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Preface

The first composite bridge in which a grid of steel beams was supplemented 
with a concrete deck slab (54.60+55.075+55.075+54.60 m) was built in 1939 
over the Sava River near Zagreb. Still, composite construction appeared at the 
beginnings of the use of reinforced concrete in which first wrought iron, and later 
steel, worked together with artificial stone, now known as concrete. 

In this regard, the correct path to define the term “reinforced concrete” was 
presented by Melan, who described it as a rigid liner surrounded by concrete. In 
the history of reinforced concrete, one encounters concepts that are now referred 
to as ‘filler beams’.

Early research on the slippage of reinforcement in concrete gave rise to solutions 
leading to the use of ribbed bars or shear transfer connectors. The development of 
the theory of reinforced concrete and composite girders continues uninterrupted 
and results in further improvements. The development of composite bridge 
technology has been described in detail, for example, in the papers (Pelke, Kurrer, 
2015) and (Flaga, Furtak, 2014).

Nevertheless, this monograph does not deal with the history of the concept of 
composites structures – although, it does not mean that there are not numerous 
references to important theoretical and research achievements of the past. 
Essentially, the monograph aims to point out the relationship between mechanics 
and engineering in the field of composite bridges.

An interesting recurring process in the development of engineering concepts is 
that of heuristic solutions as primary solutions that can be ordered and developed 
through mechanics.

 An example here is the period from the discovery of reinforced concrete by 
Gustav Lambot (1855) and Joseph Monier (1867) to the formulation of the theory, 
or, more precisely, the formulation of the equilibrium equations of internal forces, 
introduced by Mathias Koenen (1892).

Another example is the theory of the composite girder with head-stud 
connectors, which followed much experimental research by Newmark and his 
co-workers as well as by others. Nowadays, one can observe an analogous process 
concerning dowel shear connectors, which are now becoming an increasingly 
popular technology in bridge construction. As one of the creators of this 
technology, Wojciech Lorenc, said, the basis for application in technology is the 
applied solution repeatedly proven through laboratory testing and its compatibility 
with the results of relevant numerical modelling.

The above raises the following question: will numerical analysis replace 
classical mechanics? Possibly yes, as numerical modelling is a quantitative transfer 
of classical mechanics to complex structures. The criterion for correctness does 
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not change – a sufficient condition is that the experimental results be consistent 
with the theory, numerical modelling. A consistent theory, understood in one way 
or another, leads to the formulation of design standards.

Of course, in near future, classical mechanics should still constitute the basic 
knowledge of every engineer. For this reason, basic topics such as, for example, 
the identification of deformations by comparing initial and actual configurations, 
the distinction between static states and dynamic processes, equilibrium states 
of internal forces, the distinction between Hooke’s law and its generalisation, 
simplified models and their possible applications, as well as infinitesimal and 
operator calculus, should be taught accordingly, i.e. so that they form the basis of 
structural analysis.

The monograph considers the once widely used, simplified method for the 
analysis of bridge superstructures, the Jean Courbon method, not only because it 
is still applied in the case of simple bridge superstructures, but, above all, because 
it is both ingenious and borderline simple.

A short chapter on high strain rates discusses tests performed on a laboratory 
bench called the Hopkinson-Kolsky bar. The results obtained required corrections, 
which were next made by Janusz Klepaczko.

The issues listed are illustrative for the mechanical treatment of the composite 
girder problem. The basic issues are consistently examined under the assumption 
of the plane section principle formulated by Daniel Bernoulli and Claude-
Louis Navier, (Timoshenko, 1953). This allowed for several generalisations and 
simplifications in the interpretation of, for example, deformations due to shrinkage. 
The treatment in question resulted in a reduced design scope. 

To balance the design scope, a brief review of contemporary patents dealing with 
the important problem of the continuous composite girder and, more specifically, 
methods of transferring tensile stresses in a reinforced concrete slab in the zone of 
hogging moments is included.

Furthermore, the paper includes a concise chapter on fractional differential 
and integral operators, which, so far, constitute a kind of carte blanche – a theory 
looking for applications.

The chapter on viscoelasticity includes an example of the application of the 
residue theorem, given sufficient conditions, to determine the retransformation in 
a schematic and, therefore, simple manner. Viscoelasticity is a branch of mechanics 
that is not commonly used to describe variable material properties of structures. It 
has been pointed out that rheological models can be used to describe reversible and 
irreversible processes. In the derivation of the equations of rheological bodies, the 
in extenso method has been used to bring to attention the necessity of considering 
the loading history and its effects over time.

The last (but not (the) least) chapter is devoted to the aesthetics of bridges. In 
addition to discussing some commonly accepted canons of bridge aesthetics, a 
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method is proposed, used by the author, which takes into account the simplest 
evaluation statistics in the bridge evaluation group. What makes it different is 
that it considers the impression made by the bridge object on each member of 
the evaluation group, so it is not a single person’s assessment – even if they were a 
representative of an elite.

This monograph is atypical, but its layout is not accidental. It is an expression of 
the author’s interests, but also the fruit of his spanning-over-a-decade professional 
practice of the development and teaching of the Fundamentals of Bridges course 
to Erasmus students. These student groups are characterised by multifaceted 
heterogeneity resulting from their social and cultural backgrounds and, above all, 
different levels of preparation to study the chosen subject matter. They are mostly 
students of architecture, industrial engineering, mechanics, and civil engineering. 
For this reason, the monograph addresses both elementary and advanced issues. 
The content of the monograph is dedicated to bridge engineers and, of course, 
students.

							       Author
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1.	Mechanical terms and principles

This chapter is devoted to the proposed system of nomenclature and 
designations. The listed definitions shall be used in further discussion of mechanics. 
The rationale is that different designations can be and are used in engineering 
papers. The terminology used below is one of many possible correct ones, used to 
varying degrees.

1.1.	 Internal force and stress vectors in a beam – Cartesian coordinate 
system 

The reader can see the parallel double notation used in Fig. 1.1. In general, the 
right-hand coordinate system is depicted as xm, where  m = 1, 2, 3, however, in 
simple and obvious cases the traditional notation x, y, z is also admissible.

a)      b) 
Fig. 1.1. The assumed Cartesian coordinate system a) vectors of internal beam forces b) 

stress vectors at an arbitrarily chosen point P in the cross-section normal to the 
x3 direction

Appropriately, the same notational system is used in the case of bending 
moments, shearing forces and stresses. Hence, in particular, M1 = M, T2 = T, T3 = N, 
and σ33 = σ, σ32 = τ. 

Most often, mechanical problems are represented in a Cartesian orthonormal 
coordinate system, which in the case of a beam is shown in Fig. 1.1. By orthogonal 
coordinate system is understood that the basis vectors are mutually perpendicular 
to each other. 

Orthonormality means that the basis vectors are unit vectors mutually 
perpendicular to each other. 
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We deal with an orthogonal system of reference when the basis vectors are 
mutually perpendicular to each other, but their moduli may not be unitary. 
Examples of such systems are the cylindrical or spherical system.

A very general understanding of coordinate systems is related to curvilinear 
coordinate systems. Both cylindrical and spherical systems are curvilinear and 
orthogonal (not orthonormal), but in other cases curvilinear systems can be non-
orthogonal and non-orthonormal. Also, basis vectors can have their dualities. We 
speak of covariant and contravariant basis vectors.

A simple example of three linear coordinate systems explains the concepts 
introduced above, Fig. 1.2. Using a two-dimensional Cartesian coordinate system 
with a base vectors e1, e2 non-zero vector u, Fig. 1.2.a, can be decomposed 
obtaining its components u1, u2 by orthogonal projection into horizontal and 
vertical coordinates.

Keeping in mind the Cartesian origin of our considerations, let us modify the 
Cartesian coordinates by rotating the reference axis as shown in Fig. 1.2.b-c. We 
have obtained a reference coordinate system with unit basis vectors ẽ1, ẽ2 and 
e1, e2, however, these vectors are not perpendicular to each other. This type of 
coordinate reference is called an oblique coordinate system, which means a set of 
straight coordinate axes that are oblique.

At this point we face one of the key decisions. There are two options for finding the 
components of a vector. We can use orthogonal projection, Figure 1.2.b, or parallel 
projection, Figure 1.2.c. In the first case, we say that we have covariant components, 
while in the other case we get covariant components of the same vector u.

a)  

 

 

 

  b)  

 

 

 

  c)  

 

 

 

Fig. 1.2. Linear coordinate system a) Cartesian orthonormal Cartesian reference system 
b) oblique coordinate system with orthogonal projection c) oblique coordinate 
system with parallel projection

In each of the three cases considered, the component vectors ui, ui, ũi 1 of the 
u-vector have different moduli i.e. |ui | ≠ |ui | ≠ |ũi |.

1 Here the top index “i” is only a superscript, especially it is not a power exponent.
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Concluding considerations, the component of the vectors ui, ũi (subscript – 
upper index) are the covariant components, and ui (superscript – lower index) is 
the contravariant component, where i = 1, 2.

It is worth noting that this is not just a designation, as there are many further 
advantages associated with this notation, such as Einstein’s well-known summation 
convention.

Finally, the reader is offered to guess what the magenta colour curves introduced 
in Fig. 1.2.b-c can be used for.

1.2.	 Initial and actual configuration

When one describes a deformation effect, it is necessary to compare the initial 
and actual configuration of the analysed structure or its element. In Fig. 1.3, two 
elementary cases characteristic for tasks concerning strength of materials tasks 
and beam bending are shown. The analysis of geometry in Fig. 1.3.a leads to the 
differential equation of the Bernoulli beam theory while Fig. 1.3.b illustrates the 
beam curvature in the function of normal stresses. Among others, this will be 
shown in the following chapters. The initial configuration is understood as a view 
or diagram of the initial/undeformed structure, while the actual configuration 
represents the deformed state of the same structure.

In addition, Fig. 1.3.b shows the deformation when the planar section in the 
initial configuration also occurs in the actual configuration.

a) 

b)  
Fig. 1.3. Initial and actual configuration a) simple beam bending case b) an infinitesimal 

element configuration
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1.3.	 Assumption on flat cross-sections

The flat cross-sections perpendicular to the neutral axis in the initial 
configuration remain flat and perpendicular to the deformed neutral axis in the 
actual (deformed) configuration, see: Fig. 1.3. 

In the beam theory, this assumption is named after Daniel Bernoulli and 
Claude-Louis Navier (B-N). In the classical plate theory, the equivalent of this 
assumption is known as Kirchhoff ’s assumption of three normal lines2.

1.4.	  The principle of stiffness

The definition of the problem in question can be expressed by the following

the current configuration converges with the initial configuration.

There are different, also analytical, versions of the principle, however, the above 
statement is of greatest generality.

In terms of technique, the exemplification of this theorem is the limit state of 
serviceability (SLS). In the case of a composite carrying deck, the deflection caused 
by traffic loads is limited to 

400
t

lim
L [m]

u ≤ ,						      (1.1.)

where Lt stands for the theoretical span (support span) expressed in metres. It 
is worth mentioning that the dynamic amplification factor (DAF) or dynamic 
enhancement factor (DIF) is included in the LM1 value3, which means that it is 
treated as a static load.

 

1.5.	 Homogenous body

A homogeneous material (or discontinuous regular structure) is a continuum 
that has the same properties in any arbitrary direction at every point (sub-volume) 
in the body.

 

2 Kirchhoff assumption: straight lines normal to the mid-surface remain normal to the mid-surface 
after deformation.

3 Load Model 1 – LM1, EN 1991-2
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1.6.	 Hooke’s model

Hooke’s model is a basic element when one depicts complex models in linear 
rheology.

In 1676, Robert Hooke formulated an anagram in Latin: ceiiinosssttuv, and, two 
years later, published (Hooke, 1678) the anagram solution as 

Ut tensio, sic vis

this, in the case of a stretched spring, is understood as follows: 

the extension is proportional to the force, as in the eqn (1.2).

Expressing this formula, one can write

F = k ΔL ,						      (1.2)

where F is an acting force, k is a coefficient of proportionality, and ΔL is spring 
elongation. One should always bear in mind that this is the right relationship 
in the unidimensional isotropic problem where only one of the two material 
characteristics is in use. In this sense it is only a partial constitutive relation.

 

1.7.	 Constitutive relation

A constitutive relation, stress ~ strain or σ ~ ε, refers the definition of a material. 
Briefly, in the case of a simple beam, knowing the action and geometrical response, 
one can ‘guess’ the material of the beam. 

In detail, let us recall (1.2) an expression which is valid in a uniaxial tension/
compression task, which, through an infinitesimal notation, becomes

σ = Eε 						      (1.3)

Here, E stands for Young’s modulus which is known for different materials, 
hence, knowing the strain, one can calculate normal stress values.

The above relation is commonly known as Hooke’s law.

1.8.	 Isotropy 

Isotropy is the uniformity of a material in all orientations. Isotropic materials 
have the same elastic mechanical properties in every orientation or, in other words, 
are independent of the orientation of the coordinate axes.
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An isotropic material has only two independent material characteristics, e.g. E, 
ν (Young’s and Poisson’s moduli, so-called technical characteristics) or µ, λ (Lamé 
characteristics). The infinitesimal stress~strain relation, in the tensor description, 
can be written as

σ µ ε λε δ
ν
ε

ν
ν ν

ε δmn mn mk m
k

mn mk m
kE E

= + =
+

+
+( ) −( )

2
1 1 1 2

	 (1.4)

	

where δm
k  is Kronecker’s delta or identity matrix or metric tensor in the Cartesian 

coordinate system, or a raising/lowering tensor; obviously µ
ν

=
+
E

2 1( )
 and 

λ
ν

ν ν
=

+( ) −( )
E

1 1 2
.

The ε δ ε ε ε ε εmk m
k

k
k

mnTr= = ( ) = + +11 22 33  is known as a trace of strain tensor 
or a dilatation, or the first invariant of strain tensor.

In terms of technique, in simple uniaxial cases of stretching or compression, the 
constitutive relation – generalised Hooke’s law – can be expressed as a function of 
two material constants E and v.

σ ε

ν
ε
ε

=

=









E
_ ,						      (1.5)

where ε _ is the strain component perpendicular to ε direction. Here, the (1.5) 
relation can be described as the generalized Hooke’s law.

1.9.	 Orthotropy

An orthotropic material has material properties that differ within the range of 
orthogonal planes of the Cartesian axes x1×x2, x2×x3, x3×x1. 

Wood is a commonly cited example. 
Orthotropic materials have nine independent material characteristics.
It is worth mentioning an orthotropic bridge deck (Huber, 1929), which can be 

made of isotropic material (steel, RC – reinforced concrete), however, the whole 
structure has three mentioned above planes of different material properties. Thus, 
one can talk about martial orthotropy (wood) and structural orthotropy – bridge 
orthotropic steel plate. 
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1.10.	 Anisotropy

An anisotropic material is the most general case of material characteristics. 
Here, the material properties of any particle depend on a chosen direction, i.e. 
different characteristics occur in different directions. In the tensor notation, the 
stress~strain relation has the following form

σ εmn mn
kl

klE= ,					     (1.6)

where kl
mnE  is a fourth order stiffness tensor the components of which are a 

function of material characteristics.
By virtue of the following symmetries 

σ σ ε εmn nm kl lk mn
kl

kl
mnE E= = =, and 	 		  (1.7)

The number of 81 (34 = 81) components of kl
mnE  is reduced to 21 independent 

material characteristics.
Assuming the dimension of material volume in form of a cube edge a = 1 cm, 

one can expect that bridge concrete (heavy basalt aggregate) be an anisotropic 
material, but on the other hand, in the case of sand aggregate concrete the 
estimation be close to isotropy.

1.11.	 Saint-Venant’s principle of normal stress distribution equivalence

“If the forces acting on a small portion of the surface of an elastic body are 
replaced by another statically equivalent system of forces acting on the same portion 
of the surface, this redistribution of loading produces substantial changes in the 
stresses locally but has a negligible effect on the stresses at distances which are large 
in comparison with the linear dimensions of the surface on which the forces are 
changed.”, Fig. 1.4, (Saint-Venant, 1855).
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Fig. 1.4. Normal stress distribution as a function of the distance from the applied force 

In Fig. 1.3, the concentrated force is applied at the rod end cross-section. This 
implies a material reaction in the form of Dirac’s distribution at the rod ends. However, 
this local impact weakens gradually and at the distance 1.5d (d – the diameter of the 
rod cross-section) attains a uniform distribution amounting to σ(m), Fig. 1.4. One can 
write

F F x x dA
x

A
x d

A
m=

=
=

≈∫ ( )δ δ σ( ) ( )
.1 2

3 30 1 5  
,	 (1.8)

where F – concentrated force, A – area of the rod cross-section, δ(x1), δ(x2) Dirac’s 
distributions, σ(m)– normal stress mean value σ(m)  = F/A.

Nowadays, analogous tasks form a shear-lag problem. In the case of composite 
steel-concrete bridges, the most significant is the effective width of a concrete 
bridge plate combined with a precast steel beam, which, according to Eurocode 4 
(EN 1994-2, p. 28-29, Fig. 5.1) is searched as shown in Fig. 1.5 (EN 1994-2), and 
Eurocode relations (5.3-5)

0ef eib b b= +∑  	 (in the span),			   (5.3)

0ef i eib b bβ= +∑ 	 (end of the span),		  (5.4)
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βi
e

ei

L
b

= +








 ≤0 55 0 025 1, , .				    (5.5)

Fig. 1.5. Effective width of a concrete flange

Le is an expression concerning simple beams freely supported and relates to the 
distance between the zero points of the bending moment value diagram – distances 
1 and 2 in Fig. 1.5. Adequately, the same method is assumed in the case of both side 

cantilevers – 2 and 4
 8

e
ei

L
b = .

The calculated value of bei ≤ bi, where bi = ½(bi-1 + bi+1). bi-1, bi = 1 are 
distances from the outer connectors on i-th beam to the outer connections of the 
neighbouring left and right beams or – in the case of an outer girder – to the free 
bridge edge.

Here, the effective width at beam bending signifies the width at which a uniform 
distribution of normal stresses is admissible.

An analytical examination of effective width was carried out by M. S. Troitsky 
(Troitsky, 1976). 

1.12.	 Fibre concept of a bending beam

This is a very artificial concept with strong assumptions, i.e. elastic fibres are 
independent from each other – they do not press on each other and the friction 
between them amounts to zero, Fig. 1.6.
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a)  	 b)  	 c)
Fig. 1.6. Fibres in the beam cross-section a) upper and bottom layer of uniform fibres 

b) enlargement and narrowing of the upper and bottom fibre radii c) deformed 
configuration

They work in stretching or in compression without buckling. Without discussing 
the model’s congruence with reality, it shows the cross-section formation in a 
deformed configuration of a beam subject to bending1.

1.13.	 Geometric characteristics of a cross-section

Let us introduce the integral

I f x x dA x x dA
A a b Aα β

α β
, , ( , ) ( ) ( )( ) ( )= =∫ ∫1 2 1 2 		 (1.9)

which, in the following case, gives:

α = β = 0:      
A

dA A=∫  – the area of a cross-section,

α = 1, β = 0:  1 2A
x dA S=∫  – static (first) moment of the area around x2 axis,

α = 0, β = 1:  2 1A
x dA S=∫  – static (first) moment of the area around x1 axis,

α = 2, β = 0:  2
1 2A

(x ) dA J=∫  – inertial (second) moment of the area around x2 axis,

α = 0, β = 2:  2
2 1A

(x ) dA J=∫  – inertial (second) moment of the area around x1 axis, 

α = 1, β = 1:  1 2 12A
x x dA J D= =∫  – moment of the area deviation.
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1.14.	 Homogenization – transforming to steel

There are various analytical formulae for defining the homogenisation of a 
non-homogeneous material of various subareas to a respective homogenous 
cross-section. Now, let us define homogenisation by subarea changes, Fig. 1.7. The 
initial (real) cross-section consists of two sub-regions of the different areas A1, A2, 
characterized by different areal densities, respective to their materials C1, C2. The 
cross-section can be multiply-coherent or single-coherent. The transformed areas 
can overlap each other. The reference material is characterised by the material 
property C0, which can be the same as or different from C1, C2.

a) 		   b) 
Fig. 1.7. Homogenization of non-homogeneous multiply coherent areas a) areas A1, A2 of 

the properties (material characteristics) C1, C2 , respectively b) areas A1/ and A2/

with reference material characteristic C0.

Following the notation used in Eurocodes, homogenisation can be emphasised 
by any mechanical effect E = E{.}. Here, it is assumed as an effect of a geometrical 
characteristic of the cross-section

( ){ } ( ){ }1 2a,b a,bA A
E E f (x , x ) dA E f dA= =∫ ∫ . 	 (1.10)

where f(a, b) (x1, x2) – function definition appropriate for the chosen geometric 
characteristic of a cross-section. Thus,
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where: 
− C1, C2 – material characteristics which occur in the sub-regions A1, A2 
respectively,
− C0– material characteristic for a transformed homogenous cross-section,

− χ A A
C for A

C for A1 2
1 1

2 2

,( ) = −

−






 – is an alternator depending on an affiliation to the  

	
	 cross-section area component, 

− A = A1 + A2 – area of a real cross-section, 1 2
/ / /A A A= +  – transformed area, 

	  /A A≠ ,

− 
C
C

n1

0
1= , 2

2
0

C n
C

=  – n1, n2 are the coefficients of the transformation, thus, 

	  1
1

1

/ AA
n

= , 2
2

2

/ AA
n

= . 

In the case of a steel and concrete composite girder, the term transforming to 
steel is used more often than homogenisation or, to put it briefly, transformed cross-
section, see Fig. 1.8.

a)    	 b)  

Fig 1.8. Steel-concrete composite girder a) real girder composed of a concrete plate and a 
steel beam b) equivalent steel girder

According to the concrete slab transformation shown in Fig. 1.8, i.e. when only 
the concrete slab is transformed into steel, it can be written as follows
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−	 C1 = Ecm– secant modulus of the elasticity of concrete (EN 12390-13) which 
depends on the assumed concrete strength class (EN 206-1), characteristic 
compressive strength at 28 days Cfck, cyl / fck, cube,

−	 C2 = Es – Young’s modulus of steel,
−	 C0 = Es.

Thus, the coefficients of transformation are as follows

−	 1
1

0

7s

cm

ECn n
C E

= = = ≅
, 	

−
	

2
2

0

1Cn
C

= =
 

which means the characteristics of the steel beam after the 

transformation remain the same. 

Finally, one arrives at

− / c
c

b
b

n
= , then / / c

c c c
A

A b h
n

= = .

The author found it difficult to determine the inventor of this method. It seems 
that it could be François Coignet or Mathias Koenen.

1.15.	 Pure bending

Pure bending is also an extremely artificial mechanical model – as artificial 
as the fibre concept of a bending beam, which constitutes the basic assumption 
concerning the task carried out here. Actually, it is not possible to put this theory 
to practice in laboratory conditions, if it is just an approximation. Pure bending 
means that only the bending moment is nonzero while other internal forces are 
null. For the plane x1× x2, this means 

M = M1 ≠ 0 and N = T3 =0, T = T2 = 0 			  (1.12)

see the graphs in Fig. 1.9.
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a)   b)  
Fig. 1.9. Pure bending static schemes for 4-point bending test a) cantilever beam b) simple 

beam
 
The sketch diagram in Fig. 1.9 serves the purpose of determining the bending 

stretch. Let us assume that the beam has a constant rectangular cross-section and 
that its material is elastic and homogenous. The beam is bent by a bending moment 
M causing deformation according to the principle of planar beam cross-sections 
(B-N principle). The deformation of the beam is shown in Fig. 1.10. The normal 
strains distribution follows from the B-N assumption. Consequently, the normal 
stresses have a linear course according to Hooke’s law.

a)  b)  c) 
Fig. 1.10. Pure bending a) side view of an infinitesimally short section of the bent beam  

b) section of the beam normal to x3 c) linear normal stress distribution

Let us compare the initial and actual configuration, Fig. 8. The deformation is 
characterized by the strain ε which is a difference between the actual length of an 
arbitrary fibre denoted as ds and the fibre length in the initial configuration ds0, 
hence, one obtains
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ε ε= =
−

=
−

33
0dx ds

dx
ds ds

dx
,				    (1.13)

where dx = dx3 and it is assumed that dx ≈ ds0. Using the formula for the circle 
sector length, ds0 as well as ds can be expressed as

ds0 = ρ0 dφ, , 	 and ds = ρdφ = (ρ0-ξ)dφ,		  (1.14)

where ρ0, ρ stand for the curvature radii for ds0, ds arcs, respectively, hence

ε ξ
ϕ

ξϕ= − = −
d
dx

/ ,					     (1.15)

where 	    d
dx
ϕ

ϕ
ρ

κ= = =/ 1  					     (1.16)

is a curvature in pure bending. 
Using now the Hooke’s low the normal stress can be calculated

σ σ ε ξϕ= = = −33 E E / .				    (1.17)

Then, by integrating the static moment of stress about the x1 axis, the bending 
moment M1 is obtained

	
M x dA E b x d E b h EJ

h

h

A bh
1 2 2

2
3

1
2

2

12
= = − = − = −

−=
∫∫ σ ϕ ξ ϕ ϕ/ / /

/

/

( ) ( )
	

(1.18)

where J1 is the inertial moment of the beam cross-section area about the x1 axis, 
which, for a rectangular, is J1 = bh3/12.. Thus,

ϕ/ = −
M
EJ

1

1
						      (1.19)

and, finally, one arrives at

σ σ= =33
1

1
2

M
J

x .					     (1.20)

Concluding this subchapter, it is worth stressing the validity of the formulae 
on curvature (1.16) and the normal stress in pure bending (1.20) for further 
derivations. 
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1.16.	 Pure bending with stretching/compression

This is a more general and advanced task, however, in the case of one plane 
bending with stretching, the result overlaps with pure bending. Let us start with an 
analysis of the initial as well as actual configuration shown in Fig. 1.11. 

a) 

 

 b) 

 

c)  

Fig. 1.11. Axonometry – initial and actual configuration in pure bending with stretching  
a) Cartesian coordinate system b) normal force F action c) an effect of the action 
is shown as a strain ε(PP'), ε(ii), ε(iv)

Initially, an infinitesimal beam sector of a length dx and of a rectangular 
cross-section with edges b, h, and with a face plane i – ii – iii – iv, Fig. 1.11.b, was 
stretched by a distance iii – iii', then twice rotated by the shown angles ϕ2, and ϕ1. 
The final rectangular plane face is marked as i' – ii' – iii' – iv', Fig. 1.11.c. This is a 
result of stretching caused by a normal stress at the point P located in the “positive 
quarter”. Here, the assumption of flat cross-sections has being used.
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Bearing in mind the equation of a flat plane in the Cartesian coordinate system 

1 1 2 2 0 0A x A x A+ + = .					    (1.21)

One can define the strain as follows

ε ε33 1 1 2 2 0= = + +A x A x A 				    (1.22)

and, hence, by virtue of Hooke’s law, one arrives at

 σ σ ε33 1 1 2 2 0= = = + +( )E E A x A x A .			   (1.23)

In the analysed case, the equilibrium equation set is limited to three of the six 
general conditions
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.	 (1.24)
	

Let us recall:
−	 when the static moments S1 = 0 and  and S2 = 0, it means that the origin of the 

x1, x2 axes is placed at the centre of a cross-section,
−	 when the deviation moment J12 = D = 0 then inertial moments have extreme 

values and are called principal inertial moments, while the axes to which the 
moments are related are known as the principal axes of inertia,

−	 for the cross-section with two axes of symmetry starting at the area centre, the 
symmetry axes are the principal axes of inertia.
The statements mentioned above apply in the case shown in the drawing  

Fig. 1.9. Thus, the solution of the equation set is as follows

0
NA
A

= , 	 2
1

2

MA
J

= − , 	 1
2

1

MA
J

= , 		  (1.25)

and, finally,

σ = + −
N
A

M
J

x M
J

x1

1
2

2

2
1 				    (1.26)

or when the angle  ϕ1 = 0, Fig. 1.11.b, the simplified equation is valid 

σ = +
N
A

M
J

x1

1
2 .					     (1.26.1)

This approach, in the case of a steel-concrete composite girder, is more efficient 
than pure bending. 
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1.17.	 Delaminating force

The delaminating force Q can be obtained by performing an analysis of the 
elementary problem of material strength, known as the search for the distribution 
of shear stresses along the height of a beam section. It is worth noting that in this 
case these stresses include bending (M) and shear (T). Simplifying the problem, 
the cross section of the beam is rectangular. Fig. 1.12.a shows an infinitesimally 
small section of the beam of a length dx. When travelling by a distance dx, both 
the moment M and the shear force T change their values under a load q by 
infinitesimally small increments, taking the values M+dM and T+dT, Fig. 1.12.b. 

The effect of the moment M and the force T can be replaced by the corresponding 
distributions of the normal stress σ and the shear stress τ, Fig. 1.12.c. By performing 
a horizontal section in the upper region of an infinitely small element, the resultant 
normal forces N can be related to the stress distributions σ and τ.

a) b)  c)

d) 
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e)  	 f)
Fig. 1.12. Bending with shearing a) rectangular beam cross-section b) loading and internal 

forces of an infinitesimal beam sector c) stress distributions in respect to internal 
forces d) horizontal upper section in the element dx e-f) a cut-off portion of the 
infinitely small beam sector in equilibrium

Writing down the equation of the projection of horizontal forces, one obtains 
the following corresponding differential relation

Σ x dN bdx b dN
dx1 0→ − = → =τ τ ,		  (1.27.1)

where dN is the resultant force obtained by the integration dσ along the upper 

(cut-off) surface of the cross-section 
__
A

dN d dA dM
J

x dA
dM S

J
A A

= = =∫ ∫
__ __

__

σ 2 ,		  (1.27.2)

where 
__
S  is the static moment of the cut-off area 

__
A  (see Fig. 1.12.e-f) of the beam 

cross-section relative to the neutral axis in the beam cross-section, while T stands 
for a shearing force. Substituting (1.27.1) with (1.27.2) the following is obtained

τb dM
dx

S
J

T S
J

= =

__ __

					   
(1.28)

The delaminating force Q[e] is a result of the shear stress τ taken at the interface 
over the assumed length e. Therefore, one obtains in general and in the case where 
e = 1 m  the following 

Q e T S
J

Q T S
Je m[ ]  

= → =

__ __

1 ,			   (1.29)

where Q[1m] is in kN, for instance.
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Comment:
It should be noted that the section e must include the area in the vicinity of the 

extreme value of the shear force Textr.
In bridge engineering, the shear force envelope is analysed instead of shearing 

force. 
The line of the influence of the support reaction can also be used to determine 

the maximum shear force, Fig. 1.13.

a)	

b) 

Fig. 1.13. Position of the section e a) influence line of the reaction R b) a case of two moving 
forces

Knowledge of the delaminating force distribution is essential for the correct 
design of connectors in a steel-concrete composite girder. It is also necessary for 
the design of structures reinforced by bonding FRP strips, (Oehlers, Saracino, 
2004).
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2.	Traffic loads on bridges. Elements of EN 1991-2

Normative technical documents are written in a technically sophisticated, 
but concise manner. In general, these documents are accompanied by studies 
explaining their contents, which are generally much larger in volume than the 
standards themselves. Assuming that additional studies of EN 1991-2 and papers 
on relevant guidelines will be necessary, the following definitions of normative 
loads on bridges in an alternative way, facilitating their understanding, are 
presented below.

