Modelling and Optimization

edited by
Jan Sikora
Waldemar Wojcik

Politechnika Lubelska
Lublin 2011

Reviewers:
prof. dr hab. inz. Zbigniew tukasik
prof. dr hab. inz. Ryszard Romaniuk

Publication approved by Rector of Lublin University of Technology
© Copyright by Lublin University of Technology 2011

ISBN: 978-83-62596-34-8

Publisher: Lublin University of Technology
ul. Nadbystrzycka 38D, 20-618 Lublin, Poland
Realization: Lublin University of Technology Library
ul. Nadbystrzycka 36A, 20-618 Lublin, Poland
tel. (81) 538-46-59, email: wydawca@pollub.pl
www.biblioteka.pollub.pl
Printed by : ESUS Tomasz Przybylak, Poznan, Poland

www.esus.pl

The digital version is available at the Digital Library of Lublin University of Technology: www.bc.pollub.pl
Impression: 100 copies

http://www.bc.pollub.pl/�
http://www.biblioteka.pollub.pl/�
http://www.esus.pl/�

Contents

I Parallel computing 1

1 Control of fractional-order dynamic systems under uncer-

tainty 3
1.1 Summary 3
1.2 Introductiono 4
1.3 Riemann-Liouville and Caputo Fractional Derivatives)
1.4 The Miller-Ross Sequential Derivatives 7
1.5 Hilfer’s Derivative 12
1.6 The Mittag-LefHer Generalized Matrix

Function 13
1.7 Fractional Order Systems, Cauchy Formula 14
1.8 Game Problem Statement 18

1.8.1 Method of Resolving Functions 19
1.9 Comparison with Pontryagin’s first direct method 25
1.10 Separate Dynamics 26
1.11 Example of a Pursuit Game for Systems of Fractional Order

mand e 29

111

1.12 Game with Plain Matrix. Asymptotic Representation of the

Scalar. Mittag-Leffler Functions

1.13 Group Pursuito

1.14 Encirclement

1.15 Bagley-Torvik Equation

Algorithms of parallel computations

2.1

2.2

2.3

24

Introduction
Linear algebraic systems
2.2.1 Methods for the solving of linear algebraic systems

2.2.2 Parallel algorithms for the solving of linear systems . .
Algebraic eigenvalue problem

2.3.1 Methods for the solving of algebraic eigenvalue prob-
lem (AEVP) with symmetric matrices

2.3.2 Parallel algorithms for solving of algebraic eigenvalue
problem

2.3.3 Parallel QL-algorithm for tri-diagonal real symmetric
matriceso

Non-linear equations and systems
2.4.1 Statements of problems with approximate initial data .

2.4.2 Methods for the solving of SNE

2.4.3 Parallel algorithms for the solving of non-linear equa-
tions and systems

2.4.4 Solving of systems of non-linear equations

v

2.5 Initial-value problems for systems of ordinary differential equa-
tlons L 111
2.5.1 Statements of problems with approximate initial data . 111
2.5.2 Method for the SODE solution 113

2.5.3 Parallel algorithms for the solving of initial-value prob-
lems for SODE 116

2.6 Intelligent software for investigating and solving of problems
with approximate initial data 128
2.6.1 Intelligent software Inpartool 130
2.6.2 Examples of solving of problems by means of Inpartool 134
2.6.3 Library of intelligent programs Inparlib 141
3 Multiprocessor computing structures 147
3.1 Introduction 147
3.2 Subject and Jargon of Parallel Computing 150
3.2.1 Computer architecture classification 153
3.2.2 Classification of parallel software development tools . . 158
3.3 Parallel Computing Hardware 164
3.3.1 Networks for cluster computing 166
3.3.2 Specialized microprocessor architectures 168
3.4 Parallel Programming 174

3.4.1 OpenMP for Multiprocessor/Multicore Shared Mem-
ory SMPo 176

3.4.2 MPI for Distributed/Shared Memory Clusters 186

3.4.3 OpenCL for GPU, Cell, SMP CPU and Heterogeneous

Computing o 195

3.5 Computational Grid 205
3.6 Parallel Program Efficiency: Performance and Scalability . . . 210
3.7 Paradigms of Parallel Programming 220
3.8 Massive Parallel Data Processing 229
3.9 Conclusion 233

IT Numarical modelling 239

4 3D BEM Froward Problem for Diffusive Optical Tomogra-

phy

4.1

4.2

4.3

4.4

241
Introduction 241
Singular and nearly singular integrals 243
Governing equations 245
4.3.1 Jacobian 247

4.3.2 Integration of non-singular integrals over the triangle . 248

Second-order interpolation functions 249
4.4.1 'Triangular boundary elements 250
4.4.2 Numerical integration of singular integrals 251

4.4.3 More precise numerical integration of singular integrals 255
4.4.4 Quadrilateral boundary elements 258

4.4.5 Integration of non-singular integrals over
thesquareo oo 260

vi

4.5

4.6

4.7

4.8

4.9

4.10

4.11

4.12

4.13

4.4.6 Integration of singular integrals over the square 261

Treatment of Boundary Conditions 267
4.5.1 Dirichlet boundary conditions 267
4.5.2 Neumann boundary conditions 268
4.5.3 Robin boundary conditions 268
4.5.4 Mixed boundary conditions 268
Non-homogeneity L. 268
Index mismatched diffusive/diffusive interfaces 272
4.7.1 Approximate interface conditions 273
4.7.2 Complete interface conditions 276
Numerical examples 0L 279
4.8.1 Two concentric spheres 279

Diffusion model for light transport in the frequency domain . . 283

Results for 3D space 285
4.10.1 Validation of numerical results and measures of the
ACCUTACY + v v v e e e e e e e e e e e 288
4.10.2 The proximity effect 289
Multilayered model of the neonatal head 290

Light propagation in diffusive media with non-scattering regions293

4.12.1 Governing equations for non-scattering sphere embed-

ded in a diffusive spherical region 293
4.12.2 Matrix form of integral equations 297
The Form Factor 298

vil

4.13.1 The Form Factor calculated analytically 298
4.13.2 The Form Factor calculated numerically 299

4.14 Non-scattering gap between two diffusive regions of a spherical

shape 299
4.14.1 Form Factor calculated analytically 300
4.14.2 Visibility function calculated analytically 301
4.14.3 Visibility function calculated numerically 302
4.14.4 Point in triangle test oo 304
4.14.5 Integral equations 306
4.14.6 Matrix form of integral equations 307
4.15 Results for the void gap 308
4.15.1 The steady state 308
4.15.2 The frequency domain solution - 100MHz 308

4.15.3 Multilayered neonatal head model with the CSF layer . 308
4.15.4 Conclusion 309

4.16 Domain Decomposition Method for multilayered spherical model 310

4.16.1 Introduction 312

4.16.2 The four-layer head model 313

4.16.3 Conclusion 315

5 Infinite Boundary Elements 325
5.1 Introduction 325
5.2 Infinite elements classification 326

viil

5.3

5.4

9.5

5.6

2.7

0.8

2.9

Mapped infinite boundary elements 327

5.3.1 One-dimensional infinite boundary elements 327
5.3.2 Two-dimensional infinite boundary elements 328
Decay basis functions 334
5.4.1 One-dimensional infinite boundary elements 334
Numerical integration 335
5.5.1 Reciprocal decay functions — Gauss-Legendre 335
5.5.2 Exponential decay functions — Gauss-Laguerre 336
Modified boundary integral equation 337
Two-dimensional infinite boundary elements 341
5.7.1 Decay functions 342
Numerical examples 353
5.8.1 2D calculationso 353
5.8.2 3D calculationso 354
583 Results. 358
Conclusion 359

BEMLAB-open source, objective Boundary Element Method

library 365
6.1 Introduction 366
6.2 Radiative Transport Equation in Diffuse Optical Tomography 368
6.3 Governing equation in Electrical Impedance Tomography . . . 370
6.4 Boundary Element Method 370

1X

6.4.1 Multi domain problems 374

6.5 BEMLAB software 376
6.5.1 Technology, 377
6.5.2 Data Input/Output format 381
6.5.3 BEMLAB architecture 385
6.5.4 CSparskit2. oL 388

6.6 The Diffuse Optical Tomography problem described by means
of the baby head model 388
6.7 Summary 390
IITI Optimization 395
7 Review of modern optimization methods 397
7.1 Introduction 397
7.2 What is an optimum?o 398
7.3 Single objective functionso 399
7.3.1 Artificial Ant Example 1 402
7.3.2 Weighted Sums (Linear Aggregation) 403
7.4 Optimization methods classification 403
7.5 Multiobjective optimization 415
7.6 Pareto-optimization 421
7.6.1 Artificial Ant Example 2 424
7.6.2 Constraint Handling 425

7.6.3 Artificial Ant Example 3 L. 428

7.7 The Structure of Optimization 428
7.7.1 Spaces, Sets, and Elements 429
7.7.2 The Objective Space and Optimization Problems . . . 430

7.8 The algorithms of optimization 431
7.8.1 Optimization Parameters 431
7.8.2 Enumeration of basic of Optimization Algorithms . . . 432

Optimization methods for robot-manipulation systems mod-
eling and controlling 463

8.1 Optimization methods for planning problems solving and com-
puter aided design of optimal kinematics spatial structure of

manipulation robotso 463

8.2 Numerical methods and algorithms of automatic construction
of dynamic models for the manipulated robots 469

8.3 Manipulation of dynamics equations with minimum calculable
complication Lo 474

8.4 Analysis of modeling methods and motion control of manipu-
lation systems 485

8.5 Construction of effective algorithms for dynamics and control
problems solution L 489

8.6 Creation of a method and a system for controlling coordinated
movements of manipulative robots 494

8.7 Optimization and pseudoinversity in problems concerning equi-
librium states 497

8.8 Method of motion planning manipulation systems in arbitrary
configuration with obstacles space 504

x1

xii

Part 1

Parallel computing

Chapter 1

Control of fractional-order
dynamic systems under
uncertainty

A. Chikrir, 1. Matychyn, K. Gromaszek, A. Smolarz

1.1 Summary

In this chapter we explore the linear non-homogeneous fractional-order dif-
ferential systems with classical Riemann-Liouville [9], the Caputo regularized
(33, 16], and Miller-Ross [2] sequential derivatives. Solutions to these sys-
tems are presented in the form of Cauchy formula analogs by the use of the
Mittag-Leffler generalized matrix functions [12].

We also treat sequential derivatives of special form [16]. Their relation to
the Riemann-Liouville and Caputo fractional derivatives and to each other
is established.

Differential games of approach for the systems with the fractional derivatives
of Riemann-Liouville, Caputo, as well as with the sequential derivatives are
studied. The Method of Resolving Functions [34, 35, 15, 14] allows to derive

4 Control of fractional-order dynamic systems under uncertainty

sufficient conditions for solvability of the mentioned game problems. These
conditions are based on the modified Pontryagin’s condition [34]. The results
are illustrated on a model example where a dynamic system of order 7 pursues
another system of order e. The case of plain matrix is also examined, where
asymptotic representation of the scalar Mittag-Leffler generalized function
are employed.

The problem of group pursuit, which illustrates on an example the situation
of encirclement by Pshenichnyi [6], is studied separately.

1.2 Introduction

Operations of fractional differentiation and integration go back a long way.
It seems likely that most straightforward way to their definitions is associ-
ated with the Abel integral equation and the Cauchy formula for multiple
integration of functions. These issues are widely covered in the monograph
[9], also one can use the book [2]. Various kinds of fractional derivatives
were generated by the needs of practice. Detailed historical review of this
subject matter is contained in [9]. The fractional derivatives under study,
namely, Riemann-Liouville, Caputo, Miller-Ross, and Hilfer also have their
own specifics. The Riemann-Liouville fractional derivative has singularity at
the origin. Therefore, the trajectories of corresponding differential system
start at the infinity, which seems not always justified from the physical point
of view. That is why Caputo regularized derivatives appeared, in which this
defect was eliminated. This means that the trajectories of corresponding
systems do not arrive at the infinity at any finite moment of time. However,
both the Riemann-Liouville and the Caputo fractional operators do not pos-
sess neither semigroup nor commutative properties, which are inherent to
the derivatives of integer order. This gap is filled by the Miller-Ross frac-
tional derivatives, which, in particular, make it feasible to lower the order
of a system of differential equations by increasing their number. Hilfer frac-
tional derivatives provide a framework that encompasses both the Riemann-
Liouville and Caputo derivatives as particular cases.

Representations of solutions of the above mentioned fractional order linear
non- homogeneous systems play an important role in the mathematical con-
trol theory and the theory of dynamic games [35, 15, 14]. Some formulas can
be found in [2, 7]. In [12], by introducing of the Mittag-Leffler generalized

1.3 Riemann-Liouville and Caputo Fractional Derivatives 5

matrix functions, an analogue of the Cauchy formula was derived in the case
of Riemann-Liouville and Caputo fractional derivatives for order 0 < a < 1
(without the help of the Laplace transform). Corresponding formulas for
derivatives of arbitrary order can be found in [16].

It seems likely that research into the game problems for the fractional-order
systems go back to the paper [12]. The basic method in these studies is the
method of resolving functions [34, 35, 15, 12, 13, 14, 16, 11]. This method
is sometimes called the method of the inverse Minkowski functionals. Orig-
inally, the method was developed to solve the group pursuit problems (see
6, 34, 25]). In the paper [25] it is referred to as the method of the guaran-
teed position non-deterioration. The method of resolving functions is based
on the Pontryagin condition or its modifications. This method is sufficiently
universal: it allows exploring the conflict-controlled processes for objects
of different inertia as well as of oscillatory and rotary dynamics, the game
problems under state constraints, integral constraints of control, and game
problems with impulse controls [34, 11]. The method of resolving functions
fully substantiates the classical rule of parallel pursuit [34]. The gist of the
method consists in constructing of special measurable set-valued mappings
with closed images and their support functions. These functions integrally
characterize the course of the conflict-controlled process [34, 13]. They are re-
ferred to as the resolving functions. Instead of the Filippov-Castaing lemma,
A x B-measurability [13, 17] and resulting superpositional measurability of
certain set-valued mappings and their selections is employed to substantiate
a measurable choice of the pursuer’s control.

1.3 Riemann-Liouville and Caputo Fractional
Derivatives

Let R™ be the m-dimensional Euclidean space, R, the positive semi-axis,
and f(t), f : Ry — R™, an absolutely continuous function.

Here we consider fractional derivatives of arbitrary order. Suppose n — 1 <
a <n,n € N (N stands for the set of natural numbers) and let the fractional
part of a be denoted by {a} and its integer part by [«]. Thus, [a] =n — 1,
{a} = a — n + 1. The Riemann-Liouville fractional derivative of arbitrary

6 Control of fractional-order dynamic systems under uncertainty

order o (n —1 < a < n, n € N) is defined as follows [9]:

Def(t) = (di)[} {O‘}f()
= (%) (= {a}) s 0 tff{)a}d7= (1.1)
5 ()" Jy whdr.

Lemma 1 Letn — 1 < a <n, n €N, and the function f(t) have absolutely
continuous derivatives up to the order (n — 1). Then the following formula

1S true
n-! - t) (r
S p—)/0(S0 4 (19

prt I(k—a+1) I'n—« t — T)e—ntl

Proof. The proof is by induction on n.

Letforn—2<a<n-—1

the k 1 b1 ()
I'k—a+ l)f((0)+ I'n—1—-a) /0 (t — 7)o—n+2 dr. (1.3)

N

n—

Def(t) =

e
Il

0

Then for n—1 < « < n, taking into account {a} = {a—1} and [a—1] = [a]—1
for non-integer «, we obtain

d [o] d /d [a]—1 d
D= (5) v =5 (%) D= 500,

Since n —2 < o — 1 < n — 1, we can employ the equation (1.3):

d

EDa_lf(t) =

tk a+l1 () 1 t f(n—l)(,r)
Tt (—~T(k—a+2) —ary OF F(n—a)/o (t—r)a”HdT) '

Integrating by parts, we find that

DEf(t) =

tk a+1

T at ;I‘ k—a+2) (k)<0>+F(n—oc)(n—oz)

Df(t)

1.4 The Miller-Ross Sequential Derivatives 7

1 ARG = (—a—f—ltka()
+F<n—a><n—a>/o <t—r Z Th—aty | OF
(n = Q" gy (n—o) [0
T a)m -’ <O>+r<n_a><n_a>/o Ty
RS I A 1 [)
B — Lk —a+ 1)f()(O) * ['(n—«) /0 (t — 7)a—n+l dr,

which was to be proved.

As before, the integral term in (1.2) is the regularized Caputo derivative of
order @ (n—1<a<n,néeN):

D(O‘)f() =§ g"‘f()
= s fo - T)iglindf (1.4)
= DYf(t) = >4 or(xj a+1)fk)()-

1.4 The Miller-Ross Sequential Derivatives

Both the Riemann-Liouville and Caputo derivatives possess neither semi-
group nor commutative property, i.e. in general,

DR f(t) # DDA f(t),

DD?f(t) # DD (1),

where D® stands for the Riemann-Liouville or Caputo fractional differentia-
tion operator of order a.

This fact motivated introduction by [24] of sequential derivatives, defined as
follows:

Dlelf(t) = DYD* .. D (1),

where @ = (a1, aa,...,q,) is an m-tuple, |a| = a3 + az + ... + ay,, and
function f(t) is sufficiently smooth. In general, the operator D* underlying
sequential Miller-Ross derivative can be either the Riemann-Liouville or Ca-
puto or any other kind of integro-differentiation operator. In particular, in

the case of integer «; it is conventional differentiation operator (%)ai.

8 Control of fractional-order dynamic systems under uncertainty

It should be noted that the Riemann-Liouville and Caputo fractional deriva-
tives in their turn can be considered as particular cases of sequential deriva-
tives. Indeed, suppose n — 1 < a < n and denote p = n — «, then, by
definition (1.1),

n—1 —n [
Def(t) = (g)" D "ft)=(5) DPf),
(1.5)
_n n—1 _ n
DWf(t) =Dt (4)" f(t) =D (g)" f(1),
where D7P is the Riemann-Liouville left-sided integral of order p = n — a,
0 < p < 1, also denoted by J?:

D (t) = JPf(t) = F(lp) /0 ; / (:))l_pdr

Hereafter we assume that J° is the identity operator, i.e. JOf(t) = f(¢). It
should be noted, that for existence of the Riemann-Liouville integral it is
sufficient that the function f(t¢) is locally integrable on R, [29].

The Miller-Ross sequential derivatives make it possible to lower the order of
fractional differential equations.

Here we suggest an example of constructing sequential derivatives in order
to establish their relation to the Riemann-Liouville and Caputo derivatives.
Let us choose some v, n —1 < v <n,n €N, and let us study the case when

a=G,v—-n+1ln—-1-7=0UA{rv}V]—J),7j=0...,n—1

Obviously |a| = v. Let us introduce the following notation

= () 2 () 0= () v (@) o

j v]—j j n=1-j
o = (£) oo (4) = (& e (4 g0,

where j =0,1,...,n — 1.

The following lemma shows a relationship between the sequential derivatives

Dy f(t), D](-”) f(t) and classical derivatives of Riemann-Liouville and Caputo.

1.4 The Miller-Ross Sequential Derivatives 9

Lemma 2 Letn—1<v <n,n €N, and the function f(t) have absolutely
continuous derivatives up to the order (n —1). Then the following equalities

hold true

DY f(t) = DV f(t) = D¥ F(t) — Y4y mimms [9(0),
DY f(t) = Dyf(t) = D(”>f() L f(0)
= D" f(t) = Y4t sy F(0),

D7 f() = Do f () = D) + i i S P(0)
=D"f(t) — 215 F(,:_—Vll)f““)(ox

D\ f(t) = Di o f(t) = DV f(t) + S4m) mita FP(0)
- Dyf() - F(tl Vz)f(0)7
Dy f(t) = DY) F(t) + L1y oy £ P(0) = DV f(2).

Proof. Tt is evident that

, d n—1 1 t (n)
D(())f(t) — pl—n+1) <E) flt) = =) /0 (th)(j;)l_ndT,

whence, by virtue of (1.4),

n-1 k—v
DY (1) = DY 5(t) = D" (1) = 3 5=y £ 000
k=0

10 Control of fractional-order dynamic systems under uncertainty

On the other hand, in virtue of (1.4)

j t (n=3) (
D](V)f(t) - D;/—lf(t) = (%) F(nl— I/) /0 (tf_ T)VS-I)—ndT -

1Y’ pw-s N pospy = S~

n—1—j

The equality
n—1 k—v
D f(0) = DS + Y gy £ 0 = DA
k=0

is the direct consequence of (1.1) and Lemma 1. Taking into account the
equalities D§V) f(t) =Dy, f(t) and setting DY) f(t) = D" f(t) one can intro-
duce common notation

DVf(t) =DV f(t) = DY, f(t),

wheren — 1 <v <n,j
DY f(t) and Dy f(t) =

j =0,...,n. It goes without saying that DY f(t) =
DV f(t). In the sequel the formula

o1/~ (5) D10 (1.6

will be of use.

The Laplace transform is a powerful tool formulated to solve a wide variety
of initial-value problems. The strategy is to transform the difficult differ-
ential equations into simple algebra problems where solutions can be easily
obtained. One then applies the Inverse Laplace transform to retrieve the
solutions of the original problems.

For a function f(¢), f : Ry — R™, its Laplace transform is denoted as
L{f(t); s} obtained by the following integral:

L{f(t);s) = / " Ftyer,

where s € C (C stands for the set of complex numbers). The Laplace trans-
form of f(t) exists whenever the following conditions hold true [1]:

1.4 The Miller-Ross Sequential Derivatives 11

1. f(t) is measurable and bounded, hence locally summable;

2. There exists real constants K, a, such that ||f(¢)|| < Ke™, which im-
plies that f(¢)e™*" is integrable on Ry (in symbols f(¢)e™* € Li(Ry)).

