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Any failure on the recovery system will cause a lot of environmental damage as well as 
energy loss. Hereof two types of alternatives; fast opening valve system (FOVS) and seal 
drum system (SDS) may be installed. The focus of this article is on the decision stage to 
choose the most preferred option in terms of reliability assessment. The major challenge in 
the research problem is on changing the pressure and temperature during operational cycles, 
which significantly affect the reliability. In addition, the lack of historical data complicates 
the reliability assessment method. Hence, we proposed a hybrid approach using fault tree 
analysis (FTA) and the Mamdani fuzzy inference to estimate reliability response as a func-
tion of a few frequently operating pressure and temperature. Also, discrete-event simulation 
helped us to evaluate the system reliability at different operating conditions.  The compari-
sons reveals that the FOVs outperforms on average of 22.4% than the SDS and it is recom-
mended for putting into practice for purchasing.
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terms if discrete-event simulation.
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1. Introduction 
Today, saving energy and preventing environmental pollution 

caused by burnt fossil fuels are two important issues in the refinery 
equipment selection process. It is no longer time for flare gases to be 
burned in refineries and, in addition to wasting a good energy source, 
to injury the environment.

In almost all societies, tackling the significant environmental dam-
age caused by fossil fuel emissions is on the agenda of senior execu-
tives. They must use all means in strategic decision-making to reduce 
environmental losses to save the future. Countries participating in the 
Paris climate agreement, developed under the United Nations Frame-
work Convention on Climate Change (UNFCCC), are bound to take 
actions to reduce their greenhouse gas emissions to meet a nationally 
determined contribution (NDC). According to [8], flaring reduction 
plays a major part in facilitating the reduction of emissions and reach-
ing the targeted NDC. To this end, refinery industries are setting aside 
portions of their budgets to expand refineries lacking flare gas recov-
ery units (FGRUs) to recover a large portion of flare gas, making it 
available for energy production etc. 

It is vital that FGRU has a continuous operation as it prevents extra 
emission to the atmosphere and returns large benefits, so a proper 

safety sub-system is required to prevent failures caused by the out-
of-range pressure and temperature of the gas. Therefore, decision-
makers are facing the daunting task of choosing among the proposed 
plans for the FGRU safety structures. The chosen alternative must be 
fully justified in terms of resilience against the volatile operating con-
ditions, thus the need to make a comprehensive prediction of system 
reliability. 

The selected alternative will be operating for more than two dec-
ades and making the wrong choice can lead to huge financial losses 
or a large amount of pollution because of more failures. Since the 
decision-making is performed in the pre-installation and purchasing 
stage, failure data are not available. Besides that, precision in reli-
ability prediction needs the consideration of alterations in reliability 
value caused by operational conditions and contributing factors. The 
generated reliability values must be responsive towards more than 
only time which is the output of the traditional reliability methods. 
Demonstration of the changes of reliability versus certain contributing 
factors requires proper initial data able to describe such changes and a 
proper technique to process such data.  

Expert elicitation is widely used in papers to compensate for the 
void of unavailable information when prediction is needed and has 

dynamic reliability assessment, Fault Tree Analysis (FTA), Mamdani Fuzzy Inference 
Method; discrete event simulation, flare gas recovery system.
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the flexibility to provide a researcher with the desired type of data. 
The failure probability of components can be assessed in different cir-
cumstances using the opinion of a group of experts. Changes in failure 
probability versus contributing factors can help calculate the relevant 
changes of safety system reliability that is the main requirement for 
a prognostic study. Quantification techniques generate probabilities 
from linguistic possibilities so that calculations are performed. Data 
are gathered for the certain key components whose failure will cause 
the failure of the system and to identify those components a functional 
and physical breakdown is required.  

Fault tree analysis (FTA) can demonstrate the functional and physi-
cal breakdowns of the system and can be inserted with different types 
of data. This provides the possibility of branching and dividing fail-
ure causes and detecting the groups of components whose failures 
cause a major system failure. FTA uses logical gates such as “AND” 
and “OR” to describe the effects of components’ failure on system 
breakdown using the Boolean algebra and has wildly been used for 
safety, risk, and reliability analysis. However, as for most techniques, 
FTA has its own limitations. For instance, FTA’s routine calculation 
methods can’t describe the changes of the output versus changes of 
the basic event values. Time is one of the factors able to change the 
basic event values and in certain cases, the similarities of the output 
values in a specified period of time would lead to choosing the wrong 
alternative. Yet, time isn’t the only factor that influences FTA’s output. 
For systems operating under volatile conditions, stress factors also af-
fect FTA’s output but their influence can’t be modeled.  

FTA receives numerical data, so in order to quantify the linguistic 
data gathered from expert elicitation, the fuzzy inference system (FIS) 
is a powerful technique to be used for quantification. This helps de-
scribe changes in basic event probabilities with the changes of stress 
factor levels. So, a fusion between FIS and FTA leads to having a 
responsive FTA output. With this being said, neither a lot of reported 
research exists on the development of a technique for FTA enrichment 
nor has there been any work on the combination of FIS and FTA. 

The main goal of this paper is to develop a practical technique to 
compute the changing output of the FTA, which is reliability in this 
paper, versus contributing factors so that an accurate prediction of 
performance is made. Performance predictions help in making a justi-
fied choice between the proposed alternatives in the absence of his-
toric data. The proposed fuzzy interface combinatorial usage of FTA 
and FIS (FIFTA) is an innovative approach proposed here to tackle 
reliability estimation in the absence of historical data. Also, for more 
accurate calculation, a combination of FTA and discrete-event simula-
tion is used so that with the help of this alternative method, the reli-
ability of the two systems can be calculated. 

 These two methods can also graphically illustrate reliability re-
sponse surface as a function of the relevant covariates to provide 
insights especially for decision makings in the purchasing stage. It 
provides an applicable method for a facile computational prediction 
of future performances that aims to replace the usage of failure rates 
by a combination of instructed expert elicitation and fuzzy inference 
system and discrete event simulation. 

In section 2, there is a review of papers with similar cases. Section 
3 provides information about the proposed alternatives for the safety 
sub-systems. In section 4, the challenges of calculating valid reliabil-
ity for the mentioned alternatives are discussed. The proposed method 
for this is found in sections 5 and 6. Two methods are implemented 
on the alternatives, and the results are presented in section 7 where 
further discussion is also made for more clarification. A conclusion is 
made in section 8. 

2. Literature review 
Reliability engineering is a major sub-discipline for systems engi-

neers to assess the probability of surviving a system over time. This 
method focuses on lifetime evaluation under stated conditions for a 
specified period of time. Various researchers have tried to provide ef-

ficient methods for estimating system reliability based on empirical 
data. Some of them proposed aggregate method of selecting a theo-
retical distribution for empirical data [19]. They applied three criteria 
for assessing the quality of the goodness of fit.

 If the operating conditions change, then the reliability analysis will 
be a difficult task, which is a matter of dynamic reliability. In dynamic 
reliability analysis, a set of the mathematical framework is presented 
which has the capability of handling interactions among components 
and process variables. In principle, they constitute a more realistic 
modeling of systems for the purposes of reliability, risk, and safety 
analysis. Dynamic reliability requires more sophisticated tools than 
non-dynamic reliability. Dynamic reliability needs to apply a more 
complicated mathematical methods approach takes into that account 
changes or evolution of the system structure. 

Changes in process parameters may be random or deterministic. 
Indeed, reliability modeling of the former is far more difficult than the 
latter and is often accomplished by computer simulation techniques. 
Interested readers could refer to [11] for deterministic changes, [4] for 
stochastic changes and [18] for ranking defects. 

 Ambiguity and vagueness are issues that are caused by the un-
known characteristics of the complex systems or insufficiency of 
historical failure data that leads to making rough estimations, hence 
increased error in the final results. Therefore, to minimize this er-
ror, fuzzy logic may be a proper alternative [16]. A combination of 
FTA and fuzzy logic would create the new (FFTA) technique that has 
wildly been studied in recent years where expert elicitation is used to 
obtain the linguistic values as possibilities which are then transformed 
into quantitative probabilistic values for basic events of the fault tree. 
[15] Employed a combination of fuzzy logic and expert elicitation to 
deal with vagueness and subjectivity of the information and generated 
basic event failure probabilities without reliance on quantitative his-
torical failure data and performed a sensitivity analysis using impor-
tance measuring. Yazdani et al. [21] used fault tree qualitative analysis 
technique to identify various potential causes of crude oil tank fire and 
explosion (COTFE) and used a hybrid approach of fuzzy set theory to 
quantify the COTFE fault tree; the results were compared with that of 
a conventional fault tree. Weak links were identified using importance 
measuring of basic events. [14] proposed a fuzzy-based reliability ap-
proach to deal with qualitative linguistic terms to evaluate the failure 
likelihood of basic events of nuclear power plant safety system; and 
validated the results by a benchmarking the generated failure prob-
ability to the actual failure probabilities collected from the operating 
experiences of the David-Besse design of the Babcock and Wilcox 
reactor protection system. 

Certain papers went further and tried to improve the elicitations 
and didn’t stop on a sole reliance on raw opinions. Baig et al. [3] used 
corrosion simulation software and provided the experts with the ob-
tained results to improve the elicitations. They gathered information 
to estimate the failure probability of CO2 transporting the pipeline 
using FTA. Attention to computer simulation in estimating reliabil-
ity has been considered by various researchers in recent years. The 
reason for this is the existence of different random variables and the 
complexity of systems analysis by analytical methods. For example, 
we can refer to [1, 11], and [13], whose methods have been cited by 
many researchers.

In order to deal with the uncertainty in linguistic data, researchers 
have often recommended the use of fuzzy methods. A two-dimension-
al fuzzy fault tree analysis to incorporate hesitation factor for expert 
elicitation where linguistic terms were expressed with a degree of 
hesitation introduced by [20]. Through applying such a technique, the 
probability of chlorine release was estimated for Indian conditions. 

In cases where historic data is insufficient but a failure rate may 
be obtained from a given static failure distribution that could satisfy 
the desirable accuracy, it is possible to obtain information from data 
banks like OREDA. Elsayed [6] performed a four-step procedure to 
estimate reliability with failure and repair data from OREDA and 
calculated availability and maintainability as well. Zhang et al. [22] 
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graded a floating offshore wind turbine (FOWT) system structurally 
and functionally, thereby assessing the sequentially dependent fail-
ures and redundancy failures using a dynamic fault tree. Reliability 
estimation was based on failure data achieved from OREDA.  In order 
to nominate a diagnostic method and measuring the total predictive 
performance score, an integrated fuzzy DEMATEL-fuzzy analytic 
network approach presented in [12].

In the case study cited in the current research, none of the afore-
mentioned alternatives for the recovery of flare gases were practically 
available, and empirical data on their performance were not avail-
able, so we had to use the experiences of technical experts in simi-
lar matters. This made the data collected via linguistic variables and 
we needed to use the appropriate tools for quantification to perform 
the calculations. Therefore, as a new initiative, a combination of the 
Mamdani Inference System; FIS and The Fault Tree Analysis; FTA 
methods has been used to investigate the various failure modes under 
different operating conditions.  However, it has been used in several 
cases for approximation and estimation with different purposes. Aza-
deh et al. [2] used FIS as a means of approximation for human reason-
ing to provide knowledge for correct and timely diagnosis of pump 
failures. Choi et al. [5] used FIS in combination with relative risk 
score (RRS) as a new approach for liquid and gas pipeline risk assess-
ment and proved that the new method provides more accurate results 
in comparison with the conventional method. Elvidge et a. [7] used 
Mamdani and Sugeno FIS as an alternative approach to qualitative 
risk matrix to handle multiple attribute risk problems with imprecise 
data. He found out that while Mamdani method is intuitive and well 
suited for human inputs, the Sugeno method is computationally more 
efficient and guarantees the continuity of the fi-
nal risk output surface.

Nematkhah et al. [9] investigated some meth-
odologies to how to decrease energy consump-
tion and reduce the environmental pollution of 
flare systems. In this study, three different sce-
narios evaluated by the use of an environmental 
flow diagram in a gas refinery in southern Iran. 
The results showed that pressurizing gas and 
injecting it into oil wells is one of the best ways 
to reduce flames in the Feller gas system. [22] 
studied three different system configurations 
on flare gas recovery to evaluate the efficient 
system. In this study, systems with liquid ring 
compressors and aqueous amine solvents for 
the abatement of acid gases are used in a refin-
ery complex. The results show that amine con-
sumption in some configurations is much lower 
than in others. 

Recently, two designs of flare gas recovery 
systems were designed and reliability was chosen as the deciding fac-
tor for comparing two systems. First, failure models of the two de-
signs have been implemented. Second, a stochastic hybrid method is 
used to evaluate the probability of disaster in these failures [8].

3. System description
Two alternatives are proposed as FGRU safety sub-systems to keep 

it intact against out-of-range characteristics of passing gas. These 
alternatives have many similar but their main difference is in the 
pre-flaring section which can either be a fast-opening valve system 
(FOVS) and seal drum system (SDS). The relevant diagrams are de-
picted in Figure 1 as (a) and (b) respectively. 

 There are various incidents that can lead to damage or FGRU 
breakdown. A dangerous scenario may occur when out of control gas 
pressure or gas temperature happens. Three hazardous scenarios are 
discussed in section 5.3. The purpose of installing a safety system is 
to block the routs leading to FGRU to keep it intact and to open more 
capacity to the flaring tower to prevent piping ruptures.  

There are pre-defined responses towards each scenario in each 
safety system that is initiated when dangerous temperature or pressure 
is detected by sensors and proper messages are sent to the valve actua-
tors. The actuators receive the signals from sensors and open or close 
a valve’s body; thereby directing the gas with dangerous temperature 
or pressure level to the flaring tower. If the safety subsystem, fails to 
respond towards a dangerous scenario, not only risky occur to FGRU 
but the safety subsystem itself is likely to get damaged.  

A general view of the FGRU depicted in Figure 2. Hence gas enters 
from the flare header to the safety system and is directed in a proper 
volume to the compressor to get prepared for recovery. The route lead-
ing to the recovery section is called the ‘vertical route’. The extra gas 
or gas with dangerous characteristics will be transferred through the 
‘horizontal route’ to be burnt in the flaring tower. The components’ 
names and symbols are provided in Table 1.

There are 3 main components in a vertical route that prevent the en-
trance of gas with dangerous characteristics to the compressor which 
are a rotary valve (RV1), a control valve  (CV1), RV1’s task is to 
close with sensors’ message and CV1 must close when a difference 
of pressure is detected between system entrance and the entrance to 

seal drum (SD).  
The horizontal route leads to the flaring tower 

before which (in the area depicted with a dashed 
line) the safety system (FOVS or SDS) must be 
installed here to react to the signals sent from 
sensors. This part of the safety system opens 
more capacity to the pipes, so the extra gas is 
emitted without causing any damage or helps 
direct some extra gas to the flaring tower to pre-
vent flashbacks. Flashback is the result of very 
low pressure in the horizontal route that will re-
verse the direction of the gas and damage pipes 
and components. 

Fig. 1. A schematic view of the FOVS (a) and SDS safety subsystems (b)

Fig. 2. Schematic view of flare gas recovery unit (FGRU)
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Of the two safety systems, SDS is a collection of SD and the ac-
companying valves which are two rotary valves (RV2 & 3) and two 
pressure safety valves (PSV 1& 2). SD in SDS, contains a proper level 
of water to keeps gas flow in a single direction (from inlet to the out-
let) which is helpful in preventing flashback making it quite useful 
for implementation in the pre-flaring section. SD also prevents gas 
outlet until the pressure reaches a desired, and often predetermined 
pressure.

On the other hand, FOVS remains a collection of valves that re-
spond to different scenarios by a harmonious function of sensors to 
make a safe passage for gas in a fashion that damages are prevented 
to the piping systems or to the FGRU. It comprises of a control valve 
(CV2) and a reserve line for when CV2 is being repaired, a pin valve 
(PV) and a fast-opening valve (FOV). When pressure increases in the 
horizontal route, valves in this structure will unlock one by one to 
provide more capacity for gas to be released into the flaring tower. 

4. Problem statement
The valuable components and repair costs of FGRU raises the im-

perative of the fully justified selection of a safety subsystem, resilient 
against the volatile operating conditions, to protect the FGRU against 
gas with dangerous characteristics. The resulting reduced damages to 
FGRU, apart from expenses, helps to minimize 
the emitted gas to the atmosphere, facilitating 
meeting NDC. 

Of the two suggested alternatives for the 
safety subsystem are FOVS and SDS. The one 
with higher reliability and consequently fewer 
failures should be chosen to decrease FGRU 
damages. FOVS or SDS will be the pre-flaring 
section of the safety subsystem whose com-
ponents interact with other components of the 
other sections so, making an isolated reliability 
assessment of them without considering their 
interrelations wouldn’t be valid. So, to compare 
them in term of reliability, the performance of 
the whole safety system must be assessed when 
either of them installed. 

The traditional reliability methods only con-
sidered the dependency on time which over-
looked the environmental factors. Using such 
results leads to having to tackle unpredicted 
failures in such a volatile environment and the 
objective is to obtain the reliability of the sub-
system when it is exposed to different operating 
conditions and different scenarios.  

Generating reliability values versus the three 
contributing factors of the studied case (time, 
pressure, and temperature), requires a specific 
type of data able to associate an operating con-
dition to a failure probability value. In other 
words, a function is required with a domain that 
consists of a space made up of three axes of time, pressure and the 
temperature limited to their boundaries (i.e. maximum, and minimum 
levels of contributing factors). The codomain is a value between (0, 
1) that describes a failure probability. In other words, a type of failure 
data is to be provided for each component that describes its endurance 
under a certain operating condition. Obtaining such data isn’t possible 
through measurement because the alternatives haven’t been installed 
yet, and there is no such data in the data-banks. 

When experiencing the need to making calculations for a system 
in its pre-installation stage, the available type of data are failure rates 
gathered with the assumption of a stable failure distribution from 
other similar systems. Reliability calculations based on failure rates 
show only reliability changes versus time and the assumption of a 
stable failure distribution neglects the effects of the stress factors. It is 

professionally recognized that the failure distributions’ scale changes 
with the presence of a stress factor whose level is higher than that the 
operating condition. This alters the area under the distribution func-
tion and consequently changes the reliability values.  

Apart from the need to gather a type of data that can describe the 
simultaneous presence of the contributing factors, a technique is re-
quired to process the data so that it is available to be used in the fault 
tree. It is intended to generate a response surface for reliability to 
study its changes versus contributing factors. Data is gathered using 
a designed questionnaire and the utilized technique is FIS, both of 
which are explained in the next section.  

5. The proposed method to estimate system reliability 
surface 

In order to estimate the recovery unit reliability as a function of op-
erating condition, dynamic fault tree analysis (FTA) fixed as the main 
core of the estimation.  Due to lack of historical data, expert judgment 
is used on the failure likelihood of each component at different operat-
ing circumstances. Then Mamdani fuzzy inference method is applied 
to quantify the linguistic data and to generate different points to draw 
the response surface for each alternative in a four-dimension space. A 
general overview of the proposed method is depicted in Figure 3.

Due to a lack of historical data in purchasing stage, we prepared 
a verified reliable questionnaire (Table 2) to analyze each alternative 
component’s breakdown likelihood over different process conditions 
based on the experts’ opinions.  Here temperature and presser are de-
duced as the main contributive factors on the components’ failure. To 
overcome the ambiguity, arouse from linguistic terms we converted 
all despondence via normalized fuzzy sets.  

The gathered data presented component failure possibilities in as-
sociation with temperature and pressure levels. Any data point reveals 
an expected prior possibility of a component lifetime at a given tem-
perature and pressure using a triplet of (time, pressure, temperature). 
The purpose is to quantification that possibility so that a component 
failure probability response surface is drawn.  The surface will associ-
ate each component breakdown probability with an operating condi-
tion. Converting possibility into probability requires quantification 

Fig. 3. The proposed fuzzy inference fault tree analysis (FIFTA) methodology
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performed through FIS. But first fault tree (FT) should be drawn to 
model the failures. 5.1 to 5.3 present the section of Figure 3 that is 
related to drawing FT. The section of Figure3 that concerns FIS de-
velopment is presented in 5.4 to 5.6 and finally, FIFTA is presented 
in 5.7.

5.1. System failures 
In order to be able to draw FT, an explicit definition of failure is re-

quired. For that, the structural and functional breakdown of the system 
should be examined. The structural breakdown of the system indicates 
that the critical components of the FGRU are: pipes, sensors, valves, 
and compressors. The functional breakdown 
of the system indicates that gas is directed by 
pipes into compressor or flaring section, sen-
sors detect temporal characteristics of gas and 
send signals to valves when the gas with out-
of-range pressure or temperature enters, valves 
change the route of gas and open more exit 
capacity so that compressors or pipes are not 
damaged. Compressors alter the characteristics 
of the gas so that it is ready to be recovered.  

System failure occurs if the gas route isn’t 
altered because of valve failures or gas isn’t 
directed toward to the compressor because of 
piping damages. Valves fail under the effect of 
changing pressure and temperature that acceler-
ate valve body degradation. If valves fail, pipes 
and compressors are exposed to the danger of 
getting damaged by a hazardous scenario (5.3). 
Therefore, a failure definition can be presented 
as follows: 

Valves degrade gradually to the point of not being able to func-1. 
tion in demand. 
A hazardous scenario occurs i.e. gas with an out of the standard 2. 
level of temperature or pressure enters. 
Automated system fails to respond i.e. gas with out-of-range 3. 
pressure or temperature isn’t directed appropriately because of 
valve failures. 
Gas causes damages to the compressor or critical pipes, and 4. 
the system fails. 

This definition helps us divide basic events of FT and form the 
branches. These four segments occur respectively but FTA logical 
gates can’t enforce the order of occurrence. DFTA gates can’t be used 
because failure rates are required for solution and they are unapt for 
this study as there is the need to assess multi-dimensional data; so, in-
hibit gate is inevitably used to describe the relation between them. The 
second segment of failure definition is not a failure but an event, but it 
is presented in the model and its probability is considered the percent-
age of time that it happens (each percentage is presented in 5.3).  

Valves’ failure is caused by the changing pressure and temperature 
so failure data is gathered using the questionnaire in Table 2. These 
data will be the basis of FIFTA study where we insert different nu-
merical levels for pressures, temperatures and times into FIFTA to 
study the changes of failure probabilities of valves and the whole sys-
tem. But pipe and compressor failure probabilities are obtained using 
a different questionnaire where experts are only asked to specify the 
failure possibility of the components under one of the three hazardous 
scenarios. This is due to the fact that the cause of their failure is the 
occurrence of a hazardous scenario when there is no proper response. 
Defuzzification of these possibilities is performed using the method 
described in [10] for each scenario. The obtained probabilities are 
considered as a constant in FTA formula and the basic events describ-
ing their damages are not a part of FIFTA process. 

 It should be stated that the independent failures of pipes and com-
pressor (i.e. failures caused by initial defects, by degradation, by 
faulty design, etc.) are not considered here and it is assumed that they 

will remain intact in normal conditions during the predicted lifetime 
because of the sufficient protective measures and high-quality materi-
als. Also, sensor failures aren’t taken into account since changes in 
temperature or pressure have such a small effect on them that it can be 
neglected and since they are of high-quality materials, their independ-
ent failures are omitted from calculations. 

5.2. Constructing dynamic fault tree analysis 
Fault Tree; FT is constructed for both systems according to the 

above-mentioned failure definition. The first levels of this diagram 
are presented in Figure 4-a for FOVS and in Figure 4-b for SDS.  

5.3. Most common hazardous scenarios  
In order to examine fault tree in dynamic circumstances, three more 

probable extreme operational conditions examined in this research, 
they called hereinafter as:
Scenario a: Examining the failure of the system at high pressure op-

erating conditions with a chance of 33% according to the 
historical data. 

Scenario b: Examining at Low pressure) with a probability of 29% in 
occurrence. 

Scenario c: Examining at low temperature (22% occurrence).

Since there are two alternatives of FOVS and SDS for comparison 
at the above-mentioned three scenarios, six fault tree diagrams should 
be constructed. Figure 5 illustrates one of them as a sample. Interested 
readers can receive other diagrams by their request to authors. 

5.4.  Questionnaire cell formation 
As mentioned earlier, data should be gathered with a properly de-

signed questionnaire. In the designed questionnaire, experts are asked 
to express their opinion about the failure possibility of a component 
that ensures a certain operating condition created by contributing fac-
tors. For example, condition 1 is when a component is in its early 
age period, and endures a low pressure, and a low temperature, first 
cell of the questionnaire, and the expert provides a linguistic value in 
that cell using a fuzzy label like ‘low’ to describe failure possibility 
of the component in that condition. This linguistic data contains 3 
input variables (i.e. time, pressure and temperature) and 1 output vari-
able (failure possibility) giving it multiple dimensions. The purpose 
of gathering data in this manner is to study failures in each operating 
condition so that the whole system can be studied under each condi-
tion. As a result, the questionnaire should be designed in a manner that 
every cell represents an operating condition. In each cell, the expert 
describes the failure likelihood of the component in that condition. 
Table 2 shows the design questionnaire.  

Fig. 4. The main failure causes for FOVS (a) and SDS (b)

b)a)
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5.5. The Mamdani fuzzy inference system  
Failure possibility examined based on information gathered from 

qualified experts. Their judgments requested different operation con-
ditions using lingual terms, which modeled by fuzzy numbers. Some 
researchers have used the method of fuzzy inference in the oil and gas 
and petrochemical industries for risk analysis [6]. Hence Mamdani 
FIS is applied to create a control system by synthesizing a set of lin-
guistic control rules obtained from experienced human operators. In a 
Mamdani system, the output of each rule is described by a fuzzy set. 
Since Mamdani systems have more intuitive and easier-to-understand 
rule bases, they are well-suited to expert system applications where 
the rules are created from human expert knowledge, such as medical 
diagnostics. This technique generates a numerical value i.e., failure 
probability. E.g. it is required to know the failure probability of RV 
that has operated for 2 years when it endures a pressure of 50 bars and 
a temperature of 0℃. Each cell in the questionnaire describes this op-
erating condition to a degree between (0, 1) i.e. membership function. 
The opinions for each operating condition are aggregated based on the 
membership functions of each cell to generate a failure probability. 
The generated probability by FIS suggests for the above example, that 
there is a 0.02 chance of failure for RV in that condition. Since there 
are 9 types of valves (Table 1), and opinions vary about their failure 
likelihood, a FIS should be developed for each of them.   

Table 1. Valves and their types of failures

Name symbol Abb. Used in Failure type

Control valve
CV1 Fig. 2 Fail to close

CV2 Fig. 4 Fail to open

Rotary valve
RV1 Fig. 2 Fail to close
RV2 Fig. 3 Fail to close
RV3 Fig. 3 Fail to open

Pin valve PV Fig. 4 Fail to rupture

Fast opening 
valve FOV Fig. 4 Fail to open

Pressure 
safety valve

PSV1 Fig. 3 Fail to open

PSV2 Fig. 3 Fail to open

Spare Globe 
valve

SP1 Fail to close
SP2 Fail to open
SP3 Fail to open
SP4 Fail to open

Table 2. Weighted mean of failure possibilities judged by 12 experts

Time

↓ – ↑

Pressure Pressure Pressure

↓ – ↑ ↓ – ↑ ↓ – ↑

temp temp temp temp temp temp temp temp temp

↓ – ↑ ↓ – ↑ ↓ – ↑ ↓ – ↑ ↓ – ↑ ↓ – ↑ ↓ – ↑ ↓ – ↑ ↓ – ↑

stress B G G B G G O Y Y Y B B Y B B R O O O Y Y O Y Y R R R

RV1 10 3 3 10 3 3 17 9 9 13 11 11 11 11 9 22 17 17 18 11 11 18 13 11 24 24 23

↑: high              ––: medium               ↓: low

FIS Rules for the basic event, representing RV1 fail to act: 
If (Time is low) and (Temperature is low) and (Pressure is low) then (possibility is 10) (1)1. 
If (Time is low) and (Temperature is medium) and (Pressure is low) then (possibility is 3) (2)2. 
If (Time is low) and (Temperature is high) and (Pressure is low) then (possibility is 3) (3)3. 
If (Time is low) and (Temperature is low) and (Pressure is medium) then (possibility is 10) (4) 4. 
If (Time is low) and (Temperature is medium) and (Pressure is medium) then (possibility is 3) (5)5. 
If (Time is low) and (Temperature is high) and (Pressure is medium) then (possibility is 3) (6)6. 
If (Time is low) and (Temperature is low) and (Pressure is high) then (possibility is 17) (7)7. 
If (Time is low) and (Temperature is medium) and (Pressure is high) then (possibility is 9) (8)8. 
If (Time is low) and (Temperature is high) and (Pressure is high) then (possibility is 9) (9) 9. 
If (Time is medium) and (Temperature is low) and (Pressure is low) then (possibility is 13) (10)10. 
If (Time is medium) and (Temperature is medium) and (Pressure is low) then (possibility is 11) (11)11. 
If (Time is medium) and (Temperature is high) and (Pressure is low) then (possibility is 11) (12)12. 
If (Time is medium) and (Temperature is low) and (Pressure is medium) then (possibility is 11) (13) 13. 
If (Time is medium) and (Temperature is medium) and (Pressure is medium) then (possibility is 11) (14)14. 
If (Time is medium) and (Temperature is high) and (Pressure is medium) then (possibility is 9) (15)15. 
If (Time is medium) and (Temperature is low) and (Pressure is high) then (possibility is 22) (16)16. 
If (Time is medium) and (Temperature is medium) and (Pressure is high) then (possibility is 17) (17)17. 
If (Time is medium) and (Temperature is high) and (Pressure is high) then (possibility is 17) (18) 18. 
If (Time is high) and (Temperature is low) and (Pressure is low) then (possibility is 18) (19)19. 
If (Time is high) and (Temperature is medium) and (Pressure is low) then (possibility is 11) (20)20. 
If (Time is high) and (Temperature is high) and (Pressure is low) then (possibility is 11) (21)21. 
If (Time is high) and (Temperature is low) and (Pressure is medium) then (possibility is 18) (22) 22. 
If (Time is high) and (Temperature is medium) and (Pressure is medium) then (possibility is 13) (23)23. 
If (Time is high) and (Temperature is high) and (Pressure is medium) then (possibility is 11) (24)24. 
If (Time is high) and (Temperature is low) and (Pressure is high) then (possibility is 24) (25)25. 
If (Time is high) and (Temperature is medium) and (Pressure is high) then (possibility is 24) (26)26. 
If (Time is high) and (Temperature is high) and (Pressure is high) then (possibility is 23) (27) 27. 
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The FIS has 5 functional blocks to measure data with multiple in-
put and output variables. Of these 5 blocks, database block and rule 
base block store predetermined data and if these blocks are formed, 
the others will perform the quantification. The formation of these two 
is performed as follows. 

When the input and output variables are 
identified, their range of variation is specified. 
Then the desired number of fuzzy labels (3, 5, 
10, etc.) divide the variable’s variation range. 
Here, 3 labels namely high, medium and low are 
used for each input variable (whose combina-
tion builds up questionnaire cells) and 25 labels 
for the output variable (labels of the opinions).  
Fuzzy membership functions are defined for 
each fuzzy set which consists of the shape of 
each function (e.g. triangular) and its boundary. 
These data are stored in a database block whose 
formation is depicted at the top-right hand side 
of Figure 3. Figure 6 contains the shapes and 
boundaries of the membership functions for 
each variable which is obtained through con-
sultation with concerning engineering teams. 
The provided opinions by the experts that are 
fuzzy labels of possibility are FIS rules which 
are stored in the rule base block whose forma-
tion is depicted at the bottom right-hand side of 
Figure3. The two initial steps for rule base block 
formation are discussed in 5.4 and 5.6. 

5.6. Questionnaire partitioning 
FIS development wasn’t possible if all the 

level combinations of the input variables didn’t 
exist in the questionnaire and this caused too 
many cells which make human comparison quite 
inaccurate. In order to decrease the number of 
the comparisons and also to provide a guideline 
for the experts to help increase the accuracy, 
a zoning system is used based on how much 
stress a combination of contributing factors’ 
levels (one of the questionnaire cells) creates 
for a component. A component is more likely to 
fail in a condition with a higher degree of stress. 
Thereby 5 stress levels were specified to create 
5 regions (stress row in Table 2) for compari-
son instead of 27-factor level combinations (i.e. 
3*3*3). Experts were to fill out these regions by 
a set of fuzzy labels that was suggested for each 
stress region but they were free to choose other 
values for different combinations in the same 
stress region if they saw fit. Table 3 shows each 
stress level with its proper set of fuzzy labels. 
Table 4 shows membership function boundaries 
for the output variable. 