2.1.	 Road bridges

We are all aware of the diversity of bridge traffic. When designing a new 
bridge, different forms of traffic and values of vehicle weights must be taken into 
consideration.

The multiform nature of vehicular traffic on roadways and pedestrian traffic on 
pavements necessitates the use of load models for the purposes of highway bridges. 
Load Model 1 (LM1) is a basic model which, despite a very simple scheme and 
even artificial values of tandem concentrated forces, statistically corresponds to a 
real traffic action. Scaling of the LM1 model was performed on highway sections 
in several countries at the locations of maximum vehicle loading. 

Other load models can also be used in bridge design, but the LM1 model plays 
a primary role. Moreover, other models should be incorporated into the design 
only when the LM1 model shows deficiencies in the adequacy of traffic loads. The 
models are discussed below.

When tandem is mentioned, it means a pair of vehicle axles (double axle).

2.1.1.  LM1 

In the basic version, the model consists of vehicle axle tandems depicted as 
concentrated forces on three lanes 1, 2, 3, while the remaining consecutive lanes 
are not loaded with tandems (concentrated forces) but have a uniformly distributed 
load (UDL), Tab. 2.1, Fig. 2.1. The last lane covers an area known as the residual 
area. 

The LM1 model accounts for most of the effects associated with truck and car 
traffic and should be used to verify general and local bridge designs.

The standard lane width is 3.0 m, but narrower lane widths may also be 
specified. The graphic in Fig. 2.1 should be analysed simultaneously with Tab. 2.1. 
In addition to the basic version of LM1, some load modifications are allowed in 
general case design.
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A vehicle axle consists of two vehicle wheels. The axle weight is αQi Qik, where 
αQi an adjustment factor of a value is 0.8 ≤ αQi ≤ 1.0. Qik is a characteristic value of 
wheel weight given in kN, and the index i stands for the number of lanes. Therefore, 
the characteristic weight of a vehicle is 0.5 (αQi Qik) expressed in kN. Two parallel 
axles in one lane form a tandem.

Fig. 2.1.a-c shows vehicle wheel actions as concentrated forces. Fig. 2.1.a and 
Fig. 2.1.c present the basic version which should always be used. On the other 
hand, Fig. 2.1.b illustrates an acceptable modification if the bridge span Lt ≥ 10 m 
and if the design is intended for general situations. In colloquial terms, the two-
axle tandem model is transformed into a heavier single-axle vehicle model, with 
the weight of such a double axle amounting to, of course, 2 αQi Qik. 

Figure 2.1.a-b also shows a UDL but the distribution of these loads is explained in 
more detail in Fig. 2.1.d, where Lane 1 was subjected to a load αq1qm1 = αqm9kN/m2. 
Lanes 2 and 3 as well as other lanes and the remaining area were subjected to  
αqmqmk = αqm2,5kN/m2 vertical UDL, where m = 2,3,...,R.a.

Fig. 2.1.e shows another allowable modification of the tandem loading 
arrangement. This modification is only acceptable for general design. Instead of 
the standard tandem arrangement (Fig. 2.1.a, Fig. 2.1.c), the diagram shown in  
Fig. 2.1.e can be used. Again, using common language, tandems operating in  
Lane 3 can be relocated and added to the existing tandems in Lane 2. This 
transformation is very useful in design as it allows for a safety margin on a three-
lane pavement. 

The last item in Fig. 2.1 is an example of national annex. Two classes of bridge 
structures are designed in Poland. In both, the tandem arrangement coincides 
with LM1. The differences lie in the arrangement of UDLs. The layout of UDLs in 
the first load class is shown in Fig. 2.1.f. In the case of the second load class, the 
distribution of UDLs is as in LM1.

Tab. 2.1. Characteristic values of concentrated forces acting on vehicle axles and UDL 
actions

Lane
TS – tandem system UDL
Axle lads Qik [kN] qik [kN/m2]

Lane number 1 Q1k = 300 q1k = 9.0
Lane number 2 Q2k = 200 q2k = 2.5
Lane number 3 Q3k = 100 q3k = 2.5

Other lanes 0 q4k = 2.5
Remaining area 0 qrk = 2.5
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a)     b) 

c)  

d)  

e)  
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f)   

Fig. 2.1. Load configurations for LM1 a) the basic variant – a tandem system represented 
by concentrated forces (vehicle wheels) and, symbolically, UDL b) admissible 
modification of the basic variant c) tandems in the basic variant – viewed in 
cross-section d) UDL system for the basic variant e) admissible modification of 
the tandem system, two-lane loading, viewed in cross-section f) Polish Annex – 
1st class in road bridge design 

In 2019, new bridge load classes, linked to road classes (Regulation of the 
Minister… , 2019), were introduced in Poland. There are two classes based on 
the LM1 design model. Class 2 is a repetition of the LM1 model. In terms of 
tandems, Class 1 corresponds to the LM1 model with the adjustment factors listed 
in Table 2. As a result, the applied load factors on the first three lanes correspond 
to a decreasing geometrical sequence with the first number of 12 kN/m2 and a 
multiplier of 0.5, Tab 2.2. Therefore, one obtains the UDL values of 12 kN/m2,  
6 kN/m2 and 3 kN/m2, respectively, see Fig. 2.1.f. 

Tab. 2.2. Polish vehicle load classes – adjustment factors to LM1

Class of vehicle 
load

Values of adjustment coefficients
αQ1 αQi

i > 1
αq1 αq2 αq3

i > 2
αqr

Class I 1.00 1.00 1.33 2.40 1.2 1.2
Class II 1.00 1.00 1.00 1.00 1.00 1.00

As mentioned earlier, the LM1 model can be used for local verification of a 
designed structure. However, this application proposes the layout shown in  
Fig. 2.2, where an additional description of the location of the tandem tyres and 
contact areas is introduced.
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Fig. 2.2. LM1 for local verification

The impacts are expressed as characteristic quantities multiplied by appropriate 
adjustment factors. 

2.1.2.  LM2 

It is a heavy twin-tyre axle, Fig. 2.3. LM2 can be positioned anywhere on the 
bridge roadway. The weight of the axle is βQ Qak, where βQ = αQ1 is an adjustment 
factor and Qak = 400 kN is the characteristic value of the axle weight. If only 
one wheel is allowed in the design, then Qak = 200 kN. In general, LM2 includes 
dynamic amplification, but the dynamic (fatigue) factor Δφfat concerning the 
vicinity of the expansion joint must be included. The model should be used for the 
purposes of short bridges or superstructure elements of the length between 3 m 
and 7 m. In LM2, the dynamic effects of vehicle traffic on the structure are taken 
into consideration.

 
Fig. 2.3. Location of vehicle model and load value for LM2

Nowhere is it specified that the LM2 is to be used for local control of the 
designed structure, but it is obvious.
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2.1.3.  LM3 

LM3 is used to design bridges taking into account the passage of special vehicles. 
A list of special vehicles with their axle arrangements is given in the standard EN 
1991-2.

2.1.4.  LM4

LM4 concerns crowd loading which should be UDL equal to 5 kN/m2. It 
includes dynamic amplification. LM4 can be adjusted to a certain project.

2.2.	 Railway bridges

The part of the standard dealing with railway bridges differs methodologically 
from the part concerning road bridges. The design of railway bridges considers 
static methods supplemented by a correction – the dynamic amplification factor 
(DAF). At the same time, the determination of dynamic states – dynamic design 
– is simultaneously taken into account. There is a positive conservatism expressed 
in the fact that the results obtained in dynamic analyses should coincide with the 
results of the static design including the dynamic factor. Thus, given progress in the 
field of design, traditional proven methods are not discarded. While the section on 
road bridges deals with sophisticated traffic modelling, railways use computational 
models that reproduce real locomotives and trains well. Modern railway bridges 
are primarily concerned with high-speed trains. 

A detailed discussion of EN 1991-2 has been deemed unnecessary. As in the 
case of road bridges, only basic design information will be referred to.

2.2.1.  LM71 

LM71 is the basic model for rail loading on railway bridges. It represents the 
static effect of a vertical load resulting from normal rail traffic. The model has been 
used in design for about 50 years. The characteristic concentrated forces Qvk and 
UDL qvk act on a single rail track. Qvk refer to the action of the single axles of a 
locomotive, while qvk represents wagon weight action.

Fig. 2.4. Load distribution diagram for the LM71 model
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There are several classes of loads. The characteristic loads Qvk and qvk must 
be multiplied by the classification factor α, which assigns a LM71 load to an 
appropriate class or, in other words, classified vertical loads are obtained. Explicitly, 
we have 8 classes defined in Tab. 2.3.

Tab 2.3. Classified vertical action on rail bridges

Formula
0.91^n, n=0,1,2,3. α Formula

1.1^m, m=1,2,3,4. α

0.91^0 1.00 1.1^1 1.10
0.91^1 0.91 1.1^2 1.21
0.91^2 0.83 1.1^3 1.33
0.91^3 0.75 1.1^4 1.46

In Poland, the α = 1.21 class is used for trunk lines.

2.2.2.  SW/0 and SW/2 

The SW/0 is a vertical static action, representative of normal rail traffic on a 
continuous span bridge. SW/0 values should be multiplied by the α coefficient.

SW/2 is a static action, representative of heavy trains. Both load models are 
defined in Fig. 2.5 and Tab. 2.4.

Fig. 2.5. The UDL load arrangement for SW/0 and SW/2

Tab. 2.4. Characteristic values of UDL for SW/0 and SW/2

Load Model qvk [kN/m2] a [m] c [m]
SW/0 133 15.0 3.3
SW/2 150 25.0 7.0

2.2.3.  Unloaded train 

In this class, a vertical uniformly distributed load of the characteristic value 
of 10.0 kN/m is applied. This class of a moving load can be used to identify a 
dynamic response that is particularly important when the dynamic susceptibility 
of the bridge is significant.

2.2.4.  HSLM

The High-Speed Load Model (HSLM) is used to model passenger trains 
travelling at speeds above 200 km/h. There are two types of HSLM in EN 1991-2, 
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namely HSLM-A and HSLM-B. Both models generate dynamic effects specific to 
real passenger trains. Only HSLM-B is presented here.

Fig. 2.6 defining the HSLM-B model is not complicated. Two important 
parameters of the model are d = d(L) – the distance of vertical concentrated forces 
(axels) and N = N(L) – the number of axles. Both parameters are functions of the 
argument L = Lt, which stands for the span of the bridge, and are given in the next 
figure in the standard. The quantities d and L are expressed in metres.

Fig. 2.6. HSLM-B – vertical impact on the railway track

2.2.5.  Dynamic factors Φ2, Φ3

In the case of railway bridges, dynamic coefficients are used for the LM71, 
SW/0 and SW/2 models. The dynamic coefficients take into account a necessary 
correction of the static analysis results due to dynamic effects. In the dynamic 
factor the relevant dynamic characteristics of the structure are not considered, in 
particular, the resonance or other form of vibration of the whole structure or any 
of its components.

There are two dynamic coefficients which are applied taking into account the 
technical condition and maintenance of the tracks. The dynamical coefficient 
Ф2 is used with regard to carefully maintained tracks while Ф3 – in the case of 
standard maintenance. Mathematically, a non-linear relationship as a function of 
the determinant length LФ parameter is assumed.
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(2.1)

The description as well as the values of LФ can be found in expanded Tab. 6.2 
of EN 1991-2. The dynamic factor Φ shall not be used with models of: Real Train, 
Fatigue Train, HSLM and the unloaded train.
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3.	Steel and concrete composite bridge girder

The concept of a steel and concrete composite girder is obvious. Concrete or 
reinforced concrete (RC) is placed in the compression zone, and steel – actually, 
the bottom flange of a steel double-T beam – works in the tension zone. As a rule, 
a steel beam is a prefabricated element, while a RC plate/slab is produced as a 
monolithic element in situ. The integration works due to connectors of different 
types, welded/ heat sealed to the upper surface of the upper beam flange. In recent 
years, the name “steel and concrete composite girder” has been increasingly replaced 
with “steel and concrete integrated girder”.

In the case of beam bridges, a single composite girder can be analysed. Overload 
of the outer girder follows clearly from Courbon’s method, for instance. 

The default girder corresponds to the most heavily loaded girder of a composite 
bridge. In general, it is the outermost girder of the bridge deck.

3.1.	 Basic cases of integration 

As far as beam integration is concerned, one talks about its 
•	 lack of integration (separated), 
•	 full integration, and 
•	 partial integration.

In Fig. 3.1.a-c, all the above listed variants of integration are shown. For the sake of 
simplicity, two identical two-beam elements are used to present types of connection.

a) 

b) 

c) 
Fig. 3.1. Types of integration of two identical beam elements in pure bending a) no integra-

tion b) full integration c) partial integration
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The initial configuration is marked with a dashed line, while the actual 
configuration is marked with a continuous line. 

The contact surface between two connected beam/members shall be called 
interface. 

In the cross-section, integration is represented symbolically by the different 
densities of vertical pin connectors (to the left from the integration variants).

The symbol ε stands for strain measured parallelly to the beam length; however, 
the expression ε  = 0 should be understood as strain null line.

Separated beams, Fig. 3.1.a, where the first beam is located at the bottom and 
the other one lies upon it, correspond to the so-called double beam. The friction 
in the interface is omitted. The horizontal displacement, slip, of the beam ends in 
the interface is visible and obtains its maximum value. In this variant, there are, 
actually, two independent null strain lines which overlap with the symmetry axes 
of each beam.

Full integration, Fig. 3.1.b, means that two elements are connected totally and, 
as a result, the analysed beam is, in fact, a single beam of the height equal to the 
sum of the connected elements. The null strain axis overlaps with the interface line 
in the initial and deformed configuration.

The bending of the partially integrated beam elements falls somewhere in 
between the case of a fully integrated beam and the case of a non-integrated beam, 
Fig. 3.1.c. The slip is less than in the no-integration case. It is worth noting that the 
positions of the zero strain lines are also transient compared to the two limit cases, 
i.e., fully integrated and non-integrated ones.

From a bridge engineer’s point of view, only the instance of full integration 
is admissible. Partial integration occurs when a composite structure weakens. 
The cause for partial integration is usually the wear of the connections between 
elements, (Seracino, Oehlers, Yeo MF, 2001). It may also be caused by an improper 
dimensioning of connectors resulting in an excessive flexibility of the connectors 
in the interface.

Non-integrated beams are not interesting at all.
As already mentioned, the partial integration case is not applicable to bridge 

construction. However, it is of great educational interest as it reveals the transient 
behaviour of composite girder members. For this purpose, the figures shown in 
Fig. 3.2 are used, which are, in a sense, extensions of the contents of Fig. 3.1.a and 
Fig. 3.1.c. 



43

a)    b)   c)   d)  
Fig. 3.2. Partial integration a) bending of a double beam b) cross-section, dimensions and 

markings c) distribution of strains ε, normal stresses σ and shearing stresses τ d) 
fitting of two cross-sections of two different component fields 

The axes in red were formed after parallel displacements of the Ou and Ob 
axes to the positions where the neutral axes of the εu = 0 and εb = 0 strains in the 
partially integrated girder are.

Fig. 3.2 is a detailed supplement to Fig. 3.1.c. It shows the end parts of two 
geometrically identical beams, partially integrated and made of the same material. 

The indices of the symbols εu = 0 and εb = 0denote the upper and bottom 
members and refer to the zero strain lines in the beam cross-sections. The centres 
of the gravity/mass axes Ou and Ob are marked in blue. The axes drawn in red 
were formed after the parallel shift of the Ou and Obaxes to the positions where the 
neutral axes of the strains εu = 0 and εb = 0 are located in the structural members 
of the partially integrated girder. Due to the bending of the members, the slip at the 
interface is visible.	

Fig. 3.2.c shows three linear distributions of strain and normal stress and a 
parabolic distribution of shearing stress. 

At the end of a beam, in the interface, a maximal slip is visible. As a consequence 
of the linear distribution, the steps of discontinuity in the strain and stress diagrams 
are located at the point corresponding to the interface.

In Fig. 3.2.d, the two members have different cross-sections. Therefore, the 
positions of the centroid lines and zero strain lines are also different. The symbols 
Au, Ab, hu, hb, bu, bb, Ou, Ob and Ωu, Ωb have been introduced for clarity. The 
offsets of the zero strain lines (neutral lines) are also different and are denoted as 
ξu, ξb.

Using the applied notation and commonly known relations, one can calculate 
the basic characteristics of two partially integrated girder members by the following 
unnumbered steps.

•	 Partial integration:
–– area 			   A = Au + Ab,
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–– second moment of area J = Ju + Jb,
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In the case of the cross-section shown in Fig. 3.2.d, the Reader is asked to carry 

out the relevant calculations by themselves.

Calculation example
In the following example, the formulae are not numbered.
Consider a simple double beam in which the members are not integrated. The 

load is uniformly distributed along the beam, Fig. 3.3.a.

a)  

b)   c) 
Fig. 3.3. Double beam a) initial configuration, UDL, dimensions b) actual configuration, 

slip measure c) timber bridge, double beam fully integrated by oak blocks
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Assumptions
It is assumed that two oak logs of a simple wooden bridge are considered. The 

friction between the logs at the point of contact is neglected; the uplift is omitted 
as well. In this example, an artificial structure with a lack of integration between 
structural members is considered. In the case of a real timber bridge, there is almost 
always full integration resulting from the use of timber blocks as connectors, see: 
Fig. 2.3.c. The theory of linear elasticity is used. Technical parameter values can be 
understood as characteristic ones.
•	 Geometry: L = 6.0 m, b = 0.35 m, h = 0.35 m, J = bh3/12.
•	 Material parameters: oak timber, density – 650 kg/m3, Young’s modulus E = 12 

GPa = 12.E6 kP, bending limit stress value fm,k = 35 MPa.
•	 Maximum deflection ulim = L/300.
•	 UDL value is assumed as 2g = 32 kN/m2.

The bending problem is examined with respect to the ξ abscissa, where 	
	 – L/2 ≥ ξ ≤ L/2, Fig. 3.3.a.	
•	 Due to the symmetry of the cross-section, the loading and the support of the 

beam, only one member of the double beam is to be analysed. The linear load 
density acting on a single beam is as follows:
g = 8 kN/m. Then, one obtains

	 M g L( )ξ ξ= −( )



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•	 The limit and maximum values of the beam deflection are given by
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−	 Extreme normal stresses are obtained as
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•	 Strains (slip strain)
Strain is understood here as the distribution of longitudinal strain at the 

interface. This 	 distribution is also referred to as slip strain. Thus, one obtains
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Slip
Looking at Fig. 3.3.b, it can be seen that the maximum slip occurs at the interface 

at the end of the double beam. The slip consists of two components su (the bottom 
surface of the upper member) and sb (the upper surface of the bottom member). 
Due to the symmetries involved, the equation s = su – sb occurs. The maximum 
slip is a sum, which in this case has the form smax = 2s.

To find the value of smax, the distribution of ε(ξ) must be integrated along its 
domain,
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Conclusions from the example
•	 The slip is measurable.
•	 Analysing the values obtained, it can be concluded that in all the cases safe 

results were obtained with a reserve in relation to the limit values.

3.2.	 Classical analysis of composite girder – Newmark’s concept of 
integration

The following chapter examines the classical approach to the theory of steel-
concrete composite girders. It was first developed in the early 1920s and 1930s. At 
that time, the conclusions were summarized in the monograph (Ржаницын, 1948), 
as well as in Konrad Sattler’s book (Sattler, 1953). Among recent publications the 
following are recommended: (Oehlers, Bradford, 1999), (Collings, 2005), and, in 
Polish, publications by Kazimierz Furtak (Furtak, 1999). 

The assumptions for this problem are as follows:
•	 steel and concrete are elastic materials according to Hooke’s law,
•	 the stiffening principle applies and, thus, the superposition method can be used,
•	 local stress concentrations are neglected; Saint-Venant’s principle of the equality 

of stress fields is valid,
•	 (B-N) rule of flat cross-sections is basic for an initial, as well as actual 

configuration. 
Above all, the works of Newmark et al. (Newmark, Siess, Penman, 1946), 

(Newmark, Siess, Viest, 1951), (Siess, Viest, Newmark, 1952) have facilitated the 
development of composite bridge structures. Based on the results of laboratory 
tests, the papers present a theory of stud connector design. 

The following statement, Newmark’s presupposition, is of utmost significance: 
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In a fully integrated beam, there is equality of curvature between the two members, 
the steel beam and the concrete slab.

Actually, it precisely means that there exists the equality of the curvatures of the 
member fibres crossing their centroids. 

Fig. 3.5. shows two configurations of a steel-concrete composite beam in 
bending when no integration occurs. The initial configuration is marked with 
dashed lines – the grey one for the concrete slab, and the blue one for the steel beam. 
As a result of bending, both elements have been bent achieving the same curvature 
value of 1/ρ, marked by magenta dashed lines. The used magnification displays 
discontinuities occurring in two forms. The first one is a clearly pronounced uplift, 
while the other one is a slip. 

 

Fig. 3.5. View of a deformation of two unintegrated members where both have the same 
radii of curvature ρ, i.e. the curvatures of the slab and the beam are equal to each 
other and are 1/ρ. 

In reality, in the case of full integration, the slip does not occur. Also, in the 
technical sense, the presupposition is admissible. By virtue of the stiffening rule 
and bearing in mind that the admissible flexure value of a bridge beam is L/400, 
where L is the span length in [m], one can measure the result of the introduced 
presupposition, which will be negligibly small. Therefore, assuming that Newmark’s 
assumption is valid, it is expressed as follows 
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Using the same method of problem analysis (Karas, 2010), Newmark’s 
assumption can be generalised as follows 
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where:
•	 1/ρc, 1/ρs, 1/ρi are, respectively, the curvature of the concrete element, the steel 

element, and the entire fully integrated composite girder, 
•	 Mc, Ms(in pure bending) consist of bending moments acting on concrete and 

steel members and M is the total bending moment of the entire composite 
girder, 

•	 EcJc, EsJs refer to the bending stiffness of the concrete and steel members, and  
EsJi refers to the bending stiffness of the entire composite girder, 

•	 Ji is the second moment of area of the integrated girder in which the concrete 
slab cross-section is replaced by the corresponding steel cross-section, in short, 
second moment of transformed area,

•	 Es is the elastic modulus of steel (Young’s modulus),
•	 Ec is the modulus of the elasticity of concrete and Ecm is the secant modulus of 

concrete in compression, Fig. 3.6, additionally, it is known that Ec = 1.05 Ecm. 

In the following applications Ec is understood in a general way as the modulus 
of the elasticity of concrete.

The secant modulus of the concrete Ecm concept is shown in Fig. 3.6.

Fig. 3.6. The graph of the σ~ε model of concrete in compression (EC 1992-1-1).

Accordingly, the term transformed composite girder refers to a girder the cross-
section of which consists of a steel beam cross-section and a concrete cross-section 
transformed into an adequate steel cross-section. In this sense, one can also speak 
of a transformed cross-section Ai and the transformed second moment of area Ji or, 
even more simply, the second moment of area of a composite girder. 
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In further considerations, images of the initial and current configurations are 
often simplified, as shown in Fig. 3.7.

a)   b)

Fig. 3.7. Diagram of a poorly bent composite element a) curved lines in the actual configu-
ration b) simplified model with straight lines

Strictly speaking, both terms are valid for pure bending but, on the other hand, 
the term is also used when bending with shearing occurs.

The transformation method used here has roots in early works on the reinforced 
concrete theory, so it is well proven and simple. It is based on the ratios of the 
mechanical characteristics of composite materials. In this case, the transformation 
is defined by the transformation coefficient n according to the following formula

s

cm

E
n

E
=

 	
and then 

	
effb

b '
n

= .		  (3.3)

The transformation in question is shown in Fig. 3.8 where the cross-section of 
a concrete slab has been replaced by a corresponding steel section in light of the 
conditions (3.3). 

Fig. 3.8. The cross-section of a composite beam
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In Fig. 3.8, the following symbols are used:
•	 hc – the height of a concrete slab, which is constant in the case of the real width 

beff and transformed width b’; the offset area is omitted here,
•	 beff – the effective width, the sector of a concrete slab/plate which cooperates 

with the steel beam,
•	 b’ – the width of a transformed concrete cross-section, 
•	 ho – the offset height,
•	 huf – the thickness of the upper flange of a steel plate beam, 
•	 buf – the width of the upper flange,
•	 hw – the height of a steel beam web,
•	 bw – the width of a steel beam web,
•	 hbf – the height of the bottom steel beam flange,
•	 bbf – the width of the bottom flange,
•	 hs – the total height of the steel beam,
•	 Oc, Os – the centroid of concrete as well as the steel member cross-section, also 

the line of the member centroids when viewed from a side,
•	 Oi – as above, but in the case of a transformed composite girder, 
•	 a – the distance between the centroids Oc and Os,
•	 ac – the distance between the centroids Oc and Oi,
•	  as – as above, but concerning the distance between the centroids Oi and Os,
•	 ys – the ordinate of the steel beam centroid,
•	 yi – the ordinate of the transformed girder centroid.

Consequently, the following notation is used:

− cA  – area of a concrete cross-section,

− '
cA  – area of a transformed concrete cross-section,

− sA  – area of a steel beam cross-section,

− iA  – transformed area of a composite girder,

− cJ  – second moment of a concrete cross-section about the axis cO ,

− sJ  – second moment of a steel beam cross-section about the axis sO ,

− iJ  – second moment of a transformed girder about the axis iO .

Here, the classical approach dealing with a two-dimensional problem shall 
be presented. Applying the (B-N) assumption of flat composite cross-sections to 
the initial and actual configuration involves a linear distribution of longitudinal 
strains, as well as of normal stresses. 

In the case of shearing, a parabolic distribution of the shear stress, which follows 
from Bernoulli’s beam theory, is assumed.	
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Regarding a two-dimensional problem, the set of equilibrium equations 
consists of three equations 
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where 

|∑ is understood as the sum of all force projections onto the vertical direction, 

_∑  is the sum of all force projections onto the horizontal direction. 

0M∑ , 01M∑ , 02M∑  are the sum of the vector products of all the forces 

in the plane in relation to any set of the points 1 2O, O , O  of the plane, however, 
points must not be collinear. 

Let us adopt one more simplification. In the following derivations, the offset 
concrete area Ao is omitted, although its height ho is taken into consideration. 
The offset area is insignificant compared to the rectangular concrete cross-section, 
while the height ho has a share in the third power, when the second moment of 
area Ji is determined. Such an assumption results in a slightly decreased value of  Ji 
and can be regarded as a secure design. 

Following the characteristics introduced in Fig. 3.8, the geometrical parameters 
of a composite girder can be calculated in the following way 

3.2.1.  Step-by-step calculation of normal stresses due to pure bending by 
moment M

Using the above notation and the geometry shown, the following steps can be 
performed.
•	 Concrete and transformed concrete areas

c eff cA b h= ,	 eff c
c c

b A
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= = , 	 i c sA A ' A= + .	 (3.5)

•	 Second moment of concrete and transformed concrete cross-sections
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It is assumed that the area As, the second moment of area Js, and the ordinate 
value of the centroid ys of steel can be easily calculated.
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•	 Centroid of Ji	
The key objective of the analysis is determining the second moment of a 

composite cross-section. The first step is to find the ordinate yi of the centroid Oi. 
Assuming a horizontal line on the bottom level of the bottom steel flange as a 
reference, one can determine the first moment of area in relation to it:
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Hence, the centroid ordinate is
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Ai

i

= −1 1 .						      (3.8)

•	 Second moment of a transformed girder cross-section

Then, by virtue of Huygens 4– Steiner 5 theorem, also known as the parallel axis 
theorem, the second moment of area can be written as follows:
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Let us discuss the components of the moment of inertia. The moment of inertia 
is the sum of three components, equation (3.4.1). The first two components give 
the moments of inertia for two unconnected elements (no integration). Therefore, 
the third component a2 λ2 can be thought of as the result of the integration of the 
elements or, in other words, as a measure of integration. In general, it is preferable 
to use relative measures rather than absolute measures because they provide a 
way to express the evaluation as a percentage. Let us suppose, therefore, that the 
relative measure will have the following ratio:
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•	 Normal stresses and their distribution along the composite girder height
	
Given that this method deals with pure bending, normal stresses for a plain 

problem are very simple to obtain. It is sufficient to find the normal stresses at the 
extreme points of the sections, i.e., at the upper and bottom fibres of a transformed 
concrete and steel, i.e. σ'uc, σ'bc, and σus, σbs.

4 Christiaan Huygens (1629–1695), Dutch mathematician and scientist, astronomer, physicist.
5 Jakob Steiner (1796–1863), Swiss geometer.
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where M is a total bending moment acting on a composite girder.
Stresses in transformed concrete must be retransformed to real concrete which 

simply means that they must be divided by n as follows

σ
σ

σ
σ

uc
uc

bc
bc

n n
= =

’
,

’
	  				    (3.12)

Finally, the graph of a normal stress distribution in Fig. 3.9 shows a linear effect 
as a result of the assumptions adopted at the beginning of the analysis. The graph 
can also be used to verify the obtained results.

Fig. 3.9. Normal stress distribution in a composite girder section taking into account 
normal stresses in the concrete.

The stress distribution diagram has a step at the joint, contrary to the strain 
distribution, which, according to the B-N assumption, is a continuous line across 
the height of the girder cross-section.

