to obtain such a point is to relax the feasibility conditions using a slack
variable; with enough slack, any starting point is feasible. Then minimize
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that slack variable until slack is null or negative.

The extreme value theorem of Karl Weierstrass states conditions under which
an optimum exists. How can an optimum be found? One of Fermat’s theo-
rems states that optima of unconstrained problems are found at stationary
points, where the first derivative or the gradient of the objective function is
zero. More generally, they may be found at critical points, where the first
derivative or gradient of the objective function is zero or is undefined, or on
the boundary of the choice set. An equation stating that the first derivative
equals zero at an interior optimum is sometimes called a ’first-order condi-
tions’ [8].

Optima of inequality-constrained problems are instead found by the Lagrange
multiplier method. This method calculates a system of inequalities called the
’Karush-Kuhn-Tucker conditions’ or ’complementary slackness conditions’,
which may then be used to calculate the optimum.

While the first derivative test identifies points that might be optima, it can-
not distinguish a point which is a minimum from one that is a maximum or
one that is neither. When the objective function is twice differentiable, these
cases can be distinguished by checking the second derivative or the matrix of
second derivatives (called the Hessian matrix) in unconstrained problems, or
a matrix of second derivatives of the objective function and the constraints
called the bordered Hessian. The conditions that distinguish maxima and
minima from other stationary points are sometimes called ’second-order con-
ditions’.

How does the optimum change if the problem changes? The envelope theorem
describes how the value of an optimal solution changes when an underlying
parameter changes. The maximum theorem of Claude Berge (1963) describes
the continuity of the optimal solution as a function of underlying parameters
[8].

Optimization methods are crudely divided into two groups:

• SVO – Single-variable optimization,

• MVO – Multi-variable optimization.

For twice-differentiable functions, unconstrained problems can be solved by
finding the points where the gradient of the objective function is zero (that
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is, the stationary points) and using the Hessian matrix to classify the type of
each point. If the Hessian is positive definite, the point is a local minimum, if
negative definite, a local maximum, and if indefinite it is some kind of saddle
point.

The existence of derivatives is not always assumed and many methods were
devised for specific situations. The basic classes of methods, based on smooth-
ness of the objective function, are:

• combinatorial methods,

• derivative-free methods,

• first-order methods,

• second-order methods.

Actual methods falling somewhere among the categories above include:

• bundle methods,

• conjugate gradient method,

• ellipsoid method,

• Frank-Wolfe metod.

Gradient descent aka steepest descent or steepest ascent interior point meth-
ods. Line search – a technique for one dimensional optimization, usually used
as a subroutine for other, more general techniques:

• Nelder-Mead method aka the Amoeba metod,

• Newton’s metod,

• Quasi-Newton methods,

• simplex metod.
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Subgradient method – similar to gradient method in case there are no gra-
dients. Global optimization is the branch of applied mathematics and nu-
merical analysis that focuses on, well, optimization [8]. The goal of global
optimization is to find the best possible elements x∗ from a set X according
to a set of criteria [8]:

F = {f1, f2, . . . , fn} . (7.3)

These criteria are expressed as mathematical functions, the so-called objec-
tive functions.

Definition 3. (Objective Function). An objective function f : X → Y
with Y ⊆ R is a mathematical function which is subject to optimization [8].

The codomain Y of an objective function as well as its range must be a sub-
set of the Real numbers (Y ⊆ R). The domain X of f is called problem
space and can represent any type of elements like numbers, lists, construc-
tion plans, and so on. It is chosen according to the problem to be solved
with the optimization process. Objective functions are not necessarily mere
mathematical expressions, but can be complex algorithms that, for example,
involve multiple simulations. Global optimization comprises all techniques
that can be used to find the best elements x∗ in X with respect to such cri-
teria f ∈ F [8]. Before digging any deeper into the matter, we will attempt
to provide a classification of these algorithms as overview and discuss some
basic use casus [8].

Generally, optimization algorithms can be divided in two basic classes: de-
terministic and probabilistic algorithms [4,5,8]. Deterministic algorithms are
most often use dif a clear relation between the characteristics of the possible
solutions and their utility for a given problem exists. Then, the search space
can efficiently be explored using for example a divide and conquer scheme.
If the relation between a solution candidate and its ’fitness’ are not so ob-
vious or too complicated, or the dimensionality of the search space is very
high, it becomes harder to solve a problem deterministically. Trying it would
possible result In exhaustive enumeration of the search space, which is not
feasible even for relatively small problems [4,8,22].

Then probabilistic algorithms come into play. The initial work in this area
which now has become one of most important research fields in optimization
was started about 55 years ago. An especially relevant family of probabilistic
algorithms are the Monte Carlo based approaches. They trade in guaranteed
correctness of the solution for a shorter runtime. This does not mean that
the results obtained using them are incorrect – they may just not be the
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global optima. On the other hand, a solution a little bit interior to the best
possible one is better than one which needs 10100 years to be fund [8].

Heuristics used in global optimization are functions that help decide which
one of a set of possible solutions is to be examined next. On one hand,
deterministic algorithms usually employ heuristics in order to define the pro-
cessing order of the solution candidates. An example for such a strategy is
informed search [4,5,8,21].

Probabilistic methods, on the other hand, may only consider those elements
of the search space in further computations that have been selected by the
heuristic [4,5,8].

Definition 4. (Heuristic). A heuristic is a part of an optimization algo-
rithm that uses the information currently gathered by the algorithm to help
to decide which solution candidate should be tested next or how the next
individual can be produced [8].

Heuristics used in global optimization are functions that help decide which
one of a set of possible solutions is to be examined next. On one hand, deter-
ministic algorithms usually employ heuristics in order to define the processing
order of the solution candidates.

Probabilistic methods, on the other hand, may only consider those elements
of the search space in further computations that have been selected by the
heuristic.

Definition 5. (Metaheuristic). A meta-heuristic is a method for solving
very general classes of problems. It combines objective functions or heuristics
in an abstract and hopefully efficient way, usually without utilizing deeper
insight into their structure, i.e., by treating them as black-box-procedures
[8].

This combination is often performed stochastically by utilizing statistics ob-
tained from samples from the search space or based on a model of some
natural phenomenon or physical process. Simulated annealing, for example,
decides which solution candidate to be evaluated next according to the Boltz-
mann probability factor of atom configurations of solidifying metal melts.
Evolutionary algorithms copy the behavior of natural evolution and treat
solution candidates as individuals that compete in a virtual environment.
An important class of probabilistic Monte Carlo meta-heuristics is Evolu-



414 Review of modern optimization methods

tionary Computation. It encompasses all algorithms that are based on a set
of multiple solution candidates (called population) which are iteratively re-
fined. This field of optimization is also a class of Soft Computing as well as
a part of the artificial intelligence area. Some of its most important mem-
bers are evolutionary algorithms and Swarm Intelligence, which will be dis-
cussed in-depth in this book. Besides these nature-inspired and evolutionary
approaches, there exist also methods that copy physical processes like the
before-mentioned Simulated Annealing, Parallel Tempering, and Raindrop
Method, as well as techniques without direct real-world role model like Tabu
Search and Random Optimization.

The taxonomy just introduced classifies the optimization methods according
to their algorithmic structure and underlying principles, in other words, from
the viewpoint of theory. A software engineer or a user who wants to solve a
problem with such an approach is however more interested in its ’interfacing
features’ such as speed and precision. Speed and precision are conflicting
objectives, at least in terms of probabilistic algorithms. A general rule of
thumb is that you can gain improvements in accuracy of optimization only
by investing more time. Scientists in the area of global optimization try to
push this Pareto frontier further by inventing new approaches and enhancing
or tweaking existing ones.

Optimization Speed

When it comes to time constraints and hence, the required speed of the
optimization algorithm, we can distinguish two main types of optimization
cases.

Definition 6. (Online Optimization). Online optimization problems are
tasks that need to be solved quickly in a time span between ten milliseconds
to a few minutes. In order to find a solution in this short time, optimality is
normally traded in for speed gains.

Examples for online optimization are robot localization, load balancing, ser-
vices composition for business processes, or updating a factory’s machine
job schedule after new orders came in. From the examples, it becomes clear
that online optimization tasks are often carried out repetitively – new orders
will, for instance, continuously arrive in a production facility and need to be
scheduled to machines in a way that minimizes the waiting time of all jobs.
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Definition 7. (Offline Optimization). In offline optimization problems,
time is not so important and a user is willing to wait maybe even days if it
can be Number of Criteria [8].

Optimization algorithms can be divided in such which try to find the best
values of single objective functions f and such that optimize sets F of target
functions.

7.5 Multiobjective optimization

Optimization problems for real applications have often to consider many
objectives and we thus have a multiobjective (MO) problem. A trade-off
between the objectives exist and we never have a situation in which all the
objectives can be in a best possible way be satisfied simultaneously. MO
optimization provides the information of all possibilities of alternative solu-
tions we can have for a given set of objectives. By analyzing the spectrum of
solutions we have to decide which of these solutions is the most appropriate.
The two steps are to solve the MO problem and decide what the optimal so-
lution is. The MO problem (also called multicriteria optimization or vector
optimization), can be defined as the problem of determining the following. A
vector of decision variables which satisfies constraints and optimizes a vector
function whose elements represent M objective functions. These functions
form a mathematical description of performance criteria that are usually in
conflict with each other. Hence optimizes means finding a solution which
would give acceptable results as possible for the values of all objective func-
tions.

We call decision variables xj, j = 1, . . . , N for which values are to be chosen in
an optimization problem. In order to know how good is a certain solution, we
need to have some criteria for evaluation. These criteria are expressed as com-
putable functions f1(x), . . . , fM(x) of the decision variables, which are called
objective functions. These form a vector function f = (f1(x), . . . , fM(x).
In general, some of these will be in conflict with others, and some will
have to be minimized while others are maximized. The multiobjective op-
timization problem can be now defined as the problem to find the vector
x = (x1, x2, . . . , xN), i.e. solution which optimize the vector function f .

The constraints define the feasible region X and any point x in X defines a
feasible solution. The vector function f(x) is a function that maps the set
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Figure 7.2: Example of a bi-objective space (f1, f2) [235]

X in the set F that represents all possible values of the objective functions.
Normally we never have a situation in which all the fi(x) values have an
optimum in X at a common point x. We therefore have to establish certain
criteria to determine what would be considered an optimal solution. One
interpretation of the term optimum in multiobjective optimization is the
Pareto optimum, see Fig. 7.2.

A solution x1 dominates a solution x2 if and only if the two following condi-
tions are true:

1. x1 is no worse than x2 in all objectives, i.e. fj(x1) < fj(x2) j =
1, . . . ,M .

2. x1 is strictly better than x2 in at least one objective, i.e. fj(x1) < fj(x2)
for at least one j ∈ 1, . . . ,M .

We assume a minimization problem:

a) The Pareto front is the boundary between the points P1 and P2 of the
feasible set F . Solutions 1 and 3 are non-dominated Pareto optimal
solutions. Solution 2 is not Pareto optimal as solution 1 has simul-
taneously smaller values for both objectives. There is no reason why
solution 2 should be accepted rather than solution 1. Therefore the aim
of MO optimization is to obtain a representative set of non-dominated
solutions.
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b) The ideal and anti-ideal or nadir point I and A respectively. The point
A+ defined sometimes as anti-ideal is defined over the whole F range,
whereas the points I and A are defined by the set of efficient points.

We assume, without loss of generality, that this is a minimization problem.
The x1 is said to be non-dominated by x2 or x1 is non-inferior to x2 and x2
is dominated by x1.

Among a set of solutions P , the non-dominated set of solutions P ′ are those
that are not dominated by any other member of the set P , see Fig. 7.1. When
the set P is the entire feasible search space then the set P ′ is called the global
Pareto optimal set. If for every member x of a set P there exists no solution
in the neighborhood of x then the solutions of P form a local Pareto optimal
set. The image f(x) of the Pareto optimal set is called the Pareto front, see
Fig. 7.1. The Pareto optimal set is defined in the parameter space, while the
Pareto front is defined in the objective space.

The ideal point and the nadir or anti-ideal point are characterized by the
components of the best and worse objective values of efficient points respec-
tively.

Single objective optimization

In single objective optimization only one objective function is considered.
Although many problems are multiobjective problems the majority of opti-
mization algorithms used for their solution are single objective optimization
algorithms. The M objective functions fm(x) are combined into a single
objective function f(x), e.g. by using a weighted sum of all objectives.

f(x) =
M∑
m=1

wmfm(x) , (7.4)

The weights wm are also known as importance factors and are considered as
a measure of the significance of each objective in the optimization process.
A representative convex part of the Pareto set can be sampled by running a
single objective optimization algorithm each time with a different vector of
importance factors.

We call a set of importance factors vectors normalized and uniformly dis-
tributed if each importance factor of each objective takes one of the fol-
lowing values: [l/k, l = 0, 1, . . . , k], where k is the sampling parameter and∑M

j=1wj = 1, wj ≥ 0, ∀j for each vector w.
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Figure 7.3: Single objective weighted sum optimization w1f1 + w2f2 for a bi-
objective problem [235]

The vector sum w =
∑M

j=1wj ej where ej, j = 1, . . . ,M are unit vectors of
the objective space. For two objectives the weighted sum is given by:

y = w1f1(x) + w2f2(x) , i.e. f2(x) = −
w1

w2

f1(x) +
y

w2

. (7.5)

The minimization of the weighted sum can be interpreted as finding the value
of y for which the line with slope −w1

w2
just touches the boundary of F as it

proceeds outwards from the origin. If x∗ is a Pareto optimal solution then
there exists a weight vector w = (w1, w2, . . . , wM), such that x∗ is a solution
of the multiobjective convex optimization problem.

Figure 7.3 shows an example for a weighted sum optimization for a bi-
objective problem. The solution obtained by (w1, w2) is the non-dominated
solution P . If the value f1 is not satisfactory then we can increase the im-
portance factor w1 to w∗

1. The new set of importance factors w∗
1, w2 specify

a new direction and the solution is P ∗. The value of f1 of P ∗ is smaller but
the value f2(P

∗) is larger than f2(P ). If we are not satisfied by the value of
f2(P ) we can try another importance factor w∗∗

1 with w∗
1 > w∗∗

1 > w1.

In a trial and error method the optimization is repeated with different im-
portance factors until the optimization result is acceptable. The designer by
a trial and error method determines the structure of the Pareto front.

While for two objectives a solution very close to the optimal can be found
it is more difficult as more objectives are considered. The complexity of
the Pareto front increases rapidly and also the combinatorial complexity.
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To determine the dependence of the results on the importance factors with
a sufficient accuracy requires repeating the optimization a large number of
times with different importance factor combinations. The solution which is
obtained in the conventional weighted sum approach depends on the shape
of the Pareto front and the importance factors used.

For a given set of importance factors the vector sum of w1, w2, if we consider
these as vectors, specifies a direction S shown by the dashed line. The
optimization provides a solution which is the point P of a line perpendicular
to the direction S that will touch the Pareto front as the line is moved away
from the origin along S. Solution P ∗ will be obtained if we replace w1 by a
larger importance factor w∗

1.

Multiobjective optimization requires a decision making process as there is
not a single solutions but a set of non-dominated solutions out of which the
best must be chosen. Three strategies can be used.

An a priori method. The decision making (DCM) is specified in terms
of a scalar function and an optimization engine is used to obtain the corre-
sponding solution.

An a posteriori method. An optimization engine exists which finds all
solutions. Decision making is applied at the end of the optimization manu-
ally, or using a decision engine. This method decouples the solutions from
the decision making process. A new decision is possible without having to
repeat the optimization.

Mixture of a priori and a posteriori methods. During the optimization
periodically information can be used which may be used to reformulate the
goals as some of these can physically not be achieved.

The non-dominated solutions provide information on the trade-off between
the objectives. This trade-off is described by the form of the Pareto front.
In Fig. 7.4 two different forms of trade-offs are shown.

In Fig. 7.4a) there is a strong trade-off between the objective f1 and f2.
The smaller the f1 value is that we want the larger is the corresponding f2
value. We can see how much this depends on the choice of f1. There is a
weak trade-off between f1 and f2 in Fig. 7.4b). It is possible to minimize
f1 significant and close to the ideal point (f1,min, f2,min). Only very close to
f1,min we see a rapid increase of f2. This is a case for a set of parameters for
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Figure 7.4: Trade-off between two objectives of a bi-objective problem: a) strong
and b) weak trade-off between f1 and f2 [235]

which we can obtain simultaneously almost the individual optimal values for
f1 and f2. The Pareto front provides also ranges of objective values.

For more than two objectives the trade-off can be difficult to analyze graph-
ically. A sensitivity analysis can be performed numerically such that it con-
siders the local slope of the Pareto front as a measure of the trade-off.

• Obtaining a representative set of non-dominated solutions,

• selecting a solution from this set, i.e. the decision making process.