Data was gathered from a group of 12 en-
gineers with relative knowledge and enough 
experience from departments of management, 
maintenance, and design. Since opinions vary, 
aggregation is needed so that a single value is 
produced for each cell. To this end, a weighing 
factor was calculated for each engineer accord-
ing to a weighing system in Table 5 so that a 
weighted mean could be calculated for the 
opinions. Table 6 shows the computed weight-
ing factors for each engineer. The results of the 
weighted mean for the RV1 are presented in Ta-
ble 2 as an example from which the rules for 

this component were extracted and were written below the Table.

5.7. Fuzzy Inference Fault Tree Analysis; FIFTA  
At this point, FT is drawn, opinions are gathered to form the rule 

base block and membership functions are stored in the database block; 

Fig. 5. Failure tree diagram for FOVS at the high-pressure scenario

Fig. 6. The proposed Mamdani fuzzy inference system
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So, an FIS box is formed for each basic event which leads to the point 
where FISs should be linked to the drawn FT. 

The desired combination of variable scalar ranges (e.g. 7th year in 
a pressure of 150 bars and a temperature of 50℃) is selected as an op-

erating condition (i.e. combination (i)). This combination is inserted 
as an input for each FIS and a probability value is generated for each 
basic event. Basic event probability values are inserted into the FTA 
formula and the probability of the top-event is calculated (i.e. prob-
ability (i)). Then a new combination is selected to generate a new top-
event probability and so on; until enough points are generated for the 
response surface to be drawn. The result is a n-dimensional surface 
(n-1: the number of contributing factors) whose vertical axis show FT 
output or cumulative failure probability (CFP) of the proposed alter-
native. The horizontal axes show the contributing factors. This proc-
ess is presented in the middle of Figure 3. Figure 7 illustrates a more 
detailed description of the process of generating one output point. 

The response on a 3-D surface is drawn for 
both systems, presented in Figure 8. Time is 
separated as the 4th dimension. The influence of 
time and the two other contributing factors can 
be seen simultaneously which is the unique trait 
of this technique.

6. Discrete-event simulation
In this section, the FTA method will be used 

again as the core of the method, and in addition, 
discrete event simulation will be used to evalu-
ate the system reliability.

One of the applications of discrete event sim-
ulation is in assembly and production systems 
and the use of this tool develops this capabil-
ity for managers and engineers to gain a broad 
understanding of their system and can evaluate 
the effect of a small change in the whole system. 
And thus be able to calculate the reliability of 
the system. For example, suppose that by mak-
ing a change in a station in the system, we have 
caused changes in the performance of that sta-
tion. These changes may be predictable because 
the system under study is extremely small and its 
relationship with other components has not been 
studied. But answering the question of what ef-
fect the changes made in this station will have 
on the efficiency and reliability of the whole 
system and on other stations is a question that 
is very difficult to answer without using simula-
tion tools. In many cases it is impossible. In this 
regard, in this section, a discrete-event simula-
tion is implemented to evaluate and compare the 
reliability of two common flare systems.

6.1.  Gathering input data 
The input data actually provides the driving 

force for the simulation model. The steps that 
need to be taken to create an efficient model for the input data are:

data collection,a) 

Table 3. Represented labels by stress regions

stress regions code represented levels Fuzzy labels

Green G Very low (1,5)

Blue B Low (6,10)

Yellow Y Medium (11,15)

Orange O High (16,20)

Red R Very high (21,25)

Table 4. Fuzzy ranges of fuzzy labels

label Fuzzy 
range label Fuzzy 

range label Fuzzy 
range label Fuzzy 

range label Fuzzy range

1 (0,4,8) 6 (20,24,28) 11 (40,44,48) 16 (60,64,68) 21 (80,84,88)

2 (4,8,12) 7 (24,28,32) 12 (44,48,52) 17 (64,68,72) 22 (84,88,92)

3 (8,12,16) 8 (28,32,36) 13 (48,52,56) 18 (68,72,76) 23 (88,92,96)

4 (12,16,20) 9 (32,36,40) 14 (52,56,60) 19 (74,76,80) 24 (92,96,100)

5 (16,20,24) 10 (36,40,44) 15 (56,60,64) 20 (76,80,84) 25 (96, 100)

Fig. 7. Generation of a single output in FIFTA for an FTA with (j) basic events

Fig. 8. Cumulative failure probability versus different operational conditions after running system for 7, 
14, and 21 years lifetime
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selecting the input probability distribution and determining the b) 
parameters of the selected probability distribution,
evaluating the selected distribution and its related parameters c) 
for the goodness of fit.

In order to collect data, the following methods were used:
observing the system and collect sufficient samples of each proc-• 
ess,

interviews with related experts,• 
imaging, video recording, and recording of system processes,• 
collecting raw data from software available at the refinery.• 

After collecting the required data, random variables were modeled 
using a candidate probability distribution. Hence any statistical pack-
age may be applied. Table 7 prepared a list of the best probability 
fitting function as well their relevant estimated parameters.

6.2. Simulation model 
After collecting all the necessary information from each of the flare 

gas recovery systems, and fitting the appropriate distributions for the 
data, a computer simulation of the systems was performed. In this 
research, the Arena software has been used for simulation. Arena is 
an application software for simulating discrete event systems. Arena 
is complete software for simulation studies and supports all steps of a 
simulation study. Arena provides templates that make it easy to create 
the right animation for simulation issues. Templates are a group of 
modules that contain entities, processes, and special language for a 
specific type of problem. Arena has an input analyzer and an output 
analyzer. The user can view the raw data input using the analyzer. The 
output analyzer is also for viewing and analyzing simulation data.

The settings of the simulation model components are mentioned 
as below.

A) Observation Period:
Since the work schedule of the flare gas system is usually deter-

mined at the beginning of each month, the observation period of each 
simulation sub run is considered to be 30 working days.

B) Number of replications:
In order to achieve acceptable results and reduce the length of the 

confidence interval of system performance criteria, it is necessary 
to run a simulation model for a significant number of replications. 
The number of replications of the simulation is determined accord-
ing to the half-width of the system performance criteria. The most 
important performance measure for this purpose is the average system 
reliability. Our experiments showed that if we consider the number 
of replications of the simulation as 90, the half-width of the above 
performance criteria has reached an acceptable level and is about 1 to 
3% of the average.

Table 5. Scoring system

Constitution Classification Score

Professional 
position

Professor, GM/DGM, chief Engineer, 
Director 5

Asst. prof, Manager, Factory inspector 4

Engineer, supervisor 3

Foreman, technician, graduate 2

Apprentice operator 1

Service time

>30 years 5

20-30 4

10-20 3

5-10 2

<5 1

Education 
level

Ph.D./M.Tech. 5

M.Sc./B.Tech. 4

Diploma/B.Sc. 3

ITI 2

technical college 1

Age

>50 5

40-50 4

30-40 3

25-30 2

<25 1

Table 6. Experts’ scores and calculated weighting factors

# 
Ex

pe
rt

Title

Sc
or

e Service 
time

(years) Sc
or

e

Education level

Sc
or

e

Age

Sc
or

e Weighting 
score

W
ei

gh
tin

g
fa

ct
or

1 Engineer, supervisor 3 20-30 4 ITI 2 25-30 2 11 0.09

2 Apprentice operator 1 <5 1 technical college 1 <25 1 4 0.03

3 Foreman, technician, graduate 2 5-10 2 M.Sc./B.Tech. 4 <25 1 9 0.08

4 Foreman, technician, graduate 2 10-20 3 Diploma/B.Sc. 3 <25 1 9 0.08

5 apprentice operator 1 10-20 3 technical college 1 25-30 2 7 0.06

6 Engineer, supervisor 3 <5 1 M.Sc./B.Tech. 4 >50 5 13 0.11

7 Asst. prof, Manager, Factory inspector 4 5-10 2 ITI 2 25-30 2 10 0.08

8 Professor, GM/DGM, chief Engineer, 
Director 5 <5 1 ITI 2 <25 1 9 0.08

9 Engineer, supervisor 3 10-20 3 M.Sc./B.Tech. 4 <25 1 11 0.09

10 Engineer, supervisor 3 >30 5 technical college 1 25-30 2 11 0.09

11 Apprentice operator 1 5-10 2 M.Sc./B.Tech. 4 25-30 2 9 0.08

12 Professor, GM/DGM, chief Engineer, 
Director 5 >30 5 ITI 2 >50 5 17 0.14

Total sum 120 1.00
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C) Warm-up Period:
In order for the simulation model to reach a steady-state and the 

output of the model to be calculated in a steady state, a warm-up time 
is mainly considered for the system. This time period only plays the 
role of warming up and stabilizing the system performance criteria 
and has no role in the final calculations. 

In order to calculate the system warm-up time period, the behavior 
of some system performance criteria has been examined and the time 
it takes for them to reach a steady-state has been considered as the 
system warm-up time period.

 Figure 9 shows the trend chart of the average system reliability 
in three different replications. As can be seen from Figure 9, in all 
replications after a period of 4 days, the reliability of the system has 
reached a stable state. Therefore, the warm-up period of the system 
is 4 days.

D) Verification of the Simulation Model:
One of the basic steps after creating a simulation model is to check 

the verification of the model. In this section, it should be checked 
whether the structure of the simulation model is based on the concep-
tual model and its hypotheses. There are different methods to check 
the verification of the model. In this study, the following steps were 
performed to verify the model:

Checking software sub-models and debugging software 	
codes.
A more detailed review of the model by other experts.	
Checking model outputs for different inputs.	
Checking the model step by step and compare the output of 	
mode variables with manual calculations.
Preparation of two-dimensional and three-dimensional anima-	
tion of the model to understand and correct mistakes.

E) Validation of the Simulation Model:
Validation is the study of whether the conceptual model and the 

specific model created accurately represent the system under study. 
Since simulation is an estimate of the real world, it should be noted 
that it is not possible to validate 100% of the model with the real sys-
tem. In this research, the three-step method proposed by Naylor and 
Finger has been used:

Step 1: To develop a model with high frequent validity
The purpose of the first stage is to create a model that has the most 

apparent validity so that it seems logical from the point of view of 
the people in the model system. In this section, sensitivity analysis 
was used to check the apparent validity of the model; in this way, we 
changed the failure rate of system components and examined its im-
pact on system reliability. It is clear that as the failure rate decreases, 
the reliability of the system must increase.

Step 2: An Empirical Investigation of model hypotheses
In this step, two main categories of model hypotheses related 

to model structure and related to model information were examined. 
The above hypotheses were tested experimentally and intuitively 
with the cooperation of refinery experts.

Step 3: Examining the simulation outputs
The most effective consideration for validating the model is 

that the simulation outputs should not be as significantly differ-
ent as possible from the actual process outputs. For this purpose, 
the hypothesis test method has been used to validate the model 
outputs. In this study, the amount of system exhaust gas in has 
been selected as a criterion for comparison with the real system 
and validation of simulation outputs. Here, the unit of measure-
ment of gas exhaust is reported by MSCMD (Million Standard Cu-
bic Meter per Day).  Each cubic meter per day (m3/d) of flow rate 
equals: 0.000035 million standard cu-ft of gas per day (at 15°C).

In order to validate the model, the average exhaust gas of the simu-
lation model (Y1) was compared with the actual system average (Z1) 
and the following hypothesis was tested:

 ( )0 1 1: 65000H E Y Z= = ( )1 1 1: 65000H E Y Z≠ =

If the 0H hypothesis is not rejected, then there is no reason to reject 
the equality of the model exhaust gas averages and the actual system 
exhaust gas. If the assumption 0H  is rejected, then the assumption of 
the equality of the means of the exhaust gas of the model and the ac-
tual exhaust gas of the system is rejected and the model is not valid.

The results of the hypothesis test at a significance level of 0.05α =  
are as follows:

Test of mu = 65000 vs not = 65000,• 
N= 30,• 
Mean= 66342,• 
Standard Deviation=1065,• 
95% Confidence interval = (62436, 67596),• 
P-value =0.067.• 

Since the P-value (0.067) is greater than the significance level 
(0.05), there is no reason to reject the H0 hypothesis. Looking at the 
results of the above hypothesis test, we find that there is no significant 
difference in 95% confidence level between the outputs of the simula-
tion model and the outputs of the real system; Therefore, the resulting 
simulation model is valid.

7. Results and discussion 
Using FIFTA, a sufficient number of points are generated to draw 

a surface for each alternative. The cumulative probability of failure 
surface is a functionality associating an operating condition to a prob-
ability value. This is the required function described in the problem 
statement that associates a point in its domain (i.e. the space created 
by axes of time, pressure, and temperature and limited to their bound-
aries) to a value in its codomain (i.e. CFP); which demonstrates each 
alternative’s resilience under different operating conditions. It should 
be pointed out that cumulative failure probability is drawn instead 
of reliability to have a convex function for a better illustration. It is 
known that R(t) = 1 − F(t) so a rise in CFP means a fall in reliability.  

In order to illustrate the surfaces, one of the dimensions of the do-
main space needs to be separated so that the surface is drawn on a 
plane. The “Time” axis is separated to study the changes of reliability 
on the pressure-temperature plane. This provides the opportunity for 
the decision-makers to investigate the effects of the behaviors of gas 
on the system’s failure probability in its different age periods.   

Since FIFTA is being used to generate data, the surfaces on the 
pressure-temperature plane can be drawn for any age period of the 
system. 25 surfaces were drawn for the systems for each year, and 
the surfaces with the most significant changes were chosen to be il-
lustrated in this paper.  

The CFP surfaces were drawn so that reliability differences would 
help make a choice between the proposed alternatives. In the present-
ed graphs, the CFP surface of the FOVS is always below that of the 
SDS meaning that the reliability of FOVS is higher than that of SDS 
in all operating conditions. Thus, FOVS outperforms SDS for con-
cerned refineries and could be installed prior to the flaring tower. 

In order to have a simplified representation of the drawn graphs, the 
pressure-temperature plane is divided into nine areas, seen in Table 8.  

 Each of these areas stands for a general operating condition where 
a system has relatively similar behavior. A proper number of points on 
each surface are selected in each area and an average of their CFPs 
(ACFP) is calculated. The results can be seen in tables (9, 10, 11). The 
last column of the Tables shows the percentage of difference of the 

Table 8. NUMBER OF Divided areas on the temperature, pressure plain

Press
temp [0,200) [200,300) [300,350]

[100, 150] 1 4 7

[0, 100) 2 5 8

[-50, 0) 3 6 9
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ACFPs (as a representative of reliability and performance) between 
SDS and FOVS. As expected, there is always a positive difference in 
the last column because the CFP surface of the SDS is always above 
that of the FOVS.  

Besides the results obtained for the alternatives studied in this pa-
per, in other cases after drawing the surfaces, there might not be a 
clear winner. In some cases, the surface of an alternative may be par-
tially above and partially below that of the other alternative, which 
shows different resilience in different operating conditions. Thus, in 
the above Tables, some of the calculated numbers in the last columns 
would be negative. This could make the decision-making a lot more 
complicated. 

To make a decision between such alternatives, different scores 
could be attributed to each of the 9 areas. This way, equal reliability 
values in different operating conditions would not be equally signifi-
cant. Scores for each area can be based on a number of factors (e.g., 
the percentage of time they occur, how costly the type of the damage 
caused by an operating condition can be, the likelihood of failure of 
the systems in each area, etc.). It is up to the decision-making team 
to differentiate the importance of good performance in an area. The 
attributed scores by the decision-making team, are seen in column 2 
of the above-mentioned Tables.  

The score of an area can be used as a weight for the ACFP of that 
area to calculate a weighted average and have a single numerical value 
for the whole surface in a time period. Based on the calculated values 
for each year, a 2D graph is drawn in Figure 10 to show the difference 
in the performance of the alternatives versus time. 

Table 12 shows the weighted average of ACFPs. As seen in Figure 
10, there is a clear advantage to using FOVS since it has a lower cu-
mulative failure probability during its life (22.4% difference in aver-
age). Also, it can be seen that the difference in performance gets larger 
with the passage of time which concludes the comparisons.  

 Individual assessments can also be made on each alternative using 
the surfaces, and the following information might be of interest for 
the design team, maintenance team, and the management: The most 
dangerous scenario that can happen for the safety system is when gas 
passes through the systems with high pressure (250, 350) and low 
temperature (-50, 0) where the likelihood of failure is at its maximum 
level. Besides that, the safest operating condition is now detected in 
Figure 8.c where systems are in a high age. A combination of pressure 
of (50, 200) and a temperature of (50, 150) is the safest operating 
condition where both systems have the highest reliability level. The 
minimum level of pressure is considered “50” for a minimum flow 
that avoids flashbacks.  

The above paragraph highlights another possible usage for the re-
sults obtained from FIFTA in cases where the contributing factors can 
be brought under control. Using the resulting surfaces from FIFTA, 
one can identify the best operating areas where reliability value is 
higher and keep the levels of the contributing factors in the identified 
areas. These are the standard limits that can be implemented in moni-
toring or controlling subsystems.  

Other than that design improvements can be made in a system by 
identifying the operating conditions causing the lowest reliabilities. 
Then, if possible, sensitive components to that operating condition 
can be replaced with the ones that are more resilient against them 
(e.g. if high temperature decreases the reliability, high-temperature 
resilient components that can be used in the system).  

8. Conclusion 
In the current research, we showed that it is possible to obtain an 

interactive output result from FTA by fusing FIS and discrete-event 
simulation so that output changes can be identified for different 
contributing factors. The proposed expert-based approach and zon-
ing system can help gather the required information for calculations 
in the purchasing phase. This provides a practical approach towards 
prognostic studies when actual assessments haven’t been performed 
on a system. 

 We showed that from the two proposed alternatives as a safety 
sub-system for an FGRU, FOVS outperforms SDS in a different age 
in terms of reliability judging by the lower CFP, and since the systems 
are assessed in different operating conditions, the comparison is fairly 
comprehensive which makes the final decision highly justified. Tak-
ing multiple factors into account helps also prevent the unforeseen 
failures of the safety subsystem. 

The generated surfaces can also provide insight for design en-
hancements and control processes by indicating the system’s resil-
ience towards different operating conditions. Also, if there is the pos-
sibility to control the contributing factors, the surfaces can provide 
an approximation of standard limits for their levels. Here, judging by 
the generated results, it is suggested that the winning alternative isn’t 
exposed to a simultaneous rise in gas pressure and temperature due to 
the massive plunge of reliability in this area. 

Fig. 9. The warm-up period in the simulation model

Fig. 10. Weighted average of ACFPs versus time (year)
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1. Introduction
Manufacturers of agricultural vehicles and machines equipped with 

internal combustion engines make continuous efforts to reduce the 
negative impact of their products on the natural environment. It is re-
quired both by the legislative guidelines defined in given areas of the 
world, as well as by the increasing ecological awareness of the human 
population [2]. The main disadvantages of modern internal combus-
tion engines include noise emission and emission of toxic compounds 
into the atmosphere. It should be noted, however, that in relation to 
combustion engines produced even ten years ago, the emission factors 
decreased by at least several dozen percent. In parallel, considerations 
are being made to introduce a reduction in CO2 emissions, which is 
equivalent to a reduction in fuel consumption.

Agricultural motor vehicles in different regions of the world/coun-
tries have to undergo a number of different type approval procedures, 
including those related to the exhaust emission of pollutants. In the 
European Union, non-road vehicles must meet the Stage standards, 
which categorize the engines in terms of their intended use, power and 
emission indicators as shown, among others, by in the latest regula-
tion of the European Union [20]. Until now, legislative tests have been 
performed only for the internal combustion engines themselves on 

engine laboratory dynamometers. These engines, depending on their 
intended use, are most often tested in two basic types of tests: static 
(including the Non-Road Stationary Cycle NRSC) and dynamic (in-
cluding the Non-Road Transient Cycle NRTC). Currently, since 2019, 
guidelines for the monitoring of exhaust emissions of gaseous com-
ponents during real operation also begin to apply for selected NRMM 
subgroups, but the final limits are still not fully defined.

In the last 20 years (since 1997), the European Commission has 
presented 7 Directives which include type approval guidelines for 
off-road vehicles in terms of exhaust emissions. In 2016, Regulation 
(EU) 2016/1628 was introduced, which presented new exhaust emis-
sion limits for off-road vehicles in the Stage V norm, which has been 
in force since 2019. This document is the same for all EU Member 
States, as so far specific additional guidance (e.g. on particle number 
limits) existed only in some countries. The new document also covers 
a wider range of combustion engines: less than 19 kW and over 560 
kW in power. Figure 1 shows Changes in HC + NOx and PM emission 
limits for Stage I-V standards for an exemplary group of combustion 
engines of off-road machines. The presented relationships indicate 
that the PM limit in the Stage V standard is 97% lower than in the 
Stage I, and the HC + NOx limit has been reduced by 94%.

The paper presents the proposed proprietary M exhaust emission indicator, which is based 
on the assumption that CO2 emissions are a measure of the correctness of the combustion 
process. The measurements were performed using a farm tractor meeting the Tier 3 emis-
sion norm, operated in real conditions during plowing work. The tests were carried out for 
a given land section at three speeds In the analysis of test results, the net engine work was 
used, as it is carried out in the type approval procedures. When measuring in real operating 
conditions, the torque read from the OBD system is overstated because it takes into account 
the engine’s internal resistance. In the analysis of test results, the fuel consumption, emission 
indicators of gaseous compounds and particulates were determined, and the best conditions 
for conducting agricultural works were indicated in terms of their impact on the natural 
environment. The aim of the work is to verify the possibility of determining the emission 
index for an off-road vehicle and a comparative analysis of its values for various operating 
parameters of a farm tractor. On this basis, it was found that the lowest values of the M iden-
tity were recorded for the test characterized by a vehicle speed of 15 km/h.
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Fig. 1. Exhaust emission limit changes of HC+NOx and PM for the Stage I–V 
norms [11]

The development and miniaturization of exhaust measuring equip-
ment belonging to the Portable Emissions Measurement System 
(PEMS) group, which has been progressing in recent years, allows 
for increasingly more precise tests of the environmental performance 
of vehicles in real operating conditions to be performed. Currently, 
these types of testing and research activities are conducted all over 
the world [1, 3, 4]. They are necessary because, as the studies [12-14] 
prove, qualitative and quantitative exhaust emission measurements in 
type-approval tests and in actual operation differ significantly. Road 
conditions are characterized by an unfavourable effect, primarily on 
PM and NOx emissions [9, 10, 21]. Therefore, with Stage V, tests  
in real operating conditions were to come into force, which have not 
yet been defined. In terms of particulate emissions, the current limits 
apply to their mass. Along with the legislative changes, however, lim-
its for the number of particulates are being introduced for the engines 
of non-road mobile machinery of the NRE category (Engines for Non-
road Mobile Machinery), as in the case of other passenger and heavy 
vehicles. 

2. Definition of agricultural vehicle emission indicators 
in relation to CO2

Agricultural vehicles classified as non-road vehicles are mostly 
used off public roads in non-urbanized areas. However, due to their 
overall number, their direct impact on green areas and agricultural 
crops is significant, as well as on the natural environment. Contem-
porary agricultural machinery is the result of great technological 
progress. Currently, their construction uses advanced technologies, 
safety and comfort systems and non-motor systems that require the 
use of extensive electronics. This increases the cost of producing the 
product, but it undoubtedly has a very positive impact on the eco-
logical indicators they currently achieve. Precise control of the fuel 
supply process enables more efficient use of fuel than in structures 
based solely on mechanical solutions. This is justified by the fact that 
in the considered group of machines, despite the increasingly more 
numerous equipment related to the driver’s comfort and greater work 
efficiency, no significant increase in fuel consumption was observed. 
All over the world, activities are undertaken by leading scientific and 
research centers to assess the environmental performance of machines 
in real operating conditions – in the field. This allows for a broader 
understanding of the problem of emissivity and allows for the devel-
opment of new solutions or modification of the existing ones in such a 
way as to minimize the negative impact of this group of machines on 
the natural environment as much as possible.

The process of burning fuel in an internal combustion engine is 
used to generate thermal energy. During its implementation, a number 
of harmful and toxic chemical compounds are formed. Carbon diox-
ide CO2 is produced through complete oxidation. Its emission is not 
restricted by the current legislative guidelines in terms of a specific 
vehicle. Existing CO2 limits in the European Union apply to car manu-
facturers, but these guidelines take into account the entire range of ve-

hicles produced. The CO2 emissions of 95 g/km are the average value  
of the entire model range for each brand. These guidelines were to 
apply from 2020, but eventually did not enter into force [19]. These 
types of restrictions apply to passenger cars. Similar ones are intro-
duced for heavy vehicles. 

Carbon dioxide is not defined as a toxic exhaust substance, but 
only as harmful one. It is the main cause of the greenhouse effect 
and in higher concentrations is poisonous to living organisms. Carbon 
monoxide CO, hydrocarbons THC and particulates PM (in terms of 
mass and number) are all formed in the combustion process during 
partial and incomplete oxidation, while nitrogen oxides NOx form in 
the presence of high temperatures. The mentioned combustion prod-
ucts adversely affect the natural environment and it is necessary to 
introduce solutions limiting their concentration during vehicle opera-
tion. They are all undesirable products that significantly contribute to 
the environmental degradation and pollution. 

For working machines, in research works, special units are pro-
posed that refer to the mass of the emitted exhaust component in re-
lation to the work performed (e.g. area of plowed ground, volume 
of felled tree, etc.). The emission factors developed in this way are 
sometimes difficult to compare between vehicles (machines), which 
depends, inter alia, on their intended use, type of drive system used 
(e.g. hybrid), operating conditions, driving style, etc. For this reason, 
a new proprietary index was proposed, based on the use of measure-
ments of carbon dioxide parameters (e.g. the emission intensity of this 
compound, its road or unit emission). The values that are substituted 
into its structure must be expressed in the same units, which will make 
it dimensionless.

The physical and chemical processes in the cylinder of an internal 
combustion engine are complex and very difficult to fully define or 
simulate. Taking into account the basic combustion equations, it can 
be assumed that the ratio of CO2 to the remaining toxic components 
of the exhaust gas is a measure of the correctness and efficiency of the 
fuel combustion process. Comparing the emission of toxic compounds 
with the emission of carbon dioxide, it was proposed to determine the 
proprietary emission factors M, which characterize a given combus-
tion unit or power unit (if the system will also test non-engine exhaust 
gas cleaning systems). Such defined ecological indicators allow for 
the effective comparison of various heat engines with exhaust gas 
treatment systems. From this perspective, it is a new way to assess the 
environmental performance of a given vehicle / machine. To achieve 
this, it is necessary to use the quantitative dimensionless quantitative 
emission factor M, which is defined by the quotient:

 
2

rzecz, j
j

CO

e
M b

e
= ⋅  (1)

where: M – dimensionless emission indicator [–]; j – toxic exhaust 
component for which the emission indicator was determined; b – uni-
versal constant (for CO, THC and NOx = 103, for PM = 105); erzecz, 
j – specific emission, road emission or mass of toxic compound j de-
termined during the measurements in the emission test [g/(kW·h); g/
(km); g]; eCO2 – specific emission, road emission or mass of CO2 de-
termined during the measurements in the emission test (having the 
same unit as erzecz, j) [g/(kW·h); g/(km); g].

The presence of the constant b allows to increase the readabili-
ty of the results, because the number of decimal places is limited. 
This has been confirmed on other vehicles that meet various emis-
sion standards [16, 17]. Taking into account the internal com-
bustion engine with non-engine exhaust aftertreatment systems,  
it is possible to consider the environmental impact of vehicles of 
various categories, especially in the road or field tests. Due to the 
dimensionless nature of the used indicator, it is also a good method 
for defining the exhaust emission of toxic compounds in relation to 
fuel consumption. Therefore, it is possible to ecologically assess the 
agricultural tractor (which is the subject of this study) and vehicles of 
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other categories based on the proposed M factor in terms of emission 
tests obtained both in laboratory tests and in real operating conditions. 
The proprietary M emission index was presented at the Real Driving 
Emission conference in Berlin in 2017. The idea was approved by 
the scientific world and representatives of the European Commission. 
This confirms that the inclusion of the M index in the assessment of 
the environmental performance of motor vehicles is justified and is 
characterized by innovation on a global scale. The research carried 
out so far has not presented the results of work on such defined issues. 
Thus, an extensive literature review showed that the only publications 
on this subject belong to the authors of this work [16, 17]. The dissem-
ination of the indicator presented allows for even more precise defini-
tion of the environmental performance of the vehicle / machine.

3. Research method
The subject of the pollutant emissions tests in real operating con-

ditions was an agricultural tractor belonging to the NRMM (Non-
Road Mobile Machinery) vehicle group. The test vehicle was manu-
factured in 2007 and thus homologated according to the Stage IIIA/
Tier3 norms. The manufacturer equipped the vehicle with a 6.7-liter 
compression-ignition engine, with a maximum power of 116 kW. The 
tractor was equipped with a DPF particulate filter, a DOC oxidizing 
catalytic converter and an EGR exhaust gas recirculation system. Be-
fore the tests were performed, the test object was inspected for pos-
sible technical defects or damage. In the field work, a cultivating unit 
was used, which loosened the soil and prepared it for sowing for cul-
tivation. Measurements were made in a field in the town of Borek 
Wielkopolski. Figure 2 shows the test vehicle along with its technical 
specification.

The mobile measuring device SEMTECH DS was used in the re-
search, which enables the performance of exhaust emission measure-
ments in real operating conditions [6-8, 22]. It consists of a set of 
analyzers that allow determining the concentration of the basic gas-
eous exhaust gas components. The device was designed for use in 
measuring the exhaust emissions of machines/vehicles with compres-
sion ignition and spark ignition engines, compliant with the Stage II 
and newer emission norms. The device cooperates with the exhaust 
gas flowmeter, from which the exhaust gas sample is taken. It is 
transported by a heated line to the inside of the device. The follow-
ing gaseous components are measured: THC (FID analyzer - Flame 
Ionization Detector), NOx (NDUV analyzer - Non-dispersive Detec-
tor Ultra Violet), COx (NDIR analyzer - Non-dispersive Detector  
Infra Red), and the oxygen concentration is also measured (using 

the electrochemical method) [13]. Measurement and data acquisi-
tion takes place at a frequency of 1 Hz. The error of the operation 
of the individual exhaust gas flowmeters and analyzers shall not 
exceed ±3%. The measuring system also has a GPS device and  
a weather station (Fig. 3).

Fig. 3. Diagram of operation of PEMS- SEMTECH DS apparatus [23]

4. Test vehicle operating conditions
The tests of the agricultural tractor were carried out in real operat-

ing conditions, while working in the field. The measurements were 
made in three test cycles divided according to the speed during the 
work of the tested vehicle – done at 5, 10 and 15 km/h. Using the data 
recorded from the GPS, the operating parameters of the test vehicle 
were determined (Fig. 4). The share of operating time was presented 
relative to the variability of vehicle speed and acceleration. The char-
acteristics include all research tests – for each speed including: accel-
eration, constant speed operation, and braking. For driving at constant 
speed (where a = 0 m/s2), the shares of 49%, 24%, and 15.4% were 
obtained, respectively, for the following value intervals: (1 m/s; 1.5 
m/s〉, (2.5 m/s; 3 m/s〉 and (4 m/s; 4.5 m/s〉. In all tests, data was also 
acquired during stops occurring before and after the performed field 
work. The total share of time for this point was 3.2%. For all op-
erating points including acceleration or braking (where a ≠ 0 m/s2), 
their share was lower than 0.3%, which proves that the tests were per-
formed correctly, i.e. that the assumed constant velocities were overall 
maintained during operation. 