•	 Shear stresses and delaminating force
In the case of a steel-concrete composite girder, the shear stresses at the 

interface between concrete and steel are the subject of analysis. It is at the interface 
that the connectors joining the steel beam to the concrete slab are installed. The 
appropriate surface to determine the delaminating force is the top flange of the 
steel beam. The value of the delaminating force is equal to τbufe, where 
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and T is the internal shear force in the cross-section, iS  is the first moment of 
area of the transformed concrete cross-section with respect to the horizontal axis 
intersecting the centroid Oi and has the following form

i c cS A ' a= .						      (3.14)

Finding the delaminating force Q is essential for joint design. Integrating the 
shearing stress τ of the upper steel flange surface one obtains
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where buf = const., (x1 – x0) = e  is a chosen representative length at which the 
internal shear force T attains its extreme value; the length is usually assumed to 
be  e = 1 m.

3.3.	 Distribution of bending moment M on the members of a 
composite girder

This is another approach to composite girder analysis. It is more general and, 
consequently, can be applied to more complicated cases of action effects.

The same assumptions as before are valid, however, now, the primary role is 
played by the (B-N) assumption of flat cross-sections in the initial and actual 
configurations. Fig. 3.1 shows the mechanism of the problem. Still, an infinitesimal 
section of the girder of the length dx is analysed here. The curvature of a composite 
girder is symbolised by φ which is defined as

ϕ
ϕ

ρ
/ = ≈ = =

d
dx

d w
dx

M
E Ji s i

2

2
1 ,				    (3.16)

where w is a deflection at the analysed point of a girder. 
Now, the expression (3.2) can be rewritten in the following form

ϕ ϕ ϕ ϕ ϕc s i i
/ / / / /= = → = .				    (3.17)
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Comment
It is worth mentioning that in a variant of finite analysis i.e. when the length of 

the girder section is 1m, for instance, one obtains φ instead of φ', but, at this moment, 
one loses the possibility to use the simple uniaxial strain concept.	

Fig. 3.10 shows the effect of the B-N assumption on the strain distribution in 
a real composite girder, where a real concrete slab and a steel beam are bent. On 
the left side of the infinitely small excerpt, the bending moment M acts and on the 
right side the linear strain distribution causing partial shifts and rotations of the 
real elements. These shifts and rotations result from the action of the respective 
normal forces Nc, Ns and torques, in this case, the bending moment Mc, Ms. The 
common curvature φ' is clearly visible.

Fig 3.10. The bending moment distribution in composite girder elements

Comment to Fig. 3.10.
From the analysis of an infinitesimally small section of a deformed composite 

beam it follows that the curvature φ' is constant for each horizontal fibre, i.e. not 
only in the cases of φ'c = φ's = φ'i. Therefore, Newmark’s assumption is the only 
possible option.

The derivation can be conceived schematically as a sequence of the following 
steps:
•	 the interaction of a set of the internal forces Nc, Mc, Ns, Ms, leads to the same 

result as for a fully integrated composite girder,
•	 the internal forces Nc, Mc act on real concrete – here, transformed concrete is 

not dealt with,
•	 in other words, the result coincides with the bending moment action when 

connectors are present at the interface.
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The mechanism bases on the superposition of shifts caused by the normal 
forces Nc, Ns and rotations effects due to the Mc, Ms actions. In both cases the 
faces of concrete and steel sections were shifted and rotated. 

Therefore, the force Nc causes a horizontal shift of the concrete face by a 
length εNc. Next, the moment Mc rotates the concrete face by φ'. The geometrical 
effect of this rotation is given by the strain εMc distribution shown in Fig. 3.10. 
Consequently, the same mechanism exists in the case of a steel element.

Having the values of internal forces, one can use the equation set of equilibrium 
which now has the following form

0

0

0
c s

Os c s

| : is not applied

_ : N N N

M : M M M Na

 =
 = = =


= = + +

∑
∑
∑

.		  (3.18)

Further analysis can be performed in various manners. Let us assume the 
simplest one. Based on the constitutive relation – in this case it is sufficient to 
assume Hooke’s law – one can write

ε
σ

ϕNc
c

c

c

c c
c cE

N
E A

a= = = / ,				    (3.19.1)

and					   
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s
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s sE
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a= = = / ,				    (3.19.2)

One arrives at		
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a N
E A E A
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







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/ 1 1 1
2 ,		  (3.19.3)

And, hence, the moment Na is defined as

Na E as= ( )ϕ λ/ 2 ,					     (3.20)

And by virtue of (3.16), finally the following is obtained

Na M
a
Ji

=
( )λ 2

.					     (3.21.1)

The values of the bending moments Mc and Ms are easy to find by means of 
Newmark assumption (3.2), as follows
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J
M M

J
= .				    (3.21.2-3)

Approaching the conclusion, let us recall the formulae (3.9), (3.18.3) and 
(3.21.1-3) in explicit form as follows

J J J ai c s= + + ( )’ λ 2

c sM M M Na= + +

c
c

i

J '
M M

J
= s

s
i

J
M M

J
= Na M

a
Ji

=
( )λ 2

Now, the conclusion is clearly obvious and can be expressed as follows:

The distribution of the bending moment M over the internal moments Ms, Mc 
and Na acting on the members of the composite girder is determined by the ratio of 
each component of the sum of Ji (J’c, Js and (aλ)2) to the sum of Ji multiplied by the 
value of M.

Normal stresses are to be calculated using the sum of bending action and 
tension/compression action as follows

σ = ± ±
N
A

M
J

y 					     (1.26.1) 

Hence, according to Fig. 3.10, for concrete one has

σ σuc
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, ,		  (3.22.1-2)

And for steel, respectively
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s
i

N
A

M
J

h y N
A

M
J

y= − −( ) = +, ,	 (3.22.3-4)

where minus “ – “ denotes compression.
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Let us note that the stress results obtained from (3.11) relations and (3.22.3-4) 
conform fully. Bearing in mind Hooke’s law, strains can be calculated immediately.

In summary, solving the bending problem of a composite girder involves the 
following sequence of steps:
•	 determination of the transformation factor n which enables the replacement of 

the concrete cross-section with an adequate steel section –
 

s

cm

E
n

E
=

,
•	 knowledge of the bending moment M,
•	 determination of the composite cross-section characteristics – As, Ac, A'c, Ji, 
•	 establishing values of internal moments and the force acting on the members of 

a composite girder – Ms, Mc, N,  
•	 determination of normal stresses at vital points of the composite girder cross-

section using formulae (3.22.1-4) and strain distribution shown in Fig. 3.10 
– σuc, σbc, σus, σbs,

•	 deflection of the composite girder due to the moment M –
 

25
48

t
M

cm i

M(L )
u

E J
=

.
The +/- signs in the equations (3.11) result from the strain distribution shown 

in the cross-section of the composite girder under the assumption of a flat cross-
section (B-N), Fig. 3.10.

3.4.	 Normal force distribution in composite girder elements

When a composite girder is subjected to tension, the distribution of the normal 
force N in the composite girder members results from the equality of the member 
strain values. Fig. 3.11 shows the mechanism of this distribution.

Fig. 3.11. Distribution of the axial force N in composite girder members
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This is a relatively simple task, therefore, the result is given without derivation, 
although the reader is advised to carry out the relevant analysis by themselves 
using the drawing in Fig. 3.11. Finally, one obtains

s
s

i

A
N N

A
= ,	 c

c
i

A '
N N

A
= .			   (3.23)

	
Basing on (3.5.3), i.e.  Ai = A'c + As the following conclusion seems natural:
The distribution of the axial force N onto the internal normal forces Nc and Ns 

which act on composite girder members, is determined by the ratio of the area value 
of each member (Ac and As ) to the value of Ai, which is multiplied by N, according 
to (3.23).

Comment regarding further derivation
In the subsequent calculation phases of the composite girder, the method of the 

effective modulus of the elasticity of concrete is used. 
The most obvious case has already been used above, i.e. the secant modulus of 

concrete denoted as Ecm (or variant Ec), from which the transformation factor n 
(often denoted as n0) is derived. 

In the case of the concrete shrinkage of a slab element, there is an effective 
modulus denoted Ec_sh and n_sh, respectively. 

Similarly, the effective modulus Ec_creep, associated with the transformation 
factor n_creep, will be used to account for the creep effects of the concrete slab.

3.5.	 Composite girder – shrinkage of the concrete slab 

The shrinkage of concrete is a complicated and interdisciplinary problem, 
(Bažant, 1975), (Bažant, Wittmann, 1982), (Heath, Roesler, 1999), (Holt, 2001).

In short, the concrete mix (cement concrete before setting) has a larger volume 
than the concrete formed after setting.	

Concrete is formed by the binding of cement particles to the mixing water. 
This involves the autogenous shrinkage of concrete, which can vary depending 
on the water to cement ratio (w/c). Autogenous shrinkage is significant when w/c 
< 0.4, resulting in shrinkage cracks in the concrete. The evaporation of unbound 
water from concrete causes drying shrinkage. Drying shrinkage is caused by the 
exchange of moisture between the concrete and the environment. Simply put, if 
the concrete is tightly sealed, drying shrinkage does not occur.

Thus, it is assumed that there are two sources of shrinkage: the hydration process 
of cement and the evaporation of unbound water in the hydration process. 	



60

There are phases to shrinkage – it is very intensive during the concrete mortar 
setting and hardening, although it continues over the next 3 years. Shrinkage 
causes micro cracks, which, due to a service load action, can develop to cracks that 
cause degradation of concrete. The process is not beneficial to concrete structures. 
The shrinkage process is not uniform – it occurs apparently in the external areas 
of solid concrete. Here, the problem is treated as a medium case, i.e. the whole 
concrete volume shrinks uniformly.

As far as the Eurocodes are concerned, there are two reference documents, 
namely (EN 1992- Part 1-1) and (EN 1994-2 Part 2).

In EN 1992-1-1 (3.8), the total shrinkage εcs is given by the formula

ε ε ε εcs sh ca cd( )= = +      6,					     (3.24)

where εca is autogenous shrinkage, εcd is drying shrinkage. Formulas and references 
for determining εcs can be found in section 3.1.4.

References to EN 1992 can be found in the bridge standard EN 1994-2.

Effect of concrete slab shrinkage 
In the classical approach, the effective modulus of concrete is calculated 

according to the following formula

E E
E

t
c c sh

cm→ =
+ ∞( )

,
,1 0ψ

, 			   (3.25)

where, generally in an open area, ψ = 1.5(see: Johnson, Buckby (1979), ACI (2005)).

3.5.1.  Initial and actual configuration appropriate for shrinkage	

The crucial element of this derivation is to understand the idea of initial 
configuration. To start with, it is assumed that the composite girder elements, i.e., 
the concrete slab and the steel beam, are not integrated. In this situation, shrinkage 
only affects the concrete slab as an unconfined process. The effect of shrinkage 
along the height of the concrete slab is neglected. The result can be seen in Fig. 
3.12.a, where the strain εsh has occurred at a distance dx. The steel beam remains 
unchanged. This is the initial configuration. 

Still, in reality, the connection at the interface exists and constitutes a case of full 
integration. Assuming planar cross sections (B-N), no other form of deformation 
than the one shown in Fig. 3.12.b is possible, which corresponds to the actual 
configuration in the process under study. 

6 In this study, total shrinkage is denoted by the symbol εsh.
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a)      b) 

Fig. 3.12. Model of shrinkage a) initial configuration b) actual configuration

3.5.2.  Strain distribution as a result of the flat cross-section assumption. 
Solution to the problem

Now, it is necessary to apply the internal forces Nc, Mc, Ns and Ms to the concrete 
and steel sections in the initial configuration to obtain the actual configuration. 
This is shown in Fig. 3.13.

Fig. 3.13. Strain distribution and internal forces in the shrinkage process 

Again, a force implies a shift while a rotational moment results in the inclination 
of a section, faces of concrete, and steel, independently. It is worth noticing that 
shrinkage causes stretching in concrete and compression of the bottom fibres of steel 
beam.

Having established the forces, one can write the equilibrium equations 
appropriate for the plain problem
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Newmark’s presupposition is useless because it leads to a trivial solution. In 
this case, the problem is statically indeterminate. It is necessary to formulate an 
additional condition which in terms of elasticity is known as compatibility relation. 
Basing on Fig. 3.13, in the interface there are as follows

ε ε ε ε ε ε

ε ε ε ε ε ε ε

sh Nc Mc Mo Ms Ns

Nc Ns Mc Mo Ms N M

= + + + + =

= + + + + = +( ) ( )
 . 		  (3.27)

By virtue of Hooke’s law, one arrives at
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While in the case of εM, based on deformed configuration geometry, the 
following is obtained

εM  = φ'a. 						      (3.29)

Now, using the (3.26.3) Ms + Mc = Na and Newmark’s assumption in the form 
of a modified relation (3.17)

Ms = φ'EsJs   and   Mc = φ'EcJc,				   (3.30)

The curvature is as follows

φ/

’
=

+
1

E
Na

J Js c s

.					     (3.31)

Using (3.27), (3.28) and (3.31) one has
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And, hence,

M E a
J
J

M E a
J
J

Na M M E a
J J

Js sh s
s

i
c sh s

c

i
s s sh s

c s

i

= = = + =
+

ε λ ε λ ε λ2 2 2,
’

,
’

								        (3.33.1-3)
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Therefore, of course

N E
J J

Jsh s
c s

i

=
+

ε λ2 ’ . 					     (3.33.4)

The set of the formulae (3.33.1-4) concludes the derivation of the shrinkage 
problem solution. 

All in all, the expected conclusion is not simple, although possible. The actual 
configuration, shown in Fig. 3.13.b, overlaps with the actual configuration in the 
case of poor bending shown in Fig. 3.10. 

Comment
Planar geometry is of great virtue. If geometrical effects are analogous, then 

actions must also be analogous. So, there is a bending moment Msh analogous to 
the bending moment M, Fig. 3.10.

This allows the expression εshEsλ2a to be treated as an appropriate, but fictional, 
bending moment. 

Hence, based on the above comment, one can write

M E ash sh s= ε λ2 , 					     (3.34)

If so, it yields the following

s
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= ,	    (3.35.1-3)

Since this is the case, the formulas (3.21.1-2) are analogous to the formulas 
(3.35.1-2), while the relations (3.21.3) and (3.35.3) are not analogous due to the 
different form of the equilibrium equations (3.18.3) and (3.26.3).

3.5.3.  Normal stresses distribution

The value of εsh is the key to use in the design practice. This value can be 
taken from shrinkage versus time graphs which are commonly found in technical 
literature regarding concrete, e.g. (Bazant, 2001). In a simplified procedure, the 
following estimation of the value εsh can be used:
•	 2E-4 – after 14 days of concrete hardening,
•	 4E-4 – after 28 days,
•	 5E-4 – as a limit value.

Fig. 3.13 and the relations (3.35) can be used to determine normal stresses at 
relevant points in the cross-section of the girder.

For the upper and bottom fibres of the concrete slab there are	
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And for the upper fibres of the top flange and the lower fibres of the bottom 
flange of the steel beam the result is as follows:
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The signs in front of the components in the formulae for normal stresses follow 
directly from the returns of force and moment in Fig. 3.13.

When carefully reading the graph of the deformed body, Fig. 3.13, one can see 
the strain and stress distribution along the girder height. To complete the analysis, 
a graph of the variation of normal stresses in the cross-section of the composite 
girder is added below, Fig. 3.14. 

Fig. 3.14. Normal stresses distribution due to shrinkage, “ + “ for tension

Comment: 
Commenting on the diagram in Fig. 3.14, it should be emphasised that the 

concrete is in tension and the steel in compression in the vicinity of the interface. 
The characteristic element of the graph is a step in the stress distribution in the 
interface. The step also signifies the reversal of the stress sign.

	 The search for normal stress values shall be performed as follows:

•	 coefficient of transformation s
sh

c _ sh

E
n

E
= ,

•	 bending moment caused by shrinkage of a concrete member – M = Msh,
•	 geometrical characteristics of the composite girder cross-section – As, Ac, A'c, Ji,
•	 internal forces acing on composite girder members – Ms_sh, Mc_sh, N_sha,
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•	 normal stresses based on the formulae (3.27), the deflection due to the moment Msh 
25
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= .					     (3.37)

The same mechanism occurs in the case of expansive types of concrete 
(expansive cements) and in the task of uniform cooling of a concrete slab.

3.6.	 Another approach to the shrinkage problem (force method)

The initial configuration shown in Fig. 3.12 can also be drawn for finite 
dimensions (not infinitely small) see (Sattler, 1953). Here, however, the focus is 
on the work of H.W. Birkeland (Birkeland 1960) who listed three stages, which are 
discussed in detail. The drawings in Fig. 3.15 are copied from Birkeland’s work.

a) 

b) 

c) 

d) 

Fig. 3.15. Birkeland’s stages of the cancellation of the effect of shrinkage a) initial stage 
– unconfined slab shrinkage which is reduced by tensile forces applied to the 
concrete slab centroids b) final stage after the member integration c) alternative 
final stage supplemented by adding the view of composite girder deflection d) 
summation of normal stresses
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Let us discuss Birkeland’s concept. Subsequent patterns that occur are not 
numbered. The value of the normal force N can be easily calculated when the 
shrinkage strain is known. The following can be then obtained

N = εshEcAc
Due to unconfined (free) shrinkage, the length of the concrete slab is shortened. 

At this point the key element of the theory is introduced – the external tensile 
force N is applied in such a manner that the length of the previously shrunken slab 
becomes equal to the length of the steel beam.

In this state of the forced elongation of the slab, the concrete slab is integrated 
with the steel beam to form a composite girder. 

The introduced tension state of the concrete slab now acts on the composite 
girder, and at the same time there is a change in the direction of the force N applied 
further through the centroid of the concrete slab – now, the force N compresses 
and bends the entire composite girder.

The displacement of the force N towards the centre of the composite girder 
involves the bending moment M = N ac. This allows the problem to be treated as 
the sum of pure bending and compression. 

Comment:
Fig. 3.15.c shows the deflection of a composite girder that is caused by shrinkage of 

the concrete slab. Considering that shrinkage is part of chemical (cement hydration) 
and physical (moisture changes in concrete pores) processes, it ultimately leads to 
flexure as a permanent action. In other words, it causes concrete creep.

This method is also used for shrinkage when the slab is cast in sections, 
(Johnson, Buckby 1979).

3.7.	 Cooling the concrete slab

Let us assume that the concrete slab has been cooled uniformly. The vertical 
cooling depletion of the concrete height can be omitted. The longitudinal strain 
can be calculated from the following data

•	  αT E
K

E
K

= − ≈ −9 8 6 1 1 0 5 1. .  – the coefficient of concrete thermal expansion,

•	  ( )10 20 30T K ∆ = − − =   – seasonal temperature amplitude, 

•	  ε αtemp T T E E= = − ⋅ = −∆ 1 0 5 30 3 0 4. . .
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Now, by means of the formulae (4.1.33), (4.1.34.1-3) regarding shrinkage, one 
can determine the normal stresses during thermal shortening of the reinforced 
concrete slab caused by the εtemp strain. One should only replace the εsh  in the 
εtemp  and use the following relations

M E atemp temp s= ε λ2

, 					     (2.25.1)
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.         (2.25.2-4)

In this case, the value of the modulus Ec = Ecm remains unchanged and the 
normal stress values can be found using the equations (2.25.1-4). The cooling of 
the concrete slab is a transient process and does not cause any creep of the slab.

3.8.	 Creep effect of the concrete slab

Creep and relaxation are rheological processes described by visco-elasticity or 
visco-plasticity theories. Both processes are elements of rheology where the term 
rheology7 is after Greek philosopher Heraclitus’s πάντα ῥεῖ – ‘everything flows’. 
πάντα ῥει was used as the motto of the Rheological Society founded in 1929. 

Relaxation process is a time dependent process of stresses weakening in the 
body subjected to forced permanent deformation. 

The best example is a prestressing cable that is stretched and then attached at its 
ends to a concrete beam. The loss of stresses in cable wires is a classical relaxation 
problem.

Creep is the process of creating deformation/displacement over a long period 
of time as a result of a constant load. 

In engineering technology and design, the work of the 1960s has made 
significant contributions. At the same time, the rheology of concrete has been the 
subject of continuous research with the use of contemporary testing methods, 
(Nowacki, 1963), (Blaszkowiak, 1958), (Zerna, Trost, 1967), (Trost, 1968), (Bazant, 
Wittmann, 1982), (Partov, Kantchev, 2007).	

The reader can find information on rheology, rheological models and 
applications of the Laplace Transform in Chapter 13.

All materials used in building engineering are subjected to creep, especially 
concrete, (Roussel, 2012).

7 The word rheology is composed of the Greek words rhéos – ‘something flowing’ and ñology 
– ‘study’.
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In the case of a composite girder, the concrete slab is under constant compression 
due to dead weights. Therefore, creep constitutes an important element of design. 
Although, in the classical approach, the action is not extensive and the problem 
boils down to taking account of creep by introducing the effective modulus 
Ec_creep  as a function of time and humidity. In the Eurocodes (EN 1992-1-1) 
the characterization of shrinkage is quite extensive – it is presented in the closing 
section of this chapter. Also basing on the information contained there, one can 
relate creep to the type of loading, shrinkage and prestressing of concrete by means 
of the following expression

	 n n L t= +( )0 1 ψ ϕ ,					     (3.29)

where φt = φ(t, t0) is a creep factor, ψLrefers to different situations and takes the 
following values: 1.1 for permanent loads, 0.55 for primary and secondary effects 
of shrinkage, 1.5 for prestressing. 

From a mechanistic point of view, such a formulation is not clear enough. For 
this reason, the classical formulation proposed by Heinrich Trost can be adopted 
for creep
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where φ (t, t0) the creep coefficient relevant to the load application at a t0 moment 
and time interval (t, t0), t is a current time value. 

It is worth mentioning that in the case of bridges exposed to environmental 
impacts, the following relation is applied 
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, where φ = 2.				    (3.31)

On the other hand, the search for φ(t, t0) is included in Annex B of (EN 1992-
1-1) as follows but without numbering
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The two creep estimates are convergent.

The following sequence of calculations needs to be performed when searching 
for normal stress values:

•	 coefficient of transformation s
creep

c _ creep

E
n

E
= ,

•	 bending moment caused by dead loads acting on a composite girder M =Md.l. 
•	 geometrical characteristics of the composite girder cross-section – As, Ac, A'c, Ji,
•	 internal forces acing on composite girder members – Ms, Mc, N, (Na),
•	 normal stresses based on the formulae (3.21),
•	 the deflection due to the moment M and Ec,eff or Ec_creep can be calculated as 

follows
25

48
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Finally, the reader’s attention is recommended to a paper (Machelski, 2022) 
that deals with the deformation analysis of composite bridges by measuring and 
modelling the girder curvature under the influence of concrete deck slab creep.



4.		Shear connectors 

Wooden bridges with multi-span girders use different types of connectors, 
e.g. wooden dowels, blocks, steel rods and skilfully shaped steel plates; concrete 
or reinforced concrete has also been used to form connectors. Wood technology 
expertise has been applied to steel-concrete composite bridges, while connectors 
have changed significantly. Nowadays, considerable financial resources are devoted 
solely to the study of composite bridge connectors – there is, in fact, a scientific 
sub-discipline devoted to such connectors, which continues to undergo dynamic 
development.

4.1.	 Rigid connectors

Rigid connectors have been replaced by flexible connectors, mainly for 
technological reasons.

An overview of rigid connectors will be given by citing an excellent research 
paper (Siess, Viest, Newmark, 1952). Fig. 4.1 shows black and white replica images 
of various rigid connectors sourced from the paper (Siess, Viest, Newmark, 1952).

a) 		 b) 

c)  	 d)  

e)   
Fig. 4.1. Rigid connectors a) vertical steel flat bar b) steel angle bar c) hot rolled steel C 

channel d) hot rolled steel channel, vertically oriented e) inclined Z section
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Fig. 4.2 shows several other examples of rigid connectors in axonometric drawings, 
Fig. 4.2.a-c. In Fig. 4.2.d, loop pins are shown as connectors. It is worth noting that 
these fasteners have a higher shear capacity than steel headed bars by about 40%. 

The surface of a rigid connector acts on the concrete of the slab, and, in 
response, the concrete acts inversely on the connector. The same is true for the 
prone connectors. For this reason, the connection is dimensioned in two ways: for 
steel and for concrete. In both cases, part of the delaminating force Q/k, Fig. 4.2.e, 
is due to the interaction between the steel fastener and the surrounding concrete; 
in this case, k is the number of fasteners per metre.	

The verification calculations for steel mainly consider the shear and bending 
resistance of the welds connecting the abutment to the flange of the girder. The 
connection structure itself is also checked for bending. As for the concrete, the 
pressure of the connector face on the concrete and the shear of the concrete along 
the perimeter of the connector face or along the conventional shear line are checked. 

a) 

 

   b) 

 

c)      d)

 

e)  
Fig. 4.2. Rigid connectors a) isosceles steel angle b) isosceles steel angle with a spacer c) box 

d) pin connector with a loop e) delamination force Q/k inducing shearing and 
bending in the perimeter weld

Fig. 4.3 shows photographs of worn steel beams of composite bridges with 
remnants of rigid and flaccid connectors. To avoid adverse stress concentrations 
in the concrete, flaccid anchor connectors have been used – smooth bars of min. 
30d – with the final anchor hook placed in the concrete, Fig. 4.3.a-b. Most anchors 
were d =12 mm in diameter. The anchors were inclined from the girder axis by 
an angle smaller than or equal to π/4 and were aligned to the trajectory of the 
principal tensile stresses.
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a)       b) 
Fig. 4.3. Degraded composite beams a-b) rigid connectors and remnants of flaccid anchors 

Rigid connectors, such as those shown above, are not currently in use, but who 
knows what the future holds.

4.2.	 Headed stud connectors

At present, the predominant form of connection at the interface between a steel 
beam and a concrete slab are headed connectors, Fig. 4.4. This results from the 
ease of designing the connectors, the ease of installation and the ease of checking 
the quality of their connections – welds. The connector head prevents uplift. The 
connector pull-out force from concrete is estimated at 10% of the delaminating 
force.

a)  b)  c)
Fig. 4.4. Headed stud connectors a) view of the connectors in a commercial version b) pre-

fabricated steel beam of a frame rafter with headed stud connectors c) checking 
the correctness of the connector weld by means of a hammer test

In the Eurocode (EN 1994-2), the scope of joint design at the interface has 
been limited to the design of headed stud connectors. The resistance of a single 
connector is expressed by two formulas for steel and concrete, respectively. Out of 
the two determined resistances, the smaller resistance is taken as decisive. Thus, 
one has
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where: fu ≤ 500 MPa – ultimate strength of steel, d – stud (shank) diameter;  
16 mm ≤ d ≤ 25 mm, γv (= 1.25) – material partial safety factor, fck - characteristic 
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(4.1.1)

The Eurocode EN 1994-2 provides useful guidance on detailed design. Some 
figures from the quoted Eurocode are given below. Fig. 4.5 shows two basic cases 
of the placement of connectors inside a concrete slab.

a)  	 b) 
Fig. 4.5. Forming the concrete zone of the slab over the steel beam a) haunch (offset) of 

concrete slab b) flat slab case (EN 1994-2, Fig. 6.14)
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a)  		 b) 

c)  d) 

Fig. 4.6. Conventional concrete shearing surfaces (here, visualised by lines of symme-
try) a) haunch (offset) case b) instance of prefabricated permanent shuttering  
d) Asf / sf – the effective transverse reinforcement per unit length, Ab, At and 
Abh – areas of reinforcement per unit length of a beam anchored in accordance 
with (EN 1992-1-1) for longitudinal reinforcement, (EN 1994-2, Fig. 6.15).

In this chapter, the method of general description is followed, without giving 
detailed information about the design, analytical methods or discussing the 
details of test results. However, the citations provided facilitate a full cognitive 
understanding of contemporary solutions used in bridge engineering. At the same 
time, only a few papers are cited here, but their content and authors are at the 
forefront (whatever that may mean).

4.2.1.  Ultimate state of a headed stud connector

The Reader can find various damage models concerning headed stud 
connectors. Nevertheless, only one drawing, Fig. 4.7, from (Oehlers, Bradford, 
1999) is quoted below. 
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Fig. 4.7. Forces and failure zones for a headed stud shear connector

By simplifying the failure mechanism of the headed stud connector shown in 
Fig. 4.7, the concrete failure process can be analysed according to the theory of 
fracture mechanics of concrete as a brittle body. In the case of steel failure, fracture 
mechanics including plastic deformation must be applied.

4.3.	 VFT ®

 The concept of VFT 8 girders is evolving and this is an ongoing process. 
Nevertheless, it is not yet a prevailing technology (Seidl, Petzek, Băncilă, 2013), 
(Kołakowski, Lorenc, 2015). 

In short, VFT is a prefabricated composite girder consisting of composite 
elements – a steel beam and a concrete slab; the height of the steel beam or the 
concrete element can be reduced accordingly, as shown in Fig. 4.8 as an example. 

The load-bearing capacity of the prefabricated element takes into account the 
loads occurring in the transition state, in which the concrete slab is over-concreted 
to its full height; there are also loads resulting from the installation of other elements 
of the superstructure. A full load-bearing capacity is achieved when the concrete 
of the precast slab is integrated into cast-in-place concrete. The connectors are 
located both in the precast elements and at the interface between the precast slab 
and the cast-in-place concrete. Fig. 4.8 shows selected forms of VFT girders. 

8 VFT® German: VerbundFertigteilTräger – prfabricated composite girder
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a)     b)

c)    d)     e)

Fig. 4.8. Evolution of VFT technology a) classic composite girder b) basic VFT concept c) 
inverted double-T shaped VFT steel beam integrated by dowel connectors d) low 
height inverted T-beam with dowel connectors – external reinforcement e) VFT 
plate with external reinforcement

4.4.	 Perfobond rib shear connectors

The concept of ribbed perfobond shear connector was published in 1987 by 
Fritz Leonhardt et al., (Leonhardt, Andrä, 1987).

A composite girder structure consists of a steel beam modified by a fillet welded 
longitudinal vertical steel plate (strip), which is perforated in a regular manner. 
The perforations may run in a single axis, Fig. 4.9.a, or in a sequence of two axes 
located at two different levels, Fig. 4.9.b. The perforations have a correspondingly 
larger diameter than the transverse reinforcing bars. 