Re-optimization

Re-optimization is understood literally as starting from the optimal solution
of one problem to find an optimal solution for the next problem in the se-
quence. The multiobjective optimization using deterministic gradient based
algorithms can be seen as an application of the algorithm many times based
on a sequence of importance factors sets.

One method to obtain a representative sample of solutions faster, could the
use of the result of a previous optimization as the starting point for the
optimization with another set of importance factors w∗ which is close to w,
see Fig. 7.5. With this approach it should be possible to reduce the number
of the iterations required if the solutions are also close in objective space.

The method which produces sets of uniformly or randomly distributed im-
portance factors has been modified using a rearrangement of the order of the
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Figure 7.5: Optimization methods to obtain a consecutive number of solutions
ordered in objective space: a) Cold Start b) Warm Start. The numbers show the
order in which each of the five solutions is processed. This can be seen schemati-
cally in a) and b) if the lengths of all the arrows are summed. The total length is
smaller in b) than in a) [235]

importance factors such that a spatial proximity of consecutive sets in impor-
tance factors space is obtained. This method has been used to test whether
there are trapping regions. The rearrangement is shown in Fig. 7.6a) for
randomly distributed importance factors and in Fig. 7.6b) for uniformly dis-
tributed importance factors for 3 objectives. Even for the initial uniformly
distributed importance factors we have a reduction of the Euclidean distance
in importance space.

Traditionally, application of Pareto Optimality principles have been applied
in the detailed design phase of engineering design. However, Mattson and
Messac (2002) are using Pareto fronts to aid concept selection. Pareto curves
are generated for concept alternatives, which exist within feasible regions.

7.6 Pareto-optimization

The mathematical foundations for multi-objective optimization which con-
siders conflicting criteria in a fair way has been laid by Vilfredo Pareto 110
years ago. Pareto optimality became an important notion in economics, game
theory, engineering, and social sciences [2,6,8,99,209,211,223]. It defines the
frontier of solutions that can be reached by trading-off conflicting objectives
in an optimal manner. From this front, a decision maker (be it a human or



422 Review of modern optimization methods

a)
b)

Figure 7.6: Rearrangement of solutions in importance space: a) solutions using
randomly distributed importance factors before and after sorting b) uniformly
distributed importance factors before and after sorting [235]

an algorithm) can finally choose the configurations that, in his opinion, suit
best. The notation of optimal in the Pareto sense is strongly based on the
definition of domination.

Definition 8. (Domination). An element x1 dominates (is preferred to)
an element x2 if x1 is better than x2 in at least one objective function and not
worse with respect to all other objectives. Based on the set F of objective
functions f , we can write:

x1 ⊢ x2 ⇔ ∀i i : 0 < i ≤ n⇒ wifi(x1) ≤ wifi(x2) ∧
(7.6)

∃j : 0 < j ≤ n : wjfj(x1) < wjfj(x2) ,

where wi = 1 if fi should be minimized, or −1 if fi should be maximized.
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Different from the weights in the weighted sum approach, the factors wi only
carry sign information which allows us to maximize some objectives and
to minimize some other criteria. The Pareto domination relation defines a
strict partial order on the space of possible objective values. In contrast, the
weighted sum approach imposes a total order by projecting it into the real
numbers R.

Definition 9. (Pareto Optimal). An element x∗ ∈ X is Pareto optimal
(and hence, part of the optimal set X∗) if it is not dominated by any other
element in the problem space X. In terms of Pareto optimization, X∗ is
called the Pareto set or the Pareto Frontier.

x∗ ∈ X ⇔ Ax ∈ X : x ⊢ x ∗ . (7.7)

We assume again that f1 and f2 should both be maximized and hence, w1 =
w2 = −1. The areas shaded with dark gray are Pareto optimal and thus,
represent the optimal set:

X∗ = [x2, x3] ∪ [x5, x6] , (7.8)

which here contains infinite many elements. All other points are dominated,
i.e. not optimal.

The points in the area between x1 and x2 (shaded in light gray) are dominated
by other points in the same region or in [x2, x3], since both functions f1 and
f2 can be improved by increasing x. If we start at the leftmost point in X
(which is position x1), for instance, we can go one small step to the right and
will find a point x1+ dominating x1 because:

f1(x1 + β) > f1(x1) and f2(x1 + β) > f2(x1) . (7.9)

We can repeat this procedure and will always find a new dominating point.
At x3 however, f2 steeply falls to a very low level. A level lower than f2(x5).
Since the f1 values of the points in [x5, x6] are also higher than those of
the points in (x3, x4], all points in the set [x5, x6] (which also contains the
global maximum of f1) dominate those in (x3, x4]. For all the points in the
white area between x4 and x5 and after x6, we can derive similar relations.
All of them are also dominated by the non-dominated regions that we have
just discussed. The higher this number, the worst is the element x in terms
of Pareto optimization. His Pareto ranking approach is also used in many
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optimization algorithms as part of the fitness assignment scheme. A non-
dominated element is, as the name says, not dominated by any other solution
candidate. These elements are Pareto optimal and have a domination-count
of zero [8].

Problems of Pure Pareto Optimization

The complete Pareto optimal set is often not the wanted result of an opti-
mization algorithm. Usually, we are rather interested in some special areas
of the Pareto front only.

7.6.1 Artificial Ant Example 2

We can again take the Artificial Ant example to visualize this problem [8].

1. Maximize the amount of food piled.

2. Minimize the distance covered or the time needed to find the food.

3. Minimize the size of the program driving the ant.

Pareto optimization may now yield for example:

1. a program consisting of 100 instructions, allowing the ant to gather 50
food items when walking a distance of 500 length units,

2. a program consisting of 100 instructions, allowing the ant to gather 60
food items when walking a distance of 5000 length units,

3. a program consisting of 10 instructions, allowing the ant to gather 1
food item when walking a distance of 5 length units,

4. a program consisting of 0 instructions, allowing the ant to gather 0
food item when walking a distance of 0 length units.

The result of the optimization process obviously contains two useless but
non-dominated individuals which occupy space in the population and the
non-dominated set. We also invest processing time in evaluating them, and
even worse, they may dominate solutions that are not optimal but fall into the
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space behind the interesting part of the Pareto front. Furthermore, memory
restrictions usually force us to limit the size of the list of non-dominated
solutions found during the search. When this size limit is reached, some
optimization algorithms use a clustering technique to prune the optimal set
while maintaining diversity.

On one hand, this is good since it will preserve a broad scan of the Pareto
frontier. In this case on the other hand, a short but dumb program is of
course very different from a longer, intelligent one. Therefore, it will be
kept in the list and other solutions which differ less from each other but
are more interesting for us will be discarded.Furthermore, non-dominated
elements have a higher probability of being explored further. This then
leads inevitably to the creation of a great proportion of useless offspring.
In the next generation, these useless offspring will need a good share of the
processing time to be evaluated. Thus, there are several reasons to force the
optimization process into a wanted direction.

7.6.2 Constraint Handling

Such a region of interest is one of the reasons for one further extension of
the definition of optimization problems: in many scenarios, p inequality con-
straints g and q equality constraints may be imposed additional to the ob-
jective functions. Then, a solution candidate x is feasible, if and only if
gi(x) ≥ 0 ∀ i = 1, 2, . . . , p and hi(x) = 0 ∀ i = 1, 2, . . . , q holds. Obvi-
ously, only a feasible individual can be solution, i.e., an optimum, for a given
optimization problem [8].

Death Penalty

Probably the easiest way of dealing with constraints is to simply reject all
infeasible solution candidates right away and not considering them any fur-
ther in the optimization process. This death penalty [8] can only work in
problems where the feasible regions are very large and will lead the search
to stagnate in cases where this is not the case. Also, the information which
could be gained from the infeasible individuals is discarded with them and
not used during the optimization.
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Penalty Functions

Maybe one of the most popular approach for dealing with constraints, espe-
cially in the area of single-objective optimization, goes back to Courant, who
introduced the idea of penalty functions in 1943. Here, the constraints are
combined with the objective function f , resulting in a new function f ′ which
is then actually optimized. The basic idea is that this combination is done in
a way which ensures that an infeasible solution candidate has always a worse
f ′-value than a feasible one with the same objective values.

There are practically no limits for the ways in which a penalty for infeasibility
can be integrated into the objective functions. Several researchers suggest
dynamic penalties chich incorporate the index of the current iteration of the
optimizer or adaptive penalties which additionally utilize population statis-
tics [8].

Constraints as Additional Objectives

Another idea for handling constraints would be to consider them as new ob-
jective functions. The minimum is needed since there is no use in maximiz-
ing g further than 0 and hence, after it reached 0, the optimization pressure
must be removed. An approach similar to this is Deb’s Goal Programming
method [8].

External Decision Maker

All approaches for defining what optima are and how constraints should be
considered are rather specific and bound to certain mathematical constructs.
The more general concept of an External Decision Maker which (or who)
decides which solution candidates prevail has been introduced by Fonseca
and Fleming [8]. One of the ideas behind ’externalizing’ the assessment
process on what is good and what is bad is that Pareto optimization imposes
only a partial order on the solution candidates. In a partial order, elements
may exists which neither succeed nor precede each other.

Most fitness assignment processes, however, require some sort of total order,
where each individual is either better or worse than each other (except for
the case of identical solution candidates which are, of course, equal to each
other). The fitness assignment algorithms can create such a total order by
themselves.
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While this method of ordering is a good default approach able of directing
the serach into the direction of the Pareto frontier and delivering a broad
scan of it, it neglects the fact that the user of the optimization most often is
not interested in the whole optimal set but has preferences, certain regions
of interest [8,22,24,28]. What the user wants is a detailed scan of these areas,
which often cannot be delivered by pure Pareto optimization.

Here comes the External Decision Maker as an expression of the user’s pref-
erences [8] into play. The task of this decision maker is to provide a cost
function u : Y → R (or utility function, if the underlying optimizer is max-
imizing) chich maps the space of objective values Y (which is usually Rn)
to the space of real numbers R. Since there is a total order defined on the
real numbers, this process is another way of resolving the ’incomparability-
situation’. The structure of the decision making process u can freely be
defined and may incorporate any of the previously mentioned methods. Fur-
thermore, it may even incorporate forms of artificial intelligence, other forms
of multi-criterion Decision Making, and even interaction with the user. This
technique allows focusing the search onto solutions which are not only opti-
mal in the Pareto sense, but also feasible and interesting from the viewpoint
of the user.

Fonseca and Fleming make a clear distinction between fitness and cost val-
ues. Cost values have some meaning outside the optimization process and are
based on user preferences. Fitness values on the other hand are an internal
construct of the search with no meaning outside the optimizer. If Exter-
nal Decision Makers are applied in evolutionary algorithms or other search
paradigms that are based on fitness measures, these will be computed using
the values of the cost function instead of the objective functions.

Prevalence Optimization

We have now discussed various approaches which define optima in terms of
multi-objective optimization and steer the search process into their direc-
tion. Let us subsume all of them in general approach. From the concept
of Pareto optimization to the Method of Inequalities, the need to compare
elements of the problem space in terms of their quality as solution for a given
problem winds like a read thread through this matter. Even the weighted
sum approach and the External Decision Maker do nothing else than map-
ping multi-dimensional vectors to the real numbers in order to make them
comparable.
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If we compare two solution candidates x1 and x2, either x1 is better than
x2, vice versa, or both are of equal quality. Hence, there are three possible
relations between two elements of the problem space. These two results can
be expressed with a comparator function cmpF.

It is easy to see that we can define Pareto domination relations and Method of
Inequalities-based comparisons, as well as the weighted sum combination of
objective values based on this notation. Together with the fitness assignment
strategies which will be introduced later in this book, it covers many of the
most sophisticated multi-objective techniques that are proposed, for instance
in [8].

By replacing the Pareto approach with prevalence comparisons, all the opti-
mization algorithms (especially many of the evolutionary techniques) relying
on domination relations can be used in their original form while offering the
new ability of scanning special regions of interests of the optimal frontier.

7.6.3 Artificial Ant Example 3

With the prevalence comparator, we can also easily solve the problem by
no longer encouraging the evolution of useless programs for Artificial Ants
while retaining the benefits of Pareto optimization. The comparator function
simple can be defined in a way that they will always be prevailed by useful
programs. It therefore may incorporate the knowledge on the importance
of the objective functions. Let f1 be the objective function with an output
proportional to the food piled, f2 would denote the distance covered in order
to find the food, and f3 would be the program length. Demonstrates one
possible comparator function for the Artificial Ant problem [8].

7.7 The Structure of Optimization

After we have discussed what optima are and have seen a crude classification
of global optimization algorithms, let us now take a look on the general
structure common to all optimization processes. This structure consists of
a number of well-defined spaces and sets as well as the mappings between
them.
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Based on this structure of optimization, we will introduce the abstractions
fitness landscapes, problem landscape, and optimization problem which will
lead us to a more thorough definition of what optimization is.

7.7.1 Spaces, Sets, and Elements

In this section, we elaborate on the relation between the (possibly different)
representations of solution candidates for search and for evaluation. We
will show how these representations are connected and introduce fitness as a
relative utility measures defined on sets of solution candidates. You will find
that the general model introduced here applies to all the global optimization
methods mentioned in this book, often in a simplified manner.

The Problem Space and the Solutions therein Whenever we tackle an opti-
mization problem, we first have to define the type of the possible solutions.
For deriving a controller for the Artificial Ant problem, we could choose
programs or artificial neural networks as solution representation. If we are
to find the root of a mathematical function, we would go for real numbers
R as solution candidates and when configuring or customizing a car for a
sales offer, all possible solutions are elements of the power set of all optional
features. With this initial restriction to a certain type of results, we have
specified the problem space X [8].

Definition 10. (Problem Space). The problem space X (phenome) of an
optimization problem is the set containing all elements x which could be its
solution [8].

Usually, more than one problem space can be defined for a given optimization
problem. A few lines before, we said that as problem space for finding the root
of a mathematical function, the real number R would be fine. On the other
hand, we could as well restrict ourselves to the natural numbers N or widen
the search to the whole complex plane . This choice has major impact: On
one hand, it determines which solutions we can possible find. On the other
hand, it also has subtle influence on the search operations. Between each two
different points in R, for instance, there are infinitely many other numbers,
while in N , there are not.

In dependence on genetic algorithms, we often refer to the problem space
synonymously phenome. The problem space X is often restricted by:
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1. logical constraints that rule out elements which cannot be solutions,
like programs of zero length when trying to solve the Artificial Ant
problem and

2. practical constraints that prevent us, for instance, from taking all real
numbers into consideration in the minimization process of a real func-
tion. On our off-the-shelf CPUs or with the Java programming lan-
guage, we can only use 64 bit floating point numbers.

With these 64 bit, it is only possible to express numbers up to a certain
precision and we cannot have more than 15 or so decimals.

Definition 11. (Solution Candidate). A solution candidate x is an ele-
ment of the problem space X of a certain optimization problem [8].

In the context of evolutionary algorithms, solution candidates are usually
called phenotypes. In this book, we will use both terms synonymously. Some-
where inside the problem space, the solutions of the optimization problem
will be located (if the problem can actually be solved, that is).

Definition 12. (Solution Space). We call the union of all solutions of an
optimization problem its solution space S [8].

This solution space contains (and can be equal to) the global optimal set.
There may exist valid solutions which are not elements of the especially in
the context of constraint optimization.

7.7.2 The Objective Space and Optimization Problems

After the appropriate problem space has been defined, the search space has
been selected and a translation between them (if needed) was created, we are
almost ready to feed the problem to a global optimization algorithm. The
main purpose of such an algorithm obviously is to find as many elements as
possible from the solution space – We are interested in the solution candidates
with the best possible evaluation results. This evaluation is performed by
the set F of n objective functions f , each contributing one numerical value
describing the characteristics of a solution candidate x.
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Definition 13. (Objective Space). The objective space Y is the space
spanned by the codomains of the objective functions.

F = {fi : X → Yi : 0 < i ≤ n, Yi ⊆ R} ⇒ Y = Y1 × Y2 × . . .× Yn . (7.10)

The set F maps the elements xj of the problem spaceX to the objective space
Y and, by doing so, gives the optimizer information about their qualities as
solutions for a given problem, j = 1, 2, . . . ,m [8].

7.8 The algorithms of optimization

Throughout human being history, mankind has faced optimization problems
and made great efforts to solve them. Loosely speaking, optimization is
the process of finding the best way to use available resources, while at the
same time not violating any of the constraints that are imposed. More accu-
rately,we may say that we wish to define a system mathematically, identify
its variables and the conditions they must satisfy, define properties of the
system, and then seek the state of the system (values of the variables) that
gives the most desirable (largest or smallest) properties. This general pro-
cess is referred to as optimization. It is not our purpose here to define a
system. This is the central problem of various disciplines which are sciences
or are struggling to become sciences. Our concern here is, given a meaningful
system, what variables will make the system have the desirable properties.