Fig. 4. The area of variability of work parameters of the research object dur-
ing measurement tests

Based on the information recorded from the on-board diagnos-
tic system, the parameters of the internal combustion engine were 
also acquired (Fig. 5). In order to determine the actual work per-
formed by the internal combustion engine, when determining the 
specific exhaust emissions of measured components, it is necessary  
to take into account the net parameters: power and load, i.e. those 
obtained at the end of the crankshaft with power used by additional 

Parameter Value

Displacement: 6,7 dm3

Driving gear: 4-cylinder, electro-hydraulic clutch

Maximum power: 116 kW/2100 rpm

Maximum torque: 700 Nm/1250-1550 rpm

Equipment: VGT Turbocharger, EGR, DOC, DPF

EURO standard: Stage IIIA/Tier 3

Fig. 2. Picture of the tested vehicle and its technical data
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devices already included. Crankshaft speed and generated torque val-
ues can be read from on-board diagnostic systems. The first of these 
parameters is determined directly using induction or Hall effect sen-
sors, and the data obtained by this method is sufficient. However, the 
torque is determined on the basis of the pressure in the supply system 
and the injector opening time. However, there are some discrepan-
cies in the real-world values as the readings obtained from the OBD 
system take into account the internal resistances of the engine. The 
calculations can address this problem by taking into account the per-
centage share of the load related to, among others, internal engine 
friction, however, this is a simplification as the actual internal re-
sistances depend on many factors. As a rule, they are not linear and 
change depending on the current operating parameters of the engine. 
In selected areas of its operation, they may constitute up to 40% of the 
total torque produced. Its inflated value, which is read from the CAN 
(Controller Area Network), causes that the designated work in the test 
to also be overestimated. This translates into lowering the resulting 
specific exhaust emissions of pollutants, where the work performed 
by the drive system is in the denominator. For these reasons, it is nec-
essary to determine the resistances of the internal combustion engine 
and take into account their values when determining the torque in tests 
carried out during the vehicle operation. This allows to determine the 
actual ecological indicators of a given vehicle [5].

For the first measurement test, the highest density of operating points 
occurred in the area of the load characteristic described by the engine 
speed interval 〈1150 rpm; 1245 rpm〉 and load interval 〈130 Nm; 358 
Nm〉. During the second run, greater variability of operating parameters 
was observed. The distribution of work points also shows the greatest 
share of work in the load characteristic range, especially in the interval 
〈1940 rpm; 2052 rpm〉 and 〈254 Nm; 560 Nm〉. While the highest en-
gine speeds were achieved in the third test run, the engine was operated 
primarily at engine power band. This is evident for crankshaft speeds 
above 1,875 rpm. For all tests, there were fragments of operating time 
spent in the area of load characteristics that showed a lower density  
of operating points. This was the result of the internal combustion 
engine cooperation with the mechanical transmission and electro-
hydraulic clutch used in the vehicle.

5. Results

In order to perform research on the evaluation of the emission indi-
cators during a typical agrotechnical task performed by a farm tractor, 
the characteristics of the exhaust emission intensity as a function of 
engine rotational speed-load (n-T) were analyzed. The distribution of 
operating points covered the range of operating parameters in one-
side closed intervals. The intensity of CO2 emission increased with 
the increase of the engine load and rotational speed values (Fig. 6). 
The maximum CO2 emission value (20.8 g/s) was recorded at a single 
operating point within the intervals of rotational speed (1800; 2000 

rpm〉 and load (500; 600 Nm〉. The area where the highest intensity 
of carbon dioxide emission was recorded was observed for the ranges 
(1600; 2200 rpm〉 and (400–700 Nm〉. The average emission value for 
this interval was 19.07 g/s. The lowest emission intensity occurred 
in the load interval not exceeding 300 Nm. The mean value for the 
performed test drive was 11.1 g/s.

Fig. 6. The CO2 exhaust emission intensity characteristics in the engine 
speed-load intervals

For the presented CO emission intensity characteristic (Fig. 7a), 
the highest values occurred in the interval (1400; 2000 rpm〉 and 
(500; 700 Nm〉, with the local maximum being 0.09 g/s. The average 
value for this interval was 0.06 g/s. One should also note the rota-
tional speeds interval of (1600; 2400 rpm〉, in which the mean emis-
sion intensity value was 0.05 g/s. The obtained values resulted from 
the operating conditions during which the fuel dose was increased, 
which causes global and local oxygen deficiencies closely related to 
the formation of carbon oxides, their formation was also influenced 
by the high temperature in the combustion chamber (locally exceed-
ing 2000°C in farm tractors), which was the conditions favouring the 
thermal dissociation into CO. This reaction occurs at temperatures 
greater than 2000 K, while above 3000 K 40% of carbon dioxide dis-
sociates into CO. 

The mean exhaust emission value for the entire test drive 
was 0.004 g/s. The values of the M_CO/CO2 emission indica-
tor were evenly distributed throughout the entire engine operating 
range and remained in the range between 1.7–6.1 (Fig. 7b). The 
maximum value of 6.1 was obtained for a single operating point  
in the intervals of rotational speed (1400; 1600 rpm〉 and load (200; 
300 Nm〉. The mean emission indicator value was 3.6. 

Characterization of the hydrocarbon emission intensity as a func-
tion of engine speed and load (Fig. 8a) showed that the highest value 
was obtained in the area within the rotational speed interval (1600; 
2200 rpm〉 and load interval (400; 700 Nm〉, for which the average re-
mained at the level of 0.004 g/s. The maximum local value (0.005 g/s) 
was recorded in a single measurement interval for (1600; 1800 rpm〉 
and (600; 700 Nm〉. The mean value of hydrocarbon exhaust emis-
sion intensity over the entire test drive was 0.003 g/s). The increase in 
HC emission rate was caused by high rotational speed, at which the 
injected dose of fuel is not thoroughly mixed with the air, which leads 
to incomplete combustion. Most of the factors contributing to the for-
mation of an excessive amount of carbon monoxide in the exhaust 
gas also cause excessive emission of hydrocarbons, hence the local 
maxima of both compounds were recorded in the same intervals of the 
engine operating points. The highest values of M_HC/CO2 emission 
indicators (0.73) were obtained for the rotational speed range (800; 
1000 rpm〉 at a load of (0; 100 Nm〉, i.e. for engine idling, where the 
exhaust aftertreatment systems had not achieved their light-off tem-
perature, and when the overall combustion temperature was low. The 

Fig. 5. Internal combustion engine operation parameters



Eksploatacja i NiEzawodNosc – MaiNtENaNcE aNd REliability Vol. 23, No. 4, 2021 609

mean value of the emission values for the entire test was 0.035 g/s. 
The values of the discussed exhaust compound were evenly distrib-
uted throughout the engine operation area, similarly to CO emission 
indicators (Fig. 8b).

The highest NOx emission intensity was recorded for the engine rota-
tional speed interval (1600; 2200 rpm〉 and load interval (400; 700 Nm〉 
- Fig. 9a, for which the mean value was 0.053 g/s. The maximum value of  
0.1 g/s) occurred in two separate measurement intervals (1800; 2000 
rpm〉 and (500; 600 Nm〉 as well as for (2000; 2200 rpm〉 and (500; 
600 Nm〉. 

At significant engine speeds, above 800 rpm, the engine generates 
a higher cylinder temperature, which directly promotes the formation 
of nitrogen oxides. Distribution of the exhaust emission characteris-
tics is similar to the distribution of the previously described exhaust 
compounds, and therefore uniform in the entire range of the engine 
operation. The emission indicator values varied in the range of 3–8.8, 
with the local maximum 8.8 being recorded for engine parameters 
enclosed in the intervals of rotational speed (100; 1200 rpm〉 and load  
(0; 100 Nm〉. The mean value for the entire operating area of param-
eter variability was 5.4 (Fig. 9b).

Based on the determined masses of individual emitted gaseous 
compounds, a comparison of their emission indicators was made for 

b)

a)

b)
a)

Fig. 7. Characteristics of a) CO emission per second; b) CO emissivity in the 
torque ranges of the engine speed

Fig. 8. Characteristics of a) second HC emission rate; b) HC emissivity in the 
torque ranges of the engine speed

Fig. 9. Characteristics of a) second NOx emission rate b) NOx toxicity in the torque ranges of the engine speed

b)

a)
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each test sample, which differed in the vehicle speed value (5 km/h, 
10 km/h, 15 km/h). For each exhaust compound, the lowest emission 
rates were found for the test characterized by the highest speed of 15 
km/h. These values were 2.42, 0.31, 4.86 for CO, HC and NOx re-
spectively. In the first test, there was an almost 70% difference in the 
HC emission indicator value (compared to the third trial) and a 30% 
difference in the indicator for NOx. The second test (at 10 km/h) was 
characterized by the highest emission indicator for CO, and the differ-
ences in the values were 34% and 32% respectively when compared 
to the tests performed at 5 km/h and 15 km/h (Fig. 10). The meas-
urement results presented in [15] showed that increasing the vehicle 
speed when performing field work may contribute to the reduction of 
fuel consumption. During the tests described in [15], an 18% reduc-
tion in fuel consumption was achieved as a result of increasing the 
drive speed with the field cultivator from 5 km/h to 15 km/h. Fuel 
consumption tests were carried out in the same field in successive cy-
cles, i.e. the measurements were made for the same type of soil and for 
the same weather conditions. Fuel consumption is closely related to 
the emission of harmful CO2 and other toxic exhaust gas compounds, 
hence it confirms that the lowest emission indicators were recorded in 
the third measurement test.

Fig. 10. Comparizon of M emission indicators for CO, HC and NOx obtained 
during the three test drives

6. Conclusion
General conclusion:

The paper proposes a new proprietary emission factor M, based  –
on the use of measurements of carbon dioxide parameters (e.g. 
the emission intensity of this compound, its road or unit emis-
sion). The values that are substituted into its structure must be 
expressed in the same units, which will make it dimensionless.
The conducted analyzes, in particular the introduced emission  –
indicator, are a novelty in the aspect of emissivity analysis.

Detailed conclusions:
On this basis of reserach, it was found that the lowest values  –
of the emission indicators M were recorded for the test char-
acterized by the highest vehicle speed of 15 km/h. Therefore, 
increasing the driving speed of the tractor during typical field 
work from 5 km/h to 15 km/h may have a positive impact on the 
overall exhaust emission results of toxic compounds.
In the previous work of the authors [17], considerations were  –
made in terms of the possible applications of the emission indi-
cator for conventional, hybrid and alternative fuel urban buses. 

Measurements were made in accordance with the SORT 2 drive 
test procedure and on the test route in the Poznań agglom-
eration. The comparison of the emission indicators from both 
studies shows that the NRMM vehicle at a speed of 10 km/h is 
characterized by similar trends in the values of the M indicators 
as the hybrid bus. In the case of CO/CO2, the vehicle achieved 
exactly the same value (3.24) as the hybrid bus during road tests 
on the city line and 3.44 for a trip in the standardized SORT 2 
test. This is due to the similar performance characteristics of the 
engines of both these vehicles, namely the engine operating at 
higher loads (above 50%). The comparison of the values of the 
remaining emission indicators for the NRMM vehicle (during 
the 10 km/h test) with the hybrid bus results in the following 
values:
M – HC_NRMM – 0.31; MHC_urban route – 0.24; MHC_SORT 2 – 0.2,
M – NOx_NRMM – 6.3; MNOx_ urban route – 9.63; MNOx_SORT 2 – 6.97.

The comparative analysis of the agricultural tractor and the hybrid 
bus also showed that in both cases the highest values of the MNOx 
indicator were achieved, which, as already mentioned, results from 
the operation of the engines in the higher efficiency range of operat-
ing points. It should be noted that the drives of the test vehicles had 
different rated parameters, and the hybrid vehicle was equipped with 
an SCR aftertreatment system. Similar considerations were also car-
ried out in [16], where a comparative analysis of the emission indica-
tor for two passenger cars and a city bus was performed. Therefore, 
this analysis confirms the universality of the M indicator as a tool for 
comparizon of overall engine.

Methodological conclusions:
It is necessary to determine the resistances of the internal com- –
bustion engine and take into account their values when deter-
mining the torque in tests carried out during the vehicle opera-
tion and the work performed by the drive system.
Many studies have shown [13] that the current type approval  –
tests (static - NRSC and dynamic - NRTC) do not fully reflect 
both the actual engine operation parameters and the emission of 
toxic exhaust compounds. Therefore, it is necessary to continue 
work on testing the exhaust emission of toxic compounds from 
this group of vehicles and changing the regulations regarding 
emission control strategies. In addition, an important aspect in 
relation to the vehicles in the NRMM group is also work on the 
improvement of mobile exhaust emission measuring equipment 
in order to optimize the research process itself with this type of 
machines.

Prognostic conclusions:
The literature review allows the authors of this work to state  –
that its subject matter is consistent with the direction of research 
carried out around the world, and the presented emission index 
M met with the approval of the scientific world and representa-
tives of the European Commission at numerous industry con-
ferences.
In the longer term, taking into account the dimensionlessness  –
of the M emission indicator, it is possible to compare not only 
vehicles of the same category, but also objects belonging to dif-
ferent groups, from LDV to NRMM vehicles. Thus, the dis-
semination of the indicator presented allows for even more pre-
cise definition of the environmental performance of a vehicle / 
machine.
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Tool wear condition monitoring (TCM) is essential for milling process to ensure the machin-
ing quality, and the long short-term memory network (LSTM) is a good choice for predict-
ing tool wear value. However, the robustness of LSTM- based method is poor when cutting 
condition changes. A novel method based on data fusion enhanced LSTM is proposed to 
estimate tool wear value under different cutting conditions. Firstly, vibration time series sig-
nal collected from milling process are transformed to feature space through empirical mode 
decomposition, variational mode decomposition and fourier synchro squeezed transform. 
And then few feature series are selected by neighborhood component analysis to reduce 
dimension of the signal features. Finally, these selected feature series are input to train the 
bidirectional LSTM network and estimate tool wear value. Applications of the proposed 
method to milling TCM experiments demonstrate it outperforms significantly SVR- based 
and RNN- based methods under different cutting conditions.
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1. Introduction
In the modern numerical control milling process, tool condition is 

one of the key factors affecting the machining quality of workpiece 
[19, 22]. Tool breakage is the main cause of abnormal shutdown and 
lead to time lost and capital destroyed [27]. It has reported that severe 
tool failure causes at least 20% of abnormal downtime [4, 32]. How-
ever, traditional tool condition monitoring (TCM) methods are based 
on the machining time or the number of workpiece machined result-
ing in the effective utilization rate of tool is only 50%-80%, which 
affect the processing efficiency and increase the machining cost sig-
nificantly [15, 35]. It is predicted that an effective TCM method can 
increase the cutting efficiency by 10-50% and reduce the machining 
cost by 10-40% [23, 33]. Therefore, the development of effective on-
line TCM method has received broadly positive reviews and is a re-
search hotspot nowadays [10, 11].

Recently, many deep learning models have been employed in 
TCM applications [9, 14, 21]. For example, Cao et al [1] recognized 
tool wear condition by derived wavelet frames and Convolutional 

neural network (CNN) using vibration signals. Recent advanced tech-
nology that have greatly increased the number of TCM study, Huang 
et al [8] proposed a tool wear predicting method by deep CNN, in 
which multi- domain features are respectively extracted from cutting 
force and vibration. Lei et al [16] employed Extreme learning ma-
chine (ELM) to classify tool wear condition in milling processes, and 
used genetic algorithm and particle swarm optimization to optimize 
model parameters of ELM. Tim and Chris [26] proposed a disen-
tangled- variation- autoencoder CNN method to estimate tool wear 
condition in a self-supervised way. Zhi et al [30] proposed a hybrid 
CNN and edge-labeling graph neural network (EGNN) method for 
limited tool wear image training samples, in which the CNN is em-
ployed to extract features of tool wear image and the EGNN is ap-
plied to distinguish the tool’s category. However, these TCM methods 
have been generally applied for diagnosis (classification) rather than 
prognosis (regression), tool wear is a progressive and continuous cu-
mulative process, regressive prediction of tool wear is more suitable 
than classification that the CNN- based methods are difficult to use 
[34]. Recurrent neural networks (RNN) could be solve the problem 
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of regression and increase the accuracy of the prognosis, but the er-
ror of backpropagation in RNN would increase sharply or decrease 
exponentially, which lead to the problem of long lag [5,18]. As a sig-
nificant branch of RNN, Long short-term memory (LSTM) network 
is proposed to overcome the above problem. Due to the special unit 
structure with learning long-term dependencies, LSTM can deal with 
the long-distance dependence problem in time sequence data [6]. 
Therefore, LSTM is potential to obtain good performance for TCM 
[31]. Tao et al [24] designed a TCM method based on LSTM and hid-
den Markov model (HMM) to estimate the tool wear value and predict 
it’s remaining useful life. Zhao et al [29] proposed a convolutional 
Bi-directional LSTM network, in which CNN extracted local feature 
of original signal and Bi-directional LSTM encoded temporal infor-
mation and predict tool wear value. However, it is found that the re-
gression accuracies of LSTM- based TCM method are poor when the 
cutting conditions of testing samples are different with that of training 
samples in our experiment. That is, the cutting condition could affect 
significantly the performance of LSTM- based TCM method. There-
fore, this paper try to alleviated the influence of cutting condition to 
LSTM model through a data fusion way.

In this paper, a data fusion enhanced LSTM- based TCM method is 
established to estimate tool wear value under variable cutting condi-
tions. The paper is organized as follows: Section 2 introduces the pro-
posed data fusion enhanced LSTM method, Section 3 describes the 
experimental setup, data analysis and experimental results. Finally, 
conclusion is in Section 4.

2. Proposed method

2.1. Framework of the proposed method
The proposed TCM method framework based on data fusion en-

hanced LSTM is illustrated in Figure 1. Firstly, vibration time series 
signal collected from milling process are transformed to feature space 
through Empirical mode decomposition (EMD), Variational mode de-
composition (VMD) and Fourier synchro squeezed transform (FSST), 
and then few feature series are selected by neighborhood component 
analysis (NCA) to reduce dimension of the signal features. Finally, 
these new feature series selected by NCA are input into bidirectional 
LSTM network to train the regression model.

Fig. 1. Framework of the data fusion enhanced LSTM- based TCM method

2.3. Data preprocessing 
For extracting more features of time series under limited sam-

ples, the collected signals are divided into multiple segments using 
a sliding window method. In addition, these segmented data are nor-
malized by batch normalization method [17] as follows: 
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where xi and yi denote the input and output value after batch normali-
zation respectively, m denotes the number of inputs in minibatch, µB 
and σB denote the mean of input and the average variance of the input 
respectively, ˆix is the normalized ix .

2.3. Feature extraction

2.3.1. Empirical mode decomposition
EMD is a nonlinear time-frequency decomposition algorithm that 

decompose the signal into several intrinsic mode functions (IMFs) 
and a residual [7], shown in Equation (4). In EMD, all decomposed 
IMFs contain the local feature information in different time scales of 
the original signal. Finally, each IMF contains approximately a single 
frequency component, and the instantaneous frequency of the original 
signal can be obtained after the weighted average of the instantaneous 
frequency of each IMF:
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EMD decomposes the signal according to the time scale features 
of the original data, without pre-setting any basis function, which is 
the most significant advantage compared with other time-frequency 
decomposition methods, such as wavelet transform. Due to the com-
plexity and uncertainty of milling process, it is very difficult to find a 
basis function suitable for milling signal, EMD could be employed for 
feature extraction in milling TCM.

2.3.2. Variational mode decomposition
VMD is an adaptive time-frequency signal decomposition algo-

rithm, its framework is the solution of variational problems [3]. VMD 
considers the signal is composed of sub signals with different frequen-
cies dominant, and transforms the decomposition of signal into the 
solution of constrained variational model [13,28]. In this process, the 
central frequency and bandwidth of each IMF are updated alternately 
and iteratively. Finally, the signal band is decomposed adaptively and 
obtain the preset K narrowband IMFs in equation (5).
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In VMD, each IMF uk is a bandwidth limited frequency modulation 
and amplitude modulation signal shown in equation (6):

 u t A t tk k k( ) ( )cos ( )= ( )φ  (6)

VMD has perfect mathematical theory support, its essence is an 
adaptive optimal Wiener filter group, which can get high signal-to-
noise ratio IMFs.



Eksploatacja i NiEzawodNosc – MaiNtENaNcE aNd REliability Vol. 23, No. 4, 2021614

2.3.3. Fourier synchro squeezed transform
Fourier synchro squeezed transform (FSST) is based on the short-

time Fourier transform (SFT) implemented in the spectrogram func-
tion [12,25]. The FSST function determines the SFT of a function, f 
using a spectral window, g, and computing in equation (7):

 V f t f x g x t e dxg
j x t( , ) ( ) ( ) ( )η πη= −

−∞
∞ − −∫ 2  (7)

Unlike the conventional definition, this definition has an extra fac-
tor of e j t2πη . The transform values are then “squeezed” so that they 
concentrate around curves of instantaneous frequency in the time-
frequency plane.  

2.3.4. Neighborhood component analysis
Neighborhood component analysis (NCA) is a distance metric 

method in metric learning and dimension reduction fields [2]. NCA 
is based on K-Nearest Neighborhood (KNN) including feature pa-
rameters and response label [20]. NCA selects randomly neighbors, 
obtains the transformation matrix in Mahalanobis distance by opti-
mizing the results of the leave-one-out cross validation (LOOCV) 
method, and finds the feature parameter set maximizing the average 
LOO classification / regression accuracy to achieve the purpose of 
feature selection. 

2.4. Long short-term memory network
An LSTM network is a type of RNN that can learn long-term de-

pendencies between time steps of sequence data [6,29]. The frame-
work of LSTM is shown in Figure 2.

Let Xt={X1t X2t  XCt} is a time series with C features, ht and ct are 
the hidden state and cell state at time t, respectively. At time t, the state 
of the network (ct ht) is calculated by Xt and (ct−1 ht−1) by Equation 
(8) and (9):

 c ct t t t tf i g= +− 1  (8)

 h ct t c to= ( )σ  (9)

The definition and expression of it ft gt ot are as shown in Table 1.

3. Experimental observation and research

3.1. Experimental setup 
The experimental device for milling TCM is shown in Figure 3. 

In the milling TCM experiment, a CNC milling machine (DMTG 
VDL850A, China) is used to finish milling process, and a piece of 
#45 steel (30 cm ×10 cm × 8 cm) is used as the workpiece material. 
What’s more, the milling vibration signals of spindle X and Y direc-
tions are acquired by two accelerometers with a signal acquisition 
device (ECON Dynamic Signal Analyzer, shown in Figure 3(b)). In 
addition, the signal sampling frequency in the experiment is 12KHz.

Fourteen uncoated three-insert tungsten steel end milling cutters 
with diameter of 10 mm are employed to mill the workpiece under 
different cutting conditions, listed in Table 2. For each tool, the work-
piece is milled surface 10 times, and the tool wear value is measured 
after milling each surface using a tool microscope (GP-300C Figure 
3(c)). The length of rake face wear (KB) is employed as the tool wear 

criterion in the experiment, and the max value KB= max (KB1 
KB2 KB3) of three inserts is adopted as the final tool wear value. 
Figure 4 illustrates the tool wear conditions after milling the 
workpiece surface 1-st, 5-th and 10-th times. 

In the 14 milling TCM experiments, the training, verification 
and testing sets are generated randomly shown in Table 2, 7 sets 
of samples for training, 3 sets of samples for verification, and 4 
sets of samples for testing.

3.2.  Results and analysis  

3.2.1.  Samples and metrics
Acceleration signals of Spindle X and Y direction are used in 

the network, 272 training set, 120 validations set, and 80 test set 
are made up from spindle sensor signals. In all analyzed sam-
ples, there is no same cutting condition combination in the three 
dataset. Besides, in the signal pre-processing, the original signal 
of each sample is divided into 10 parts by slide window method, 
in which the window size is 2000 points, and the sliding dis-
tance is 1000 points.

To evaluate the performance of the proposed method, three 
indexes are employed, including the mean absolute error (MAE), 
root mean squared error (RMSE), and R-squared (R2).

Table 1. Definition and expression of the LSTM layer gate

Component Purpose Formula

Input gate (i) Control level of cell state update i W bt g i t i t i= + +( )−σ x hR 1

Forget gate (f) Control level of cell state reset (forget) f W bt g f t f t f= + +( )−σ x hR 1

Cell candidate (g) Add information to cell state g W bt c g t g t g= + +( )−σ x hR 1

Output gate (o) Control level of cell state added to hidden state o W bt g o t o t o= + +( )−σ x hR 1

where Wt and Rt are the input weights and recurrent weight in the t-th layer, and bk is the bias of each component. 

Fig. 2. LSTM architectures
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3.2.2.  Algorithm settings
For each cutting process in the experiment, there are two mutually 

perpendicular milling vibration signals which are collected from the 
equipment and a part of collected signal has 12000 points as shown in 
Figure 5, in which the corresponding cutting parameters is the Case 1 

in Table 2: spindle speed is 2300 rpm, axial cutting depth is 4 mm, and 
feed rate is 400 mm/min. 

Since the real monitoring signal is often nonlinear and non-station-
ary, it is suitable to use the EMD, VMD and FSST methods to obtain 
the features of vibration signals for tool wear. In order to obtain signal 

Table 2. Experimental cutting parameters

Case No Spindle speed (rpm)  Axial cut deep (mm) Feed speed (mm/min) Dataset type

1 2300 0.4 400 Training

2 2300 0.5 450 Validation

3 2300 0.6 500 Testing

4 2400 0.4 450 Training

5 2400 0.5 500 Testing

6 2400 0.6 400 Validation

7 2500 0.4 500 Training

8 2500 0.5 400 Testing

9 2500 0.6 450 Training

10 2300 0.4 500 Testing

11 2300 0.6 400 Training

12 2500 0.6 500 Validation

13 2500 0.6 400 Training

14 2500 0.4 400 Training

Fig. 3. The experimental setup [16]

Fig. 4. Tool images indicative of different tool-wear values [33]

(a) Experimental platform (b) Data acquisition system (c) Tool microscope

(a) 1-st milling (b) 5-th milling (c) 10-th milling
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In this work, the first 6 IMFs and residualsare taken in EMD, 
the first 5 IMFs and residualsare taken in VMD, and 60 IMFs 
is decomposed in FSST. In addition, it is necessary to take the 
real and imaginary parts of the IMF as the feature matrix of the 
vibration signal, and use NCA to take the effective characteristic 
matrix. The results are listed in the Table 3

By calculating, it was found that the feature matrix has first 
6 numbers of IMFs and residuals of EMD, 5 numbers of IMFs 
and residuals of VMD, 17 real parts and 14 imaginary parts of 
FSST. Totally 45 feature matrixes as input signals. The two sin-
gle-channel experimental data of the sensor are superimposed 
and fused into a new sample. Meanwhile, all data from experi-
ments need batch normalization. 

In this model, it is a way to use eleven layers as neural net-
work architectures in our experiments: especially bidirectional 
LSTM layer, which has two hidden LSTM layers (forwards and 
backwards) as shown in Table 4.

Due to the limitations of experimental equipment conditions 
and cost, 14 sets of experiments were executed, 7 sets of sam-
ples under different working conditions were selected for train-
ing, 3 sets of samples were selected for verification, and 4 sets 
of samples were selected for testing.

For all architectures, complete error gradient was calculated and 
the weights are trained by using gradient descent with momentum. 
In all experiments, the same training parameters were kept: randomly 
assigned initial weights, keeping the training algorithm and param-
eters constant, allowing us to focus on the impact of changing the 
architecture.  

3.2.3. Experimental results 
The LSTM model established by the training set and verification 

set is applied to predict the testing set, including 4 tools with different 
cutting conditions. In Figure 6, the blue, green, and cerulean dotted 
lines denote the prediction results using the proposed method with the 
spindle vibration signal of X-direction, Y-direction, and dual-direc-
tion (composition of X and Y directions). It is noted that the cutting 
parameters of the 5-th and 8-th tools are different. For Figure 6(a), the 
spindle speed is 2400 rpm, the axial cutting depth is 0.6 mm, and the 
feed rate is 500 mm/min. For Figure 6(b), the spindle speed is 2500 
rpm, the axial cutting depth is 0.5 mm, and the feed rate is 400 mm/
min. It can be seen that the trend of the overall predicted value is simi-
lar the actual wear value, and the error at some stages is less than 0.1 
or even close to the wear value.

To test the regression performance, the proposed method is com-
pared with RNN and support vector machine (SVR). As a result, the 
MSE, RMSE and R2 of three methods are presented in Table 5.

It can be seen from Table 5 that the proposed LSTM- based method 
is highly effective in improving the regression accuracy, the predic-
tion accuracy of the proposed method is much higher than that of 
RNN and SVR according to the values of three evaluation indexes, 
except for the X- direction signal of the 3-rd and 5-th tools. In addi-
tion, the prediction accuracies with the dual- direction signal outper-
form that of signal- direction except for the 3-rd tool, while the results 
of three indexes are slightly worse than that of two other methods in 
the 3-rd tool.

feature and more information from the vibration signal to predict the 
tool wear value, the original signal is transformed by EMD, VMD 
and FSST to expand the dimensionality. Furthermore, to remove ir-
relevant features and reduce the number of features, sensitive features 
that correlate well with tool wear are selected out through NCA.

Fig. 5. Original vibration signal

Fig. 6. Prediction results of tool wear: a) the 5-th tool, b) the 8-th tool

Table 3. Features selection

Characteristic Fourier synchro squeezed transform(Hz)

Real part characteristic  
frequency

0;938;1875;2813;375;4688;5625;6563;
750;8438;9375;103130;1125;12188;13125

14063;4500(Hz)

Imaginary part characteristic 
frequency

938;1875;2813;375;4688;5625;6563;
750;8438;9375;10313;1125;12188;4500(Hz)

Table 4. Network architectures

Serial number Name Type Serial number Name Type

1 sequenceinput Sequence input 7 dropout_2 20% dropout

2 biLSTM_1 BILSTM：300 hidden units 8 fc_1 1 fully connected layer

3 relu_1 ReLU 9 dropout_3 20% dropout

4 dropout_1 20% dropout 10 fc_2 1 fully connected layer

5 biLSTM_2 BILSTM：300 hidden units 11 Regression output mean-squared-error: Re-
sponse

6 relu_2 ReLU

b)

a)
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4. Conclusion
This paper proposed a novel method based on data fusion enhanced 

LSTM to estimate tool wear value under different cutting conditions. 
Firstly, the original vibration signals are decomposed and transformed 
to obtain high-dimensional feature series set through EMD, VMD 
and FSST, and then NCA is employed to select useful features and 

Table 5. Prediction results of LSTM and RNN and SVR

Vibration signal Tool
MAE RMSE R−Squared

LSTM SVR RNN LSTM SVR RNN LSTM SVR RNN

Spindle X- direction

3 0.2150 0.5091 0.1222 0.2572 0.6160 0.1490 0.7996 −0.1498 0.9328

5 0.1508 0.5518 0.1127 0.1741 0.6443 0.1396 0.9091 −0.2456 0.9415

8 0.1153 0.4822 0.2507 0.1483 0.5824 0.2669 0.8971 −0.5871 0.6667

10 0.1762 0.4686 0.3688 0.2063 0.6246 0.4857 0.8039 −0.7978 −0.0868

Spindle Y- direction

3 0.2829 0.3989 0.2572 0.3327 0.4891 0.4811 0.6647 0.2829 0.3989

5 0.1437 0.6037 0.2458 0.1813 0.7576 0.4740 0.9014 0.1437 0.6037

8 0.1661 0.5130 0.6122 0.2159 0.7089 0.7402 0.7819 0.1661 0.5130

10 0.1681 0.5639 0.6996 0.1985 0.6385 0.7295 0.8184 0.1681 0.5639

Spindle dual- direction

3 0.2413 0.4406 1.0053 0.2944 0.5219 1.1609 0.7373 0.1749 −0.3083

5 0.0738 0.5407 1.0043 0.0974 0.6101 1.2031 0.9715 −0.1169 −0.3344

8 0.1031 0.3976 0.9307 0.1332 0.5097 1.0576 0.9169 −0.2158 −0.4234

10 0.1404 0.5002 0.778 0.1691 0.5853 0.9284 0.8683 −0.5786 −0.2971

reduce the feature dimension, in order to reduce operational burden 
and improve the accuracy of regression. Finally, these selected feature 
series are input into bidirectional LSTM network to estimate tool wear 
value. Hence, applications of the proposed method to milling TCM 
experiments demonstrate it outperforms significantly SVR- based and 
RNN- based methods under different cutting conditions.
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1. Introduction
Established by Annex VI to MARPOL 73/78 Convention [18], sul-

fur emission control areas (SECA) followed by the global stepwise 
limitation of sulfur content in marine fuels, resulted in several chang-
es in ship construction, performance and operation. Fuel oil bunkering 
and storage systems had to be redesigned and some fuel oil tanks had 
to be designated for low sulfur fuel oils (LSFO) storage [6, 12, 23, 
34]. In many cases, additional cylinder oil storage and supply systems 
had to be provided to allow smooth and safe fuel changeover [24–26]. 
Additionally, the engine cylinder components, like pistons and pistons 
rings, had to be modified [27] to improve the engine reliability and 
sustainability when operating on fuel grades different from the design. 
An example of such modifications is the high temperature cylinder 
cooling system, which was introduced on very long stroke engines 
around the year 2014 to counteract a low temperature corrosion, and 
was later recommended to be deactivated for engines enduringly con-
suming fuel oil with 0.5% of sulfur or less [28]. All those examples 
show the difficulties and complexity of problems related to low sulfur 
fuels faced by equipment makers, shipowners and, finally, the crew. 
Crews in particular are burdened with additional maintenance and 
adjusting work, and in case of machinery failure, with extra service 
work [13].