This forms a composite that carries shear and compression/tension. A joint is 
formed in which internal forces are transferred by both steel and concrete. Enforced 
by the stiffness of the horizontal concrete slab, this arrangement corresponds to an 
approximately plane state of strain. This causes the concrete to be confined in the 
plane of the concrete slab.

a)     b) 
Fig. 4.9. Perforated shear connector concept a) one perforation line b) two perforation lines
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The authors of the cited paper emphasise the high fatigue resistance of the 
tested joints to both concrete and steel dowels.

Further research on the load-bearing capacity of different variants of 
perforated connectors was carried out by Fritz Leonhardt’s colleague, Hans-Peter 
Andra. Thanks to the digitisation of old resources, his old article is now available 
demonstrating the development of technical knowledge in this field. To this day, 
perfobond shear connectors have been undergoing numerous laboratory tests 
combined with FM analyses, e.g. (Andrä, 1990). 

The case shown in Fig. 4.9.b leads directly to today’s modern dowel connectors. 
Perfobond ribbed shear connectors are widely used in bridge engineering. 
Expressions for their shear capacity can be found in (EN 1994-1-1), (Su et al., 
2016) and (Hai et al., 2020).

4.5.	 Dowel connectors

The constant drive to decrease the cost of bridge structures finds its technical 
expression in the search for a technology that would reduce the amount of steel 
in composite girders. The aim is not only to reduce costs, but also to increase the 
load-bearing capacity and durability of bridges. As always, prefabrication is a tried 
and tested method in such cases, as it allows a high degree of precision, e.g. in 
the construction of bridge girders. Referring to the basic design principle of a 
composite girder, i.e. that concrete works in compression and steel in tension, a 
new type of connector has appeared – the dowel connector (longitudinal strip/slat 
with “teeth”), Fig. 4.10, (Preco-Beam, 2013).

With a high degree of generality, one can say that a dowel joint is a rigid 
connector – but a longitudinal one. In fact, the dowel consists of two elements: 
a concrete dowel and a steel dowel, which are interconnected. Certainly, this is 
a great simplification, as the resultant resistance of the dowel is determined by 
various other elements involved. Although dowel connectors have been only in 
use for about two decades, the literature on the subject is extensive. At the same 
time, there still takes place an intensive examination process of the mechanism of 
this connection. 

Dowels are usually extracted by cutting the I-beam along its neutral axis. The 
cutting is performed by means of oxy-fuel cutting, Fig. 4.10.a-b. There are many 
variants of the dowel shape, Fig. 4.10.c-e. A variant of the modified clothoid shape 
(MCL) is considered to be optimal, Fig. 4.10.f. This variant is the result of previous 
experiences with puzzle, clothoid and fin shapes.
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a)  	 b) 

c)   d)   e)   

f)  

Fig. 4.10. Dowel connectors a-b) cut line in the web of a steel I-beam c) shark fin shape d) 
clothoidal shape e) puzzle shape of dowel f) example of geometry for MCL dowel

When classifying MCL geometries, the characteristic length/height/thickness 
dimensions of a web are considered. Thus, in Fig. 4.10.f, 250/115/27, (Lorenc, 
2020) expressed in millimetres is shown. 

A composite dowel shear connector caries the shearing which concerns both 
steel and concrete, Fig. 30.a. The basic challenge is to recognise and design the 
toughness against fatigue in a steel element of a composite dowel, which should 
have an appropriate shape. The main role of the surrounding concrete and 
reinforcement is to form a confining zone for a concrete dowel. 
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Fig. 4.11. Elements of composite dowel elements 

This type of composite girders is also known as PreCoBeam – Prefabricated 
Composite Beam. The monograph (Preco-Beam, 2013) is especially recommended 
to the Reader, simply because one can find there information on everything that 
has happened in the discipline in recent years. It is a guide containing design 
principles for composite dowels in girders subjected to bending loads according to 
the Eurocode. It presents a brief history of the development of composite dowels, as 
well as suggestions for shaping the geometry and constructing the reinforcement. 
On the one hand, the results for many static and cyclic loadings used in numerous 
laboratory tests are described, and, on the other hand, a wide range of numerical 
models is presented. Finally, fire design is included. In short, the monograph is a 
very accessible description facilitating the subject studies for both students and 
engineers.

Figure Fig. 4.12.a shows a clothoid dowel (CL). Strain gauges are mounted near 
the root of the steel dowel. The location of the root was determined in a numerical 
analysis, the result of which can be seen in Fig. 4.12.b. The map shows the result 
when the assumption that only each odd composite dowel is subjected to cyclic 
loading is used. Even dowels perform similarly to the perfobond shear connector. 
The graphs in Fig. 4.12.c-d show the measured results of the vertical displacement 
(f) in the beam axis and the slip (s) at the interface (more precisely, the mutual 
displacement of steel and concrete) at the end of the tested beam. 

The term delta denotes the difference between the maximum and minimum 
values inherent in a sinusoidal pulsed loading action.
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a)  	 b)  

c)  	 d)
Fig. 4.12.9 Experimental studies for the construction of a bridge over the Wierna River a) 

steel dowel (CL) with strain gauges b) principal stress map for a steel (dowel) c) 
vertical displacement (f) delta, slip (s) values and its delta d) slip (s) graph and its 
simulation as a logarithmic function of the number of cycles s = 0.6 Ln (n)

Of similar educational importance is the paper (Feldmann, Kopp, Pak, 2016) 
that provides a design concept for composite dowels approved in Germany. It 
gives static and fatigue load formulas, construction details, and precast fabrication 
guidelines, supplemented by relevant background information.

	
4.5.1.  Concluding comment

As with stud connectors, the problem of the load-bearing capacity of dowel 
connectors has been fully recognised thanks to basic and specialized laboratory 
tests carried out. At the same time, each study and design has been supported 
by numerical analyses of various elements of the components under study and 
the structure as a whole. There is an opinion among researchers of this problem 
that no other engineering problem has been studied in such detail. The research 
was initiated in 2000s and has been continued in Germany, Poland, Austria, and 
Romania, as well as in other countries. A number of bridges have been built and 
have passed acceptance trials without comment. Of course, one still needs to wait 
about 20 years to say with certainty that shear transfer with dowel connectors is 

9 The images in Fig. 4.12 are presented courtesy of Wojciech Lorenc.
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effective and failure-free without any doubt. In any case, the heuristic concept has 
been proven in laboratory tests and through the operation of new bridges. The 
relevant European standards will soon be developed.

It is highly likely that the dowel connector will be further optimised, but it is 
already possible to build composite bridges with dowel connectors today.
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5.	Methods and phases of composite bridge construction

Composite bridges of steel and concrete can be built in many ways. For the 
purposes of the discussion, two of these methods have been selected:
•	 Method 1: a method using a full temporary support on scaffolding of the 

structure under construction over the entire construction period. Once the 
scaffolding is removed, the composite bridge carries permanent and temporary 
material and traffic loads – symbolically denoted as LM1,

•	 Method 2: a two-phase method: 
–– PH 10 1: in which the steel beams are set on an additional temporary single 

support, a bridge pillar, which carries the dead weight of the steel structure, 
the concrete slab formwork and the weight of the reinforcement along with 
the weight of the poured wet concrete mix,

–– PH 2: once concrete has hardened and set, the temporary support is re-
moved, the composite girder is unloaded by removal of the slab framework 
and loaded with the bridge utility equipment and, finally, with LM1 vehicle 
loads.

Let us apply the following simplifying suppositions and notation:
•	 materials are linearly elastic,
•	 instead of stresses, strain distributions shall be drawn because in bridge 

engineering, even if the material has non-linear properties, the strain diagrams 
are invariant,

•	 a single composite girder shall be discussed instead of a composite bearing 
deck,

•	 the rheological effects (creep and shrinkage) will be omitted,
•	 the volumetric weight of the composite bridge elements is to be understood as 

follows
–– weight of concrete 	 γc = 24 kN/m3,
–– weight of RC		  γRC = γc + 1 kN/m3 + 2 kN/m3 = 27 kN/m3 

where the weight of the reinforcement is 1 kN/m3 and the weight of basalt 
gravel is 2 kN/m3,

–– weight of fresh concrete with reinforcement  γyRC = γRC + 1 kN/m3 = 28 kN/m3,
where 1 kN /m3 is the weight of the batch water,

–– weight of structural steel 	  	 γs = 78.5 kN/m3,
–– weight of bridge equipment γeq, where it contains hydro-isolation, asphalt 

layers, curbs, barriers, and balustrades, checking gates, streetlamps, etc.,
–– weight of a slab formwork (transient loading) – γformwork. 

10 PH is the abbreviation for phase
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When analysing a composite girder, it is possible to operate using a linear load 
density, i.e. a linear load(s) which, e.g., enables obtaining the linear load for a steel 
beam gs = γs As and for RC slab gRC = γRCAc, etc.

	 Now, let us define the group of loads:
PH 1: 

–– dead loads of the constructional elements of a carrying deck: gs + gγRC, 
–– slab formwork (transient load) gformwork.

PH 2:
–– unloading of formwork gformwork ,
–– unloading of batch water gHOH,

	 loadings:
–– non constructional dead weights geq,
–– road traffic gLM1.				  

5.1.	 Carrying deck deflection(s)

Actually, the most significant element of SLS is the final deflection the elements 
of which need to be known and understood. In Fig. 5.1 (a slightly modified drawing 
sourced from EN 1990) the total deflection utot is explained.

Fig. 5.1. Diagram of bridge carrying deck deflection and its elements

Note that the grade line on the bridge should have a minimum longitudinal 
slope of 0.5%. The longitudinal slope line is directed towards the lower of the 
abutments (to the lower support). In Fig. 5.1, this detail is omitted. 

It is crucial that the aesthetics of a side view of the bridge is not disrupted by 
a sagging bottom line of the support deck. To avoid such an unfavourable image, 
a preliminary executive uplift is applied – uuplift. The uplift line is the one from 
which the deflection components are identified as follows
−	 u1stands for the deflection due to the loading effect of permanent structural 

weights – gs + gγRC,
−	 u2 is the deflection due to the permanent weights of non-structural elements 

– geq,
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−	 u3 includes bending effects of creep and shrinkage – u3 = urheo = ucreep + ush,
−	 uLM1 is the effect of moving loads on the bridge, and LM1/LM71 are currently 

the most significant traffic models in Europe.
It is worth mentioning that uLM1 is a reversible deflection, while the other listed 

elements are not. It follows that, at the very least, irreversible deflections should be 
compensated for by an inverse pre-deflection (uplift). 

3

1

n
(min)
uplift n

n

u u
=

=

= ∑
	
					     (5.1). 

However, in many sources – and bearing in mind the aforementioned aesthetic 
considerations – other reasonable pre-deflection values are used. One of these is 
the following formula

10 5(min)
uplift uplift LMu u . u= + 				    (5.2),

as shown in Fig. 5.1.

5.2.	 Composite bridge construction methods

Assumptions and designations are discussed in the introduction. The 
considerations are qualitative and do not concern structural design.

The structure under consideration is a simple single-span composite bridge (a 
steel beam bonded to a RC slab), Fig. 5.2.

a) 

b) 

Fig. 5.2. Composite steel-concrete bridge a) side view b) cross-section
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5.2.1.  Method 1

The bridge carrying deck is supported on a set of pillars or, alternatively, 
continuously on temporary scaffolding, Fig. 5.3. 

 
Fig. 5.3. Continuous scaffolding

As mentioned earlier, scaffolding can be removed when the load-bearing 
platform is ready to carry traffic loads. Therefore, in this case, it can be said that 
one deals with only one phase of the forming of the structure. Still, this will not be 
a great change if, somewhat artificially, successive phases of the bridge formation 
are introduced. 

PH 1 
•	 The scaffold takes the weight of – a steel beam gs, formwork gformwork, and 

fresh reinforced concrete of a slab gγRC. 
Once the concrete has set, it is permissible to start the second phase.

PH 2
Now, on the scaffold lies a composite steel-concrete carrying structure. The 

following steps are admissible:
•	 dismantling of the scaffold – unloading of gformwork,
•	 the volume of concrete due to evaporation has a weight gRC; the lack of batch 

water gHOHis taken into account,
The composite steel/concrete currying structure, the slab/girder, now lies on 

the scaffold. Therefore, the following operations are permitted:
•	 dismantling of the scaffold – removal of the load gformwork,
•	 change in the weight of the reinforced concrete slab due to evaporation of the 

batch water, the current weight is gRC,
•	 putting non-structural elements – geq on the carrying deck,
•	 finally, allowing vehicle traffic on the bridge, i.e. loading with gLM1.

To complete the erecting process, a sequence of drawings is presented in Fig. 5.4.
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Fig. 5.4. Strains distribution in the two phases and for the traffic load

Summarising Method 1, again, there are some options to mount a continuous 
scaffold and as it is shown in Fig. 5.4 Phase 1 can be omitted.

5.2.2.  Method 2

In this method, PH 1 brings about significant changes in the redistribution of 
strains and consequently leads to a reduction in normal stresses from permanent 
loads. Designers proceed in different ways, but in this case the design should take 
into account the initial executive uplift in the steel beam.

PH 1
In PH 1, deformations, strains and, of course, stresses only occur in the steel 

beam. Deformation is caused by structural dead weights gs and gγRC, formwork 
gformwork supported or suspended on the steel beams resting on three supports.

A temporary single support corresponding to an additional bridge pillar is 
used, Fig. 5.5.a. The single temporary column takes interactions resulting in the 
vertical reaction R. There is a change in the static scheme from a simply supported 
beam to a continuous one with two shorter spans. The distribution of bending 
moments in a two-span continuous beam leads to a hogging bending moment 
zone, Fig. 5.5.b, which induces tensile stresses in the upper part of the steel beam.

a)  

b) 
Fig. 5.5. Simple steel beam with an additional temporary column a) static scheme of the 

beam in question b) bending moment distribution
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PH 2
Phase 2 occurs after the concrete has set and hardened. This is the time point 

at which the temporary support can be removed. In Phase 2, one already has a 
composite girder subjected to unloading and loading, respectively.

Unloading: 
•	 concentrated force R with a vector in line with the gravitational return, which is 

the static effect of the removal of the temporary support, Fig. 5.6,
•	 dismantling of the concrete slab formwork, unloading of gformwork,
•	 taking into account the evaporation of unbound water from the batch, 

unloading of gHOH.

 
Fig. 5.6. Composite beam, static effect of the temporary column removal

Loading:
•	 the weights of carrying deck non-structural elements – geq,
•	 finally, vehicle traffic on the bridge gLM1.

When restricting the consideration to the vertical section at the centre of the 
bridge span, the strains distribution is as shown in Fig. 36.

Fig. 5.7. Strains distribution in the case of Method 2 

Method 2 can be used in different variants, differing in the number of temporary 
supports, such as two or more support columns, Fig. 5.8.
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Fig. 5.8. Static diagram of steel beam on abutment bearings and two temporary columns 

in the span

***
	
The two methods detail discussed are only selected examples among many 

applied. A comparison between Method 1 and Method 2 shows the potential 
benefits of using more or less advanced technologies. In practice, each designer or 
contractor prefers their own tested methods for the construction of load-bearing 
structures. There are many criteria for evaluating the optimisation used, but the 
construction period appears to be the key indicator for the technology selection.
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6.		Zone above the pillar of the continuous carrying deck  
of a steel-concrete composite bridge

In addition to bridges with simply supported spans, composite bridges with 
continuous multi-span structures supported by articulation are commonly built. 

In the case of continuous structures, the tensile moments (negative moments 
or hogging moments) occur in the zones above the pillars in the upper fibres of 
composite girders, i.e. in the concrete slab. The concrete deck slab is in tension, 
while the bottom flange and the lower web section of the steel beam are in 
compression.

If so, then it is the case of a complete inversion of the composite girder concept, 
which is not beneficial.

As a solution to the problem, the height of the steel beam in the zone above the 
pillar can be increased, which will help reduce the values of negative moments and 
enable the use of an appropriate number of reinforcing bars in the concrete slab 
according to the rules applied to reinforced concrete.

Another often-used method consists in keeping the height of the steel beam 
constant while increasing the number of reinforcing bars in the concrete slab. The 
criterion of the permissible limit crack opening in a concrete slab must then be 
met. 

Moreover, controlled imposed vertical displacements on additional temporary 
bearings above the pillars can be used.

It should be noted that the imposed vertical displacements in the elastic range 
reduce the bending moments over the pillar, while increasing the bending moments 
in the span. In the case of the bridge shown below, the controlled imposed vertical 
displacements of the girders over the pillars (before concreting the deck slab) are 
about 50 cm. 

In the first decade of the 21st century, forced uplift was introduced through the 
use of so-called sand bearings.

Selected examples of continuous composite bridges are given below, Fig. 41-49.
In 2008, the bridge in the village of Neple over the River Bug was rebuilt by 

reconstructing the shape of the previous reinforced concrete beam structure 
with main girders of variable height, using a steel-concrete composite deck in the 
design. The abutments were rebuilt, and the pillars were renewed Fig. 6.1.a-b. 
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a) 

b) 
Fig. 6.1. Continuous composite bridge in Neple over the Bug River a) general side-view 

from the river inflow b) design drawing – cross-section

The load capacity of the bridge corresponds to the load class A according to 
the Polish standard (PN-85/S-10030), which allows the movement of vehicles with 
a total weight of 500 kN. The total length of the superstructure is L = 86 m with 
the spans Lt = 24.0 + 31.0 + 24.0 m (0.77 : 1.0 : 0.77). Four steel girders of variable 
structural heights ranging from 80 cm in the middle span sections to 160 cm 
above the pillars were used. On the outer faces of the outermost girders, smooth 
web surfaces were retained for aesthetic reasons, using only full-height ribs in the 
support axes above the pillars and abutments. The internal bracing was made of 
HEB beams with single bracing in the spans and double bracing in the variable 
height section.

The aesthetics of bridges are always important, especially with regard to 
bridges that are distinctive architectural elements located simultaneously in the 
riverside and lowland landscape. Thoughtful design situations result in a calm and 
harmonious bridge image, Fig. 6.1.a and Fig. 6.2.a. In contrast, the bridge in Fig. 
6.2.b, while satisfying the aesthetic principles regarding bridges, e.g. (Wasiutyński, 
1971), particularly the rhythmicity of the elements, may trigger a slight uncertainty 
about the visual impact of the series of ribs used to stiffen the webs.
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a)  b) 

c)  d) 
Fig. 6.2. Composite bridges with continuous steel beams a) Dorohucza bridge (2006) b) 

Osuchy bridge (2008) c) Wirkowice bridge load test (2019) d) Wirkowice – com-
posite steel grid with RC slab

Let us return to the problem at hand. How to make a continuous steel beam 
using two steel beams? The answer is obvious – through connecting their adjacent 
ends by a butt weld or by overlaps, which can be welded with a fillet weld or riveted. 
However, the same question regarding a composite beam is problematic.

Steel is a homogeneous material with uniform tensile and compressive limits, 
and, consequently, the tensile and compressive stiffness. More generally speaking, 
the flexural stiffness is also the same, if one ignores for a moment the possibility of the 
buckling of a compression member. Reinforced concrete is a different material as it 
is a composite of two components: steel bars that carry tensile stresses and concrete 
that forms the matrix for this composite. In the case of a reinforced concrete beam, 
in terms of the compression zone, the matrix enlarged by the transferred steel area 
carries the compression. Unfortunately, the slab in the composite beam is a thin 
element (~30 cm) in relation to the height of the composite beam. Therefore, in 
the zone above the pillar, in the hogging moment zone, the slab is fully in tension. 
The tensile stiffness of a reinforced concrete slab is significantly lower than that 
of a compressed slab. In the composite beam, its stiffness above the pillar is also 
lower than that of the composite beam in the middle of span. This is a feature 
that is always present during a test loading of continuous composite bridges. For 
this reason, numerical modelling of the continuous composite beam, which is an 
obligatory part of the load test design, requires the use of ordinary concrete in 
the sagging moment zone and a different concrete model in the hogging moment 
zone. Numerical modelling of tensile reinforced concrete is a complex problem; 
suffice it to say that the weakening of the concrete matrix due to cracking must be 
taken into account.
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An alternative way of achieving the full continuity of simply supported spans 
is to construct a massive reinforced concrete junction of the composite girders 
above the pillar (concrete cross-beam). This is a highly efficient solution that is 
commonly used to ensure the continuity of prestressed girder technology Fig. 6.3.a. 
Furthermore, massive concrete cross-beams are always used in the construction of 
bridge structures using VFT girders, Fig. 6.3.b, as well as when the full continuity 
of rolled beam spans is required. 

a)  

b) 
Fig. 6.3. Examples of girder continuity with a rigid monolithic cross-beam a) continuity of 

T-type prestressed beams, S12 ring road of Lublin (2021) b) construction of an 
integrated bridge with VFT-type girders, Piaski near Lublin (2009)

6.1.	 Espacenet

Full compression of a composite girder is not always sought. Intermediate 
solutions are also useful, as long as there is continuity of the pavement on a bridge 
and, more importantly, properly functioning waterproofing.

An incomplete continuity or service continuity is understood to be a type of 
expansion joint filling that only covers the height of the concrete slab or, alternatively, 
a mechanism that only partially transmits bending in the zone above the pillar.

Several contemporary solutions for the incomplete continuity of multi-span 
composite bridges are presented below.
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The Espacenet web browser, developed by the European Patent Office together 
with the member countries of the European Patent Organisation, has been used 
to view patent documents. The browser provides access to more than 90 million 
published patent applications. After typing in the subject matter contained in the 
title, 537 results appeared in various versions, which always have several links to 
similar patents. A few subjectively selected patents corresponding to the topic 
analysed are presented below.

A patent document shall be drafted according to the following model: patent 
applicant, inventor, patent classification codes, priorities, patent application, 
designation and date of publication, title, abstract, drawings. In the following, 
a simplified but sufficient model will be used: patent designation, date of 
publication, summary description of the patent and some drawings. The way 
patents are described varies. Some are very detailed and indicate the application of 
the patent to the bridge structures under construction. There are also descriptions 
that are much more modest, where a detailed study of the drawings is necessary. 
Nevertheless, drawing is an excellent language for engineers.

The language of patents is very condensed to the extent that some details are 
only clear when studied with the use of relevant drawings. Except for a small 
group of specialists, patents are not studied on a daily basis. It is, therefore, an 
opportunity to become even vaguely familiar with the language and abbreviations 
used in patenting.

CN211772737U 2020-10-27 Assembly type composite beam bridge
The patent concerns a prefabricated composite bridge with an original static 

scheme for the assembly of a continuous hinged beam, which is converted into a 
single continuous structure.

Prefabricated beam elements used are edge 4, the beam above the column 3 and 
intermediate beam 5. The steel beam has a corrugated plate web with a small linear 
variation in the height of the beam above the column support – corresponding 
to the variation in the negative moment. In the tension zone of the concrete slab 
above the pillars, prestressing cables are used, and the bottom chord has a U-shape 
(more precisely, a stacked channel) filled with concrete bonded to the bottom 
chord, Fig. 6.4. c.
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a) 

b) 

c)  	 d)  

e) 
Fig. 6.4. Prefabricated composite bridge, assembly states a) locking diagram of 20 beam 

elements b) diagram of bending moments from permanent loads in the service 
phase c) cross-section of the prefabricated beam above the pillar; visible prestres-
sing in the concrete of the upper flange and the extended lower flange of the 
steel beam d) cross-section of the prefabricated end (4) and the intermediate span 
beam (5) e) locking of the beam elements in the junction, wet-formed concrete 
slab continuity

CN210458905U 2020-05-05 Variable-height steel-concrete composite beam 
bridge with support

The utility model relates to a steel-concrete composite girder of variable height above 
the support. The solution consists in creating cantilevers over the pillar. The outreach 
of an individual cantilever along the bridge axis amounts to approximately 0.15 to 0.25 
of the length of the adjacent bridge span. The traditional variable-height steel beam in 
the zone above the pillar has been replaced with a solution consisting in combining a 
fixed-height steel beam located at the top with a variable-height prestressed concrete 
cantilever located at the bottom. The figures show the stages of the pushing (the pushing 
process) of a steel beam onto the prepared pillars with prestressed supports, Fig. 6.5. In 
Fig. 6.5, the following numbered designations are used: 1 – bridge pillar, 2 – prestressed 
concrete cantilever, 3 – steel beam, 4 – grooves/troughs where the cantilever and the 
steel beam are joined, 5 – groups of pin connectors, 6 – assembly deck, 7 – guide beam 
(launching nose), 8 – jacking equipment.
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a) 

b)  c) 

d)
Fig. 6.5. Continuous steel-concrete composite bridge of variable beam height above the 

cantilever support a) technology used in the design of the steel beam slip-on 
progress pattern b) slip-on beam to cantilever support c) steel beam after its 
integration with the cantilever support d) bridge cross-section

During slip-on, the lifting devices of the slip-on beam with groups of pin 
connectors welded into its lower flange/surface, which slide over the prepared 
grooves on the upper surface of the support, are operated, Fig. 45.a. Once the 
sliding is complete, the grooves are filled with a concrete mix and the lifting devices 
are removed. A steel-concrete composite beam of variable height in the pillar zone 
is formed, Fig. 45.c. During the assembly, the pillar is connected monolithically to 
the prestressed support in the longitudinal direction. 

CN212103670U 2020-12-08 Bridge deck semi-rigid continuous structure applied 
to simply supported reinforced concrete composite beam bridge
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The patent in question regards the introduction of a tensile element stretched 
over the pillar and the sections of the girder ends joined to the concrete, Fig. 6.6.b. 
The tensile element placed in a previously prepared trough consists of a slab of 
ultra-high-performance concrete (UHPC) (3) and a bituminous layer (4).

a)  

 

Proszę zrobić raczej mniejsze niż wieksze 

 

b)  

 

Proszę zrobić raczej mniejsze niż wieksze Fig. 6.6. Incomplete continuity of simply supported steel beams on a pillar with a so-called 
“soul” a) bridge cross-section b) partial/ incomplete continuity of spans

The continuity applies to structures the pillars of which have a reduced width at 
the height of the simply supported beams, Fig. 6.6.b, the aforementioned section of 
the pillar is sometimes referred to as ‘the soul’ and runs between the ends of simply 
supported beams.

CN211200026U 2020-08-07 Simply supported steel-concrete composite beam 
bridge deck continuous structure

The utility model concerns the ensuring of the partial continuity of adjacent 
composite structures over the pillar. The continuity of the wet-applied concrete 
slab is ensured by pin connectors, Fig. 6.7.
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Fig. 6.7. Continuity of adjacent beams simply supported in the zone over the pillar

The continuity zone (L) is assumed to be of a length of 100 mm < L < 180 
mm. Negative moments are transmitted partly within a range corresponding to the 
flexural stiffness of the continuity plate.

Relevant numerical designations: 8, 11 – longitudinal steel bar reinforcement, 
transverse reinforcement. Indication 10 is not described.

CN211772849U 2020-10-27 Steel-concrete composite beam bridge deck 
continuous structure adopting annular joints

The patent addresses the partial continuity of adjacent simply supported 
structures through the introduction of a continuous section of the concrete slab 
over the expansion joint using a solution that is a feature of the patent proposal. 
What is characteristic about the patent is that concrete is reinforced with loops/
rings of steel bars (2), Fig. 6.8.a, and longitudinal bars of reinforcement (1), released 
from the ends of the concrete slabs above the intermediate support. The joint plate 
(5) is made of UHPC high performance concrete. In plan view, the steel continuity 
plate (3) has trapezoidal cut-outs and is attached to the upper flanges of the steel 
beam, Fig. 6.8.b.

a) 
 

Raczej mniejsze  

 	 b) 
 

Raczej mniejsze  

Fig. 6.8. Channelling of adjacent simply supported steel-concrete composite bearing 
structures: a) continuity elements in the longitudinal section; b) shape of the steel continuity 
plate in plan view
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CN104727218A 2015-06-24 Anti-cracking structure for hogging moment region 
of steel beam-concrete slab combined continuous beam bridge

The patent concerns a continuous composite beam. It is distinctive in that 
the purpose of the patent solution is to limit cracks in the concrete slab from the 
action of negative moments. A telescopic (expansion) device is used above the 
intermediate support is used. The device has a dual role: it implements a visco-
elastic continuity mechanism and deforms accordingly, reducing cracks in the 
concrete slab, Fig. 6.9.

a) 

b)  c) 
Fig. 6.9. A composite bridge in which a telescopic expansion joint device is used a) negative 

moment influence zone (1), expansion joint device (2), b) box steel girder (4, 
5) with a bottom plate (6), composite (9) with a concrete slab (8) reinforced 
transversely and longitudinally 7 c) longitudinal cross-section of a concrete slab 
and a bridge with a schematic layout of longitudinal reinforcement bars and an 
expansion joint device (3)

CN106480818A 2017-03-08 Composite connecting plate structure for simply 
supported beam bridge and method for constructing composite connecting plate 
structure 

The invention concerns a simply supported composite beam bridge with 
the utilitarian continuity achieved through an appropriate arrangement of the 
continuity reinforcement. There is no mention of negative moments. The patent 
solution is characterised by the reinforcement of the continuity zone with steel bar 
nets and the reinforcement mesh condensed in the zone adjacent to the support, 
Fig. 6.10. It is also significant that the layer (13) marked in the figure is a slip layer.
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a)        b)
Fig. 6.10. Bridge continuity a) longitudinal cross-section b) continuity reinforcement mesh 

in top view

The following designations are used in the figure: 1 – section of continuity 
not associated with the steel beam 3, 11 – asphalt concrete layer, 12 – reinforced 
concrete layer, 13 – slip layer, 2 – composite zone of continuity, 21 – asphalt 
concrete, 22 – reinforced concrete, 4 – deck slab, 5 – transverse joint, 6-7 – rebar.

CN112502017A 2021-03-16 Durable web butt joint type prefabricated combined 
beam bridge and construction method

The essence of the patent is the use of prefabricated composite girders with 
a reinforced concrete flange, which, at the same time, constitutes the deck 
formwork that actively cooperates in the transfer of permanent and live loads, 
Fig. 6.11. Prefabricated girders are placed side by side on pre-prepared supports 
and joined together for assembly. The deck slab and support cross-beams are then 
wet-fabricated on the top of these. This creates a monolithic span. In the patent 
application, the precast reinforced concrete shelf is called the lower deck and the 
part of the deck slab made in situ is called the upper deck.

a) 

 

Raczej mniejsze  

 

b) 

 

Raczej mniejsze  

     c) 
 

Raczej mniejsze  

Fig. 6.11. Prefabricated steel girder bridge with reinforced concrete flange a) cross-section 
of a composite bridge structure b) prefabricated composite girder c) longitudinal 
cross-section – connector strip with openings for passing transverse bars
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Significant numerical designations: 2- steel beam, 3 – transverse reinforcement 
(nails) anchor reinforcement/pinch, 4 – lower deck, 6 -upper deck, 7 – dowel joint/
strip, 8 – lock.