Hereafter, || - || stands for the Euclidean norm in R™.

If the Laplace transform of f(t) is F(s), then f(t) is said to be the Inverse
Laplace Transform of F(s) or L™Y{F(s)} = f(t), where L' is called the

Inverse Laplace Transform Operator.

The following formulas for the Laplace transforms of the Riemann-Liouville
and Caputo fractional derivatives hold true [27]:

L{D*f(t);s} = s“F(s) — Z_: skDO‘*kflf(t)h:O, (1.7)
LD f(t): 5} = s°F(s) — 3 5241 70 0) (18)

For integer n the following formula is true:

LU @)} = 5P (s) = 3 -1 0), (1.9

Using (1.6), (1.8), (1.9), one can derive Laplace transform of the derivative
DYf(t):
J

L{Df(t):s} = L{(4) DY f(t)ss} =

= SIL{DU f(t);s} = iy st (4) 7 DU f()]imo =

dt

(1.10)
=sIL{DVIf(t);s} — >0 05’“@3’ T f())imo =

= s"F(s) = 33050 s 7 O(0) = 00 s DT (D)o

Setting >, s* 7 FO(0) = 0, S04, s s¥DY 71 f(t)|i—o = 0, and taking into
account that ®*~%~1f(t) = D"7*1f(t), one can see that (1.7), (1.8) are

12 Control of fractional-order dynamic systems under uncertainty

particular cases of (1.10):
L{Dgf(t); s} = L{D f(t): 5,
L{D,f(t); s} = L{D" f(t); 5}

1.5 Hilfer’s Derivative

Hilfer’s derivative is another generalization encompassing both the Riemann-
Liouville and Caputo derivatives as particular cases.

According to [27], let us introduce the fractional derivative of order o, 0 <
a <1, and type p, 0 < p < 1, in the following way:

d
DYH (1) = Jrl—a) = g(—=p)(1=a) (4}
[t = JH-e) 2 Jam) pg)

At o = 0 this definition yields classic Riemann-Liouville derivative and at
i =1 — the Caputo regularized derivative.

Note that the definition of the Hilfer derivative can be extended to higher
orders. Let n — 1 < o < n, n € N, and the function f has absolutely
continuous derivatives up to the order n. Let us set the derivative of order
a and type pu, 0 < pu < 1, to be equal

mn

D f(t) —.J““%“”éégj“‘”“”‘alf@>. (1.11)

In virtue of (1.5), at u = 0 we, as before, obtain the Riemann-Liouville
derivative of arbitrary order «

a ..
DR f(t) = Df(t) = 5" (1), (1.12)
and at =1 — the Caputo derivative
d?’L

a, _ () _ n—a
D (1) = DS(D) = 70 ()

To derive the Laplace transform of the higher-order Hilfer derivative (1.11),
we employ (1.9) and the formula:

L{JYf(t);s} = s “F(s), (1.13)

1.6 The Mittag-Leffler Generalized MatrixFunction 13

Then, in view of (1.9), (1.13), we obtain

mn

LD f(ts) = L 0

ST f () S} =

d
_ gnla—n) {dtn JU=mm=a) ¢y, } = st [sn L{JOm=e) £ (1) 514

dr i—1 1))
—}j O PO (1))).
Finally, we have

i
L{D™(t); s} = 5° Zs“(a T). (114)

By virtue of (1.12), the equation (1.14) yields for for y© = 0 the Laplace
transform (1.7) of the Riemann-Liouville derivative. For u = 1, we obtain
from (1.14) the Laplace transform (1.8) for the Caputo derivative of arbitrary
order o, n — 1 < ao < n.

1.6 The Mittag-Leffler Generalized Matrix
Function

In [12] the Mittag-Leftler generalized matrix function was introduced:

o0 Bk
E,(B;p) = Z -1
— D(kp~' + 1)

where p > 0, p € C, and B is an arbitrary square matrix of order m.

The Mittag-LefHler generalized matrix function plays important role in study-
ing the linear systems of fractional order. Denote by I the identity matrix
of order m. The following lemma allows to find the Laplace transforms of
expressions involving the Mittag-Leffler matrix function.

Lemma 3 Let o > 0, 8 > 0, and let A be an arbitrary square matriz of
order m. Then the following formula is true:

L {tﬁ_lE; (At B); s} = 52T — A)7!

14 Control of fractional-order dynamic systems under uncertainty

Proof. Taking into account definitions of the Mittag-Leffler generalized ma-
trix function, Gamma-function, and substituting 7 = st, we obtain:

L{tﬂ—lE;(At“;B);S} :/ e T E L (AL B)dt
« 0 “

o0

o) oo Aktak oo
— —Sttﬂ—l / _Sttak+6_ldt
/0 c Z T(ak + 5 Z ak: 8), ©

k=0

- A* / = ft 1
= e TP dr = Ak g—(ek+B)
kZ:o I'(ak + B)sk+68 |, kZ:O

Now let us show that > 50 Aks™(@k+h) = ga=B(so] — A)~1. The last formula
is equivalent to the equation

D Ak = (gop — A)71 (1.15)

Let us multiply both sides of (1.15) by (s*I — A) (either on the left or on
the right, it makes no difference as these matrices commute). We obtain

ZAks*(kJrl)a(Sa[- A) _ ZAkaka _ ZA(kJrl)Sf(kJrl)a — I
k=0 k=0 k=0

Since the inverse matrix is unique, this completes the proof.

1.7 Fractional Order Systems, Cauchy For-
mula

Suppose ¢(t), g : Ry — R™, is a measurable and bounded function, then
g(t)e™st € Li(R,), s € C. Thus, g(t) is Laplace transformable.

Consider a dynamic system whose evolution is described by the equation:
D% =Az+¢g, n—1<a<n, (1.16)
under the initial conditions

D *2()|jmo = 22, k=1,...,n. (1.17)

1.7 Fractional Order Systems, Cauchy Formula 15

Hereafter, the state vector z belongs to the m-dimensional real Euclidean
space R™, A is a square matrix of order m.

Lemma 4 The trajectory of the system (1.16), (1.17) has the form:

n

2(t) = Z ta_kEé(Ato‘; a—k+1)z) + / (t— T)a_lEi (At —71)% a)g(T)dr.
k=1 0
(1.18)

Proof. Let us apply the Laplace transform to (1.16), taking into account
(1.7). We get:

s*Z(s) — Z P = AZ(s) + G(s),
k=1

or
n

Z(s) =Y (s — AT 4 (54T — A) MG (s). (1.19)

Let us apply the inverse Laplace transform to (1.19). Taking into account
Lemma 3 we have

n t
z(t) = Z ta*kEé(Ato‘; a—k+1)2) + /0 (t— T)aflEi (At —7)% a)g(T)dT.
k=1

Which was to be proved.

Now consider a dynamic system of fractional order in the sense of Caputo
described by the equation:

D@Wz=Az+qg, n—-1<a<n, (1.20)
under the initial conditions

200) =22, k=0,...,n—1. (1.21)

Lemma 5 The trajectory of the system (1.20), (1.21) has the form:

n—1

2(t) = ZtkEé(Ato‘; k+ 1)222+/0t(t—7')°‘1E(11 (A(t—7)% a)g(T)dr. (1.22)

16 Control of fractional-order dynamic systems under uncertainty

Proof. Let us apply the Laplace transform to (1.20). Taking into account
(1.8), we deduce:

n—1
s*Z(s) — Z s = AZ(s) + G(s),
k=0
or
n—1
Z(s) =Y s F s — A)72l, + (52T — A)TIG(s). (1.23)
k=0

Now apply the inverse Laplace transform to (1.23). Then, in view of Lemma
3, we have:

—_

2(t) =Y t'E

¢
(At*; k + 1)z22 + / (t — T)a_lE; (A(t — 7)% a)g(T)dr.
k=0 0 :

1
[

It should be noted that the formulas (1.18), (1.22) in some specific cases were
obtained in [10, 29], by a different method.

Now, let us study systems involving sequential derivatives of special form Df.
Consider a dynamic system whose evolution is described by the equation:

Diz=Az+g,n—1<a<n, je{0,1,...,n} (1.24)

under the initial conditions
D 2 (B)im0 =F, k=0,...,5—1,

z(l)EO) =z, 1=0,....n—j—1. (1.25)

Lemma 6 The trajectory of the system (1.24), (1.25) has the form:
n—j—1 j—1

At) = D HEL (A1) 4+ Y T EL (A a — k)
=0 k=0

—i—/o (t— T)aflEé(A(t —7)% a)g(T)dr.

Proof. Let us apply the Laplace transform to the system (1.24) with account
of (1.10). Then we obtain:

n—j—1 j—1

s*Z(s) — Z s Z s"2) = AZ(s) + G(s),

1= k=0

1.7 Fractional Order Systems, Cauchy Formula 17

or

n—j—1 7j—1
= > SN T = AT)+) S (sPT = A) TR+ (57T — A)TMG(s).
1=0 k=0

(1.26)

Applying the inverse Laplace transform to (1.26) and taking into account
Lemma 3, we find:

n—j—1 j—1
= > HE (A 1+ 1)z + >t B (At a - k)R
= k=0

—i—/o (t— T)a_lEé(A(t —7)%a)g(r)dr.

Which was to be proved.

Finally, let us study systems involving Hilfer derivatives of order a and type
1. Consider a dynamic system whose evolution is described by the equation:

DYz=Az+f, n—1<a<n, 0<u<l, (1.27)
under the initial conditions

di

EﬂWWWQ(NHH_f i=0,...,n—1 (1.28)

Lemma 7 The trajectory of the system (1.27), (1.28) has the form:

n—1
P t) — Zti—(l—#)(” @) l(Ata 7 — (]_ — M)(n — Oé) -+ 1)2?"‘

+/0 (t — T)a_lEé(A(t —7)%) f(r)dr.

Proof. Applying the Laplace transform to the both sides of (1.27), we obtain:

m—1
$°Z =y szl = AZ+F,
=0

whence:

m—1

= 37 gulemmiti(gep - A)TI0 L 4 (571 — A)TUE(s).

=0

18 Control of fractional-order dynamic systems under uncertainty

In view of Lemma 3 and of the obvious equality Zggl a; = Z?jol 1 —i

the inverse Laplace transform yields:

n—1

2(t) =Y OOTOE (At — (1= p)(n — o) + 1))+
=0

—i—/o (t — T)aflEé(A(t —7)%) f(r)dT.

1.8 Game Problem Statement

In this section a statement for the problem of approaching the terminal set
will be given for conflict-controlled processes, the dynamics of which is de-
scribed using fractional derivatives of Riemann-Liouville, Caputo, and Miller-
Ross.

Consider conflict-controlled process whose evolution is defined by the frac-
tional order system:

DY = Az + ¢p(u,v), n—1<a<n. (1.29)

Hereafter D* stands for the operator of fractional differentiation in the sense
of Riemann-Liouville, Caputo, Miller-Ross, or Hilfer. It will be clear from
the context which type of the fractional differentiation operator is meant.
Here, as before, z € R™, A is a square matrix of order m. The control block
is defined by the jointly continuous function p(u,v), ¢ : U x V — R™, where
wand v, u € U, v € V, are control parameters of the first and second players
respectively, and the control sets U and V are from the set K(R™) of all
nonempty compact subsets of R™.

When D is the operator of fractional differentiation in the sense of Riemann-
Liouville, i.e. D* = D, the initial conditions for the process (1.29) are given
in the form: (1.17). In this case denote : 2° = (z9,...,2%). When the

’~nl
derivative in (1.29) is understood in Caputo’s sense D% = D@ the initial
conditions are of the form (1.21) and 2° = (20,,...,2% ;,). For sequential
derivatives of special form D = D¢ the initial conditions are given by (1.25)

and 20 = (%,...,2)_1,29,...,20_; ;). Finally, if D* stands for the Hilfer

1.8 Game Problem Statement 19

fractional differentiation operator i.e. D* = D** for some 0 < p < 1, then
the initial conditions are of the form (1.28) and we denote 2° = (20,...,20 ;).
Along with the process dynamics (1.29) and the initial conditions a terminal
set of cylindrical form is given:

M* = My+ M, (1.30)

where M is a linear subspace of R™, M € K(L), and L = My is the
orthogonal complement of the subspace M, in R™.

When the controls of the both players are chosen in the form of Lebesgue
measurable functions u(t) and v(t) taking values from U and V respectively,
the Cauchy problem for the process (1.29) with corresponding initial values
has a unique absolutely continuous solution [24, 29].

Consider the following dynamic game. The first player aims to bring a tra-
jectory of the process (1.29) to the set (1.30), while the other player strives
to delay the moment of hitting the terminal set as much as possible. We
assume that the second player’s control is an arbitrary measurable function
v(t) taking values from V', and the first player at each time instant ¢, t > 0,
forms his control on the basis of information about 2% and v(t):

u(t) = u(z%v(t)), wu(t)€U. (1.31)

Therefore, u(t) is Krasovskii’s counter-control [39] prescribed by the O. Hajek
stroboscopic strategies [26].

By solving the problem stated above we employ the Method of Resolving
Functions [34, 12]. Usually this method implements the pursuit process in
the class of quasistrategies. However in this paper we use the results from
[13] providing sufficient conditions for the termination of the pursuit in the
aforementioned method with the help of counter-controls.

1.8.1 Method of Resolving Functions

Denote IT the orthoprojector from R™ onto L. Set ¢(U,v) = {p(u,v) : u €
U} and consider set-valued mappings:

W(t,v) = T By (A%) (U, 0), W(t) = [W(t,v)

veV

20 Control of fractional-order dynamic systems under uncertainty

defined on the sets Ry x V' and R, respectively. The condition:
Wi(t)#£0, teRy, (1.32)

is usually referred o as Pontryagin’s condition. This condition reflects some
kind of first player’s advantage in resources over the second player. In the
case when the condition (1.32) fails, i.e. for some t € Ry, W(t) = (), we will
use the modified Pontryagin’s condition. It consists in rearranging resources
in favor of the first player. Namely, at the moments when W (t) =) the
players’ control resources are equalized and the resource consumed for this
action is then subtracted from the terminal set. Formally the procedure is
arranged as follows. A measurable bounded with respect to ¢ matrix function
C(t) is introduced. Consider set-valued mappings:

W*(t,v) = It E1 (AtY; o) (U, C(t)v),

Wi () = () W (t.v),
veV
. [t
M(t)=M—— [7 'MIE: (AT a)p* (7, U, V)dr,
0 a
where ¢*(t,u,v) = p(u,v) — ¢(u, C(t)v) and X vy = {z: 24+4Y C X} =
ey (X —y) is the Minkowski (geometrical) subtraction [8]. By the integral
of the set-valued mapping we mean the Aumann integral, i.e. a union of
integrals of all possible measurable selectors of the given set-valued mapping
[30]. Hereafter, we will say that the modified Pontryagin condition is fulfilled
whenever a measurable bounded matrix function C(t) exists such that:

W*(t) # 0Vt € Ry, (1.33)
M(t) # 0Vt € Ry. (1.34)

Thus, Pontryagin’s condition (1.32) is replaced with the conditions (1.33),
(1.34). Obviously, as C(t) = I, the condition (1.34) is fulfilled by default
and the condition (1.33) coincides with the condition (1.32), since in this
case W*(t) = W(t). It follows that modified Pontryagin’s condition (1.33),
(1.34) is, generally speaking, less restrictive assumption than Pontryagin’s
condition (1.32).

By virtue of the properties of the process (1.29) parameters the set-valued
mapping (U, C(t)v), v € V, is continuous in the Hausdorff metric. There-
fore, taking into account the analytical properties of the Mittag-Leffler gen-
eralized matrix function, the set-valued mapping W*(¢,v) is measurable with

1.8 Game Problem Statement 21

respect to ¢, t € Ry, and closed with respect to v, v € V. Then [4] the set-
valued mapping W*(t) is measurable with respect to ¢ and closed-valued. Let
P(R™) be the collection of all nonempty closed subsets of space R™. Then
it is evident that:

W*(t,v) : Ry x V— PR™),

W*(t) : Ry — P(R™).

In this case the measurable with respect to ¢ set-valued mappings W*(t, v),
W*(t) are said to be normal [30].

It follows from the condition (1.33) and from the measurable choice theorem
[4] that there exists at least one measurable selection 7(-) such that v(t) €
W*(t), t € Ry. Denote by I' the set of all such selections.

Let us also denote by g(¢, 2°) the solution of homogeneous system: D%z = Az,
obtained from (1.29) by setting ¢(u,v) = 0. Thus, when D* is the Riemann-
Liouville fractional differentiation operator (D® = D®):

g(t, 2% = Zto‘_kEé(Ato‘; a—k+1)2,

k=1

where:
2 =D""2(t)m0, k=1,...,n.

For the Caputo regularized fractional derivative (D = D®)), we have:
n—1

g(t,2°) = Yt E1 (At k 4+ 1),

where:

And for the sequential derivatives D* = D, we obtain:

n—j—1 j—1
g(t,2°) = > AHEL (At 1+ 1)z + Yt FEL (At a — k)E,
=0 k=0

where: . - '
Z =D 2() im0, k=0,...,5—1,
200), 1=0,....n—j—1.

22 Control of fractional-order dynamic systems under uncertainty

In the case of the Hilfer derivative D* = D%* the solution to the homoge-
neous system takes on the form:

1
«

n—1
g(t,2°) = =TI (A — (1 - p)(n — a) + 1)5),
=0

where: g
20 = %J<1*W("*a>z(t)\t:0+, i=0,...,n—1

Let us introduce the function:
t
€)= Tg(t.") + [2(r)ar, teRs,
0

where v(-) € I' is a certain fixed selection. By virtue of the assumptions
made, the selection «(-) is summable.

Consider the set-valued mapping:
R(t,m0) = {a>0: [W*(t—7,0) —y(t = 7)) |alM(t) - £2)] # 03,

defined on A x V', where A = {(t,7) : 0 <7 <t < oo}. Let us study its
support function in the direction of +1:

p(t,7,v) =sup{p: p € R(t,,v)}, (t,7)€EA veV.

This function is called the resolving function [34].

Taking into account the modified Pontryagin condition (1.33), (1.34), the
properties of the conflict-controlled process (1.29) parameters, as well as
characterization and inverse image theorems, one can show that the set-
valued mapping R (¢, 7,v) is A x B-measurable [4, 10] with respect to 7, v,
T € [0,t], v € V, and the resolving function p(t, T,v) is A x B-measurable in
7, v by virtue of the support function theorem [4] when &(t) ¢ M ().

It should be noted that for £(¢) € M (t) we have R(¢, 7,v) = [0, 00) and hence
p(t,7,v) = +oo for any 7 € [0,t], v € V.

Denote: .
T = {t eR,: / inf p(t, 7,v)dr > 1} . (1.35)
o veV

1.8 Game Problem Statement 23

If for some t > 0 &(t) ¢ M(t), we assume the function in‘f/ p(t,7,v) to be
S

v
measurable with respect to 7, 7 € [0,¢]. If it is not the case, then let us

define the set ¥ as follows:

t
‘Z:{tER+: in/p(t,r,v(7‘))d7‘21}.
v() Jo

)

Since the function p(t,7,v) is A x B-measurable with respect to 7, v, it is
superpositionally measurable [17, 3|. If £(t) € M(t), then p(t,7,v) = +0o0
for 7 € [0,¢] and in this case it is natural to set the value of the integral in
(1.63) to be equal +o00. Then the inequality in (1.63) is fulfilled by default.
In the case when the inequality in braces in (1.63) fails for all ¢ > 0, we set
T=10. Let T € T #.

Condition 1 [13] The set R(T,T,v) is convex-valued (or has values star-
shaped with respect to the origin) for all T € [0,T], v € V.

Theorem 1 Let for the game problem (1.29), (1.30) there exist a bounded
measurable matriz function C(t) such that the conditions (1.33), (1.34) hold
true and the set M be convez. If there exists a finite number T, T € T # (),
such that the condition 1 is fulfilled, then the trajectory of the process (1.29)
can be brought to the set (1.50) from the initial position 2° at the time instant
T using the control of the form (1.81).

Proof. Let v(7), v : [0,T] — V, be an arbitrary measurable function. We
first consider the case when £(7) ¢ M(T). Denote p(T) = fOT in‘f/p(T, T,v)dT
ve

and set:

p (T, 7) = inf p(T,7,0).

p(T)

Since p(T") > 1 due to (1.35) and Condition 1 is fulfilled, the function p*(T, 7),
0<p(T,7) < p(T,7,v), 7€[0,T],v €V, is a measurable selection for each
of the set-valued mappings R(7T,7,v), v € V, ie. p"(T,7) € R(T,1,v),
7 €[0,T], v € V. Consider the multivalued mapping;:

Ulr,v)={uelU:
(T — T)a_lEé(A(T —7)% a)e(u, C(T — T)v)+

=T —=71) € p"(T,) [M(T) = £(T)]}- (1.36)

24 Control of fractional-order dynamic systems under uncertainty

Since the function p*(T,7) is measurable due to the assumptions made,
M(T) € K(R™), as M € K(R™), and the vector £(7) is bounded, it fol-
lows that the mapping p*(7, 7)[M(T) — £(T')] is measurable with respect to
7. Moreover, the left-hand side of the inclusion in (1.36) is A x B-measurable
with respect to (7,v) and continuous in u. This implies [21] that the mapping
U(r,v) is A x B-measurable. Thus, according the theorem on measurable se-
lection it contains an A X B-measurable selection u(7,v), which, in turn, is
a superpositionally measurable function. Set the first player’s control to be
u(r) = u(r,v(1)), 7 € [0,T].

In the case when &(T) € M(T) we construct the first player’s control as
follows. Let us set p*(T,7) = 0 in (1.36) and denote by Uy(7,v) the set-
valued mapping obtained in such a way from U(7,v). Let us choose the first
player’s control in the form wuy(7) = ug(7,v(7)), 7 € [0, T], where uy(7,v) is
a measurable selection of the mapping Uy(T,v).