After the first SECA, covering initially the Baltic Sea and the North 
Sea, was established, soon other were implemented in various regions 
of the world, starting from the North America and some regions of 
the Caribbean Sea, to a number of Chinese ports. That resulted in fre-
quent fuel changeovers from high sulfur fuels used in the open ocean 
passage to low sulfur residual fuels or even low sulfur distillate fuels 
[24]. The past few years have witnessed the introduction of another 
fuel grade called ultra-low sulfur fuel (ULSFO), or hybrid fuel, being 
a stabilized blend of very low sulfur distillate fuel with residual fuel.

Low sulfur fuel oils have different properties, especially viscosity, 
stability and lubricity, compared to typical high sulfur fuel oils [1, 12, 
34]. Viscosity, which is directly dependent on fuel temperature, may 
play a key role in failures of fuel injection system components [5, 6, 
26]. Most of the engine arrangements could not be quickly adapted to 
the use of low sulfur fuels [2, 13, 29]. Consequently, ship operators 
faced significant problems with machinery operation and the number 
of reported incidents related to fuel changeover raised significantly 
[3, 13, 17].

To safely perform a fuel changeover, shipping companies and 
ship’s crew developed and implemented new procedures [19, 24]. The 
time required for the proper and safe procedure depends mainly on the 
sulfur content in the high and low sulfur fuels to be altered, the en-

Environmental regulations instigated the technological and procedural revolution in ship-
ping. One of the challenges has been sulfur emission control areas (SECA) and requirement 
of fuel changeover. Initially, many reports anticipated that new grades of low sulfur fuels 
might increase various technical problems in ship operation. This research develops a simple 
and easy to use method of the failure severity and intensity assessment in relation to fuel 
changeover. The scale of failure rate in the ship’s fuel system was evaluated qualitatively 
and quantitively, using developed failure frequency indicator and the time between failure. 
Based on 77 records of fuel system failures collected on seven ships, it has been found that 
frequency of failures related to SECA fuel changeover is on average nearly three times 
higher compared to the rest of sailing time. Their severity did not significantly change, but 
the structure of failures changed considerably. The method and presented results may help in 
improvement of ship’s systems design and on-board operational procedures.
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gine load, and finally the fuel system volume to be flushed [6, 13, 23, 
24, 26]. At least one of those parameters, namely, the engine load, is 
variable and depends greatly on the weather and nautical conditions, 
consequently, the entire procedure may take from a few hours up to 
two or three days even. The initial phase of changeover is crucial for 
the machinery and consequently ship safety. It has to be carried out 
slowly and with utmost care to avoid rapid changes in fuel tempera-
ture and viscosity [13, 23, 26, 36]. During this phase, the fuel pipes 
trace heating has to be stopped, the fuel viscosity controllers usually 
have to be set to manual mode and the fuel temperature gradually 
reduced to maintain a safe fuel lubricity level. One of the frequent 
problems is the deposit formulation during mixing of different fuel 
grades boosted by altering temperature, which leads to clogging of 
filters and disturbances in viscosimeter readings [21].

Even so, it is observed that despite the utmost care during fuel 
changeover, ship fuel systems suffer an increased number of incidents 
related to the malfunction of equipment, chiefly filters, centrifuges, 
heaters, and engine fuel injection components. 

Legislative bodies, such as the International Maritime Organiza-
tion (IMO), the European Union (EU), or port state authorities, im-
pose increasingly stricter environmental requirements on sea-going 
ships. The necessity to reduce environmental pollution is beyond dis-
pute. However, no means exist to verify the impact of the applied 
legal requirements on the technical condition of ships, their safety 
and reliability.

Increasingly complex and demanding devices to reduce the emis-
sion of harmful substances into the environment are being installed 
on ships. Ship crews are burdened with additional duties related to 
their operations and new environmental procedures. Shipowners do 
not have any incentives to increase the number of crews beyond the 
safety regulations and economic demand. Consequently, the risk of 
machinery failure or an accident may rise [6].

Although legislators make efforts to monitor and control the proc-
ess of adopting new regulations, the main focus is on compliance 
verification and the influence on economy. For example, most clas-
sification societies issued dedicated fuel changeover guidelines for 
shipping companies and ships’ staff [2, 12]. The European Maritime 
Safety Agency (EMSA) regularly issues updates to sulfur inspection 
guidance [14]. Problems widely analyzed by the states are the eco-
nomic impact and low sulfur fuels availability. A number of related 
publications and reports were issued over the last decade [4, 8, 10, 
15, 16, 31]. However, there are few reports or research publications 
analyzing the problem of machinery reliability and failure intensity 
related to the fuel changeover procedures. Statistics published by the 
French Ministry of Environment revealed that in 2015 the number 
of reported loss of power incidents in the English Channel doubled 
compared to the previous year [17]. The positions of ships report-

ing incidents suggest that they may be related to fuel changeover on 
entering or leaving SECA. Very similar increase in the loss of power 
was observed in 2019 in California after the California Air Resources 
Board regulation entered into force [17]. Some accidents, especially 
those leading to injuries or severe loss in property or environment, 
are reported to authorities and after investigation reports are made 
public [37]. However, information is scarce about the number of 
failures which were not officially reported. Is there a similar rate of 
failures compared to the pre-SECA conditions? Regulators, interested 
in meeting the requirements by ships, should also have ship safety 
and reliability in focus. Proper feedback may and should be taken 
into account when a regulation is revised or updated, and/or guidance 
for procedures is being prepared. However, the record of officially 
reported accidents may be insufficient. There are multiple cases of 
different malfunctions and incidents that have never been reported to 
organizations other than the shipowner’s company, while each such 
case may trigger a chain of events leading to disaster. The newly intro-
duced regulations have their consequences: those expected, but also 
unexpected side effects. Assessing possible negative consequences 
may play a key role in improving ship safety.

In this research, the frequency of failures and malfunctions in 
the ship fuel systems related to fuel changeover, including engines, 
supply, and injection system, was analyzed and compared to the fre-
quency of similar incidents occurred during engines operation on one 
grade of fuel only.

2. Analysis object and method
Statistical data were collected on seven merchant ships of various 

types and capacity: four container carriers and three multipurpose 
general cargo vessels (Table 1). During the period of observation, four 
ships were not older than three years, while the remaining three ships 
were 8 to 10 years old. The selected ships entered a SECA at least once 
during the observation period. Because the trading areas cover almost 
all the oceans and to simplify the nomenclature, the SECA in this 
research means all areas where the limits of sulfur content in marine 
fuels were imposed, especially: Northern Europe, North American 
coast, Caribbean Sea region and Chinese Pearl River Delta, Yangtze 
River Delta and Bohai Bay. The deck and the engine logbooks of each 
ship were analyzed to determine the exact time of fuel changeover 
commencement and completion when entering and leaving SECA. 

Due to the relatively long observation period, starting in 2010 for 
ship A and ending in 2020 for ship G, the requirements for SECA dif-
fer depending on the actual date and port of call. Consequently, the 
fuel grades used on board the selected ships also differed according to 
the evolution of sulfur limits inside and outside SECAs (Table 1). 

Table 1. Basics of the analyzed ships and their voyages

Ship Year and place of 
build DWT, tons Propulsion type Period of observation Fuel grades used Number of 

SECA calls

A 2010, China 50300 Direct, FPP Jan 2010 – Sep 2012 HSHFO/LSHFO/LSMGO 7

B 2014, China 60550 Direct, FPP Jun 2014 – Oct 2014 HSHFO/LSHFO/LSMGO 4

C 2012, South Korea 145451 Direct, FPP Mar 2015 – Jul 2015 HSHFO/LSMGO 2

D 2014, South Korea 149360 Direct, FPP May 2015 – Jul 017 HSHFO/LSMGO 38

E 2009, China 7811 Indirect, CPP Apr 2017 – Jul 2017 HSHFO/LSMGO 5

F 2011, China 5646 Indirect, CPP May 2018 – Apr 2019 HSHFO/LSMGO 6

G 2010, China 12940 Indirect, CPP Mar 2020 – Jul 2020 LSMGO/ULSHFO 4

DWT – deadweight tonnage
HSHFO – high sulfur residual fuel (as defined in the regulations currently in force),
LSHFO – low sulfur residual fuel,
LSMGO – low sulfur marine gasoil
ULSHFO – ultra low sulfur residual fuel (hybrid fuel)
CPP – controllable pitch propeller
FPP – fixed pitch propeller



Eksploatacja i NiEzawodNosc – MaiNtENaNcE aNd REliability Vol. 23, No. 4, 2021 621

All selected ships, except ship A, were calling SECA regularly. The 
trading area of ship A was outside the SECA for the first two years of 
the analyzed period, followed by a series of voyages between Central 
America and the European SECA in 2012, therefore most of identified 
on this ship failures is not related to SECA fuel changeover.

Because the fuel system malfunction may occur with some delay 
after the fuel changeover procedure is accomplished, it was arbitrar-
ily decided that the incident is related to fuel changeover if it occurs 
after the commencement of the procedure, not later than three days 
after its completion. All other incidents are assumed as not directly 
related to the fuel changeover procedure. With that assumption, call-
ings at SECA lasting over six days were assigned six to seven days 
of observation per each calling, depending on the time required for 
completion of the changeover procedure. That was frequent case for 
ships calling at ports situated in the North Sea and Baltic Sea SECA 
region where typically more than one port were visited and the entire 
sea passage between them is within a single SECA. On the other hand, 
in case of short calls, less than three days in SECA, the time of obser-
vation was three to six days depending on the length of berthing time. 
This applied particularly to calls at a single port in North America, 
or, since January 2016, at Chinese ports in Pearl River Delta, Yangtze 
River Delta or Bohai Bay.

Based on the deck and the engine logbooks entries we determined 
the time of the fuel changeover observation TCO and calculated the 
ratio Ro of observation time between the TCO and the total observation 
time Ttot:

 100%CO
o

tot

TR
T

= ⋅  (1)

where: TCO – time of the fuel changeover observation; Ttot  – total 
observation time; Ro – ratio of observation time.

Similarly, the engine logbooks and other official reporting docu-
ments, like near miss reports, malfunction reports, damage reports and 
repair reports were analyzed for evidence of incidents related to ship 
fuel system failures. Identification of historical failures was frequent-
ly facilitated by ship’s photo documentation, where an actual date of 
the failure was usually recorded. We also used monthly work reports – 
internal reports of the shipping companies. All identified failures were 
assigned the date and if possible, the time of occurrence. The study 
covered the entire fuel system: storage, transfer, purification, supply 
to the main engine, auxiliary engines and fired boiler, and finally the 
engine injection system. All routine service and maintenance work, 
such as time-based fuel injection pumps or fuel injection valves main-
tenance, was excluded from the analysis.

The proposed analysis makes use of some elements and techniques 
adopted from the reliability engineering [22, 32, 33], mainly Failure 
Mode and Effect Analysis (FMEA). Because of the varying nature 
and location of failures, it is practicable to group them with respect to 
the most relevant parameter [33, 38]. A similar method was applied in 
this study and the identified failures were classified into three classes 
of location:

Class A. Failure of the engine fuel injection system. This group 1. 
includes malfunction of fuel injection valves (FIV), fuel in-
jection pumps (FIP), high pressure injection pipes, and their 
safety system – leakage detection system for both main engine 
and auxiliary engines.
Class B. Failure of the fuel supply system. This group includes 2. 
fuel supply and circulation pumps, fuel safety filters, fuel au-
tomatic filters, fuel preheaters and coolers, viscosity sensors, 
fuel supply pipes, and their tracing heating.
Class C. Failure of the fuel storage, transfer, and preparation 3. 
system, including the purification system. This group includes 
mainly problems in storage, settling, or service tanks (sedi-
ments, contamination, foaming), difficulties with transporta-

tion related to fuel properties, contaminated filters, strainers, 
or purifiers and their preheaters.

The definition of failure is always problematic and a variety of ap-
proaches are proposed by different researchers [9, 20, 32, 35]. In es-
sence, based on the ISO 8402 the definition of reliability [32], failure 
may be defined as the inability to perform a required function under 
given environmental and operational conditions and for a stated pe-
riod of time. However, in ship service, situations occur where a com-
ponent or subsystem is functioning, but the risk of accident or loss of 
property is very high. Such a situation is called a near miss incident. 
Therefore, for this research, a total inability to perform a function, as 
well as a near miss condition and malfunctions likely leading to a near 
miss are recognized as failures. Similar approach is described in the 
literature [7, 11]. 

For every recorded failure, the severity of its actual or possible 
consequences was evaluated too. Again, similarly to the definition 
of failure, there is no single universal definition of severity levels. 
For example, Morais [30] proposes a very simple classification into 
three levels of severity: no problem, moderate problems, and extreme 
problems, which seems to be very universal and applicable in various 
disciplines. However, in case of failure consequences analysis, the 
lowest of proposed levels may be inadequate. A more suitable defini-
tion was proposed by Kaidis [20], who related the severity levels to 
the required service time. Sasmito and Untung proposed a criticality 
of failure matrix with four categories of failure severity for the ana-
lyzed ship’s fuel system [33]. In fact, severity should be individually 
defined to the needs of the specific problem. Therefore, in this work 
three levels of severity were defined:

High risk failure – when the vessel had to be stopped, depar-1. 
ture was delayed or an auxiliary engine or fired boiler could 
not be started for at least one hour.
Medium risk failure – when the ship operation was not dis-2. 
turbed, but there was a direct and significant risk of distur-
bance leading to a high-risk incident, similar to a near miss 
condition.
Low risk failure – when the ship operation was not disturbed 3. 
and there was no direct and significant risk of disturbance lead-
ing to a high-risk incident.

Of all identified failures, those related to the fuel changeover pro-
cedure were selected based on the date and time of occurrence. Ad-
ditionally, they were evaluated by an experienced engineer on board 
the ship for possible relation to fuel changeover procedure. Even if it 
is unavoidable to have such evaluation biased by an individual and 
subjective judgment, the authors chose to do so as the risk of erratic 
qualification was thought to be lower when engineer’s evaluation is 
done than when it is not. Finally, the number of failures related to 
fuel changeover nCO and the total number of failures ntot were used to 
calculate the ratio of failure occurrence Rfoc for every individual ship 
and for the whole analyzed population:

 100%CO
foc

tot

nR
n

= ⋅  (2)

where: nCO – number of failures related to fuel changeover observed 
during the time TCO; ntot – total number of failures observed during 
the time Ttot.

Dividing the ratio of failure occurrence Rfoc by the ratio of observa-
tion time Ro, we can determine the failure frequency indicator Fi:

 foc
i

o

R
F

R
=  (3)

The failure frequency indicator Fi should be close to unity if the 
frequency of failures related to fuel changeover in SECA and the 
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overall failures frequency are similar. In case failures related to fuel 
changeover in SECA are more frequent, the value of Fi rises above 
unity. That makes the Fi very easy to interpret.

Additionally, the time between failures (TBF) was calculated for 
each class of failure and each ship using the formula:

 ,   
,   

condition
class condition

class condition

TTBF
n

=  (4)

where: class – is the location of failure according to the presented 
classification A, B, C; condition – is the condition of observation: 
related to SECA fuel changeover or not related to fuel changeover; 
TBF class, condition – time between failure of a specific class in a specific 
condition [days]; T condition – time of observation [days]; nclass, condition 
– number of incidents of a specific class and in specific conditions.

For calculation of TBF related to SECA fuel changeover, TCO was 
used in the formula (4) numerator, while to calculate TBF not related 
to SECA fuel changeover, the difference Ttot - TCO was applied. This 
approach is different from the way the failure frequency indicator Fi is 
calculated, for which the time of the fuel changeover observation TCO 
is divided by the total observation time Ttot instead of the difference 
Ttot - TCO. That is mainly to bring the formula (4) as close as possible 
to the way the MTBF (mean time between failures) is calculated in 
the theory of reliability. However, the above defined TBF should not 
be understood as a typical MTBF. It is rather a quantitative estimation 
of the likelihood of a specific malfunction in specific conditions. By 
definition, the MTBF is calculated from the working time of the com-
ponent, while in this study the TBF was evaluated from the failure-
to-failure time span regardless of whether the component was running 
or stopped during that time. Moreover, the limited statistical sample 
makes the generalized result very uncertain to use the term MTBF.

3. Analysis of failure structure
77 failures were identified on all seven ships during the total obser-

vation time. Only one of them was officially reported to a Vessel Traf-
fic Service (VTS) on the French coast, while the remaining 76 failures 
were just recorded in the ship’s documentation; only 40 of them were 
also reported to the owner’s office. The remaining 36 failures were 
only noted in the ship’s documentation without any official reporting. 
The number of minor failures without sufficient documentation is not 
known, although evidence was found, like improperly described pho-
tos, that such failures also had occurred.

The structure of failures with respect to the affected component 
is presented in Table 2. The component with the highest number of 
recorded failures in class a is the fuel injection valve (FIV) with the 

total 16 cases. The fuel injection pump (FIP) ranks second with 12 
cases of failure recorded.

For the analyzed population of ships, there is no difference ob-
served in the severity of FIV failure between related and not related 
to SECA fuel changeover (Fig. 1). However, it should be noticed, that 
the number of analyzed failures is only 16. It is very likely, that longer 
observation time or larger population of ships could reveal some dif-
ferences.

It is symptomatic that due to the function of FIV, there are no 
low-risk failures observed at all. Once the FIV performance is de-
teriorated, it usually requires urgent or even immediate action. In 
most cases of high-risk failures, severe mechanical destruction of 
the FIV is observed, frequently accompanied by fuel leakage into the 
engine combustion chamber. Figure 2 depicts two different cases of 
two-stroke engine FIV with broken nozzle tips. The left-hand photo 
presents damage not related to SECA fuel changeover, while the dam-
age presented in the right-hand photo was observed 20 hours after the 
fuel changeover procedure commencement. In both cases, the engine 
had to be stopped for FIV replacement.

An additional example is shown in Fig. 3, where the damaged FIV 
suffered a strong impact of exhaust gas blow-by through the seating. 
The failure occurred six hours after changeover from residual to low 
sulfur distillate fuel commencement while entering the European 
SECA. This specific incident resulted in damaged engine cylinder 
cover, temporary cut-out of the failed engine cylinder, and emergency 
steaming to the port of destination. That was the only officially re-
ported incident in the entire analyzed population.

Generally, the most severe failure of FIP is the seizing of the plung-
er and barrel. It is nearly always qualified as a high-risk failure as it 
usually requires engine shutdown. It may be caused by inadequate 
fuel purifying or filtering. It also frequently happens as a result of a 
low viscosity and lubricity of the fuel, especially when the introduced 
distilled fuel has a low sulfur content or experiences a drastic decrease 

Table 2. Comparison of the number of failures for classes of location A, B, C with respect to the affected components

Affected component
Number of failures not related to SECA fuel changeover Number of failures related to SECA fuel changeover

Class A Class B Class C Class A Class B Class C

FIP 7 - - 5 - -

FIV 10 - - 6 - -

HP pipes 3 - - - - -

Return/supply pipes 5 3 - - 3 -

Pumps - 5 - - 1 -

Filters - 8 1 - 7 -

Tank contamination - - 2 - - 1

Purifiers - - 1 - - 4

Tank structure - - 1 - - -

Heating and tracing - - 2 - - -

Tank level sensor - - 2 - - -

Fig. 1. Comparison of the FIV failures structure with respect to the failure 
severity: a) failures not related to SECA fuel changeover; b) failures 
related to SECA fuel changeover
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in viscosity due to excessively high temperature. This effect can be 
significantly accelerated by a large amount of heat accumulated in the 
elements of injection pumps during the changeover from residual to 
distillate fuels. Most of the engines accept the distillate fuel kinematic 
viscosity not lower than 2-3 mm2/s, which means that the temperature 
of the distillate fuel supplied to the engine should be maintained be-
low 50°C. But the temperature of the residual fuel frequently exceeds 
140°C. Consequently, during changeover the viscosity of the distillate 
fuel may drop below that recommended by the engine maker. Even 
more problematic is the changeover from distillate to residual fuels. 
If the warm-up process is too fast, the plunger expands faster than the 
barrel, causing a dangerous decrease of a very fine clearance required 
for movability of the elements, frequently resulting in seizures [26].

For the analyzed population of ships, most FIP failures were quali-
fied as high or medium risk (Fig. 4), but the share of high-risk failures 
requiring immediate engine shutdown raised from 29% to 50% in re-
lation to SECA fuel changeover. An example of a FIP plunger damage 
occurred during rapid fuel changeover is shown in Fig. 5.

Observed medium risk failures were usually FIP non-
return valve malfunctions or moderate fuel leaks. In one 
case it was short stuck of the plunger and barrel which be-
came movable after a few seconds. The FIP was replaced 
in the next port, a few days after the incident.

The only case of low-risk failure observed in a group of 
failures not related to SECA fuel changeover (Fig. 4a) was 
a fuel leakage through an internal seal resulting in minor 
lubricating oil contamination.

Other components of the fuel system with a sufficient 
number of recorded failures are the filters in the supply 
system of failure class b. Surprisingly, in the analyzed 
population of ships, the severity structure of filter failures 
due to SECA fuel changeover or other causes is much dif-
ferent than expected. Seafarers, when interviewed, tend 
to complain about the incompatibility of different fuels 
grades and frequent problems with filter clogging, forma-
tion of sediments, and extreme gasification. The graphs 
presented in Fig. 6 do not confirm that the severity of 
those problems is greater when fuel is changed over in 
SECA compared to the severity of similar incidents dur-
ing changeover of fuel not related to SECA. However, the 
frequency of problems with proper filtration is still higher 

Fig. 2. FIV nozzle tip damages assigned to the high risk failure group: left-hand photo – failure 
not related to SECA fuel changeover; right-hand photo – failure related to SECA fuel 
changeover

Fig. 3. High risk damage of FIV related to SECA fuel changeover, i.e. seating 
burnt out by combustion gas blow-by

Fig. 4. Comparison of the FIP failures structure with respect to the failure 
severity: a) failures not related to SECA fuel changeover; b) failures 
related to SECA fuel changeover

Fig. 5. Fuel injection pump plunger seizure occurred during rapid fuel 
changeover from residual to low sulfur distillate fuel

Fig. 6. Comparison of the fuel filter failures structure with respect to the fail-
ure severity: a) failures not related to SECA fuel changeover; b) fail-
ures related to SECA fuel changeover
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in SECA related group. It is possible that the ship crew is much more 
careful and prepared for possible problems when fuel changeover is 
carried out in SECA, which results in the actual elimination of high-
risk failures. Nevertheless, in the proposed analysis this hypothesis 
has not been verified.

4. Results and discussion
The total observation time Ttot of the selected population of ships 

was 2652 days. During this time the analyzed ships entered SECA 
with various frequencies, and the time spent in SECA differed from 
single days to a week or more. Consequently, the individual ship ob-
servation time ratio Ro calculated by formula (1) varied from 4.4% to 
19.8%. The observation time ratio was also calculated for the entire 
population of the analyzed ships:

 1
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where: TCOi – time of the ship i fuel changeover observation;  
Ttoti – total observation time of the ship i.

The overall span of Ro is only 15.4 %, with the fleet observation 
time ratio Rofleet=11.9% (Table 3), which indicates that no extreme dif-
ferences existed between ships in the intensity of callings at SECA.

After thorough verification of available documentation, 27 failures 
were qualified as failures related to fuel changeover during entering 
or leaving SECA. Failures occurred during routine changeover of the 

same grades of fuels from different bunker suppliers, but those not 
related to entry or leaving from SECA were not assigned to this group. 
The number of failures, divided into three classes: a, b or c, and into 
groups of related and not related to SECA fuel changeover, are pre-
sented in Table 4.

Based on the number of failures identified for each ship (Table 4), 
the ratio of failure occurrence Rfoc was calculated with formula (2). 
Similarly to the observation time ratio, the results varied, but the span 
was much wider: from 12% to 83.3% (Table 4). For each ship except 
ship E, the values of Rfoc are significantly higher than Ro. The average 
Rfoc for all ships (35.1%) is nearly three times higher than the overall 
average of Rofleet (11.9%). This indicates that for the analyzed popula-
tion of ships, failures in the fuel system were observed on average 
three times more frequently during fuel changeover in SECA com-
pared to the total average frequency.

Fig. 7. Comparison of the failures structure with respect to the failure loca-
tion class: a) failures not related to SECA fuel changeover; b) failures 
related to SECA fuel changeover.

Table 3. Comparison of the total observation time Ttot and time of change-
over observation TCO for the analyzed ships

Ship Ttot, day TCO, day Ro, %

A 958 42 4.4

B 127 22 17.3

C 141 12 8.5

D 801 158 19.7

E 111 22 19.8

F 357 36 10.1

G 157 24 15.3

Total 2652 316 -

Rofleet 11.9

Table 4. Number of failures related and not related to fuel changeover in SECA

Ship
Number of failures not related to SECA fuel 

changeover (ntot- nCO)
Number of failures related to SECA fuel 

changeover nCO
Ratio of 

failure occur-
rence Rfoc, %

Failure 
frequency 

indicator FiClass A Class B Class C Class A Class B Class C

A 14 3 5 2 1 - 12.0 2.7

B 1 1 - 2 1 - 60.0 3.5

C 3 1 - - 3 - 42.9 5.0

D 7 5 2 4 3 4 44.0 2.2

E - 3 1 - 1 - 20.0 1.0

F - 2 1 1 - - 25.0 2.5

G - 1 - 2 2 1 83.3 5.4

total 25 16 9 11 11 5 - -

Average value for entire population of ships 35.1 2.9

Table 5. Comparison of average TBF for classes of location A, B, C of failure 
related and not related to SECA fuel changeover

Ship
TBF not related to SECA fuel 

changeover, day
TBF related to SECA fuel 

changeover, day

Class A Class B Class C Class A Class B Class C

A 65 305 183 21 42 -

B 105 105 - 11 22 -

C 43 129 - - 4 -

D 92 129 322 40 53 40

E - 30 89 - 22 -

F - 161 321 36 - -

G - 133 - 12 12 24

average 76 142 229 24 26 32
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The TBF calculated with formula (4) and presented in Table 5 is 
even better indicator of SECA fuel changeover influence on the ma-
chinery reliability. The average TBF related to SECA fuel changeover 
is three to seven times shorter for each class of location: A, B, and C, 
compared to the TBF not related to SECA fuel changeover. Moreover, 
for every individual ship and class of location, TBF related to SECA 
fuel changeover is shorter. The structure of the failures is different, too 
(Fig. 7). The share of the fuel injection system failures (failure class a) 
increased from 17% of the total not related to SECA fuel changeover 
cases to 29% of related to SECA fuel changeover cases. While the 
share of failure class b of the fuel supply system remains unchanged 
(32%), the share of failures in the fuel storage and preparation system 
dropped when fuel is changed over in SECA from the initial 51% to 
39%. The presented results suggest that the fuel changeover in SECA 
affects the injection system rather than the fuel storage and prepara-
tion system. However, the problems in the latter system are likely to 
occur prior to the actual commencement of the fuel changeover pro-
cedure, mostly due to the necessity to commence new fuel preparation 
well in advance: preheating, purifying, and transfer. The method used 
in this research does not allow confirming this hypothesis and should 
be verified in a separate research.

6. Conclusion
The presented analysis is aimed at emphasizing the problem of 

technical consequences related to the changeover to low sulfur fuel 
while entering or leaving SECA. The population of analyzed ships 
is not numerous to draw a generalized conclusion for the larger fleet. 
However, even for a small sample, differences are observed between 
the failure frequencies and time between failures of specific compo-
nents. The presented analysis results and the method of data process-
ing is a proposal highlighting the fuel oil changeover problem rather 
than a general recommendation. 

The proposed method of analysis allows for both quantitative and 
qualitative assessment. There are two indicators proposed for the 
quantitative assessment of failure frequency. The failure frequency 
indicator Fi allows us to assess promptly and easily whether the fail-
ures occur more or less frequently in relation to SECA fuel changeo-
ver. For all the examined ships, the individual Fi is greater than 1. The 
average for the entire population is Fi=2.9 (Table 4), which suggests 
that the likelihood of failure in the fuel oil system is on average nearly 
three times higher while entering or leaving SECA compared to the 
entire operation time of all analyzed ships. Presented in Table 5, the 
values of time between failure TBF correspond with Fi. In the group 
of failures related to SECA fuel changeover, the average TBF is 24, 
26, and 32 days for the respective failure location class A, B and C, 
compared to TBF not related to SECA fuel changeover, 76, 142 and 
229 days, respectively. It means that in the analyzed population of 
ships, the TBF related to SECA fuel changeover is threefold shorter 
in the failure location class A, over fivefold less in the failure location 
class B, and seven times shorter in the failure location class C.

The qualitative assessment was achieved by the adoption of the 
failure severity metrics, where three levels of severity were defined: 
low, medium, and high. While failures of nearly all analyzed com-
ponents in all classes are observed much more frequently when the 

ship enters or leaves SECA compared to the frequency of failures not 
related to SECA fuel changeover, the observed severity of failures is 
not necessarily increased in relation to SECA fuel changeover. Due to 
the limited amount of data, only failures of three components: FIP and 
FIV of failure location class A, and fuel filters of failure location class 
B were analyzed qualitatively. Only in case of FIP, the share of high-
risk failures grew from 29% to 50% with a simultaneous decrease of 
low-risk failures from 14% to 0%. For the remaining two components, 
namely FIV and filters, no increase in failure severity was observed. 
The presented qualitative results, due to the relatively small samples 
of the input data, show only the feasibility of the analysis rather than 
the overall conclusion for the larger fleet.

In the proposed method, most data were derived from the ship’s 
internal records. Only one out of 77 failures qualified in the research 
were officially reported to the authorities, which shows the scale of 
unknown technical problems faced by the ships and their crews. It 
also proves that there is a space for improvement in terms of technical 
monitoring procedures. 

In this research, the fuel system was chosen as an example. Howev-
er, there are also other systems and machinery on board the ship which 
may be affected by the fuel changeover, like exhaust gas system, heat-
ing system, boilers, main and auxiliary engines. It might be especially 
important to establish how the specific low sulfur fuel grades influ-
ence the machinery reliability during changeover. Unfortunately, the 
insufficient population of seven ships prevents effective analysis. The 
proposed method is very flexible and may be easily adapted to the 
specific needs of any ship system or machinery and to any existing or 
future regulatory requirements. 

Even if the applied methods are very simple, they proved to be 
effective: similar methods are used in industrial reliability analyses. 
The simplicity is a great advantage in this case. Availability of source 
data should not pose any difficulty, the utilized data are relatively easy 
to access on every sea-going ship, so what remains is standardized 
processing. Moreover, the crew engaged in data collection should not 
be burdened with additional work, provided a standardized and ano-
nymized system of reporting failures, damage and incidents is intro-
duced. Such a uniform system would probably significantly facilitate 
the process for crews by elimination the need to learn new procedures 
of reporting when changing the shipowner.