There might be better formulation of objective and constraint functions to
describe a particular optimization problem. Any knowledge about the opti-
mization problem should be worked into the objective and constraint func-
tions. Good objective and constraint functions can make all the difference.

7.8.1 Optimization Parameters

Optimization parameters xj are critical for an optimization problem. They
affect the value of objective and constraint functions. If there are no opti-
mization parameters, we cannot define the objective and constraint functions.
In the investment fund management problem, the optimization parameters
are the amounts of money invested in each fund. In experimental data fit-
ting problems, the optimization parameters are the parameters that define
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the model. In the radome design problem, the optimization parameters might
include the material index in the materiale database, material thickness, and
some other parameters.

An optimization parameter can be continuous, discrete, or even symbolic.
For instance, in the investment fund management problem, the fund man-
ager wants to maximize the return. In fitting experimental data to a user-
defined model, we might minimize the total deviation of observed data from
predictions based on the model. In the radome design problem, we have to
maximize the strength and minimize the distortion and cost.

Almost all optimization problems have objective functions. However, in some
cases, such as the design of integrated circuit layouts, the goal is to find opti-
mization parameters that satisfy the constraints of the model. The user does
not particularly want to optimize anything, so there is no reason to define
an objective function. This type of problem is usually called a feasibility
problem. On the other hand, in some optimization problems, there is more
than one objective function. For instance, in the radome design problem, it
would be nice to minimize weight and maximize strength simultaneously.

Optimization has a consistent track record across a wide range of science,
engineering, industry and commerce. In fact, many optimization problems
come directly from real-world applications. A simple search on Google with
the keywords ’optimization’ and ’application’ will get numerous hits. Pub-
lications on optimization that do not mention applications are very rare.
There is no need for us to prove the usefulness of optimization by presenting
a long list of fields of application in which optimization has been involved.
Space considerations also do not permit us to give an exhaustive and in-depth
review on applications of optimization. Therefore,no further discussion on
applications of optimization will be given here.

7.8.2 Enumeration of basic of Optimization Algorithms

Optimization has long been the subject of intensive study. Numerous opti-
mization algorithms have been proposed. In general, these algorithms can
be divided into two major categories, deterministic and stochastic. Hybrid
algorithms which combine deterministic and stochastic features are stochas-
tic in essence and regarded as such. However, it is acceptable to treat them
as a third category from the point of view of purity.
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1. Deterministic Optimization Algorithms

A deterministic optimization algorithm will always get the same solu-
tion with the same number of objective function evaluations regardless
of the time it is started, if the search space, starting-point, and ter-
mination conditions are unchanged. If the algorithm is run multiple
Times on the same computer, the search time for each run will be ex-
actly the same. In other words, deterministic optimization is clonable.
interpolation algorithm, and the Brent algorithm. If the minimum of
the objective function f(x) is known, a nonlinear equation can be for-
mulated. In this case, the Secant algorithm for nonlinear equations is
applicable.

2. Exhaustive Search Algorithm

The exhaustive search algorithm samples the search space [a, b] at m
points. Usually, the sample points are equally spaced within [a, b].
The minimum value of the objective function at each and every sample
point is regarded as the optimum and the corresponding sample point
is regarded as the optimal solution. The exhaustive search algorithm
is also known as enumeration algorithm or brute force algorithm.

3. Dichotomous Algorithms

There are many different schemes for obtaining y1 and y2 within [bL, bU ],
such as the equal interval, Fibonacci, and golden section schemes.

4. Parabolic Interpolation Algorithm

A local quadratic approximation to the objective function f(x) is useful
because the minimum of a quadratic is easy to compute.

5. Brent Algorithm

The Brent algorithm is a hybrid of the parabolic interpolation algo-
rithm and the golden section algorithm. The objective function in each
iteration is approximated by an interpolating parabola through three
existing points. The minimum point of the parabola is taken as a guess
for the minimum point. It is accepted and used to generate a smaller
interval if it lies within the bounds of the current interval. Otherwise,
the algorithm falls back to an ordinary golden section step.

6. Secant Algorithm for Nonlinear Equation

For an objective function f(x) with known optimum, it is straightfor-
ward to formulate a nonlinear equation f(x)L′0. Its truncated Taylor
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series f(xh) is a linear function of h that approximates f(x) near a
given x. Taylor series is only an approximation to the nonlinear func-
tion f(x), its root xh does not equal to the root of f(x). Therefore,
this process has to be repeated until an acceptable root is located. This
motivates the update scheme of the Newton algorithm for nonlinear
equation [8].

7. Higher-Order One-Dimensional Deterministic Optimization Al-
gorithms

Besides objective function evaluation and comparison, higher-order al-
gorithms directly make use of derivatives. Three algorithms in this
category are commonly used.

8. Newton Algorithm

Another way to obtain a local quadratic approximation to the objec-
tive function f(x) is to use a truncated Taylor series expansion. The
minimum point of the parabola, a new estimate of the minimum point
of the objective function, will replace one of the three previous points.
This process is repeated until termination conditions are fulfilled.

Dimension is a good criterion for classifying deterministic optimization
algorithms. Deterministic optimization algorithms are accordingly di-
vided into one-dimensional and multi-dimensional deterministic opti-
mization algorithms. Some multi-dimensional deterministic algorithms
need the help of one-dimensional deterministic optimization algorithms.

9. One-Dimensional Deterministic Optimization Algorithms

Use of the derivative is a good choice for distinguishing one-dimensional
optimization algorithms.

10. Zeroth-Order One-Dimensional Deterministic Optimization Al-
gorithms

Zeroth-order algorithms involve objective function evaluation and com-
parison only. Prominent algorithms include the exhaustive search al-
gorithm, dichotomous algorithms.

11. Secant Algorithm

The Secant algorithm here is equivalent to the Secans algorithm for
nonlinear equation f0(x)L′0. Finite difference is applied to approxi-
mate the second-order derivative.
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12. Cubic Interpolation Algorithm

This is another polynomial approximation algorithm in which the ob-
jective function f(x) is approximated by a local third-order polynomial
p3(x). The basic logic is similar to that of the paraboli interpolation
algorithm. However, in this instance, evaluation of both objective func-
tion and its derivative at each point is required. Consequently, the
approximation polynomial can be constructed using fewer points.

13. Multi-Dimensional Deterministic Optimization Algorithms

Similarly, the use of gradient, Hessian matrix or even higher-order par-
tial derivatives is a good way to distinguish multi-dimensional opti-
mization algorithms.

14. Zeroth-Order Multi-Dimensional Deterministic Optimization
Algorithms

Likewise, zeroth-order algorithms here also involve objective function
evaluation and comparison only. Prominent algorithms include the
grid search algorithm, univariate search algorithms, the pattern search
algorithm, Powell’s conjugate direction algorithm, and the downhill
simplex algorithm. If the minimum of the objective function f(x) is
known, a nonlinear equation can be formulated. In this case, Broyden’s
algorithm for nonlinear equation is applicable.

15. Grid Search Algorithm

The grid search algorithm is the simplest algorithm for finding the
minimum and the corresponding minimum solution point of objective
function f(x). The Di the search space of xi, is sampled at mi points to
form solution point. Obviously this approach soon becomes prohibitive
as the dimension N and the number of sample points mi for each di-
mension increase. A more efficient approach starts from a grid point,
evaluates the objective function values at the surrounding 3N1 grid
points, selects the grid point with the smallest objective function value
as the new starting-point, and repeats this process until termination
conditions are fulfilled.

16. Univariate Search Algorithms

The guiding idea behind univariate serach algorithms is to change one
optimization parameter at a time so that the function is optimized in
each of the coordinate directions.
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Univariate search algorithms are regarded as zeroth-order optimization
algorithms for multi-dimensional optimization problems because the
gradient of the objective function is not explicitly involved, although
the derivative with respect to l might be involved in the inner one-
dimensional optimization algorithm.

Powell proposed a simple but vastly superior variation. It gets the name
Powell’s conjugate direction algorithm because it chooses conjugate
directions to move when applied to an objective function of quadratic
form.

17. Downhill Simplex Algorithm

The downhill simplex algorithm for minimizing f(x) is due to Nelder
and Mead. A non-degenerate N -dimensional simplex is a geometri-
cal figure consisting of N1 distinct vertices. For example, a two-
dimensional simplex is a triangle and three-dimensional simplex is a
tetrahedron. Suppose we have obtained an N -dimensional simplex.

18. Physical Algorithms

Stochastic optimization algorithms in this category are inspired by
physical phenomena. The Monte Carlo algorithm and the simulated
annealing algorithm [13,14] are two of the most prominent algorithms
in this category

19. Monte Carlo Algorithm

The Monte Carlo algorithm, named for a famous casino city in Monaco,
relies on repeated random sampling to find the optimal solution. The
use of randomness and the repetitive nature of the process are analo-
gous to the activities conducted at a casino. It was originally practiced
under more generic names such as statistical sampling. In the 1940s,
physicists working on nuclear weapons projects at the Los Alamos Na-
tional Laboratory coined the present name.

20. Simulated Annealing Algorithm

The simulated annealing algorithm imitates the annealing process in
metallurgy, a technique involving heating and controlled cooling of a
material to increase the size of its crystals and reduce defect. By anal-
ogy with this physical process, each step of the simulated annealing
algorithm replaces the current solution by a new solution with a prob-
ability that depends on the difference of objective function values at
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the two solution points and the temperature. The most often imple-
mented probability distribution function is the Boltzmann probabilisty
distribution.

21. Evolutionary Algorithms

Evolutionary algorithms were inspired by Darwin’s theory of evolution.
Natural selection is the foundation of Darwin’s theory of evolution. The
study of evolutionary algorithms began in the 1960’s. A number of cre-
ative researchers independently came up with the idea of mimicking
the biological evolution mechanism and developed three mainstream
evolutionary algorithms, namely, genetic algorithms, evolutionary pro-
gramming and evolution strategies.

Outstanding Features

Stochastic optimization algorithms have many interesting features. Some of
these features are controversial. Nevertheless, stochastic optimization has
been gaining more and more popularity and acceptance.

Randomness

As mentioned earlier, deterministic optimization is clonable. In contrast, as
the name indicates, results obtained from a stochastic optimization algorithm
are in general unpredictable due to randomness. In practice, one may never
be able to get identical optimal solutions, although the solutions obtained
may differ only very slightly.

However, from the point of view of practical application, two mathemat-
ically different results are regarded as identical if both of them meet the
tolerance requirement imposed by the practical application. A controversy
accompanying stochastic optimization algorithms is their proof of absolute
success, either theoretically or numerically. No stochastic optimization algo-
rithm guarantees absolute success, although the failure percentage might be
very small. A search by a stochastic optimization algorithm may miss the
optimal solution. This constitutes a major challenge for the entire stochastic
optimization community. Mathematicians working on it are a long way from
a successful conclusion.
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Simplicity

Stochastic optimization algorithms are in general mathematically simpler
than deterministic algorithms. Usually, neither an exact nor an approximate
derivative is involved. Most stochastic optimization algorithms generate their
initial solution through an inherent initialization process, and thus avoid be-
ing troubled by choosing a starting-point. Relief from heavy reliance on trial
and error or a priori knowledge in guessing starting-points is a tremendous
advantage in the eyes of many optimization practitioners.

Another controversy as regards stochastic optimization algorithms is their
rigorous mathematical foundation. Most of the stochastic optimization al-
gorithms are inspired by natura phenomena which mankind has been strug-
gling to understand differentiability of objective and constraint functions are
the most common implications assumed by deterministic optimization algo-
rithms. Unfortunately, many real-world application problems do not satisfy
even one of these assumptions.

It is obvious that most deterministic optimization algorithms demand one
or more starting points. Good starting-points are critical for the success
of deterministic optimization algorithms. Poor starting-points may have a
significant adverse effect on deterministic optimization algorithms’ efficiency,
or even cause them to fail This approach causes unnecessary confusion and
should be abandoned. The original algorithms are strictly followed here un-
less explicitly stated otherwise Each stochastic optimization algorithm has
at least one intrinsic control parameter. The performance of stochastic opti-
mization algorithms more or less depends on these intrinsic control parame-
ters. It is well known that tuning these intrinsic control parameters for better
performance is usually very hard. In this sense, stochastic optimization al-
gorithms are not as simple as people have believed.

Efficiency

Stochastic optimization algorithms usually require more objective function
evaluations to find the optimal solution than deterministic optimization al-
gorithms, given that both of them succeed. In other words, they are compu-
tationally more expensive or less efficient.
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Robustness

This is the third controversy as far as stochastic optimization algorithms
are concerned. Stochastic optimization algorithms may occasionally miss
the optimal solution even if everything is favorable. On the other hand,
stochastic optimization algorithms are usually capable of bracketing a quasi-
optimal solution within a wide search space, while deterministic optimization
algorithms usually fail to do so in the same situation. In most practical ap-
plications, a quasi-optimal solution is welcome. Very often, it is immediately
accepted. In the event that it is not acceptable, certain measures can be
taken to refine it.

Versatility

Most stochastic optimization algorithms do not impose restrictions on op-
timization problems. In addition, many stochastic optimization algorithms
apply to discrete or even symbolic optimization parameters as well as real
ones. In this regard, stochastic optimization optimizations are versatile.

Classification

Stochastic optimization algorithms can be divided into two major categories
according to their origins: physical algorithms and evolutionary algorithms.
Some people regard artificial neural networks and artificial immune systems
as stochastic optimization algorithms. Indeed, they can be used to solve
certain optimization problems. However, before solving the optimization
problem at hand, training has to be carried out. These algorithms cannot
accomplish the optimization by themselves without the help of training sets.
For this reason, this autor personally would not regard them as stochastic
optimization algorithms.Once again, we do not regard hybrids of two or more
stochastic optimization alg orithms asa separate category.
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Chapter 8

Optimization methods for
robot-manipulation systems
modeling and controlling

I. Krak, I. Kryvonos, W. Wójcik, P. Komada

8.1 Optimization methods for planning prob-

lems solving and computer aided design

of optimal kinematics spatial structure of

manipulation robots

Let’s define a formalism to describe manipulation systems for further refer-
ence. Let the two adjacent points of a broken chain that consists of solid
non-morphed materials, form or rotational kinematic pair of telescopic type,
having number of degrees of freedom is determined by independent move-
ments of a possible joint with respect to another pair. Each kinematic pair
is assumed to have a single degree of freedom. To overcome the assumption,
additional artificial pairs of zero length are introduced. This way the number
degrees of freedom of a system and number of kinematic pairs are equal. The
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connected kinematic pairs constitute a kinematic scheme of a manipulation
system.

Let’s associate a Cartesian coordinate system having a center at the begin-
ning of the linkOi and further call it, by convention, a center of i -th kinematic
pair. The axis OiXi will be headed towards the center of (i+1)-th kinematic
pair Oi+1 [10,15]. Another axis will be a movement- or rotation-axis. The
remaining axis will be chosen to make the coordinate system right-handed.
Coordinate system of i -th joint is considered to be connected or relative The
coordinate system of the starting (zero-indexed) joint is considered to be
global coordinate system [18-20].

Then the state of an elemental joint of a manipulation system can be deter-
mined by that states of joints that connect it to the starting joint. A state
of a joint of a manipulation system is described by some values, in particular
location, approach and orientation.

Definition 1. Let vector s (j) = (s1, s2, s3)
T define a state of j-th joint of

a manipulation system as corresponding radius-vector Aj (lj, 0, 0) in global
coordinate system.

Definition 2. Let vector k (j) = (k1, k2, k3)
T define an approach to j -th joint

of a manipulation system as corresponding vector ej1 = (1, 0, 0)T in global
coordinate system.

Definition 3. Let vector r (j) = (r1, r2, r3)
T define an orientation of j -th joint

of a manipulation system as corresponding vector ej2 = (0, 1, 0)T in global
coordinate system.

Definition 4. Let the triple (s (j) , k (j) , r (j)) be called a complete state of
j -th joint in the global coordinate system.

Vectors k (j) , r (j) should satisfy the following conditions: ∥r (j)∥ = 1,
∥k (j)∥ = 1,, kT (j) r (j) = k1r1 + k2r2 + k3r3 = 0.

Typically, modern kinematic systems are constructed out of orthogonal or
parallel pairs. They are proven to be effective for various kinematic problems
(especially for analytic solutions). They provide a finite generic class of
kinematic schemes. Optimal schemes with respect to certain criteria can be
found in there. They have analogies in the nature. The state of a descendant
joint can be set relatively to the current by two parameters: a variable to
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define the shift by the kinematic pair and a constant vector that connects
centers of adjacent kinematic pairs. The shift is referred to as a generic
coordinate of a manipulation system that reflects the degree of freedom for
the pair. The norm of the constant vector that connects adjacent kinematic
pairs defines the lengths of the joint of the kinematic scheme.