Let us show that in each case treated above the trajectory of the process
(1.29) hits the terminal set at the time instant 7.

We have:
Mz(T) = Tg(T, 2°) + /0 (T — T)O‘_IHEi(A(T —7)% a)e(u(r),v(r))dr.
(1.37)

Consider the case £(T') ¢ M(T'). Let us add and subtract from the right-hand
side of (1.37) the following vectors:

Jo (T =7)* MEL (A(T = 7)% a)p(u(r), C(T — 7)o(r))dr,

i f(f ~(T — 7)dr. (1.38)

Taking into account the control rule of the first player, we obtain from (1.37)
the following inclusion:

M:(T) € &(T) {1_ /O ,f(T,T)dT} + /0 p*(T, 7) M(T)dr+
+/0 (T—T)a_IHEé(A(T—T)a;a)go*(T—T,U(T),U(T))dT.

Since M(T) is a convex compact set, as M € coK(R™), and p*(T,7) is a

1.9 Comparison with Pontryagin’s first direct method 25

non-negative function and fOT p*(T,7)dr = 1, it follows that:

hence:

Iz(T) € M(T) + /0 (T — T)a_IHEé(A(T —7)%)" (T — 1,u(r),v(T))dT.

From which, taking into account the definition of the Minkowski subtraction
and the form of the set M (T), follows the inclusion I1z(7T") € M.

Now assume &(T") € M(T). Adding and subtracting from the right-hand side
of (1.37) the vectors (1.38) and taking into account the first player’s control
rule we obtain:

z(T) =&(T) + /0 (T — T)O‘*ll_[Eé(A(T —71)%a)p* (T — 1,u(r),v(r))dr €

e M(T)+ /0 (T — T)a_IHE%(A(T —7)%a)p*(T — 1,u(r),v(T))dr.

Which implies the inclusion I1z(7") € M or z(T) € M*.

1.9 Comparison with Pontryagin’s first direct
method

As mentioned in [34], the singular case when the resolving function becomes
infinite is closely related to the Pontryagin first direct method. Let us state
the result more precisely. Let us introduce the function:

P(z") = min {t >0: g(t, 2% € M(t) — /Ot W*(T)dT} :

Theorem 2 Suppose that in game (1.29)-(1.30) there ezists a measurable
bounded matriz function C(t) such that the modified Pontryagin condition
holds. Then the trajectory of process (1.29) can be brought to the set (1.30)
from the initial position 2° at the moment P(2°) using the control of the form
u(t) = u(2° v(t)).

26 Control of fractional-order dynamic systems under uncertainty

The proof is similar to the proof of Theorem 1.

Assertion 1 Suppose that for conflict-controlled process (1.29)-(1.30) with a
bounded measurable matriz function C(t) the modified Pontryagin condition
holds. Then for the inclusion:

ot 20) € M(t) — /Ot W (r)dr (1.39)

to be true, it is necessary and sufficient that there exists a summable in 7,
T € [0,], selection y(7) of the set-valued map W*(7) such that:

£(t) € M(t). (1.40)

The proof of this assertion follows from the definition of the function £(t)
and integral of a set-valued map.

This directly implies that there exists a measurable selection ~(t), v(t) €
W*(t), such that:
T("9() < P(2") V2,

where T'(z",7(+)) = inf T.

Remark 1Inclusion (1.40) or (1.39) directly implies that the function p(t,T,v)
becomes infinite for all T € [0,t], v € V.

1.10 Separate Dynamics

Let us consider the case when the dynamics of each player is described by
a separate fractional differential equation. Suppose that the motion of the
first player hereafter referred to as the pursuer is described by the equation:

D% =Azx+u, xze€R™, n—1<a<n;. (1.41)
Dynamics of the second player whom we will refer to as the evader, is given
by the equation:

Dy =By+v, yeR™, ny—1<pf<n,. (1.42)

1.10 Separate Dynamics 27

Here A and B are square matrices of order m; and ms, respectively, U &€
K(R™), V e K(R™). Let us note that the system (1.41), (1.42) is not a
particular case of the process (1.29), since the numbers « and [are arbitrary.
It is assumed that the initial conditions for the systems (1.41), (1.42) are
given in the form corresponding to the operators D% D? and defined by the
initial state vectors 2, y° of the pursuer and evader, respectively.

The terminal set is defined by the e-distance by the first s (where s <
min(my,my)) components of the vectors z and y, i.e. the game is said to be
terminated as soon as:

lz —yll, <e (1.43)
Here ¢ is a fixed number, 0 < ¢ < oo.

Let us introduce orthoprojectors II; : R™ — R* Il : R™? — R* which keep
the first s coordinates in the vectors x, y, respectively, and discard the other
coordinates. Then the inequality (1.43) can be rewritten in the form:

We will refer to the situation when the inequality (1.43) or equivalently (1.44)
holds true as a capture.

In virtue of Lemmas 4-7, the trajectories of systems (1.41), (1.42) are of the
form:

o) = galt.a®) + [(¢ =7 B (Al =))ulr)ar

W) = ,(t)+ [(6= (B = 1) Bpu(r)a,

where g, (t,2°) and g, (¢, y") are general solutions to the homogeneous systems
Dx = Ax, DPy = By, respectively, with initial positions z°, 3°.

Following the scheme of the method of resolving functions, let us consider
the set-valued maps:

Wi(t,v) = t* ' B (At a)U — 97 T, E1 (Bt?; 8)Cy (t)v;

1
B

Wi(t) = L Ea (At 0)U — LB, (Bt'; B)C1(H)V. (1.45)

28 Control of fractional-order dynamic systems under uncertainty

Here C(t) is a matrix function to equalize the control resources. Along with
the set-valued map Wi(t) the modified Pontryagin condition involves the
map:

Mi(t) =eS —— / t TP L, E. (B7?; B)(Cy (1) — I)Vdr, (1.46)

o B
where S is a closed ball of the unit radius centered at the origin.
The modified Pontryagin condition is fulfilled if for some measurable bounded

function C(t) the set-valued maps defined by (1.45), (1.46) are nonempty
for all ¢ > 0.

Let us choose a measurable selection 7 (t) (v1(t) € Wi(t) V& > 0) in Wi (t)
and set:

t
&1(t) = g, (t, 2°) — Hag, (t,y°) +/ 1 (7)dT.
0
As before, let us introduce the set-valued map:

Rit,7,0) ={p = 0: Wit —7) —n(t — NN p[M:i(E) — £()] # 0},
Ri:AxV — 2R+,

and its support function in the direction +1 (resolving function):

pi(t,T,v) =sup{p: peRi}, p1:AXV >R,

On the basis of the resolving function, let us define the set:

t
T = {t >0 :/ inf pi (¢, 7,v)dr > 1}.
0

veV

LetTGfl%(b.

Condition 2 The map R, (T, T, v) is convez-valued for all T € [0, T], v € V.

Theorem 3 Let for the game (1.41)-(1.44) with separated dynamics of the
players there exist a bounded measurable matriz function Cy(t), t > 0, such
that the set-valued maps Wi(t) and M, (t) are nonempty-valued for all t > 0.
If there exists a finite number T, T € ¥, # 0, such that Condition 2 is
fulfilled, then the capture in game (1.41)-(1.44) occurs at the moment T

The proof is similar to that of Theorem 1 taking into account the specific
character of the problem (1.41)-(1.44).

1.11 Example of a Pursuit Game for Systems of Fractional. .. 29

1.11 Example of a Pursuit Game for Systems
of Fractional Order 7 and e

Here we consider an example of fractional order pursuit-evasion dynamic
game. Let the dynamics of the first player whom we will refer to as Pursuer
and denote by P be described by the equation:

D'z =wu, |ul <1, (1.47)
where m = 3,14159. .. is the ratio of a circle’s circumference to its diameter.

The dynamics of the second player whom we will refer to as Fvader and
denote FEis governed by the equation:

Dy =wv, |v] <1, (1.48)
where e = 2,71828. .. is the base of the natural logarithm.

Here as before D is the operator of fractional differentiation of order « in
the sense of Riemann-Liouville, Caputo, Miller-Ross, or Hilfer. The phase
vectors x and y define the current position in R™ of the pursuer and the
evader, respectively. We suppose that = = z(t) is triple and y = y(t) is
twice absolutely continuously differentiable on R, functions of time ¢, i.e.
z(t) € AC3(R,), y(t) € AC*(Ry). The control vectors u = u(t), v = v(t),
u, v € R™ are measurable functions of time ¢.

Since A and B are m X m zero matrices, E1(At™;7) = <=1 and

()
E.i(Bt%e) = r(le)j'

If the differentiation is taken in the sense of Riemann-Liouville, i.e. D% = D¢,
the initial conditions for (1.47), (1.48) are of the form:

D™ x(t)]mo = 2y, D™ ?a(t)|i—0 = 29,
D™ 2x(t)]i—o = 25, D™ (t)|i=0 = 23,
and:
D Yy (t) =0 = y11, D ?y(t)|i=o = y31, D y(t)]i=0 = 3,

respectively. In this case we denote:

0_ /0 0 .0 .0 0_ /0 .0 .0
v = (11, T91, 31, T41)s Y = (W11, Y215 Y31)5

30 Control of fractional-order dynamic systems under uncertainty

tTr—l T—2 —3 t7r—4
. t 0 _ 0 0 0 0
g (y &) F(’/T)xll + 1—\(7_(. 1)1'21 + F(?T o 2)$31 + F(ﬂ' . 3)$417

(t 0) B te—l 0 N te—2 0 N t6—3 0
Iy\L,Y") = F(e)yll F(e—l)y21 F(e—2)y31'

Now suppose that D® stands for the operator of fractional differentiation in
the sense of Caputo, i.e. D% = D). Then the initial conditions for (1.47),
(1.48) can be written down the form:

2(0) = ay, #(0) = 2y, #(0) = 29y, T(0) = x5

and:
y(0) = yoo. 9(0) =y, §(0) = ya,
respectively. We denote:

0_ /0 .0 .0 .0 0_ /0 .0 .0
T = (Tog, T2, Tags T39), Y- = Yoz, Y12s Ya2);
2 3

o o

S Tap t+ g‘r327

9:(t, xo) = x82 + 251:(1)2 + 5

t2
gy(ta y0> = 3/82 + ty?Q + 53/(2)2-

If D™ = Df for some i, i € {1,2,3}, and D® = D5, j € {1,2}, the initial
conditions for (1.47), (1.48) take on the form:

Dwk 195()e= 0—$2, k=0,...,1—1,

and:
2 = (&, .7 a1),y —(gg,...,yj?_l,yg,...,yg_j),
. 3—1 tl . 1—1 tﬂ-ikil .
WIRCRS R) it
1=0 k=0
2—j Jj—1 —r—1
t° t¢ N
9(60°) = D G+) re

1.11 Example of a Pursuit Game for Systems of Fractional. .. 31

Finally, suppose that D™ = D™t and D¢ = D®"2 for some uy, s € [0,1].
Then the initial conditions are of the form:

d
i,g _ J(lfm)(4f7r)x(t)’t:0+’i-(l) — aJ(lf/n)(Alfﬂ’)x(t)’t:OJr’
o P e o P uan
Ty =5 () i=0+, T3 = pTeRd 2 (t)]i=0+,
~ - —e ~ d - —e
g0 = JUHEy ()], o, 9 = %J(l #2)B3=y ()] 1=,
0 P e
Yo = @J Y(t) =0+

and we have:

xo = (5%07j17£27:%3)7 yo = (@07@17@2)7

(0) t—(l—,ul)(4—7r) tl_(l_ul)(4_7r)
9z ta X = ij + jjl—i_

L1 = (1=)4 —m)) ['2—(1-m)4-m))

12— (1=p1)(4-=m) $3—(1=p1)(4—m)
+ i.Q + '%37

IF@G—(1—m)4-m) F4—(1-m)4-m)

0 t—(1—n2)(3—e) . 1—(1—p2)(3—e) .
9y(t, ") = Yo + g+

Il —(1—=p)(3—e))

$2—(1—p2)(3—e) .

TB—(1—m)B—e)”

I(2-(1-pm)B-e)

+

The goal of the pursuer is to achieve the fulfillment of the inequality:
J2(T) —y(T)| <&, >0, (1.49)

for some finite time instant 7. The goal of the evader is to prevent the
fulfillment of the inequality (1.49) or, provided it is impossible, to maximally
postpone the time instant 7.

The use of the Method of Resolving Functions described above makes it
possible to derive sufficient condition for the solvability of the formulated
pursuit problem.

Here II; = IIy = I. The set-valued mappings (1.45) for this example take on
the form:

tﬂ'fl tefl tﬂ'fl tefl

Wi(t,v) = WU - mC’l(t)v = ms - mC’l(t)v,

32 Control of fractional-order dynamic systems under uncertainty

= (| Wlt.v) = tz 75 - - %Ol(t)S,

veV

where the matrix function C(t) equalizing control resources can be chosen
in the form:

Ci(t) = ()1,

Legm—e if 0 <t< (FW B
a@) =4 '™ re) (1.50)
1 it > (Fg)™
Then:)
{0} if 0<t< (F(Z) e

I
et ()
<F(7r) F(e)) S if t= (e))

So, Wi(t) # 0 for all ¢ > 0. Further,
Mi(t) =S — [y T (al(r) =)Vdr
} S if 0<t< < (r)

1S it > (1 36)

Thus, the modified Pontryagin condition holds if:

tT te
[5 - ‘F(ﬂ-&-l) ~ T(erD)
(D(m)/T(e) ™% (D(m)/T(e)) e
T(m+1) T'(e+1)

£ —

Let us choose 7 (t) = 0 as a measurable selection of W;(¢). Then:

fl <t> = ngz(ta 560) - H2gy<t7 yO).

Denote:
(1))~
t’/l' te T m—e
m(t)_ g — m—m lf O<t<<F(e)
N (C(m)/T(e) ™= (I(m)/T(e)) ¢ I(m)
€= Trtl) I(etl) it t2> <)

1.11 Example of a Pursuit Game for Systems of Fractional. .. 33

then:
M (t) = m(t)S.

Consider resolving function:

palt,mv) = sup{p = 0: Wi(t — m,0) (") p[Ma(t) — &(1)] # 0}

This function can be evaluated as the greater root of the quadratic equation
in p:
(t—7) ey (t —7)

o = = e

= % + pm(t).

Solving this equation, we find:

1

G 0 + S + VA

P1 (t, T, ’U) = ’
& ()]1F — m2(¢)
where:
t_T t—T) (t_T)w—l 2
(51 (t)v U) + F(ﬂ') m(t)
(7_)27r 2 (t _ 7_)26 2 2(t . 7_)
< mm) (@R -mie).
Atv= II?E the minimum value is attained:
(=)t (=) la(t-1)
['(m) T'(e)

(1.51)

min py(t, 7,v) =

lvll<1 &) — m(t)

In virtue of continuity of the numerator and denominator in (1.51), time of
(1.47)—(1.49) game termination can be found as the least positive root of the
equation:

/0 {F(W) ~ 1) & = I&Ol = mi@). (1.52)

The equation (1.52) can be simplified taking into account form of the func-

tions ¢1(t) and m(t). Indeed, it follows from (1.50) that for 0 < ¢ < (F((e))> T

34 Control of fractional-order dynamic systems under uncertainty

the integrand is equal to zero and the game cannot be terminated on this
interval.

Suppose t > (F(”)> "™, Then:

I e~ Faeo) o= [F -]

T'(e)

and equation (1.52) for obtaining the time of game termination takes on its

final form: - o
Tr+l) Tlet1) °° [SIQE

This equation always has a positive solution since its left-hand side increases
at the rate of O(¢™), while the growth rate of the right-hand side is not greater
than O(#3).

1.12 Game with Plain Matrix. Asymptotic
Representation of the Scalar. Mittag-
Leffler Functions

Consider a conflict-controlled process, evolution of which is defined by the
system of fractional order in the sense of Caputo:

DWz=Xe+u—v, zeR™ ueaS, veS, a>1, (1.53)
where A is a real number, n — 1 < a < n, with initial conditions:
A0)=2 i=0,...,n—1, (1.54)

and terminal set M* = &S, ¢ > 0. Obviously, here A = A, p(u,v) =u — v,
U=aS,V =38, My={0}, and M = &S. Therefore, L = Mg = R™ and the

orthoprojector II is an identity operator. Since for the matrix A = \I:
El/a(A; /JJ> = El/a()‘; ,u)[a

solution to the Cauchy problem for the system (1.53) with the initial condi-
tions (1.54) has the form (1.22):

n—1

2(t) = ZtiEi(Ata; i+1)2) + /0 (t— T)O‘_lEé (At —7)% a)(u(T) —v(r))dr.

=0

1.12 Game with Plain Matrix. Asymptotic Representation of. .. 35

According to the Method of Resolving Functions, let us check fulfillment of
Pontryagin’s condition:

W(t,v) = t* B (A% a)(aS —v), W(t) = [t*TEi (MY a)| (a—1)S,

hence the Pontryagin condition holds true. Let us set v(t) = 0, then:

n—1

§t) =Y t'E

=0

(MY +1)2).

(2

Q=

The resolving function has the form:
p(t,7,v) =sup{p > 0:
(t—7)TEL (At — 7)% a)(aS —v)

Mrles — &) # 0}, (1.55)

Denote w(t) = t* ' E1 (A% «). The resolving function (1.55) can be found
explicitly as the larger root of the quadratic equation in p:

[w(t —T)v = p&()[| = aw(t —T) + pe,
which implies:

w(t = 7)[(6(), v) +ag] + Jw(t — 7)|VA,
le@))” — &2 ’

here Ay = ((€(t),v) +ae)? — (Jvo]2 = a®)(|E()||* — €2). The resolving function
p(t, 7,v) attains its minimum value:

p(t,T,v) =

i plt, 7, 0) = wlt =)
min p(t,7,v) =w(t — 7)) ———
e [HOIE
at v = —2U_ Then the time of game termination is determined as the

50l
smallest positive root of the equation:

n—1
ZtiE;(Ata; i+1)2)

=0

(a—1)/0 (L= By (A(t—7)% a)dr = —e. (156)

36 Control of fractional-order dynamic systems under uncertainty

Taking into account:
t
/ (t—7)TEL (At — 7)% a)dr = t*E1r (M a + 1),
0 «@ «@
we obtain the equation:

HZ” HEL (A 4 1)2

)

— &
t*Er (MY a+1

a—l

for determination of termination time for the game (1.53), (1.54).

It is natural to assume that for ¢ = 0 the vector zJ = 2(0) does not belong
to the ball €S. In this case at ¢ = 0 the left-hand side of (1.56) equals zero
and the right-hand side is positive.

Let us investigate the rate of growth of each side of the equation (1.56) as
t —o0. If a<2forany pu, A >0, and p € N we have:

p a

(5 0) = () el ZF” FO()).

-

L
e

Applying this asymptotic formula, we obtain:

1 1
B (M a4+ 1) = =AMt -
@ (6%

R

. 1. b A—iti—ie
FEs (MYi+1) = = AaeMt =3 RS

« i+1—ja)
Hence,
t*E1 (A% a+1) 1\ 1
tli}Igv n—1 ig a. 0 - n—11 _; n—1 1_7 '
Do PEL (MY + 1) —e 1300 SATe i A

Therefore, the root of the equation (1.56) exists if:

-1

SO

Q\S

a—1>

(1.57)

1.12 Game with Plain Matrix. Asymptotic Representation of. .. 37

Now consider the case when A < 0, @ < 2, and p is arbitrary. Then for any

natural p:
P o

(AtY) 1
Ei(*;) = ZF oy O).

Applying this asymptotic representation, we get:

t*F (/\ta'a%—l)——)_l—ﬁ—l—
At) = AT
Al
Ei(M"])=————+...
- ATl
tE1(AY2) = — —+ ...
1 0%2) ZF(Q—ja)+ ’
7j=1
S0,
lim t“F1 ()\to‘;oz—i—l) = -\
t—00
n—1
: 7 a., ; off __
tlggo ZtEi(At’“Ll)zi = 0.

Thus, equation (1.56) has a finite positive root for any initial conditions.

If a > 2, the following asymptotic formulas are to be applied:

2min(l—p) 2min(l—p)

Eé(At“;u)z 1>\ felow Z|arg>\+2m|<m6 o exp(e#)\ét)-}-
— 3 RS o)),

Jj=1T'(p—ja)

(1.58)
where p > 1 is an arbitrary integer and the first sum is taken over n =
0,41,42,... such that |arg A + 2mn| < &F.

Now suppose that A > 0 and « € [2,4). Then arg A = 0 and the first sum
in (1.58) consists of a single term that corresponds to n = 0. Hence, for
sufficiently large values of ¢t we have:

1 1- 1
B (MY p) = —\ o glner®t
o o

whence:

1
Ei(M%a+1)= aA—lzt—%*” +...,

Q\»—‘

38 Control of fractional-order dynamic systems under uncertainty

1 1
B (MY a4+ 1) = =Xttt

1
Ei(\t®)= —Aat et
a (%
FEL (MY i +1) = —A"aet 4.
o o

Then taking into account the asymptotic representations obtained above, we

have:
t*E1 (MY a+ 1) 1

1
Hzn 1 >\1_,

lim
t=e0 HZ” 'HiE Ex(Mi+1)z

Thus, a positive finite root of equation (1.56) exists if the inequality (1.57)
holds true.

In conclusion, we examine the case when A = 0. Then the equation (1.56)

takes on the form: .
e nlie 0 o
_ im0 g% : (1.59)
[a+1) a—1

At t = 0 the left-hand side of this equation equals zero and its right-hand
side is positive as the initial state of the dynamic system in question does not
belong to the terminal set: 2) > e. As ¢ — oo, the growth rate of the left-
hand side is O(t*) while the right-hand side increases at the rate of O(t"~1).
Since @ > n — 1, the equation (1.59) has a positive solution for any initial
conditions such that z{ > e.