In the Authors opinion, a similar approach might be a good tool 
for a large-scale analysis. Information derived may be useful for fleet 
operators, the authorities and legislators, and especially for ships and 
machinery designers. Proper cooperation of ship operators, designers, 
shipbuilders, policymakers, authorities and ship personnel is crucial 
for effective and safe introduction of new environmental policies.
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In this paper, a system reliability model subject to Dependent Competing Failure Processes 
(DCFP) with phase-type (PH) distribution considering changing degradation rate is pro-
posed. When the sum of continuous degradation and sudden degradation exceeds the soft 
failure threshold, soft failure occurs. The interarrival time between two successive shocks 
and total number of shocks before hard failure occurring follow the continuous PH distri-
bution and discrete PH distribution, respectively. The hard failure reliability is calculated 
using the PH distribution survival function. Due to the shock on soft failure process, the 
degradation rate of soft failure will increase. When the number of shocks reaches a specific 
value, degradation rate changes. The hard failure is calculated by the extreme shock model, 
cumulative shock model, and run shock model, respectively. The closed-form reliability 
function is derived combining with the hard and soft failure reliability model. Finally, a 
Micro-Electro-Mechanical System (MEMS) demonstrates the effectiveness of the proposed 
model.
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Notation
X(t) Continuous degradation at time t
S(t) Cumulative degradation due to random shocks at time t
XS(t) Total degradation at time t
N(t) Number of random shocks arrived by time t
λ	 Intensity of random shocks 
φ Initial degradation
β1 Initial degradation rate
β2 Changed degradation rate when the number of shocks reaches 

a specific value
H Soft failure threshold
D1 Hard failure threshold under extreme shock model
D2 Hard failure threshold under cumulative shock model

WL Critical level on shock magnitude under run shock model
WU Hard failure threshold under run shock model
Wi The magnitude of the ith shock
FW(w) Cumulative distribution function (cdf) of Wi
Yi Degradation damage caused by the ith shock
Tj Arrival time of the jth shock(Tj~ Ga(j,λ))
J The required number of shocks’ occurrences when the soft 

failure degradation rate changes
k The required number of consecutive shocks that exceed the 

critical level WL under run shock model
N The number of transfers before the Markov chain enters the 

absorption state
m The maximum number of shocks that the system can support

1. Introduction
Many systems will fail due to various failure modes caused by 

degradation and random external shocks (such as wear, corrosion, fa-
tigue, fracture, and shock loads) during operation [1]. Some systems 
may suffer multiple failure processes, and any failure processes will 

cause the system to fail. In this paper, we consider two failure proc-
esses: soft failure process and hard failure process. Soft failure means 
that the performance of the system gradually decreases over time. The 
system will fail when the degradation performance exceeds a certain 
critical threshold. Common soft failure includes wear, corrosion, and 
so forth. Hard failure refers to the phenomenon that the system breaks 
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down suddenly in the normal working process (e.g., fracture). These 
two failure processes compete because any failure will cause the sys-
tem to fail [15]. Besides, because the shock acts on the soft and hard 
failure processes simultaneously, the soft and hard failure processes 
are dependent. It is challenging to predict system reliability when the 
soft and hard failure processes are dependent [25].

Most of researchers are devoted to the reliability prediction of 
systems that experience degradation or random shocks in the avail-
able literature. When there is not enough failure data, the degradation 
modeling method can indirectly provide the failure information of the 
system [25]. There are two main types of degradation models: the 
stochastic process model, such as the Wiener process, Gamma proc-
ess, and inverse Gaussian process; and the other is the general path 
model [30]. Ni [21] developed degradation model for a two-stage 
degradation system subject to shocks, where degradation damage is 
caused by shocks and follows the Gamma distribution. The general 
path model is first introduced into the degradation literature by Lu 
and Meeker [16]. Because it is easy to use and the theory has been 
well established, the general path model has been used in many DCFP 
models to describe the degradation process [1, 6, 23, 25]. In our study, 
in order to implement the idea that the degradation rate changes when 
the number of shocks reaches a specific value, we use the general path 
model as the degradation process. Because the degradation rate in the 
general path model can be changed, this characteristic is exactly con-
sistent with our idea. At the same time, the random shock model has 
been extensively studied. Various shock models are introduced into 
the hard failure reliability calculation. Shock models can be divided 
into the following categories: extreme shock model [29], cumulative 
shock model [20], run shock model [18], m shock model [11], delta 
shock model [13], and mixed shock model [26]. In this paper, hard 
failure is calculated under three different shock patterns: the extreme 
shock model, the cumulative shock model, and the run shock model.

In the available literature, most of the literature has been devoted 
to the reliability modeling subject to DCFP. Peng [23] developed reli-
ability modeling for complex systems subject to multiple dependent 
competing failure processes, where two correlated failure processes 
are considered. Soft failure is caused jointly by continuous degrada-
tion and additional abrupt degradation damage due to a shock process 
and hard failure caused by abrupt stress from the same shock proc-
ess. Guo [7] presented a joint copula reliability model for systems 
experiencing two degradation processes and random shocks, where 
the dependence between the two degradation processes is consid-
ered by copula function. Keedy [12] built a probabilistic reliability 
model for stents experiencing dependent competing risk processes. 
Crack propagation is regarded as a degradation process, and a single 
overload under external shocks is considered a hard failure process. 
Besides, shocks will accelerate the propagation of cracks, thus form-
ing a dependent competing failure process. Huynh [10] proposed a 
Degradation-Threshold-Shock model with dependent competing fail-
ure modes, where the shock arrival rate follows the nonhomogeneous 
Poisson process, and the Poisson intensity depends on the degrada-
tion level of the system. Jiang [11] established reliability models for 
systems subject to multiple s-dependent competing failure processes. 
When the shock meets a particular random shock pattern, the hard 
failure threshold reduces to a lower level. Rafiee [25] investigated 
reliability models for a system subject to DCFP of degradation and 
random shocks with a changing degradation rate according to par-
ticular random shock patterns. Lin [14] and Hao [8] studied the gen-
eral dependences between the degradation and two types of random 
shocks (extreme shocks and cumulative shocks). Fan [6] established a 
new reliability model for DCFP, where the intensity function of non-
homogeneous Poisson process depends on the degradation process-
es. Rafiee [26] investigated reliability modeling for systems subject 
to DCFP considering the impact of a new generalized mixed shock 
model. When the generalized mixed shock model is satisfied, the deg-
radation rate and the hard failure threshold can simultaneously shift. 
Zhang [31] proposed a new reliability model for systems with multi-

ple components subject to multiple natural degradations and random 
shocks, where the degradation rate will accelerate due to shocks. Che 
[4] studied a novel reliability model for load-sharing k-out-of-n sys-
tems, where the dependent workload and shock effects are consid-
ered. An [1] considered that systems with high reliability and long 
life could resist small shocks, and divided shocks into safety shocks, 
damage shocks, and fatal shocks, and carried out reliability modeling 
for multiple degradation and shock processes. Lyu [17] applied the 
reliability model of DCFP to the Turbine and Worm System. Pourhas-
san [24] put forward a simulation approach about analytic reliability 
assessment for complicated systems, which embeds the stochastic 
degradation process and random shocks. In most of the above litera-
ture, the interference model is utilized to calculate the hard failure 
reliability; that is, the system is reliable when the shock magnitude 
and shock times are less than a certain threshold or the interarrival 
shock time exceeds a certain threshold. In our research, the phase-type 
distribution method is employed to calculate the hard failure reliabil-
ity. The interarrival time between two successive shocks is assumed to 
be continuous phase-type distribution, and the phase-type distribution 
survival function is used to calculate the reliability.

The phase-type distribution is suitable for modeling the interar-
rival time between two successive shocks. There are many advan-
tages about the phase-type distribution method. First, the simplicity 
of mathematics is one of the advantages of the phase-type distribution 
method. We can express the distribution and moment in the form of 
matrix, and it is easy to calculate the results we need [22]. Second, 
When multiple shock sources act on a system, especially complex 
shocks such as run shocks, it is difficult to obtain a closed reliability 
expression with traditional hard failure reliability calculation meth-
ods, but the phase-type distribution method is easy to calculate the 
hard failure reliability. Besides, the closure properties of phase-type 
distributions under some operations are helpful in the reliability con-
text [2]. In the literature [3, 19, 27], the phase-type distribution is 
applied to analyze the reliability of shock models. In the literature [3, 
19], the interarrival time between shocks is assumed to be continuous 
phase-type distribution. Shocks may lead to system failure, and the 
system may fail due to wear. Its wear lifetime follows the continuous 
phase-type distribution. The interval between shocks and the wear life 
depend on the number of cumulative shocks. When the shocks are 
extreme shocks, cumulative shocks, and run shocks, the survival func-
tion of the system is obtained. Segovia [27] displayed an analytical 
expression of the survival function of a multi-state system that suf-
fered shocks by using phase-type distribution. Zhao [32] proposed a 
multi-state shock model, where the Markov chain was constructed by 
the number of shocks of different types of shocks. When the interar-
rival time between shocks follows the common continuous phase-type 
distribution, the survival function and mean residual lifetime of the 
multi-state system were derived. Eryilmaz [5] developed a new mixed 
shock model, which combined the extreme shock model and the run 
shock model. The survival function of the system was studied when 
the interarrival time and the shock magnitude are independent and 
dependent using the property of phase-type distribution. The above 
literature used the phase-type distribution calculation method when 
calculating the failure reliability caused by shocks. Literature [3, 19, 
27] assumed that the wear life follows a continuous phase-type dis-
tribution. When the failure is caused by wear, the survival function is 
used to describe the reliability of the system.

In the existing literature, the phase-type distribution calculation 
method has not been combined with DCFP. We combine the phase-
type distribution calculation method with DCFP. As far as the author’s 
knowledge, this is the first time for the research in combining phase-
type distribution with DCFP. In this paper, the general path model is 
utilized for the soft failure. The degeneration path is assumed to be a 
linear path. The degradation rate changes when the number of shocks 
reaches a specific value. The soft failure reliability is calculated by 
the total degradation-threshold interference model. The phase-type 
distribution method is applied to calculate the hard failure. It is as-
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sumed that the interarrival time between shocks follows the common 
phase-type distribution, the total number of shocks before the hard 
failure occurring follows the discrete phase-type distribution, and the 
survival function is employed to calculate the hard failure reliability. 
The total reliability of the system is derived considering the hard and 
soft failures by the number of shocks.

The rest of this article is organized as follows. In Section 2, the 
soft failure process and the hard failure process of the system are 
described, along with the dependent competing failure relationship 
between those processes. In Section 3, the reliability models of the 
system, including the soft failure model, the hard failure model(the 
extreme shock model, cumulative shock model, and run shock mod-
el), and the model of DCFP, are established. In Section 4, a numerical 
example is developed to demonstrate the implementation and effec-
tiveness of the proposed model. In Section 5, the calculation results 
are summarized.

2. System description and preliminaries
As shown in Figure 1, the failure of a system is caused by two de-

pendent competing failure processes: the soft failure process and the 
hard failure process. The total degradation of the soft failure process 
consists of continuous degradation and sudden degradation caused by 
shocks. When the total degradation exceeds the soft failure threshold 
H, soft failure occurs in the system. At the same time, hard failure will 
occur when the shock magnitude exceeds the hard failure threshold D. 
Whichever failure processes occurs first will cause the system to fail. 
The shock process acts on the soft and hard failure process simultane-
ously, so system failure results from dependent competing failures in 
the soft and hard failure process. In this paper, three shock models 
are applied for the hard failure process: (1) Extreme shock model, 
when the shock magnitude exceeds the hard failure threshold, the sys-
tem will have a hard failure. (2) Cumulative shock model, when the 
cumulative magnitude of shocks exceeds the hard failure threshold, 
hard failure occurs in the system. (3) Run shock model, when the 
magnitude of k consecutive shocks exceeds the critical threshold, hard 
failure occurs. Besides, when the number of shocks reaches a certain 
value, the degradation rate of soft failure changes.

Fig.	1.	 Two	dependent	competing	failure	processes:	(a)	soft	failure,	(b)	hard	
failure

Phase-type distributions and property:
Consider a finite discrete-time Markov chain in the state space {1, 

2, ..., m, m+1}, where 1, 2, ..., m are the transient states, and m+1 
is the absorbing state. The number of transitions before the Markov 
chain enters the absorbing state is defined as a discrete phase-type 
distribution. The probability mass function of discrete phase-type dis-
tributed random variable N is [22]:

 P N n nn={ } = =−aQ u1 1 2', , ,  
 (1)

where, for n∈N , Q=(qij)m×m is the transition probability matrix be-
tween m transient states, and u’=(I-Q)e’ is the transition probability 
vector from the transient state to the absorption state, I is the identity 
matrix. The matrix Q must satisfy the condition that I-Q is non-sin-
gular. We use ~ ( )dN PH a,Q  to indicate that the random variable N 
follows the discrete phase-type distribution.

Assuming a finite-state Markov process starts the transition from 
transient state i with probability ai. The time distribution of the Markov 
process entering the absorbing state is defined as continuous phase-
type distribution. The cumulative distribution function of continuous 
phase-type distributed random variable X is [22]: 

 P X x x≤( ) = − ( )1 ααexp 'A e  (2)

The survival function of X is given by:

 P X x x>( ) = ( )ααexp 'A e  (3)

where, A is an m×m matrix, whose diagonal elements are negative, 
and non-diagonal elements are non-negative, and e=(1,…,1)1×m. 
All elements of the row vector α=(a1,…,am) are non-negative. Ex-
ponential, Erlang, generalized Erlang, and Coxian distributions are 
commonly-used continuous phase-type distributions [9]. We use 
X PHc~ ,αα A( )  to indicate that the random variable X follows the 

continuous phase-type distribution of order m with a PH-generator A 
and substochastic vector α.

Proposition [22]: Assume that X1,	 X2,… are independent and
X PHi c~ ,αα A( ) , i=1,2,… and independently ~ ( )dN PH a,Q . If α 

and a are stochastic vectors, i.e., ααe ae' ', ,= =1 1  then 

X PHi c
i

N
~ , ,αα αα⊗ ⊗ + ( )⊗( ) = −

=
∑ a A I a Q a Ae'0

1

0  .

where  is the Kronecker product.

3. Reliability analysis of DCFP considering time phase-
type distribution

In this section, the reliability analysis of the system experiencing 
the degradation process and the shock process is carried out. First, the 
soft failure model is developed—the degradation rate changes when 
the number of shocks reaches a specific value. Then the phase-type 
distribution is utilized to model the hard failure process (including 
extreme shock, cumulative shock, and run shock). Finally, the total 
reliability is calculated.

3.1. Soft failure model under degradation and random 
shocks 

The total degradation includes continuous degradation and abrupt 
degradation caused by random shocks. The continuous degradation 
path is assumed to be a linear path X(t)=φ+βt. φ is the initial degrada-
tion, β1 is the degradation rate of the first stage, β2 is the degradation 
rate of the second stage. Assume that the initial degradation φ, the 
degradation rate β1 and β2 all follow the normal distribution, that is, 
β1~ N( μβ1,σβ1

2), β2~ N( μβ2,σβ2
2). The degradation rate changes when 

the jth shock arrives. Then the continuous degradation X(t) can be 
expressed as:

 X t
t j N t
T t Tj j

( )
, ( )

( ),
=

+ >
+ + −

ϕ β
ϕ β β

1

1 2

                       
  jj N t≤





 ( )
 (4)

where, Tj is the time of arrival of the jth shock, and	N(t) is the number 
of random shocks arrived by time t.
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Random shocks will cause abrupt degradation damage to the deg-
radation process, thereby accelerating the degradation process. As-
suming that the magnitude of the random shock Wi is independent 
and identically normally distributed, namely Wi(ti)~N(μW, σW

2), ti is 
the arrival time of the ith shock. The cumulative distribution function 
of the shock magnitude is	FW(x). The arrival times of random shocks 
follow a homogeneous Poisson process with intensity λ, then:

 P N t i
t
i

e i
i

t( ) , , , ,={ } = ( )
=−λ λ

!
  0 1 2  (5)

When the number of random shock arrivals follows the Poisson 
process with intensity λ, for a certain j, the arrival time Tj of the jth 
shock follows the Gamma distribution with shape parameter j and 
scale parameter λ, that is, Tj~ Ga(j,λ). The probability density func-
tion is:

 f t j
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Let Yi (i=1,2,…,∞) be the abrupt degeneration increment caused by 
the ith random shock, that is, the damage caused by the random shock 
to the degradation process. Then the total degradation S(t) caused by 
random shocks is:
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Then the total degradation of soft failure Xs(t) can be expressed 
as:

 ( ) ( ) ( )SX t X t S t= +  (8)

To keep the system in normal working condition, the total degra-
dation of the system Xs(t) should be less than the soft failure critical 
threshold H. The reliability of the soft failure is:
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3.2. Hard failure model under extreme shock
The extreme shock model is shown in Figure 2. It can be seen from 

Figure 2 (a) that when the number of shocks reaches a specific value 
(the schematic diagram is 3), the soft failure degradation rate increas-
es from β1 to β2. As shown in Figure 2(b), the fourth shock is a fatal 
shock, so the system life is T=X1+X2+X3+X4.

Let Xi denote the interarrival time between the ith shock and the 
i–1th shock, i≥1. Suppose the arrival rate of the shock follows a Pois-

son distribution with parameter λ. In that case, the interarrival time Xi 
follows the exponential distribution, which can be expressed as phase-
type distribution: 

 X PH PHi c c~ , ,αα A( ) = −( )1 λ  (10)

Let p1 be the probability of a fatal shock, and 1–p1 be the prob-
ability of a non-fatal shock.

 ( ) ( )1 1 1> 1 =1 W
i W

W

Dp P W D F D µ
σ

 −
= = − −Φ 

 
 (11)

where ( )Φ   is the cumulative distribution function of standard nor-
mal distribution.

Fig.	2.	Extreme	shock	model

Let N be the number of transfers before the Markov chain enters 
the absorption state, that is, the number of shocks before hard failure 
occurring, which follows the discrete phase-type distribution, namely 

~ ( )dN PH a,Q
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where, m is the maximum number of shocks that the system can sup-
port.

Let T be the life of the hard failure of the system, then according to 
the phase-type distribution properties, we have:
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g G= ( ) =

− −( )
− −( )

× +( )1

1 0 0
0 1 0

01 1

1

1
  0  0  0    0   0





m

p
p

,

λ λ
λ λ

−−
−( )
−























+( )× +( )

λ
λ

λ

 

   



1 1

1 1

p

m m0 0 0

(13)

According to the phase-type distribution survival function, we 
have:

 ( ) ( ) 'expP T t t> = g G e  (14)

Because the soft failure reliability formula is derived by the number 
of shocks as the conditional probability, in order to unify the reli-
ability expression of soft and hard failures, the hard failure reliability 
formula also uses the number of shocks as the conditional probability. 
Therefore, the hard failure reliability can be expressed as:
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3.3. Hard failure model under cumulative shock
The cumulative shock model is shown in Figure 3. It can be seen 

from Figure 3 (a) that when the number of shocks reaches a specific 
value (the schematic diagram is 3), the soft failure degradation rate 
increases from β1 to β2. As shown in Figure 3(b), the fourth cumula-
tive shock exceeds the hard failure threshold, the system fails, so the 
system life is T=X1+X2+X3+X4.

Let pi be the probability that the ith cumulative shock is a fatal 
shock, then:
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Let N be the number of transfers before the Markov chain enters the 
absorption state, which follows the discrete phase-type distribution, 
namely ~ ( )dN PH a,Q
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where, m is the maximum number of shocks that the system can sup-
port.

Let T be the life of the hard failure of the system, then according to 
the phase-type distribution properties, we have:
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According to the phase-type distribution survival function, we have 
( ) ( ) 'expP T t t> = g G e
Therefore, the hard failure reliability can be expressed as:
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3.4. Hard failure model under run shock 
The run shock model is shown in Figure 4. k	=2 means that when 

the magnitude of two consecutive shocks exceeds the critical thresh-
old WL, hard failure occurs. It can be seen from Figure 4 (a) that when 
the number of shocks reaches a specific value (the schematic diagram 
is 3), the soft failure degradation rate increases from β1 to β2. As 
shown in Figure 4(b), when the fourth shock arrives, the condition 
of system failure caused by run shock is met, so the system life is 
T	=X1+X2+X3+X4.

Let p represent the probability that the shock exceeds the critical 
level of run shock model under the condition that the shock is not 
fatal, then:
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Fig.	3.	Cumulative	shock	model
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Let N be the number of transfers before the Markov 
chain enters the absorption state, which follows the discrete 
phase-type distribution, namely ~ ( )dN PH a,Q :
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where, k is the required number of consecutive shocks that exceed the 
critical level WL under run shock model.

Let T be the life of the hard failure of the system, then according to 
the phase-type distribution properties, we have:
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According to the phase-type distribution survival function, we have 
( ) ( ) 'expP T t t> = g G e
Therefore, the hard failure reliability can be expressed as:

 

( ) ( )( ) ( )( )

( ) ( )( ) ( ) ( )( )
0

'

0 0

( ) |

exp exp
= exp

! !

H
i

i i

i i

R t P T t T t N t i P N t i

t t t t
P T t t

i i
λ λ λ λ

∞

=

∞ ∞

= =

= > = > = ⋅ =

− −
> ⋅ = ⋅

∑

∑ ∑ g G e

(23)

3.5. System reliability analysis
The system experiences both soft and hard failure processes at the 

same time. If the system is not to fail, neither soft nor hard failures 
can occur. According to Section 3.1 to 3.4, we have obtained the sys-
tem’s soft and hard failure reliability expressions. Therefore the total 
reliability is:

(24)

4. Numerical examples
In this section, a micro-engine is studied as a realistic example to 

illustrate the proposed model’s effectiveness in this paper. The micro-
engine includes comb-drive actuators and rotating gear, which are 
mechanically connected. After the voltage is applied, the comb-drive 
linear displacement is transformed into the circular motion of the gear 
through the pin joint. According to the experimental research con-
ducted by Sandia National Laboratory, the wear of the friction surface 
between the gear and the cylindrical pin is the primary failure mode 
of the micro-engine, and the increase in wear eventually causes the 
cylindrical pin to break. The micro-engine is not only subjected to 
wear but also to random shocks. Tanner et	al. [28] conducted a reli-
ability analysis on the micro-engine in the shock environment. Ran-
dom shocks will cause wear debris and accelerate the wear of the 
friction surface. Besides, under the impact of the shock, the spring 
may be misaligned, and a shock with sufficient magnitude may cause 
the spring to break. Because the shock will accelerate the degrada-
tion process, we assume that the degradation rate increases after the 
number of shocks reaches a specific value. The parameters used in 
reliability analysis are shown in Table 1.

The total reliability curves, soft failure reliability curves, and 
hard failure reliability curves under the extreme shock model, cu-
mulative shock model, and run shock model are shown in Fig. 5. 
Besides, the sensitivity curves of (D1, D2, WL), Poisson intensity 
λ, and soft failure degradation rate β2 under three shock models are 
demonstrated in Fig. 6 – 8.

It can be seen from the soft failure reliability curve and the total 
reliability curve in Fig. 5 (a) that when t is around 0.8×105, the decline 
rate of the soft failure reliability curve and the total reliability curve 
becomes faster, which is because the number of shock arrivals reaches 
a certain threshold at this time. The soft failure degradation rate in-

Fig.	4.	Run	shock	model(k=2)
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creases, resulting in a faster decline in soft failure reliability and total 
reliability. It can be seen from Fig. 6 (a) that when the hard failure 
threshold D1 is increased from 1.3 to 1.6, the reliability curve shifts to 
the right. We have increased the hard failure threshold, and the system 
has better performance, which increases the hard failure reliability, 
and the total reliability becomes greater. It can be seen from Fig. 7 
(a) that when the Poisson intensity λ increases, the reliability curve 
shifts to the left. We have increased the frequency of shock arrivals, 
and the system is in a worse working environment, thus reducing the 
reliability. It can be seen from Fig. 8 (a) that with the increase of β2, 
the reliability curve shifts to the left, which is due to the increase in the 
rate of soft failure degradation leads to a decrease in the soft failure 
reliability, thereby reducing the total reliability.

It can be seen from Fig. 6 (b) that when the hard failure threshold 
D2 increases from 4.0 to 7.0, the total reliability curve shifts to the 
right. As	D2 decreases, the inflection point of the total reliability curve 
becomes less noticeable. It is because when D2 is a smaller value, the 
number of shocks required to cause the system to fail is small. The 
system will fail when the number of shocks has not reached a prede-
termined value that changes the degradation rate of soft failure, so the 

inflection point of the reliability curve is not apparent. It can be seen 
from Fig. 7 (b) that when the Poisson intensity λ increases, the reli-
ability curve shifts more obviously to the left, which indicates that the 
reliability of the system is more sensitive to the frequency of shock 
arrival. So it is necessary to minimize the frequency of shock arrivals 
to maintain high reliability. It can be seen from Fig. 8 (b) that with the 
increase of β2, the reliability curve shifts to the left. The rise of the soft 
failure degradation rate leads to a decrease in soft failure reliability, 
reducing the total reliability.

It can be seen from Fig. 5 (c) that compared with the total reli-
ability under the extreme shock model (see Fig. 5 (a)), the total reli-
ability under the run shock model is higher. It is because when the 
hard failure threshold under extreme shock model D1 and the critical 
level on shock magnitude under run shock model WL are the same, the 
run shock model requires that the system fails when two consecutive 
shocks exceed WL, while the extreme shock model only needs one 
shock to exceed D1. It can be seen from Fig. 6 (c) that when the criti-
cal level on shock magnitude WL increases from 1.3 to 1.6, the total 
reliability curves are relatively close, which shows that the reliability 
of the system is less sensitive to the critical level on shock magnitude 
WL. It can be seen from Fig. 7 (c) that when the Poisson intensity λ 
increases, the reliability curve shifts more obviously to the left, which 
indicates that the reliability of the system is more sensitive to the fre-
quency of the shock. So it is necessary to minimize the frequency of 
shock arrivals to maintain high reliability. It can be seen from Fig. 8 
(c) that with the increase of β2, the reliability curve shifts to the left. It 
is due to the rise in the soft failure degradation rate, which leads to a 
decrease in the soft failure reliability and the total reliability.

Table 1. Parameter values of the reliability model

Parameters Values Sources

H 0.00125 μm3 (Tanner&Dugger,2003)

D1 1.5 GPa (Rafiee, 2014)

D2 5.0 Gpa (Hao, 2017)

WU
WL

1.8 Gpa
1.5 Gpa

Assumption
(Rafiee, 2014)

φ 0 (Tanner&Dugger,2003)

μβ1 8.4823×10-9 μm3 (Tanner&Dugger,2003)

σβ1 6.0016×10-10 μm3 (Tanner&Dugger,2003)

μβ2 10.4823×10-9 μm3 (Rafiee, 2014)

σβ2 6.0016×10-10 μm3 (Tanner&Dugger,2003)

μW 1.2 GPa (Rafiee, 2014)

σW 0.2 GPa (Rafiee, 2014)

μY 1.0×10-4 μm3 (Rafiee, 2014)

σY 2×10-5 μm3 (Rafiee, 2014)

λ 5×10-5 / revolutions (Rafiee, 2014)

j 3 Assumption

k 2 Assumption

Fig.	5.	 Curves	of	soft	failure	reliability,	hard	failure	reliability,	and	total	reli-
ability:	(a)	extreme	shock	model,	(b)	cumulative	shock	model,	(c)	run	
shock	model

Fig.	6.	 Sensitivity	 analysis	 of	 R(t)	 on	 D1,	 D2,	 WL:	 (a)	 extreme	 shock	 model,		
(b)	cumulative	shock	model,	(c)	run	shock	model

Fig.	7.	 Sensitivity	analysis	of	R(t)	on	λ:	(a)	extreme	shock	model,	(b)	cumula-
tive	shock	model,	(c)	run	shock	model
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5. Conclusions
In this paper, based on the phase-type distribution, we develop a 

new reliability model for systems subject to DCFP with phase-type 
distribution considering changing degradation rate. The main innova-

tions of this paper are as follows: first, when the number of shocks 
reaches a specific value, the soft failure degradation rate changes; 
second, the phase-type distribution method is utilized to calculate the 
hard failure reliability—the interarrival time between two successive 
shocks follows a continuous phase-type distribution, and the survival 
function of the phase-type distribution is applied to calculate the hard 
failure reliability; third, the phase-type distribution is combined with 
the DCFP. Besides, the hard failure shock model adopts the extreme 
shock model, cumulative shock model, and run shock model, respec-
tively. Finally, the proposed new model is verified by a MEMS nu-
merical example. The effect of model parameters is studied through 
sensitivity analysis.
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Definitions/Abbreviations

a    - mean acceleration [m/s2],
Da   - acceleration in the deceleration phase [m/s2],

a   - acceleration [m/s2],
AT   - Automatic Transmission,
CF   - Fuel consumption in test [kg/s],
CV   - calorific value of fuel [J/kg],
dV   - speed change [m/s],
EM   - energy consumption of motion [J],
EM   - electric motor,
ET   - total energy consumption [kWh],
ETe   - total energy consumption of the electric drive [J],
ETf   - total energy consumption of the combustion engine [J],
EV   - Electric Vehicle,
FD   - free driving distance,
HEV - Hybrid Electic Vehicle,
ICV  - Internal Combustion Vehicle,
L   - distance [m],
LA  - distance of the acceleration phase [m],
LC   - distance of the acceleration constant speed phase [m],

MT    - Manual Transmission,
NUT  - non -urban traffic distance,
P    - Power, [W],
PHEV - Plug-in Hybrid Electric Vehicle,
Qe    - distance-based energy consumption of the electric drive  

[kWh/km],
Qf    - distance-based fuel consumption of the combustion engine 

[dm3/100km],
QT_PHEV - distance-based energy consumption [Wh/km],
QTe    - total distance-based energy consumption of the electric drive 

[Wh/km],
QTf   - total distance-based energy consumption contained in the fuel 

[Wh/km],
SOC  - State Of Charge [%],
TL   - time for stop phase or engine idle run [s],
ts,e    - start and end time of energy calculation [s],
tT    - time traveled distance [s],
TTW  - (Tank-to-wheels),
UT   - urban traffic distance,
WLTP - The Worldwide Harmonized Light Vehicles Test Procedure,
V    - average speed [m/s], 

The paper presents an analysis of energy consumption in a Plug-in Hybrid Electric Vehicle 
(PHEV) used in actual road conditions. Therefore, the paper features a comparison of the 
consumption of energy obtained from fuel and from energy taken from the vehicle’s batter-
ies for each travel with a total distance of 5000 km. The instantaneous energy consumption 
per travelling kilometre in actual operating conditions for a combustion engine mode are 
within the range of 233 to 1170 Wh/km and for an electric motor mode are within the range 
of 135 to 420 Wh/km. The average values amount to 894 Wh/km for the combustion engine 
and 208 Wh/km for the electric motor. The experimental data was used to develop curves 
for the total energy consumption per 100km of road section travelled divided into particular 
engine types (combustion/electric), demonstrating a close correlation to actual operating 
conditions. These values were referred to the tested passenger vehicle’s approval data in a 
WLTP test, with the average values of 303 Wh/km and CO2 emission of 23 g/km. 
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cV    - speed in uniform motion [m/s],
ΔED   - energy losses of the internal combustion engine [J],

ΔEE   - energy losses of the electric drive [J],
ΔEL  - energy losses by idle operating conditions of the vehicle [J].