Therefore, a kinematic scheme can be described using a sequence of bipara-
metric transformations. Let’s define a mapping ξ : {1, 2, ..., n} → {1, 2, 3, 4},
that associates i -th kinematic pair its type using the following rule: ξ (i) = k,
where k ∈ {1, 2, 3} defines the type of rotation along a certain axis: 1 – rota-
tion along OiXi; 2 – rotation along OiYi; 3 – rotation along OiZi connected
with the joint of the coordinate system; ξ (i) = 4 signifies the shifting type
of the joint between i -th kinematic pair and (i+ 1)− th kinematic pair.

According to the formalism described above, in any given n-joint manipula-
tion system the location of a joint in relation to other joints can be found
using the following recursive formulae:{

a(i− 1, j) = P T
i (θi)a(i, j) + p(θi, li−1),

a(j, j) = rj, j = 1, n, i = j, 1,
(8.1)

where a(i, j) is a radius-vector of a point rj of thej-th joint inside i-th coor-
dinate system; l0 = 0; Pi(θ) ∈ P = {P 1, P 2, P 3, P 4} is a set of matrices of
orthogonal rotation along coordinate axes P k, k = 1, 3 and P 4 = Eis a ma-
trix of the identity transformation, pi(θi, li−1) = li−1Xei−11 +(1−∆(i))θibi =

= li−1 + (1 − ∆(i))θibi, bi =
{
−P̃ T

i ei1 ,−ei−11

}
– the first value, if i-th link

is movable along axis ei1 , and the second value, if the link is movable along
axis ei−11 , P̃i- is the constant orthonormal matrix that can be one of the
rotation matrices according to the value of a generic coordinate θ, in partic-
ular, may correspond to the identity matrix E. Let the length of the i -th link
be referred to as li. Obviously, li = liXei1 in i-th coordinate system, where
liX = |OiOi+1| .

Let’s consider the problem of planning of manipulation systems modes, that
arise from the necessity to convert system coordinates from dimensional Eu-
clidean space to the value of generalized coordinates and vice versa. This
is due to the fact that the object of study is given in absolute coordinates
and control actions are formed according to values of generalized coordinates.
Technically it’s much easier to get the meaning of generalized coordinates,
using transducers to measure, and then, having resolved the direct kinematics
problem, to find the realities of manipulation system in an absolute coordi-
nate system. Finding the values of generalized coordinates, which will meet
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a certain (specified) mode of manipulation system in an absolute coordinate
system (inverse kinematics problem) is far more complex task, which is not
always the solution because of inaccessibility of the provisions or such solu-
tions can be a whole set. In order to pose a problem of planning modes we
will introduce some definitions. As an initial state we will choose the one
where the units of manipulation system are elongated along specified axis (for
example, OX) other axis are coordinated in the way to get the right-handed
coordinate system. This can be achieved at the corresponding angle turns,
introducing additional fictitious kinematic pairs. When grouped by growth
from the base, the sequence of generalized coordinate forms the vector of
generalized coordinates θ = (θ1, ..., θn). In the future, we will consider that
θ ∈ Rn where Rn-n-dimensional space, endowed with the standard Euclidean
structure. Each such vector corresponds to a particular configuration of ma-
nipulation system in three-dimensional space, id est, there is a mapping of
θ ∈ Ω ⊆ Rn in a ∈ A ⊆ R3.

The problem of finding a total state (s, k, r) of n-th unit of manipulation
system for a known vector of generalized coordinates θ = (θ1, ..., θn) will
be interpreted as the Cauchy problem [4,10] for the discrete control system,
if we regard the number of chain as discrete moment of time, the state of
every chain in base coordinate system – as phase state of the system, and
generalized coordinates – as control parameters.

We get s = a1 (0) , k = a2 (0) , r = a3 (0) , where a1 (0) , a2 (0) , a3 (0) – are
solutions of the following Cauchy problems:

a1 (j) = P T
j+1 (θj+1) a1 (j + 1) + p (θj+1, lj) , (8.2)

a2 (j) = P T
j+1 (θj+1) a2 (j + 1) , (8.3)

a3 (j) = P T
j+1 (θj+1) a3 (j + 1) , j = n− 1, 0 , (8.4)

under initial conditions accordingly: a1 (n) = ln en1 , a2 (n) = en1 , a3 (n) =
en2 .

We put the problem of inverse planning of modes (inverse kinematics prob-
lem) as problem of optimal control of discrete systems with marginal condi-
tions and under the following performance criterion:

F = argmin
θ∈Θ

{
α1

∥∥∥a1 (0)− s′∥∥∥2 + α2

∥∥∥a2 (0)− k′
∥∥∥2 + α3

∥∥∥a3 (0)− r′∥∥∥2} ,
(8.5)

where Θ =
{
θi : θimin ≤ θi ≤ θimax, i = 1, n

}
, – the range of legitimate

values of generalized coordinates , θimin, θimax – set values; αi ≥ 0, α1 +
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α2 +α3 = 1 – weighting coefficient;
(
s
′
, k

′
, r

′)
– set goal state of n-th unit of

manipulation system in the system of absolute coordinates.

Due to introduced interpretation of the problem of inverse mode planning as
the problem of control theory, we will use principle of the maximum to find
vector of generalized coordinates θ∗, which provides minimum of functional
with gradient procedure:

θi (k) = ΠΘ

{
θi(k − 1) +

γk
∥gradH(·)∥

θi(k−1)

×

× ∂

∂θi (k − 1)
H (a1 (i), a2 (i), a3 (i), θi (k−1), φ1 (i−1), φ2 (i−1), φ3 (i−1), i)

}
where H(·) – Hamiltonian-Pontryagin function that looks like:

H(a1 (i) , a2 (i) , a3 (i) , θi (k − 1) , φ1 (i− 1) , φ2 (i− 1) , φ3 (i− 1) , i) =

= φT1 (i− 1)
[
P T
i (θi (k − 1)) a1 (i) + pi (θi (k − 1) , li−1)

]
+

+ φT2 (i− 1) P T
i (θi (k − 1)) a2 (i) + φT3 (i− 1)P T

i (θi (k − 1)) a3 (i) ,

and functions φj(i), j = 1, 3, are solutions for the following conjugate sys-
tems

φ1 (i) = Pi (θi (k − 1))φ1 (i− 1) , φ1 (0) = α1

(
s
′ − a1 (0, θ (k − 1))

)
,

(8.6)

φ3 (i) = Pi (θi (k − 1))φ3 (i− 1) , φ3 (0) = α3

(
k

′ − a3 (0, θ (k − 1))
)
,

(8.7)

φ3 (i) = Pi (θi (k − 1))φ3 (i− 1) , φ3 (0) = α3

(
r
′ − a3 (0, θ (k − 1))

)
,

(8.8)
i = 1, n; k = 1, N ; θ (0) = θ, θ (N) = θ∗; where γk – iteration step; N –
number of iterations, which is set or determined by the conditions of accuracy;
ΠΘ – operation of projection onto set Θ:

a1 (0, θ (k − 1)) ,

a2 (0, θ (k − 1)) , a3 (0, θ (k − 1)) – according to solution of Cauchy problems
under θ (k − 1) = (θ1 (k − 1) , ..., θn (k − 1)).

Note that the weight factors that are functional, provide an opportunity to
manage the sequence of changes of generalized coordinates, providing, thus,
a certain ’quality’ of trajectory.
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It is clear that, when the vector of generalized coordinates θ∗ delivers mini-
mum of functional, the value I =

∑n
i=1 |θi − θ∗i | [11], known as traffic volume,

takes the minimum value.

Thus, the interpretation of the problem of inverse planning of modes as the
problem of optimal control of discrete systems and application of Hamiltonian-
Potryagin function allowed to find gradient of functional with a number of
arithmetic operations which linearly depends on the number of generalized
coordinates of manipulation system and this is important for solving these
problems in real-time mode.

Simplicity and clarity of description and minimum of necessary parameters
for constructing models should be referred to the advantages of specific for-
malism. In the sequel, this simplified representation will allow to set problems
on studies of certain properties of manipulation system using only necessary
parameters to solve this problem. For example, for analysis and optimization
of attainability domains of manipulation system modes, we used only those
parameters that characterize the length of chains and types of kinematic con-
nections; for construction of dynamic equations we used knowledge about the
types of connections and dynamic characteristics of chains, such as weight,
about static and dynamic moments of weight distribution and so forth.

Using above mentioned formalism and methods of solving mode planning
problems, let’s put the problem of determining the optimal geometrical pa-
rameters of the manipulator. In designing, the most important is the choice
of kinematic patterns and geometrical dimensions of the manipulator chains,
because they define the principal possibility of robotic application in specific
production. Therefore, the major requirement for the manipulator can be
formulated as follows: its geometry (number of chains, the type of kinematic
pairs, the length of parts) must be necessary and sufficient to perform oper-
ations on this set. For mathematical statement let’s use correlation for the
state of manipulation system, which we will overwrite the following way:

a (i− 1) =
4∑
j=1

vj(i)P
T
j (θi) a (i) +

s∑
k=1

lkuk(i)i1 +
4∑
j=1

vj(i)σ (θi) i1, (8.9)

b (i− 1) =
4∑
j=1

vj(i)P
T
j (θi) b (i) , c (i− 1) =

4∑
j=1

vj(i)P
T
j (θi) c (i) , (8.10)

where vj(i) ≥ 0,
∑4

j=1 vj(i) = 1; uk(i) ≥ 0,
∑s

k=1 vk(i) = 1; σ = 0, j = 1, 2, 3;
σ = −θ, j = 4.
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Assume that chain lengths belong to the set L = {l : l1, ..., lN} where s ≤ N
– predetermined number.

This representation allows to define the problems of designing of optimal
manipulator geometry, as changing the parameters uk(i), vj(i) you can build
various schemes of manipulators.

In general, the task of determining the optimal geometrical characteristics of
the manipulator, that maximizes the size of working area in given directions
and always gets in a given set of points of location with given approach and
orientation vectors, we will express in the following way: to define

max
n,v,u,θ

6∑
i=1

Ii, (8.11)

where I1 = ηTa(0, θ), I2 = µT b(0, θ), I3 = ξT c(0, θ), I4 = −∥a1 − a(0, θ)∥2,
I5 = −∥b1 − b(0, θ)∥2, I6 = −∥c1 − c(0, θ)∥2.

Here η, µ, ξ – vectors from given sets according to vectors of position, ap-
proach and orientation of manipulator, a1, b1, c1 – fixed position, approach
and orientation vectors from appropriate sets in which the projectable spatial
manipulator must necessarily enter.

New mathematical methods, based on methods of control theory, were de-
veloped in order to solve the problem of optimal design of manipulator with
desired characteristics.

Usage of methods developed for design and research of workspace of manipu-
lation robots, experiments on concrete manipulators, showed their efficiency
and effectiveness for tasks solution of the given level.

8.2 Numerical methods and algorithms of au-

tomatic construction of dynamic models

for the manipulated robots

In various problems of optimal control of complex manipulation systems it
is necessary to make an optimal choice (in a certain sense) between contra-
dictive demands, such as adequacy of the mathematical model to the object
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of control and the necessity to compute the controlling actions based on this
model in the real time. The latter problem, that is, the problem of creation
mathematical models for manipulative systems in real time is found to be
very complex and hard [5,6,9,16-20,25,30,40]. Therefore, there is a need to
use mathematical models of various complexity according to the kind of the
requirements of technical objectives, the robustness of computers and other
factors. Therefore, in order to conduct an effective control it is necessary to
have a set of mathematical models which vary in complexity and adequacy.
Depending on the concrete application, different mathematical models should
be used.

One of the primary problems in constructing mathematical models for ma-
nipulative systems is constructing a mathematical model of a dynamic sys-
tem or creation of equations for dynamic systems, so-called dynamic models.
The dynamic model allows to set dependencies between a given function of
movement in time, that is, functions of coordinate change in time, their first
and second derivatives and the controlling function, that is the actions to be
taken. In general case, a dynamic model can be represented as follows:

u = P (θ, θ̇, θ̈, ξ), (8.12)

where u = (u1, . . . , un)
T are generic controlling powers; P (·) is a non-linear

vector-function of dimension n, that depends on generic coordinates θ =
(θ1, . . . , θn)

T , their first and second derivatives, and also on weight-impulse
parameters of a manipulator ξ; n is a degree of freedom of the system, the
exact number of joints in the manipulative system too.

In manipulative system, the kinematics joints of rotational kind have force
impulses as the generic controlling function whereas the kinematic joints of
telescopic (movement) kind have plain forces as the generic controlling func-
tion. Due to the fact that the kinematic joints under consideration consist of
combinations of primitive controlling joints, the rank of the vectors of gener-
alized coordinates correspond to each other, moreover, the generic coordinate
θi corresponds to the generic force ui.

Without specification of the vector-function P (·) the equations of dynam-
ics of kind (8.12) allow to solve the reverse problem of dynamics only, that
is, allow to determine the generic controlling forces necessary to make the
needed movement. But this generic representation is not sufficient for imple-
mentation of a considerable amount of ways of controlling, that’s why there
are additional forms of representation of equations for dynamic manipula-
tive systems, which have explicitly present first and second derivatives of the
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generic coordinates:

u = H(θ, ξ)θ̈ + h(θ, θ̇, ξ), (8.13)

u = H(θ, ξ)θ̈ + θ̇TQ(θ, ξ)θ̇ + g(θ, ξ), (8.14)

where H(θ, ξ) – a matrix of rank n×n, Q(θ, ξ) – a matrix of rank n×n ×n,
g(θ, ξ) – is a vector of rank n× 1.

Models that are defined as (8.13),(8.14) can allow to solve both, diverse
and direct dynamic problems – id est, finding a path of motion according to
defined by the laws of change control actions, that is more universal. Dynamic
model of form (8.14) is the most universal, because it explicitly allocates all
dynamic components of manipulation system – matrix of inertia, centrifugal
force and coriolis forces, gravitational forces.

Knowledge of the physical meaning of elements of the equations of motion
allows more efficient use of these equations or their separate parts to develop
new approaches and methods of control such systems. Therefore, further
studies will be aimed at creating of dynamic models in the form (8.14).

An important criterion when comparing methods of constructing models of
appearance (8.12)-(8.14) is the number of arithmetic operations of multipli-
cation (division), adding (subtracting) with floating point that are necessary
for the generation algorithm. This criterion is most significant in terms of ap-
plying of the appropriate method for the problems of analysis and synthesis
of control systems in real-hand time.

One of the first results of mathematical models of manipulation systems that
were used for the solution of both, direct and diverse dynamic problems, was
the one received by R. Paul [18,41] with the method of Lagrange. It was
developed several algorithms, the common property of which are description
of models in closed form without using of the recurrent relations. The number
of operations of multiplication/addition in these methods is of order O(n4),
which makes it impossible to use them in real time.

The methods for modeling hinge-connected solid materials that are based on
equations of Newton-Euler and take into account the principle of Dalambert
[3,5-9,12,16-20], also have the algorithmic implementation that allows to solve
the direct as well as reversed problems of dynamics by using expressions of
elements of the matrices in a closed form. But, similarly to the previous
method, the amount computations for solving the problem is huge. Using the
recursive equations allows to create more effective computational algorithms
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of forming the equations of dynamics. The algorithmic approximation of this
algorithm is O(n3).

Let’s represent the obtained recursive formulae for the equations of dynamics
of a manipulative system using the form (8.12). Let’s assume the following:
a) the joints of the system are uniformly solid materials with weights mi and
matrices of joints inertia relatively to the main axes of inertia Ji; b) axes of
the coordinate system for a joint correspond to the main axes of intertia; c)
vectors ẽi, r̃ii, r̃ii+1 are set relatively to the joint’s coordinate system (let’s use
the notion of ˜ for specifying the relevance to the joint’s coordinate system
hereafter).

Theorem. The dynamic model of form (8.12) is set as follows in case all the
values are relative the corresponding joint’s coordinate systems:

ui = (Q̃i, ẽi)∆i + (R̃i, ẽi)(1−∆i),

R̃i = R̃i+1 − G̃i − F̃i,
Q̃i = Q̃

(i)
i+1 + r̃i × R̃i − r̃ii+1 × R̃(i)

i+1
− M̃i,

where:

M̃i = −Jiε̃i + ω̃i × Jiω̃i,
F̃i = −miw̃i,
ε̃i = BT

i εi, ω̃i = BT
i ωi, w̃i = BT

i wi,
Bi = Bi−1P

T
i (θi), B0 = E.