1.13 Group Pursuit

Let the motion of an object z = col(z1,...,2,), 2 € R™ in the state space
R™, m = my + ...+ my, be described by the fractional-order differential
equations:

D%; = Aizi + ¢i(uyv), 0<a<l, i=1,...,u. (1.60)

1.13 Group Pursuit 39

Here D® stands for the fractional differentiation operator in the sense of
Riemann-Liouville or Caputo, A; is a square matrix of order m;, the control
block is defined by the jointly continuous functions ¢;(u;,v), @; : U; X V. —
R™i where u; and v, u; € U;, v € V, are control parameters of the i-th

pursuer and evader respectively, and the control sets U; and V are from the
set K (R™).

Let g;(t, z?) be the solution to the homogeneous system D%z; = A;z;. Thus,
when D® is the Riemann-Liouville fractional differentiation operator (D =
D).

gi(t,2)) = ta_lEé(Ata;)2,

where:
20 = D () |i=o.

(2

For the Caputo regularized fractional derivative (D* = D(®), we have:

gi(t, z?) = F1(At% 1)20,

L K3
@

where:

The terminal set M™ consists of the sets My, ..., M;, M C R™, such that:

M = M) + M;, (1.61)

where M} is a linear subspace of R™ and M; is a convex compact set from
the orthogonal complement L; to the subspace M in R™:.

The dynamic game (1.60), (1.61) is said to be terminated if for some ¢ the
inclusion z; € M holds true.

Denote by II; the orthoprojector from R™ onto L;. Consider the following
set-valued maps:

Wi(t,v) = IL;t* ' E1 (At o) @i (U;, v),

Wi(t) = (| Wilt,v), i=1,...,p, tER,, veV.

veV

Condition 3 The maps W;(t) are nonempty-valued for all i = 1,..., pu,
teR,.

40 Control of fractional-order dynamic systems under uncertainty

Due to the assumptions on the parameters of the process (1.60), the maps
Wi(t,v) are measurable with respect to t and closed-valued with respect to v,
v € V. Hence [2], the maps W;(t) are measurable and closed-valued on R.
Condition 3 and the measurable selection theorem [2] imply that there exists
a measurable selection 7;(+), v;(t) € W;(t), t > 0, for each 4,7 = 1,..., u. Let
us fix these selections and set:

Consider the set-valued maps:

Ri(t,7,2,0) = {p > 0: Wit —7,0) =%t —)] () p[M; — &(t, 2)] # 0}
and their support functions in the direction of +1:
pi(t, T, zi,v) =sup{p: p e Ri(t,7,z;,v)}, p:AXV =R,

where A = {(t,7) : 0 <7 <t < oo}. As before, these functions are called
resolving [34].

Taking into account Condition 3, the properties of the process (1.60) param-
eters, as well as characterization and inverse image theorems, one can show
that the set-valued mappings ®;(t, 7, z;, v) are A x B-measurable [4] with re-
spect to 7, v, 7 € [0,t], v € V, and the resolving functions p;(t, 7, z;,v) are
A x B-measurable in 7, v, by virtue of the support function theorem [4] when

It should be noted that for &(t, z;) € M; we have R;(t, 7, z;,v) = [0,00) and
hence p;(t, 7, z;,v) = +oo for any 7 € [0,¢], v € V.

Since p;(t, T, z;,v) are A X B-measurable in 7, v, they are superpositionally
measurable [17], i.e. p;(t, T, z;,v(T)) is measurable for any measurable v(7),
v(r) e V.

Denote:

¢
T,(z) = inf {t >0: iI(lgmaX/ pi(t, T, z;,v(T))dT > 1} : (1.63)
(- 3 0

If the inequality in braces fails for all ¢ > 0, we set 7),(z) = +o0. If for some i
pi(t, T, z;,v) = oo for 7 € [0,t], v € V, we assume that fot pi(t, 7, zi,v(T))dr =
+o00 and the inequality in (1.63) is fulfilled automatically.

1.13 Group Pursuit 41

Theorem 4 Suppose Condition 8 holds for the pursuit game (1.60), (1.61)

and T, (2°) < oo for some initial state 2° = (27,...,2)). Then for at least

one i a trajectory of (1.60) can be driven from the initial state 2 to the
corresponding set My at the moment T),(2°).

Proof. Denote T = T,(z°). Let v(r), v : [0,7] — V, be an arbitrary
measurable function.

Consider the case &(T,2?) ¢ M, for all i = 1,..., u. Let us introduce the
check function:

t
hu(t> =1- max/ pz(Ta T, Zz(']?U(T))dT’
0

(2

Resolving functions p;(T,7,2Y,v(7)) are A x B-measurable in 7, v, hence,

Pt A

superpositionally measurable [14], i.e. p;(T, 7,2, v(7)) are measurable in 7.
Thus, h,(t) is continuous, non-increasing, and h,(0) = 1. Since h,(T) <0,
there exists a time instant ¢, t. € (0,7, such that:

h,(t.) = 0. (1.64)

Let us introduce the set-valued maps:
Ui(r,v) = {u; € Uy : (T = 7)* "MLEL(A(T = 7)% @)i(ui, v) = vi(T = 7)
Epz<T77—7Zzovv)[Ml_£Z(T7Z?)]}7 1= 17,N (165)
By virtue of the inverse image theorem, the maps U;(7, v) are A x B-measurable,
hence, according to the measurable selection theorem, in U;(7,v) there ex-

ists at least one A x B-measurable selection w;(7,v) that is superpositionally
measurable. Let us set the pursuers’ controls on the interval [0,¢,) to be

(1) = ui(7,0(7)).

Due to (1.64), there exists a number i, such that:

Ty
1—/ pi (T, 7,20, 0(7))dr = 0. (1.66)
0

Setting in (1.65) p;(T,7,2Y,v) = 0 for 7 € [t.,T], we obtain the following
set-valued maps:

UZQ(T’U) ={u; € U : (T—T)a_IHiEé(A(T—T)a;)i (us, v) =7 (T —7) = 0}.

42 Control of fractional-order dynamic systems under uncertainty

As before, by the theorem on measurable selection, in UP(7,v) there exists
at least one A x B-measurable selection u)(7,v) that is superpositionally
measurable. Let us set control of the i,-th pursuer on the interval [t,,T] to
be u;, (1) = uf (7,v(7)). The controls of the other pursuers we assume to be

arbitrary.

Now suppose there exists i such that &(T,2?) € M;. In this case we set the
control of the i-th pursuer to be:

ui(1) = ud(r,v(r)), T€][0,T).

The controls of the other pursuers are assumed to be arbitrary.

Again, consider the case &(T,2?) ¢ M; for all i = 1,..., u. It follows from
(1.66) and from the equality p;, (T, 7,22 ,v) =0, 7 € [t,, T], that:

) “hy)

T
/ pi. (T, Z?*,U(T))d’r =1. (1.67)
0

According to the Cauchy formulas (1.18), (1.22),

T

I, 2, (T)=10i. g5, (1, 2],) + /0 (T—7)* L, By (A(T=7)%)i, (ui, (1), v(7)) dT.

Adding and subtracting fOT Y, (T'— 7)dr from the right-hand side and taking
into account the pursuers’ control laws described above, we obtain:

T T
IL;, 2, (T)e&; (T, z?*) {1 —/pi*(T, T, z,?*, U(T))dT:| +/pi*(T, T, z?*, v(T))M;, dT.
0 0

Taking into account (1.67) and the fact that integral of a uniformly bounded
compact-valued map is a convex compact set (Aumann’s theorem [5]), we
finally get the inclusion I1;, z; (T") € M;,.

If for some i &(T,z)) € M;, then taking into account the i-th pursuer’s
control law and (1.62) we obtain the inclusion I1;z;(7T) € M;.

1.14 Encirclement 43

1.14 Encirclement

Consider a game of pursuit involving u pursuers:
Dal‘i = U, ||’UHLH < 1, 1= 1,...,,&, (168)

and one evader:
D% =wv, || <1. (1.69)

Here D% 0 < a < 1, as before, stands for the fractional differentiation
operator in the sense of Riemann-Liouville or Caputo, z;,y € R™, m > 1.
The game is assumed to be terminated if x; = y for some 1.

Let us reduce this problem to the form (1.60), (1.61). Set z; = x; — y. Then
equations (1.68), (1.69) take on the form:

D% =u;—v, z€eR™ Ju| <1, |v||<1, (1.70)
with the terminal set consisting of the sets:

In this case L; = R™, II; = I are the identity operators, and A; are zero
matrices of order m. Hence:

(At*;1) =1, Ei(At%;a)= L

E 1 @)

Q=

Let us check the fulfillment of Condition 3:

a—1 ta_l

Wit v) = ;@S‘ s W= 00 =L,

where S stands for the closed unit ball centered at the origin in R™. The
equality W;(t) = {0} implies v;(t) =0 for alli =1,..., p.

Consider the case when D* denotes fractional differentiation operator in the
. . . . a—1

sense of Riemann-Liouville, i.e. D* = D* Then &(t, z) = tF(—a)zZ The

resolving functions are of the form:

pi(t, T, z;,v) = sup {,0 >0: _plicz;)zi € (t ;(2;_ (S — v)} -

44 Control of fractional-order dynamic systems under uncertainty

=sup{p>0: —pt* 'z e (t—7)(S—0)}.

Their values can be obtained explicitly as the greater root of the following
quadratic equation in p:

1t = 7)o = pt* el = (£ —7)* 7",

whence:

(t 1) {@)+ w22+ [zl P - ol

o]z

pz(t7 T, Zi, U) -

vzity/ (vz) 2zl (1= lv]|)

ll=ll

Denote p;(z;,v) =

, then:

t

a—1
t _
pi(t77—7 Ziuv) = (T) 151'(21','0) .

The time of the game termination can be determined from (1.63). Denote
AP~! the standard (u — 1)-simplex. The following inequalities hold true:

t
1nfmax/ pi(t, T,z v(T))dT—mf max Zp,/ pi(t, T, z;,v(T))dr
0

CIO N) peAr—l

© t t w
1 1
zn(lgg —/ pi(t, 7, 2, 0(T))dT = —inf/ E pi(t, 7, 2, v(T))dr
v() = KU Jo : .
i=1 1=

1 [t—r*"
/ min max p;(t, 7, z;,v)dT = — [min max (T) pi(zi,v)dr
0

o<1 pJo lol<1 i

t
= — min max p;(2;,v) .
pa oli<t

This implies the following estimation of the game termination time:

ajp
T,(z) < 5o (1.72)

1.14 Encirclement 45

where:

0(z) = min max p;(z;, v
(2) = poin ms pi(%i, v).

Now suppose D¢ denotes fractional differentiation operator in the sense of
Caputo, i.e. D* = D). Then &(t, %) = z. The resolving functions are of
the form:

) e =
pi(t, T, z;,v) = sup {p >0: —pz € W(S — v)} :

Their values can be obtained explicitly as the greater root of the following
quadratic equation in p:

(t — T)a_lv . (t —7)t
"rm> P T T
whence:
(0= oz flo 2+ P Lol)
it) = @Il
— Mﬁi(%v)'

['(«)

The following inequalities hold true:

t
mfmax/ pi(t, 7, 2, v(T))dT—lnf max sz/ pi(t, T, 2, v(T))dT
0

v(-) i) peln—t

7 t
1
> inf —/ (t, T, 2z, (T mf/ i(t, T, 2z, v(T))dT
if> = | et o) = i Z;m (7)

v

1 [1A t—71) '
— [min max p;(t, 7, z;,v)dT = — [min max ——————p;(z;, v)dr
wJo Il wJo Il I'(c)

te
= ———— min max p;(2;,v) .
/LF(O(+ 1) v]|I<1 ¢ p ()

46 Control of fractional-order dynamic systems under uncertainty

Combining this result with (1.63) one obtains the following estimation for
the game termination time:

a 1/a
T,(2) < (%) . (1.73)

As 6(z) > 0 for all z € R*™ it suffices to determine the states z such that
§(z) > 0, in order to ensure 7),(z) < 400 in both (1.72) and (1.73).

Let us set:

(=) = mi ()
o(Z) = Imin max —_— v .
o=t i\ ||zl

One can readily see that o(z) > 0 if and only if 6(z) > 0. Indeed, if
o(z) > 0, then having treated separately the cases ||[v|| = 0 and |jv]| =
1 one immediately obtains §(z) > 0. If §(z) > 0, then, in particular,
min =1 max; p;(z;,v) > 0, which implies o(z) > 0.

On the other hand, the following assertion is true.

Lemma 8 The function o(z) > 0 if and only if the origin of the space R™
belongs to the interior of the convex hull of the points z;/||z||, i =1, ..., p:

0e 1ntco{ ~i }
(Al

Proof. Suppose 0 € intco { T } This inclusion can be rewritten in terms of
support functions as follows:

0<max(|| T v) Yo, |lv]| =1

min max (i . v) =o(z) >0.

o=t i\ ||z

or

The sufficiency can be proved using the same reasoning in the opposite di-
rection.

Corollary 1 0 ¢ intco { B ”} if and only if o(2) < 0.

1.14 Encirclement 47

Corollary 2 The pursuit game (1.70), (1.71) can be terminated in a finite
time iof and only if:

50
0¢ 1ntco{|| OH} (1.74)

Proof. Suppose 0 € intco{%}. Then by Lemma 8 o(z°%) > 0, hence

§(2%) > 0. By virtue of the estimations (1.72), (1.73), this implies that the
game termination time 7),(z") is finite.

20
%:{HUH:L max(W-v) SO} :
7 Zi

is non-empty. Let vy € Vj then p;(2Y,v) =0 foralli =1,...,p.

Now let 0 ¢ mtco{ | OH} This implies 0(2°) < 0 and the set:

First consider the case when D? is the Riemann-Liouville fractional differ-
entiation operator. Then:

t— a—1
p(tT,Zl,U(]):(tT) pi(2)v0) =0, i=1,....u, 0<T<t

This implies, by definition of p;(¢, 7, 27, vg), that:

77,7

ta—l t — a—1
{—' z?}ml(kg—vo):@ Vpi>0,0<7<t,i:1,...,,u,

"T(a) I'(a)
Piltj(;)zg + U ;(2;_ (S —vo) ﬂ{O} 0.
a(tff)a_l

By setting p; = in the latter expression, we derive:

ta

a—1 to
0 i S — o).
T T Tar '~ W
Taking into account (1.18) and:
r(g;l) - = fo F(a - UO)dT

(1.75)

{fo r(a) (1) —wo)dr & u(r) € S} ;

48 Control of fractional-order dynamic systems under uncertainty

we obtain z;(t) # 0 for all ¢ = 1,... 4, t > 0, i.e. the game cannot be
terminated in finite time.

Now suppose D¢ stands for the Caputo fractional differentiation operator.

In this case:

(t — 7)ot
()

0

pi(t, T, 2;,v9) = pi(2v) =0, i=1,...,u 0<7<t

This implies, by definition of p;(t, T, 22, vp), that:

zoe,é(t_T)a_l(S w) Vpi>0,0<T<t i=1
pzi F(Oé) 0 Pi)) =1..., M,
or (ot
t—T1)"
0¢ pizd + LD (5).
¢,021+ F(Ck) (UO)
By setting p; = O‘(t_t;a)%l in the latter expression, we get:
0¢2z) +—=———(S—).
S VPG

Combining this result with (1.22) and (1.75), we get z;(t) # 0 for all i =
1,..., 4, t >0, ie. the game cannot be terminated in finite time.

Remark 2 In the case of the Caputo fractional derivative, i.e. when D% =
D) the condition (1.74) implies that the initial position of the evader lies
within the interior of the convexr hull of the pursuers’ initial positions. This
‘encirclement’ condition coincides with the one for the integer-order pursuit
game [34].

1.15 Bagley-Torvik Equation

From the practical point of view, of considerable interest is the equation of
the form:
az" + 0Dz +cz=f, 0<v<2,

describing oscillations with fractional damping. Equations of such kind arise
in describing vibrations of a plane wing in supersonic gas flow [28] resulting

1.15 Bagley-Torvik Equation 49

in the flutter-type phenomena, nano-dimensional sensors [20], etc. At a =
this equation is called the Bagley-Torvik equation and describes the motio
of a rigid plate in a Newtonian fluid [32].

3
2
n

In describing physical phenomena and processes, as a rule, the Caputo deriva-
tive corresponding to the type pu = 1 is used, since in this case the initial
conditions have clear physical interpretation. Consider the Bagley-Torvik
equation involving the Caputo derivative:

ay” (t) + bD(3/2)y(t) +cy(t) = f(t) (1.76)
under the initial conditions:

y(0) = o, ¥'(0) = yp. (1.77)

Denote z1(t) = y(t), z2(t) = DY2y(t), 2(t) = y'(t), za(t) = DO2y(1).
Then, as shown in [15], D1/2 2 = 2y, DU/ 2y = 25, DU/ 23 = 24, DO/ gy =
y”. Therefore, the equation (1.76) under the initial conditions (1.77) is equiv-
alent to the system:

D(I/Q)Zl = 22
D2, — 2
D(1/2)23 = Z4

DUz =L(—czy — bz + f)

or, in matrix form:

DWWy = Az + Bf, (1.78)
where:
0O 10 O
0 01 0
A= 0O 00 1
—c/a 0 0 —b/a
0 21
, B = 8 , 2= 22 under the initial conditions:
3
1/a 2y

2(0) = 2° = col(yo, 0,9}, 0) .

By virtue of (1.22), the solution to this system is given by the formula:

2(t) = Ey(AVE;1)2° + /Ot E, (A\/ﬁ; %) B{/(Zz_d:.

50 Control of fractional-order dynamic systems under uncertainty

Now suppose that in the equation (1.76) f(t) = u(t) — v(t), where u, v are
controls of the first and the second players, respectively, and |u| < r, r > 1,
lv| < 1. We assume that the first player strives to bring the system into the
state z; = 0, while the goal of the second player is the opposite. In such case
the system (1.78) takes on the form:

D2y = Az + 4 — v,
where @ = Bu, v = Bv, u € rBS, v € BS, S = [-1,1].

The terminal set is M* = {z € R*: 2; = 0}. Then My = {z € R*: 2, =0},
L={z€R*: zp =23 =2,=0}, M = {0}, Il = {m;;}, where:

oS O O
o O OO
o O OO
o O OO

Then W (t,v) = 11E; (AV 5) B(rS —v), W(t) ="211E, (AVE;) BS #0
and the condition (1.32) is straightforwardly satisfied. Set v(t) = 0, then
£(t) = TIEy(AVt;1)2°. The resolving function is defined as follows:

p(t,7,v) =max{p > 0: —pllEy(AVt;1)2°
€ \/%HEQ (AVt—=7;1) B(rS —v)}.

To find the guaranteed time of the game termination, it is necessary to study
the resolving function. In general case this is a complicated problem, as it
depends on specific form of the generalized Mittag-LefHer matrix functions
Ey(AVt; 1) and E, (A\/Z; %) However, in some particular cases the problem

can be simplified. For example, let us set ¢ = 0 in (1.76) and denote p = —%.
0100
. 0010 .
Then the matrix A takes on the form A = 000 1l Then, it can be
000 p

easily verified that:

A% = AP

o O O O

oS O OO

o O O =

’Uw’@]
I

o O O o

o O O O

1.15 Bagley-Torvik Equation

Hence,
AR
2(AVE; 1)
vt ZOF (k/2+1)
Lmgm b pREVED - s —
|01 iy pReVED - - wm |
oY L P E(pVE; 1) —
o0 0 Ex(pVt; 1)
1\ o~ AW
g (avil) oS> AV
2< 2) ;F((lﬁﬂ)/z)
I(1/2)

mm Vi pPRGVEL2) ~ g -

D) P Ea(pVE 1/2) = 5y

1 Vi —r<:f/2> CE(pv1/2) - —3r<1/2> - p_; - pr<§/2>
(11/2
0
0 0 Esy(pv't; 1/2)

o O O

Which in combination with the equalities:
1 3 1./1 NZ3
=)= ri=)|==I't=|=-—
()7 1) ()%

Ey(z1) = ¢ erfe(—2),

—_

1 2 1
T/ ze* erfe(—z) +

fzoo e~ dt is the complementary error function, yields:

Ba(5g) = +Buli1) +

(\]

where erfc(z) = \%

3

Ez(A\/%S 1) = a \/_)
/i) — 1
0 ep “terfe(— p\/_)

—_
[\

o O =
3 o

[\]
~

o o O

52 Control of fractional-order dynamic systems under uncertainty

Vi 3—% \[ep erfc(N pf
\/%7 Vit \[p erfe(— p\/—)

E, (A\/_;%) =

0 \/L% Ve terfe(— p\/—)
0 0 pVte? terfe(—py/t) + \/%7
Denote:
&u(t) = {IEy(AVE1)2"}, = yo +typ,
wlt) ={HNE (AVE 1) B} =
= L[erte(—pv) — & - L],

where {z}; stands for the first component of the vector x. Then the resolving
function can be found as the greatest positive root of the following equation
in p:

w(t = 7)o = p&a(t)] = |w(t —7)]r.

Upon solving this equation we find that:

w(t—7)
pltv) = LD k),
we write '+’ or '—’ in the parentheses depending on whether the expression
w(t — 7)/&(t) is positive or negative. In view of physical meaning of the
Bagley-Torvik equation, we have a > 0, b > 0, hence p < 0. Note also that
since w(0) = 0 and w'(t) = £(2 - erfc(py/t))e?”t > 0, it follows that w(t) > 0
for all ¢ > 0. Thus:

)

(r—1w(t—1)
ST -

inf p(t, 7,v) =

The guaranteed time of the game termination, therefore, can be found from
the relationship:

/o ;gf p(t, T, v)dr = /0 (r = |1§):t<)t]_ 7 dr = 1.