1. Introduction
A passenger vehicle can be analysed in terms of the consequences 

of specific energy conversions occurring in its engine system. Com-
bustion engines are the dominant engine type in most power train 
systems. As result of the energy conversions derived from the fuel 
delivered from the tank, the combustion engine generates heat en-
ergy which is then transformed into kinetic energy, transferred to the 
drive system and ultimately to the vehicle’s wheels, thereby setting 
the vehicle into motion. In the energy balance of a moving vehicle, 
implementing a selected speed profile, the energy generated from the 
burnt fuel ET is expended to drive the vehicle and also lost as result 
of various energy conversions occurring both in the engine and in 
the transmission system. Therefore, according to equation (1), it is 
a sum of the following: energy delivered by the drive system to the 
wheels and defined as the motion energy consumption (EM) required 
for overcoming the vehicle’s motion resistance, the drive system’s en-
ergy losses (ΔEE) and energy losses of the internal combustion engine 
– (ΔED), as well as losses in energy  by idle operating conditions of the 
vehicle (ΔEL) including e.g. the vehicle’s standstill phase:

 .T M E D LE E E E E= + ∆ + ∆ + ∆  (1)

All components of the vehicle’s energy balance vary over time and 
depend on the speed profile  parameters and environmental condi-
tions. A vehicle speed profile consist of 4 vehicle motion phases (ac-
celerated motion, constant speed motion - constant speed, delayed 
motion, and standstill), the energy expenditure is estimated between 
start and stop of the vehicle and the their kinetic energy is equal to 
zero at the beginning and end. The description of the speed profile 
parameters, consist: average speed V , travel distance L or average 
acceleration a , is influenced by the share of particular profile phases 
i the given road section. The simple speed profile does not occur in 
practice. Complex speed profiles occur in reality, where the profile’s 
kinematic parameters (speed, acceleration) are averages of many sim-
ple profile components (simple modules). The average values can be 
calculated from equations (3) and (4), where the average speed of a 
complex profile can be calculated from dependency [29]:
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wherein (i) is the number of simple profiles and the complex profile’s 
average acceleration from dependency (6):
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Standstill is an undesired motion phase, because the combustion 
engine’s operation results in the generation of energy from burnt 
fuel, which is not collected by the transmission system. In such a 
case, the drive system’s efficiency is equal to zero. In this context, 
“Stop&Go” systems started to be used in vehicles [5, 23, 44], which 
in principle stop the combustion engine during standstill. An ad-
ditional advantage of this solution is the reduction of emissions of 
harmful substances and CO2 contained in exhaust gases into the en-
vironment. The share of the standstill phase depends on the speed 

profile and environmental conditions [37, 42]. In paper [10], the 
authors put emphasis on the analysis of the share of particular ve-
hicle motion phases in a complex driving cycle in urban and non-
urban traffic conditions. The authors demonstrated that over 20% 
of the acceleration phase is implemented with acceleration in the 
range of 0 – 1 m/s2 and over 15% of the acceleration is in the range 
of 1 – 4 m/s2 and usually amounts to over 5% of the total vehicle 
travel duration, i.e. the driving intensity is very important in terms 
of fuel consumption. In paper [13], Fontaras et al. focused on fuel 
consumption on the view of the dynamics, demonstrating a slight 
energy consumption increase of approx. 5% for non-urban driving 
and nearly 70% for urban driving. These differences mainly derive 
from two different vehicle speed profiles  resulting from the aver-
age speed and driving dynamics. In paper [15], the authors dealt 
with the optimisation of the engine’s load selection and the trans-
mission ratio’s selection strategies during acceleration of a an ICV 
(Internal Combustion Vehicle). A change in the driving dynamics 
by extending the acceleration time by 1s in the case of acceleration 
in the range of 0 – 30 km/h and by 2 s in the range of 0 – 40 km/h 
allows for reducing fuel consumption by more than 5%. The authors 
[6] analysed dynamic parameters of different vehicles. The analy-
sis covered a broad spectrum of vehicles, starting with motorcycles, 
through passenger vehicles and ending with commercial vehicles, 
determining the acceleration values of 0.45 – 2.87 m/s2 and the mean 
range of 0.2 – 0.82 m/s2. The high variation in acceleration affects 
fuel consumption, which is subjective and depends on the road type, 
driving style and speed profile. In papers [1, 43], the authors noted 
the variation in driving styles with reference to the implemented 
driving cycle in actual traffic conditions. The increase in driving 
dynamics described in the paper causes an increase in fuel demand 
from 40% in non-urban to 45% in urban traffic. In paper [14], the 
authors pointed to the varying vehicle energy consumption in real-
world conditions depending of its acceleration dynamics. Road tests 
demonstrated substantial discrepancies in the distance-based fuel 
consumption fluctuating between 12.44 and 31.8 dm3/100km on a ¼ 
mile section, depending on the acceleration dynamics and transmis-
sion ratio selection in the transmission system. The selected trans-
mission ratios with lower values resulted in a reduced fuel consump-
tion with an average drive system efficiency fluctuating between 
19.38 and 24.6% which are tested on a vehicle with an ICE (Internal 
Combustion Engine) modern downsized powertrain 

On the other hand, the authors of dissertation [12] emphasised the 
constant speed vehicle motion phase and designated the highest effi-
ciency points for an ICE meeting the Euro 5 standard for specific driv-
ing speeds. It was indicated that for the various types of power train 
systems tested, the optimal speeds in terms of fuel consumption may 
range from 70 to 75 km/h. In this regard, the authors of a different dis-
sertation [4] analysed the impact of various transmission systems and 
emphasised the AT and MT transmissions, for which the maximum 
efficiency point at constant speed of 70 km/h was designated at 24%. 

However, in terms of fuel consumption, regardless of the motion 
phase testing and analysis, it is key to enable kinematic energy recov-
ery in a vehicle accelerated in a delayed motion phase, where in most 
cases the energy is dispersed into the environment by the braking 
system. The introduction of the hybrid engine system HEV (Hybrid 
Electric Vehicle) was aimed at reducing the driving system’s energy 
loss through energy recovery [27, 38, 48] . 

In a vehicle with a conventional engine system ICV, only 12–25% 
of the energy derived from fuel is consumed for motion in urban traf-
fic conditions. Most energy is lost by the combustion engine in the 
form of emitted heat, own losses deriving from friction, and ineffec-
tive combustion in urban driving cycle, hybrid vehicles have 21-40% 
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of energy derived from fuel and electrochemical battery available for 
their disposal [11, 45].

In paper [46], the authors compared the combustion engine systems 
ICV with hybrid powertrain system (HEV) in terms of the driving 
style and demonstrated that the driving dynamics substantially affects 
the fuel consumption. In the ICV, the difference is as high as 74%, 
while in the HEV – 105%. In paper [24], the authors simulated various 
distance of a cycle consisting of the acceleration phase and the subse-
quent run-down phase in terms of reduction in fuel consumption in a 
hybrid electric vehicle. The results obtained demonstrate the potential 
to reduce fuel consumption depending on the speed range from 5 to 
11% when applying an adequate acceleration intensity. 

However, regardless of the engine type used, i.e. combustion or 
electric, or the interoperability of both as a hybrid powertrain sys-
tem, the aforementioned environmental components affect the fuel 
consumption in actual operating conditions. In this paper, the authors 
emphasised the energy expenditure converted to the vehicle weight 
and distance for a modern PHE) used in various operating and traffic 
conditions. It is an modern powertrain with two energy storage units 
(fuel and batteries) and two drive units (ICE and EM) which drive 
the vehicle together. The drive system’s energy consumption is ana-
lysed in terms of the TTW (Tank-to-Wheels), understood as the total 
expenditure of energy obtained from energy storage units referred to 
the distance travelled. The results were compared to the data obtained 
from the WLTP (The Worldwide Harmonised Light Vehicles Test Pro-
cedure) approval test. 

2. Research on and development of hybrid electric ve-
hicles

In the world around us, in which carbon dioxide emissions and 
environmental pollution are the main problem, electric vehicles are 
becoming increasingly popular. When compared to vehicles pow-
ered with petroleum derivatives, electric vehicles emit substantially 
less greenhouse gases and air pollutants. Thanks to technological 
progress, the operation of electric cars has become more user-friendly 
(e.g., increased mobility), mainly due to the improvement of energy 
storage parameters and optimization of energy consumption manage-
ment by individual vehicle systems. Nearly all global car manufactur-
ers are currently starting the development of entirely electrical mod-
els. On the other hand, customers are also attracted by the concept 
of using electric vehicles. The Allied Market Research (AMR) report 
[39], which provides a thorough analysis of the automotive market, 
reveals that technological advances and proactive government initia-
tives have led to an exponentially growing demand for fuel-efficient, 
low-performance, low-emission vehicles. The report also states that 
the increase in demand is fostered by strict exhaust gas emission regu-
lations imposed in many countries. On the other hand, technological 
progress and proactive governmental initiatives ensure an exponential 
growth of the automotive market. 

It is expected that in the next 30 years, the global production of 
new vehicles will increase by nearly 30% [14], resulting in the pres-
ence of over 2·109 vehicles on the Earth in several dozen years [3, 8, 
17]. Due to the imperfections of currently produced vehicles, there 
is a need for continuous improvement of modern drives. Therefore, 
innovative solutions are implemented for the individual components 
of the vehicle, which will, on the one hand, increase mobility, and, 
on the other hand, contribute to the protection of the natural environ-
ment. New vehicles will be equipped with advanced drive systems 
with uniform or hybrid engines due to the introduction of increasingly 
strict standards on exhaust gases and carbon dioxide emissions [32]. 
It was announced that in 2025, the European Union will introduce a 
new exhaust fume emission standard named EURO 7, due to which 
meeting the new emission limits in uniform combustion engine sys-
tems will be very difficult or even impossible while maintaining high 
vehicle traction parameters related to the dynamics and average travel 
speeds [26]. However, regardless of the engine system used, battery 

electric engines will be commonly used. The ion-lithium batteries 
used currently are quickly discharged and require frequent charging. 
The most novel changes in terms of battery weight reduction and per-
formance improvement are lithium sulphur cells. They are fully com-
postable and biodegradable organic batteries that will not only be a 
good eco-friendly option, but also allow for rapid charging. They are 
also substantially lighter [16]. To allow batteries to easily meet the 
presented requirements, ultra-capacitors characterised with excellent 
parameters, especially at low temperatures, are added to vehicles. The 
ultra-capacitor’s and lithium-ion battery’s interoperability manage-
ment requires using a hybrid energy storage system (HESS) with a 
suitably developed management strategy [47]. Currently, research is 
being carried out on the optimization of electric power supply sys-
tems, which include fuel cells [9, 25]. 

From the driver’s point of view, the energy sources used are of no 
significant importance. In light of the requirements for a vehicle as an 
energy system, it is important to ensure adequate traction parameters 
capable of moving it in a satisfactorily short time on a given road 
section. In the current state of automotive development, the variety of 
hybrid or electric engine systems offered by manufacturers is broad, 
but their market share is insignificant. In the next 10 years, the domi-
nant drive systems will most probably be the PHEV (Plug-in Hybrid 
Electro Vehicle). This is due to the fact that they combine the advan-
tages of an electric motor with the energy autonomy derived from 
the limited range of EV (Electric Vehicles). Hybrid engine systems 
became dominated by such units as the combustion and electric en-
gines, combined in parallel. This results from the greater universality 
of such an engine system solution in every-day use in urban and non-
urban traffic [2, 6, 21, 34, 35]. The testing of hybrid engine systems 
powered with fuels are conducted with reference to the harmful com-
ponent emission limits [18, 22, 28, 33, 35, 41, 42]. However, many 
authors are conducting tests of energy consumption in normal oper-
ating conditions [19, 20, 35, 36, 40] or solely with reference to the 
electric engine system [7, 35]. The real test constituting verification of 
such hybrid engine systems in terms of energy consumption are road 
measurements conducted in actual operating conditions. Therefore, 
this paper features an analysis of the impact of road conditions on 
the energy consumption in a hybrid engine system. For this purpose, 
a vehicle was tested on a distance of 5000 km, in three groups, with 
selected three travel distances:

I – urban traffic (UT) with distance up to 20 km,
II – non -urban traffic (NUT) with distance up to 70 km C, 
III – free driving (FD) with distance travels above 70 km D.

All road test was occurred for randomly selected drivers. All above 
mentioned speed profile parameters were recorded for each travel dis-
tance separately. 

3. Research topic motivation 
The difference in the energy value of energy carriers stored in pas-

senger cars with hybrid drive systems means that a direct compari-
son of the mileage consumption for an internal combustion engine 
with the mileage consumption for an electric motor is not adequate 
in terms of unit. The use of the distance-based  energy consumption 
in the standardized energy unit Wh/km for both drive units within the 
hybrid drive system allows to increase the possibility of their com-
parison. The comparative parameters may be the time of use of both 
drive units, energy expenditure and the possibility of relating the val-
ues obtained in operational tests to the values obtained in the approval 
test. The unit Wh/km adopted in this study is not compatible with the 
SI system, but it is used in the automotive industry and approval tests. 
Despite the similarity in the drive train for both drive units, the drive 
unit decides about the energy expenditure from energy storage. Thus, 
the motivation to undertake the research was the analysis of the en-
ergy parameters of the hybrid drive system for a given car trip, taking 
into account the drive unit used in real-world conditions. At the same 
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time, it was decided to examine the share of individual drive units in 
the vehicle’s mileage consumption. Additionally, the analysis covered 
the influence of the ambient temperature on the electricity consump-
tion and, as a result, the vehicle range.

4. Methodology

4.1. Distance-based energy consumption
The distance-based energy consumption is understood as the en-

ergy demand  from the vehicle’s energy storage units to its engine per 
travelled kilometre. In the case of the ICE, the total energy (ETf) can 
be formulated as a product of the fuel consumption (CF) and the fuel 
calorific value (CV):

   , 
e

s

t

Tf V F
t

E C C dt= ⋅ ∫  (5)

where:
CF  – fuel consumption [kg/s];
CV – fuel calorific value depending on 

the fuel’s type [J/kg];
ts,e – energy calculation start and end 

time [s].

For the electric motor unit, the total energy 
(ETe) expended by the drive depends on the 
electric engine’s structure, whether it is pow-
ered with direct or alternating current, and on 
the instantaneous output supplied from the bat-
teries to the electric engine unit.  In the case of 
the alternating current, the total energy can be 
calculated from equation (6):
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E dt= ϕ∫          (6)

where:
U - voltage over time, 
I - current amperage rating over time, 
cosφ	 -	 power	 factor	 (for	 direct	 current	

cosφ=1),
ts,e - start and end time of power take.

The total energy supplied to the vehicle’s drive system in the case 
of a PHEV is the sum of the energy collected from various energy 
storage:

 T Tf TeE E E= + . (7)

Energy recovery of the tested vehicle is not the subject of analysis 
in terms of operation, because it replenishes the energy storage unit 
by charging up batteries and thereby increasing the vehicle’s travel 
range.

The total energy consumed by the vehicle per distance travelled 
represents the distance-based energy consumption, which can be com-
pared to the values obtained in the WLTP test, expressed in Wh/km, 
following dependency:

 _
T

T PHEV
EQ
L

=  . (8)

The obtained values vary and depend on the type of engine unit 
used and on the traction parameters: average travel speed, travel dis-
tance, and time. 

4.2. Research program
The research concerned the analysis of the distance energy con-

sumption in a selected passenger vehicle equipped with the Plug-in 
type hybrid engine system with consideration of the following: 

analysis of the operating time of particular engine units in the 1. 
hybrid engine system, 
analysis of the total energy expenditure in instantaneous and 2. 
incremental terms 
analysis of the total distance-based energy consumption for the 3. 
PHEV and consumption broken down into particular engine 
units, 
analysis of the vehicle’s range in different environmental con-4. 
ditions (temperature).

The traction and energy parameters were monitored using the Mer-
cedes software for mobile devices and the TEXA diagnostic system, 
which allowed the recording of the following data: total vehicle range, 
divided into particular engine/motor, capacity of energy storage, to-
tal distance, distance for each drive units, travel time, mean speed 
and energy expenditure as the distance-based fuel consumption and 
distance-based energy consumption. 

The aforementioned data was systematically recorded in the da-
tabase and then analysed. The analysis of the distance-based energy 
consumption was conducted for the vehicle’s actual operating condi-
tions deriving from every-day travels divided into three groups. The 
travels were characterised by freedom in route selection and ran-
dom selection of drivers with a standard hybrid engine system con-
trol mode. All tests were carried out with the battery fully charged  
(SOC	=	100%).

4.3. Test and analysis of energy consumption
The distance-based energy consumption testing of an PHEV vehicle 

in actual operating conditions of the analysed vehicles was conducted 
using the Mercedes-Benz A 250e vehicle. It is a passenger vehicle 
manufactured in 2021 with a full hybrid engine system, wherein two 
engine units (electric and combustion) are installed on the front drive 
axis. The engine units interoperate with the 8 F-DCT transmission 
(Front –Double Clutch Transmission), wherein the drive is transmit-
ted to the front wheels. 

The tested vehicle’s technical and structural parameters are pre-
sented in Table 1. Table 1 presents the average energy consumption 
for the electric engine system and the average CO2 emission accord-
ing to the WLTP test, which was taken from the approval certificate 
[31].

Fig. 1. Measurement system diagram
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It is necessary to note the increase in the tested vehicle’s weight in 
comparison to the internal combustion vehicle by nearly 300 kg due 
to using additional electric engine components (energy storage unit, 
electric engine, inverter and control system). 

5. Test results
According to the adopted methodology, the study of the distance-

based energy consumption in real-world cycles was conducted for 
the vehicle’s actual operating conditions derived from the vehicle’s 
every-day operation. The analysis of the hybrid engine system was 
conducted by using every-day vehicle travels in various atmospheric 
and road conditions, i.e. urban and non-urban traffic, in Opole and 
surrounding areas. The driver was free to use any driving technique. 
The travel distance was divided to three groups according to the meth-

odology. Table 2 presents the traction and energy parameters for 
the analysed travel groups. 

Groups I and II were dominated by the vehicle’s electric en-
gine system (EV), in which the combustion engine unit was acti-
vated temporarily to increase the instantaneous speed or support 
the vehicle’s intense acceleration on the road. In such situations, 
both units interoperated as a whole powertrain system. Figure 
3 presents the percentage share of particular engine units in the 
tested vehicle.

In terms of particular percentage shares, the combustion en-
gine unit’s share was increasing from 6% in group I in 22% 
in group III, with an average value of 14% for all travels. The 
average values of distances in particular travel groups varied, as 
presented in Table 2. The highest differences can be observed in 
the energy expenditure expressed in Wh/km, which is presented 
in Figure 4.

The presented dependencies of the share of the distance-based 
energy expenditure per kilometre travelled for particular travel 
groups vary and depend on the time particular engine units were 
used. In all travel groups, despite the dominance of the electric 
engine unit powered from batteries, it is the combustion engine 
unit’s use that substantially increases the total energy expendi-

ture in particular travels. When drawing the attention to the average 
values of the distance-based energy consumption QT_PHEV for all en-
gine units in particular groups, it is possible to see that the values 
are higher than those deriving from the approval tests, which amount 
to 303.1 Wh/km for the tested vehicle. The travels in group II come 
closest to the above value, because the average distance-based energy 
consumption amounted to 356.2 Wh/km, which is 17.5% higher than 
the value achieved during the approval test. However, some travels 
carried out in groups I and II solely featured the use of the vehicle’s 
electric engine system, the parameters of which are presented below: 

In these terms, the average distance-based energy consumption 
achieved was lower than that achieved during the test. All mileages in 
the particular groups (Table 2) tested in the vehicle’s actual operating 
conditions demonstrated substantial differences derived from driving 
the vehicle using particular engine units as well as substantial varia-

Fig. 2. Mercedes-Benz A-Class Plug-In Hybrid components [30]

Table 1. Tested vehicle parameters [31]

Manufacturer Mrecedes - Benz

Type A250e / V177

Combustion engine’s displacement 1332 cm3

Combustion engine’s performance 118 kW @ 5500 rpm

Combustion engine’s max. torque 210 Nm @ 1750 rpm

Electric engine’s power 75 kW

Long-term electric engine’s power 55 kW

Electric engine’s max. torque 300 Nm @ 0 - 5000 rpm

Engine assembly Front, transverse

Combustion engine’s supercharging Supercharger 

Engine system type PHEV

Transmission system Automatic - 8 gears

Battery capacity 15.6 kWh

Vehicle weight 1817 kg

Emission standard Euro 6 (AP)

Travel range for petrol 450 km

Travel range for batteries 75 km

Average CO2 emission acc. to WLTP 23 g/km (1.0 dm3/100km)

Energy consumption for the EV system 209 Wh/km
Fig. 4. Percentage share of particular engine units in the distance-based en-

ergy expenditure (green – combustion engine, red – electric motor)

Fig. 3. Percentage shares of engine units for particular travels: a) group I, 
b) group II, c) group III (orange – combustion engine, blue – electric 
motor)



Eksploatacja i NiEzawodNosc – MaiNtENaNcE aNd REliability Vol. 23, No. 4, 2021 641

tion in the energy expenditure or distance-based energy 
consumption. It is difficult to directly compare the av-
erage distance-based fuel or energy consumption pre-
sented in Tables 2 and 3 in aspect to energy densities of 
the energy carriers in the storage units (Fig. 4a-c). Fig-
ure 6 presents the distance-based energy consumption 
for an approval test travel with reference to all travels 
for the PHEV hybrid system. When converted to ener-
gy expenditure derived from the used test vehicle, it is 
25% higher than that achieved in the WLTP cycle at an 
mean speed of 13.25 m/s and mean distance of 51400 m 
(Table 2). This average parameter resulted from the ac-
tual road conditions correspond to the distance travelled 
by the test vehicle. This value was about 200% higher 
than that travelled in the WLTP test, wherein the traf-
fic test amounts to 23266 m. It must be noted that the 
average vehicle speed was similar in the WLTP test and 
in actual operating conditions 12.92 m/s. The observed 
excessive distance-based energy demand for all travels 
(Fig. 5) exceeds the values recorded during particular 
travels above 140 km, which substantially exceeds 
the electric system’s storage unit range. Therefore, in 
the case of travels in group II, which feature almost 
identical mean speeds and the distance was lower then 
energy storage unit’s range. The distance-based energy 

consumption amounts to 285.2 Wh/km for the hybrid 
engine system and 205.6 Wh/km for the electric engine 
system and is 6% below the WLTP test value. The re-
search result presented in Figure 5 were compared to 
WLTP homologation value, wherein the vehicle’s av-
erage unit energy consumption were superimposed on 
particular travel groups. The travels carried out up to the 
energy storage unit’s range do not exceed the distance-
based energy consumption achieved in the WLTP test. 
The distance-based energy consumption in the case of 
the tests drives made from the electric energy storage 
does not exceed the values obtained during the WLTP 
approval tests (Fig. 5). In group III, there does not ex-
ceed the WLTP cycle value. However, this derives from 
a fast charging of  the batteries during the test travel.

When drawing attention to the vehicle travel groups, 
the highest distance-based energy consumption was 
achieved in travels, during which the combustion en-
gine system was used. The average instantaneous energy 
expenditure amounts to 760.6 Wh/km for the combus-
tion engine system, i.e., approx. 2.86 MJ per kilometre 
travelled (Fig. 7). These values are 320% greater as the 
average energy expenditure for the electric motor. The 

Table 2. Average engine system operating parameters during travels carried out in the hybrid engine system’s standard operating mode 

Group LT
[km]

Le
[km]

tT
[s] 

V 
[km/h]

Qf 
[dm3/100km]

Qe 
[kWh/100km]

QTf  
[Wh/km]

QTe  
[Wh/km]

QT_PHEV
[Wh/km]

I 9.1 7.7 1086 28.7 1.26 28.3 828.6 350.4 401.2

II 54.1 45.2 3935 51.8 1.10 18.2 740.6 216.4 285.2

III 121.9 83.8 8880 52 2.78 12.1 828.9 173.6 381.7

Average 51.4 41.7 3784.5 47.7 1.22 19.6 760.6 234.9 310.4

Table 3. Mean engine system operating parameters during travels carried out using solely electric engine unit

Group LT
[km]

Le
[km]

tT
[s] 

V 
[km/h]

Qf 
[l/100km]

Qe 
[kWh/100km]

QTf  
[Wh/km)]

QTe  
[Wh/km]

QT_PHEV
[Wh/km]

LT
[km]

I 7.1 7.1 960 25.2 0 33.35 0 333.5 333.5 7.1

II 46.1 46.1 2994 56.14 0 20.56 0 205.6 205.6 46.1

Fig. 5. Distance-based energy consumption refers to the distance travelled

Fig. 6. Average speed and distance-based energy consumption broken down into particular en-
gine units
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average energy expenditure per kilometre travelled of which amounts 
to 234.9 Wh/km, which is equal to 0.72 MJ/km. This difference re-
sults mainly from the efficiency of the power units used [29].

In the case of city and highway driving, it can be ex-
pected as a significant increase in energy demand due 
to high dynamics or significant aerodynamic resistance. 
The value’s decrease is more important when using the 
combustion engine unit, which results in more than a 
double reduction in the unit energy expenditure (from 
approx. 1500 Wh/km at an average speed of approx. 30 
km/h to below 600 Wh/km at an average speed exceed-
ing 60 km/h). In these terms, Figure 7 presents the total 
energy consumption for covering the given distance in 
terms of the total distance travelled and broken down 
into particular engine units used to drive the vehicle. 

The research was based on the relation between the 
energy storage unit’s capacity and ambient temperature. 
The issue of battery capacity reduction related to ambi-
ent temperature described in the literature was observed. 
Figure 8 presents an increase in average distance-based 
energy	demand	in	the	temperature	range	of	−15	to	15°C. 
This constitutes another factor that results in the vehi-
cle’s reduced range. An increase in energy demand at 
low temperatures derives mainly from the additional 
energy expenditure to heat the interior and the battery 
assembly, but also from the increased motion energy 
consumption due to increased motion resistance. 

It is necessary to note the vehicle’s total unit energy 
consumption when using the electric engine, wherein 

the	energy	consumption	at	a	negative	temperature	−15°C is over 
twice as high as at a positive temperature +15°C. In this case, the 
vehicle’s range was reduced by 21 km. 

The designated straight line’s regression coefficients for the 
vehicle’s powertrain (Fig. 7) can be used for estimating the ve-
hicle’s operating indexes during the selected travel and road sec-
tion. When calculating the energy expenditure, is it then possible 
to calculate the operating costs and the CO2 emission different 
powertrain system. The mean energy consumption for a distance 
of 50000 m is presented in Table 5.

Attention must be drawn to the energy storage unit’s capacity, 
which for the tested vehicle theoretically allows for covering 
a 75 km distance at the temperature of 18°C, after which the 
driver can only use the combustion engine. The tested hybrid 
vehicle allows for achieving the assumed data deriving from the 
conducted WLTP test for travel group II (Fig. 6). The PHEV 
powertrain is a very good solution not only in terms of energy 
expenditure, but also in terms of the CO2 emission reduction. 
On longer routes, it is necessary to remember to replenish the 
energy storage unit, which lasts for the time depending on the 
available power grid. The tested vehicle’s average charging 
time from 0 to 100% SOC are:

- for 220V charger (2.2 kW) – approx. 5.5 hours;
- for  380V charger (7.8kW) – approx. 1.5 hours;

          - for CCS charger (22kW) – approx. 0.5 hours.

Table 5. Mean parameters during 50 km test distance carried out using the available hybrid system’s operating modes [29]

Type LT
[km]

ET
[MJ]

QT_PHEV
[MJ/km]

Qf 
[dm3/100km] Qe [kWh/100km] Price

[Euro/100km]
CO2 for TTW 

[g/km]

EV 50 36.3 0.72 0 20.2 2.87 0

PHEV 50 61.6 1.23 1.67 18.5 4.74 18.2

ICV 50 152.5 3.05 9.0 0 10.6 207

Table 6. Mean engine system operating parameters during travels carried out on a total distance of 5,200 km

Distance [km] dLT
[km]

Le
[km]

tT
[s] 

V 
[km/h]

Qf 
[dm3/100km]

Qe 
[kWh/100km]

QTf [Wh/
km]

QTe [Wh/
km]

QT_PHEV 
[Wh/km]

5200 93.9 66.7 7692 41.7 2.78 14.75 893.7 208.6 410.1

Fig. 7. Total energy expenditure to cover the given distance using various engine unit types with 
reference to the total distance travelled [29]

Fig. 8. Changes in the vehicle’s total unitary energy consumption in different environ-
mental conditions
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Using the manufacturer’s data regarding the charging time, average 
energy price, and the obtained results of energy demand, it is possible 
to calculate the mileage costs. Assuming the average price of 1kWh 
of energy when using the power grid is 0.142 EUR/kWh and the unit 
price of energy in fuel (gasoline) is 1.18 EUR/dm3 (0.129 EUR/kWh), 
taking into account the energy/fuel consumption from individual stor-
age tanks (battery, fuel tank) during the test driving’s being the subject 
of the analysis (driving with the use of only electric drive, or driving 
only with the use of an ICE) causes a significant differentiation of 
operating costs (as energy costs) between the electric drive and the 
internal combustion engine. In this approach, the cost of energy con-
sumed over a distance of 100 km for an internal combustion engine is 
approximately 3.7 times higher than for an electric motor (Table 5). 
The parameters of the drive system in terms of 5200 km the test cycle 
(Table 6).

The car total unitary energy demand over the distance of 5200 km 
(including trips using only the ICE) is greater compared to the results 
obtained only for the PHEV. It is related to the increase of ICE op-
erating time up to 63.9%. These parameters were summed from the 
start of each distance of the test and counted from travel to travel as 
mean values. Despite to the greater PHEV vehicle’s weight average 
fuel consumption amounts to 2.78 dm3/100km on a distance of over 5 
thousand km. It means that the standards specified in the new regula-
tions on CO2 emission limit of 95 g/km from 2021 were met. When 
converted, the analysed vehicle’s road emission amounts to 63.9 g/km 
and is below the acceptable limit. 

An analysis of the distance-based energy consumption for urban 
and non-urban driving (travel groups I and II) demonstrate a double 
increase in energy consumption on short road sections (Fig. 5). When 
analysing the distance-based energy consumption in increments pre-
sented in Figure 9, the parameter demonstrates a strong correlation of 
the energy expenditure to the distance travelled for particular engine 
systems. The obtained determination coefficient R2 is equal to one and 

the straight lines’ direction coefficients changed slightly up to 4% 
in relation to the instantaneous values for particular travels.

6.  Summary
The distance-based energy consumption of a passenger vehicle 

equipped with the Plug-in type hybrid powertrain in actual operat-
ing conditions presented in the paper presents a varied energy ex-
penditure that depends on the engine unit used at the given time and 
driving cycle. The presented energy expenditure calculations based 
on standardised data for the tested vehicle allow for the formulation 
of conclusions in terms of the following:

Operating time of the hybrid drive system for individual drive 1. 
units - in all groups of driving cycles, indicates the dominant 
electric drive unit (Fig. 3),
The energy expenditure per kilometre in instantaneous and in-2. 
creasing terms, shows a crucial increase in energy on the ICE 
(Fig. 4) and, divided by, generates more than a 4-times increase 
in the distance-based energy demand for the ICE compared to 
the electric motor in the TTW system,
The costs of energy consumption in real-world traffic condi-3. 
tions for the ICE are 3.6 times higher than for the electric drive 
(Table 5),
The range of a passenger car is consistent with the data given 4. 
in Table 1, but under the condition of an appropriate ambient 
temperature of 18°C, in the conditions of an outside tempera-
ture	of	−15°°C, the range has decreased almost four times.

The hybrid powertrain distance-based energy consumption in ac-
tual operating conditions for the analysed travel groups from I to III 
depends slightly on the average speed  and driving style. The refer-
ence to the three groups of trips presented in the article, differing in 
terms of the traction parameters of the speed profile from the WLTP 
homologation test, enables their comparison after conversion to a 
standard unit of Wh/km. For driving in shorter distances than those 
resulting from the range of energy storage, the distance-based energy 
consumption is below the value obtained for the WLTP homologa-
tion test. This situation also applies to CO2 emissions, which were 
recorded under operating conditions at the level of 38 g / km.

The indicators of the distance-based energy consumption of a pas-
senger vehicle over a distance of 5200 km presented in the paper, 
in terms of average fuel consumption and estimated carbon dioxide 
emissions, are at a low level. The obtained value of road carbon diox-
ide emissions from average fuel consumption is 32.6% lower as the 
current standard in force from 2021.

In addition, the introduction of modern driver assistance systems 
in the test vehicle was also equipped, which makes a significant con-
tribution to reducing fuel consumption and thus CO2 emissions into 
the environment. An example is the navigation system, which affects 
the performance characteristics of the powertrain system, causing the 
drive system control algorithm to manage the energy consumption to 
the maximum extent to use the energy stored in the batteries on the 
route planned for navigation.

Fig. 9. Accumulated energy expenditure for particular hybrid system components

References
1.		 Barth	M,	Boriboonsomsin	K.	Real-world	carbon	dioxide	impacts	of	traffic	congestion.	Transportation	Research	Record	2008;	(2058):	163-

171.
2.  Barth M, Boriboonsomsin K. Energy and emissions impacts of a freeway-based dynamic eco-driving system. Transportation Research Part 

D: Transport and Environment 2009; 14(6): 400-410, https://doi.org/10.1016/j.trd.2009.01.004.
3.  Becker T, Sidhu I, Tenderich B. Electric vehicles in the United States: a new model with forecasts to 2030. Center for Entrepreneurship and 

Technology, University of California, Berkeley, 2009: 36.
4.  Bieniek A, Graba M, Hennek K, Mamala J. Analysis of fuel consumption of a spark ignition engine in the conditions of a variable load. 

MATEC Web of Conferences, 2017, https://doi.org/10.1051/matecconf/201711800036.



Eksploatacja i NiEzawodNosc – MaiNtENaNcE aNd REliability Vol. 23, No. 4, 2021644

5.  Bleek R. Design of a Hybrid Adaptive Cruise Control Stop- & -Go system. Engineering 2007.
6.  Bokare PS, Maurya AK. Acceleration-Deceleration Behaviour of Various Vehicle Types. Transportation Research Procedia 2017; 25: 4733-

4749, https://doi.org/10.1016/j.trpro.2017.05.486.
7.		 Chłopek	Z.	Research	on	energy	consumption	by	an	electrically	driven	automotive	vehicle	 in	simulated	urban	conditions.	Eksploatacja	 i	

Niezawodnosc 2013; 15(1): 75-82.
8.  Eder LV, Nemov VY. Forecast of energy consumption of vehicles. Studies on Russian Economic Development 2017; 28(4): 423-430, https://

doi.org/10.1134/S1075700717040049.
9.  Ehsani M, Gao Y, Emadi A. Modern Electric, Hybrid Electric, and Fuel Cell Vehicles. CRC Press: 2017, https://doi.

org/10.1201/9781420054002.
10.  Eisele WL, Turner SM, Benz RJ. Using Acceleration Characteristics in Air Quality and Energy Consumption Analyses Texas Transportation 

Institute The Texas A & M University System College Station , Texas 77843-3135 Southwest Region University Transportation Center Texas 
Transportation In. 1996.