G̃i = BT
i Gi, R̃

(i)
i+1 = P T

i+1(θi+1)R̃i+1, Q̃
(i)
i+1 = P T

i+1(θi+1)Q̃i+1,

ωi = ωi−1 + eiθ̇i∆i,

εi = εi−1 + (eiθ̈i + ωi−1 × eiθ̇i)∆i,
wi = wi−1 − εi−1 × ri−1i − ωi−1 × (ωi−1 × ri−1i)+

+εi × (rii + eiθi(1−∆i)) + (eiθ̈i + 2ωi−1 × eiθ̇i)(1−∆i),
r̃i = r̃ii + ẽiθi, ei = Biẽi, rii+1 = Bir̃ii+1,

R̃i, Q̃i, R̃i+1, Q̃i+1− vectors of reaction of connection on the ’left’ and ’right’
ends of a joint respectively, G̃i – vector of the gravitation.

Theorem. The dynamic model of form (8.12) is set as follows in case all the
values are relative the primary coordinate system:

ui = (Qi, ei)∆i + (Ri, ei)(1−∆i),

Ri = Ri+1 −Gi − Fi,
Qi = Qi+1 + ri ×Ri − rii+1 ×Ri+1

−Mi.
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Fi = −miwi,
Mi = −Jiεi + ωi × Jiω1.

It’s worth to notice that the amount of computing operations necessary to
construct equations of dynamics in form (8.12) is O(n), that is in linear de-
pendence from the number of degrees of freedom of the manipulative system
as well as it does not depend on coordinate system in which the model is
formed.

Next follows the formulae for construction of equations of dynamics in form
(8.13), that is, with explicit matrix of joint’s inertia.

Theorem. A dynamic model in form (8.13) is set up by the following equa-
tions in case all the values are defined in the global coordinate system.

Hij = (ei, φij), hi = (ei, ϕi), i, j = 1, n,
φij = µij∆i + ηij(1−∆i),
ϕi = gi∆i + pi(1−∆i);
φij = µij∆i + ηij(1−∆i)
ηij = ηi+1j − bij, ηn+1j = 0, bij = 0, i > j;
µij = µi+1j + (rii − rii+1)× ηij − rii+1 × bij − aij,
µn+1j = 0, bij = aij = 0, i > j;
pi = pi+1 − bi −Gi, pn+1 = Rn+1;
gi = gi+1 + (rii − rii+1)× pi − rii+1 × (bi +Gi)− ai,
gn+1 = Qn+1 + (rnn − rnn+1)×Rn+1;
bij = −miβij,
βij = βi−1j + αi−1j × (rii − ri−1i), i > j,
βii = ei × ri∆i + ei(1−∆i),
aij = −BiJiB

T
i αij,

αij = βi−1j, αii = ei∆i, bi = −miβi,
βi = βi−1 + αi−1 × (ri − ri−1i)− ωi−1 × (ωi−1 × ri−1i)+

+ωi × (ωi × ri) + θ̇i(ωi−1 × ei)× ri∆i + 2θ̇i(ωi−1 × ei)(1−∆i),
ai = −BiJiB

T
i αi + ωi ×BiJiB

T
i ωi,

αi = αi−1 + θ̇i(ωi−1 × ei)∆i.

The same results can be obtained for forming equations of dynamics in case
all the values are set in relative coordinate systems. With regard to com-
puting complexity, usage of global coordinate system is proved to be more
effective.
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Therefore, using the recursive nature of the connections between the joints,
the mathematical models of manipulative systems have been obtained and
require O(n2) operations in terms of computational complexity.

To conclude, new numerical methods and algorithms have been developed
which allowed to reduce the number of computational operations significantly
for the problem of automatic creation of dynamic models of manipulative
robots using recursive equations.

8.3 Manipulation of dynamics equations with

minimum calculable complication

The problem of mathematical dynamics models construction with the help
of robots manipulations was solved with minimum calculable complication.
New numerical-analytical approach is developed for forming equalizations of
dynamics in a kind with the obviously selected constituents’ forces which
operate on the system. It is proved, that at such approach every kinematics
chart of the manipulation system will have own calculable complication and
this complication will be minimum. The problems of planning and analysis
of kinematics schemes which can be practically realized, and also influency
of every constituent part on equalizations of dynamics, are considered on
calculable complication of all system is explored.

Dynamic equations of manipulation system with the n degrees of freedom,
which are coincide with vector of the generalized co-ordinates θ = (θ 1, . . . , θn)

T ,
we will form in a kind (8.14) u = H(θ, ξ)θ̈ + θ̇TQ(θ, ξ)θ̇ + g(θ, ξ), where
H(θ, ξ) is a matrix of dimension for n × n, what represents inertial forces
of the rings; Q(θ, ξ)=(Q1(θ, ξ), . . . , Qn(θ, ξ))T , Qi(θ, ξ), i = 1, n – n × n
matrices of centrifugal forces and coriolis forces; g(θ, ξ) is a n-vector of grav-
ity forces; u- n-vector of the generalized managing forces; ξ are mass and
momentum parameters of links. For the construction of dynamical equation
of the manipulation systems we will use Lagrange equation II type for the
systems with the n degrees of mobility:

d

dt

(
∂L

∂θ̇J

)
− ∂L

∂θj
= uj, j = 1, n, (8.15)

where L=(T-P) – is Lagrangian; T – kinetic energy; P – is potential energy
of the system; uj- leading force, which is added to the j -link of the system.
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Consequently, for the construction of motion equation it is necessary to
define and explore power descriptions of the system. Here out, to receive
first two members of dynamics equation in form (8.14) it is needed to
find kinetic energy of the system, and for the vector of gravitation forces –
potential.

Let us formulate new result, on the basis of which algorithms will be devel-
oped for forming motion equation of the manipulations systems with mini-
mum complication.

Theorem. Let the manipulation system from n turning degrees of mobility
are know the matrices of rotation about set axes and vectors of displacements
and system’s rings are undeformed solids with the known density of division
of the masses. Then for complete kinetic energy T of the manipulation
system is true such presentation:

T =
n∑
j=1

j∑
i=1

trF T
i FjKij, (8.16)

where:

Fk =
∑k

i=1 Fkiθ̇i =

=
∑k

i=1 P
T
1 (θ1) · ... · P T

i−1(θi−1) · ∂
∂θi
P T
i (θi) · P T

i+1(θi+1)... · P T
k (θk)θ̇i,

(8.17)

Kij =

{
1
2
(Ii + pip

T
i

∑n
k=j+1mk), i = j,

Mjp
T
i + pjp

T
i

∑n
k=j+1mk, i < j.

, (8.18)

I, M, m – accordingly dynamic and static moments and mass of i -link, pi =
pi(θi, li−1).

Theorem. Let the terms of previous theorem for this theorem and manipula-
tion system which is executed has as turning, so forward (telescopic) degrees
of mobility. Then complete kinetic energy of such manipulation system can
be represented in such way as:

T =
∑n

i=1

∑i
j=1 trF

T
i FjKij +

∑n
i=1

∑n
j=1 trF̃

T
i FjK

′
ij+

+
∑n

i=1

∑n
j=1 trF̃

T
i F̃jK

′′
ij,

where:

K ′
ij = (1−∆j)

{
bjl

T
j

∑n
r=jmr, i < j,

bjM
T
i + bil

T
j

∑n
r=i+1mr, i ≥ j.
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K ′′
ij =

1

2
(1−∆j)(1−∆i)bjb

T
i

n∑
r=max(i,j)

mr.

F̃k =
∑k−1

i=1

(
P T
1 (θ1) · ... · P T

i−1(θi−1)
∂
∂θi
P T
i (θi)P

T
i+1(θi+1) · ... · P T

k (θk)θk

)
θ̇i+

+P T
1 (θ1) · ... · P T

k−1(θk−1)θ̇k =
∑k

i=1 F̃kiθ̇i.

Let’s calculate potential energy of manipulation system links.

Theorem. Let the manipulation system will be set with the turning degrees
of freedom. Then complete potential energy of such system is calculated on
a formula:

Π =
n∑
k=1

tr A(0, k)L k, (8.19)

where:

L k = −g (M k + p k+1

n∑
i=k+1

m i) e
T
i 1
, (8.20)

where g – acceleration of the free falling.

Thus, the proved theorems enable to get new presentation of kinetic and po-
tential energies of the manipulation system, in which constituents, depended
upon the mass-and moments’ parameters of rings and expressions, depended
upon the generalized co-ordinates, are selected. First factors for each of the
manipulation systems can be calculated preliminary, as they depend on the
certain known or calculated parameters of the system, memorized and in
future could be used as permanent sizes. It allows considerably decreasing
the amount of arithmetic operations at direct forming of equalizations of
dynamics.

Presentations of kinetic and potential energies of the manipulation system got
enable to take advantage of dividing method into permanent and dependent
parts upon generalized co-ordinates in expressions for finding elements of
matrices of inertial, centrifugal, coriolis’s and forces of gravitations.

Theorem. Let’s get the sated n – dimensional manipulation system with
turning types of kinematics’ pairs. Then, for the hij, i, j = 1, n elements of
inertia H(θ, ξ) matrix the dynamics equation (8.14) will be true following
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presentation:

hkm =
n∑

j=m

j∑
i=k

tr(F T
ikFjm + F T

imFjk)Kij, (8.21)

where Fik = P T
1 (θ1) · ... · P T

k−1(θk−1) · ∂
∂θk
P T
k (θk) · P T

k+1(θk+1)... · P T
i (θi).

From Lagrange equation, taking into account representing model (8.14), we

will received, that d
dt
∂L
∂θ̇

= d
dt
(H(θ, ξ)θ̇) = H(θ, ξ)θ̈ + dH(θ,ξ)

dt
θ̇.

Consequently, for finding matrices of centrifugal and coriolis forces Q(θ, ξ),

it is necessary to calculate dH(θ,ξ)
dt

θ̇ − ∂T
∂θ
.

As H(θ, ξ) matrix is symmetric and its overhead three-cornered part is calcu-
lated only, Qi(θ, ξ)matrices are also more comfortable to depict in a overhead
three-cornered manner, setting elements of such matrix correlations:

qikl =

{
qikl + qilk, k < l,
qikk, k = l, k, l = 1, n.

(8.22)

Theorem. Let the n dimension manipulation system be set with the turning
types of kinematics pairs. Then qik l, k, l = 1, n elements of Qi(θ, ξ), i =
1, n matrices, which characterize centrifugal and coriolis forces in dynamic
equations have the following presentation:

qikl = ∆kl

n∑
j=max(i,k,l)

j∑
m=min(i,k,l)

tr(F T
miFjkl + F T

mklFji)Kmj,

where Fikl = P T
1 (θ1) · ... · ∂

∂θl
P T
l (θl) · ... · ∂

∂θk
P T
k (θk) · ... · P T

i (θi), ∆kl ={
1, k = l,
2, k < l

.

Notice that the result of increase of θ̇TQi(θ, ξ)θ̇ on the Qi(θ, ξ) matrix’s diag-
onal elements will be centrifugal force of i -link of manipulator of

∑n
k=1 q

i
kkθ̇

2
k,

and on strictly superdiagonal (remember, that the Qi(θ, ξ) matrix has a over-
head three-cornered structure) is coriolis force of this link.

Theorem. Gravitation forces, which operate on the manipulation system
with turning kinematics pairs are determined after next formulas:

gi =
n∑
k=i

FkiLki, i = 1, n , (8.23)
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where:

Lki = −g (Mk + pk+1

n∑
i=k+1

mi) e
T
i1
. (8.24)

Thus, for the motion equations elements of formulas, in which pointed part is
dependent upon generalized co-ordinates and part, which is dependent upon
links’ mass and moment parameters of the manipulation system, are got. As
was shown previous, the second part can be calculated beforehand, while
the first part needs to be calculated at every new values of the generalized
co-ordinates.Consequently, a problem was taken to research of trigonometric
functions products properties and effective algorithms of their calculations
construction.

Presentation of dynamics equations elements on the basis of division method,
leads, in essence, a task to research and construction in the obvious type
of F T

kjFmi i, j = 1, n; i = 1, k; j = 1,m. matrices’ products . Fkj =

P T
1 · ... · P T

j−1 · Ṗ T
j · P T

j+1 · ... · P T
k , F

T
kj = Pk · ... · Ṗj · ... · P1, where Pi =

Pi(θi), i = 1, n – are matrices of turns in relation to the axes of kinemat-
ics pairs, Pi ∈

{
P l, l = 1, 3

}
are orthogonal matrices of turn round proper

axis, Ṗi =
∂Pi(θi)
∂θi

, i = 1, n,, so for finding products of image will get certain
properties of orthogonal matrices turns .

Theorem. Elements of matrices F T
kjFmi products, are the functions of the

generalized co-ordinates, beginning from the number l+1, where l = min(i, j),
and do not depend on the generalized co-ordinates θ1,. . . ,θl:

F T
kjFmi = Φ

(
θl+1, θl+2, . . . , θmax(k,m)

)
.

Total matrices products of type F T
kjFmi, necessary for calculation one of ele-

ments hij, will be depicted as such charts, stated below.

Diagonal elements:

hii, i = 1, n F T
kiFmi,, k = i, n,m = i, k;

F T
ii Fii

F T
i+1iFii F T

i+1iFi+1i

F T
i+2iFii F T

i+2iFi+1i F T
i+2iFi+2i

...
...

...
. . .

F T
niFii F T

niFi+1i F T
niFi+2i · · · F T

niFni
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Off-Diagonal elements:

hij, j = 2, n, i = 1, j − 1 F T
kjFmi,, k = j, n,m = i, n;

F T
jjFii F T

jjFi+1i F T
jjFi+2i · · · F T

jjFni
F T
j+1jFii F T

j+1jFi+1i F T
j+1jFi+2i · · · F T

j+1jFni
F T
j+2jFii F T

j+2jFi+1i F T
j+2jFi+2i · · · F T

j+2jFni
...

...
...

...
F T
njFii F T

njFii F T
njFi+i · · · F T

njFni

Total number of products of the kind F T
kjFmi, which are necessary to calculate

all elements inertia matrixH(θ, ξ) of an arbitrary n-link manipulation system
equals S =

∑n
k=1 k

k2+1
2

.

Let designate the s – (s = 1, 2, 3) vector-column of matrix F T
kjthrough f

s
kj.

Then the elements of matrix F T
kjFmi can be given as an increase of vectors or

as an operation of scalar products: f sTkj f
q
mi = (f skj, f

q
mi). Consequently, our

task was taken to finding scalar products of these vectors. Offered procedure
of scalar products determination consists of 4 stages. On the first stage, by
analyzing types of kinematics pairs, we determine scalar products, which are
equal to zero or unit. On the second stage, we find products of turns matri-
ces in an analytical kind and, by certain rule, choose one member of every
matrices. On the third stage, we carry out differentiation of this member
according to generalized co-ordinates. And on the fourth stage, by analyzing
received expressions, we find the value of scalar products.

Let’s proof another property of motion equations elements, which will allow
building radically new algorithms of forming property of motion equations
elements. As manipulation system is described by the sequence of links,
bound by pairs of V class, by selecting the certain continuous chain of this
sequence also we will get, remaining within the formal descriptions frame-
work, manipulation system, only with less dimension. Then there is a task:
is it possible to take advantage dynamics equations elements of the systems
of fewer dimensions for forming of dynamics equations of the initial (base)
manipulation system? We will show that such property takes place and will
point, based on this approach, effective algorithm of forming of dynamics
equations.
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We will show that matrices products F T
kjFmi for the manipulations systems

with fewer dimensions, abstracted from base system, are fully included in
dynamics equations elements of the initial manipulation system.

We will define: MR(1, n)=
{
F T
k j Fmi, k,m = 1, n, i = 1,m, j = 1, k

}
– range

of matrices products, F T
kjFmi, i, j = 1, n, k = 1, i, m = 1, j for the n-

dimension initial manipulation system:

MR(q, r) =
{
F T
k j Fmi, k,m = q, r, i ≤ m, j ≤ k

}
– plural of trigonometric functions matrices products for the manipulation
system of dimension of r − q + 1 (q ≤ r, 1 ≤ r ≤ n), what is by itself an
indissoluble chain of base manipulation system from q – to the r – links.

Theorem. Let the manipulation system of dimension r−q+1 is set, so that
its kinematics chart coincides with the chart of abstracted from the initial
n-dimension system, and the generalized co-ordinates are evened:

θ1 = θq, θ2 = θq+1, . . . , θr−q+1 = θr.

Then matrices products plurals of trigonometric functions of these systems
of manipulations coincide, that MR(1, r − q + 1) =MR(q, r).

Theorem. Let – a set of products of matrices of trigonometric manipulation
systems dimension respectively r − q + 1 and p− t+ 1. Consider p ≤ r ≤ t.
Then MR(q, r) ∩MR(p, t) =MR(p, r).

These received properties allow to solve another important problem for its
practical application, namely: if for a given kinematic scheme to build a set of
manipulation, ie, find all the works are matrices of trigonometric functions of
generalized coordinates, necessary for forming the equations of motion, and
in this scheme to replace the one-level (degree of freedom) to another or you
can use it and what elements of a set of motion for the construction of a new
manipulation system. In practical terms this would mean that replacement
of certain parts or rings of kinematic chains circuit elements of new system
dynamic equations would not need to re-create all, only to find items, which
depend on new generalized coordinates and make them into a new dynamic
equation manipulation system.