Consider the integral:

/ot = llf)fzt(; B P = |21_ 1| /

1.15 Bagley-Torvik Equation 53

_7“—1 erc T—l—M
alélt !/‘[2 fe(p7) P’ mfl

r—1 |1 (" o t AV
— D] [2?/0 e erfc(—p\/F)dT—]? Spﬁ] .

Let us integrate by parts the integral in brackets. We set u = erfc(—p\/7),
dv = e?’". Then:

pe P’ Tdr e?”
du = ——— —

and:

eP’t

/t P°Te fe(— \/_) erfc(— \/E) 1 1 fdr
0 p? Pt pvT o VT

er’t 1 2Vt
= —erfc -t - = — 2.
p? pvi) P> pyTm

Finally, we see that the time of the game termination can be found from the
equation:

ptopVToopr 3pym o -1

P o) 1 2Vt t 4B a|€1(t)|‘

This equation always has a solution since its left-hand side vanishes at t = 0
and has the growth rate of O(t3/?), while the right-hand side is positive at
the initial instant and growing linearly in .

Bibliography

1]

[10]

J.P. Aubin, H. Frankowska: Set-valued analysis of Systems & Control:
Foundations & Applications. Birkhauser, Boston, 1990.

R.J. Aumann: Integrals of set-valued functions. J. Math. Anal. Appl.,
12:1-12, 1965.

R.L. Bagley, P.J. Torvik: On the appearance of the fractional derivative
in the behavior of real materials. J. Appl. Mech., 51, pp. 294-298, 1984.

M. Caputo: Linear model of dissipation whose () is almost frequency
independent — II. Geophys. J. R. Astr. Soc., 13, pp. 529-539, 1967.

A.A. Chikrii: Conflict-Controlled Processes. Kluwer Acad. Publ.,
Boston, London, Dordrecht, 1997.

A.A. Chikrii: Differential games with several pursuers. 14, pp. 81-107,
1985.

A.A. Chikrii: Optimization of game interaction of fractional-order con-
trolled systems. Optimization Methods and Software, 23(1), pp. 39-72,
2008.

A.A. Chikrii, S.D. Eidelman: Generalized Mittag-Lefer matrix func-
tions in game problems for evolutionary equations of fractional order.
Cybernetics and Systems Analysis, 36(3), pp. 315-338, 2000.

A.A. Chikrii, I.S. Rappoport, K.A. Chikrii: Multivalued mappings and
their selectors in the theory of conflict-controlled processes. Cybern.
Syst. Anal., 43(5), pp. 719-730, 2007.

A.A. Chikrii: Game dynamic problems for systems with fractional
derivatives, Vol. 17 of Pareto Optimality, Game Theory and Equilib-
ria, pp. 349-386. Springer, 2008.

Bibliography 55

[11]

[12]

[13]

[14]

[19]

[20]

[21]

A.A. Chikrii, I. Matychyn: Game Problems for Fractional-Order Sys-
tems, Vol. XTI of New Trends in Nanotechnology and Fractional Calculus
Applications, pp. 233-241. Springer, 2010.

F. Clarke: Optimization and Nonsmooth Analysis. Wiley-Interscience,
New York, 1983.

K. Diethelm, J. Ford: Numerical solution of the Bagley-Torvik equation.
BIT Numerical Mathematics, 42(3), pp. 490-507, 2002.

Gh.E. Draganescu, N. Cofan, D.L. Rujan: Nonlinear vibrations of
a nano-sized sensor with fractional damping. J. Optoelectron. Adv.
Mater., 7(2), pp. 877-884, 2005.

N.A. Grigorenko: Mathematical Methods of Control of Multiple Dy-
namic Processes, MSU Publ., Moscow, 1990, (in Russian).

O. Hajek: Pursuit Games, Vol. 120 of Mathematics in Science and En-
gineering. Acad. Press, New York, 1975.

R. Hilfer: Fractional time evolution of Fractional Calculus, Applications
in Physics, pp. 87-130. World Scientific, Singapore, 2000.

Shouchuan Hu, N.S. Papageorgiou: Handbook of Multivalued Analysis.
Vol. 1: Theory, Vol. 419 of Mathematics and its Applications. Kluwer
Acad. Publ., Dordrecht, 1997.

A.D. Ioffe, V.M. Tikhomirov: Theory of Extremal Problems, Vol. 6 of
Studies in mathematics and its applications. North-Holland, Amster-
dam, 1979.

A.A. Kilbas, H.M. Srivastava, J.J. Trujillo: Theory and Applications of
Fractional Differential Equations, Vol. 204 of North-Holland Mathemat-
ics Studies. Elsevier, Amsterdam, 2006.

V.V. Kobelev: Linear non-conservative systems with fractional damp-
ing and the derivatives of critical load parameter. GAMM-Mitt., 30(2),
pp. 287-299, 2007.

A.N. Kolmogorov, S.V. Fomin: Elements of the Theory of Functions
and Functional Analysis. Dover Publ., Mineola; New York, 1999.

N.N. Krasovskii, A.I. Subbotin: Game-Theoretical Control Problems of
Springer series in Soviet mathematics. Springer, New York; Berlin, 1988.

56

Bibliography

[24]

[25]

[20]

[27]

28]

[30]

[31]

Yu.G. Krivonos, L.I. Matychyn, A.A. Chikrii: Dynamic Games with
Discontinuous Trajectories. Naukova Dumka, Kyiv, 2005, (in Russian).

K.S. Miller, B. Ross: An introduction to the fractional calculus and
fractional differential equations. Wiley & Sons, 1993.

B.S. Mordukhovich: Variational analysis and generalized differentiation,
I: Basic Theory; II: Applications, pp. 330-331 of Grundlehren der math-
ematischen Wissenschaften. Springer, New York, 2006.

I. Podlubny: Fractional Differential Equations, Vol. 198 of Mathematics
in science and engineering. Acad. Press, San Diego, 1999.

L.S. Pontryagin: Selected works, v. 1. Selected research papers, volume
1 of Classics of Soviet mathematics. Gordon & Breach Science Publ.,
New York, 1986.

B.N. Pshenichnyi: Simple pursuit by several objects. Cybernetics and
Systems Analysis, 12(3), pp. 484-485, 1976.

S.G. Samko, A.A. Kilbas, O.I. Marichev: Fractional Integrals and
Derivatives. Gordon & Breach, Amsterdam, 1993.

Yu.S. Osipov, A.V. Kryazhimskii: Inverse problems for ordinary differ-
ential equations: dynamical solutions. Gordon and Breach Publ., Basel,
1995.

Chapter 2

Algorithms of parallel
computations

O. Khimich, K. Gromaszek, A. Kotyra

2.1 Introduction

Increasing demands imposed on the quality of project solutions and using of
new constructive materials generate a need for the solving of radically new
scientific and engineering problems as well as for the carrying out of unique
calculations. Need is growing for new methods and approaches related to the
construction and investigation of correct computer models which adequately
reflect realistic functioning of objects being investigated. These factors result
the considerable increase in the volume of information being processed which,
in turn, causes the growth of requirements to the computational resources,
including requirements to run times of problems.

Run times of problems are determined by four factors: element base, com-
puter’s structure and architecture, problems’ solving algorithms and quality
of composed programs.

Since an increase in the clock rate for the available processors is reaching its

58 Algorithms of parallel computations

limiting value, the paralleling of computations is the main reserve for increase
in computers’ performance.

High performance indicators of computers are gained at the expense of inte-
grating of the great number of processors and arrangement of massive mul-
tiprocessing. Such computers are designed on the basis of open system ide-
ology. The openness of systems involves the standardization of interfaces,
scalability of equipment as well as portability of the software.

The present results of investigations on the development of parallel algo-
rithms for the solving of basic classes of problems of the computational math-
ematics: linear algebraic systems, algebraic eigenvalue problem, initial-value
problems for systems of ordinary differential equations, non-linear equations
and systems as well as software described in monographs [6, 7].

At present a great deal of works (for example, [11, 9, 8, 10, 12]) are de-
voted to the problem of paralleling of algorithms for the solving of basic
classes of problems of the computational mathematics. Performed analysis
has demonstrated that creation of efficient algorithms requires taking into
account parallel computers’ architecture, while investigation of them should
be carried out with taking into account available computing resources (the
limited number of processors on which parallel processes could be carried
out; account of interaction times, synchronization and volumes of memory).
Moreover, even within one class of parallel computers the program imple-
mentation should take into account peculiarities of computers’ architecture
and their inter-processor communications.

Algorithms and programs implementing them proposed in the monograph
ensure the satisfying of basic requirements to parallel algorithms and pro-
grams for MIMD-computers parallelism, scalability and loyalty. Parallelism
implies ability to perform a lot of actions simultaneously that is very impor-
tant for programs implemented on several processes. Scalability enables to
perform programs by using different number of processes. Loyalty character-
izes a need for accessing local data more often than accessing remote data.
Significance of these characteristics is determined by ’cost of remote access
to memory/cost of local access to memory’ ratio. This ratio is a key to the
increasing of programs’ efficiency on the distributed memory architectures to
which the intelligent MIMD-computer belongs.

Algorithms under consideration also investigate and solve problems directly
related to the arrangement of parallel computations, including:

2.1 Introduction 59

1. efficient paralleling of computations,
2. determining of efficient scheme of the initial information decomposition,

3. determining both of the topology and amount of processors required
for the efficient solving of problem,

4. the ensuring of uniform loading of all processors being used for the
solving of problem (balancing of processes),

5. synchronization of exchanges between processes,

6. minimization of exchanges between processes.

From the algorithmic point of view, all known sequential algorithms (meth-
ods) are prototypes of most known parallel algorithms (with some exception,
for example, in case of banded matrices with narrow bandwidth during the
solving of linear algebraic systems). In fact, under such an approach each
processor simultaneously implements sequential computational schemes over
local data block obtained as a result of the initial data decomposition by
means of employing some or other method. It is fundamentally important
that with such an adaptive approach to parallel algorithms, the succession
of results obtained in the theory of computational methods is preserved (ac-
curacy, convergence, complexity, etc.)

From this point of view, the typical phenomenon is evolution undergone by
parallel algorithms (in problems of linear algebra) based on elementary one-
and two-sided Jacoby transformations (known to be the best representatives
of the sequential algorithms with respect to the economy) to methods based
on Givens’ and Householders transformations — primary methods in the hi-
erarchical list among orthogonal sequential algorithms with respect to the
efficiency. On the one hand, this fact is associated with natural parallelism
of algorithms based on the Jacobi rotations, while, on the other hand, it is
associated with Haydn’s effect which lowers efficiency of Givens’ and House-
holder’s methods for the linear algebra problems with common technique for
the storing of matrices (by means of one-dimensional block column distribu-
tion between processes). In this case each process works only with one block
of matrix columns. The k-th column is distributed to the process numbered
k/tc, where tc=n/p is the maximum number of columns distributed to the
process. This scheme doesn’t ensure sufficient balancing of the processes’
loading since as soon as first tc¢ columns be processed the zero process will

60 Algorithms of parallel computations

stop its work. Similarly one-dimensional block column method of distributing
doesn’t ensure good balancing of processes.

An idea of cyclic technique for the storing and processing of matrices is
a notable step towards improvement of the processes’ balancing and hence
improvement of performance of computational algorithms and leads to the
balancing scheme for the matrix triangulation and tri-diagonalization algo-
rithms. The idea of column (row) — cyclic way of the matrix storing and pro-
cessing was independently proposed in the number of works (see, for example,
[8]), including [10]. Thus, according to row-column scheme the matrix is dis-
tributed between p processors as follows: the i-th process works with rows
numbered i, i+p, i+2p. This scheme by maintaining the same order of rows’
(columns’) processing as in sequential triangulation and tri-diagonalization
algorithms provides the changing by 1 of the process’s number when passing
from some row to the next. Thus, in the process of algorithms’ implemen-
tation similarly the same amount of computations is gained in each process,
i.e. the influence of Haidn’s effect is almost excluded.

Such situation is typical not only for algorithms based on orthogonal trans-
formations, but also for Gauss, Cholesky and some other algorithms used for
the matrix reduction to one standard forms characteristic feature of them
is gradual (from step to step) decrease in dimensions of the matrix being
processed.

The third scheme (column block-cyclic) is a compromise between schemes
described above. By choosing the block size equal to n, columns are broken by
blocks sized nb and distributed in a cyclic manner. This implies that column
k will be processed in the process with logical number [(k-1)/nb] mod p.
In fact this scheme involves previous two schemes for the data storing with
nb = tc = n/p and nb = 1. For nb greater than 1 this results in the somewhat
worse balancing of processes compared to the cyclic distribution of columns,
but in so doing the total time of system’s latency decreases since the amount
of data exchanges between processes decreases.

The fourth scheme (two-dimensional block-cyclic distribution) involves the
precious schemes as particular cases. Along with good balancing and latency
indicators, one of the significant indicators of advisability of such matrix
distributing and processing is the possibility to apply block procedures from
standard library programs of BLAS and BLACS [12].

Thus, the efficiency of algorithms to a large extent is determined by the fol-

2.1 Introduction 61

lowing: scheme of the initial data distribution between processors; agreement
between problem’s solution algorithm and computer architecture; topology
of inter-processor communication.

The quality of parallel algorithms can be estimated by such criteria as accel-
eration coefficient .S, and efficiency coefficient E,:

Sp = Tl/Tpv Ep = Sp/p7

where p is the number of processors involved in the solving of problem on
MIMD-computer; 7T}, is the time required for the solving of problem on the
MIMD-computer with p processes; T is the time required for the solving
of the same problem on hypothetical mono-processor computer possessing
performance inherent in mono-processor computer and operating memory
equal to the total memory used by p processes.

In addition to notations introduced above further we are going to make use
of the following notations:

t —average time required for the performing of one arithmetic operation,

t, — time required for exchange by one machine word between two
processes,

t. — time required for the establishing of connections between two pro-
cesses:

To = to/t, Tc=1t./t.

Construction of parallel algorithms assumes that information required for the
implementation of the computational algorithm is stored and processed either
in the operating memory of the hypothetical mono-processor computer or in
the overall memory of the MIMD-computer on which p processes are carried
out, i.e. computational process is carried out without using the external
memory.

Parallel algorithms intended for the solving of problems are presented in
terms of processes rather than processors. Process is an independent 'thread’
of management possessing its own (not interesting with any other) memory.
Each process is implemented on one core (or physical on-core processor). In

62 Algorithms of parallel computations

the general case, several processes can be carried out on one core (or physical
one-core processor). In this case the control system is assumed to manage
the scheduling of execution of processes. Parallel algorithms implemented in
program and presented here have been developed and tested for the case 'one
processor per one core’ by using interaction in pairs and collective exchanges.

Processes may communicate in pairs by means of either 'point-to-point” —
type exchanges or collective communications. In parallel algorithms the fol-
lowing collective communications are used most often:

1. broadcasting — one of processes from the communicating group sends
data to all processes of this group,

2. multi-gathering of the number (array of numbers) — all processes
from the communicating group sends equal portions of data to all pro-
cesses of this group; in so doing operations, for example, addition or
choosing of the maximum value, etc, are performed over corresponding
components of data obtained from different processes,

3. multi-gathering of vector — all processes of the communicating group
sends equal portions of data to one process of this group, and a vector
if formed from the obtained data in the process.

These collective communications can be verified by means of functions from
the library of parallel programming environment MPI (see for example [13]):
MPI — Bceast — for broadcasting; MPI — Reduce — for multi-gathering of ar-
ray of numbers; MPI — Gather — for multi-gathering of vector; MPI — Allre-
duce, MPI — Allgather — for multi-gathering and subsequent broadcasting
of array or vector, respectively. As a rule, tree-algorithm is used in the im-
plementation of the functions which for one operation of multi-gathering or
multi-casting produces the minimum number of communications (synchro-
nizations) equal to logsp (p — the number of processes in group) between
pairs of process from the group.

Parallel algorithms have been implemented by means of programs written
in the programming language C for the MPI-standard parallel programming
environment. Parallel algorithms and programs described here were tested
on intelligent workstation from the Inparcom-family both in the operating
environment Linux and in the inter-processor communication environment

MVAPICH optimized for Infiniband.

2.2 Linear algebraic systems 63

2.2 Linear algebraic systems

2.2.1 Methods for the solving of linear algebraic sys-
tems

The solving of LAS with real matrices can be carried out by either direct or
iterative methods. Direct methods for the solving of problems:

Az =10, (2.1)
with the following real matrices are dealt with:

e LAS with dense square non-singular general matrix,

e LAS with symmetric positive definite matrix.

Symmetric positive definite matrix is a matrix all eigenvalues of which are
positive, while positive semi-definite matrix is a matrix with some eigenvalues
equal to zero.

Consider some direct methods for solving LAS on the basis of which par-
allel algorithms for MIMD-computers were created. Most direct methods
are based on the idea of sequential equivalent transformations of particular
system for the sake of excluding unknowns from the part of equations. As
a result, the original system (2.1) of order n is transformed into equivalent

system:
Aty =t (2.2)

with matrix A"~! of simpler form, for example, triangular or diagonal. Thus,
it will be not difficult to solve the equivalent system (2.2).

A process of equivalent transformations may be presented as sequential pre-
mul- tiplication of matrix A and right-hand side b by matrices M; (i =
1,2,...,n — 1), in so doing one multiplication results in the annulments of,
at least, one element of the matrix being transformed. Then:

A"V = MA, v = Mb, (2.3)

where M = M,,_1, M,,_s, ..., M;. Matrices M; may be triangular, orthogo-
nal.

64 Algorithms of parallel computations

Various modifications of elimination methods are in essence methods for de-
composition of the matrix A into product of triangular matrices, triangular
or orthogonal matrices and so on. Indeed, from (2.3) it follows that A = LU
if L=M"1and U= A"

Gauss method is one of the most efficient methods for solving of linear
systems with non-singular general matrices. Algebraic basis for the Gauss
elimination is a statement that for square non-linear matrix A of order n
there exists unique lower triangular matrix L with units on the principal
diagonal and unique upper triangular matrix U such that LU = A and
det(A) = uq, usg, - . ., Upp.

During the solving of system with non-singular matrix by Gauss method the
following three sub-problems can be separated:

1. LU-decomposition of system’s matrix:

A=LU, (2.4)

2. solving of LAS with lower triangular matrix (this problem is often re-
ferred to as a forward substitution):

Ly=0b, (2.5)

3. solving of LAS with upper triangular matrix (backward substitution):
Ur=y. (2.6)

LU-decomposition of system’s matrix (2.5) consists of (n—1) steps. At the
s-th (s = 1, 2, ..., n—1) step a diagonal block of order n—s+1 located in
lower right-hand corner of the matrix A®~Y is transformed. Element ali ™V is
referred as to a pivotal element of the s-th step. For the successful implemen-
tation of Gauss method all pivotal elements should be non-zero. Besides, the
proximity of pivotal elements to zero can result in large error in the computed

(s=1)

solution. In order to ensure the fulfillment of conditions |ass ‘ > e >0 for

all s = 1, 2, ..., n—1 the largest modulus (pivotal) elements should be chosen
at each step either in the entire block of matrix A®~Y being transformed or
in the first row of this block or in its first column. By permutation of rows

2.2 Linear algebraic systems 65

and/or columns of matrix A=Y the pivotal element is placed on the position

of the element al® Y.

As a rule, for solving of LAS with symmetric positive definite ma-
trix various versions of Cholesky method are used based on the following
theorem. If A is a symmetric positive definite then there exists real non-
singular lower triangular matrix L such that LLT = A.

In the solving of system with symmetric positive definite matrix by LL-
version of Cholesky method, similarly as in Gauss method, the following
three sub-problems may be separated:

1. LLT-decomposition of system’s matrix,

2. solving of LAS lower triangular matrix:

3. solving of LAS with upper triangular matrix:

LTe=y.

During the LL”-decomposition of symmetric positive definite matrix n square
roots are to be evaluated. To avoid this LDL”-version of Cholesky can be

employed. In this case:
A=LDL", (2.7)

where L is a lower triangular matrix with units at the principal diagonal,
while D is positive definite diagonal matrix. This decomposition can easily
be transformed into LL?-decomposition: A = (LDY?)(LDY*)T. 1In the
LDLT-version of Cholesky method the following three sub-problems may
be separated:

1. LDL*-decomposition of system’s matrix,
2. the solving of LAS with upper triangular matrix:
Ly=0b, (2.8)

3. the solving of LAS with upper triangular matrix:
L'z =Dy. (2.9)

66 Algorithms of parallel computations

2.2.2 Parallel algorithms for the solving of linear sys-
tems

Algorithms with parallel arrangements of computations will be further re-
ferred to as parallel algorithms. For the implementation on MIMD-computers
of methods described in paragraph 2.2.1 the following parallel algorithms are
required:

1. LU-decomposition of non-singular general matrix (2.4),

2. the solving of LAS with lower (2.8) and upper (2.9) triangular matrices.

Row-cyclic parallel algorithms for triangular decomposition of dense
non-singular matrix.

For solving LAS (2.1) with square non-singular matrix the L U-decomposition
(2.4) of the Gauss method is employed while for system with symmetric
positive definite matrix the LDLT-decomposition (2.7) of Cholesky method
is used.

In the version of LU-decomposition algorithm being used U is an upper
triangular matrix, while, lower triangular matrix L with units on principal
diagonal isn’t formed explicitly. Thus, L U-decomposition is carried out for

s=1,2,...,n—1 by following formulas:
Usj = agj_l),j = 5,5+ 1,...,0Mgs = (Uss)),
mis = a Vmy,,al? = alY —ugmi, i = s+ 1 n) (2.10)
s is ssy Ui ij sjMisy by] PRI 3 .

n—1 -1
Upn = agm)7 Mpn = (unn) .