11.  Energy U S D of. Where the Energy Goes: Electric Cars. https://www.fueleconomy.gov/FEG/atv.shtml 2020.
12.  Fontaras G, Franco V, Dilara P et al. Development and review of Euro 5 passenger car emission factors based on experimental results over 

various driving cycles. Science of the Total Environment 2014; 468-469: 1034-1042.
13.		 Fontaras	G,	Zacharof	N	G,	Ciuffo	B.	Fuel	consumption	and	CO2	emissions	from	passenger	cars	in	Europe	-	Laboratory	versus	real-world	

emissions. Progress in Energy and Combustion Science 2017; 60: 97-131, https://doi.org/10.1016/j.pecs.2016.12.004.
14.		 Graba	M,	Mamala	J,	Bieniek	A,	Sroka	Z.	Impact	of	the	acceleration	intensity	of	a	passenger	car	in	a	road	test	on	energy	consumption.	Energy	

2021; 226: 120429, https://doi.org/10.1016/j.energy.2021.120429.
15.  He H, Cao J, Cui X. Energy optimization of electric vehicle's acceleration process based on reinforcement learning. Journal of Cleaner 

Production 2020; 248(ICEEE): 1-5.
16.  Hong H, Che Mohamad NAR, Chae K et al. The lithium metal anode in Li-S batteries: challenges and recent progress. Journal of Materials 

Chemistry A 2021; 9(16): 10012-10038, https://doi.org/10.1039/D1TA01091C.
17.  International Energy Agency. Energy Technology Perspectives 2017 - Executive Summary. 2017, https://doi.org/10.1787/energy_tech-2014-en.
18.  Kitayama S, Saikyo M, Nishio Y, Tsutsumi K. Torque control strategy and optimization for fuel consumption and emission reduction in 

parallel hybrid electric vehicles. Structural and Multidisciplinary Optimization 2015; 52(3): 595-611, https://doi.org/10.1007/s00158-015-
1254-8.

19.		 Kropiwnicki	J.	A	unified	approach	to	the	analysis	of	electric	energy	and	fuel	consumption	of	cars	in	city	traffic.	Energy	2019;	182:	1045-
1057, https://doi.org/10.1016/j.energy.2019.06.114.

20.		 Kropiwnicki	J.	Ocena	efektywności	energetycznej	pojazdów	samochodowych	z	silnikami	spalinowymi.	Wydawnictwo	PG,	Gdańsk	2011.
21.		 Kropiwnicki	 J,	 Furmanek	M.	Analysis	 of	 the	 regenerative	 braking	 process	 for	 the	 urban	 traffic	 conditions.	Combustion	Engines	 2019;	

178(3): 203-207, https://doi.org/10.19206/CE-2019-335.
22.  Kum D, Peng H, Bucknor NK. Fuel and Emissions Reduction. Journal of Dyanmic Systems Measurement and Control 2010; 2010(April): 

1-18.
23.		 Kural	E,	Hacıbekir	T,	Güvenç	B	A.	State	of	the	art	of	adaptive	cruise	control	and	stop	and	go	systems.	arXiv	2020.
24.  Lee J, Nelson D J, Lohse-Busch H. Vehicle inertia impact on fuel consumption of conventional and hybrid electric vehicles using acceleration 

and coast driving strategy. SAE Technical Papers 2009, https://doi.org/10.4271/2009-01-1322.
25.  Li Q, Chen W, Li Y et al. Energy management strategy for fuel cell/battery/ultracapacitor hybrid vehicle based on fuzzy logic. International 

Journal of Electrical Power and Energy Systems 2012; 43(1): 514-525, https://doi.org/10.1016/j.ijepes.2012.06.026.
26.  Limblici C. Investigation of engine concepts with regard to their potential to meet the Euro 7 emission standard using 1D-CFD software. 

2020.
27.  Liu T, Tang X, Wang H et al. Adaptive Hierarchical Energy Management Design for a Plug-In Hybrid Electric Vehicle. IEEE Transactions 

on Vehicular Technology 2019; 68(12): 11513-11522, https://doi.org/10.1109/TVT.2019.2926733.
28.		 Mamala	J,	Graba	M,	Praznowski	K,	Hennek	K.	Control	of	the	effective	pressure	in	the	cylinder	of	a	Spark-Ignition	engine	by	electromagnetic	

valve actuator. SAE Technical Papers 2019, https://doi.org/10.4271/2019-01-1201.
29.		 Mamala	J,	Śmieja	M,	Prażnowski	K.	Analysis	of	the	total	unit	energy	consumption	of	a	car	with	a	hybrid	drive	system	in	real	operating	

conditions. Energies 2021, https://doi.org/10.3390/en14133966.
30.  Mercedes-Benz. Mercedes me media. https://media.mercedes-benz.com/ .
31.		 Mercedes-Benz.	A250e	homologation	certificate.	2020:	1-30.
32.  Merkisz J, Pielecha J, Radzimirski S. New Trends in Emission Control in the European Union. Cham, Springer International Publishing: 

2014, https://doi.org/10.1007/978-3-319-02705-0.
33.		 Merkisz	 J,	Rymaniak	Ł.	The	 assessment	 of	 vehicle	 exhaust	 emissions	 referred	 to	CO2	based	on	 the	 investigations	of	 city	 buses	under	

actual conditions of operation. Eksploatacja i Niezawodnosc - Maintenance and Reliability 2017; 19(4): 522-529, https://doi.org/10.17531/
ein.2017.4.5.

34.		 Pielecha	I,	Cieślik	W,	Szałek	A.	Operation	of	electric	hybrid	drive	systems	in	varied	driving	conditions.	Eksploatacja	i	Niezawodnosc	-	
Maintenance and Reliability 2018; 20(1): 16-23, https://doi.org/10.17531/ein.2018.1.3.

35.  Pielecha I, Pielecha J. Simulation analysis of electric vehicles energy consumption in driving tests.  Eksploatacja i Niezawodnosc - 
Maintenance and Reliability 2020; 22(1): 130-137, https://doi.org/10.17531/ein.2020.1.15.

36.  Pitanuwat S, Sripakagorn A. An Investigation of Fuel Economy Potential of Hybrid Vehicles under Real-World Driving Conditions in 
Bangkok. Elsevier B.V.: 2015, https://doi.org/10.1016/j.egypro.2015.11.607.

37.		 Prochowski	L.	Movements	Mechanics	-	Mechanika	Ruchu.	Warsaw,	WKiŁ:	2016.
38.		 Qiu	S,	Qiu	L,	Qian	L,	Pisu	P.	Hierarchical	energy	management	control	strategies	for	connected	hybrid	electric	vehicles	considering	efficiencies	

feedback. Simulation Modelling Practice and Theory 2019; 90: 1-15, https://doi.org/10.1016/j.simpat.2018.10.008.
39.  Raport. Electric Vehicle Market - Global Opportunity Analysis and Industry Forecast, 2020-2027. Allied Market Research 2020: 256.
40.  Rill G. Road Vehicle Dynamics: Fundamentals and Modeling - 1st Edition. CRC Press: 2011.
41.		 Schudeleit	M,	Küçükay	F.	Emission-robust	operation	of	diesel	HEV	considering	transient	emissions.	International	Journal	of	Automotive	

Technology 2016; 17(3): 523-533, https://doi.org/10.1007/s12239-016-0053-6.



Eksploatacja i NiEzawodNosc – MaiNtENaNcE aNd REliability Vol. 23, No. 4, 2021 645

42.		 Siłka	W.	Energy	consumption	of	car	movement.	Energochłonność	ruchu	samochodu.	WNT:	1997.
43.		 Spalding	 S.	 RACQ	 Congested	 Roads	 Report	:	 The	 Effects	 on	 Fuel	 Consumption	 and	Vehicle	 Emissions	 Prepared	 by	 RACQ	Vehicle	

Technologies Department. RACQ 2008; (07): 1-9.
44.  Stanton NA, Dunoyer A, Leatherland A. Detection of new in-path targets by drivers using Stop & Go Adaptive Cruise Control. Applied 

Ergonomics 2011; 42(4): 592-601, https://doi.org/10.1016/j.apergo.2010.08.016.
45.		 Thomas	J.	Drive	Cycle	Powertrain	Efficiencies	and	Trends	Derived	from	EPA	Vehicle	Dynamometer	Results.	SAE	International	Journal	of	

Passenger Cars - Mechanical Systems 2014; 7(4): 1374-1384, https://doi.org/10.4271/2014-01-2562.
46.		 Thomas	J,	Huff	S,	West	B,	Chambon	P.	Fuel	Consumption	Sensitivity	of	Conventional	and	Hybrid	Electric	Light-Duty	Gasoline	Vehicles	to	

Driving Style. SAE International Journal of Fuels and Lubricants 2017, https://doi.org/10.4271/2017-01-9379.
47.  Xiong R, Duan Y, Cao J, Yu Q. Battery and ultracapacitor in-the-loop approach to validate a real-time power management method for an 

all-climate electric vehicle. Applied Energy 2018, https://doi.org/10.1016/j.apenergy.2018.02.128.
48.  Yeo H, Hwang S, Kim H. Regenerative braking algorithm for a hybrid electric vehicle with CVT ratio control. Proceedings 

of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering 2006; 220(11): 1589-1600, https://doi.
org/10.1243/09544070JAUTO304.



Eksploatacja i NiEzawodNosc – MaiNtENaNcE aNd REliability Vol. 23, No. 4, 2021646

(*) Corresponding author.
E-mail addresses:

Eksploatacja i Niezawodnosc – Maintenance and Reliability
Volume 23 (2021), Issue 4

journal homepage: http://www.ein.org.pl

Indexed by:

Many lives and aircrafts have been lost due to human errors associated with mental work-
load overload (MWLOL). Human errors are successfully considered in existing Fault Tree 
Analysis (FTA) methods. However, MWLOL is considered through Performance Shaping 
Factors indirectly and its information is hidden in FT construction, which is not conducive 
to analyze the root causes of human errors and risks. To overcome this difficulty, we develop 
a risk analysis method where Multiple Resources Model (MRM) is incorporated into FTA 
methods. MRM analyzes mental workload by estimating the resources used during perform-
ing concurrent tasks, probably including abnormal situation handling tasks introduced by 
basic events in FT. Such basic events may cause MWLOL and then trigger corresponding 
human error events. A MWLOL gate is proposed to describe MWLOL explicitly and add 
these new relationships to traditional FT. This new method extends previous FTA methods 
and provides a more in-depth risk analysis. An accident, a helicopter crash in Maryland, is 
analyzed by the proposed method.
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1. Introduction 
Human errors (HEs), defined as that a human diverges from a nor-

mative plan or task [12], are regularly cited as the main causes of the 
majority of accidents in complex systems [3, 12, 25, 31]. Their pivotal 
role in aviation accident occurrence has been quantitatively pointed 
out in many studies: roughly 70% of all accidents in commercial avia-
tion and 80% in general aviation [30]; more than 80% of helicopter 
accidents [4]. Pervasiveness of the HEs in accidents guarantees a re-
quirement to investigate the causes of HEs to prevent future similar 
accidents [49].

In aviation, multitasking is prevalent in aviation [40], especially in 
abnormal situations [21]. HEs contribute to more than 70% of avia-
tion accidents, and many of HEs can be attributed to workload [10]. 
During multitasks, a large number of cognitive resources such as 
attention, processing capacity, and multi-task performance [16] are 
required to complete assigned tasks, but the human has insufficient 
resources available to dedicate to the tasks [5]. Then, a high level 
of mental workload, or mental workload overload (MWLOL, i.e. the 
excessive levels of mental workload), occurs.

Due to the multi-dimensional characteristic of mental workload, 
Multiple Resources Model (MRM) [41] and Visual, Auditory, Cogni-

tive, and Psychomotor method (VACP) [19] are well known for work-
load prediction in aviation (e.g. [29, 42, 44, 52]). Wang et al. [38] pro-
pose a colored Petri net model based on MRM and VACP to predict 
mental workload. MRM and VACP claim that MWLOL occurs when 
the total demand for cognitive resources is beyond a threshold and pi-
lot performance degrades [48]. Gore and Jarvis [9] suggest that when 
the cumulative demands of cognitive resources exceed an arbitrary 
threshold of 7, the operator will be at great risk of MWLOL.

With the development of technology in today’s aircraft, pilots have 
to process a considerable amount of complex information [23]. Their 
attention often requires to be split between multiple information and 
the risk of MWLOL has increased [11].The MWLOL can cause errors 
or delay information processing [5], and may reduce the vigilance and 
alertness of pilots with catastrophic effects [33]. Therefore, the MW-
LOL constitutes a key element in safety and reliability of complex 
man-machine systems. In aviation area, most of the accidents, espe-
cially those fatal ones, occurred due to high levels of mental workload 
of pilots [35, 51]. Many lives and aircraft of the United States Air 
Force have been lost due to errors made during periods of flight asso-
ciated with MWLOL and task saturation [23]. This makes prediction 
and assessment of pilot mental workload a major issue in aviation 
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safety. Effective accident prevention should incorporate mental work-
load into risk analysis models.

Probabilistic safety assessment (PSA) is a comprehensive, struc-
tured methodology to identify and understand the risks associated 
with hazardous activities in complex systems [39]. It can identify po-
tential accident scenarios, assess their likelihoods and consequences, 
and improve system safety and operation [20]. There are many PSA 
techniques, among which fault tree analysis (FTA) is one of the most 
prominent techniques [28] and is the most recognized and widely used 
[15]. The aim of FTA is to find the primary causes of accident cau-
sation utilizing a top-to-down method. The basic events of FT can 
be HEs, software or hardware failures, or environment events [6]. To 
analyze HEs and study human behavior in accident occurrence, many 
studies propose an analysis concept that combines FTA, Task analysis 
(TA) and human reliability analysis (HRA) methods [6, 53, 55]. FTA 
identifies the root causes of an accident, while TA analyses the way 
human perform tasks and how they interact with machines or other 
colleagues. These analysis methods are complemented by using one 
of HRA methods, such as ATHEANA (A Technique for Human Er-
ror Analysis), THERP (Technique for Human Error Rate Prediction), 
HEART (Human Error Analysis and Reduction Technique), CREAM 
(Cognitive Reliability and Error Analysis Method), and HEIST (Hu-
man Error Identification in System Tools). Doytchev et al. [6] com-
bine FTA and TA to analyze an accident of Bulgarian Hydro power 
plant. In their analysis, HEs are analyzed by the combination method 
of TA and HEIST, through which details about HEs in a realistic situ-
ation are revealed. Zhou et al. [55] incorporate CREAM into FTA to 
analyze Liquefied Natural Gas carrier spill accidents, and estimate 
likelihoods of risks using Monte Carlo Simulation. Zhou et al. [53] 
propose a hybrid HEART method and incorporate it and TA to FT 
construction for risk analysis.

Although previous FTA methods successfully consider HEs based 
on the combination of TA and HRA, they ignore human mental work-
load or describe MWLOL through Performance Shaping Factors 
(PSF) indirectly, such as “number of simultaneous goals” and “avail-
able time”. In doing so, the MWLOL information is effectively hid-
den in the logical structure of the FT, and task scenarios causing high 
mental workload cannot be identified. Therefore, it is unable to play a 
role in qualitative analysis. In addition, HEs should be best viewed as 
a joint product of the interactions of humans with other aspects of the 
system (software, hardware, etc.) in a particular external context [22]. 
These FTA methods cannot describe the logic relationships among hu-
man error events and other basic events due to MWLOL in the process 
of man-machine interaction: basic events such as equipment failures 
may cause the system in an abnormal situation, then introduce a new 
abnormal situation handling task which is time-shared with current 
tasks, and finally MWLOL occurs and triggers the corresponding 
human error events. Therefore, to deeply analyze the root causes of 
human errors and accidents, the MWLOL should be considered and 
described explicitly in FT construction.

In this paper, we focus more on MWLOL and it is incorporated into 
FTA. A modified FTA method is developed based on aforementioned 
FTA methods combined with TA and HRA [6, 53, 55]. This new meth-
od also makes use of TA describing and analyzing how and when the 
human interacts with the system or colleagues in the system. TA can 
create a detailed picture of human involvement, including the con-
crete operations and plans. Plans determine which operations should 
be perform simultaneously. Based on TA, human error identification, 
analysis, and quantification can be implemented with HRA methods. 
Then a traditional FT can be constructed. To overcome the difficulty 
of considering and describing MWLOL explicitly in traditional FTA, 
we introduce MRM to build a MWLOL mechanism model and de-
velop a new logic gate (i.e. MWLOL gate) to incorporate MWLOL 
into previous FTA methods. Such gate can represent how MWLOL 
occurs and what its effects are, and it may add the logic relationships 
among basic events due to MWLOL to traditional FT construction. 
The proposed method represents a major extension from previous 

FTA methods and provides a more in-depth risk analysis. A case study 
of helicopter crash in Maryland On January 10, 2005 is used to illus-
trate the effectiveness of the proposed risk analysis method. 

This paper is organized as follows. In Section 2, we introduce the 
MWLOL and its contributions to aviation accidents. Section 3 presents 
the background and basic concepts of risk analysis. In Section 4, the 
proposed methodology is presented, while in Sections 5 and 6 appli-
cation of the methodology with results and discussions are provided. 
Finally, the conclusions of this paper is presented in Section 7.

2. Aviation accidents due to MWLOL
With the improvement of intelligence and automation during flight, 

the role of the pilot has changed fundamentally, from the operator and 
controller of the system to the supervisor and decision-maker [24]. 
The applications of advanced technologies has greatly reduced the pi-
lot’s physical workload in modern aviation. However, in some cases, 
advanced equipment actually increases the overall mental workload. 
Objectively, the cockpit has become a workplace with a high inci-
dence of MWLOL because of the highly intensive information. Pilots 
need to collect more than 30 pieces of information within 10s before 
and after the takeoff of a Boeing 747. In another case, 675 special 
abbreviations and hundreds of warning signals are contained in three 
displays under the windshield of the F/A-18 Hornet Fighter cockpit 
alone [50]. Pilots need process the increasing information and the al-
lowable time for decision decreases. Therefore, flying a plane is often 
a heavy mental workload task, especially in abnormal situations. The 
pilots must constantly acquire and process much information from 
their eyes, ears and other sensory organs to avoid accidents.

It has become a universal phenomenon that multiple tasks cause 
mental workload to exceed the mental ability of pilots, which is 
called MWLOL. The pilots’ capacities of information processing are 
stretched with increased task demands. The occurrence of MWLOL 
has affected the performance of pilots seriously, which reduces the ef-
ficiency and safety of the system. For example, when a pilot performs 
dual tasks with MWLOL, s/he will become involved in her/his cur-
rent situation of the primary task while forget to perform the second-
ary task [23]. Consequently, the information of the secondary task is 
not perceived, which usually lead to perception errors, information-
processing errors and slow decision-making. These HEs due to MW-
LOL are frequently identified as a major cause of accidents [23]. 

A certain survey on the reasons for aviation accidents shows that 
60%~80% of aviation accidents relate to human errors, most of which 
are caused by MWLOL [10]. As mentioned in introduction section, 
most of the accidents, especially those fatal ones, occurs due to errors 
associated with MWLOL [35, 51]. According to statistics, among the 81 
flight-grade accidents in Civil Aviation Administration of China during 
the 15-year period of 1980-1994, 15 were caused by MWLOL [26]. 

Consequently, it is a major issue to analyze pilot mental workload 
in aviation risk analysis. Evaluating and improving the pilot’s mental 
workload can be helpful in improving pilot performance and reducing 
the likelihoods of accidents.

3. Background of research methods 
In the previous section, the importance and contributions of MW-

LOL to accident are demonstrated. This section covers the necessary 
background for understanding the proposed method of aviation risk 
analysis considering MWLOL. An overview of MRM, FTA, TA, and 
HRA is illustrated below. 

3.1. Multiple resources model
MRM is developed by [40, 41], which are the main references 

used here. MRM can well interpret the occurrence of MWLOL and 
decrement of human performance caused by the interference between 
several concurrent tasks [40]. It has been widely used in workload 
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prediction and assessment in aviation (e.g., commercial aviation [2] 
and helicopter [8, 19]). 

MRM holds the idea that humans have several separate limited 
and allocable mental resources. It provides a computational model to 
predict total interference between a time-shared pair of tasks, which 
is the sum of two components, a 4-dimensional demand component 
(i.e., resource demand) and a multiple resource conflict component 
(i.e., degree to which overlapping resources are required). The four 
dimensions, shown schematically in Fig.1, consist of (1) Information 
processing stages, referring to perception, cognition and response 
progress, (2) Processing codes, representing the spatial and verbal 
working memory codes, (3) Input modalities, containing the visual 
and auditory channels to allocate attention, and (4) Visual processing, 
dividing visual modality into focal and ambient vision [41].

Fig. 1. The 4-dimensional MRM [41]

MRM evaluates task interference through the following three criti-
cal processes: (1) demand vector determination, (2) conflict matrix 
construction, and (3) total interference calculation [41].

(1) Basic mental resources demand reflects the mental workload 
to complete a single task. In MRM, the determination of resource 
demand value in certain dimension depends on the characteristic 
and difficulty of task. Each demand is specified as being automated 
( d = 0), easy ( d = 1), or difficult ( d = 2). According to the com-
putational model, the demand vector of a certain task can be repre-
sented as: i {Vf , Va , As, Av, Cs, =d Cv, Rs, Rv} , where id  
denotes the demand vector of task i ; V is visual; A is auditory; C is 
cognition; R is response; f represents focal vision; a represents am-
bient vision; s is spatial code; and v is verbal code. For the conve-
nience of subsequent expression, the demand vector is simplified as:

i 1 2 3 4 5 6 7 8{c , c , c , c , c , c , c , c }i i i i i i i i=d , where cij corresponds the jth 
( j 1,2, ,8=  ) elements in id , and respectively represents the value 
of Vf, Va, As, Av, Cs, Cv, Rs, Rv.

(2) Based on plenty of studies, Wickens [41] proposed a conflict 
matrix to reflect the conflict value for different resource competitions 
intuitively, as shown in Table 1. If dual tasks use the same resources, 
the conflict extent will be the highest. Hence the dual tasks may be 
time-shared more easily when using different type of resources (e.g., 
perception vs. response, auditory vs. visual). The dual-task resource 
conflict score is determined by the summation of conflict values:
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where 1 2r ( , )d d  denotes the resource conflict score between dual 
tasks 1T  and 1T , and 1, 2,c ci j⊗  is the conflict value of two resources, 
determined by Table 1.

(3) The total interference value is represented by the sum of total 
resource demand value and 1 2r ( , )d d :
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where TI  denotes the total interference of dual tasks.

3.2. Fault tree analysis 
FTA is a well-established and well-understood technique, widely 

used to determine the causes of accidents and dig deep into the factors 
leading to these causes [14]. The analysis results allow practitioners 
to identify weaknesses in the system and take prevention methods. In 
this paper, the proposed risk analysis method considering MWLOL is 
implemented through FTA.

FTA is a top-down and graphical method that analyzes accidents 
deductively and structurally [55]. FTA starts with an undesired event 
as a top event usually representing the accident, and constructs down-
wards to dissect the system for further detail until the basic events 
leading to the top event are known [16]. The basic events are in the 
bottom of the tree, including human errors, mechanical failure, envi-
ronmental factors and any other events that can caused accidents [6]. 
Their relationships are described by logic gates, such as AND-gate 
and OR-gate. 

Once a FT is modeled, it can be analyzed in qualitative and quan-
titative ways [14, 46]. Qualitative analysis aims to find the minimal 
cut sets (MCS), which show how minimum basic events can combine 
together to cause the accident. In quantitative analysis, the probabil-
ity of the accident occurrence and other quantitative indexes such as 
importance measures are mathematically calculated. The importance 
measures can determine which basic event in the cut sets are more 
critical to prevent the top event from occurring.

To capture the dynamic behavior of system failure mechanisms, 
the concept of dynamic FTA is proposed through adding the priority 
AND, standby or spare, and functional dependency gates to the tradi-
tional FTA [7, 47]. With the development of technology, many schol-
ars have expanded the FTA to make them suitable for advanced and 
complex systems. Simultaneous-AND gate [37], AND–THEN gate 
[45], and SEQ-OR gate [18] are proposed to improve the modeling 
power of dynamic FTs.

3.3. Task analysis
Task analysis (TA) involves the study of the way operators perform 

the tasks in their work environment and how to refine these tasks into 

Table 1. Conflict matrix proposed by Wickens [41]

Task A

Perceptual Mental Response

Vf Va As Av Cs Cv Rs Rv

Task B

Vf 0.8 0.6 0.6 0.4 0.7 0.5 0.4 0.2

Va 0.6 0.8 0.4 0.6 0.5 0.7 0.2 0.4

As 0.6 0.4 0.8 0.4 0.7 0.5 0.4 0.2

Av 0.4 0.6 0.4 0.8 0.5 0.7 0.2 0.4

Cs 0.7 0.5 0.7 0.5 0.8 0.6 0.6 0.4

Cv 0.5 0.7 0.5 0.7 0.6 0.8 0.4 0.6

Rs 0.4 0.2 0.4 0.2 0.6 0.4 0.8 0.6

Rv 0.2 0.4 0.2 0.4 0.4 0.6 0.6 1
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a sequence of subtasks [6]. TA is the process of describing and analyz-
ing how the operators interact with the system and other operators in 
order to achieve a system goal. TA can capture factors related to the 
cognitive activities of the human involved and psychological context 
of the tasks [1]. TA has experienced continuous improvement, and 
numerous TA methods have been developed, such as hierarchical task 
analysis (HTA), Goals Operations Methods (GOMS), Tabular Task 
Analysis, Timeline analysis, and cognitive task analysis [17]. 

Among the TA methods above, HTA is the ‘‘best known task analy-
sis technique’’ [17], and has a very generic form that can almost be 
applied in any field. HTA focuses on the identification of the overall 
goal and the decomposition of the goal into subordinate goals and 
sub-tasks, which allows it to analyze complex tasks [1]. In HTA, the 
subordinate goals should be further decomposed into more detailed 
goals or tasks. Hence the decomposition needs to continue, until the 
sub-tasks in the bottom of HTA structure are all concrete operations. 
The goals and sub-goals are organized through plans, and the work 
processes are well structured based on its hierarchical approach [6]. 
The details and framework for conducting HTA can be seen in [32].

HTA has been extensively used in interface design and evaluation, 
allocation of function, job aid design, error prediction, and workload 
assessment [32]. In this paper, we focus on its application in the work-
load assessment and error prediction. These two parts deal with the 
question of how operators become MWLOL and human error occurs 
respectively. HTA is recognized as the pre-analysis before workload 
and human error analysis.

3.4. Human error analysis
As mentioned before, HEs are the main reasons for accidents in 

highly complex systems and the accidents caused by HEs has con-
tinuously increased [6]. Therefore, drilling down the causes of HEs is 
significant for accidents analysis. Human reliability analysis (HRA) 
is a series of techniques for human error analysis. The present HRA 
methods are almost based on the human factors engineering, mental 
science and probability statistics [55]. They aim at eliminating acci-
dents attributed to HEs. To consider the impact of human errors, HRA 
methods usually include several stages i.e., decomposing human act, 
identifying error modes, calculating human error probability, deter-
mining effects and analyzing the reasons for HEs [53].

After decades of development, some classic HRA methods are 
gradually promoted, e.g., THERP (Technique for Human Error Rate 
Prediction), HEART (Human Error Assessment and Reduction Tech-
nique), CREAM (Cognitive Reliability and Error Analysis Method) 
[13], and etc. Among them, CREAM focuses more on cognitive er-
ror and holds the concept that the performance is mainly influenced 
by the context. Based on this concept, nine Common Performance 
Conditions (CPCs) are defined to represent how context, including 
environment, equipment, organization, and etc., influences the per-
formance of operators in system. The influence level is divided into 
three categories, i.e. improved, reduced and insignificant levels. 

CREAM classifies cognitive functions into four categories: obser-
vation, interpretation, planning, and implementation. Each category 
contains several failure modes, and each failure mode has its cor-
responding failure probability named Cognitive Failure Probability 
(CFP). CPCs can be utilized to calculate the CFPs and determine the 
causes of them. On the one hand, CPCs combine with basic probability 
to determine the fixed CFPs [55]. On the other hand, CREAM defines 
the causal relationship between CPCs. According to the causal chain, 
the causes of human errors can be traced. In this way, the contribution 
of MWLOL can be indirectly analyzed with CPCs like “number of 
simultaneous goals” and “available time” [13].

4. Methods
A brief overview of methods and techniques for risk analysis were 

introduced in section 3. The FTA, TA, and HRA methods focus either 
on the failure of machine or human, and their combinations are uti-

lized to analyze the causes of human errors and accidents. However, 
the main cause of pilots’ errors, MWLOL, was ignored or considered 
indirectly through CPCs. To better analyze the MWLOL and its ef-
fects, MRM is introduced and combined with TA as a means to iden-
tify time-shared tasks and their resource demands that prompt MW-
LOL. In addition, to analyze the way MWLOL leads to accidents, the 
proposed methods are complemented with the utilization of FTA and 
a new logic gate i.e. MWLOL gate. Through this gate, a new depend-
ence among basic events due to MWLOL can be analyzed.

4.1. Procedure
The analysis flow is shown in Fig. 2 and consists of 8 steps. Tra-

ditional FT is first constructed with HTA and CREAM in steps 1-4. 
Then it is modified by a MWLOL gate to analyze MWLOL and cor-
responding effects. Accordingly, main steps are explained as follows.

Fig. 2 Flowchart of the analysis approach

Step 1- Task selection and Situation determination: The tasks re-
ferring to flight handbook are the definition of steps that pilot must 
complete during a flying process. The purpose of the Situation deter-
mination is defining a variety of instant conditions according to the 
tasks assessed, such as working environment, task status, time avail-
ability and so on.

Step 2- Task analysis: In accordance with the situation, task analy-
sis is carried out through HTA, and a list of subtasks is obtained. Mul-
titasking is prevalent in aviation [40], and the majority of MWLOL 
occurs by performing Multiple tasks concurrently. Therefore, in this 
step, it is essential to determine the plans of these subtasks to identify 
which are time-shared.

Step 3- Human error analysis: CREAM is introduced to identify 
and analyze human errors in flying operations based on the results of 
TA. According to the historical data collected by National Transporta-
tion Safety Board (NTSB) or expert judgments, the cognitive func-
tion, CPCs and their weights can be obtained. Finally, the probabili-
ties of human errors in pilots’ flying tasks can be calculated through 
CREAM [13].

Step 4- Perform a traditional FTA of the accident: There are many 
causes that can lead to the accident, such as equipment/mechanical 
failure, human errors, and environmental factors. Each of such causes 
is connected by logic gates and lower events until all its branches are 
terminated with basic events. Various logical combinations that lead 
to the accident can be displayed. Then FT is constructed and FTA is 
implemented to identify the root causes of the accident.
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Steps 1-4 are the procedures to perform a traditional FTA, which is 
widely studied in many literatures [6, 53, 55]. To consider MWLOL, 
Steps 5-8 are proposed to modify traditional FTA in this paper, and we 
present them in sections 4.2-4.5 in detail.

4.2. Abnormal situation handling tasks caused by basic 
events (Step 5)

As the basic events including equipment/mechanical failure, human 
errors, and environmental factors occur, the aircraft may be in an ab-
normal situation. Pilots need deal with the abnormal situation based on 
the emergency procedure in flight handbook to prevent the accident 
[36]. Therefore, a new abnormal situation handling task is introduced, 
which will increase mental workload significantly. Then the perfor-
mance of pilots will be affected seriously and the efficiency and safety 
of the system may be reduced. For example, single engine fire will in-
troduce the engine fire extinguishing task. Pilots need perform at least 
dual tasks (i.e. flying task and extinguishing engine fire task) simul-
taneously. On such condition, the MWLOL may occur during man-
machine interaction and lead to human errors and aircraft crash with 
high probability. Many aviation accidents have occurred when pilots 
perform multiple tasks besides an abnormal situation handling task.