Theorem. Let MR(1, n) – be a set of matrices products for trigonometric
functions of generalized coordinates for a given kinematic scheme of manipu-
lation of the system. If in this kinematic scheme replace the i -link (degree of
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freedom) to another, then MR1(1, n) set of a new manipulation system will
contain a MR(1, i − 1), MR(i + 1, n) set of manipulation systems, isolated
from a given.

Using the results, we will build an algorithm to form the basic equations
of the dynamics of manipulation systems with dedicated systems with its
smaller dimensions. This algorithm will name signing algorithm elements of
dynamic equations.

To construct the algorithm concluding elements of dynamic equations manip-
ulation systems of different dimensions isolated from the base, let’s consider
the system of dimension n and n-1. There are two subsets MR(1, n − 1)
and MR(2, n), in the MR(1, n)set, that describe the handling of dimension
2 n-1.These sets have common elements, as follows from Theorem 1.2, form
a MR(2, n − 1) set. Thus, the set MR(1, n) includes all the elements of
MR(2, n− 1) set and part of elements of MR(1, n− 1) and MR(2, n) set. In
general, communication elements of dynamic equations of lower dimension
manipulation systems with elements of dynamic equations manipulation sys-
tems of higher dimension can be presented in graph form. Elements of the
set MR(2, n − 1) are placed in the center. Elements of the set MR(1, n),
that actually are needed to calculate, will be products of matrices F T

i1Fnj,
i, j = 1, n− 1, F T

ijFn1, i = 1, n, j = 2, i.

If for each vertex MR(i, j), given in the Fig. 8.1, bind the matrix Fji, we
will find out, that in order to find these items, we have to find all results
matrices’ increases, which are located in the extreme left-top, extreme right
of the matrix peaks and add the matrix Fn1 products to the matrix of all
vertices.

Hereof, the number of new elements of the set MR(1, n) is:

kn = kn−1 + 3(n− 1) + 1, k0 = 1 .

Thus, elements of dynamic equations can be divided into two groups. The
first elements are already calculated for manipulation systems of lower di-
mension. The second group consists of items, that need to calculate for the
manipulation system. Using the decomposition elements of dynamics equa-
tions, an efficient algorithm for the formation of members of inertia matrix H
n-dimension manipulation system by n steps. Each member is formed by the
iteration method, which is much simplifies the analysis and grouping of ele-
ments.
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Figure 8.1: Kinematic scheme

Note, that the added elements may have common elements. That is why, to
minimize the computational complexity were developed methods for group-
ing and structuring of these elements, that formed equations were optimized
by the number of necessary arithmetic operations addition and multiplica-
tion. The basic idea which is used – dynamic representation of equations
members in one image: trAVi or trAUi where is the matrix A depends on
the generalized coordinates and parameters of links mass-and moments ma-
nipulation system and matrix – matrix of some special form.

Theorem. Let the given kinematic scheme of manipulation system and posed
mass-and moments settings for the links. Then, for the diagonal elements
of inertia matrix H(θ, ξ) of mathematical model (8.14), according to the
method of decomposition, is right next image

hii = 2trDi n−i+1Vi, (8.25)

where Dij+1 = Dij + Cij+1, Cij+1 = P T
i+1 · · ·P T

i+jKi i+j + P T
i+1Ci+1jPi+1, i =

1, n , j = 1, n− i+ 1; D i1 = K ii, C i1 = D i1.

Theorem. Let the conditions of the previous theorem be performed. Then
for off-diagonal elements of inertia matrix H(θ, ξ), according to the method
of decomposition, a fair representation of the following:

hij = tr Bij n−j+1Ui,
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where:

B ij k = B ij k−1 + Tij k +Mij k −Nij k, k = 1, n− j + 1 ,

Nq j = P T
q Nq+1 j Pq, q = j − 1, i+ 1 ,

Nj j = R j Uj.Rj = P T
j C j j+k−1 Pj ,

Cmj+k−1 = P T
m+1 · · ·P T

j+k−1Kmj+k−1 + P T
m+1Cm+1 j+k−1 Pm+1 ,

m = j + k − 2, j, Cj+k−1 j+k−1 = Kj+k−1 j+k−1 ,

Mq j = P T
q (Tq jKq j+k−1 +Mq+1 j) Pq ,

Mj j = UT
j R j.T q j = P T

q T q+1j.T j j = UT
j P

T
j · · ·P T

j+k−1 ,

Nij k = Ni+1 j, Mij k =Mi+1 j, T ijk = Ti+1jKi j+k−1 .

Similar results can be obtained for items coriolis and centrifugal forces. For
gravitational components equations is fair next theorem.

Theorem. Let there be given circuit and kinematic parameters mass-and
moments parameters for manipulation system. Then, elements of gravita-
tional forces’s vector are calculated using formulas

gi = −tr C inT 1i U i , (8.26)

where Cin = Lii + Si+1n , Sjn = P T
j (Lji + Sj+1n) , j = n, i+ 1 , Snn =

P T
n Lni ,
T1k = T 1 k−1P

T
k , k = 1, i , T10 = E .

These received features have allowed to build, according to the method of de-
composition, at each step computing for the minimum number of arithmetic
operations of multiplication and addition, ie the computational complexity
of this method is minimal.

Expertise and analyze the dependence of computational complexity of the
dynamic equations formation based on developed new method for decompo-
sition of manipulation systems. Under computational complexity, as already
was observed above, we mean the number of arithmetic operations addi-
tion and multiplication, necessary for the formation model [6,29,33,34,40].
As computational complexity of the dynamic equations formation by pro-
posed method depends on the kinematic scheme of manipulator and mass-and
moments parameters, we will take base class manipulation robots with six
(which is typical for most of the real manipulation robots) and less mobility.
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As a result of such research we want to separate all possible optimal kine-
matic schemes, taking the computational complexity of optimality criteria
and suitability for practical use in the field as widely as possible.

Let digit with 1-level around a rotation axis OX, with 2 – around the axis of
the OY , found with 3 – around the axis OZ. Thus, the kinematic scheme,
each ring of which has one degree of freedom, will record a sequence of num-
bers – 1,2 or 3. Then for six-rings manipulators total kinematic schemes in
this class will be 36 = 729. But, for the first time of such research, making
analysis of the kinematic patterns, that are important from the standpoint
of practical use only 42 kinematic schemes were received. For these schemes
let’s build momentum dynamic equation in numerical and analytical man-
ner and research their computational complexity. Computational complexity
characteristics of formation dynamic equations are presented in the table.

Table 8.1: Complexity of dynamic equations for the formation six-links manipu-
lators

MP-6 + * MP-6 + *

112131 169 173 113121 169 173
112231 167 153 113321 167 153
112331 178 155 113221 178 155
112321 204 200 113231 204 200
112311 165 154 113211 165 154
121131 196 198 131121 196 198
121331 247 251 131221 247 251
121311 239 253 131211 239 253
121321 283 308 131231 283 308
121231 283 308 131321 283 308
122311 232 224 133211 232 224
122321 278 283 133231 278 283
122131 243 256 133121 243 256
123121 306 334 132131 306 334
123131 306 334 132121 306 334
123211 290 295 132311 290 295
123311 246 219 132211 246 219
122331 240 216 133221 240 216
123231 341 362 132321 341 362
123221 293 285 132331 293 285
123321 287 271 132231 287 271
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Here is obtained, based on the developed of new method, computational
complexity of building dynamic equations of some industrial robots with
three and six degrees of freedom: robot CL (consider modifications work
individually with the three links of CL – three and six links of CL – 6),
three-links robot PUMA, UMS-3B, manipulators TUR-10 and UEM-5 (see
Table 8.2).

Table 8.2: Complexity of dynamic equations for the formation for industrial
robots

CL-3 PUMA CL-6 UMS-3B TUR-10 UEM-5

+ 36 55 245 114 64 243
* 45 91 403 96 54 256

Thus, numerical-analytical method allows to form dynamic equations of ma-
nipulation robots with minimization of computational complexity and in the
form, which allows the study of each specific kinematic scheme and using
them to build a variety of new management methods, taking into account
the dynamic properties of such systems. Knowledge of motion equations
forming computational complexity manipulation is very important from a
practical point of view, because gives an understanding of how to pick opti-
mal computing means for building control systems in real time.

8.4 Analysis of modeling methods and mo-

tion control of manipulation systems

To construct the motion control of manipulation systems there usually use
two approaches – technical and bionic The first one is based on applying of the
known methods of control systems [2,6-9,16-19,22,23,36,41]. These methods
can be divided into two groups based on the use of dynamic equations of
manipulation systems. The first group consists methods which are based
on using dynamics equations of system – optimal control, nonlinear control,
linearization, variable structure control, and so on.

The second group includes methods that do not use the explicit exact dy-
namic equation of systems – recurrent adaptive estimation and adaptive
control with standard model, control of learning type [3,12-15,21,24,28,33],
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and others.

Feature of control systems of manipulation systems are real time running
and a possibility to use information about the real state of the system by
measuring the actual position, velocity and acceleration, force and moments
of force. Thus, methods of constructing movements can be developed with
possibilities of movement correction according to the real situation.

As it was mentioned above, during the movement mathematical models which
describe this movement are changed. For example, motion in the positioning
problem consists of three parts: acceleration, motion with constant speed,
braking. At the stages of acceleration and braking, the full mathematical
model should be used while at the stage of the motion with constant speed
it is enough to calculate centrifugal and coriolis components. When moving
with small velocity the contribution of these components will be insignificant
and these components may not be calculated. Building mathematical mod-
els in numerical-analytical form allows to use effectively these properties by
calculating only those elements of the model, which define this movement.

Cite examples of construction regulators for controlling manipulation of sys-
tems using dynamic models:

u(t) = H(θ(t), ξ) [ θ̈pr(t) +Kv [ θ̇(t)− θ̇pr(t)) ] +
+Kp [ θ(t)− θpr(t)) ] ] + θ̇T (t)Qi(θ(t), ξ)θ̇(t) + g(θ(t), ξ),

(8.27)

where θpr(t) – program trajectory of movement; Kv, Kp – given matrix;
Qi(θ(t), ξ) – diagonal matrix;

u(t)=H(θ(t), ξ)
[
θ̈pr(t)+Kv

[
θ̇(t)− θ̇pr(t)

]
+Kp [θ(t)− θpr(t)]

]
+g(θ(t), ξ),

(8.28)

u(t)=Hi(θ(t), ξ)
[
θ̈pr(t)+Kv

[
θ̇(t)− θ̇pr(t)

]
+Kp [θ(t)− θpr(t)]

]
+g(θ(t), ξ),

(8.29)

where Hi(θ(t), ξ) – diagonal elements of inertia matrix.

u(t) = θ̈pr(t) +Kv

[
θ̇(t)− θ̇pr(t)

]
+Kp [θ(t)− θpr(t)] + g(θ(t), ξ). (8.30)
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Also there exist different combinations of the control low mentioned above.

If meters efforts hinges is used then calculating the acceleration and the
elements of the matrix of inertia, calculation of the vector h(θ(t), θ̇(t), ξ) in
(8.13) can be avoided by calculating by the formula h(θ(t), θ̇(t), ξ) = u(t)−
H(θ(t), ξ)θ̈(t) that allows to significantly reduce the number of calculations.

Thus, because of the considerable complicity and nonlinearity of the equa-
tions of dynamics the usage of classical methods of motion control of manip-
ulation systems, as shown above, in real time causes significant difficulties.

Therefore, great attention is attracted an approach that let investigate the
nature of processes of motion control of manipulator in order to simplify and
highlight the most tangible elements of the movement and their usage in
technical solutions of building control systems.

To build effective methods of control of complicated manipulation systems
not only accurate knowledge of the parameters of the mathematical model
is needed, but also the adequacy of the model of the object. In the previous
section, mathematical models (dynamic equations) are based on the methods
of classical mechanics, so constructed model will be assumed to be adequate
to the object at the level of mechanics. In regard to parameters of model, to
find or estimate their exact values is quite difficult. Moreover, the system as
a whole is influenced by such actions as intractable backlash at the joints, the
friction and, consequently, the elements of the correctional system heating,
noise in the feedback channels, etc., which can lead to loss of the necessary
control quality. That’s why one of the most effective approach to organize
control of manipulation work is a synthesis of global control, built on the ba-
sis of the system dynamics and the local, built on the basis of simple (usually
linear) models. It is important for the latter to be easy to implement, use in-
formation about the current state and describe the process of movement with
sufficient measure of the adequacy. To implement local control can be used
adaptive mathematical models. Let’s investigate methods of adaptive con-
trol of movement based on linear models with unknown parameters in more
detail. Estimations of unknown model parameters are built by observations
of the state of manipulation system in the process of motion. Then define
control by these estimations optimizing some quality functional. Since the
dynamics is described by equations of second order, then the discrete linear
model can be performed as follows:

θ(i+ 2) = A1θ(i+ 1) + A2θ(i) + A3 + A4u(i+ 1) + ε(i+ 2), (8.31)
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where u(i) is n-dimensional control vector at the i-th moment of time; A1, A2,
A4 – unknown matrix of n × n dimension, A3 – unknown vector of n × 1
dimension; ε(i+2) – n-dimensional model error vector at (i+2)-th moment
of time. Let’s suppose that the trajectory of the system is given by a sequence
of points in the space of generalized coordinates:

θpr(i) ∈ Rn, i = 1, p, p <∞. (8.32)

Maintaining the programmed trajectory by the system will be taken for the
functional of quality.

Ii+1 = ∥θpr(i+ 2)− θ(i+ 2)∥2 + δ ∥u(i+ 1)∥2 , (8.33)

where δ > 0 – some constant.

Denote:

A = (A1, A2, A3, A4) = (A(1), A(2), ..., A(n)),

A(k) = (a
(1)
k1 , ..., a

(1)
kn , a

(2)
k1 , ..., a

(2)
kn , a

(3)
k1 , a

(4)
k1 , ..., a

(4)
kn )

T ,

φ(i+ 1) = (θT (i+ 1), θT (i), 1, uT (i+ 1))T .

Then the system (8.31) can be rewritten as follows:

θ(i+ 2) = ATφ(i+ 1) + ε(i+ 2). (8.34)

Adaptive control algorithm consists of two stages. First estimates of unknown
parameters are built by the measured states of the system then using these
estimates control at the next cycle of motion is calculated. Therefore, we
assume manipulation system to be in state θ(i + 1), and will be seeking
control u(i+1), which on the (i+1)-th cycle will transfer manipulator in the
state θ(i + 2) provided that all previous conditions and controls are known.
Estimates of unknown parameters of the matrix A are found by minimizing
the error of modeling by least squares method. Procedure of estimation is
written in the form of recurrence:

Â(k)(i+2) = Â(k)(i+1)+R(i+2)φ(i+1)
[
θk(i+ 2)− Â(k)(i+ 1)φ(i+ 1)

]
,

R(i+ 2) = R(i+ 1)−R(i+ 1)φ(i+ 1)φT (i+ 1)R(i+ 1)×
×

[
1 + φT (i+ 1)R(i+ 1)φ(i+ 1)

]−1
,

(8.35)
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where R(1) = E, k = 1, n, R(i)−−(3n+1)×(3n+1) – symmetric matrix.

Using estimations Â(i+2) of matrix A estimation of control on the one cycle
is can be found from the condition:∥∥∥θpr(i+2)−Â1(i+2)θ(i+1)−Â2(i+2)θ(i)−Â3(i+2)−Â4(i+2)u

∥∥∥2+δ∥u∥2⇒min
u
.

(8.36)

Hence:

u(i+ 1) =
(
ÂT4 (i+ 2)Â4(i+ 2) + δE

)−1

ÂT4 (i+ 2)×
×(θpr(i+ 2)− Â1(i+ 2)θ(i+ 1)− Â2(i+ 2)θ(i)− Â3(i+ 2)).

(8.37)

Note that the number of computations required to implement the procedure
(8.35)-(8.37) is large enough, but, in contrast to the control methods with
using the equations of dynamics, it does not need to compute trigonometric
functions of generalized coordinates.

Thus, the analysis of description methods, forming the equations of dynamics
and control of complex manipulation systems show the challenges in building
effective formalisms of representation such systems and the establishment of
their mathematical models on the basis of these concepts and developing a
new control methods, which would use non-linearity and complexity of the
research object.