The LDLT-decomposition (2.7) of symmetric matrix is carried out for s =
1,2,..., n—1 by following formulas (d; = a11):

s—1
tis :ais_ztiklsk (7' :8+17”'7n)7
k=1
ls+1,k - ts+1,k/dk<k = 17 ceey 8)) (211>

ds+1 = Qg41,5+1 — E terl,k ls+1,k .
k=1

2.2 Linear algebraic systems 67

Distribution of data and results. FEfficient paralleling of triangular
decomposition algorithms for Gauss and Cholesky method is based both on
row-cyclic scheme for the distribution of matrix elements between processes
[8, 10] and on natural parallelism essential for matrix-vector operations.

Row-cyclic distribution scheme consists in the following: elements of rows
numbered k, k+p, k+2p, ..., (k = 1, 2,..., p,p — the number of
processes being used) are distributed in succession to process with logical
number £ — 1. This scheme is used for distributing elements of the original
matrix A of system (2.1), triangular matrices L and U, diagonal matrix D,
right-hand side of system b and results of solving systems with triangular
matrices y and z.

In the case of symmetric matrix of LAS all matrix elements are to be pre-
determined. In so doing computations are carried out so that only elements
of lower matrix triangle be modified.

Row-cyclic parallel algorithm for LU-decomposition (2.4) of dense non-
singular matrix (Gauss method) with column pivoting for s = 1, 2,
.., n—1 consists in following sequence of operations:

1. each process simultaneously and independently of other processes choos-
es maximum elements among elements a;; ' (i > s) of the s-th column
distributed to this process,

2. each process searches for pivotal element of the s-th column (maximum
element among maximum elements found by each process) by means
of broadcasting and multi-gathering operations in the introduction to
this monograph),

3. permutation both of row in which the pivotal element is located and
the s-th row,

4. modification of permutation vector for right-hand sides,

5. broadcasting of the s-th row (containing the pivotal element) to all
processes,

6. each process according to the row-cyclic distribution scheme modifies

matrix A1 by formulas (2.10).

As a result of performing LU — factorization each process contains local
parts of matrices L and U that can be stored on the place of corresponding

68 Algorithms of parallel computations

local parts of the original matrix A. Besides, vector of row’s permutations is
formed which is used in the calculation of solution of system (2.5).

Row-cyclic parallel algorithm. LD LT-decomposition (2.7) of dense sym-
metric matrix (Cholesky method) for s = 1, 2,..., n—1 consists in the
following sequence of operations:

1. by means of broadcasting operation the array of elements Iy, (k =
1,...,8—1) and d; of the s-th row matrices L and D are broadcasted
to all processes,

2. each process by virtue of (2.11) evaluates values t;5(i = s+ 1,...,n)
according to scheme of distributing elements of the original matrix A,

3. values of elements [, x(k = 1,...,5 — 1) of the (s+1)-th row of the
matrix L and dsyq are evaluated by formulas (2.41) by process to which
(s+1)-th row of matrices is distributed.

Efficiency of algorithms. In order to estimate efficiency, i.e. coefficients
of acceleration and efficiency (see introduction) of the parallel algorithm it’s
necessary to evaluate expenses of computing resources for p parallel processes
and compare them with expenses required for the sequential version of the
algorithm under consideration.

As it is known the total number of arithmetic operations required for the
LU-decomposition (2.4) of square matrix by Gauss method is estimated by
value O; = 2n3/3 + O(n?).

The number of arithmetic operations performed by one process at the s-th
step of algorithm (s =1, 2, ..., n—1) is approximately equal to:
n—s
p

Then the number of arithmetic operations performed by each of p processes
for n—1 steps is estimated by value O, = % + 0 (%)

(2n—2s+1)+1.

Generally, the s -th step of parallel algorithm requires the performing of the
following operations: for the column pivoting — one multi-gathering and one
broadcasting of one double machine word; for the permutation of rows: one
exchange by array consisting of n elements between two process one broad-
casting of array consisting of n—s+1 elements. Hence, the total number

2.2 Linear algebraic systems 69

of synchronization is evaluated by value O, ~ n(3 + 3log, p), while the to-
tal amount of data by which the chosen processes exchanges approximately
amounts to O, & 0,5(n + 1)nlog, p + n* double words in case of employing
‘tree’-algorithm for broadcasting and multi-gathering [13].

Thus, execution time of parallel algorithm for the LU — decomposition (2.4)
under consideration is estimated by value 7, = (O, + O.7. + O,7,)t, where
t is time required for the performing of one arithmetic operation, while 7,
and 7, are determined in the introduction. Time required for the performing
of corresponding sequential algorithm is estimated by value 77 = O;t. Then
for n >>p coefficients of acceleration and efficiency of parallel row-cyclic
algorithm of the LU — decomposition (2.4) can be estimated as follows:

T 3p (logep +2) \ S
S,=—~r~p|l4+ —2—— E =2P
D Tp p(+ An T1) D D)
where 7, = 7, + —n%zizi ig)Tc. If 2ellogapt2) (10321;; 27 << 1, then E, ~ 1 — 22logpt?) (lofzp 2

Similarly efficiency of parallel row-cyclic algorithm for the LDLT — decom-
position of Cholesky method for dense symmetric matrix can be estimated.

As it is known, the total number of arithmetic operations required to the
LDL™ — decomposition (2.7) of Cholesky method for dense symmetric matrix
is estimated by value: O; = n®/3 + O(n?), while the number of arithmetic
operations performed by each of p processes with taking into account non-
uniform loading of processes data exchange by value:

2 1 —1
Op:n(n/3+p,5p)+O(n).

At the s-th step of parallel algorithm one operation of broadcasting of the
array consisting of s elements is performed by each process. Hence, the total
number of exchanges is estimated by value O, ~ nlog, p, and at that the
total number of data by which processes exchange approximately amounts
to O, ~ 0, 5n?log, p double words.

Then with n >> p coefficients of acceleration and efficiency of parallel row-
cyclic algorithm of the LDLT — decomposition (2.7) can be estimated as

follows:

S
E, =22
p

4,5p—3 3plo !
1; L3P gzph) 7

S, ~ 1
pp<+ 2n

70 Algorithms of parallel computations

_3 3pl
where 75 = 7o + 275 If A"L;S + 258287, << 1, then:

E

p A1

4,5p—3 3plog,p
— — T2.
n 2n

Row-cyclic parallel algorithms for the solving of linear algebraic
systems with triangular matrices.

After the performing of LU — decomposition (2.4) or LDL* — decomposition
(2.7) the solving of LAS (2.1) reduces to the solving of systems with lower
and upper triangular matrices (2.5), (2.6) or (2.8), (2.9), respectively.

It should be noted once more that during the LU — decomposition the lower
triangular matrix L is not formed explicitly. With taking into account this
fact the solving of linear algebraic systems (2.5) with lower triangular matrix
is carried out for s = 1, 2, ..., n—1 according to the following formulas
(notations from (2.10)):

ye = b0 B =Y e (i=s41,...,n), (2.12)
with y, = b\ Y.

LAS (2.6) with upper triangular matrix for s = n, n—1, ..., 2 is solved as
follows (notations from (2.10), (2.12)):

zy =yl"Y, yz-(n_sﬂ) = yi(n_s) —urs (i=1,...,8s—1), (2.13)

(0

)

(n—1)

where y) =yi/uy (i=1,2,...,n) and x; = y;

The solving of LAS (2.8) with lower triangular matrix obtained as a result
of LDL" — decomposition (2.7) of the symmetric matrix is carried out for
s=1,2,...,n—1 by formulas analogous to (2.12):

ys = b, bz(-s) = bgs_l) —lisys (i=s4+1,...,n), (2.14)

_ bgln—l)

where y, , while the solving of LAS (2.9) with upper triangular

matrix is evaluated as follows <xn = Z—">:

_ Y - o
xi_d—i—k:zi;lkixk (t=n—-1,...,2,1). (2.15)

2.2 Linear algebraic systems 71

Formulas (2.11)—(2.15) are given for the case of one right-hand side. If
the number of right-hand sides of system (2.1) ¢ > 1, then in this case
components of vectors in these formulas should be replaced by elements of
corresponding rows both of matrices of right-hand sides and solutions of
systems.

Distribution of data and results. As stated in previous paragraph, the
row-cyclic scheme is employed for the inter-processor distribution elements
of triangular matrices L and U, diagonal matrix D, as well as right-hand side
b and results y and z of solving systems (2.5), (2.6) or (2.8) with triangular
matrices.

Elements of matrix LT of system (2.9) are distributed between processes by
row-cyclic scheme.

Row-cyclic parallel algorithm. For the solving of system (2.5) Ly = b
the so-called column algorithm is employed which for s = 1, 2,..., n—1
consists of the following sequence of operations:

1. by means of broadcasting operation the array ¢ of elements of the s-the
row of matrix of the solution y is broadcasted to all processes (for the
definition of the broadcasting operation see introduction),

2. each process performs modification (2.12) of values bz(»s) (i=s+1,...,n)
according to scheme for the distribution of elements of the right-hand
side b.

The same algorithm is employed for the solving of system (2.8) with formula
(2.12) replaced by (2.14), while LAS (2.6) with upper triangular matrix is
solved by the same algorithm in which s = n, n—1, ..., 2, and modifications
are carried out according to (2.13).

Column-cyclic parallel algorithm. For the solving of system (2.9)
LTz = D~ 'y the inner products algorithm is employed which for i = n—1,
n—2, ..., 1 consists of the following sequence of operations (first put x, =

Yn/dn):

1. each process according to scheme for distribution both of elements of
matrix L and solution z by formula (2.15) evaluates partial sums re-
quired for finding i-th row of solutions z; (k =1, ..., q);

72 Algorithms of parallel computations

2. a process to which i-th row of solutions x;x (kK =1, ..., ¢) has been
distributed carries out multi-gathering of partial sums evaluated by all
process (for definition of multi-gathering see introduction).

Efficiency of algorithms. The total number of arithmetic operations
required for the solving of LAS with triangular matrix and ¢ right-hand sides
is estimated by value O; = gn?+0O(gqn). The number of arithmetic operations
performed by each of p processes during the solving of systems (2.5) or (2.8)
Ly = b is estimated by value O, = M, while during the solving of

systems (2.6) Uz = y or (2.9) LTx = D'y — by value O, =~ %.

Each step of both parallel algorithms involves the performing of either one
broadcasting operation or one multi-gathering array consisting of ¢ elements.
Hence, the total number of data by which the process exchanges approxi-
mately amounts to O, ~ nlog, p double words.

Then with n >> p and n >> ¢ acceleration and efficiency coefficients of
parallel algorithms under consideration for the solving of LAS with triangular
matrices may be estimated as follows:

lo -t —1 lo -t
b P (1 + p—g2p7'3> or S,~p (1 + P + P ngTg) ,
n n n

Sp. e pl
where 73 = 7, + éTc. E, =2 if P8Py << 1 then:

1 —1 pl
plogop B ~1_ Pl _plosp

E,~1-—
n n n

Two-dimensional block-cyclic parallel algorithms for the solving of
LAS with dense non-singular matrices.

Block algorithm for the solving of LAS enable to reduce implementation of
algorithms to the performing of operations in processes over separate blocks
of matrices which they are broken into instead of performing operations over
separate elements of matrices. As a rule, dimensions of blocks are determined
with taking into account the volume of computers’ cache memory [12]. This
provides high speed of matrix-vector operations.

Consider first how the following block algorithms for solving LAS with dense
matrices can be implemented on computer with sequential arrangement of

2.2 Linear algebraic systems 73

computations: LU — decomposition of non-singular matrix and LL? — de-
composition of positive definite matrix.

Block algorithm for LU-decomposition. During the solving of LAS
Az=b (2.1) algorithm for LU - factorization reduces matrix Ato the form
A=PLU, where P — is a matrix of permutations, L is a lower triangular
matrix (with units on principal diagonal) while U is an upper triangular
matrix. This enables to replace the solving of one system (2.1) with general
matrix by the solving of two LAS Ly=b and Uz=y with triangular matrices.

Let us assume that n-th order matrices A, L and U are to be divided into
square blocks of order s.

At the k-th step of algorithm (k = 1, 2, ...) let us represent a sub-matrix
A®) (diagonal block of matrix A) of order r = n—(k—1)s which contains the
last 7 rows and r columns of the matrix A in the form:

(An A12>:P (Ln 0) (Un U12):P (L11U11 LUy)
Ay Ag Loy Lo 0 Up LoyUyy LoyUig + LppUss)7
where block Aj; is of size sxs, block Ajs — sx(r—s), block Agy;— (r—s)xs
and block Agy— (r—s)x(r—s).

Let us carry out a sequence of Gauss transformations (see paragraph 2.2.1)
on the part of matrix (Fig. 2.1) consisting of blocks A;; and As;:
Lim = Qim o lij = g — LGy (2.16)
amm

where i =1,s, m=1,s, j=m+1,r.

As a result, we get matrices L1y, Loy. Further let us find from them unknown
matrices Uy; and Agy (the latter is formed on the place of Agy):

Ura < (L11) " Asa, (2.17)
AQQ < A22 — L21U12 = L22U22 . (218)

Further, the value of k is increased by 1 and computations are repeated for
the new value of k, the matrix Asy being considered as a sub-matrix A®),

It is easily seen that total number of arithmetic operations required for the
block LU — decomposition (2.4) of square matrix by Gauss method is esti-
mated, as in the case of non-block version, by value O; ~ 2n?®/3 + O(n?).

74 Algorithms of parallel computations

Figure 2.1: Scheme of implementation of the block algorithm for LU — decom-
position

Block algorithm for the LL'-factorization. In the solving of LAS
Az=b (2.1) with symmetric positive definite matrix the LLT — factorization
algorithm reduces matrix Ato the form A = LLT, where L is a lower and L”
— an upper triangular matrices.

Similarly as in the previous case we’ll consider n-th order matrices A and L
which are broken into s-th order square blocks.

At the k-th step of block algorithm for the LLT — decomposition under
consideration (k = 1, 2, ...) the sub-matrix A® of order r = n—(k—1)s
(diagonal block of matrix A) which contains last r rows and r columns of
the matrix A may be presented in the form:

(An A2T1) _ (Ln 0) (L1T1 Léq) _ <L11L1T1 L Ly)
Agr Anx Loy Lo 0 Ly Loy L{} LoyLj) + LypL3,) 7
where block Aj; is of size sxs, Aja— sx(r—s), block Ay;— (r—s)xs, block
Agp— (r—s)x(r—s).

For the implementation of algorithm the following operations are to be per-
formed at each step:

1. perform LLT — decomposition A;; (see paragraph 2.2.1) and get the
matrix L117

2. modify matrix Lo, by formula:

[Nm = Ly - (Li)il)

2.2 Linear algebraic systems

75

3. modify matrix Ags by formula:

12122 = AQQ - I~/21 : f/gl .

Hence, at the k-th step a transformed part of the matrix L is obtained. At
the next step the matrix Ags is transformed (Fig. 2.2).

Lo

|
|
Az A
|
|
|

>

Lo

D)

|
|
I Ly
|
!

Az

Figure 2.2: Scheme of implementation of the block algorithm for LLT —

—factorization

In this case the total number of arithmetic operations required for the block

LLT — decomposition (2.7) is estimated by the value O,
similarly as in the case of non-block version.

n?/3 + O(n?)

Distribution of data and results. Two-dimensional block-cyclic distri-
bution of matrix elements between processes is used in the solving of LAS
with dense non-singular matrices by parallel block algorithms.

For the distribution of original n-th order matrix A between p processes it
should be represented in the form:

All A12
A21 A22

Ap Agp

A
A

A

1p
2p

qp

76 Algorithms of parallel computations

where:
Aij Aijp - Aijt(p-1)p
A — Aitgi Aiygjtp Aisgit-1p
i
Aiv-1gi Air@-Datr - Ait@-Dai+e-1p

Here A;; is a block of elements of the matrix A of order s.

Matrix of the system is distributed between processes so that A;; € P,
where 7 and j are Cartesian coordinates of process on the two-dimensional
pxq grid. Let us illustrate such distribution by the following example.

Let n=8, s=2, p=2, ¢=2, then for the matrix:

a1 Q12 ... aig

g1 Q922 ... A28
A= :

agy dagz ... dgg

Al 1 A12 A13 A14
A21 A22 A23 A24
A31 A32 A33 A34 ’
A41 A42 A43 A44

its block representation has a form: A =

A2i—125—1 QA2;—1,25
Where A”: (1—1,27 1—1,27 .

A2 251 2425

In this case block-cyclic distribution for the matrix A takes the form:
A Ap
A= ,
< Ay Agg

where

aix as a2 Aaiq Q21 Q23 Q22 A4
An=) A=) Ay =) Agp= .
a31 ass az2 a34 Q41 A43 Qa2 Q44

Thus, each process P;; contains elements of the matrix Aj; as well as corre-
sponding blocks of matrix of the right-hand sides.

2.2 Linear algebraic systems 77

Each vector of right-hand sides is distributed cyclically by pxq blocks be-
tween processes of the first column of processes’ grid. Hence, process Py, con-
tains elements numbered ks, ks+1, ks+2, ..., ks+s—1, (k+p)s, (k+p)s+1,
(k+p)s+2, ..., (k+p)s+s—1, ..., where s is the number of blocks equal to
its counterpart in the matrix distribution. Without loss of generality, let us
assume that z% is an integer.

Two-dimensional block-cyclic parallel algorithm for LU-facto- riza-
tion. Consider the implementation of this algorithm at the k-th step. Taking
into account the fact that algorithm is determined by formulas (2.16), (2.17),
let us draw reader’s attention to the data exchanges between processes. A
process which contains block A;; will be called a leading process of the k-th
step. Then algorithm is implemented as follows:

1. in the s-step cycle the Gauss transformation over blocks A, and Ap
is performed, i.e. maximum element in sought in the leading column;
exchange by elements of the leading row and row containing maximum
elements is carried out; the leading and all subsequent rows are trans-
formed according to (2.2); as a result of transformation, blocks A;; and
Ai9 are located on the place of blocks Li; and Lis , respectively,

2. the matrix (L) ™! is evaluated (since Ly; is completely contained in the
leading process, (L;;)~! is evaluated within the limits of one process);
then (L;;)~! is broadcasted to all processes of the corresponding row of
the process’ grid, i.e. if P;; is the leading process then (Lj;)~! is sent
to processes Py, | = 1,p,

3. processes independently on each other evaluate a product of the ob-
tained block (Li1)~! by blocks Ajy distributed to them according to
(2.3); as a result elements of A, are replaced by elements of Uys,

4. blocks Lg; are broadcasted horizontally over the rows of the processes’
grid, while U, are broadcasted vertically over columns. After this a
transformation of the corresponding blocks of matrix A,y according to
(2.4) takes place in every process.

Two-dimensional block-cyclic parallel algorithm for LL"-facto-
rization. At each step of algorithm the following sequence of operations
is to be performed:

78 Algorithms of parallel computations

1. process P;; containing block A;; carries out decomposition of this block
thus evaluating Lq; (see 2.2.1),

2. process F;; broadcasts the block L;; to processes P,;, m = 1,q, i.e.
carries out vertical broadcasting over grid of processes,

3. processes P,,;, m = 1,q independently on each other modify corre-

YR
sponding parts of sub-matrix Ls; according to Loy = Loy - (LlTl)fl,

4. processes P,,;, m = 1, q broadcast corresponding blocks of matrix Loy to
all processes in horizontal direction over grid of processes and perform
their transposing so that all process receive all parts of sub-matrices
Loy, LT, required for the forming of product Ly LT},

5. all processes simultaneously perform modification of their parts of sub-
matrix AQli Agl = A21 - Lgngl.

Efficiency of two-dimensional block-cyclic parallel algorithms. Co-
efficients of acceleration and efficiency of algorithms will be determined ac-
cording to formulas S, = g—plq, Ey = piq,where pq is the number of processes;
T is the time required for the performing of algorithm on one process; T, is
the time required for the performing of algorithm on the grid (px¢) of pro-
cesses. To determine T, let us make use of formula T,, = Nt + Mt, + Qt.,
where N is the number of arithmetic operations (addition and multiplica-
tion); M is the number of exchanges; () is the number of inter-processes
synchronizations.

For two-dimensional block-cyclic parallel algorithm for LU — factorization
the number of arithmetic operations is mainly determined by stages 3 and 4
of the algorithm and is estimated by value N ~ 2n3/(3pq).

To evaluate coefficients of acceleration and efficiency for this algorithm it’s
necessary to determine basic components for the amount of processes per-
formed at the k-th step of algorithm. The broadcasting of matrices (L1;)~?,
Loy, Upg requires (p—1)s? and ((p—1)(n—ks)/q+(q—1)(n—ks)/p)s transfers
of elements. Then after k steps we get M ~ n*(p+q)(p+q—1)/(2pq). In so
doing at each step @ = 4n(p+¢—2)/s synchronizations is performed. Thus,
we have:

o 20t et dete—1)

dn(p+q—2)
L A £+

3pq 2pq s

te.

2.2 Linear algebraic systems 79

Hence, for coefficients of acceleration and efficiency we get:

Ty
Spq = T ~pq

pq

1+3(p+<J)(p+q—1)T+6pq(p+q—2)7 -
4dn © sn? ¢ ’

B -

pq

~1
S (1430t abra=1) bplpta=2) \
pq 4n 8712

Let us analyze coefficients of acceleration and efficiency for two-dimensional
block-cyclic parallel algorithm for LLT — factorization. Principal term in
the expression of the number of arithmetic operations for this algorithm is
determined mainly by implementation of the last stage and with taking into
account the symmetry of the matrix, it can be written as follows:

3pq

A considerable volume of exchanges is performed at the stage 4:

n/s

MQ}ZOP_U@ +(q—1)w)szw.

2~ p 4pq

The number of synchronizations is determined by value @ ~ 2n(p+2¢—2)/s.