CN110847007A 2020-02-28 Profile steel-concrete composite beam hogging 
moment area structure based on high-performance material

The patent document describes a technology for joining two simply supported 
composite beams to produce a continuous composite beam over intermediate 
supports. The technology is characterised by the connection of the steel beams 
with a composite steel casing/filled with HPC (High Performance Concrete). The 
composite concrete slab over the support is made in situ with HPC (designation 
3 in Fig. 6.12). High-quality HPC concrete is placed along the length a of the 
negative moment zone.

a)     b)

c)	
Fig. 6.12. Steel-concrete composite bridge a) longitudinal cross-section b) top view c) 

cross-section

CN210621439U 2020-05-26 Composite beam unit and composite beam
The utility model describes a composite beam consisting of two parts/units. 

The first part is a steel beam, and the other part is a composite beam encased in 
UHPC concrete (filler beam variant). The patented composite beam is characterised 
by the fact that, in the vertical plane, the steel beam is located at the bottom and 
the composite part is located on the top, with the top flange of the steel beam 
constituting the bottom flange of the composite part. A feature of the solution is 
that the composite beams can be made continuous by using a connecting lock made 
of steel flat bars, Fig. 6.13.b. The patent in question relates to a technology that has 
several options, including ones concerning a simple composite beam. There is also a 
variation of the continuity. Only the main variant is shown in Fig. 6.13.
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a)  	b) 
Fig. 6.13. Steel beam with a composite beam encased in UHPC concrete (filler beam) a) 

cross-section b) axonometric drawing of the lock

Among others, the following numerical designations appear in the drawings: 1 – 
steel main beam, 2 – UHPC concrete beam, 4 – slab/top shelf of the steel beam set.

The patent also appears with the designation CN106480818B, which is a 
simplified version.

CN112211089A 2021-01-12 Structure for hogging moment area of steel-concrete 
composite continuous beam bridge

The patent regards a full-continuity joint for the simply supported spans of a 
steel-concrete composite bridge. The patent drawings show a continuity joint which 
guarantees the transfer of negative bending moments occurring in the continuous 
composite girder. The joint is a steel-concrete structure with multiple composite 
connectors binding the steel beam to the applied concrete block and reinforcement 
released from the concrete slab. The composite beam slab of reduced height above 
the joint is complemented with a layer of reinforced concrete Fig. 6.14.

a)     b-c) 
Fig. 6.14. Full composite girder continuity in the zone above the pillar a) components of 

the bracing b) top view of the lowered concrete slab with abutments c) image after 
bracing
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A total of nine drawings are included in the patent description, with only three 
of them presented here The drawings are denoted by the following numerals: 
1 – steel beam, including: 101 – bottom flange of steel beam, 102 – web, 103 – 
top flange, 1001 – section of an extension of the bottom flange, 1002 area of an 
extension of the web, 1003 extension of the top flange; 2 – concrete slab of the 
composite beam, 3 – concrete slab of reduced thickness and of the continuity of 
the composite beam slab over the pillar, where the rectangular slab (301) is made 
of UHPC with trapezoidal nodes; 4 – concrete block (steel-concrete composite) 
through connectors, 401 – expanded continuity element (block); 5 – steel beam 
termination element (baffle); 6 – headed pin connectors; 8 – steel bars released 
from the concrete slab of the composite girder; 9 – steel lap joint bars; 11 – interface 
connectors in the concrete slab of the deck over the pillar.

The location of the fixed bearing and possibly the temporary bearings is not 
indicated in the drawings or the patent description.

CN106930181A 2017-07-07 Negative moment zone structure for reinforced 
concrete combined bridge simply supported first and then constructed continuously

In the negative bending moment zone, reinforced concrete transverse beams 
and support cross-beams are used. Steel beams are connected to the concrete 
transverse beams via bar connectors with heads (shear connectors), Fig. 6.15.b-
c. The patent applies to a bridge less than L=30 m in span. During the initial 
construction phase, the steel beams are freely supported on the assembly supports, 
and then a monolithic junction is made in the zone above the target pillar to ensure 
full continuity of the composite structure.

The patent description emphasises that the solution is very simple to implement, 
socially useful and economical. The drawings in the patent document are not of high 
quality. For the purposes of the article, the drawings have been specially adapted.

Selected numerical designations in Fig. 6.15: 1 – steel beam, 2 – concrete bridge 
deck, 3 – steel beam end plate, 4 – longitudinal steel plate (extension of steel beam 
web), 5 – headed pin connectors, 6 – holes for passing concrete reinforcement, 7, 8 – 
longitudinal and transverse reinforcement; 9 – structural reinforcement; 10 – bearing.

From the drawings it can be read that the steel beams (1) are of the HEB type 
with prone connectors on the upper flange and on the transverse plates (3). No 
intermediate cross-beams are used. A composite of a concrete slab and a steel beam 
without offsets or haunches, convenient during construction, is used Fig. 6.15.a. The 
ends of the steel beams above the pillar are free, with openings prepared in the web 
of the beams (4) to allow the bars of the transverse reinforced concrete beam (6) to 
pass through. The width of the continuity reinforced concrete beam is determined 
by the transverse plates (3) welded to the webs of the steel beams. The height of 
the welded plates is greater than the height of the steel beams by an allowance on 
the underside, Fig. 6.15.b and 6.15d. Once the steel beams prepared in this way are 
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in place, a composite reinforced concrete continuity crossbar, unnumbered in the 
description, but marked with Chinese characters, is constructed at the ends of the 
steel beams with the use of stud connectors with heads. Probably the crossbar is 
concreted together with the deck slab.

a)  

b)

c)  d)
Fig. 6.15. Solid continuity of the composite girder a) cross-section in the span b) cross-

-section of the tensile beam c) top view of the continuity beam d) longitudinal 
section of the continuity beam

There are two layers of longitudinal reinforcement in the concrete deck slab, a 
top and a bottom one, spaced 10 cm apart. The diameter of the lower longitudinal 
reinforcement (compression) should not be less than 16 mm. The length of the 
upper longitudinal reinforcement located in the area of negative moments should 
be c ≥ 0.15 Lc, where Lc is the span of the area affected by these moments.
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 This is an interesting technology of continuity, while in the context of the negative 
moments contained in the title of the patent description, it only applies to negative 
moments from equipment weights and service loads, which is still a significant gain 
in terms of the mechanics of the composite girder. 

CN112252150A 2021-01-22 Combined beam bridge and construction method 
thereof

The patent description provides only a brief summary of the contents of the 
invention as the description is incomplete, while the drawings serve as a general 
presentation of the technology. The order of the drawings in the article follows 
from the sequence of the assembly of the composite bridge. The numbering in the 
drawings is not described, although the significance of the highlighted elements is 
obvious, Fig. 6.16.

a) 

 

Raczej mniejsze  

 

b) 

 

Raczej mniejsze  

   c)  

Raczej mniejsze  

 

d)  

Raczej mniejsze  

  e)  

Raczej mniejsze  

Fig. 6.16. Combined girder bridge a) detail showing the setting up of the prefabricated 
longitudinal and transverse steel beams with connectors b) top view c) side view 
before the concrete crossbar is made d) making of the concrete continuity cross-
bar e) making of the composite bridge
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In the summary of the invention, the name combined beam bridge is used – 
indeed, it is a method of construction that bypasses the joining of prefabricated 
steel members by welding. Instead of joining the longitudinal and transverse beams 
by welding, a beam/filler is used which encompasses the ends of the longitudinal 
beams with connectors within the bottom flange together with the entire transverse 
beam, Fig. 6.16.a. The probable idea behind the absence of connectors in the top 
flange of the girder and only the local presence of connectors on the top flanges 
of the transverse beams is to partially exclude the upper zone from tension, Fig. 
6.16.d. The final stage is the construction of the concrete slab of the entire deck, 
Fig. 20.e. What is not known, but certainly arouses curiosity, is the method of 
reinforcing the concrete slab in the zone above the pillar.	

***

This concludes the survey of selected patents. Despite a large number of patent 
documents in the field concerning the problem under consideration, it cannot be 
claimed that there exists a dominant technology. On the contrary, a great diversity 
of proposed solutions can be observed. Simple and complex solutions are used 
with some of them innovative as exemplified by patent CN210621439U.

6.2.	 Author’s proposal for the arrangement of the zone above the pillar

Again, let us recall the general principle of the composite girder concept: 
compression carries concrete and tension carries steel.

There are, of course, many types of composite girder and in each of them the 
principle operates to a different degree. However, the default is a simply supported 
girder. In the case of a continuous composite girder, there is a hogging moments 
zone where, mainly for technological reasons, an inversion takes place as a result 
of which the concrete slab is in tension and the lower part of the steel beam is 
in compression. Again, there are many ways to design a composite girder with a 
concrete slab in tension, as discussed above.

The concept of the formation of the steel plate in the tension zone of the concrete 
slab in such a way that the definition of a composite girder can also be extended to 
the zone of hogging moments will now be presented.

The version presented is the simplest in terms of technology, allowing only minor 
modifications to current technologies. A variant using headed stud connectors is 
considered. However, any shear transfer connectors at the steel-concrete interface 
can be used. Of particular interest may be the introduction of perfobond or dowel 
connectors.
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6.2.1.  The new concept

The invention concerns a structural solution for forming a steel-concrete 
composite girder in the zone above the pillar. 

The invention takes into account an addition to the typical solution of a 
composite girder in the span zone – an additional steel plate above the RC slab of 
the deck and an additional RC plate on the bottom flanges of the steel beams – in 
the zone above the pillar.

The solution can be used in the design and construction of new bridges and in 
reconstruction with the strengthening of existing bridges. The system is applicable 
to road bridges, railway bridges and footbridges.

In the discussed case, with a constant steel beam height, the increase in stiffness 
(SLS) is determined by the cross-sectional area of the additional steel plate. The 
invention additionally provides for a compressed RC slab integrated in the lower 
flanges of the steel beams. The RC slab contributes significantly to an increase in 
the stiffness of the composite girder at the pillar.

In the ULS range, the additional steel slab carries tensile stresses in the 
dominant range, while at the same time there is a small contribution from the 
confined concrete of the slab. The additional lower RC slab carries compression 
and reduces the potential buckling/torsion of the steel beams.

The proposed solution increases the dynamic stiffness of the bridge, especially 
in terms of excitations transverse to the bridge axis.

The additional concrete slab reduces noise compared to the usual solution. 
For this reason, the invention also proposes the use of such slabs at outermost 
supports. The concept/innovation is shown in the diagrams in Fig. 6.17-6.21. 

The shape of the additional upper steel plate, Fig. 6.19, which works in tension 
corresponds to the effective width to allow for shear lag.

In the drawings, the colour magenta indicates the new elements.

        Fig. 6.17.

        Fig. 6.18 

Fig. 6.17. Longitudinal section



107

        Fig. 6.17.

        Fig. 6.18 

Fig. 6.18. Top view

    

     Fig. 6.19   

       Fig. 6.20 

Fig. 6.19. Overhead view in C-C section

    

     Fig. 6.19   

       Fig. 6.20 

Fig. 6.20. Cross-section near the pillar 
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    Fig. 6.21 

 

 

 

 

Fig. 6.21. Cross-section – E-E over the pillar

The described new concept for the layout of the zone over the pillar under the 
title Continuous steel-concrete composite girder system over pillar has been patented 
and carries the number P.440531.
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7.		Bending stiffness of a partially integrated composite 
concrete and steel girder

At the end of the 19th century, composite girders were not used, but it was 
during this period that the behaviour of wrought-iron bars formed from flat bars 
connected by rivets or bolts was analysed. The objective was to determine the load 
carrying capacity of, for example, bridge girders in the case of the loosening of 
plate connectors. And this is what corresponds to the issue of partial integration 
(partial interaction). Rzhanitsyn‘s11 monograph cites dozens of works in this 
field, mostly in German. The archives are not analysed here – those interested 
are referred to the indicated sources. Instead, the following text will hint, in an 
abbreviated and suitably illustrative manner, at the progress in the development of 
the theory of composite girders, up to the point where the possibilities of cognition 
are determined by computer procedures.

The theory of composite beams with flexible elastic connectors could be found 
in Rzhanitsyn’s monograph (Rzhanitsyn, 1948), although many papers were 
published before, starting from the end of 19th century. The second Rzhanitsyn’s 
book (Rzhanitsyn, 1986), which gathers his earlier efforts in this field, contains 
a wide spectrum of basic structural problems, i.e. beams, plates, slip and up-lift 
in the interface, stability, vibrations, elastic foundation and numerous practical 
and important examples as well. However, Rzhanitsyn, in fact, did not look into a 
concrete-steel girder which is mainly used in bridge structures, but analysed sets 
of partially connected members. 

Looking through the history of composite beams with imperfect connections, 
the work (Newmark, Siess, Viest, 1951) is crucial. At first, the authors report the 
results of small- and full-scale tests of T concrete-steel beams with incomplete 
interaction and on this basis propose the method of interface shear force, strains, 
and flexure calculations. The example of a simple beam with concentrated load is 
added as an application of the introduced theory. Conclusions look at tests results 
and the theory in detail. Additionally, the analysed paper mentions that this theory 
was developed in 1943, which is important for source search in this field.

A further extension of the Newmark et al. concept can be found in (Seracino, 
Oehlers, Yeo MF, 2001), where the Magnifying Factor (MF) is introduced to obtain 
a partial-interaction curvature (see also: Seracino, Lee, C. Lim, Y. Lim, 2004). 
The operated curvature is equal to the product of MF and the full-interaction 
curvature value. The Partial-Interaction Focal Points (PIFP) are also introduced. 
They are the points where the graphs of strain distribution in no-interaction 

11 Rus.: Алексей Руфович Ржаницын – Alexei Rufovich Rzhanitsyn (1911–1987). Soviet  
scientist who dealt with the mechanics of structures.
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and full-interaction cases intersect, and they are used for the purpose of strain 
distribution calculations.

At the end of the presented paper, the approach formulated in (Karaś, 2008) 
is recalled. A translation of strain null lines is also undertaken there as a basis for 
curvature estimation and bending stiffness derivation.

The theories discussed here, in a mechanical sense, are simplified, and, in fact, 
concern one-dimensional problems. The most advanced studies that define the 
detailed initial-boundary problem of the elastic theory in the case of e.g. Stephen 
Timoshenko’s beam model or plate theory (Sapountzakis, (2004), (Berczynski, 
Wroblewski, 2005) must be supported by advanced numerical programming and 
are too computationally intensive to be adopted in ordinary design.

Slip and up-lift characterise the partial-interaction between the bounded 
members, but the magnitudes of those characteristics are rather small, i.e. ~2E-4 
m on a laboratory stand, (Johnson, 2004), 4.5E-4 m for a simple beam of a 10 m 
span. The curvature ratio of the partial-integration to full-integration of values 
690/610 ≈ 1.13 is given in the same paper. 

In (Shim, Lee, Chang, 2001), apart from slip and deflections, the inclinations 
of members’ sections are measured, which is shown in Fig. 15 – it can be observed 
that they are not parallel.

At present, the (EN 1994) by virtue of requirement 1.5.2.1 includes the slip 
influence and its magnitude into elementary assessments. 

7.1.	 Fundamentals of a composite girder with partial interaction

Let us assume that a composite beam of concrete-steel type, Fig. 7.1., is analysed 
and slip is taken into consideration with the exclusion of up-lift. The notation used 
here is sourced from (Newmark, Siess, Viest, 1951). Elastic behaviour falls within 
the range of the analysis. The following symbols and notation are used:

−	 cO , sO , iO  – centroids and axes crossing through the centroids of concrete, 
steel members and the fully integrated section, respectively,

−	 c c cE A EA= , s s sE A EA=  – tension-compression stiffness for concrete and 
steel elements,

−	 EA  – doubled harmonic mean of cEA  and sEA ,

−	 c c cE J EJ= , s s sE J EJ= , s i iE J EJ=  – bending stiffness for concrete, steel com-
ponents and the fully integrated cross-section, respectively,

−	 c sEJ EJ EJΣ = + , 2
iEJ EJ a EA= Σ + ,
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−	 ζc, ζs – positive measures of the null strain line shifts for concrete and steel 
elements,

−	 ε ε ε εc s c
s, , , – are, generally speaking, concrete and steel strains and concrete 

and steel interface strains, 

−	 γ = −u uc s  – the slip magnitude – slip, in short, is the difference between 
members’ displacements in the interface,

−	 ρc, ρs – radii of concrete and steel member centroid curvatures,

The remaining symbols are commonly in use. Fig. 7.1 is a modification of Fig. 
3.10. Two details are important – there is slippage at the interface, and the strain 
gradients in the members are not equal, as in (Seracino; Fig. 3.18). This situation 
differs from that discussed in (Newmark, Siess, Viest, 1951; Fig. 7), (Johnson, 
1975/2004; Fig. 2.17), where the strain gradients in the members are equal, and in 
the case of equality of gradients, Newmark’s assumption in the form (7.1) can be 
applied again. The mentioned approach will not be discussed here, although it is 
interesting.

Note that the load on the composite girder is the moment M-Na, which takes 
into account the effect of partial integration.

Os

Oi

Oc

hc

hs

ac

as

a
sζO

Oc

Os

sζ

cζ
cζO

sζO

cζO
cζ

cN

N

M

sM

ε
beff.= bc

M

sζ

dx

Fig. 7.1. Composite T-beam partial-integration

The (B-N) postulate is valid. It states that the plane sections in initial 
configuration remain plane in the deformed one, and their inclinations’ angles 
are the same for both slab and beam members. This is expressed by the following 
statement
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1 1
ρ ρc

c

c s

s

s

M
EJ

M
EJ

M Na
EJ

=








 = =









 =

−
Σ 			 

(7.1)

which can be read as an equality of member curvatures, or, in more detail – the 
curvatures of members’ fibres crossing their centroids. 

Here, the case of different linear gradients of the members is not considered. 
From statics, the second condition is given 

M = Mc + Ms  + Na					     (7.2)

However, (7.2) does not play any role because it entirely overlaps with (7.1).
The requirements for the normal force N are provided by the second order 

differential equation of constant coefficients, obtained as follows

•	 	γ
τ

=
k

 – where τ = =
dN
dx

N/  – linear distribution of interfacial shear force,  

k = const. – modulus of the connection,
•	 	the rate of slip change is proportional to the difference between the members’ 

strains in the interface d
dx

d
dx

u uc s c s
γ

γ ε ε= = −( ) = −/ .

Combining both, one arrives at

N N M// − = −λ2 ∆ ,					     (7.3)

where λ2 = =k EJ
EJ EA

consti

Σ
. ,

 

k a
const.

EJ
∆ = =

Σ
,
 
k const.=

Solving the equation applying the Laplace transform (7.3), one obtains

N x M x f d N f x N f x
x

( ) = −( ) ( ) + ( ) ( ) + ( ) ( )∫∆
0

0 0θ θ θ / /

	
(7.4)

Where
 
f x sh x( ) = 1

λ
λ 					     (7.4.1)

N(0), N/(0) are constants equal to the force N value and its first derivative N’ at  
x = 0, respectively.
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Alternatively, the expression (7.3) can be written down in the following way 

N N qIV − =λ2 // ∆  ,					     (7.5)

where q is the load distribution along the beam. In this option one arrives at
	   

N x q x g d N N x N g x N g x
x

( ) = −( ) ( ) + ( ) + ( ) + ( ) ( ) + ( ) ( )∫∆
0

0 0 0 0θ θ θ / // / /// ,
 

								        (7.6)

where 
	

g x sh x x( ) = −( )1
3λ

λ λ .					     (7.6.1)

The forms of the solutions (7.4) and (7.6) differ slightly from those derived 
in (Rzhanitsyn, 1986), but are straightforward as far as the boundary conditions 
of all the admissible composite beam types listed there in detail are concerned. 
Also, in (Rzhanitsyn, 1986), apart from the above derivation, the condition (7.3) 
is obtained by means of the Euler-Poisson equation as a minimum of the action of 
internal forces in the case of multi-member beam.

When the modulus of a connection changes along the beam length, the equation 
(7.3) changes its classification and becomes a functionally varying coefficient class. 
Such cases are analysed by N. A. Jasim (Jasim, 1997), (Jasim, 1999). Several basic 
tasks of the varying geometry of a composite beam cross-section are discussed in 
(Rzhanitsyn, 1986).

The deflection y of a composite beam can be found using the following relation 
(Newmark, Siess, Viest, 1951, p. 86)		

// M Nay
EJ

−
= −

Σ
.					     (7.7)

As can be seen from (7.7), the bending stiffness of a composite beam is, in fact, 
no taken into consideration. In the case of partial integration, it could be expected 
that bending stiffness should be present between ΣEJ and EJ1 magnitudes. (7.7) 
could be understood as an examination of a substitute beam of non-integrated 
members instead of partially integrated ones and bent by the reduced moment 
(M – Na) instead of M. (7.7). Taking into consideration (7.4) as well as (7.7) and 
after performing some elementary operations one arrives at

	
y y M

EJ
M
EJi

IV − = − +//
//

λ λ2 2

Σ
 ,				    (7.8)

which corresponds to the above discussion (see also: Oehlers, Bradford, 1999; p. 
48). To complete the problem, let us add the solution (7.8), which can take the 
following form
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y x M x
EJ

g
EJ

g d
EJ

M g x T
x

i
( ) = −( ) ( ) − ( )









 + ( ) ( ) +∫

0

2 1 1 0θ
λ

θ θ θ
Σ Σ

// / 00

0 0 0 0

( ) ( )  +

+ ( )+ ( ) + ( ) ( ) + ( ) ( )

g x

y y x y g x y g x/ // / /// .  
								        (7.9)

Finalizing the discussion, let us recall the results included in (Newmark, Siess, 
Viest, 1951; Tab. 3) from which the comparison between theoretical and measured 
values of strains and deflections can be read. They differ from each other only by 
2 to 7 percent. 

Another approach to the problem could be found in the article (Seracino, 
Oehlers, Yeo MF, 2001). The topic discussion expanded to include beams can be 
found in (Seracino, Chow T. Lee, Tze C. Lim, Jwo Y. Lim, 2004). Although the 
partial-interaction focal points in concrete and steel members are visible in the 
figures included in (Rzhanitsyn, 1986), their first application was proposed in 
(Seracino, Chow T. Lee, Tze C. Lim, Jwo Y. Lim, 2004; Fig. 7.2.) (Rep.). In (Karaś, 
2008), the theory of Newmark et al. is assumed and, as a result, the curvatures of 
the members as well as strain distribution inclinations are the same.

Fig. 7.2. Strain distributions, Rep. from (Seracino et al, 2004)

Seracino proved that if the bonds intersect at PIFP any strain distribution 
passes through the same points. The other innovation is MF (Magnifying Factor) 

defined as
 

//
pi.
//
fi.

y
MF

y
=

 
or in conformity with the art of the article 
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// //
pi. fi.y y MF=

 					   
	 (7.10),

where
 

//
fi.

i

My
EJ

=
 
and

 

//
pi.y

 
are obtained by integrating

 
y

M k a
EJpi.

///
/

=
− + γ

Σ  
(7.10.1) 

(which is a version of (7.4) and (7.7) requirements). At first glance, MF improves 
nothing, but the authors provide a simplified method of MF calculation which 
justifies this extension. A step sequence is proposed, where, by means of MF as 
well as PIFP, strain and stress distributions can be obtained.

As stated before, this approach does not enable finding the bending stiffness of 
a composite girder but expresses it as a differential equation.

7.2.	 The concept of the strain zero line shifting 

As mentioned at the beginning, the Newmark et al. theory belongs to simplified 
approaches. The strongest assumption concerns the equality of member curvatures. 
Actually, it means that the centroid lines of each member have the same curvature 
expressed by the simplified strength of materials formula y// ≈ ρ–1 = M/(EJ). The 
relevant estimation is discussed in Fig. 7.3 showing two infinitesimal purely bent 
elements: non-integrated (Fig. 7.3.a) and fully integrated in Fig. (7.3.b). 

a)  	 b) 

Fig. 7.3. Pure bending; a) no integration ρ ρc s= , b) full integration ρ ρc s=

In Fig. 7.3.a it can be seen that already from the beginning slip is permanently 
connected with this assumption ρc–1 = ρs–1  (1’). Fig. 7.3.b shows the extent of the 
introduced approximation (1’) by means of the radii of the curvature of the fibres 
in the axes of the elements. To compliment this, (1’) should be rewritten to the 
form ρc–1 = (ρs – a)–1 (1’’), or alternatively expressed by 
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ρ ρc s≈ ,						      (7.11)

but (11) still does not imply that the radii of centroid curvatures must be equal. 
The condition (1), which is used either for full- or partial integration concepts, is 
significantly weakened to the (11). Let us now make the next step in the analysis, 
and, instead of curvatures, let us account 

 ε εc s= ,						       (7.12)

for a full-integration case. Actually, (7.12) complies with the geometry shown in 
Fig. 3.b and takes into consideration pure bending curvatures combined with the 
tension-compression of the members. Moreover, it could be understood as an 
incompatibility condition, too. Concluding this clarifying sequence, one obtains 
a basic criterion generalising the cases of integration through additional options.

Adopting the above concept, let us proceed to the partial integration case shown 
in Fig. 1. It is noticeable that the centroids’ null strain axes of the members in the 
no-integration variant shift to the centroid axis of the transformed composite 
cross-section. Assuming it, for the partial integration the shifts of centroids’ null 
strain axes of the members could achieve the positions denoted by ζc and ζs in Fig. 
7.1. Furthermore, ζc and ζs could be understood as geometrical measures of near-
interface zone flexibility; (Sapountzakis, 2004), (Karaś, 2008). Obviously, in this case, 
i.e. of partial integration, slip occurs and is in the functional relation to ζc and ζs.

In the operational sense, one has two null strain conditions and the third one 
for the equilibrium state

	
ε ζ ε ζc

c

c

c
c c c

c

c

c
c

N
EA

M
EJ

y N
EA

M
EJ

= − − −( )→ = − − −( ) =0 0 ,   	 (7.13)

	
ε ζ ε ζs

s

s

s
s s s

s

s

s
s

N
EA

M
EJ

y N
EA

M
EJ

= − +( )→ = − =0 0 ,	      (7.14)

and 
	 M = Mc + Ms + aN,					           (7.2)

where yc, ys are ordinates of the local Cartesian coordinate systems originating on 
the shifted axes ζc and ζs. By virtue of (2), (13), (14), the unknowns can be obtained 
as follows

M N
EA

EJ
M N

EA
EJ

N M a
i i

c
c

c

c
s

s

s

s

c

c

s

s

= = = +
( )

+
( )















−

ζ ζ ζ ζ
, ,

2 2 1

,   (7.15-17)

where
  ( ) ( ) ( ). . .i EJ / EA= .					     (7.17.1)
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Comparing the obtained solution with Newmark et al.’s and Rzhanitsyn’s, 
a differential relation (7.3) is not needed at all. The flexibility change along the 
beam length is introduced by a variation of the geometrical measures ζc and ζs . In 
consequence, this variation implies beam stiffness changes.

The conditions (7.13), (7.14) may additionally result in different inclination 
angles of the sections – which are still flat – which is more general than the equality 
of their inclinations.

In relation to the Seracino-Oehlers approach, PIFP could be used as an 
approximation of the obtained section inclination angles of the transverse members.

 N is in functional relation to M, ζc, ζs and other geometrical characteristics 
of the member cross-sections, which could be constant or vary along the beam 
length. For bending, their variation ranges are limited by the inequalities

	 0 ≤ ζc ≤ ac  and  0 ≤ ζs ≤ as.				    (7.18)

Additionally, for each member the bounds mean:
−	 ζ(.) ≤ a(.) – the case of the zero-interaction stiffness of an adequate material 

zone,
−	 ζ(.) = 0 – variant of infinitive stiffness,
−	 for both ζc = 0 and ζs = 0 – no-interaction in the interface,
−	 for both ζc = ac and ζc = as – entire interaction in the interface.

Comparing the shifts ζc, ζs with the connection modulus k, used in the 
Newmark et al.’s theory, it is necessary to differentiate two components appropriate, 
respectively, for the flexibility of concrete and steel zones in the following way

1 1 1

c sk k k
= +

,						    
(7.19)

where k = ∞ denotes stiff connection and k = 0 concerns fulfilling the no-interaction 
requirements. The relation between kc, ks and ζc, ζs could have a linear form. Using 
a laboratory stand for the push-out purposes, the connection modulus values, 
kc, ks and ζc, ζs, can be obtained. The laboratory measuring position is shown in  
Fig. 7.4.

concrete slabs

stiff elements

st
ee

l  
  b

ea
m

Fig. 7.4. The laboratory stand for determining the flexibility of concrete and steel zones 
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Now, it is possible to focus on the bending stiffness of the titular composite 
beam. Let us use the Steiner theorem to obtain the second moment of area (bending 
stiffness) of a composite girder. In this case, it is necessary to relate the problem to 
the full-integrated centroid axis, Oi – Oi in Fig. 7.1. Two forms of bending stiffness 
for a partially integrated composite beam are admissible, i.e.:

	 EJ EJ EA a EA ai
I

c c c s s s
( ) = + +Σ ζ ζ ,			   (7.20)

and

	
EJ EJ EA EAi

II
c c s s

( ) = + ( ) + ( )Σ ζ ζ
2 2

.			   (7.21)

Both fulfil limit approaches achieving no-integration and full-integration 
bending stiffness, respectively. For the beam specified in Fig. 7.5, the differences 
between EJi(I) and EJi(II) are searched.
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Fig. 7.5. Cross-section [mm] b) the changes of bending stiffness with regard to (7.20) and 
(7.21)	

With the use of dimensionless parameters 

μc = ζc / ac and μs = ζs / as, where 0 ≤ μc = μs ≤ 1,	 (7.22-23)

the variation of bending stiffness expressions (7.20) and (7.21) is compared. 
For the cross-section shown in Fig. 7.5., the connection changes linearly 

between its bounds, which implies that bending stiffness varies from the fully 
integrated stiffness value EJi = 3,625 GNm2 at the beam ends to the non-integrated 
stiffness value of ΣEJ = 0,942 GNm2 in span midpoint. In Fig. 7.6., the variation of 
bending stiffness along the simple beam length is shown. This typical connection 
distribution implies that the presented bending stiffness changes should be taken 
into account in the case of serviceability states. The visible linear and non-linear 
character of EJi(I) and EJi(II) come from the forms of the expressions (7.20) and 
(7.21), respectively.
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As it seems, there is no special analytical reason to prefer any of the forms 
presented in (7.20) and (7.21) to the others. However, if one wants to be on the safe 
side, they should choose (7.21) as the best option.