8.5 Construction of effective algorithms for

dynamics and control problems solution

Given in the previous section algorithms of formation of dynamic equations
in the numerical-analytical form allow not only to optimize the number of cal-
culations or to allocate certain elements of the equations, but also effectively
solve the problems of the dynamics in process of formation the dynamics
equations. That is, if you want to have dynamics equation, then all the com-
ponents which form these equations should be remembered. But if specific
problem has to be solved, then do we need to form an equation first and then
move on to the task?
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Let’s show the example of solving the inverse problem of dynamics, that
instead of the traditional method – first find matrices H(θ, ξ), Q(θ, ξ) and
vector G(θ, ξ) in the equations of dynamics (8.14) – the generalized control
forces can be computed in the process of formation of the elements of matrices
and vector.

Here, for simplicity, the algorithm for computing the first term in (8.14)
is presented, namely, the product of inertia matrix of the vector of second
derivatives of generalized coordinatesH(θ, ξ)θ̈.

Step 1. In accordance with the first step of algorithm of forming the equa-
tions of dynamics based on decomposition properties, member hnn is fully
calculated.

Multiply it by θ̈n and obtain the first conclusion of the n-th element of the
vector of generalized forces un:

u(1)n = hnn θ̈n.

Later in this task the member hnn is not used and it can be set to zero.

Step 2. In the second step of the algorithm of forming the matrix H(θ, ξ),
members hn−1n−1,hn−1n are fully found. Multiplying hn−1n−1, hn−1n on θ̈n−1

and θ̈n respectively, we find the first conclusion of the vector of forces un−1,
and multiplying hn−1n – θ̈n−1 a second conclusion for the vector of forces un:

u(2)n = u(1)n + hn−1n θ̈n−1 ,

u
(1)
n−1 = hn−1n−1 θ̈n−1 + hn−1n θ̈n .

Elements hn−1n−1, hn−1n are no further used and can be destroyed, thus
saving the resources of computing devices.

Step k(k = 3, ..., n). Let i = n−k+1. On this step members hii, hii+1,. . . ,hin
are calculated by the algorithm of forming the matrix of inertia forces, provide
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relevant conclusions of generalized forces

u(k)n = u(k−1)
n + hin θ̈i

u
(k−1)
n−1 = u

(k−2)
n−1 + hin−1 θ̈i

...

u
(2)
i+1 = u

(1)
i+1 + hii+1 θ̈i

u
(1)
ii = hii θ̈i + hii+1 θ̈i+1 + . . .+ hin θ̈n

members hii, hii+1, . . . , hin are withdrawn.

As a result of the algorithm in n steps there will be calculated all the elements
of the vector of generalized control forces for the first term in equations (8.14),
namely the product H(θ, ξ) θ̈. There won’t be any elements of inertia matrix.

Similarly the algorithms for calculation of centrifugal, coriolis and gravita-
tional forces can be constructed.

Let’s consider the direct problem of dynamics. To solve it the inverse matrix
to H(θ, ξ) must be found. It and its individual members are used in methods
of building the control of manipulator. For example, the values inverted
to the diagonal elements of inverse matrix to matrix H(θ, ξ) are called the
effective moments of inertia referred to the generalized coordinates and have
a clear physical meaning. For kinematic pair of swinging degree of mobility
it is moment of inertia -th,..., n-th manipulator links and weight relatively
to the axis of i-th connection, and for the progressive couple – the mass of
these links and weight. Using the algorithm of forming the inertia matrix of
links to the k-th step the elements of symmetric matrix will be formed as:

Hk−1 =

∥∥∥∥∥∥
hi+1i+1 ... hi+1n

... ... ...
hni+1 ... hnn

∥∥∥∥∥∥ ,
where i = n− k.

At the k-step the elementshii, hii+1,. . . ,hin, i = n−k+1 will be formed and,
therefore, symmetrical matrix can be written as:

Hk =

∥∥∥∥∥∥∥∥
hii hii+1 ... hin
hi+1i

... Hk−1

hni

∥∥∥∥∥∥∥∥ . (8.38)
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Therefore, matrix is formed by framing matrixHk−1. It is clear thatH(θ, ξ) =
Hn.

As the inertia matrix is proposed to be formed as (8.38), it is natural to cal-
culate the inverse matrix H−1

k from known matrixH−1
k−1. It is important to not

use a direct matrixHk−1, because in our approach this matrix is withdrawn,
releasing resources and reducing overall computational cost. That is, in fact,
we will have a matrix on the k-th step:

Hk =

∥∥∥∥∥∥∥∥
hii hii+1 ... hin
hi+1i

... H−1
k−1

hni

∥∥∥∥∥∥∥∥ . (8.39)

Bring the general formula for finding the inverse matrix by partitioning of
cells and when one cell of this partition is the inverse matrix. Let the output

matrix has the structure

∥∥∥∥ a b
c d

∥∥∥∥, where a, d - a square matrices of some

dimension, b, c- rectangular of relevant dimension. It is desirable to find
the inverse matrix to this one so that in the resulting formulas expressions
with d−1 will exist. Inverse matrix should also be found in the block form:∥∥∥∥ A B
C D

∥∥∥∥.
Then: ∥∥∥∥ a b

c d

∥∥∥∥∥∥∥∥ A B
C D

∥∥∥∥ =

∥∥∥∥ E1 O
O E2

∥∥∥∥ , (8.40)

where E1, E2 – identity matrices.

From (8.40) we obtain a system of matrix equations relatively to unknown
matrices A, B, C, D :

aA+ bC = E1,
cA+ dC = 0,
cB + dD = E2,
aB + bD = 0.

. (8.41)

From the second equation of system (8.41) we have:

C = −d−1cA . (8.42)

Substituting this expression in the first equation we get aA − bd−1cA =
(a− bd−1c)A = E1. Hence we have:

A = (a− bd−1c)−1 . (8.43)
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Multiply the third equation in (8.41) by d−1 and solve it concerning the
matrix D:

D = d−1 − d−1cB . (8.44)

Substituting this expression in the fourth equation we will have aB+b(d−1−
d−1cB) = 0, or (a−bd−1c)B = −bd−1, and taking into account (8.43), finally
we will get:

B = −Abd−1 . (8.45)

Thus, we obtained the value for the matrix (8.42)-(8.45), which is the cells
of the inverse matrix and in which use only matrix d−1, nowhere presents
matrix d.

Using the result we will write the algorithm of searching the inverse matrix
H−1(θ, ξ) in the process of forming the elements of inertia matrix H(θ, ξ).

Step 1. For the found element hnn, H
−1
1 = h−1

nn are calculated. Further save
H−1

1 and withdraw hnn.

Step k(k = 2, ..., n). Denote i = n − k + 1. On this step we have members
hii,hii+1,. . . ,hin calculated by the algorithms of forming inertia forces matrix,
and inverse matrix H−1

k−1. Denote vk = (hii+1 , . . . ,hin)
T . Then matrix Hk

can be written as:

Hk =

∥∥∥∥ hii vTk
vk H−1

k−1

∥∥∥∥ .
Using formulas (8.40)-(8.45) inverse matrix to matrix Hk will be:

H−1
k =

∥∥∥∥ (hii − vTkH−1
k−1vk)

−1 −vTkH−1
k−1(hii − vTkH

−1
k−1vk)

−1

−H−1
k−1vk(hii−vTkH

−1
k−1vk)

−1 H−1
k−1+H

−1
k−1vk(hii−vTkH

−1
k−1vk)

−1vTkH
−1
k−1

∥∥∥∥
= 1

α

∥∥∥∥ 1 −vTkH−1
k−1

−H−1
k−1vk H−1

k−1(hii − vTkH
−1
k−1vk) +H−1

k−1vkv
T
kH

−1
k−1

∥∥∥∥ ,
α = hii − vTkH−1

k−1vk.

Elements hii, hii+1,. . . ,hin, and inverse matrix H−1
k−1 are destroyed, H−1

k is
saved.

Thus consequentially for n steps we will get inverse matrix to the matrix of
inertia forces H(θ, ξ). Due to the fact that matrices are symmetric, com-
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putational complexity of the algorithm of finding the inverse matrix will be
negligible.

Let’s move to finding the effective moments of inertia matrix Ie,i, i = 1, n.
It is enough to make -1 steps of described above algorithm of construction
of the inverse matrix to the matrix H(θ, ξ). On the n-th step it should be
found H−1

n−1vn = (b1, b2, ..., bn−1)
T = b, a1 = h11 − vTn b.

Then effective moments can be calculated using formulas:

Ie,1 = a1,

Ie,i = (hn−1(i−1,i−1)
+ a−1

1 b2i−1)
−1, i = 2, n, (8.46)

where hn−1(i,i) , i = 1, n− 1, – diagonal elements of matrix H−1
n−1.

8.6 Creation of a method and a system for

controlling coordinated movements of ma-

nipulative robots

Feature of the systems for controlling of manipulative robots is work in real
time, as well as the possibility of using information about the real state of the
manipulator by measuring the true position, velocity and acceleration, forces
and torques. Methods of motions building with the possibilities of movement
correction according to the real situation are can be developed. Researches
of Bernstein [3], and others on the organization of movements [6,12,14] of
beings can be essentially used for analysis and synthesis of manipulative
robots control systems. Hierarchic of structures and use of reverse links are
the basis for making such systems.

At each level of hierarchy command information of the upper levels is pro-
cessed and using the information available for this level of hierarchy, decisions
is taken aimed at achieving the objectives of this level and command infor-
mation is generated on the lower level. Herewith control is the result of many
components, some of which are determined by signals coming from the upper
levels of the hierarchy, and some part is invariant to them. Thus, on chang-
ing information on the upper levels the correction of action should be made
on subordinates’ levels in accordance with these changes. In organization of
motion control system for manipulative robots three levels of hierarchy are
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emitted: strategic, tactical and executive. The role of the first two levels is to
organize and plan movements to solve the task; the third role is to implement
these movements.

At the strategic level tasks of implementation of the goal in general and
construction of possible trajectories of motion in specific environments with
obstacles are being solving.

At the tactical level the motion trajectory of model in the external world
for manipulative robot converts into a trajectory of change of generalized
coordinates by solving the inverse problem of planning. At the same level the
law of motion which is being implemented at operational level is determined.
In fact, it represents the level at which different forms of movements and
their implementation mechanisms are stored. Output signals of this level
are submitted to the executive level drives, which cause physical movement
of parts of the manipulator in space. Information about the actual state of
manipulative robot during movement comes at the executive level from the
position transducers, speed, etc.. Under such control system organization
complexity of each level depends on the upper levels solutions of problems.
Therefore, new methods were proposed which would simplify solving of tasks
of lower levels of hierarchy.

Since at the end the problem is reduced to the generalized coordinates dis-
placement which are received in the process of solving the inverse problem of
the state planning, then the complexity of executive level depends on what
values of the generalized coordinates are chosen for the solution and how
they agree with previous. Coordination in terms of physiology of movements
is overcoming the excessive levels of mobility to achieve the goals. It is clear
that the fewer quantity of degrees of mobility (number of links) take part in
movement, the easier the realization of such a movement on the operational
level. Motion manipulator construction includes calculating a trajectory to
reach the objective state, the law of motion on this path and calculating
forces and torque that are needed to ensure the implementation of motion
on a given trajectory.

To overcome the excessive number of generalized coordinates (geometric co-
ordination) that transform the manipulator to the objective state means to
identify those of them that make the largest contribution to the movement,
thus making the objective state to be achievable. Kinematic coordination of
movement is determined by finding such changes of generalized coordinates
as function of time in which between them will be reduced interdependence.
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Coordination at the level of dynamics (dynamic coordination) system consists
in calculating of those elements of motion equations that make the largest
contribution to its implementation.

Thus, the method of movement coordination of manipulative robot is reduced
to the consistent solution and the correction of necessary tasks:

1. set the initial state of manipulator (the vector of generalized coordi-
nates),

2. set objective values of position, approach and orientation capture vector
of manipulator,

3. make geometric coordination,

4. determine time interval,

5. make a kinematic coordination,

6. check restrictions on the location, speed and acceleration on each of
the generalized coordinates. If there are violations, then increase the
length of time and go to paragraph 8.5,

7. form the equations of motion,

8. check limits for generalized control forces. If there are violations, then
increase the length of time and go to paragraph 8.5,

9. make a dynamic coordination.

This way, a time span for making the specified move will be found as the
result of the algorithm, without breaking any restrictions; a set of structure
of dynamic equations to implement the move will be found as well. The pro-
posed motion coordination algorithm agrees well with experimental data that
confirm the setting (joints and muscle groups choice) before making move-
ments by man. Let’s propose the organization of manipulative robot motion
control system based on coordination approach. Coordination algorithm can
be implemented in advance, in off-line mode, and then a found set of sim-
plified structures put into control system thus creating a system ’memory’
(base of motion). Clearly, the control found by the simplified models in the
process of coordination won’t let accurately track the program trajectory but
the deviation between the real and program trajectories will be insignificant
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that is guaranteed to fall in the of a trajectory vicinity. Also many factors
(friction, wear, noise, inaccuracies of parts manufacture) affect the movement
of the manipulator and it’s difficult to take them into account.

Since there exists a possibility to measure the real state of the manipulator,
to stabilize motion by program trajectory it’s necessary to find additional
control actions during the motion process that will compensate the deviation
between real and program trajectory. Such control can be calculated by local
linear adaptive controllers, which depend only on one generalized coordinate.
Parameters of regulator are selected so, that it allows manipulation of a
system in real time and to meet a certain level of quality. Thus, the original
approach to the organization of the system of motion control of manipulative
robot in parallel working units has been developed. Control actions of the
algorithm are computed based on the results, in the first coordination unit
in real time, additional control actions, based on methods of adaptation are
computed in the second block in real time too.

8.7 Optimization and pseudoinversity in prob-

lems concerning equilibrium states

Significant attention is paid to the task of study equilibrium states of ma-
nipulative systems especially while building manipulative robot’s control
[2,5,6,16,22]. This is due primarily to the possible of use statistical models
for synthesis controls when performing assembly operations, handling large
volume and heavy loads, performing welding operations, etc., that is, in gen-
eral class of practical problems that do not require fast actions. Therefore,
when performing operations of such class, influence of inertia, centrifugal and
coriolis forces can be neglected. In this case the main task of control system
is the calculation control acts that would compensate gravitational forces of
manipulative system. Such control actions can be obtained from building
static models. To construct the equations of statics different approaches of
classical mechanics are used; such as D’Alembert’s principle [19], which al-
lows us to construct recurrent relations for forces and torques which act on
each link of manipulation system or the Lagrange’s equation of the n-th type,
in which the equation of statistic is the partial case. In this paragraph we
will formulate the three problems of statics. Based on D’Alembert’s princi-
ple, static model of manipulation system is represented as a system of linear
equations.
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Depending on the capabilities of solving this system, the equilibrium proper-
ties of manipulation systems are investigated and methods for solving prob-
lems of statics based on the pseudoinverse linear operations and optimization
[1,10,15] are presented. For problem statement static structured approach to
the mathematical description of manipulation systems will be used. Write
the balance equation using the principle of d’Alembert (exemption from con-
nections) for i-th link of the manipulator.{

R(i) = R(i+ 1)−G(i)i3,
Q(i) = Q(i+ 1) +R(i+ 1)× (K(i)b̃(i))−G(i)i3 × (K(i)p̃(i)),

(8.47)

where R(i), Q(i) – force and torque at the point of joining i -th link to the
(i− 1)-th, respectively; R(i+ 1), Q(i+ 1) – force and torque at the point of
joining i -th link to the (i + 1)-th, respectively; K(i) = (k1(i), k2(i), k3(i))
– orientation matrix of i -th link in an absolute coordinate system; b̃(i) –
vector specified in the i -th coordinate system (which is linked to the i -th
link manipulation system) which connects (i− 1)− th point with the (i+1)-
th; p̃(i) – vector directed from (i− 1)-th point to the center of mass of i -th
link specified in the i -coordinate system; G(i) – weight of link; i3 – unit
vector of absolute coordinate system. Orientation matrix can be determined
by following recurrent formula:

K(i) = K(i− 1)C̃(i− 1)AT1 (θi) , (8.48)

where C̃(i−1) – unit vectors matrix of joining i-th level; A1(θi) – orthogonal
rotation matrix; θi – generalized coordinate.

The generalized control force in the i-join will equal the projection of force or
torque on the axis of kinematic pair, respectively in progressive or rotational
connection:

ui = kT1 (i)(∆iQ(i) + (1−∆i)R(i)) , (8.49)

where ∆i = 0 in progressive and ∆i = 1 in a rotational connection.

Let n-th link of manipulation system is influenced by external forces:

R = (R1, R2, R3)
T ,

Q = (Q1, Q2, Q3)
T ,

force and torque respectively.

Let’s introduce vector f = (R, Q)T = (R1, R2, R3, Q1, Q2, Q3)
T .
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Static models associate with each other the state of manipulative system,
which is determined by the vector of generalized coordinates, and generalized
forces that are necessary for finding the system in this state, as well as acting
external forces.