Thus, we have:

3t 2(12 2 2 2q9 — 2
nt | nip +Q)t0+ n(p +2q)tc.

3pq 4pq s

pq —

Hence, for coefficients of acceleration and efficiency we get estimates:

T 3(p* + ¢? 6pq(p + 2 — 2 -1
Spq:T;ZPQ(l"' (4n >7'o+ (87’L2)Tc)

pq

S 3(p? + ¢2 6 20 —2) \ '
E, - (1+ (p* +q)TO+ pq(p+2q)TC> ‘
pq 4dn sn

Two-dimensional block-cyclic algorithms presented here possess both well
balancing of processes’ loading and possibility of the efficient control over

80 Algorithms of parallel computations

the using of various levels memory. Considerable improvement in time re-
quired for the performing of algorithms takes place with such choice of blocks’
dimension that could be completely contained in the computer’s cache mem-
ory.

As the number of processes is increases, acceleration of algorithms grows.
The obtained dependencies of coefficients of acceleration and efficiency both
on the matrix dimension and parameters of the process grid indicate that not
always the increase in the number of processes leads to decrease in problems’
execution times. So, in case of relatively small dimension of matrix the
inter-process data exchanges take much of time required for the execution of
algorithm.

The obtained formulas make it possible to draw a conclusion on the depen-
dence of algorithms’ efficiency on the dimension of process grid. So, with
the same total number of processes the sum p 4+ ¢ may take different value.
Obviously for the sake of greater efficiency it is advisable to choose such
dimension of grid for which this sum is minimal.

2.3 Algebraic eigenvalue problem

2.3.1 Methods for the solving of algebraic eigenvalue
problem (AEVP) with symmetric matrices

This paragraph deals with methods for the solving of problem:
Az = Az, (2.19)
where A — is n —th order real square matrices,
— full standard AEVP with tri-diagonal symmetric matrix A,
— full standard AEVP with dense symmetric matrix A.

To evaluate all eigenvalues and eigenvectors of real tri-diagonal symmet-
ric matrix the ()L-method with implicit shift is employed which for T} = A
and s = 1, 2, ...is determined by following relations [2]:

Qs(Ty — ko) = Ly, Ty = LQF + kI = Q,T,QT, (2.20)

2.3 Algebraic eigenvalue problem 81

where @), is an orthogonal and L, is a lower triangular matrices; ks is a shift
corresponding to the least in module eigenvalue of the 2x2 leading block
of the matrix Ts. Matrix ()5 is usually a product of matrices of elementary
plane rotations:

Ql =pPPPP...PY (s=1,2,..). (2.21)

The iterative process continues until absolute values of all off-diagonal ele-
ments become less than the given quantity. Then diagonal elements will be

approximate eigenvalues. Columns of the products of transposed matrices
Qs of (2.22):

Z=Q Q{Qy Qs (222)

will be approximate eigenvectors, here) = I, if T} = A or is determined
from A = QT1Q7T.

During the evaluating of all eigenvalues and eigenvectors of real dense sym-
metric matrix the following three items could be mentioned:

1. reduction of the original symmetric matrix to tri-diagonal symmetric
form,

2. evaluation of all eigenvalues (coinciding with eigenvalues of the original
matrix) and eigenvectors of tri-diagonal symmetric matrix by the above
described @L-method with implicit shift,

3. evaluation of eigenvectors of the original matrix.

The reduction of the original symmetric matrix A©® = A to tri-diagonal sym-
metric matrix 7} enables to replace the evaluation of eigenvalues of arbitrary
symmetric matrix by evaluation of eigenvalues of tri-diagonal matrix. There
exists the sufficient number of practicable procedures for the reduction of
matrix to tri-diagonal form.

For reduction of the original symmetric matrix to tri-diagonal symmetric
form the Householder’s transformations may be used and n—2 two-sided
elementary transformation of reflection are required:

AW = pl) A-D) p(®) (i=1,2,....,n—2), (2.23)

Y

82 Algorithms of parallel computations

where orthogonal matices P(i) = I + s;u;u; T while vectors u; and factors
s; are determined so that for each ¢ = 1, 2,..., n—2 the following conditions

hold:

d o =al =0 (j=1...,n—i-1), (2.24)

or (by analogy with reduction of rectangular matrix to two-diagonal form):

dV=a=0 (j=i+2,...,n). (2.25)

2y

Then Ty = A2

The evaluation of all eigenvectors of the original matrix (dense symmetric)
is carried out by accumulating of elementary transformations of reflection:

Q=pP®p2 pr-2, (2.26)

and rotation (2.22). Then columns of the matrix X = QZ are approximate
eigenvectors of the original matrix.

2.3.2 Parallel algorithms for solving of algebraic eigen-
value problem

Analysis of methods intended for the solving of problems presented in para-
graph 2.3.1 has shown that the following parallel algorithms are required for
the solving of these problems on parallel computers:

1. reduction of dense symmetric matrix to tri-diagonal symmetric matrix
by means of two-sided elementary transformations of reflection (2.23),

2. accumulation of elementary transformations of rotation (2.26),
3. QL — method with implicit shift (2.20) and accumulation of elementary

transformations of rotation (2.21), (2.22) for the solving of full AEVP
with tri-diagonal symmetric matrix.

2.3 Algebraic eigenvalue problem 83

Row-cyclic parallel algorithm for the reduction of dense symmetric
matrix to the tri-diagonal symmetric matrix.

This algorithm of the Householder’s method is similar to row-cyclic algorithm
for the reduction of rectangular matrix to two-diagonal form described in
section 2.2. Here we are going to deal with algorithm implementing another
version of reduction starting from the lower right-hand corner. In such a
situation orthogonal matrices P(® of elementary transformations of reflection
(2.23) are formed so that conditions (2.24) hold.

Two-sided transformations (2.23) together with conditions (2.24) can be writ-
ten as follows:

AW =AY ol + vl (i =1,2..,n-2), (2.27)
where
. A A T
u; = (a,(;;l), o ,ag’;g, a,(i;)l — e, 0,. .. ,0) . v =W+ oy,
ey = —Sign(a,(;;;)l)ai, w; = 5, AT Dy, ci = 0,5s;w] uy, (2.28)
‘ -1 - N2
S = <€ka§€i;i)1 — 0’?) , UZ-Q = Z (ag;l)> ’ (k =n—1-+ 1) .
j=1

Thus, on each step (for each i) a square sub-matrix AV of order n — i is

modified; this matrix includes element aﬁfl) and this enables condition (2.24)

(i) (i) Q) :
meim—; and ay”; g, o =a,’, ., ;. are, respectively,

to hold, while elements a
diagonal and off-diagonal elements of tri-diagonal matrix 7, = A®2. As
transformations are carried out, the symmetry of the original matrix A and

all matrices A® is taken into consideration.

Distribution of data and results. Despite the fact that original matrix A
is symmetric and for the performing of transformations (2.27), (2.28) suffice
it to have elements both of principal diagonal of the matrix and, for example,
of its lower triangle, but it is advisable to specify all matrix elements. In so
doing computations are arranged so that only elements of lower triangle of
the matrix are modified and the rest of elements may be used, for example,
for the evaluation of residual.

For the arrangement of parallel computations matrices A®, including the
original matrix A are distributed between processes by row-cyclic scheme:

84 Algorithms of parallel computations

elements of matrix rows numbered k, k+p, k+2p, ..., are located in process
with logical number k—1, where £k =1, 2,..., p, p is the number of processes.
The result of reduction — diagonal ag;-_z) (7 =1,2,..., n) and off-diagonal
a%fl) = ag-?fr_l?j) (j =1, 2,..., n—1) elements of tri-diagonal matrix T} =
A(=2) _ are evaluated by each process. Besides, non-zero elements wu; are
located on the position of elements of lower triangle of the original matrix
according to their inter-process distribution. To perform both intermediate
computations according to formulas (2.28) and inter-process data exchanges

three arrays for the locating of vectors u;, v; and w; of (2.27) are required.

Algorithm. Row-cyclic parallel Householder’s algorithm for the reduction of
dense symmetric matrix to tri-diagonal symmetric matrix for:=1,2,..., n—2
consists of the following sequence of operations:

1. (a) by means of broadcasting operation one-dimensional array of ele-
ments a,(ﬁl), e ag;)l, a,(;,gl) of the k-th matrix row is sent to
all processes (k = n — i+ 1, definition of broadcasting operator

see in Introduction),

b) all processes simultaneously evaluate values o2 and e, = al” _, of
i k,k—1
(2.28), form the reflection vector u; and then evaluate value s; of
(2.28),

(c) each process evaluates the array of the first n—i elements of vec-
tor of partial sums of the product A® Du; of symmetric matrix
given both by lower triangle and elements of principal diagonal by
row-cyclic scheme by vector; simultaneously each process performs
multi-gathering of array of the first n—I components of the vector
AG=Dy; (definition of multi-gathering operation for the array of
numbers is given in Introduction),

2. all process simultaneously form the first n—: elements of the vector w;
according to (2.26),

3. all processes simultaneously evaluate the value ¢; and form the first n—1
elements of the vector v; according to (2.28),

4. each process according to row-cyclic scheme of distribution of elements
of the matrix A=Y performs modification (2.27) of the lower triangle

of its sub-matrix of order n—I which contains element agﬁl).

2.3 Algebraic eigenvalue problem 85

After performing of all these operations for all + = 1, 2,..., n—2 elements
agbl_m, agf;m and anl_Q)are to be sent to all processes. Thus, after performing
of all operations involved in algorithm under consideration each process will
form two n-dimensional vectors of diagonal and off-diagonal elements of tri-

diagonal symmetric matrix A¢=2).

Efficiency of algorithm. The total number of arithmetic operations re-
quired for the reduction of dense symmetric matrix to tri-diagonal symmetric
matrix by Householder’s method is estimated by value:

O, =~ 4n?/3, (2.29)

while the number of arithmetic operations performed by each of p processes
— by value:

0, ~ 4n3 + 12n2p'
3p

On each step of i — cycle two operations of broadcasting of one-dimensional
arrays of n —i elements each, and one operation of multi-gathering of (n —1)-
dimensional vector are performed. Hence, the total number of exchanges
is estimated by value O. ~ 3nlog,p and at that the amount of data by
which processes exchange constitutes approximately O, = 1.5n2 log, p double
words.

Then coefficients of acceleration and efficiency of row-cyclic parallel algorithm
for the reduction of dense symmetric matrix to tri-diagonal symmetric matrix
are estimated as follows:

3p 1.125pl -1 S
Sp R P (1 + Ep + Z Og?pﬁ) ’ E,=—", (2.30)

1,125plogy p
3p 1,125pl
Bya1— 2L 2 P08l (2.31)
n n

where m = 7, + %Tc. If % + 71 >> 1 then:

Block cyclic parallel algorithm for the reduction of dense symmet-
ric matrix to tri-diagonal symmetric matrix.

Besides factors taken into consideration in (2.31), the efficiency of algorithm
for the reduction of dense symmetric matrix to tri-diagonal symmetric ma-

86 Algorithms of parallel computations

trix is considerably affected by arrangement of work with operating memory.
In up-to-date processors this memory is of the complicated architecture and
rate of addressing to the various-levels operating memory (reading or writ-
ing) considerably differs. At the same time during the modification of matrix
A= (2.27) very often we have to address the slowest basic operating mem-
ory that results in considerable increase in the execution times. This problem
can be resolved by modification of algorithm — the using of block performing
of transformations (2.27).

Consider a version of block algorithm where orthogonal matrices P of el-
ementary transformations of reflection (2.23) are formed so that conditions
(2.25) hold. Then (in contrast to (2.28)) the reflection vector u; and scalar
values 0, s; are formed differently. Thus, instead of (2.28) we have:

» in

. ‘ ' T
U; = (0, ..., 0, ag:_ll) — €ii1, az(?i;lQ), . a(z—l)) . v = w; + oy, (2_32>

Cip1 = —sign(agf;ll))ai, w; = s; A Dy, ci = 0.55,w] u; , (2.33)

. -1 N2
Si = <6i+1az(,li:rll) - U?) , o= Z <a1(,2j_1)) : (2.34)

In the block version of Householder’s method for the reduction of dense
symmetric matrix to tri-diagonal form according to [2] instead of using both
of the reflection vector u; and vector v; the rectangular matrices both of
vectors u; and vectors v; are used in (2.27). These rectangular matrices are
formed as follows:

U[(l) = UT—s5+1, U[(T) = U}T_l)auI—S-I—T))

B (2.35)
‘/](1) = Vr—s+1, ‘/I(T) = ‘/I(T 1)7 Ul—s+r>)
where r = 2, ..., s, s — size of block. Now the matrix transformations are
carried out as follows:
T T
Al — AU-9) (s)y/(s) (s)77(s)
A r (236)

T
A A IV

2.3 Algebraic eigenvalue problem 87

where [= s,2s, ..., N,n—2, N = Ts, T = (n—3)/s (here the value of a is
equal to integer part of quantity a). In this case, similarly as in row-cyclic
version, in fact only n—I-th order of the matrix AY~% is transformed which
contains matrix element a,(f; 9, During the evaluating of reflection vectors w;
and vectors w; the following representation of the matrix A® (I—s < i < I)

is used:

. T T
A(z) _ A(I—s) + UI(T)V'I(T’) + V'I(T)UI(T) (7” =i+ 55—]) . (237)

In so doing the direct transformation of the entire matrix is not carried out,
and only necessary elements are evaluated for example vector AU Dy, is
evaluated as follows:

. T T
AGDy, = A0y, 4 D) (V}H) u> Y (U,(’“*” u> . (2.38)

where: (r > 1).

Distribution of data and results. Despite the fact that, similarly as
in the case or row-cyclic algorithm, suffice it to have elements of principal
diagonal of the matrix and, for example, elements of its upper triangle for
the performing of transformations (2.33)-(2.38) still it is advisable to pre-
assign all elements of the matrix but only elements of upper triangle are to
be modified. The row-cyclic scheme of distribution matrices A(I) between
processes including the matrix A(0) is also employed here for the arrangement
of parallel computations. Similarly as in non-block algorithm the results of
reduction are diagonal a%ﬁ) (j=1,2,...,n) and off-diagonal a%fl) = aﬁ;?
(j =1, 2,..., n—1) elements of the tri-diagonal matrix T1=A(n—2) — are
computed by each process, while non-zero elements of vectors u; are stored
on the places of elements of upper triangle of the original matrix according
to their distribution between processes.

For the performing of the intermediate computations by formulas (2.33),
forming both of the rectangular matrix of reflection U I(S) and rectangular

matrix V[(S), (2.35) as well As data exchanges between processes, each process
requires two arrays to locate vectors u;, w; of (2.33) and two arrays for the

storing of rectangular matrices U 1(8) , VI(S).

Algorithm. During the reduction of dense symmetric matrix to tri-diagonal
symmetric matrix by means of block-cyclic parallel Householder’s algorithm
foreach [= s, 2s, ..., N, n—2:

88

Algorithms of parallel computations

. first, each process forms rectangular matrices U I(S) and VI(S) (2.35),

. further each process according to distribution scheme of elements of

the matrix AY~*) performs modification (2.36) of the upper triangle of

its n—1I order sub-matrix which contains element agms).

During the forming of rectangular matrices U I(s) and VI(S) (2.35) for each
i=1—s+1, ..., I the following sequence of operations (I = s, 2s, ..., N, n—2)
is performed enabling to form vectors w; and v;:

Similarly as in row-cyclic algorithm, elements a

. by means of broadcastings operatlon the one-dimensional array of el-

ements al(.i._l), al(-f;ll), cee afn of the ¢-th matrix row is sent to all

process (the definition of the broadcasting operation is given in the
Introduction),

. all processes simultaneously compute values o? and ¢; = aﬁ? 1 0f (2.33),

form the reflection vector u; and then compute the value s; of (2.33),

(a) each process computes an array of last n—1 elements of the vector
of partial sums of the product A®~Du; of symmetric matrix given
both by upper triangle and elements of principal diagonal accord-
ing to row-cyclic scheme by vector according to formula (2.38),

. all processes simultaneously perform the multi-gathering of array con-

taining last n—4 components of vector A Du; (definition of multi-
gathering operation for the array of numbers is given in the Introduc-
tion),

. simultaneously all processes compute the last n—i elements of vector

w; according to (2.33),

. all processes simultaneously compute the value ¢; and form last n—1

elements of the vector v; according to (2.33),

. a process containing elements of the (i41)-th matrix row compute el-

ements aZ(JzLZﬂ, ey 521 . if @ < I with taking into account (2.37).

(n—2) (n—2) (n—2)
n—1n—1» an—l,n and an,n

computed according to the distribution scheme should be broadcast to all
processes.

2.3 Algebraic eigenvalue problem 89

Efficiency of algorithm. As noted above, the total number of arith-
metic operations required for the reduction of dense symmetric matrix to tri-
diagonal symmetric matrix by Householder’s method is estimated by value
O ~ 4n®/3. The number of arithmetic operation of block cyclic algorithm
performed by each of p processes is estimated by quantity:

N 4n3 + 6n’ps

0, 3

As to algorithm dealt with, similarly as for the row-cyclic algorithm, the total
number of exchanges is estimated by O, ~ 3nlog, p, while total amount
of data by which processes involved in computations exchange constitutes
approximately O, ~ 1.5n%log, p double words.

Then coefficients of acceleration and efficiency of block cyclic parallel algo-
rithm for the reduction of dense symmetric matrix to tri-diagonal symmetric
matrix are estimated as follows:

1,5ps 1,125plo !
np N P ggPﬁ) 7

n

Sp%p<1+

1,125p1
where 7 = 7o + %TA. If 1’ip8 4 =282l >> 1, then:

1,5 1,125pl
E o pS) p Og2p7_1. (24())

» A2 1

n n

The using of one-dimensional block cyclic scheme, i.e. distribution of ¢ rows
in succession to each process instead of using the row-cyclic data distribution
scheme decreases the number of exchanges but increases non-balancing of
processors’ loading.

Row-cyclic parallel algorithm for the accumulation of elementary
reflection transformations.

The forming of matrix of elementary reflection transformations Q (2.26) can
be carried out as follows:

Q(i) = P(k)Q(i—l) = Q(i—l) + ukw;f (i =1 2,..., n— 2)) (2-41>

90 Algorithms of parallel computations

where Q) = 1, Q) = Qn-2),
Wi = Sng_l)Uk, Sk = (ei+2uk,i+1)_1 : (2.42)
The reflection vector wy is determined in (2.28), e;11 = t;i41, is an off-

diagonal element of the tri-diagonal matrix Ty = A®2 k = n—i—1. Thus,
a process of forming of the matrix of elementary refection transformations
(2.26), (2.41), (2.42) is analogues to the process of forming of matrices of the
left- or right-hand elementary reflection transformations which is described
in section 2.3.1, but the process starts from the left-hand upper corner of the
matrix.

Distribution of data and results. Array of off-diagonal elements of
matrix 77 and reflection vectors uy formed during the reduction of symmetric
matrix to tri-diagonal form are employed as initial data in the forming of
matrix @ (2.37), (2.38). Non-zero elements of these vectors are stored on the
position of elements of lower triangle of the original matrix according to their
row-cyclic distribution between processes. In so doing elements of vector wuy
are placed on the position of elements of (i+2)-th row of the original matrix.

The result of computations — square matrix) — is distributed by between
processes by row-cyclic scheme. It can be located either the position of the
original matrix or separately if the original matrix is required for further
computations.

For the carrying out intermediate computations by formulas (2.37), (2.38)
and data exchanges between processes three arrays for storing vectors are
required: one array for uy and two arrays for wy.

Algorithm. Row-cyclic algorithm for the accumulating of elementary reflec-
tion transformations for ¢ = 1, 2,..., n—2 consists of the following sequence
of operations:

1. by means of the broadcasting operation one-dimensional array consist-
ing of i+1 non-zero elements of the reflection vector uy is sent to all
processes (k = n—i—1, definition of the broadcasting operation is given
in the Introduction),

2. all processes simultaneously compute the value s; of (2.38),

2.3 Algebraic eigenvalue problem 91

3. each process computes the array of the first (i41) elements of vector
of partial sums of the product ngl)uk of the square matrix given by
column cyclic scheme by vector,

4. simultaneously each process performs multi-gathering of array of the
first 141 components of the vector Qa_l)uk (definition of multi-gathering
operation of the array of numbers is given in the Introduction),

5. all processes simultaneously form the first i+1 elements of vector wy
according to (2.39),

6. each process according to the row-cyclic scheme of distribution of ele-
ments of the matrix Q;_1) performs modification (2.37) of its square

sub-matrix of order ¢+1 which contains element qgfl).

Efficiency of algorithm. The total number of arithmetic operations re-
quired for the forming of matrix by elementary reflection transformations @)
(2.36) is estimated by value:

O, =~ 4n*/3, (2.43)

while the number of arithmetic operations performed by each of p processes
is estimated by value:
_4n® 4+ 1.5n%p

O, 3

(2.44)

On each step of the i-cycle the following operations are performed: two
operations of broadcasting of one-dimensional arrays, each consisting of i+1
elements and one multi-gathering operation of the (i41)-dimensional array.
Hence, the total number of exchanges is estimated by value O, ~ 3nlog, p,
and at that the total amount of data by which processes exchange constitutes
approximately O, ~ 1.5n%log, p double words.

Then coefficients of acceleration and efficiency of row-cyclic parallel algorithm
for the forming of matrix of elementary reflection transformations ¢ (2.36)
are estimated as follows:

0.375p 1.125plo -1
szp(l—k p—|— P g2p7’1) y

S
E,=-, (2.45)
n p
where 71 = 7, + %Tc. If 0'3735’7 + 1'12521%2” 71 >> 1 then:

0375p _ 1.125plogsp (2.46)

Fo~1—
P n n

92 Algorithms of parallel computations

Block cyclic parallel algorithm for the accumulating of elementary
reflection transformations.