***

Finally, it is possible to conclude as follows:
•	 A short but detailed survey of fundamentals in the field of the partial integration 

of a composite beam has been carried out. Following an examination, the 
scarcity of an adequate form of bending stiffness was noticed. 

•	 From the beginning, the basis for the investigation was constituted by the 
expansion of the fully integrated composite beam stiffness by softening effect. 
The introduced geometrical measures allowed to find the solution without the 
use of Newmark’s differential relation (7.7). These measures are simply related 
to a commonly used connection modulus. The problem of bending stiffness 
has not been definitively settled but, as it seems, was further advanced in 
comparison to the recalled approaches. The interface shearing forces have been 
not discussed here because their analyses overlap with the elementary strength 
of materials task. 

•	 The performed analyses concern elastic behaviour. Nevertheless, the strain 
approach allows expansion of the analysed tasks by a plastic field, too.

•	 Although the problem addressed is analytically interesting, full integration is, 
in fact, best for the structure.
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8.		J. Courbon’s method

Using Courbon’s method (Courbon, 1940), it is possible to separate the outer 
girder from the deck as well as loads acting on it. 

Briefly, the greatest achievement of this method is the possibility to limit a 
design to only one outer girder instead of an entire carrying deck. Comparing the 
outer girder loading to the loading of other internal girders, it can be concluded 
that relative overloading occurs in its case. 

Comparing Courbon’s method to FEM procedures commonly used nowadays, 
the method appears to be very crude. As such, it is a simplification, a simple 
approach, however, it gives reliable results, especially in the cases of carrying decks 
in a grid form. The method was extensively used from 1960s to 1990s. It is still in 
use in wooden or simple temporary bridge construction.

Moreover, it is an intelligent method allowing to understand the carrying deck 
response to bridge loads.

In the beginning, let us formulate the premises for further analysis:
•	 the main assumption is a very stiff crossbar is located in the deck cross-section 

(theoretically, even infinitely stiff),
•	 the carrying deck as well as its materials are elastic and Hooke’s law can be applied,
•	 the principle of stiffness applies, 
•	 the structure (the girder system) is symmetric,
•	 in calculation, superposition is allowed.

a)  b) 

c) 
Fig. 8.1. Carrying deck as a composite of steel and concrete, Lopiennik Village, Poland, 

Lopa River a) side view b) bottom view c) typical cross-section of a composite 
small bridge 
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Fig. 8.1.a-b show a simply supported carrying-deck produced using the 
composite steel-concrete technology. The average length of a Polish bridge 
amounts to 20-21 m. Therefore, this is the most significant group of bridges and 
for that reason such a small bridge is the subject of further considerations.

The arrangement of traffic on a bridge carrying deck can vary and depends 
mainly on the intended use of the bridge, i.e. as a highway bridge, city bridge 
or bridge located on local as well as country roads. Fig. 8.1.c shows a solution 
responding to the needs of urban and non-urban bridges. Nowadays, this solution 
is commonly in use. 

Corresponding to the requirements of Courbon’s method, a rigid crossbar is 
introduced.

Here, the term “antisymmetric” is used instead of “skewed”.
In Fig. 8.2.a, the arbitrary concentrated force F acts within the range of 

the positive part of the domain and is located by the abscissa value x1 = x. A 
comparison of the initial (marked by a dashed line) and the actual (continuous 
line) configurations allows to draw the vertical displacements of the girders, as 
well as the rotation of the cross-section. The bridge girder system conjugated 
with the stiff crossbars resists the action of the force producing a linear form of 
deformation – which results from Courbon’s assumption. This is very important in 
general because it shows that the most important girder in the girder system is the 
outer one (on the side of the force action) which, compared to the others, bends 
maximally. In the case of small bridges, a designer can design this girder and then 
assume the remaining girders as the same.

Also, the following statement can be written down – the outer girder is relatively 
overloaded when compared to the other girders.

a) 

b) 
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c) 

Fig. 8.2. Deformation and respective forces for the bridge deck cross-section with a stiff 
crossbar a) general case of deformation: u – displacement, φ – rotation b) de-
composition of the general deformation into symmetric (S) and antisymmetric 
(A) parts c) active and passive forces (reactions) in the cases of symmetric and 
antisymmetric deformations. 

In Fig. 8.2.b, the general deformation is divided into two parts. The symmetrical 
deformation corresponds to the parallel shift by the displacement value u0, which 
is now marked as u(s), and occurs for each girder. The other deformation type, 
antisymmetric, corresponds to the rotation of the carrying deck as a solid body in 
accordance with the couple Fx action. Also, the vertical shifts, um(A), correspond 
to the ‘difference’ between the actual and initial configurations here. Joining the 
symmetric and antisymmetric parts (which is symbolically marked with “+”) gives 
the general deformation.

At this stage, it is characteristic that the displacements and actions-forces occur 
at the same time. 

This stage must be changed to a case in which the set of equilibrium equation 
system can be used. Here – and probably only here – the original Hooke’s law can 
be useful. Let us recall once again this sentence 

Ut tensio, sic vis
which, in the analysed case, can be rewritten to the following form

u(s) ∼ η(s)     and     um(A) ∼ ηm(A),				    (8.1)

where η(.) stands for the girder reactions to the actions corresponding to the F 
force forms.

In Fig. 8.2.c, bearing in mind the introduced decomposition, only the active 
and passive forces describe the problem. By virtue of the principle of stiffness, the 
forces are applied to the structure in the initial configuration.

For the plane tasks, the basic form of the equilibrium set is as follows



123

Symmetry				    Antisymmetry

Σ

Σ

Σ

Σ

Σ

x F k

x

M

x

x

S
2

1

0

2

1

0 0

0 0:

:

:

,

:

:

=

=










=( )η

not applicable not  applicable

ΣM Fx b
m

Int k

m
A

m0
1

2

2:
.( / )

=












 =

( )∑ η

,	 (8.2-3)

where k is the number of girders, Int.(k/2) – integer value of k/2.

In the symmetric case, the solution is as follows

η S F
k

( ) = .						      (8.4)

In the other part concerning antisymmetry, there is only one condition, and 
the number of unknowns is [k/2]. Additional conditions [k/2]-1 are necessary. 
Fortunately, again, the main assumption of the method can be applied, now in the 
form of Thales’s theorem in the following form
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or in accordance to the girder system in Fig. 8.2.b is as follows
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is obtained.	 (8.6)

The reaction in the outer girder is given by the expression

η2 2

1

2

2
out

A out

m
m

Int k

F x b

b
.

.
.( / )( )

( )

=

=

( )∑
.				         (8.7)

By adding the symmetric and antisymmetric solutions, finally one arrives at
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Using the above formula, one can find the reaction in any girder of a bridge
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Until now, the deformation of the cross-section has been analysed and the 
forces introduced have been used to determine the reaction of the extreme beam 
to the applied load.

Now, let us consider the solution obtained in a mathematical context. Let the force 
	 F = 1							       (8.11.1)

and the structure characteristics be marked as constants, i.e.
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Furthermore, let the position of the girder be labelled now as ξ and then it can 
be written

	
η ξ ξξ( ) ( ) = +x a a x, 0 1 .			    		  (8.12)

This expression is linear to the x and ξ arguments, in other words, is bilinear 
and additionally commutative 

	
η ξ η ξξ ξ( ) ( )( ) = ( )x x, , .					     (8.13)

Hence, the formula can be read as an influence function of the cross-section 
material reaction at the point ξ caused by a unite force moving along the bridge 
deck cross-section according to x

	
Inf Line x a a x. ,η ξ ξξ( ) ( )



 = +0 1 , 			   (8.14)

	
Which can be called the influence line of the material reaction of the cross 

distribution of loads. The radical of this line can be calculated as follows

	
η ξξ( ) ( ) =x, 0 						      (8.15.1)

And this obviously results in

	
x

a
a0
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1

1
= −

ξ
.						      (8.15.2)

It can be seen that for ξ = 0 the radical is a0.
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Now, let us get back to the analysis of the outer girder reaction for a fixed value 
ξ = bout.. The graph of 

	
Inf Line a a x b

out
out.

.
.η( )

= +0 1 				    (8.16)

is shown in the Fig. 8.3.

Fig. 8.3. Influence line of a reaction in the outer girder 

The radical x0 divides the cross-section width into two branches. The longer 
branch

 ( 0 2x B /+
 
is the branch for which with each force acting on it in the 

reaction of the outer girder there is a value increase. This branch is called a branch 

of loading. The remaining sector of the length
 

)02B / x−
 
is called an unloading 

branch. If a force is set on this branch, this will relieve i.e. cause a reduction in the 
reaction value of the outer girder.

In Fig. 48, two forms of loads are shown, the concentrated force F[kN] and 
UDL q in [kN/m2]. Let us determine the share of the outer girder in the carrying 
of the F and q actions. There are two options, although they converge. For the first 
one, one can use the influence line graph as follows

	
η ηout

F
out FF Inf Line x kN. .. ( ) ,( ) ( )= 



 [ ] , 			   (8.17.1)

	
η ηout

q
q out RR Inf Line x kN m. .. ( ) , /( ) ( )= 



 [ ] ,		  (8.17.2)

where Rq is a resultant force in the form of a load linear density, which can be 
calculated as Rq = qbq, and is expressed in [kN/m].

The other option is the direct application of the expression

	
η out

F
F utF a a x b kN. . , [ ]( ) = +( )0 1 0 ,				   (8.17.2)
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η out

q
q R utR a a x b kN m. . , [ / ]( ) = +( )0 1 0 .			   (8.17.2)

Now, it is the right moment to return to the first sentence of this chapter. 
Having the outer girder reactions, one can change their orientation12 and treat 
them as forces loading the outer girder, visualised as cut out from the carrying 
deck. Briefly, the simple beam is loaded by the known forces, Fig. 8.4.

a)  

 

 

 

     b)  

 

 

 

Fig. 8.4. The cut-out outer girder with its loads a) max bending moment b) extreme she-
aring force

This is the beauty of simplifying methods. The basic internal forces of a beam 
can be obtained as follows
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And the max deflection amounts to
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where Lt is a theoretical bridge length, Es – Young’s modulus of steel, Ji – the 
moment of inertia of the integrated girder cross-section. EsJi – bending stiffness of 
the integrated girder. 

12 A vector is characterized by its attitude, orientation, and magnitude.
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8.1.	 Discussion of other symmetric and antisymmetric decompositions 

The three functions presented in Fig. 8.5, shall be compared. All three of them 
are anti-symmetrical with respect to the x2 axis:

(i)	 linear function – Courbon’s method,
(ii)	 sinus hyperbolics,

(iii)	 sin(ξ) when
 
−

≤ ≤
π

ξ
π

2 2
.

-10

-6

-2

2

6

10

-3 -1.5 0 1.5 3

sinh(x) linear sin(2x/Pi)

Fig. 8.5. Example of antisymmetrical functions

Let us derive a set of expressions considering the sinus hyperbolics function. 
The symmetric part a0 remains unchanged, hence, the couple equivalence equation 
is the aim of the analysis
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Here, an additional condition has the form of sequential proportions
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Finally, the following is obtained
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An analogous expression occurs when the sinus function is defined within the 

range of the sinus domain
 
−

≤ ≤
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ξ
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2 2
.

For the comparison, three variants are analysed, and the reference is Courbon’s 
method – the linear function. 

The following example demonstrates the differences. Dimensionless coordinates 
with the reference magnitude bout = b2 are introduced. The concentrated force  
F = 100 kN is placed at the abscissa’s point xF = bout. Hence,
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Thus, one has

− Ad. (i) – linear function
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− Ad. (ii) – sinus hyperbolic function
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− Ad. (iii) – sinus function
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Commenting on the obtained results, it can be stated that the differences are 
not negligible and amount to ~20%. The share of the outer girder in the carrying 
of the F force is 60%, 67.8% and 57.1%, respectively.

Despite the formal correctness using the sine and sine hyperbolic functions, the 
assumption regarding the existence of a rigid crossbar weakens.

To complete the above analyses, a simple computing example with the aid of the 
Midas procedure is carried out. The bridge cross-section in Fig. 45 is investigated 
with the following parameters – hi = 1.5 m, hs = 1.2 m, b1 = 2.4 m, b2 = bout = 
4.8 m, xF = 4.8 m, bef = 2.4 m, L = 22 m, Lt = 21 m, B = 12 m. The crossbar is 
composite, Fig. 8.1.c, with the upper element constituted by a concrete plate hc = 
0.2 m with bef = 2.4 m, and the bottom cord – by a steel HEB 600 profile.

In Fig. 8.6, two interesting issues are shown. Firstly, in the analysed special case 
of the assumed loading, the influence of the number of crossbars is not important. 
Secondly, the values of the max bending moment My differ very slightly, by less 
than 0.5%. As a consequence, also the share of Fx =100 kN force acting on the 

outer girder is similar. Using the formula ηout y tM L. /= 4 , one arrives at the values 

ηout
transom kNm.

( ) .1 64 4=  (64.4%) and ηout
transoms kNm.

( ) .3 64 2=  (64.2%).

a) 

b) 
Fig. 8.6. Distribution of bending moments My on the grid beams a) one internal crossbar 

b) three internal crossbars

The computed results fall almost in the middle between the theoretical variants 
(i) and (ii).
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The last question – how the My moments are distributed when the force is 
located between the crossbars? The answer can be obtained by analysing the 
computational results, see Fig. 8.7.

a) 

b) 

Fig. 8.7. Bending moments My distribution in the case of a force applied between crossbars 
a) one internal crossbar b) three internal crossbars

One can calculate the outer girder share in the carrying of the load force as 

ηout
transom kNm.

( ) .1 75 6=  (75.6%) and ηout
transoms kNm.

( ) .3 41 5=  (41.5%), according to 
Fig. 8.7.a and 8.7.b. 

In the case of one crossbar, Courbon’s method is useless; in the other case, 
significant underestimation occurs.

***

Concluding the whole chapter, it is necessary to stress that nowadays the 
method should be treated as a reconnaissance in the design of a carrying decks of 
beam bridges. It is proper for designing simple wooden and temporary bridges.
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9.		Dynamic amplifying factor – DAF

DAF is defined as a ratio of the dynamic effect related to the quasi-static effect. 
The effect can be a displacement, strain, or a rotation angle, for instance. Hence, 
one can write
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which can be read as: DAF at a chosen group of points xm of structure is a ratio 
of the max amplitude module effect (displacement) to the max quasi-static effect, 
both at the same point x(.), taking into account the different velocities vn of the test 
vehicle. In many standards, monographs and papers, the denominator contains 
u(stat.), however, the name containing u(stat.) is more adequate.

During the dynamic bridge proof tests of road bridges, vehicles/trains should run 
steadily with different velocities, starting from 10 km/h to 90 km/h with a step of 10 
km/h, or 20 km/h. For rail bridges, the velocity upper limit can be higher appropriately 
to the actual train velocity. It is frequently assumed that a run with the velocity v = 
10 km/h (sometimes it is v =5 km/h) causes the quasi-static effect. The used “max” 
operator concerns amplitudes of n – velocities at m – measurement points.

The static effect is achieved when the vehicle/train set stays at a point for min. 
30 minutes. Predominantly, the dynamic test is performed using a single truck. The 
effects of the static test and quasi-static test, in general, differ significantly, simply 
because they disclose different mechanical characteristics of a bridge structure. 

A short example can illustrate the above discussion. In the autumn of 2018, a 
new interesting bridge was examined with the use of the proof test, both static and 
dynamic. 

The bridge was designed by Tadeusz Stefanowski, MSc in accordance with the 
Polish bridge standard concerning the load class I included in (PN-85/S-10030), 
permitting the movement of vehicles with a maximum weight of 500 kN.

Two independent steel arches tied by a prestressed concrete deck form a 
carrying structure, Fig. 55. The span length amounts to 69.6 m. The right bevel 
of the bridge is α = 75 deg. The arch elevation amounts to11.625 m. In the cross-
section, there is only one sidewalk of the clearance gauge of 3.0 m.

In the author’s opinion, the indisputable beauty of the bridge is visible even in 
the photos in Fig. 9.1. During the proof test13, the arch adjacent to the sidewalk 
was marked as “1” and the other as “2” (see: Tab. 9.1 and Tab. 9.2).

13 The proof testing of the bridge was carried out by the consortium of ATEST Laboratory & 
Lublin University of Technology.
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The static test was carried out with the use of 6 lorries of the weight of 320 kN 
each. During the dynamic test, only one lorry was used for sequential rides.

In the case of arch bridges, the cross section at one-quarter of the length (L/4 
or 3L/4) is particularly sensitive dynamically. The testing focused on those points.

a) 

b) 
Fig 9.1. The road bridge over the Warta River, Provincial road No. 710 near the city of 

Warta, central Poland a) side view b) along the bridge view

The measured vertical displacement results are included in Tab. 9.1. and Tab. 9.2. 

Tab. 9.1. The registered vertical displacements at one quarter of the arch support length

Vertical displacement [mm]
No. v [km/h] Direction 1. (L/4) 1. (3L/4) 2. (L/4) 2. (3L/4)

1
10

W – E 2.28 2.28 1.51 1.51
2 E – W 1.83 1.83 1.73 1.73
3

30
W – E 2,24 2,24 1.47 1.47

4 E – W 1.89 1.89 1.77 1.77
5

50
W – E 2.63 2.63 1.86 1.86

6 E – W 2.14 2.14 1.97 1.97
7

70
W – E 2.45 2.45 1.78 1.78

8 E – W 2.41 2.41 2.29 2.29
9

90
W – E 2.52 2.52 1.83 1.83

10 E – W 2.17 2.17 1.94 1.94
11

30(*) W – E 2.83 2.83 1.88 1.88
12 E – W 2.03 2.03 2.05 2.05

	 (.) a run through the transverse threshold
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The use of a wooden threshold, about 10 cm height, is a simulation of a heavily 
damaged road pavement.

Tab. 9.2. Calculated DAF values

DAF [1]
No. v [km/h] Direction 1. (L/4) 1. (3L/4) 2. (L/4) 2. (3L/4)

3
30

W – E 0.98 0.98 0.97 0.97
4 E – W 1.03 1.03 1.02 1.02
5

50
W – E 1.15 1.15 1.23 1.23

6 E – W 1.17 1.17 1.14 1.14
7

70
W – E 1.07 1.07 1.18 1.18

8 E – W 1.317 1.317 1.324 1.324
9

90
W – E 1.11 1.11 1.21 1.21

10 E – W 1.19 1.19 1.12 1.12
11

30(*) W – E 1.19 1.19 1.12 1.12
12 E – W 1.19 1.19 1.12 1.12

The maximum value of DAF occurs for the girder “2” and amounts to DAF = 
1.324. It is worth mentioning that according to the standard (PN-85/S-10030), the 
DAF coefficient should be calculated by the following linear formula 

	 φ = 1.35 – 0.005L, (L in meters),					    (9.2)

hence, considering the obtained DAF value, one arrives at the length L ≈ 6 m, 
which approximately corresponds to the spacing of the hangers at the points where 
they are connected to the platform.

In conclusion, the DAF searching is only one element of the dynamic testing. 
Besides, they are determined by a computer modelling and by measuring the 
natural frequency values and the damping of the vibration of various bridge 
elements in situ.

The reader is referred to an interesting publication on beam dynamics (Ataman, 
Szczesniak, 2022), in which the damping of vibrations from moving loads is also 
taken into account by an analytical method. In a monograph (Szczesniak, 2000) on 
plate dynamics, one chapter is devoted to the problem of damping. Various forms 
of damping were discussed, organizing them according to the original method 
developed. This made it possible to unify assessments of the effects caused by 
various kinetic, material, dynamic and quasi-static features. The chapter includes 
examples for plates, including bridge plates.

	

***
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10.	 The influence of a strain rate on the understanding of 
dynamical processes

The common understanding of statics, quaistatics and dynamics can be aided 
by examining the equation of equilibrium of any particle which could be elastic or 
viso-elastic, and has the following form 

	
∇ + = ∂( )m

mn n
t

nf uσ ρ ρ 2 ,			   (10.1)

where the process arguments depend (or do not depend) on the time parameter 
t, ∇m is the covariant derivation symbol in the 3-dimensional problem i, and   
m = 1, 2, 3,

 ( )
2
t∂

 
is the symbol of the second time derivative, σmn, fn, un are 

contravariant, appropriately, stress tensor, load vector and displacement vector in 
the material particle, ρ is a particle mass density.

Statics: 
is the state in the actual configuration where σmn, f n are constant and the inertial 

effects are zero, ρ∂ =( )t
nu2 0 .

Quasistatics: 
is a process i.e. σmn  = σmn(t) and f n = f n(t), however, the inertial effects can be 
neglected, i.e.

 
ρ∂ =( )t

nu2 0
.

Dynamics: 
is characterized by the fact that all arguments depend on the time parameter t, 
and the inertial component is of great importance. In this case onemust consider  
σmn  = σmn(t), f n = f n (t) and un = un (t).

As early as in 1950s, significant qualitative and quantitative differences were 
observed in the behaviour of steel at different tensile loading rates. In Fig. 10.1., a 
copy of the graph sourced from (Nadai, 1950) is shown.
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Fig. 10.1. According to the source notation, soursed from (Nadai, 1950), Fig. 19-16, entitled 
The true flow stresses at various strains in function of the logarithms of the rates of 
strain (mild steel) at room temperature

It can be seen that 2% strain, 4% strain, and the yield limit value overlap with 
a simultaneous value increase on the curve. At the same time, the yield limit value 
rises twice.

Material processes run in different ways. In the case of the creep of concrete or 
steel relaxation one can speak of a long process development time. In the case of 
road bridges, quasi-static processes – which approximately correspond to static 
states – occur. As regards train bridges and HSLM trains, the speed of a rolling 
stock induces dynamic processes. 

In extreme cases involving sharp decelerations or accelerations or impacts on 
structural members or bridge equipment, the loading time is rapidly reduced to 
a few seconds or fractions of a second, corresponding to the issues of structural 
dynamics or soft impact. Modern bridges should also be designed bearing in mind 
impact phenomena caused by gas or explosive charges. This is a group of high or 
very high impacts.

The effect of the loading velocity on concrete compression is similarly 
highlighted. Based on the work (Rüsch, 1960), the following graph of σ ∼ ε,  
Fig. 10.2 is drawn at different loading velocities up to failure.
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Fig. 10.2. The strain-stress compression relation envelopes for 56-day old concrete and the 
cylinder strenght fc = 34.5 MPa, based on (Pająk, 2011)

In the graph, the red straight line represents Hooke’s law in the elastic case, i.e. 
when concrete is loaded to its ultimate strength in a very short time t → 0+.

In the laboratory tests, the loading rate was chosen is such a way that the failure 
occurred after 20 min., 100 min. and 7 days, respectively. The concrete strengths 
determined in subsequent tests allowed for the extrapolation of the failure curve, 
which in turn allowed to estimate the creep curve as a limiting process – the lower 
envelope.

As in the case of tensile steel, one finds that there is a decrease in the strength 
of concrete when the loading process is extended, which corresponds to a decrease 
in strain rates.

Process measures, which are functions of the strain rate with a unit [1/s], are 
used to classify the effects of various actions on materials.

An example of classification as a function of the strain rate is shown in Fig. 10.3; 
(Lukic, 2018).

 

 

 

 

Fig. 10.3. The strain rates characteristic for different mechanical examinations of material 
properties
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A relative measure of the effects of short-term loading is known as Dynamic 
Increment Factor (DIF), defined as the ratio of the dynamic strength to the static 
strength/strain, and is usually reported as a function of the strain rate. For concrete, 
DIF can be more than 3 times greater in compression and up to about 12 times 
greater in tension, see: Fig. 10.4.

Fig. 10.4. Strain rate versus DIF for concrete in compression and tension; based on (Pająk, 
2011)

A very useful definition of DIF of concrete was formulated in (CEB-FIP Model 
Code 1990). There, the following definition was made for compression strength
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where 	 fc = dynamic compressive strength at ε ,

	 fcs = static compressive strength at εs ,

	 ε  = strain rate in the range of 30E-6 to 3E2 1/s,



	 εs  = 30 1E-6 1/s (static strain rate),
	 log γ = 6,156α – 2,
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,  fc0 = 10 MPa.

In the case of tension, DIF is given by
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where 	 ft – dynamic tensile strength at ε ,

	 fts – static tensile strength at εs ,
	 ε  = strain rate in the range of 30E-6 to 3E2 1/s,

	 εs  = 3E-6 1/s (static strain rate),
	 log β = 7.11δ – 2.33,
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10.1.	 Hopkinson-Kolsky bar 

The above formulas were successively modified due to the development 
of concrete technology and improvement of measuring equipment, (Malvar, 
Crawford, 1998).

For the range of high and very high strain rates the Hopkinson-Kolsky bar 
is extensively used. The mechanical concept of the Hopkinson-Kolsky bar is an 
application of the theory of longitudinal elastic as well as plastic waves propagation 
in a bar (see: Truesdell, 1974, for instance). 

The Hopkinson bar (Hopkinson, 1914), as well as its modification by Kolsky, 
(Kolsky, 1949), is a stand consisting of a single bar or two bars in series. The history 
and varieties of the Hopkinson–Kolsky bar is presented in the paper (Xia, Yao, 
2015), which also extensively reviews papers on the discussed subject. 
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The Spalling-Hopkinson Bar (SHB), Fig. 10.5, is the configuration of a research 
stand where one end of the tested specimen is free, while the other is attached to 
the measuring Hopkinson bar, the other end of which is loaded with an incident 
compressive wave produced by a projectile launched from an air gun, e.g. (Brara, 
Camborde, Klepaczko, Mariotti, 2001) (Rey-De-Pedraza, et al., 2016), (Brara, 
Klepaczko, 2006).

Based on (Brara, Klepaczko, 2006), Fig. 10.5.a shows the result of computer 
modelling of the wave superposition process in a concrete specimen subjected 
to SHB tensile testing. A modified scheme was used to explain the effect of 
superposition of transmitted and reflected waves.

a) 

b) 

Fig. 10.5. Spalling-Hopkinson Bar a) simple model of the superposition of an incident and 
reflected wave, reflected in the specinent b) the stand

Using a non-specialist language, the wave problem in the Hopkinson bar can 
be described as follows: 

After a projectile impact, the compressive incident wave generated in the 
Hopkinson bar is transmitted onto the concrete specimen. A portion of it as a tensile 
wave reflected from the free end retreats into the Hopkinson bar. The superposition 
of the compressive incident wave and the reflected tensile wave generates a tensile 
stress that increases rapidly in time along the concrete specimen. The superposed 
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tensile wave leads to tensile cracking of the specimen at some distance from the 
free end, where the tensile stress reaches the tensile strength of the concrete. 

In general, the entire wave propagation process is recorded using three stress/
strain meters on the Hopkinson bar. This arrangement allows determination of: the 
cracking stress due to spalling of the concrete, the stress history of the specimen, 
the critical loading time, and the loading rate or strain rate. An analogous 
explanation of spalling phenomena can be found in (Rey-De-Pedraza, et al., 2017), 
(Weerheijm, Van Doormaal, 2007).

An analytical description of the Hopkinson-Kolsky test can be found in the 
papers (Brara, Klepaczko, 1999), (Cusatis, 2011). 

The Kolsky arrangement, also known as the Split Hopkinson Pressure Bar 
(SHPB), is shown in Fig.10.6. In the case of SHPB, the speciment is located between 
the two bar faces. 

Fig. 10.6. Split Hopkinson Pressure Bar – diagram of a bar configuration and dynamic 
effects in the specimen

To complete the possible configurations of the Hopkinson bar, the direct impact 
case is shown in Fig. 10.7, (Rusinek, Chevrier, 2009). This arrangement is intended 
for compression. 

 
Fig. 10.7. Direct impact test

In the paper (Włodarczyk, Janiszewski, 2006), the plastic problem is analysed 
and a computational example is given. 

In Fig. 10.8, a SHPB laboratory stand is shown in detail.
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a)  

b)    c)    d)  

e)  f)  
Fig. 10.8. The SHPB apparatus at the Civil Engineering Laboratory of Lublin University of 

Technology a) overall view b) air gun c) barrel d) projectile on the incident bar 
end e) specimen cylinder f) transmitted bar ended by a dumper

In this chapter, only general and basic information about the study of the 
dynamic behaviour of materials using the Hopkinson bar is given. It is now 
a dynamically developing field of mechanics. The number of citations given 
represents a small sample of hundreds of published research results on minerals, 
various types of concrete, mortars and metals, and composites.

At the end the two papers are recommended for studying. The first concerned 
SHPB testing of a ceramic mat applied to a CFRP substrate during the composite 
curing process, (Golewski, Rusinek, Sadowski, 2020). Courtesy of Przemyslaw 
Golewski, below are two graphs, Fig. 10.9, of waveforms measured in tests on 
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SHPB device. During the tests 1 V was calibrated 1000 με, Poisson modulus was 
assumed as 0.3. εI, εR, εT Denote the waveforms of incident strain, reflected strain 
and transmitted strain, respectively. Fig. 10.9.a shows FEM modelling of the wave 
process in addition to plots of the measured waveforms.

a)  

b)  
Fig. 10.9. The waveform curves a) from SHPB b) FEM model of the process and its compa-

tibility with the experimental result 

Fig. 10.9.b shows two graphs of strain waveforms. The first is the SHPB 
results, where the incident and reflected waveforms are coloured in red, while 
the transmitted wave is drawn in magenta. The second group is the results of the 
FEM model, where the incident and reflected waveforms are coloured green, and 
the transmitted wave is marked in blue. The convergence of the strain waveforms 
measured in the SHPB device with those generated by the FEM procedure is clear. 