Depending on what parameters are known and which are needed to be iden-
tified, we highlight three problems of statics:

Problem 1. Given:

1. position of manipulator θ = (θ1, . . . , θn)
T ,

2. force and torque that are applied to the n-th link of manipulative sys-
tem f = (R,Q).

Define: generalized control forces u = (u1, ..., un) .

Problem 2. Given:

1. generalized control forces u = (u1, ..., un),

2. generalized coordinates θ = (θ1, ..., θn)
T .

Define: force and torque that are applied to the n-th link of system.

Problem 3. Given:

1. generalized control forces u = (u1, ..., un),

2. force and torque that are applied to the n-th link of system.

Define: vector of generalized coordinates θ = (θ1, ..., θn)
T .

Since the balance equation (8.47) are given in an absolute coordinate system,
then the product K(i)b̃(i) is a vector b̃(i), given in coordinate system of i -
th link and listed in the absolute coordinate system. Denote this vector in
an absolute coordinate system by b(i). Similar the product K(i)p̃(i) is a
vector p̃(i), given in coordinate system of i -th link and listed in the absolute
coordinate system. In the absolute coordinate system denote it by p(i).
Introduce also the notation g(i) = G(i)i3.
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Then equation (8.47) can be rewritten as follows:

R(i) = R(i+ 1)− g(i) ,
Q(i) = Q(i+ 1) +R(i+ 1)× b(i)− g(i)× p(i), i = n, 1 ,

(8.50)

and R = R(n+1), Q = Q(n+1) are force and torque respectively are applied
to the n-th link of system.

Theorem. Let manipulation system of n-dimension is given. Then the
system of equations

u = A(θ, p)f + h(θ, p), (8.51)

where A(θ, p) – matrix n× 6 with elements:

ai, 1 = (1−∆i)k11(i) + ∆i

[
k13(i)

n∑
j=i

b2(j)− k12(i)
n∑
j=i

b3(j)

]
,

ai, 2 = (1−∆i)k12(i) + ∆i

[
k11(i)

n∑
j=i

b3(j)− k13(i)
n∑
j=i

b1(j)

]
,

ai, 3 = (1−∆i)k13(i) + ∆i

[
k12(i)

n∑
j=i

b1(j)− k11(i)
n∑
j=i

b2(j)

]
,

ai, 4 = ∆ik11(i), ai, 5 = ∆ik12(i), ai, 6 = ∆ik13(i),

and h(θ, p)- vector n× 1 with elements:

hi = kT1 (i)d(i), (8.52)

where d(i) = −(1−∆i)
∑n

j=i g(j)−∆i

∑n
j=i+1 g(j)×

∑j−1
k=i b(k)−∆i

∑n
j=i g(j)×

p(j), describes static model of manipulation system.
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Proof. From the equilibrium equations (8.50) for i -th link of manipulation
systems follows that:

R(i) = R(i+ 1)− g(i) = R(i+ 2)− g(i+ 1)− g(i) = ... = R−
∑n

j=i g(j),
(8.53)

Q(i) = Q(i+1)+R(i+1)×b(i)−g(i)×p(i)=Q(i+2)+R(i+2)×b(i+1)+

− g(i+1)×p(i+1)+R(i+1)×b(i)−g(i)×p(i)= (8.54)

= ... = Q+R×
n∑
j=i

b(j)−
n∑

j=i+1

g(j)×
j−1∑
k=i

b(k)−
n∑
j=i

g(j)× p(j).

From (8.49), considering (8.53), (8.54), find generalized force ui:

ui = kT1 (i) (∆iQ(i) + (1−∆i)R(i)) =

= kT1 (i)

(
∆i

[
Q+R×

n∑
j=i

b(j)−
n∑

j=i+1

g(j)×
j−1∑
k=i

b(k)−
n∑
j=i

g(j)×p(j)

]
+

+ (1−∆i)

[
R−

n∑
j=i

g(j)

])
= (8.55)

= kT1 (i)

(
∆iQ+∆iR×

n∑
j=i

b(j)−∆i

n∑
j=i+1

g(j)×
j−1∑
k=i

b(k)+

− ∆i

n∑
j=i

g(j)× p(j) + (1−∆i)R− (1−∆i)
n∑
j=i

g(j)

)
.

Write this equation as follows:

ui = (ai1, ai2, ..., ai6)


R1

R2

R3

Q1

Q2

Q3

+ hi.

Using the vector representation of the product as a product of the matrix
and vector:
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R× d =

 0 d3 −d2
−d3 0 d1
d2 −d1 0

 R1

R2

R3

 , d =

 d1
d2
d3

 ,

get:

ai, 1 = (1−∆i)k11(i) + ∆i

[
k13(i)

n∑
j=i

b2(j)− k12(i)
n∑
j=i

b3(j)

]
,

ai, 2 = (1−∆i)k12(i) + ∆i

[
k11(i)

n∑
j=i

b3(j)− k13(i)
n∑
j=i

b1(j)

]
,

ai, 3 = (1−∆i)k13(i) + ∆i

[
k12(i)

n∑
j=i

b1(j)− k11(i)
n∑
j=i

b2(j)

]
,

ai, 4 = ∆ik11(i),

ai, 5 = ∆ik12(i),

ai, 6 = ∆ik13(i). (8.56)

To find hi:

hi = kT1 (i)
[
−∆i

n∑
j=i+1

g(j)×
j−1∑
k=i

b(j)−∆i

n∑
j=i

g(j)×p(j)−(1−∆i)
n∑
j=i

g(j)
]
.

Theorem is proved.

Let’s move to the solving problems 1-3 based on the representation (8.51) of
statics equations of manipulation system.

Problem 1 – direct static problem is most simple. It solution – the vector of
generalized forces – is uniquely determined by formulas (8.51) – (8.52) at a
fixed position and attached efforts to clamp.

Problem 2. Matrix A(θ, p), in general, is a rectangular matrix of dimension
n ×6. Let n = 6 , that manipulation system has six degrees of mobility. To
find the force and moment forces solve system (8.51) concerning f. Get:

f = A−1(θ, p)(u− h(θ, p)) = A−1b. (8.57)
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Perform a more detailed investigation of the system (8.57).

A. If detA(θ, p) ̸= 0, then for a known vector of generalized coordinates θ
and generalized forces vector u vector f is uniquely determined.

B. If detA(θ, p) = 0, then two possible cases exist:

B1. For given u and θ vector f could be found ambiguously, there exist
a whole set of vectors f, which satisfy (8.51).

So set problem to find f from the condition:

Ωf = argmin
f
∥Af − b∥2 . (8.58)

Solution of (8.58) will be:

arg min
f∈Ωf

∥f∥2 =
∧
f = A+b ,

where A+ – pseudo inverse matrix.

B2. For given u and θ solutions do not exist. This means that for them
there is no statically balanced situations. Let n ̸= 6. In this case
matrix A(θ, p) will be rectangular, and for finding the forces and
torques that are applied to the n-th link of manipulation system
criterion (8.58) can be used.

Thus, to solve problem 2 pseudo inverse matrix should be used.

Problem 3 – static inverse problem – one of the most difficult problems. Let
u∗ – given vector of generalized control forces, f ∗ – given force and torque
applied to the n-th link. Vector of generalized coordinates is found from the
conditions of minimum of the functional:

F (θ) = ∥A(θ, p)f ∗ + h(θ, p)− u∗∥2 ⇒ min
θ∈Θ

, (8.59)

where Θ – a set of internal restrictions on the generalized coordinates:

Θ =
{
θi : θimin ≤ θi ≤ θimax, i = 1, n

}
, (8.60)

θimax, θimin – given numbers.
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To find the vector of generalized coordinates we apply gradient procedure:

θ(i+ 1) = πΘ { θ(i)− ρi gradθ(i)F (θ(i)) } , (8.61)

where πΘ – operation of projection onto the set Θ (8.60), ρi – iteration pitch,
θ(i) = (θ1(i), ..., θn(i))

T .

To find the partial derivatives we have:

∂F (θ)

∂θi
= 2 (A(θ, p)f ∗ + h(θ, p)− u∗)T

(
∂A(θ, p)

∂θi
f∗ +

∂h(θ, p)

∂θi

)
. (8.62)

To determine the derivatives ∂A(θ,p)
∂θi

, ∂h(θ,p)
∂θi

it is needed to take the derivative
by θi using orientation matrix (8.48)

∂K(i)

∂θi
= K(i− 1)C̃(i)

∂AT1 (θi)

∂θi
. (8.63)

As a result of computing (8.61)-(8.63) we get the vector of generalized coor-
dinates, which will be the solution of problem 3.

Thus, by presenting the equations of statics in the form (8.51) and using
pseudo inverse techniques and optimization methods we have received con-
structive solution of problems 1-3.

8.8 Method of motion planning manipulation

systems in arbitrary configuration with

obstacles space

To solve the problem of trajectory planning, a new approach is proposed.
In it’s essence it means creating the working space of admissible states of
manipulation systems (MS) as a discrete set of points obtained by solving
the direct kinematic problem of discrete vector of generalized coordinates.

Such calculations are performed for a particular MS once and saved into a
database. A subset of vectors of coordinates in which MS is positioned in
the same point in space, convert into an Artificial Neural Networks. For
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planning trajectories the following is offered: find by association a vector
in subset of vectors of generalized coordinates using neural network which
is most similar to the vectors of objective state. Thus, computing costs
are minimized because the neural network ’learns’ all the possible ways of
achieving the objective state and the required vector is selected from the set
of values that once were calculated and stored in the database. So trajectory
planning of MS can be organized as a similar procedures of training and
decision making to execute manipulations and locomotion of higher order
organisms.

Locomotive activity belongs to the highly automated movements. This fact
was pointed by Berstain [3]. Locomotive systems, especially anthropomor-
phous, are extremely complex dynamical systems, both in terms of mechan-
ical structure and in terms of its control system. It should be mentioned
that person can use 800 muscles to make different movements. So the bio-
mechanical difference between human locomotion, developed animals and
artificial self-acting devices goes from a large number of available degrees of
its mobility. Coordination of movements means overcoming excessive levels
of mobility of a body unit which moves, in other words that is transformation
it into a control system. So, coordination is controlling mean of a locomotion.
It should be treated not as stopping the additional degrees of freedom, but
overcoming them.

Lack of information on control mechanism particularly affects issues such
as communications control actions with the appropriate motions, individual
pairs participation in muscles control efforts, determination of the criteria
according to which the locomotive processes are carried out. In regard to
such complexity of control structure and a large number of drivers which
make a human move, we will use certain methods of movement control of
live systems at the proposed approach to the synthesis of an artificial move-
ment. The fact that modern state of the computer technology development,
development of algorithms for database control allow to apply the methods
which implement the search for the needed information (even imaginative)
from the large databases influenced on a new approach to control movements
of MS. Of course, it isn’t made by physiological methods, but a real possi-
bility to use algorithms which are based on simulating the behavior of live
creatures exists. These possibilities are:

1. motor experience gained in relation to musculoskeletal driving appara-
tus, which can be represented as a database of neural networks that
contain encrypted discrete space of possible movements of MS. With



506 Optimization methods for robot-manipulation systems . . .

the help of these movements, the object can be put to the desirable
objective position (that is in a vicinity of a space point),

2. an analogue of approach of movement control for moving MS from the
base point to the given,

3. at each movement act which is associated with overcoming external,
uncontrollable and variable forces organism continuously faces with
such irregular and, more often, unforeseen complications, which re-
ject the movement of the target program trajectory. It is impossible or
highly impractical to overcome them by using correction pulses which
are targeted at restoring the previous motion. In these cases, recep-
tor information acts as exciter for adaptive rebuilding of program ’on
the go’, starting from the small, in a technical meaning, movement
of arrows from one to another, which lies aside, project trajectory and
ending with the quality reorganization of the programs that change the
nomenclature itself of the sequenced elements and stages of the move-
ment act. From the mentioned, a new approach is proposed which
allows to dynamically (on the go) change planning trajectories using
motor experience, by prohibiting motion that can not be realized in
the current moment.

Describe the trajectory planning algorithm with information-search approach
for planning trajectories of MS of a custom configuration in the space of
restrictions. This algorithm allows to plan the trajectory selecting them
from the space of admissible states. So there implements an opportunity of
hitting from the state to the nearest objective, so called reference state. For
positioning MS to the given objective state (which is not a point that belongs
to the discrete space) an approach that uses the same algorithm, but iterative,
for gradual (exact) approximation to the objective point is proposed. So
until reaching the objective point, discrete workspace of acceptable states
for a discrete set of vectors of generalized coordinates in the vicinity of the
objective points are being generated.

This way, the destination point is reached from the nearest base point with
the given precision. For computer modeling of MS object-oriented approach
is used, that is, using a mathematical model, a library of base classes is
created, which will have classes that implement a computer model of MS with
an arbitrary number of links and arbitrary types of kinematics in kinematic
pairs. Neural networks (NN) algorithms for the organization of associative
memory are used within the implemented computer model. When there is
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no explicit need for NN to do it, that is, having the number of a sample is
enough, associative memory is successfully implemented by the network of
Hemming. In the method developed, NN with reverse link were used. This
NN implements the Hemminh’s associative memory algorithm. Let’s consider
a question about how, using a computer model described above, realize the
information retrieval approach to solve the problem of planning states of MS
in the environment with restrictions. That is, the following algorithm for
solving inverse kinematics problem is proposed:

1. Disorganization of space, base points. Database is created. It
consists of the following tables: table containing discrete Cartesian space of
working environment of MS; table that contains the discrete space of gen-
eralized coordinates of the work environment of MS; table containing the
Cartesian space point which belongs to MS and reside in the state defined
by the vector of generalized coordinates.

In order to obtain and store knowledge in the specified database the following
algorithm is implemented:

1.1. all possible (for this MS model) combination of generalized coordi-
nate are enumerated (with fixed step) and direct problem of kinematic
is solved, and as a result vectors of generalized coordinates and points
of Cartesian space are obtained,

1.2. these vectors of generalized coordinates and the corresponding point in
Cartesian space above are fixed in a specified database,

1.3. vector coordinates which lead NS to the same state and transform into
NN are automatically grouped using the structure of database.

Here follows the algorithm of trajectory planning for MS in the discrete
Cartesian space using the obtained knowledge. Input data: a) current state
of MS which defined by point in discrete Cartesian space (x, y, z) and the
vector of generalized coordinates, b) the objective state, which defined by
point of discrete Cartesian space (x′, y′, z′).

2. Algorithm of transition MS from its current state to the ob-
jective state .

2.1. Using the coordinates of the objective state (x′, y′, z′), a record from the
table of states is looked up and then matched with the corresponding
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set of records from the table of generic coordinates, that is, a NN is
constructed which takes a vector of current state’s coordinates as an
input,

2.2. NN’s output is the vector of generalized coordinates of a system that
meets the objective point θ′. Moreover, vector obtained is most similar
to input vector from all possible sets of vectors. Thus, the motion is
received, for which least cost of transition are needed,

2.3. In the cycle, with a particular step, smooth move from current state θ
to the objective state θ′ is executed.

Based on the given approach there were developed the algorithms for solving
following tasks:

1. approximation from the reference point (x, y, z) ∈ XY Z to an arbitrary
point (x′, y′, z′) /∈ XY Z from the discretization described above but
iteratively and only in the vicinity of reference point,

2. planning of trajectories of a MS in an environment with restrictions that
has a proposed set of generic coordinates vectors with corresponding
states of MS in case of matching the restrictions are updated in the
database as forbidden and not to be used in further planning.

Thus, if present MS as described above computer model, the information re-
trieval approach to solve the problem of planning of states in an environment
with restrictions can be realized.

Set of three-dimensional modeling programs of planning procedures of tra-
jectories of MS (see Fig. 8.2) were developed. The following features are
implemented in this set of programs: indication of arbitrarily configuration
of MS; computation-learning (space discretization); finding the optimal tra-
jectory of movement using Neural Networks; set the vicinity of restrictions;
building trajectories.

The program contains a graphical representation of a discrete Cartesian space
of possible states of MS. The space of possible states of MS in the following
configurations is represented in Fig. 8.3: links – 7; length of each one – 30
sm. The step for discretization: link from the 1-st to 4-th – 60 degrees,
from the 5-th – 30 degrees. Types of kinematic links (all revolving around
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Figure 8.2: Example of three-dimensional modeling

Figure 8.3: Discrete space of possible states of manipulation system

the axes): 1-st – X, 2-nd – Y, 3-rd – Z, 4-th – X, 5-th – Z, 6-th – Y and
7-th – X. Restrictions on changes of angles by links: 1-st – (−180o ÷ 180o),
2-nd – (−120o ÷ 180o), 3-rd – (−120o ÷ 180o), 4-th – (−180o ÷ 180o), 5-th –
(−150o ÷ 180o), 6-th – (−150o ÷ 180o). The results of modeling confirm the
effectiveness of the proposed approach.
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