During the forming of matrix @) of elementary reflection transformations
(2.49) dealt with in paragraph 2.3.2 computations are carried out by formulas:

T
Qu =1+U", W,

() ypr ()T (2:47)
Quny = Qu-s) + U Wi (I=t+s,t+2s, ..., n—2),

here Q@ = Qu-2), K = n—I+s—1,t = n—Ts—1, T = (n—3)/s (the value of
a is equal to the integer part of number a),

U[({l) = Ug, U}? = (uK_r+1,U;(§_l)) >

B (2.48)
W}Q) = Wgk, WI(;) = <wK—T+17W[((T 1)> >
wg = SkQ%;_UUk» sk = (ehsallppir) (2.49)
r=2,...,s the reflection vector uy is determined in (2.33), ;41 = ti11,
is an off-diagonal element of tri-diagonal matrix Ty = A™? k = n—i—1.

In this case, similarly as in the block version of algorithm for the reduction
of symmetric matrix to tri-diagonal form the following product Q%;_l)uk is
used:

T— T— T
QunTu = QuoTur + W (U) (2.50)

Distribution of data and results. In the algorithm under consideration
the distribution of data and results is similar to that described in the previous
paragraph 2.3.2 for row-cyclic algorithm. Difference consists in the following:
non-zero elements of the reflection vectors w; are stored on the place of
elements of upper triangle of the original matrix according to their row-cyclic
distribution between processes. In so doing elements of vector u; are located
on the place of elements of the k-th row of the original matrix. Another
difference is that for the carrying out both of intermediate computations by
formulas (2.48)-(2.50) and inter-process data exchanges each process requires
two arrays for storing vectors u; of (2.33) and w; of (2.49) as well as two arrays

for storing rectangular matrices U I((s), Wl((s),

2.3 Algebraic eigenvalue problem 93

Algorithm. Initially, in processes, where next to last and last rows of ma-
trix are located, the assignations ¢,—1n-1 = ¢upn = 1, Gn-1n = Gun-1 = 0
are performed. Further, for the forming of matrix ¢ (2.26) by block cyclic
parallel algorithm for I = ¢, t+s, t4+2s, ..., n—2:

1. each process forms the rectangular matrices U }f) and WI((S) (2.48),

2. whereupon each process according to distribution scheme for elements
of the matrix ()(;) performs modification of its lower right-hand square
block of order 7+1.

Forming (2.48) of rectangular matrices U }5) and Wl(f) for each i = I—s+1,
oy I (ori=1,...,tif I = t) is performed by means of the following

sequence of operating which enables to form vector wy, (I = t, t+s, t+2s,
c, n=2):

1. by means of the broadcasting operation an one-dimensional array con-
taining ¢+1 non-zero elements of the reflection vector uy is sent to all
processes (k = n—i—1, definition of the broadcasting operation is given
in the Introduction),

2. all processes simultaneously compute the value s of (2.49),

3. each process computes an array of the last i+1 elements of vector of
partial sums of the product Qa_l)uk (2.50) of the square matrix given
by column cyclic scheme by vector,

4. each process simultaneously with other processes performs the multi-
gathering of the array containing 741 components of the vector Q%;fl)uk
(definition of multi-gathering operation of the array of numbers is given
in the Introduction),

5. all processes simultaneously form the last ¢+1 elements of vector wy
according to (2.46),

6. according to the distribution scheme of matrix elements the following
assignations are performed qyr = 1, qr; = g = 0 where j = k+1,
cy M

94 Algorithms of parallel computations

Efficiency of algorithm. As noted in the previous paragraph, the total
number of arithmetic operations required for the forming of matrix @) of ele-
mentary reflection transformations (2.26) is estimated by value O; ~ 4n3/3.
The number of arithmetic operations required for the performing of block
cyclic algorithm under consideration by each of p processes is estimated by
value:

_4n® +1.5n%s (p+ 11)

3p

Op

Similarly, as for row-cyclic algorithm, the total number of exchanges is es-
timated by value O, ~ 3nlog, p, and at that the total amount of data by
which processes exchange constitutes approximately O, ~ 1.5n2 log, p double
words.

Then for coefficients of acceleration and efficiency of the block cyclic parallel
algorithm for the forming of matrix of elementary reflection transformations
@ (2.51) the following estimates are valid:

0.375 11) 1.125p1 -1 S
szp(1+ s dl) pongTl) . E,=22, (251)

n n

0,375s(p4-11 1,125p1
f= ST(LH)—i— I;Og”ﬁ >> 1 then:

where 7 =71, + %Tc. I

0.375s (p+ 11) 1.125plog, p
— 71 .

Fo~1-—
P n n

(2.52)

2.3.3 Parallel QL-algorithm for tri-diagonal real sym-
metric matrices

QL-method with implicit shift for the evaluating of all eigenvalues of tri-
diagonal symmetric matrix is similar to QR-method with implicit shift for
evaluating of singular values of upper two-diagonal matrix; this method is
dealt with in section 2.3.1. Similarly as QR~algorithm for two-diagonal ma-
trix it is not advisable to parallel QR-algorithm for tri-diagonal matrix due
to relations of efficiency; it is advisable that each process completely evaluate
all approximate eigenvalues. It is also advisable to form in parallel elements
of matrix of eigenvectors according to (2.21), (2.22).

Distribution of data and results. According to the foregoing all diagonal
and off-diagonal elements of tri-diagonal symmetric matrix are stored in each

2.3 Algebraic eigenvalue problem 95

process. Moreover, all evaluated approximate eigenvalues are also stored in
each process.

Since each separately taken (elementary) right-hand plane rotation used in
the evaluating of matrix of eigenvectors by formulas (2.21), (2.22) consists
of in-pair transformations of only two elements belonging to columns being
modified) of each row, and parameters of plane rotation are evaluated by
each process, elements of matrix of eigenvectors being formed are distributed
between processes by row-cyclic scheme. In this case there is no need in
inter-process data exchange during the forming of matrices of eigenvectors.

Algorithm. At each iteration s = 1, 2, of parallel QR-algorithm the follow-
ing operations are performed:

1. simultaneously without data exchanges each process computes the value
of the shift kg; in succession form matrices of plane rotations Pj(s)
(j=1,2,..., m < n) and modify tri-diagonal matrix 7T; according

to (2.20),

2. simultaneously according to the distribution scheme and without data
exchanges each process modifies elements of eigenvectors’ matrix of
eigenvectors being formed,

3. simultaneously without data exchanges each process verifies a criterion
for the attaining of the given accuracy in the evaluating of the next
approximate eigenvalue.

Modification of matrix of eigenvectors being formed can be carried out im-
mediately after the forming of every matrix of plane rotations Pj(s) or at the
end of every iteration. After performing of the next approximate eigenvalue
the order of matrix being processed is decreased by one.

Efficiency of algorithm. Parallel algorithm is design so that all compu-
tations be carried out without inter-process data exchanges. The number
of arithmetic operations performed by each of p processes is approximately
p times less than that in computations in mono-process mode. Hence, co-
efficient of acceleration of parallel QL-algorithm, similarly as in the case of
parallel algorithm described in section 2.3.1, is close to p, while coefficient of
efficiency — to unity.

96 Algorithms of parallel computations

2.4 Non-linear equations and systems

2.4.1 Statements of problems with approximate initial
data

Problem on finding of real roots of non-linear equation. Let f(x)
be continuous in the interval [a, b] function of one real variable x. Numerical
problem of finding in the interval [a, b] of real roots of the equation:

f(z)=0, a<xz<b, (2.53)

with approximate initial data consists in the separation of roots, their ap-
proximate evaluation within the given accuracy and estimating the reliability
of results (i. e. estimating of module of deviation |z — Z| of exact value of
root of the equation with approximate initial data from exact value of root
of the equation with accurate initial data) under condition |f (z) — f (z)|<
A, where f (Z) = 0 is a non-linear equation with accurate initial data; A is
an estimate for error in the specification of function f ().

Problem on finding solutions of SNE. Problems on finding solutions
of systems of non-linear equations with approximate initial data are posed
as follows: it is required to find a solution of system of n equations:

f(z) =0, (2.54)

in the given region G = {a; < x; < b; (i=1, 2,...,.n)}, where:

x = (x1,29,... ,xn)T, f@)=(fi(x), fo(z),.... fn (x))T; x is an n-dimensional
vector being sought, and estimate its reliability under assumption that vector-
function f (z) satisfies all necessary conditions for the existence of unique
solution in the region G and for this region the inequality || ¢ (v) — f(v)] <

A holds, where ¢ (y) = 0 is an accurate system of non-linear equations; v

is an arbitrary vector from the region G; and A is an estimate for error in
formulas for the evaluation of vector-function f(z).

2.4 Non-linear equations and systems 97

2.4.2 Methods for the solving of SNE

In most cases non-linear equations and systems are solved by iterative meth-
ods. In so doing a region is to be specified in which it is required to find
the following: a solution, the required value € which is used in the chosen
termination criterion for iterative processes and restriction from above for
the number of iterations being performed. The lather is related to the fact
that no solution of the system may be in the region under consideration and
at that the cycling of the iterative process may happen.

To estimate both an accuracy of problem with approximately given initial
data and reliability of the obtained results it is necessary to determine char-
acteristics of equation or system of equations in the neighborhood of solution.

Characteristics of equation in the neighborhood of a root are determined
by the value of module of the derivative } I (x(k)) ‘, while characteristics of

system of equations in the neighborhood of solution — by norm HH —1(k) H of

the matrix inverse to Jacobi matrix which is evaluated by formula H®) =

RO
H(z®)) = {8f’(>} , k is the number of iteration. Tending of the
ij=1

Ox;

mentioned values to zero indicates that solution may turn out to be non-
unique in this neighborhood (in particular, a root of the function may be
multiple).

To terminate iterative process for the solving of SNE one should proceed as
follows: at first, the holding of condition || f (x(k)) H < ¢ is verified and only
if at some iteration it holds then a change to the verification of condition:

IF @)] < HH—gw (2.55)
for systems of equations occurs.

This condition ensures the holding of the inequality Hx(k) — xH < ¢ for
systems of equations where z denotes an exact solution of problem (2.54) with
approximate data. For one equation it is necessary to verify the condition:

[@) <elf ()], (2.56)

which ensures the given accuracy of the obtaining of the value of root |x(k) — :L" <

98 Algorithms of parallel computations

e of the equation (2.53) with approximate data.

For approximations obtained in such a manner the following estimates are
valid:

A
k) _ 7| < =
x T| <e+ . (2.57)
| 7@
For one equation (Z is an exact root of the accurate equation) and:
|2® —z|| < ¢ + [|[H®| A, (2.58)

for system of equations (Z is an exact solution of accurate system of equa-
tions). Within estimates (2.57), (2.58) the approximate nature of initial data
of the problem being solved and approximate character of the evaluation of
solutions by iterative methods are taken into consideration.

For the evaluation of roots of non-linear equation a method for roots’ sepa-
ration with their subsequent finding by bisection method is employed.

For the evaluation of solutions of SNEs the iterative methods are employed
based to some extent on classic Newton’s method possessing the quadratic
rate of convergence.

Iterative process is said to converge if the following estimate:

[t =z < e || -2 "

holds, where ¢ is some quantity bounded from above; « is an order of con-
vergence of the method. If a = 2 the quadratic rate of convergence of the
iterative process is attained, if 1< a < 2 then iterative process converges
over-linearly.

Parallel algorithms for the solving of SNE by Newton’s method as well as
its modifications referred to as quasi-Newton’s methods are to be dealt with
below:

1. Burdakov’s method [2] which with special choice of the iterative pa-
rameter ensures the global convergence to one of system’s solution on
the basis of given initial approximation,

2.4 Non-linear equations and systems 99

2. Dennis-Moore’s method [3] in which the Jacobi matrix and its inverse
are evaluated on the basis of the initial approximation and then this
inverse matrix is corrected by iterative formula within the iterative
process,

3. Broyden’s method [1] in which the Jacobi matrix is evaluated on the ba-
sis initial approximation which is further corrected by iterative formula
within the iterative process,

4. Powell’s method [4] is used for the solving of SNE with symmetric Ja-
cobi matrix; in this method the Jacobi matrix is evaluated on the basis
of initial approximation and further this method is corrected within
the iterative process by iterative formula.

Quasi-Newton’s methods are known to possess the over-linear rate of con-
vergence. Formulas for the implementation of these methods will be given
during the consideration of their corresponding parallel algorithms.

2.4.3 Parallel algorithms for the solving of non-linear
equations and systems

Evaluation of roots of one equation. For the numerical solving of
equation (2.53) the computer algorithm, which combines steadiness (failure-
free work) of the bisection method with asymptotic rate of convergence of
secants’ method for the case of smooth functions.

Prior to the starting of computations the following data should be specified:
the interval [a, b] in which the roots are to be evaluated, function f(z) and
error in its specification A.

Thereupon the interval [a, b| is to be broken into p parts, where p is the
number of processors chosen for the evaluation of roots of the equation; a, b
are final points of the given interval. Coordinates of intervals [a;, b;] where i
=1, ..., p of the length equal to h = =2 are evaluated in the corresponding

processes. Then each process simultaneously with others:

1. chooses size of the initial step A} by formula:

ho = e (1= Lo 1)

100 Algorithms of parallel computations

2. evaluates step size at interval by formula:

i 0,01-ht .
hi = Feigen < 0,001 (0= 1., p)

3. evaluates values of function f (z) at intervals’ subdivision points =

a;+jhi, where j = 1,... k k = [bllz_laz}

Doing so, it should be taken into account that if at any point z of the
interval’s [a;, b;] subdivision (j = 1,...,k) a value of function f (z) is equal
to zero, then thus evaluated roots of the equation are written into array of
the result.

If, after all, f(a;)- f(b;) <0 (j =1,...,k) then this interval contains at
least one root of the equation.

Further each of p processes independently of other processes performs the
following actions in intervals containing at least one root of the equation:

1. computes roots of equations by the same algorithm,

2. writes the computed values of roots into array of results.

Accuracy of the obtained solutions 2¥) with respect to exact solutions of
accurate equations is estimated by formula (2.57). The evaluation of root in
the interval [a;, b;] containing odd number roots of the equations is carried
out by the following algorithm:

1. the initial approximation is chosen by formula:

(0) _ aj + bj
x 5
2. then either interval [a;, 7] or [, b;] at the ends of which the func-

tion f(z) takes values of different signs is chosen and midpoint of this
interval is taken as 2(®) and so on.

Midpoint of the last interval is taken as an approximate solution of the ap-
proximate equation. It should be noted that for such implementation of
algorithm for finding roots of equation the coefficient of its efficiency in most
cases will be close to 1.

2.4 Non-linear equations and systems 101

2.4.4 Solving of systems of non-linear equations

During the solving of SNE by any method (mainly the iterative one) the bulk
of arithmetic operations falls within the evaluation of values of the vector-
function f(z). Therefore during the arrangement of computations on parallel
computers the arithmetic operations involved in the evaluation of vector-
function f(x) should be paralleled first of all that will enable to parallel
the evaluation of the approximation to Jacobi matrix and the solving of the
corresponding LAS.

The automatic partitioning of the evaluation of values of components of the
system’s vector-function by p blocks (p is the number of processes in use)
is carried out as follows: the relation * = ¢ where a is an integer part of
the number a; n is an order of the system; whereupon the quantity s =
p(q+ 1) — n is evaluated; then the last s processes will process blocks each
containing ¢ equations, while the first p—s processes will process blocks of

(¢+1) equations each.

Doing so it should be taken into account that in some very seldom cases
rules for the evaluation of components of system’s vector function differ very
much. In these cases systems of equations cannot possess high order, and
therefore it is not reasonable to solve them on MIMD-computers. In most
cases evaluation of components of the vector-function is subordinated to cer-

tain constructional regulations and such systems may be of the sufficiently
high order.

Let us describe, as an example, one of possible ways of vector-function’s
specification in C language.

For example, in order to solve the system:

n . .\ 2
Y4 -05@n++22-2 (1425 + (2) | =0 (i=12..,n)
J 7 n n

j=1

a program for the evaluation of function values has a form:

102 Algorithms of parallel computations

void f (int n, int 1, int m, double *x, double *y)
{ double ss, sss, fv;
int i, j;
for(i=1; i<m; i++)
{ ss8=0.;
sss=i+1;
for(j=0; j<m; j++) ss+=x[j];
fv=ss8-0.5%(3.*n+1.)+2 . *x[i]*x[1]-2.*(3.+2.*sss/n +
(sss/n)*(sss/n));
y[i-1] = fv;
}

Here:

1. n denotes an order of system of non-linear algebraic equations,

2. [denotes the initial number of equation in each separately taken pro-
cess used for the evaluation both of values of the vector-function and
corresponding rows of matrix approximating the Jacobi matrix,

3. m—1 is a final number of equation in each separately taken process
used for the evaluation both of values of the vector-function and corre-
sponding rows of matrix approximating the Jacobi matrix,

4. z denotes a vector of variables,

5. y is a value of vector-function at the point .

Values [and m for each process are evaluated prior to call of program for
the evaluation of values of the vector-function.

If system of non-linear equations is of non-regular structure, then each equa-
tion is to be marked by label 'case k:’ (k is an integer) and function is to
be called according to the above-described rule by means of 'switch (i) op-
erator. Some other techniques for the specification of vector-function are
also possible, but calls of programs for their evaluation should correspond to
descriptions of functions as demonstrated in the above example.

After simultaneous computation of values of the corresponding components
of vector = processes should exchange the computed values since, as a rule,

2.4 Non-linear equations and systems 103

all components of vector z are required for the evaluation of values of the
vector-function at the next iteration.

Such way for the specification of vector-function possesses the following ad-
vantages:

1. as a rule, SNE of high order possess regular structure and it is neces-
sary only to write a loop header and equation depending on the loop
parameter,

2. during the implementation of hidden parallelism principle the evalu-
ation of values of the vector-function is automatically distributed be-
tween chosen processes,

3. approximation to the Jacobi matrix is also evaluated by blocks and
therefore for the solving of LAS of the form (2.54) one of versions of
block Gauss method (see section 2.3.1) is employed.

For the solving of SNE by methods to be dealt with below the following
information is to be specified:

1. the number of processes,
2. order of system of non-linear equations,
3. (© — initial approximation to the solution,

4. lower and upper boundaries of the region where the solution is to be
sought,

5. € — quantity used in termination criterions for the iterative process and
determining an accuracy of the obtained approximation,

6. maximal number of iterations to be performed,

7. a subroutine for the evaluation of values of the vector-function.

Newton’s method. Generally, the Newton’s method, provided that value
™) is known, is implemented by formulas:

) = 2™ 4 y® (b =0,1,...), (2.59)

104 Algorithms of parallel computations

where the correction w® = z*+1) — 2(*) ig evaluated as a solution of LAS:

H®w® = —qp f (z2) (2.60)

and H® = H (x(k)) is the Jacobi matrix of SNE; & is the number of iteration.
At the beginning the parameter ak is taken to be unity.

Further we’ll distinguish between systems of two kinds: system of small order
that can be solved in one process and systems of high order — otherwise.
However it is advisable to solve systems of small order by Newton’s method
simultaneously on all processes starting from different initial approximations
in order to obtain some set of solutions.

In this case, provided that iterative process starts from the same initial ap-
proximations on mono-process and parallel computers, the coefficient of effi-
ciency in most cases will be approximately equal to the unity. For the solving
of systems of high order the first p—s processes will compute

(¢ + 1)-th rows of the Jacobi matrix and the same number of components of
the vector-function f (x(k)), while the rest s processes will compute g rows of
the Jacobi matrix and the same number of components of the vector-function

f (I(k)).

Then a parallel algorithm for the Newton’s method is implemented on the
MIMD-computer with the use of p processes according to the following com-
putational scheme:

1. the following data are sent to each process: pre-specified initial approx-
imation (¥, quantity ¢ > 0 used within the termination criterion for
the iterative process; boundaries of region in which the solution is to
be sought; and the limiting number of iterations,

2. all processes simultaneously evaluate components of the vector-function
f (x(o)) distributed to them and corresponding rows of the matrix

H (iL‘(O)),
3. at each iteration:

(a) LAS (2.56) is solved by parallel algorithms intended for its solving
(see, for example, section 2.3.1),

2.4 Non-linear equations and systems 105

(b)
(c)

(d)

the next approximation to the solution z*+1 (k = 0, 1,...) is
evaluated on the basis of solution of LAS,

the gathering of computed components of the next approximation
is carried out in order to form a full vector in all processes with
simultaneous synchronization of computations,

corresponding components of vector-function f (x(k+1)) and rows
of the matrix H (z"*V) (k = 0, 1...) are evaluated by means of
using either analytical form of derivatives (if it is not difficult to
evaluate them) or their finite-difference analogs,

the quantities:

m—1

. 2
o0 =3 (fj’““)) (j=0,1,....p—1), (2.61)

=l

are evaluated, where j is the logical number of process; [is the
initial number of equation in each separately taken process which
is used for the evaluation both of values of the vector-function
and corresponding rows of matrix approximating the Jacobi ma-
trix; m—1 is the final number of equation in each separately taken
process which is used for the evaluation of values of the vector-
function and corresponding rows of matrix approximating the Ja-
cobi matrix,

for the obtaining of the value of pri1 = ||f (:E(k“)) H all 901(311
are summed in some process (for example, in zero one, j is the
logical number of process):

Pra1 = (2.62)

if pr11 > ¢k the parameter oy is halved, values of all components
of vector of corrections w®) are reduced in half, the new value of
D is evaluated and iterative process is continued from the item

Ia’
a”

if Y11 < @ then the termination criterion for the iterative pro-
cess pry1 < € is verified on the starting iterations; if on the certain
iteration this condition is fulfilled then formula (2.55) is further
employed by each process for the verification of termination crite-
rion for the iterative process; it is this iteration where the criterion
is verified for the attaining of the limiting number of iterations the
exceeding of which results in