The second recommended article to read is a paper (Lv, Chena, Chen, 2017) 
that deals with SHPB testing of concrete specimens. Varying impact velocities of 
the striker were used to demonstrate different failure patterns, i.e. light spalling, 
fracturing, fragmentation and comminution. The following values of 12.55 m/s, 
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15.33 m/s, 18.59 m/s and 21.12 m/s were assumed. The effect of striker length 
on deformation waveforms was discussed. It was decided that the striker length 
would be 800 mm. For a unidimensional problem, the definitions of stress, strain 
rate, strain and stress equilibrium in SHPB allow the constitutive relationship of 
the material sample, concrete, to be established. In addition, SHPB waveforms 
and degradation images of the specimen taken with a high-speed camera provide 
tools for detailed analysis for each strain rate tested. Therefore, the concept of load 
modulus is used. In the course of a strain, the elastic phase, the variety of plastic 
loading, the importance of compression states of micro-cracks and micro-voids, 
the accumulation of damage, and more are discussed. The material reinforcement 
phase was also distinguished, introducing the name “double peak” phenomenon. 

No less important is the language of the paper, which is very concise and can be 
described as an unambiguous explanation of the problem.

10.2.	 Reason for significant increases in concrete strength with an 
increasing strain rate

The concrete strength increase at significant strain rates has been related to both 
micro-cracks and free water presence. H. W. Reinhardt (Reinhardt, 1982) used the 
SHB equipment in the cases of wet and dry concrete giving the stress-strain relation 
in compression as well as in tension. The paper (Reinhardt, Rossi, Mier, 1990) 
contains the results of the dynamic loading of micro-concrete. The conclusion states 
that in the case of wet specimens the strain rate effect is remarkable, although for 
dry specimens increase in strength at high strain rates was not observed. In 1991, 
M. J. Rossi (Rossi, 1991) proposed a concept based on the viscoelastic M. J. Stefan 
effect (Stefan, 1874) which explains the tensile strength increase (Sun, Wang, et al., 
2020). Incidentally, the question arises as to what is dry concrete and wet concrete. 
A discussion of this issue can be found in the indicated paper.

The skeleton of microspores (pores of a diameter less than 2 nm) creates the 
plate network of dry concrete in which the microspores and micro cracks are filled 
with a Newtonian fluid. The fluid’s viscosity is characterised by the η parameter.

The stress due to loading can be written as σ ηt
dh
dt

= . In reality, more complex 

rheological models are used instead of the elementary Newtonian fluid, (Pedersen, 
Simone, Sluys, 2008).

In Fig. 10.10, a simplified wet pore model of concrete is presented. Fig. 10.10.a 
shows the initial natural stage, while Fig. 10.10.b shows the actual configuration 
including the effect of the strain rate on the stress state at time t.
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a)  	 b) 

Fig. 10.10. Illustration of the Stefan model, based on (Stefan, 1874)

Similar drawings can be made for compression and shear cases.

10.2.1.  The limits of the Stefan model

Finally, note that significant saturation reduces the static and dynamic strength 
of concrete, see: Fig. 10.11.

Fig. 10.11. Reduction of the static and dynamic strength fc of concrete as a function of the 
pore water content, based on (Sun, Wang, et al., (2020)

It can be seen that the weakening is 30%. In the static case, the weakening is 
20%. It can be read from this that fc(dynamic) decreases by 30%. In the static case, 
the weakening of fc(static) is 20%. 

Similar results were published in the paper (Brara, Klepaczko, 2006).
In a sense, the results shown in Fig. 10.11 contradict the Stefan effect, i.e. 

Maxwell model. In this context, the saturation level of concrete needs further 
investigation.

***
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11.	 Rheology and rheological models

Rheology is a relatively young discipline. Its origins can be tracked to the works 
and activity of E. C. Bingham (Coussot, 2017), M. Reiner (Reiner, 1958), G. W. 
Scott Blair (Rogosin, Meinardi, 2014), and many others. In 1929, the American 
Society of Rheology was founded. At that time, rheology was defined as

“The science of the deformation and flow of matter.”
The term rheology refers to the thought of the Greek philosopher Heraclitus 

of Ephesus “τὰ πάντα ῥεῖ καὶ οὐδὲν μένει” which can be translated as “everything 
flows and nothing stays.” 

In the manuscript (Mezger, 2002), the 11th chapter is devoted to a chronological 
survey of rheologists and their achievements in the field. 

Processes of material are processes occurring over a long period of time. Here, 
“a long period” signifies processes measured in days or years. Furthermore, let us 
assume that fast processes measured in e.g. seconds correspond to dynamics, where 
accelerations are of key significance. Somewhere between rheology and dynamics, 
quasi-static processes, where the duration of a process is measured in e.g. minutes, 
but accelerations are negligibly small, can be placed. 

It can be best expressed through the dynamic balance equation, also known as 
the motion equation (10.1), which was examined in Chapter 10.

In the case of rheology, it may be assumed that external loads are constant in 
time. Thus, the dynamic balance equation is as follows:

∇jσij(t) + fi = 0.						      (11.1)

Rheology belongs to the area of viscoelasticity, or, conversely, rheology is a 
branch of science which perceives mechanical processes as reversible or irreversible 
(inelasticity). 

In the case of elastic deformation, Young’s modulus of elasticity E characterises 
material stiffness (resistance to being deformed). 

The compliance modulus (flexibility) 
1J
E

=  is inverse to stiffness and represents 

the material tolerance to deformation. Highly compliant materials are easily 
stretched or distended. 

If one assumes that viscoplasticity concerns all the problems where the values 
of material characteristics are changeable depending on the time and velocity of 
deformations and stresses, then rheology relates to problems changeable over long 
periods of time. At the opposite extreme, there are problems of high strain rate 
or stress rate velocities in time, while what is discussed here are the velocities of 
displacements / elastic, or plastic waves of acceleration velocities of 800 m/s, or 
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displacement velocities of 1E2 [1/s] to 1E6 [1/s]. In such cases, material studies are 
considered as related to Hopkinson-Kolsky bar tests.

In rheology, viscoelasticity methods are used, where the tensor description 
is applied in a similar manner as in the theory of elasticity. Also, the extensive 
use of operational calculus, mainly the Laplace transform, is typical. The Laplace 
transform, or its modification, the Carson transform14, leads to so-called Alfrey’s 
analogy (Alfrey, 1950), which gives analogous notations to the ones in the area of 
elastic problems. 

The difference is that the Laplace transform is a complex function, while, in the 
case of elasticity, functions are real.

Here, the uniaxial problems dependent on t – current time are considered. 
Strain and stress processes are caused by loading/unloading at the time moment 
t1; in general: t > t1. The notation ε (t, t1) is understood as a strain process state at 
the time t, which is initiated by loading/unloading at the time moment t = t1. The 
Laplace transform has been used. 

Historically, rheological bodies/materials were constructed through defining 
constitutive relations σ → ε for uniaxial models. However, uniaxial models still 
play an important, even crucial, role in rheological analyses. The bases for such 
definitions are so-called simple Hookean, Newtonian and Saint-Venant’s bodies, 
where Hookean body models have elastic properties, the Newtonian body 
represents the material flow, and Saint-Venant’s body corresponds to the plastic 
behaviour of material. They are known as elementary models.

Below, models related to stationary problems are presented. In the case of 
dynamics, all the models should be modified by adding appropriate material 
masses (see: Bastien, Schatzman, Lamarque, 2000), for instance.

11.1.	 Elementary models

The Hookean solid model (H) is an elastic spring which is characterised by 
the elastic modulus E and, therefore, the stress~strain relation has the following 
algebraic form

	
ε

σ
=

E
.							       (11.2)

A representation and a graph of the constitutive relation are shown in Fig. 11.1.

14 ( ) ( )1L f t p C f t−   =    . The transform of a real number is equal to the number [ ]C R R= .
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a)  		 b) 
Fig. 11.1. Hookean spring model a) representation b) σ → ε 

The Newtonian fluid model (N) is represented by a linear viscous dashpot or 
piston, Fig. 11.2. The symbol of resistance against a viscous flow is η. The differential 
equation of the model has the following form

	
ε

σ
η

= 							       (11.3)

A relevant graph is shown in Fig. 11.2.

a) 	 b) 

Fig 11.2. Newtonian viscous model a) dash-pot b) σ → ε

Newton’s law of viscosity defines the relationship between the shear stress and 
shear rate of a fluid subjected to mechanical stress.

Barré Saint-Venant’s model (StV) introduces the effect related to the material 
limit, e.g. the yield limit σy. This model is dedicated to metallic materials.

It is postulated that material is rigid when stress increases monotonically from 
zero to a certain stress value – a yield limit, and, subsequently, the stress remains 
constant, while strain flows plastically with the strain rate. The model can also be 
identified as a switch triggering plastic flow when the stress achieves the yield limit

	

σ σ ε

σ σ ε ε

< → =

= → =







y

y pl t

0

 .

 .					     (11.4)

The model takes the form of a slider representing static and kinetic friction, 
Fig. 11.3. 

a)  b)  c)  d)

Fig. 11.3. The Saint-Venant’s model (StV) of plastic flow expressed by means of a friction 
analogy a-c) different graphs of Saint-Venant’s model d) stress-strain relation
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Actually, the model is not very useful as such, however, when combined with 
other elementary models, it creates solid or fluid plastic bodies. 

***

In Fig. 11.2 to 11.3, the stress value σ symbolises an action or a load. Simple 
loading and unloading in the uniaxial case of a rheological body is usually 
implemented. Here, the uniaxial problems depending on the current time t are 
considered. Strain and stress processes are caused by loading/unloading at the 
time moment t1, where t > t1. The record ε (t, t1) is understood as a strain process 
state at the time t, which is initiated by loading/unloading at the time moment   
t = t1. Now, let us introduce the load case which is commonly used in rheology.

***

Step unit impulse 15

	
σ σt t t( ) = −( )1 1 0 					     (11.5)

Here, there are three options of an analytical interpretation of the record of  
1(t–t1). The figures are numbered Fig. 11.4.1, Fig. 11.4.2 and Fig. 11.4.3, respectively.

(11.A)

	

( ) 1
1

1

0
1

1

t t
t t

t t

 → <− = 
→ ≥

,

	 	

Fig. 11.4.1.

(11.B)

	

( ) 1
1

1

0
1

1

t t
t t

t t
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,

	 	

Fig. 11.4.2.

(11.C)	 1

0

1
1

1

1
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t t

t t
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−( ) =
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→ =
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


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



ξ ,

 	 	

Fig. 11.4.3

15 Previously known as the Heaviside step function H(t).
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where 0 < ξ < 1 and it is mostly assumed that
 
ξ =

1
2

, i.e. the variant (11.C) with the
 

corresponding Fig. 11.4.3.
The variant choice depends on the requirements of the undertaken analyses. 

Let us also recall that the derivative of a step impulse is Dirac’s function.

Dirac’s delta function 16

Dirac’s delta can be obtained by deriving the step unit function

	
d
dt

t t t t1 1 1−( )= −( )δ ,					     (11.5.1)

The function has the following properties

	 −∞

∞

∫ −( ) =δ t t dt1 1
  

and

	 t

t

f t t t dt f t
−

−

∫ ( ) −( ) = ( )δ 1 1 ,	 (11.5.2)

where f(t) is a continuous function, for instance.

A description of the relaxation process requires the following function 

Fig. 11.5. Unit load during a time period from t1 to t2

The load shown in Fig. 11.5. can be written as follows

	
σ σt t t t t( ) = −( )− −( )



1 11 2 0 .				   (11.6)

It is useful for the purposes of finding the strain-recovery curve.
Another example relates to the case of adding two (or more) rheological 

processes started at different time moments, and it is as follows

16 Maurice Dirac was an English theoretical physicist. δ(t) is the symbol of Dirac’s delta which is 
a distribution function or a generalised function.
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Fig. 11.6. Summation of two-unit functions obeying the history of loading

	
σ σ σt t t t t( ) = −( ) + −( )1 11 1 2 2 			   (11.7)

Here, the load history consists of two constant actions: σ1starting at the time 
moment t1 and σ2 starting at the time t2.

A graphic presentation of rheological models is very useful, but proper 
differential equations require some skill and experience. Therefore, some classical 
rheological models are still shown as graphs and, at the same time, in an analytical 
form.

11.2.	 Two parameter models

The Voigt model 17 consists of a spring and a dashpot connected parallelly. The 
spring is characterised by E and the dashpot by η.

Fig. 11.7. Voigt model diagram

The strain of the model is equal to the strains of its components, while the 
model stress is a sum of the component stresses, which gives the following set of 
equations

	

ε ε ε ε

σ σ σ σ

= = =

= = +







( ) ( ) ( )

( ) ( ) ( )

V H N

V H N
.				    (11.8.1)

17 Also known as the Kelvin-Voigt model. 
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Using the definitions of the Hookean and Newtonian bodies, one can arrive at 
the differential equation of the Voigt body

	 σ ε εη= +E  .						      (11.8.2)

Applying the load in the form (11.5) allows drawing a strain-recovery curve 
which is characteristic for the Voigt body, see Fig. 11.8.

Fig. 11.8. Strain-recovery curve for the Voigt model

The curve fragment for t∈(t1,t2) is a creep function, while the other curve 
branch is a relaxation function. It is worth emphasising that the model is reversible.

 
Maxwell model 
The model consists of Hooke’s and Newtonian models connected in chain,  

Fig. 11.9.

Fig. 11.9. Maxwell rheological model

For the Maxwell model one has 

	

ε ε ε ε

σ σ ε ε

= = +

= = =







( ) ( ) ( )

( ) ( ) ( )

M H N

M H N
					  

(11.9.1)
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It is obvious that the total strain is a sum of the strain in the spring, as well as in 
the dashpot, while stress has the same value in both members. Consequently, one 
arrives at the following differential equation

	
  



ε ε ε
σ σ

η
σ σ

λ
= + = + = +






H N E E

1 1 ,				  
(11.9.2)

where
 
λ

η
=

E  
is a model characteristic. λ is called the retardation time of the 

material and is a measure of time taken for the creep strain to accumulate. In 
this paper, the Voigt model constitutes the basic model in the sense that it is 
discussed most thoroughly. In the cited works, the reader will find derivations and 
discussions of other rheological models.

The Maxwell model is irreversible, which can be read from the graph in Fig. 
11.10 below.

Fig. 11.10. Maxwell model – strain-recovery process

To make it reversible, an additional “reverse’ load” is necessary.

Prandtl body 

The Prandtl uniaxial body (Prandtl, 1921) is constituted by Saint-Venant’s and 
Newtonian or Hokean bodies connected in chain.

a)      b) 

Fig. 11.11. Two versions of the Prandtl body a) StV+N b) StV+H
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One can write a set of defining conditions, although, in this case, a physical 
description explains the model better. Both models involve friction laws. The 
first graph in Fig. 11.11.a presents Prandtl’s model, and the other graph shows a 
viscoplastic model. One can understand the StV element as a model of static and 
kinematic friction or can just treat it as a threshold functioning as a switch.

The parallel connection, shown in Fig. 11.12, describes material strengthening.

a)  	 b) 

Fig. 11.12. Parallel connection a) material strengthening b) material threshold

The case shown in Fig. 11.12.a can be used for bilinear graphs of steel hardening. 
The model in Fig. 11.12.b behaves very similarly to Saint-Venant’s model, and for 
this reason has no use. 

Note that any model containing Saint-Venant’s model is irreversible.
 

11.3.	 Three parameter models

Now, in model terminology, the term “solid body “, synonymous with reversible 
processes, is used. The liquid model is related to the concept of irreversibility, e.g. 
in the case of deformation processes. 

Standard solid or the Zener model

a)  	 b) 
Fig. 11.13. Standard solid a) b)

Both models presented in Fig. 11.13 are reversible.
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The Jeffrey model

a)  	 b)

Fig. 11.14. Standard liquid

The model in Fig. 11.14.a is irreversible, while the other one, in Fig. 11.14.b, is 
reversible.

Differential equations of standard solids and standard liquids are to be found 
in (Kelly, 2013).

Another way to increase model sensitivity is to introduce more parameter 
models by extending the number of springs and dashpots even to infinity. Thus, 
one obtains so-called model generalisations.

11.4.	 Generalisations of the Voigt and Maxwell models

a) 

b) 

Fig. 12.15. Generalisation of two-parameter models a) generalised Voigt model b) genera-
lised Maxwell model

There are many ways of generalising the models, although, at the same time, the 
graphs of models become less useful. Instead, analytical presentations should be 
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used. Following the differential forms of Voigt’s or Maxwell’s models, the formula 
becomes obvious

	

0
1 1

1
k rn n

n nn n
n n

d da b b
d d

σ ε
= =

   
+ = +   

   
∑ ∑

 
			   (11.10)

which is known as the general differential equation of rheological bodies. In 
particular, one can obtain

– the Zener model:
 	

1 1 0 1+




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 = +






a d

dt
b b d

dt
σ ε

		
(11.11)

and

– the Burgers model:
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b d
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b d
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σ ε , 	 (11.12)

where a1, a2, b0, b1, b2, are rheological body characteristics, the values of which 
should be experimentally determined by examining the responses of real materials/
structures to the action of defined loads.

The Bingham model
The Bingham model has been developed as a description of paint that flows 

(liquid ) under the influence of the brush pressure, and which does not run off the 
painted surface (solid ) after the pressure stops, (Bingham, Green, 1919), which 
qualifies it as a plastic material. A schematic model is shown below, Fig. 11.16.

Fig. 11.16. Bingham model of plastic material

Following (Reiner, 1958), the model is defined as follows

	

σ µε σ σ

σ σ η ε σ σ

= <

− = ≥







2

2

for

for

y

y pl y.

,			   (11.13)

where the yield point is given by a set of conditions
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ε
ε
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=
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= =
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
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0
0

2y pl. 					  

(11.14.)

The model – or rather its modifications – is extensively used in the drilling 
fluids industry to describe the flow characteristics of many types of slurries.

11.5.	 Boltzmann superposition

The Ludwig Boltzmann18 superposition is a summation which takes into 
consideration the history of loadings. It shall be demonstrated by the use of the 
following loads in the case of Voigt’s model:

	
σ σ σt t t t t( ) = −( )+ −( )1 1 2 21 1 				   (11.15)

Fig 11.17. Adding two strain processes of the Voigt type. A way of including the load 
history. Superposition of loading effects according to their duration.

The strain development is defined in (11.16)

t t t t t t

t t t t t t t t t

1 2 1 1

1 1 1 2 2 1 1

< < → ( ) = −( )
> → ( ) = −( )+ −( ) = −( )

ε ε

ε ε ε σ φ ++ −( )




 σ φ2 2t t
.

 
								        (11.16)

18 Ludwig Bolzmann (1844-1906), scientist from Vienna, a 19th century Austrian physicist, 
dealt, among other things, with the thermodynamics of liquids and gases.
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11.6.	 Rheological models in the study of fresh concrete

Modern rheology is a very advanced and specialized branch of materials 
engineering. The basic rheological models discussed above are still valid and 
useful, but due to their linear nature, they are subject to various transformations 
and generalizations to mainly nonlinear models as needed. 

Since the very beginning of rheology as a science, its applications have taken 
place in various fields. Suffice it to recall the spectacular description of the 
behaviour of flour dough (Schofield, Scott Blair, 1932), as well as the spreading of 
paint with a brush, (Bingham, 2019).

Also in the field of concrete structures, a new field of rheological research has 
emerged, this is the rheology of fresh concrete. Its occurrence is variously dated. A 
review article (Banfill, 2003) indicates that the rheology of cement-based materials 
has been developed since around 1980, while a review article (Nagaraj, Girish, 
2021) mentions the last 20 years. Either way, both review articles are worthy of 
additional study.

Fresh concrete can include the phases of wet mix, batch water hydration with 
cement and the properties of young concrete, (Roussel, 2007). 

The selection of a rheological model and its validation is a fundamental research 
problem, as it determines quantitative evaluations of material processes. For fresh 
concrete, the Bingham model is most commonly used.

Rheological parameters of a material can be obtained directly through 
rheometric tests or indirectly by reference to known traditional characteristics. In 
addition to basic parameters such as viscosity, plastic viscosity, yield stress, there 
may be new parameters related, for example, to shotcreting, where pumpability, 
cohesion and build-up thickness are important, (Liu G. et al, 2020).

One thing is certain, the rheology of fresh concrete leads to the possibility of 
controlling the setting and hardening processes of concrete, which in particular 
can result in reduced shrinkage and creep. It can also, for example, facilitate the 
production of concrete using a new type of recycled aggregate, i.e. coal combustion 
products (Alvaro, Seara-Paz, et al., 2021), which is an environmentally friendly 
measure.
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12.	 Laplace transform in viscoelasticity problems

Until 1970s, the basic tool used in structural mechanics (as well as in other 
fields) was the solution of differential and integral equations using mathematical 
analysis methods. Currently, the use of numerical procedures is dominant. One of 
the analytical tools has been the integral Laplace transform19.

Let us recall one of the amazing mathematical functions, the exponential 
function exp (t)20. The exponential function is an invariant of differentiation, so 
one has

	

n
t t

n
d e e
dt

=
						    

(12.1)

where n is an integer.
This property allows solving linear differential equations with constant 

coefficients occurring in the problems of the linear theory of elasticity and 
viscoelasticity. 

The Laplace transform is not the only integral transform. There are many 
known transforms – Laplace-Carson, Fourier, Mellin, Z-transform, Borel and 
other transforms used appropriately to mechanical problems.

Now, let us introduce the definition of the Laplace transform. For the sake of 
simplicity, let us assume that f (t) is a regular and bounded function defined on 
the basis of the real positive number domain (from zero to infinity). Hence, one 
obtains the mathematical formulae for the transform and its inverse 

	

L f t p f e d f pp( )  ( ) = ( ) = ( )−
∞

+

∫ τ ττ

0

 ,			   (12.2.1)

	
f t L f p

i
f p e dppt

c i

c i

( ) = ( )  = ( )−

− ∞

+ ∞

∫1 1
2

 

π
,			   (12.2.2)

where ( )f t  is the original or the retransformation, while ( )f p  is an image or a 
transform of the function f, p is a complex parameter.

The fundamental handbooks on the Laplace transform were written by Louis 
Pipes (Pipes, 1958) and Gustav Doetsch (Doetsch, 1974).

Nowadays, both basic and more advanced and rigorous information is very 
easy to find with e.g. the Google Scholar search engine. A few properties of the 
Laplace transform that are representative in terms of its value as a mathematical 
tool are listed below. However, the so-called transform pairs are not included.

19 Named after Pierre-Simon Laplace, a French polymath, 1799-1825. Among others, he postu-
lated the existence of black holes.

20 Depending on the editing requirements, the notation et shall be used in parallel.
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12.1.	 Derivative transform

Let us find the transform of the first derivative ( )/f t . Applying (12.1.1) and 
integrating it by parts21, one arrives at

L f t f e d f e p f e dp p p/ /( )  = ( ) = ( ) − −( ) ( ) =−
∞

− ∞ −

+

∞

+

+∫ ∫τ τ τ τ ττ τ τ

0
0

0

pp f p f ( ) − ( )+0 . 	 (12.3)

Algebraically, the transform of the first derivative is equal to the transform of 
the function f  (p)multiplied by the complex parameter p minus the value of the 
constant value of the initial condition f(0+).

In the case of higher range derivatives, the rule is still valid; analogously, for the 
transform of the third derivative, one obtains

	 ( ) ( ) ( ) ( ) ( )3 2 0 0 0/// / //L f t p f p p f p f f+ + +  = − − − 
 .	 (12.4)

The transform of the constant has the form

	
L c c e d c

p
p  = =−

∞

+

∫ τ τ
0

.					     (12.5)

The transforms of derivatives have an algebraic form, although the space of 
transforms is complex.

12.2.	 Laplace transform of an integral

Keeping in mind that the Laplace transform of the derivative under 
homogeneous initial conditions is equal to the product of the parameter p and the 
transform of an original, it is expected that the transform of an integral will be the 
quotient of the transform of the original divided by the parameter p. This is, in fact, 
the integration theorem stated as

	

L f d
L f t

p
f p

p

t

0+
∫ ( )













=

( )  =
( )

τ τ


.			   (12.6)

21

 
( )

BB
/ / /

A A

dt a b a b a b → = +  ∫
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12.3.	 Retransformation by virtue of the residuum theorem

Having an image, it is possible to obtain the original. Here, only one of them 
is presented, although without mathematical details, i.e. without the assumptions 
and necessary and sufficient conditions for the occurrence of retransformation, 
which the inquisitive reader can find in the already cited mathematical works.

Let the image has the following form

	
( ) ( ) ( )1 2 3

1Q
p p p p p p

=
+ + +

 	 ,			   (12.7)

where 1 2 3p , p , p  are real numbers.

Searching for the original function ( )Q t , it is necessary to follow three steps:
•	 find an entire set of singularities, which can be of different kind – real, complex, 

single, or multiple. Let us consider three different singularities:

	
1

1
p p+

,
 2

1
p p+

,
 3

1
p p+

,				    (12.8.1)

•	 next, let us create a function 

	

θ p t
e

d
dp

p p p p p p

pt

,( ) =
+( ) +( ) +( )



1 2 3

’		  (12.8.2)

•	 by virtue of the residuum theorem, the origin Q(t) as a sum of the residues of 
the product eet θ in the following form can be obtained

Q s
p p

e

p p p p p p p p p p pm m

pt

m

= [ ]
= −

=
+ + +( )+ + +( )= =

∑Re θ
1

3

2
1 2 3 1 2 2 3 3 11 3 2

33

∑ = −p pm . 
	

								        (12.8.3)

The sum (12.8.3) is the sought reverse transform.

Example 1:

Let us find the inverse transform of the image L p
p

−

−











1
2 2
1
α

.
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Bearing in mind that the multiplayer p signifies a derivative in a real space, one 

can rewrite the relation to the form
 
L p

p
d
dt

L
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− −
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



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α α
 and look 

for the inverse transform of 
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
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α α

 only by applying the residuum 
theorem, hence,
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and, as a consequence,

	
L p

p
d
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L
p

ch t− −

−









 = −






















= ( )1

2 2
1

2 2
1

α α
α .

Example 2:

Having the image 	 L p
p

d
dt

L
p

− −

+





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
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


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


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2 2
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2 2
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α α , 
one can write a set of singularities as the following set 

	
p

p i

p im =
= −

=
1

2

α

α

and search for the inverse transform as before: 

L
p i p i
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, hence,
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which, following a derivation, finally results in

L p
p

t−

+









 = ( )1

2 2α
αcos .

For the sake of order, let us note that 1i = − , and the relation ( ) ( )sh it i sin t=  
is one of Euler’s relations combining trigonometric and hyperbolic functions.
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***

Commenting on the examples, one can conclude that in dynamics the 
occurrence of hyperbolic functions is related to the viscous damping of vibrations, 
while trigonometric functions indicate the domination of elastic vibrations. 

Finally, it is worth mentioning that there is still only a partially functioning 
potential of the Laplace transform in terms of a multivariate problem.

The two basic monographs on the two-dimensional transformation (Voelker, 
Doetsch, 1950) and (Ditkin, Prudnikov, 1962) constitute the theoretical basis of the 
analysis. Nevertheless, a progress in this area is becoming more and more evident.

***
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13.	 Viscoelasticity – applications of the Laplace transform

13.1.	 Solution of the Voigt model

Now, using the Laplace transform, let us solve the equation σ ε εη= +E  , 
where E and η are material characteristics of constant value, using the Voigt model 
governed by (11.8). Performing the Laplace transform one obtains

L E E p
E p E p

σ ε εη σ ε εη ε ε
σ
η

ε
η

= +  → = + − ( )→ =
+

+ ( )
++ +� � � � � �

0 0 1 	

								        (13.1)
Let the initial condition be homogenous, then 

L
E p

J
p

JL
p

− −=
+












= =

+
→ =

+










1 11
1

1
1




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σ
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ε σ
λ

ε σ
λ

.	 (13.2)

where λ
η

=
E

 is called the retardation time of the material and is a measure of the 

time taken for the creep strain to accumulate. 

The shorter the retardation time, the more rapid the creep is.

1J
E

=  is material compliance. In (13.2), in brackets, one has a product of two 

transforms, i.e. σ and 
1

1pλ +
. Such a case is governed by the rule of convolution

 	 L g h g h t d g t h d−
∞ ∞

  = ( ) −( ) = −( ) ( )
+ +

∫ ∫1

0 0



 τ τ τ τ τ τ .	 (13.3)

Hence, one can write
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λ
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1 1
1

.			   (13.4)
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Now, the only challenge is to find the reverse transform
 

L
p

−

+








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1 1
1λ

, or,
 

more rigorously,
 

L
p

−
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

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





1
1

1
λ

. Let us apply the residue theorem in the form
 

corresponding to this uncomplicated case.

For the Voigt model, only one singularity exists, i.e. p = − 1
λ

, hence, one obtains
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By virtue of the convolution theorem, the strain has the following form
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which depends on the form of the load function σ(t).
To determine the creep function and its recovery, the load is given by the 

relation (11.6) in the form σ σt t t t t( ) = −( )− −( )



1 11 2 0 .		

Putting the (11.6) into (13.6) gives the strain solution of the Voigt model 
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								        (13.7)

Examining the solution, one must pay attention to the definition of unit 
function. Although the analysis is not complicated, it will be carried out in detail.

First, the time interval of loading t1 ≤ t ≤ t2 (115) is considered
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for the time moment t = t2, the following is obtained
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The range of unloading t≥t2 (t2 is assumed to be common for loading and 
unloading) requires the use of a full description in accordance with the formula 
(13.7), hence,
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Verifying (13.8.3), the strain value at t = t2 is calculated
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								        (13.8.4)
which is in line with (13.8.3). 

Let us find the strain value after infinitely long time.
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(13.8.5)

This also proves that the Voigt model is reversible. 
Some similar analyses can be found in (Karaś 2012). Also, it is worth mentioning 

and recommending the monograph by Witold Nowacki (Nowacki, 1963), where 
some basic problems of linear viscoelasticity are discussed. 
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13.2.	 Viscoelasticity – creep function

Viscoelasticity, in a mathematical sense, is a strict theory. Therefore, the 
problem of creep in viscoelasticity is considered more rigorously than creep in the 
context of engineering problems, which are dominated by experimental research 
applications and, sometimes, even heuristic approaches. However, it is obvious 
that engineering does not shy away from theoretical solutions.

Let us simplify the load function to the form

	 σ σt t( ) = ( )1 0 .					     (13.9)

Then
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The ratio	
ε

σ
ϕ

t
t

( )
= ( )

0

					     (13.11)

is known as the creep function of a material or the creep coefficient 22. It is a material 
strain process, or the structure’s response to the action of a unit 1(t) stress load.

In the analysed case the creep function is expressed by 
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And the Laplace transform of the creep function has the form
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Using (13.12) and in accordance with  ε σ
λ

=
+

J
p

1
1

, the relation assumes the form
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η λ

σϕ=
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1 1
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By means of the convolution theorem, the inverse transform leads to

	
ε σ τ ϕ τ τ σ τ ϕ τ τt t t d t t d

t t

( ) = ( ) ( ) −( ) = ( ) −( ) ( )∫ ∫1 1
0 0

  .	 	 (13.15)

22 The names creep function and relaxation function will continue to be used.
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There is another derivation for presenting the hereditary low. If the function 
σ(τ) is given in the domain –∞ < τ < t, then formula (13.15) takes the form

	

ε
σ τ
τ

ϕ τ τt
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t d
t

( ) = ( )
−( )
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∫ .				    (13.16)

Performing integration by parts, one obtains
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. 		  (13.17)

In the case of the Voigt model φ(0).
Usually, regarding the problem under consideration, the two-sided Laplace 

transform is used.

13.3.	 Viscoelasticity – the relaxation function and its connection with 
the creep function

Now, analogously to Section 13.12, let us express the transform of stress
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hence,
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where δ(t) stands for Dirac’s generalised function (impulse), ψ(t) is the function of 
relaxation, also known as the relaxation function.

Similarly, one can write

	
σ ε τ ψ τ τ ε τ ψ τ τt t t d t t d
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0 0
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The product of the derived functions has the form

	
 ϕψ ϕψ λδλ= = −
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e t
t

, .			   (13.21)

The expressions are important because ε(t) and σ(t) are expressed appropriately 
by φ(t) and ψ(t).
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13.4.	 Compliance and the relaxation moduli of creep

Introduction of the creep compliance function is another approach. 

	
ε σ σ λt J t

E
et( ) = ( ) = −( )0 0

1 1 / .				    (13.22)

For 	 σ ϕ0 1= ( ) → ( ) = ( )t t J t .				    (13.23)

The creep relaxation function has the form

	
σ ε ε η δ

λ
ε λδt E t t E t( ) = ( ) = ( ) +






 = ( ) +( )0 0 0
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For 	 ε ψ0 1= ( ) → ( ) = ( )t t E t .				    (13.25)

13.5.	 Fractal derivative 

The question of the fractional derivative was born together with the commonly 
known classical integer derivative. To begin with, let us look at historical 
information regarding the concept of fractional derivatives. For the readers 
who like investigating history, the elaborate (Lazarević, 2012), (Mehdi, 2013) is 
recommended. 

Gottfried Wilhelm Leibniz was the inventor of the derivative notation
 

n

n
d y
dx

. 

The published letters of Leibnitz, (Leibniz, 1695) and (Pertz, Gerhardt, 1971) 
describe a discussion carried out between the mathematicians who dealt with 
infinitesimal concepts including derivatives. In the letter from G. F. A. L’Hospital23, 
Leibniz is asked to comment on the question 

“What if n is ½?” 
Here is a quote from Leibniz’s answer: 
“Thus, it follows that d ½ x will be equal to d ½ x = x √(dx/2). This is an apparent 

paradox from which, one day, useful consequences will be drawn.”

23 Guillaume François Antoine, Marquis de l’Hôpital (L’Hospital), 1661-1704. French mathema-
tician. He proposed limits calculation of type 0/0 and ∞/∞. The author of the monograph Analyse 
des Infiniment Petits pour l’Intelligence des Lignes Courbes. The book is a fundamental work on 
differential calculus.
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In 1819, Sylvestre Lacroix 24 used the form of generalisation. In the case of a 
positive integer, the nth derivative of 

	 y = xm							       (14.1)
is written as

	

d
dx

x
m

m n
x

n

n
m m n( ) =

−( )
−!

!
 , m n> . 			   (14.2)

Let us now introduce another notation of the derivative operator. Instead of 

Leibniz’s operator 
nd

dxν , let the derivative operator be denoted by nD , where n 

is positive. The case of nD−  signifies the n-fold integration as an inversion to the 
n-fold derivative. Hence, one obtains

	
( ) ( ) ( )

n
m n m m n

n

m!d x D x x
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−= =
− 	

		  (14.2.1)

Leonhard Euler’s gamma function25 (see the graph in Fig. 14.1) is an analytical 
extension of the factorial over the entire complex plane, defined by the formula

	 ( ) 1

0

t zz e t dt
∞

− −Γ = ∫ , where ( ) 0Re z > .			   (14.3)

a) b)

Fig. 14.1. The Mathematica graphs of Γ  function a) 2D b) 3D

Γ  is holomorphic in the complex plain except for non-positive integers. In the 
space of the real numbers x, the gamma function is as follows

24 Sylvestre François Lacroix, 1765 – 1843. French mathematician, the author of the monograph 
Traité du Calcul Différentiel et du Calcul Intégral.

25 Derived by Daniel Bernoulli, known as Euler’s gamma function.
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( ) 1

0

t xx e t dt
∞

− −Γ = ∫
 
for x > 0.				    (14.4)

x > 0 means that the integral converges only for positive x. For x = n, integrating 
n-times by parts, one arrives at

	

( )
0

1 t nn e t dt n!
∞

−Γ + = =∫ 				    (14.5)

Other properties of the gamma function

	 ( ) ( )1x x !Γ = − , ( )1(x ) x xΓ + = Γ ,  ( )1x x!Γ − =  .	 (14.6)

Additionally, the value sequence ​​of Euler’s function for the positive and negative 
fractions of the type of integer dividable by 2 can be calculated. Such values may 
occur when fractional derivatives are calculated. The sequences are given below
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where n!! is an odd double factorial of n.
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Now, the (14.2.1) formula can be rewritten appropriately to the needs of a 
fractal derivative as follows
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x D x
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x mm m m
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ν νν
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For fractional derivatives, the range (0, 1) is crucial. Obviously, the first 
derivative has the form
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and, consequently, determining the numerical sequence for the increasing ν, one 
obtains
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Obviously, when ν → 1, then Dνx → 1. This demonstrates the quantitative and 
qualitative differences of the fractal derivatives of the constant 1. In consideration 
of the fact that “one image is worth 1000 words”, Fig. 14.2 shows graphs of the 
fractional derivatives of Dνx  functions for the selected values ν.

a)  

 

 

 

 b)  

 

 

 

 

Fig. 14.2. The Mathematica graphs of the fractal derivatives Dνx a) 0.1 ≤ ν ≤ 0.75 b) detail 
in the vicinity of the beginning of the reference coordinates 0.9 ≤ ν ≤1 
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Fractional derivatives appeared with the development of the concept of the 
derivative about 300 years ago. The concept of the integer derivative with its 
ingenious geometric interpretation is an excellent tool that allows the application of 
infinitesimal calculus. Contemporary engineering, including bridge engineering, 
is firmly rooted in mathematical analysis. Although the fractional derivative is 
still in a state of incubation, its mathematical development does not raise any 
doubts. Still, there are no fields of engineering in which the fractional derivative is 
indispensable. 

Applications of fractional derivatives are rare, but it is not that there is no work 
to be done in this area. An example of a beneficial application of the fractional 
viscoelastic Huet-Sayegh model can be found in the field of modelling asphalt road 
pavements, (Zbiciak, 2013).

***
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14.	 Bridge aesthetics – an alternative approach

How long has the aesthetics of bridges been discussed? It is a rhetorical 
question. Probably, the oldest bridges in the world are two functioning bridges 
dating back to the Mycenaean period in the Bronze Age Peloponnese, (Karaś, 
Kowal, 2015), (Karas, Nien-Tsu Tuan, 2017). The bridges are built of cyclopean 
marble boulders. A strong impression they make does not stem from their beauty, 
but the appreciation of their constructors, who applied what is understood today 
as structural mechanics. It is for this reason that the bridges have survived to this 
day, even though there are regular daily seismic events at their location, Fig. 15.1.

The tourist information regarding the bridges state that the bridge in the vicinity 
of the village of Arkadiko is Mycenaean Bridge A (MBA) and the other bridge, 
located in a difficult to access mountainous area about 1 km away, is Mycenaean 
Bridge B (MBB). Fig. 15.1.a-c show images of the MBA bridge, while Fig. 15.1.d-f 
show photos of the MBB bridge.

a)  b)  c)

d)  e)  f) 
Fig. 15.1. Mycenaean bridges in Arkadiko (Kazarma), Peloponnese a) MBA – side view 

from the outlet b) light of the bridge c) an attempt to reproduce the technology 
used d) MBB sited in a natural landscape – view from the outlet e) dimensional 
inventory of cyclopean boulders f) the original static scheme, i.e. corbel bridge 

It should be added that the two existing bridges were located in the course of 
a road, the trace of which is constituted by three other residual bridge remains 
(Jansen, 1997). 

These two functioning bridges, now corresponding to the culverts, can be 
classified as arch bridges, although everything indicates that they were built 
as corbelled bridges. Another surprise, in technical terms, is that the original 
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structure – as a result of earthquakes – has adjusted to one of the most durable 
static schemes, the arch. Such are the impressions experienced by a modern age 
person viewing these engineering works of three thousand years ago. However, 
this is not the sensation known today as an aesthetic impression, but rather 
historiosophy – which can also be exciting.

***

Aesthetic canons have been in use since antiquity – the Doric, Ionic and 
Corinthian orders are commonly known. Probably between 30 and 15 BC, Marcus 
Vitruvius Pollio collected architectural knowledge (knowledge of building the 
structures) from the Greek and Roman period in the work De Architektura, now 
known as Ten Books on Architecture. 

By the way, it is worth noting that one of the world’s most beautiful Roman 
bridge structures, the Acueducto de los Milagros in Mérida, dating from the first 
century AD, has a composite structure, Fig. 15.2.

Here, each visitor experiences a very strong reaction, perhaps even an aesthetic 
stimulation. From the author’s observation, the moment a group of tourists 
appears at the aqueduct, the chatter stops turning to whispers. Everyone tries, 
within their own capacity, to become accustomed to the undoubted beauty of both 
the architecture and the mechanics of the structure.

 It takes about 30 minutes to walk over the accessible section of the aqueduct. 
To enjoy the accuracy of the construction, the successive exposures of strong sun 
contrasts, the pleasant shade of the pillars and the damp grass takes a longer while. 
Only after this stage is completed does the photographing process start, and taking 
photographs is challenging due to the monumentality of the aqueduct (about 25 
metres high). This raises historiosophical questions – how did the architect think 
it up, how did they plan it, how did they construct it, how is it that the aqueduct 
has survived to this day? Let us remember that in ancient times the constructor 
was called the architect.

Thus, impressions and emotions (αισθητικός – gr.) prevail both among those 
familiar with ancient architecture and those who find themselves there by chance. 
Emotions, impressions are much more than the scholastic aesthetics of bridges, 
which, through aesthetic canons, is framed as principles, indications, geometrical 
measures, etc. (Kant, Kritik der Urteilskraft, 1790; Critique of judgment, 1892). Of 
course, it is worthwhile to study aesthetics as a branch of philosophy but the very 
subject of these studies – aesthetic sensation – is an immanent human feature 
and is therefore fundamental. This is why aesthetic experience is as necessary as 
philosophical knowledge.

Let us now devote a few sentences to describing the structure of the aqueduct. 
Two colours dominate its image: the grey colour comes from granite stones 
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processed in a precise manner that is apparent even today, while the red colour 
is Roman brick, which builds two important structural elements. These are the 
brick interlayers in the pillars, which occur every five layers of the granite stones. 
Another element is constituted by two arch braces between the pillars, and the 
proper arches at the top of the aqueduct, where the water channel runs. 

The Roman brick-making technology was adopted from the Greeks. After a 
brick was formed from clay, a drying process in the kiln followed, which prevented 
the brick from cracking. The thickness of the brick is about 4 cm, other dimensions 
are not available. In the Roman times, stone was often interlaced with thin layers 
of brickwork at specific intervals -in this case, there are five bricks in each interlace 
layer. In addition to the interesting ornamental polychrome, the resulting layers 
served to create a levelling layer between the successive segments of granite 
blocks. It is also possible that the brick interlayers stabilised the relatively high 
pillars during earthquakes, so they may have acted as a kind of mass vibration 
damper. The compressive strength of the Roman brick is much lower than that of 
cut granite blocks, but its load-bearing capacity is sufficient for the construction 
of small arches. 

Unfortunately, judging by the photos, the arches that stabilise the entire 
aqueduct longitudinally are the least durable. The lateral stability of the pillars 
depends on the visible buttresses. Unfortunately, they are missing in many places. 
Some of the buttresses have deteriorated, making it possible to look inside the 
pillar. Note that the buttresses are only made of cut granite blocks, without layers 
of brick, and are about 10 cm higher than those found in the pillars. At the same 
time, it is clear (Fig. 15.2.c) that the buttresses were very shallowly embedded 
in the pillars. With their considerable heights and poor anchorage, spalling and 
destruction of the buttresses occurred. There are no remains of the buttresses in 
the vicinity of the aqueduct.

The purpose of the last paragraphs is to discuss the content of Fig. 15.2.d, i.e. 
the composite filling of the interior of the pillar with a Roman concrete-based 
material called pozzolana (hydraulic cement, i.e. ash mixed with lime in a ratio 
of ~ 2:1; once water was added, the setting took place). Fig. 15.2.d shows an 
aggregate of volcanic stones with a conventional diameter fraction of 10 cm. There 
also appear three times larger grains/stones. The vertical section is a segment five 
granite blocks high. Therefore, it can be concluded that the pillar was built together 
with the buttresses.

An extensive search of internet resources has been carried out, but, unfortunately, 
it was not possible to find any contemporary inventory of the aqueduct. The 
detailed dimensions are not known. Nothing is known of the foundations.
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a)    b)  

c)   d)
Fig. 15.2. Acueducto de los Milagros, Mérida, Spain a) general view with a water intake 

b-c) close-up showing the absence of pillar buttress c) composite structure

***

The Greek architectural canons and the book De Architecture do not refer to 
bridges. The arch bridge appeared as early as the times of Alexander the Great, but 
the development of this technology took place in Roman times. By Roman times 
one understands the period of the Western and Eastern Empires. Suffice it to say 
that Roman military roads were initially winding to avoid water obstacles. It was 
only with time that bridges began to be built, of which about a thousand were 
constructed. About half of these have survived in various forms to the present day. 
Arch structures are mechanically very efficient and therefore durable.

Aesthetic canons for bridges appeared in the 20th century. The most famous 
set of criteria is developed by Fritz Leonhardt. His book starts on a high note with 
the author quoting de gustibus non disputandum est. If this is the case, then the 
only way is a subjective discussion of the aesthetics of bridges through numerous 
examples of their images taking into account significant interactions with the 
environment, current technological possibilities, the usability of an object, current 
aesthetic trends, etc. Such an approach is always burdened with some form of 
decision-making and remains valid over a period of time corresponding to one to 
three generations. For this reason, one can discuss the aesthetics of Gustave Eiffel’s, 
Robert Maillard’s, Fritz Leonhardt’s, Riccardo Morandi’s or, nowadays, Santiago 
Calatrava’s bridges. The paper (Leonhardt, 1968) is an excerpt from a bible of 
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bridge aesthetics, an example of which is the book by Fritz Leonhardt (Leonhardt, 
1984). The content of the book is cited on every occasion, so it is probably fair to 
say that it is now a classic in the field of bridge structure assessment. In particular, 
a set of criteria for a proper bridge is listed, including the aesthetic criteria defining 
an aesthetic canon:

fulfilment of purpose/function – proportion – order – refinement of form 
– integration into the environment – surface texture – colour – character – 
complexity – incorporating nature.

Numerous applications of Leonhardt’s canon can be cited but let us refer here to 
a professional blog entitled The Happy Pontist that has been kept for over a decade. 
The author of the blog is skilful in applying all the ten criteria of Leonhardt’s canon 
to the description of bridges. However, applying the classical Leonhardt’s criteria 
sometimes does not lead to sufficient results. These are open judgements, ending 
with unanswered questions. An example is the article (http://happypontist, 2009) 
which considers the new style and aesthetics of Santiago Calatrava. 

The magnificent Viaduc de Millau designed by Michel Virlogeux and Norman 
Foster meets Leonhardt’s criteria by 100 percent. However, the last twenty 
years have seen a new bridge concept formulated and implemented by Santiago 
Calatrava, laid down in On the Foldability of Space Frames (Calatrava, 1984). Some 
of Calatrava’s bridges differ so significantly from Leonhardt’s classic that the new 
concept is on the verge of validity of Thomas Kuhn’s paradigm. 

The author takes the opportunity to present the work of the Warsaw 
Polytechnic professor Zbigniew Wasiutyński entitled On the Architecture of Bridges 
(Wasiutyński, 1971), written in the 1970s, which corresponds to the classical 
description of bridges. Unfortunately, the book is not popular enough. It is written 
in Polish and therefore not generally available. The book is a multi-level study with 
chapters devoted to psychophysical processes, feelings and moods, the importance 
of feelings in architecture and construction, visual perception, the formation of 
perception, perception of shapes, traces and associations of perceptive processes, 
the principles of architecture, and an overview of bridge architecture. 

The seriousness of the content, the narrative used, and the resulting statements 
are difficult to question. Even if a thought of discussing the architecture of bridges 
arises, it is not to question the formulated concept. 

Let us consider the bridge aesthetics proposed by Z. Wasiutyński as a list of the 
following principles: 

wholeness – making an aesthetic impression is conditioned by the 
perceptibility of all the elements of the form and their interrelations – 
simplicity of the form – the number of elements in the form should be small 
enough for the interdependence of the elements in the form to be perceptible 
– legibility of the form – for the form to evoke aesthetic impressions, the 
element associations should be easily perceptible – avoiding emptiness – for 
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the form to make an aesthetic impression, it must satisfy the cognitive 
aspirations of the observer – regularity of the form – regular (equal) forms 
are conducive to arousing aesthetic sensations.

Classifying a single structure is relatively straightforward. However, the variety 
of bridges makes an aesthetic comparison of several bridges complicated or 
even impossible. An example here is a set of photographs of various well-known 
contemporary bridges considered to be pretty and interesting, while each of them 
is different, Fig. 15.3.

It is stipulated at the outset that the author shall not undertake an aesthetic 
evaluation of the bridges, ranking them from position 1 to 14. The author is 
in a privileged position anyway, since he has examined each of the bridges in 
situ, studied their technical documentation, and, finally, met their designers or 
builders. He also had some time to contemplate them independently in situ. So, 
he has formed his own impressions of the bridges, although he has no mandate 
to pronounce judgements. Even if the author proposed a classification of the 
structures, it would still be a very subjective verdict. If nobody can offer a scoring 
system to characterise an aesthetic impression, what can he give, then? He can 
introduce his own individual scoring method, which can potentially be contrasted 
with other ones.

Alternatively, the aesthetics of a bridge can be assessed by verifying its aesthetic 
features against a selected canon of bridge aesthetics. However, it should be borne 
in mind that such behaviour is personality-laden which is the case of any decision-
making process.

***

Now let us add brief information/commentary on each of the bridges in Fig. 15.3.

Fig. 15.3.a: A cable-stayed bridge over an artificial lake on the Euphrates 
River in the rugged mountains of Taurus. The bridge is at an advanced stage of 
construction, literally moments before the main span is welded together. The 
approaches and pylons are made of concrete, while the main span is steel.

Fig. 15.3.b: A night photo of Istanbul’s steel cable-stayed metro bridge over the 
Golden Horn. Old Istanbul is an ultra-historical place, a heritage of humanity. The 
histories of the Greeks, Romans, Byzantines, and Ottomans intertwine here. The 
construction of the bridge has caused worldwide discussion about its monumental 
form in such a culturally important place.
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Fig. 15.3.c: The River Douro flows through a deep gorge through Porto. The 
arched reinforced concrete motorway bridge is located at the mouth of the river. 
When the bridge was completed, the span of the arch (270 m) was the longest in 
the world. The white bridge is a gateway to the Atlantic.

Fig. 15.3.d: An amazing footbridge in London (owned by Her Majesty the 
Queen). It has been opened twice. In 2000, there was a blockage phenomenon 
(lock-in) of such dramatic proportions that the footbridge was closed for 2 years. 
Transverse vibration damping was introduced, and it works brilliantly now. The 
footbridge is a landmark of London. The static scheme is difficult to define – one 
could say it is a suspended, or ribbon structure, or one could use a more fashionable 
term – hybrid. Its position on the New Tate Gallery – St. Paul’s Cathedral axis is 
visible in the photograph.

Fig. 15.3.e: Rome is a city of arch bridges built from Roman times to the present 
day. The view of an arch bridge is always enhanced by the mirror image of its 
structure in the watercourse. Overall, the image is doubled by the symmetry. The 
bridge in the picture is a crude non-elevated reinforced concrete arch. One can 
best describe this bridge, if compared to other bridges over the Tiber River, saying 
that it is modest, cubist and poor.

Fig. 15.3.f: The photo shows a temporary, cable-stayed support structure for 
the formwork of the main arch bridge. The cinematic character is emphasised by 
the fact that the photograph was taken from the window of a moving train. The 
harsh and impoverished landscape of Estremadura forms a natural decoration. 
This “film” cannot be watched a second time.

Fig. 15.3.g: It is Calatrava’s first monumental bridge – primarily, a reinforced 
concrete and prestressed structure. A delicate, silvery steel truss departs from the 
massive arch heads. Here, the architect developed the bridge deck scheme which 
he later reapplied to the El Alamillo steel bridge.

Fig. 15.3.h: This is a cantilevered footbridge. The left-hand girder, visible in the 
picture, is supported by cables running almost parallel to each other from the high 
pylon. The footbridge is stable under full (whatever that means) load. As it has 
turned out, the bridge shakes noticeably when several people walk on it, but there 
is no danger of resonance. As Calatrava said, the architecture of the footbridge 
is a nod to ancient Greek architecture. Many people perceive the footbridge as a 
transformation of a Greek boat going out to sea. The tight fit of the footbridge into 
the densely urbanised uninteresting space of the city makes it impossible to take a 
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good postcard photo. The same pedestrian bridge suspension scheme was used for 
the much longer Sundial Bridge in Turtle Bay, California.

Fig. 15.3.i: Bilbao’s famous urban nodal point has a bridge element. An ordinary 
cable-stayed bridge, the first in Spain, has been adapted to the architectural and 
cultural level established by Frank Gehry. The colouring of the bridge pylon has 
been remade using structurally advanced materials, giving the pylon its name – 
L’Arc Rouge. The French artist Daniel Buren is the author of this arrangement.

Fig. 15.3.j: Rather than being cut up for scrap, Pratt’s26 steel truss from a rusting 
railway bridge has been given a new aesthetic role. The cut truss pieces, arranged 
in an architectural manner, are now a distinctive reference point on the outskirts 
of Victoria, indicating the presence of the bus station.

Fig. 15.3.k: Anyone in Badajoz walking from the train station towards the old 
town must walk over the renovated 16th-century multi-arc stone bridge over the 
Guadiana River. This 600-metre walk offers interesting views. Looking to the right, 
one can “watch a video” of the moving cable-stayed bridge incorporated into the 
reinforced concrete arch bridge. The captured stop-frame is an unintentional 
visual sore spot that can be found in many places, e.g. in Seville or Warsaw. 

Fig. 15.3.l: Bilbao has become a place enlivened by culture in various 
dimensions. The attention to interesting architecture attracts creators. Here, in 
1997, Calatrava designed a white-coloured steel arch bridge with a tempered 
glass deck. The structure is interesting through its individuality and is known as 
“Zubizuri zubia”, which means ‘white bridge’ in Basque. The side view shows an 
average simple arch bridge. It is different. Yes, there is an arch, which in the plan is 
supported at the diagonal points of the bridge deck. The bridge deck is in a small 
vertical and horizontal arch at the same time. The bottom chord (tie) of the arch 
also has a small vertical and horizontal curvature. The hangers running from the 
arch towards the edge of the bridge deck form two ruled surfaces. The hangers are 
full circular steel bars. Calatrava uses a platform that is illuminated from below. 
The tempered glass used is only glass. In rainy weather, the pavement becomes 
slippery and accidents involving pedestrians occur. As can be seen in the attached 
photo, this problem has been addressed through reducing the illuminated area and 
using rough carpeting.

26 The Pratt truss bridge mode was patented in 1844 by Thomas Willis Pratt and his father Caleb 
Pratt, both of whom were American engineers.



181

a)  b) 

c)  d) 

e)  f) 

g)  h)  

i)    j) 

k)  l) 
Fig. 15.3. Examples of modern, aesthetically interesting bridges or bridge events a) Nis-

sibi Euphrates Bridge (2015) b) Haliç Metro Bridge, Istanbul (2014) c) Ponte da 
Arrábida, Porto (1963) d) London Millennium Footbridge (2000) e) Ponte Duca 
d’Aosta, Rome (1942) f) temporary scaffolding, Extremadura (2015) g) Puente 
Lusitania, Mérida (1991) h) Katehaki Pedestrian Bridge, Athens (2004) i) La Salve 
zubia, L’Arc Rouge, Bilbao (2019) j) sculpture made from railroad bridge in front 
of bus station, Vitoria-Gasteiz, Vizcaya k) view from Puente de Palmas, Badajoz  
l) Zubizuri zubia, Bilbao (1997)
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The classical criteria can certainly be applied to a large extent, but at the same 
time contemporary bridge aesthetics is rapidly diverging towards the forms of 
Calatrava’s bridges. The two footbridges in Bilbao and Athens can only be seen 
through the prism of Foldability of Space Frames. 

In conclusion of the considerations on the aesthetics of bridges, the proven 
rule de gustibus non disputandum EST is recalled again. As it seems, it is possible 
to escape recognized situations in aesthetic evaluation. If tastes are not the subject 
of discussion, then statistical estimation can be used, e.g. the demanding zero-one 
evaluation, (0 – negative; 1- positive), (Karas, 2017).

The use of statistics can significantly moderate the importance of authority 
figures and at the same time increase the potential of individual sensitivity.

Fig. 15.4. Erasmus students assessing the footbridge aesthetics

In the case of the footbridge in the People’s Park in Lublin (Karas, Gnyp, 2022), 
a group of international Erasmus students of architecture/civil engineering, using 
the zero-one evaluation of the footbridge, have obtained to the following result: 

(0: 1; 1: 14).

In the case of the footbridge in the People’s Park in Lublin, the aesthetic 
evaluation demonstrated a clear acceptance of its aesthetics. Only after the zero-
one evaluation is carried out does the discussion take place, which is a defence of 
an individual assessment of the aesthetics of an object. Usually, a heated debate is 
an added value to the perceived impression.

***
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Summaries in Polish and English

Streszczenie

Monografia jest wynikiem prowadzenia przez ponad dekadę zajęć z przedmiotu 
Fundamentals of Bridges dla studentów programu Erasmus. 

Stalowo-betonowy dźwigar kompozytowy jednocześnie obejmuje zagadnienia 
mostów stalowych i betonowych. Mosty zespolone budowane są od ponad 100 
lat. Do podstawowego projektowania wystarczy znajomość mechaniki klasycznej, 
jednakże z uwzględnieniem reologii stosowanych materiałów, znajomości 
dynamiki konstrukcji mostowych, inżynierii materiałów budowlanych, a także 
zrównoważonego budownictwa i estetyki obiektów mostowych. Oczywistym 
elementem projektowania i badania mostów jest umiejętność stosowania 
odpowiednich procedur numerycznych i zdolność do tworzenia efektywnych 
modeli MES. W monografii zastosowano taką właśnie perspektywę problemów 
inżynierskich. Krótko, ale wystarczająco, wspomniano o rachunku operatorowym, 
dynamice w ujęciu dużych prędkości odkształceń, rachunku różniczkowym 
z  pochodnymi ułamkowymi oraz o nowym sposobie oceny estetyki. Wszystkie 
tematy są opisane na tle historycznym mechaniki i matematyki. Bibliografia 
zawiera odniesienia do prac historycznych i współczesnych, a nawet najnowszych.

Książka jest adresowana do inżynierów mostowych oraz studentów inżynierii 
lądowej, w tym w szczególności studentów programu Erasmus.

Słowa kluczowe: stalowo-betonowy dźwigar zespolony, metoda Courbona, 
rachunek operatorowy, modele reologiczne, dynamika – duże prędkości 
odkształcenia, estetyka mostów
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Summary

The monograph is the result of teaching the Fundamentals of Bridges course to 
Erasmus students for over a decade. 

The steel-concrete composite girder covers steel and concrete bridge issues 
simultaneously. Composite bridges have been built for more than 100 years. For 
basic design, a knowledge of classical mechanics is sufficient, however, taking into 
account the rheology of the materials used, knowledge of the dynamics of bridge 
structures, construction materials engineering, as well as sustainable construction 
and bridge aesthetics. An obvious part of designing and testing bridges is the 
ability to apply appropriate numerical procedures and the ability to create effective 
FE models. The monograph applies this perspective to engineering problems. 
Brief but sufficient mention is made of operator calculus, dynamics in terms of 
high strain rates, differential calculus with fractional derivatives and a new way of 
evaluating aesthetics. All topics are described against the historical background 
of mechanics and mathematics. The bibliography includes references to historical 
and contemporary and even recent works.

The book is aimed at bridge engineers and civil engineering students, including 
in particular Erasmus students.

Keywords: steel-concrete composite girder, Courbon method, operator 
calculus, rheological models, dynamics – high strain rates, aesthetics of bridges
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Review quote:
The monograph is intended for civil engineering students at Polish 
technical universities, and in particular for Erasmus students from 
abroad. It can also be used by bridge designers as well as engineers 
designing composite structures in the general sense. … Writing 
a monograph on steel-concrete composite bridges for students 
from various countries and many universities with different 
specializations and different levels of mathematical, physical and 

technical background required the author’s many years of teaching experience ... . All this, 
however, did not prevent the author from writing a monograph at a high mathematical 
level with an excellent background in theoretical mechanics, strength of materials, 
mechanics of structures and theory of elasticity and rheology.

Full Professor Wacław Szcześniak, Warsaw University of Technology

Review quote:
The book is well structured with interesting contents that are really 
clear and well‐explained using a good number of references. It is 
easy to follow and understand for the reader and provide useful 
information for students of  bridge construction field, young 
graduates or researchers and even as basic guidelines for bridge 
design.

Assoc. Professor, Sindy Seara-Paz, University of A Coruña 
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