In step 5, the abnormal situation handling tasks introduced by the 
occurrence of basic events are determined. Whether current tasks lead 
to MWLOL and what their effects are will be analyzed in steps 6 and 
7 respectively.

4.3. Mental workload analysis with extension of MRM  
(Step 6)

Based on the results of HTA of normal tasks in step 2 and abnormal 
situation handling tasks in step 5, the tasks that should be performed 
concurrently are determined first in this step. Then mental workload 
analysis of these concurrent tasks is conducted with the extension of 
MRM.

In literature, MRM is proposed to predict the time-shared task in-
terference, which is the sum of resource demands and conflicts. It is 
a convenient way to calculate mental workload caused by dual tasks. 
However, for the calculation of resource conflicts, it cannot be ap-
plied directly to the task scenario which contains three or more con-
current tasks. In aviation, especially under abnormal conditions, it is 
a common phenomenon that pilots perform multiple concurrent tasks 
[40]. To calculate multi-task interference, the above basic MRM is 
extended based on the following principles that the resource conflict 
is calculated according to task priority. For example, to calculate the 
resource conflict of three time-shared tasks, the resource conflict be-
tween the first and second highest priority tasks is first calculated, and 
then we calculate the resource conflict between the first two tasks and 
the third highest priority tasks. The detail steps are as follows:

First, tasks are ranked in descending order of priority based on TA. 
Let iT  denote the task with prioritization i . The prioritization of iT  
is higher than that of 1iT + . 

Second, let Dp denote the sum of demand vector of 1 2,..., pT ,T T . It 
can be obtained through:
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In summary, if the pilot need perform dual tasks concurrently, the 
mental workload analysis can be conducted by the basic MRM in-
troduced in section 3.4, while if the pilot need perform three or more 
tasks concurrently, the mental workload analysis can be conducted by 
the extension of MRM proposed in this section.

4.4. MWLOL gate (Step 7)
For the contribution of MWLOL to aviation accidents, consid-

ering it into FTA model is beneficial to analysis the causes of acci-
dents. The functions of FTA are reflected in various logic gates which 
represent how failures in subsystems can combine to cause a system 
failure. Therefore, it is a feasible method to construct a new logic gate 
(i.e. MWLOL gate) to model the fault logic of MWLOL. Based on 
the task management theory [43], tasks are abandoned in the order of 
priority when concurrent tasks lead to MWLOL.

4.4.1. Fault logic of MWLOL
“Mental workload describes the relation between the (quantitative) 

demand for resources imposed by a task and the ability to supply those 
resources by the operator” [41]. To investigate the fault logic of MW-
LOL, it is important to understand the strategy of task management 
that operators adapt when the supply is less than the demand. At a 
most general level, there are four possible types of adaptation when 
the MWLOL occurs [43].

Operators may allow tasks’ performance to degrade, for example, • 
a vehicle driver may allow lane position to wander when the work-
load of dealing with an in-vehicle automation system increases.
Operators may perform the tasks through a less resource consum-• 
ing and more efficient way, as they may shift from optimal algo-
rithms to satisfactory heuristics in decision making.
Operators may shed tasks altogether, in an “optimal” fashion, • 
eliminating performance of those of lower priority. For example, 
the air traffic controllers with mental workload overload may 
cease to offer pilots weather information unless requested, while 
turning their full attention to traffic separation. 
Operators may shed tasks altogether, in an “non-optimal” fash-• 
ion, abandoning those that should be performed. For example, a 
vehicle driver abandons safe driving in favor of a cell phone con-
versation. 

Unfortunately, beyond the studies and literatures on task man-
agement and resource allocation, very little is known about general 
principles that can account for when people adopt one strategy or the 
other [43]. However, training can certainly help operators to adopt an 
“optimal” strategy [43]. 

In this paper, the pilots are assumed to be well-trained, and they 
may shed tasks altogether in an “optimal” fashion, i.e., pilots under 
high workload will focus on the critical tasks with higher priority and 
eliminate performance of tasks of lower priority. Therefore, some of 
the operations for tasks of low priority will be abandoned.

MRM assumes that humans have several separate allocable men-
tal resources but limited. Gore and Jarvis [31] suggest an arbitrary 
threshold of 7, i.e., the maximum cumulative demands of cognitive 
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resources people can provide is 7. Then whether the MWLOL oc-
curs can be determined based on the value of total interference of 
time-shared tasks. Therefore, when the total interference of concur-
rent tasks exceeds 7, MWLOL is assumed to occur and the operator 
tends to eliminate performance of lower priority tasks.

4.4.2. Establish MWLOL Gate
As discussed above, the fault logic of MWLOL is obtained. We 

describe this fault logic by introducing a MWLOL gate, as shown in 
fig. 3. MWLOL Gate has multiple inputs and outputs. The inputs are 
concurrent multiple tasks (i.e. T1, T2, …, Tn), while the outputs (t1, 
t2, …, tn) are the abandonment of tasks of low priority which triggers 
the corresponding human errors whose modes are omissions, such 
as perception omissions due to the abandonment. All inputs are ba-
sic events. Each output event ti represents the abandonment of input 
event Ti. When all inputs occur simultaneously and the task interfer-
ence exceeds 7 (i.e., the MWLOL occurs), the output events (tn, tn-1, 
…, t2) will occur in turn until the interference of performing tasks is 
less than 7. 

The MWLOL occurs only when multiple tasks need to be handled 
at the same time. Therefore, the output events occur only when all in-
put events occurs simultaneously. However, whether the input events 
of the AND gate occur at the same time or not, is not clear from its 
definition. The AND gate has no time parameters. To consider the 
temporal relations among input events, many logic gates have been 
developed to extend the description and analysis of fault trees, such 
as Priority-AND gate [7], AND-THEN gate [45], and Simultaneous-
AND gate [37]. A Simultaneous-AND gate represents the input event 
X and Y occur at the same time. MWLOL Gate is proposed based on 
Simultaneous-AND. In this paper, the temporal relation that all input 
events occurs simultaneously is ensured by TA. The occurrence of 
output events depends on the MWLOL judged by MRM.

According to the MRM and task prioritization strategies, the fol-
lowing rules of MWLOL GATE are made:

MWLOL GATE will not be triggered if only one input event 1) 
occurs;
All output events will not occur if no MWLOL occurs;2) 
All input events must be time-shared;3) 
Output event 4) ti occurs later to ti+1. 

4.5. Modelling FTA with MWLOL gate (Step 8)
Based on Steps 1-3, task selection and situation determination, task 

analysis, and human error identification and analysis have been con-
ducted. A combination of TA and HRA is utilized to determine the hu-
man error modes and their probabilities. Then, in step 4, a traditional 
FT can be established as shown in Fig. 4, and the detailed procedure 
can be seen in [6, 53]. The traditional FT considers human errors, ma-

chine failures, and environment factors. The top event (i.e. accident or 
incident) will occur when the MCS of basic events occur. 

Fig. 4. Example of traditional FT with human errors (HE), machine failures 
(MF), and environment factors (EF) events

Based on steps 5 and 6, concurrent tasks (i.e. normal tasks and 
abnormal situation handling tasks) in the risky task scenario are iden-
tified and task interference can be calculated by MRM to identify 
whether MWLOL occurs. Step 7 establishes the MWLOL Gate that 
can determine which task will be abandoned when MWLOL occurs. 
Then its actual contents of output events trigger omission error events 
due to the abandonment of tasks. Therefore, for these omission error 
events, their occurrence is due to the MWLOL or omissions. Then, 
such omission error events in Fig. 4 will change from basic events to 
intermediate events, which are connected by OR gate and basic events 
ti and omission, such as HE2 and HE3 in Fig.5. The probability of 

basic event “omission” can be calculated using CREAM. 
MWLOL Gate represents how MWLOL occurs and what its 

fault logic is. By using MWLOL Gate, the MWLOL is present 
in the logical structure of FT, which plays a significant role in 
qualitative analysis of the root causes of aviation accidents.

Figure. 5 shows an example of a FT with MWLOL Gate. On 
such situation, operator need handle three tasks (i.e. T1, T2, T3) 
simultaneously. Among them, T3 is assumed to be the abnor-
mal situation handling task caused by the basic events MF2 and 
EF1. The task interference of these three tasks exceeds 7, and 
the event t3 (i.e. abandon T3) occurs. Then t3 triggers event HE3. 
In addition, if the task interference of T1 and T2 also exceeds 7. 
The event t2 (i.e. abandon T2) also occurs and triggers HE2. On 
the contrast, if the task interference of T1 and T2 is less than 7, 
the event t2 will not exist, and HE2 is only affected by operation 
omission. Through MWLOL Gate, the dependence among basic 
events MF2, EF1, HE2, and HE3 can be described explicitly, 
and the causes of HE2 and HE3 can be well explained.

As shown in Fig. 5, MWLOL Gate combined with other logic 
gates can describe how the basic events cause top event. The causes 
of HEs in the process of man-machine interaction can be well inves-
tigated through the modified FTA. Then, HEs caused by MWLOL or 
not, mechanical failures and environmental factors can be identified 
as the root causes of accidents. Moreover, quantitative analysis like 
the calculation of top event probability and probability importance 
of basic events can be used to prioritize those causes. Therefore, FTA 
with MWLOL Gate can be analyzed in qualitative or quantitative 
methods, which are the same as traditional FTA.

5. Case study
The proposed analysis method is implemented to an accident of 

helicopter crash in Maryland [27]. On January 10, 2005, about 23:11, 
a helicopter crashed into the Potomac River during low-altitude cruise 
flight near Oxon Hill, Maryland. The pilot and several crews were 

Fig. 3. Images of MWLOL Gate
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killed and the fight nurse was seriously injured. The helicopter (i.e. 
Eurocopter EC-135 P2, N136LN) was destroyed. The positioning 
flight was conducted under the provisions of visual flight rules (VFR) 
with a company flight plan filed.

The helicopter originated at the Washington Hospital Center Heli-
pad and was en route to Stafford Regional Airport. During the flight 
route, multiple tasks besides an abnormal situation handling task 
should be performed simultaneously. Researching the MWLOL is 
worthwhile to analyze the root causes of the accident. The risky task 
scenario is analyzed using the proposed risk analysis method to il-
lustrate its effectiveness.

5.1. Task selection and Situation determination 
In view of the aviation accident report, the flight mission profile is 

as shown in Fig. 6. Since the flight route is near Stafford Regional Air-
port, the helicopter need cruise with low altitude and is usually asked 
to avoided airbus. The helicopter flies southbound along the Potomac 
River toward Woodrow Wilson Bridge. When the helicopter is near 
the bridge, climbs and crosses over the bridge. Then the helicopter 
descends and cruises with low altitude. During performing the tasks 

above, the pilot is informed that an airbus was ten miles above the 
helicopter. The pilot should search for airbus visually and maintain 
visual separation from the airbus. Therefore, on such condition, the 
pilot need perform dual normal tasks concurrently, which may lead 
to MWLOL of the pilot. Considering the contribution of MWLOL to 
aviation accidents, these tasks are selected and analyzed in this sec-
tion.

The situation can be determined based on a closer look at the avia-
tion accident report. The pilot holds a commercial pilot certificate 
with ratings for airplane single- and multi-engine land, rotorcraft heli-
copter, and instrument helicopter. He is well trained and experienced. 
The helicopter was manufactured in 2004 and had accumulated 166.6 
total flight hours at the time of the accident. The helicopter was con-
figured one pilot, one flight paramedic, and one flight nurse.

The tasks are performed at night, about 23:11. According to the 
aviation accident report, a new moon was below the horizon and no 
illumination was provided at the time and location of the accident. 
Flying low-attitude North of the bridge is typically flying VFR due to 
the intense amount of ground lights available along the river. Once the 
pilot crosses the bridge he is now flying into a black void, and there is 
no outside visual reference. Therefore, the helicopter likes flying into 
actual instrument meteorological conditions, and flight instruments 
should be used to a greater degree to ensure altitude awareness. 

5.2.  Task analysis using HTA 
Based on the helicopter flight handbook [36], with four raters’ 

assistance, TA is performed using HTA method. We compile a list 
of subtasks and concrete operations which are helpful for analyzing 
the HEs that lead to the failure. HTA includes a set of hierarchical 
tasks that provide a systematic description of the flight mission of 
the helicopter. Table 2 shows the subordinate goals and all concrete 
operations. The subordinate goals i.e. sub-tasks are 1) climb, 2) cross 
over the bridge, 3) descend, and 4) search and avoid the airbus. Each 
subordinate goal is further divided into concrete operations.

The brainstorming session with four raters allows us to identify 
the tasks that should be performed at the same time and their priori-
ties. We then determine the plans of these sub-tasks, through which 
the work processes are well structured based on its hierarchical ap-
proach. Such plans and task priorities is the basis of mental workload 
analysis.

5.3.  Human error analysis using CREAM
Based on the results of TA, CREAM method is introduced to iden-

tify and quantify possible HEs. Table 2 shows the detailed operation 
procedure, and for each operation, we can identify its cognitive func-
tion. According to the determined situation, CPC assessment can be 
conducted with four raters’ assistance. For example, Table 3 shows 
the CPCs for subtask 3. Then weighting factors for CPCs can be de-
termined and the CFP for each operation can be calculated using the 
extended CREAM method [13]. 

The methods that combine TA and CREAM for human error iden-
tification and quantification have been widely studied in many litera-
tures [34, 54, 55]. Based on such methods, the possible helicopter’s 
errors when performing flight mission can be identified and quanti-
fied. In this paper, we focus more on the occurrence and effects of 
MWLOL, which will be analyzed in detail next. 

5.4. Perform a traditional FTA of the accident
The accident report shows that the helicopter crashed during the 

descent stage (subtask 3.1). The pilot performed subtask 3.1, and task 
4 simultaneously at that time. Based on section 5.1-5.3, we gather the 
HEs, mechanical failures, and environment factors which are com-
bined to cause the accident, and perform a traditional FTA of the he-
licopter crash accident, as shown in Fig. 7. The helicopter crash dur-
ing descent stage is due to three categories of causes: 1) helicopter’s 
altitude is too low caused by equipment failures (G1), 2) helicopter’s 

Fig. 5. Example of FTA with MWLOL Gate

Fig. 6. Flight mission profile of helicopter
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altitude is too low caused by extreme environment (G3), and 3) he-
licopter crashes due to the failure of man-machine interaction (G2). 
In this accident, the pilot is well trained. If he is aware of the low 
altitude, he will take measures to prevent helicopter crash. The flight 
nurse who survived the accident stated: “the pilot did not execute any 
evasive maneuvers or communicate any difficulties, either verbally 

or nonverbally” [27]. Therefore, G2 is caused by the pilot perception 
failure of low altitude.

The MWLOL occurs during man-machine interaction. In addition, 
G1 and G3 can be analyzed by traditional FTA methods. Thus we 
focus more on the cause G2, and it is analyzed by the connection of 
logic gates and lower events until all its branches are terminated with 
basic events.

Table 2. HTA of the flight mission of the helicopter based on [36]

0. Flight mission of the helicopter
Plan 0: Do 1 then 2 then 3, and Do 4 simultaneously

1 Climb
Plan 1: Do 1.1 then 1.2 then 1.3

1.1 Determine the climbing position and report the position and climbing request to the controller

1.2 Enter the climb
Plan 1.2: Do 1.2.1 then 1.2.2 then 1.2.3

1.2.1 Increase the collective and throttle, and adjust the pedals as necessary to maintain the longitudinal trim

1.2.2 Move cyclic stick slightly to direct all of the increased power into lift and maintain the airspeed

1.2.3 Check the view and flight instruments to maintain the climb attitude, course, speed, rate of climb, propeller speed, and longitudinal trim until 
moving to level flight

1.3 Level off the climb
Plan 1.3: Do 1.3.1 then 1.3.2 then 1.3.3 then 1.3.4

1.3.1 Determine the attitude to lead the level-off

1.3.2 Apply forward cyclic stick to adjust the helicopter to level flight attitude

1.3.3 Maintain climb power until the airspeed approaches the desired cruising airspeed, then lower the collective to obtain cruising power and adjust 
the throttle to obtain and maintain cruising rpm.

1.3.4 Throughout the level-off, control anti-torque pedals to complete longitudinal trim 

2 cross over the bridge
Plan 2: Do 2.1 then 2.2 then 2.3 then 2.4 then 2.5

2.1 Apply forward pressure on the cyclic stick forward to obtain the forward speed

2.2 Control the collective pitch lever to maintain the flight attitude

2.3 Control the throttle to maintain the propeller speed

2.4 Control anti-torque pedals to maintain the trim

2.5 Check the view and flight instruments to maintain the climb attitude, course, speed, rate of climb, propeller speed, and trim until moving to descent

3 Descent
Plan 3: Do 3.1 then 3.2

3.1 Enter the decent stage
Plan 3.1: Do 3.1.1 then 3.1.2 then 3.1.3 then 3.1.4 then 3.1.5

3.1.1 Lower collective pitch to obtain proper power

3.1.2 Control the throttle to maintain rpm

3.1.3 Control anti-torque pedals to complete longitudinal trim and maintain the course

3.1.4 Adjust cyclic stick to maintain the descent attitude and speed

3.1.5 Check the view and flight instruments to maintain the power, altitude, course, and longitudinal trim until moving to level flight

3.2 Level off
Plan 3.2: Do 3.2.1 then 3.2.2 then 3.2.3 then 3.2.4

3.2.1 Determine the desired altitude to lead the level-off 

3.2.2 Increase collective pitch and throttle to obtain cruising power and maintain rpm

3.2.3 Control anti-torque pedals to complete longitudinal trim and maintain the course

3.2.4 As the helicopter decreases to the required flight altitude, control the cyclic stick to obtain the cruise speed and straight-and-level attitude

4 Search and avoid the airbus
Plan 4: Do 4.1 then 4.2 then 4.3

4.1 Contact air traffic controller for the airbus location

4.2 Search the airbus visually until have the airbus insight

4.3 Control the helicopter and maintain visual separation from the airbus
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Based on this traditional FT, the accident of helicopter crash can 
be analyzed in qualitative and quantitative ways. To analyze quan-
titatively, the probabilities of the basic events are shown in Table. 4, 
where the probabilities of equipment failures (i.e. X1 and X3) are as-

sumed to be 1e-4, the probabilities of HEs (i.e. X2, X4 and X5) are 
calculated using extended CREAM method.

5.5. Abnormal situation handling tasks caused by basic 
events

When traditional FT is conducted, the basic events are analyzed 
first to determine whether they can introduce abnormal situation han-
dling tasks in the process of man-machine interaction. When the basic 
event X1 “Radar altimeter failure” occurs, the pilot should fly with 
VFR. In addition, if the basic events X6 “Night flight” and X7 “No 
outside visual reference” also occur, the pilot cannot obtain altitude 
from the view. Then a new abnormal situation handling task (i.e. a 
communication task with ATC for altitude) is introduced. At the same 
time, the pilot should perform another dual tasks (i.e. subtask 3.1, task 
4). Therefore, the new abnormal situation handling task will increase 
pilot’s mental workload, and may lead to MWLOL. During these con-
current tasks, the MWLOL may lead to the abandonment of commu-

nication task with ATC, and then the helicopter 
crashes into the river due to perception failure 
of low altitude. 

5.6. Mental workload analysis
The pilot performs subtask 3.1, task 4, and 

communication task simultaneously at that time. 
We calculate the task interference of these three 
time-shared tasks based on the extension of 
MRM, and implement FTA with the MWLOL 
gate. For these three tasks, priority is given to 
safe helicopter control (i.e. subtask 3.1 denoted 

1T ). The secondary task is searching and avoid-
ing the airbus (i.e. task 4 denoted 2T ). The com-
munication task is an important but low-priority 
task because it is not urgent. Thus the communi-
cation task denoted 3T  is the third priority task. 

Each task is coded by the extent to which it 
depends on separate resources defined by 4 di-
mensions mentioned above, as shown in Fig. 1. 
The pilot performs 1T  following VFR. He views 
outside and controls the cyclic stick, collective 
pitch lever, and anti-torque pedals to maintain 
the rate of decent, propeller speed, course, and 
longitudinal trim. 1T  can be coded as: Percep-
tion: Visual Ambient (=1), Response: Spatial 
(=2). When performing 2T , the pilot should do 
a conversational task with controller and search 
for the airbus to maintain visual separation. 
Task 4 can be coded as: Perception: Auditory 
Verbal (=1), and Visual Ambient (=1). 3T  re-

quires the pilot to ask the ATC for altitude. Such task can be coded as 
Perception: Auditory Verbal (=1). Thus each task spawns a demand 
vector: 1 {0, 1, 0, 0, 0, 0, 2, 0}=d , 2 {0, 1, 0, 1, 0, 0, 0, 0}=d , and 

3 {1, 0, 0, 0, 0, 0, 0, 0}=d .
Then by querying Table 1, the resource-con-

flict scores can be obtained. The conflict matrix of 
1 2T T , 1 3T T , and 2 3T T  is constructed respectively, as 

shown in Table 5-7.
The resource conflict score of 1 2T T  is equal 

to the summation of conflict values in Table 5, 

Fig. 7. Traditional FT of the helicopter crash

Table 3. Common performance condition assessment for the operations of 
subtask 3

CPC name Level

Adequacy of organization Improved

Working condition Reduced

Adequacy of man-machine interface and operational 
support Insignificant

Availability of procedures/plans Insignificant

Number of simultaneous goals Reduced

Available time Insignificant

Time of day (circadian rhythm) Reduced

Adequacy of training and expertise Improved

Crew collaboration quality Insignificant

Table 4. Probabilities of basic events

Events X1 X2 X3 X4 X5 X6 X7

Probability 0.0001 0.0269 0.0001 0.0092 0.0269 0.5 0.1

Table 5. Conflict matrix of 1 2T T

T1

Va Rs

T2
Va 0.8 0.2

Av 0.6 0.2

Table 6. Conflict matrix of 1 3T T

T1

Va Rs

T3 Av 0.6 0.2

Table 7. Conflict matrix of 2 3T T

T2

Va Av

T3 Av 0.6 0.8
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i.e., 1 2R (d ,d ) =  0.8+0.2+0.6+0.2=1.8 . Then the total interference 
value of 1 2T T  can be calculated as: 1 2 1 2 1 1TI + = + + + + 1.8=6.8
. Based on the extension of MRM, the resource conflict score of 

1 2 3T T T  is equal to the summation of conflict values in Tables 5-7, i.e., 
1 2 3R (d ,d ,d ) =1.8+0.6+0.2+0.6+0.8=4.0 . The total interference val-

ue of 1 2 3T T T  can be calculated as: 1 2 3 1 1 2 1 1 4.0 10TI + + = + + + + + =
.

5.7. MWLOL gate establishing

1 2 3TI + +  exceeds the threshold of 7, i.e., this task scenario actu-
ally leads to MWLOL. Performing 1T , 2T , and 3T  simultaneously 
requires a large number of cognitive resources that the pilot is unable 
to all provide. Based on the mechanism of MWLOL, the pilot will 
abandon the low-priority tasks until the total interference is less than 
7. Thus the pilot will abandon 3T  and the total interference value of 

1 2T T  is 6.8. The MWLOL gate can be established. As shown in Fig.8, 

3t  denote the event that abandon 3T . 

Fig. 8. MWLOL Gate of 1 2 3T T T

5.8. Modelling FTA with MWLOL gate

Performing 1 2 3T T T  at the same time leads to the MWLOL, 
and then 3T  will be abandoned. Accordingly, the basic event 
X4 in Fig 7 i.e. “Pilot did not ask for altitude” is triggered. 
Therefore, X4 occurs not only due to omission, but also due to 
MWLOL. Then the event “Pilot did not ask for altitude” denot-
ed as X4 becomes an intermediate event in the modified FTA, 
denoted as Gn. Gn can be triggered by MWLOL or operation 
omission, where MWLOL can be described by the MWLOL 
gate and the omission is basic event whose probability can be 
calculated by CREAM method. In addition, because the basic 
event “omission” is the same as the event “Pilot did not ask for 
altitude” in tradition FT, it is also denoted as X4 in modified FT 
for the purpose of comparative analysis between modified FTA 
and traditional FTA.

The traditional FT is modified by the MWLOL gate, and the 
modified FT is shown in Figure 9. X1, X6, X7, and X4 in tra-
ditional FT are independent, while X1, X6, and X7 trigger X4 
when considering MWLOL. Through the MWLOL gate, such 
logic relationship is added explicitly to traditional FT, which is 
more helpful for analyzing the reasons of HEs and preventing 
the accident.

6. Results and discussions

6.1. Risk analysis of helicopter crash 
As shown in Fig.9, the FT of helicopter crash has been constructed 

with the MWLOL gate, whose top event is “Helicopter crash due to 
pilot perception failure of low altitude”. The FT thus created is ana-
lyzed through evaluating MCS. The MCS are identified as follows:

{ }{ }{ }
{ }{ }{ }{ }
X1,X3,X5 , X1,X4,X5 , X1,X6,X7 ,

MCS=
X2,X3,X5 , X2,X4,X5 , X2,X3,X6,X7 , X2,X4,X6,X7

Based on the MCS above and the probabilities of basic events 
shown in Table 4, the probability of top event can be calculated by 
quantitative methods of traditional FT. In Fig. 9, the helicopter crash 
probability is 2.392e-5.

To identify the crucial basic events, we calculate and analyze their 
probability importance degrees as shown in Table 8. Comparing with 
the other basic events, X1 (Radar altimeter failure) is the most crucial 
event. This can be complained by the fact that the combination of 
X1, X6 (Night flight) and X7 (No outside visual reference) belongs 
to the MCS and X6 and X7 are high probability events. Therefore, 
the accident probability is sensitive to X1. X6 and X7 make pilot fly 
into actual instrument meteorological conditions. X1 combined with 
X6 and X7 will introduce pilot’s communication task with ATC for 
altitude. Then the MWLOL lead to pilot’s perception failure of low 
altitude and finally the helicopter crashes.

In addition, X3 (Communication equipment failure) and 
X4 (Omission) shall also attract more attention because these 
two events are relatively more crucial than the others apart f 
rom X1.

6.2. Comparison with the traditional FTA 
As shown in Fig.7, the traditional FT of helicopter crash has been 

constructed. The MCS are identified as follows:

Fig. 9 Modified FT of the helicopter crash accident
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{ }{ }{ }{ }
{ }{ }{ }{ }
X1,X3,X5 , X1,X3,X6,X7 , X1,X4,X5 , X1,X4,X6,X7 ,

MCS=
X2,X3,X5 , X2,X3,X6,X7 , X2,X4,X5 , X2,X4,X6,X7

Without MWLOL gate, the logic relationship among X1, X4 (Pi-
lot did not ask for altitude), X6 and X7 (i.e. X1, X6, and X7 trigger 
X4) cannot be described. X1 combined with X6 and X7 cannot lead 
to the occurrence of top event. MCS { }X1,X6,X7  in modified FT 
is changed to MCS { }X1,X3,X6,X7 , and { }X1,X4,X6,X7  in tra-
ditional FT. Based on this MCS, the helicopter crash probability is 
1.897e-5 which is 26.1% lower than the modified FTA method. In ad-
dition, the importance degrees of X1 decreases significantly as shown 
in Table 9.

6.3. Analysis of MWLOL’s contribution to helicopter crash 
As discussed above, the combination of X1, X6, and X7 will in-

troduce 3T  (pilot’s communication task with ATC for altitude). 1 2,T T , 
and 3T  are time-shared, which lead to MWLOL. Then 3T  is aban-
doned, and pilot cannot be aware of helicopter altitude information. 
Finally, helicopter crashes during descent stage due to pilot percep-
tion failure. The above man-machine interaction process is described 
through MWLOL gate. The logic relationship that X1, X6, and X7 
trigger X4 is established and { }X1,X6,X7  belongs to MCS. There-
fore, when considering MWLOL the helicopter crash is more likely 
to occur and helicopter crash probability increases from 1.897e-5 to 
2.392e-5. In addition, X1 becomes more crucial, its importance de-
gree increases from 6.84E-04 to 5.02E-02. If the helicopter flies with 
an inoperative radar altimeter, the top event probability in the modi-
fied FT with MWLOL gate is 0.0502. In addition, if this helicopter 
flies at night, the top event probability is 0.1002. Therefore, through 
MWLOL gate, the analysis shows that X1 is a weakness of the heli-
copter system especially flying at night.

If ignoring MWLOL, the importance degree of X1 is 6.84E-04, and 
the most crucial basic events will be regarded as X3 and X4. In addi-
tion, if the helicopter flies with an inoperative radar altimeter, the top 
event probability in traditional FT without MWLOL gate is 7.02e-4. 
Comparing with the results of modified FTA (i.e. 0.0502), such ac-
cident probability decreases significantly. The traditional FT cannot 
identify the true root causes of accident. Accordingly, it is impossible 
to take targeted measures to prevent accidents.

6.4. Validation and suggestions  
For this accident, the NTSB determines that “the probable cause of 

this accident was the pilot’s failure to identify and arrest the helicop-
ter’s descent, which resulted in controlled flight into terrain. Contrib-

uting to the accident were the dark night con-
ditions, limited outside visual references, and 
the lack of an operable radar altimeter in the 
helicopter.” [27]. That is to say, the occurrence 
of X1, X6, and X7 leads to the pilot’s percep-
tion failure and then results in helicopter crash. 
Such accident causes demonstrate the need to 
consider MWLOL and the effectiveness of the 
modified FTA 

Based on the results of modified FTA and 
the accident causes determined by NTSB, radar 
altimeter is a vulnerability of the helicopter sys-
tem when flying at night because it is necessary 
to ensure altitude awareness when the helicopter 

flies into instrument meteorological conditions. Therefore, the radar 
altimeter should be pay more attention when performing aircraft in-
spection program. However, the radar altimeter is out of the FAA-
approved Minimum Equipment List (MEL) and can be deferred for 
maintenance within 10 calendar days. In this accident, the mainte-
nance logbook on January 10, 2005 included an entry for an inopera-
tive radar altimeter. According to “MEL Items and Deferred Main-
tenance” section, the inoperative radar altimeter could be deferred 
for maintenance until January 20, 2005. Then the helicopter with an 
inoperative radar altimeter was allowed to perform flying tasks, and 
the inoperative radar altimeter lead to this accident. Therefore, when 
flying at night, the radar altimeter should be added to the MEL.

7. Conclusions 
Effective risk analysis and accident prevention need analyze pilot 

mental workload to better understand human behavior in accident oc-
currence. In this paper, a MRM is introduced to analyze mental work-
load in risk analysis, and a MWLOL gate is first proposed to incor-
porate MWLOL into previous FTA methods combined with TA and 
HRA. The proposed risk analysis method modifies traditional FTA 
through the MWLOL gate, while it retains the analytical capability 
of traditional FTA. It provides a more in-depth risk analysis of man-
machine system, and it can also assess the technical safety of machine 
system. In addition, the proposed method models the normal task and 
abnormal situation handling task as a whole, and analyzes all possible 
events to assess the risk of systems. Therefore, the risk analysis may 
be more comprehensive.

This modified FTA is successfully used to analyze accident for the 
first time. As seen from the case study, through the MWLOL gate, 
logic relationships among basic events due to the MWLOL in the 
process of handling abnormal situations are added to traditional FT. 
Comparing with the results of traditional FTA, the modified FTA ob-
tains more rational MCS, important degrees of basic events, and top 
event probability, which are validated by a case study of helicopter 
crash in Maryland reported by NTSB. Last but not least, an insight of 
the causes of the helicopter crash accident in Maryland is gained and 
some suggests are given to prevent future similar accidents.

Table 8. Probability importance degrees of basic events in traditional FT

Basic Event X1 X2 X3 X4 X5 X6 X7

Probability 
importance 5.02E-02 7.03E-04 2.02E-03 2.03E-03 2.38E-04 3.43E-05 1.72E-04

Table 9. Probability importance degrees of basic events in the modified FT

Basic Event X1 X2 X3 X4 X5 X6 X7

Probability 
importance 6.84E-04 7.03E-04 2.02E-03 2.03E-03 2.38E-04 2.44E-05 1.22E-04
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1. Introduction

The concept of transport or logistics process efficiency is widely 
discussed in the literature and is interpreted differently depending on 
the analysed research problem, e.g., efficiency of supply chains [20], 
production processes [8], intermodal transport [25], railway transport 
[46], international transport [22], or efficiency of means of transport 
studied in the context of minimizing exhaust emissions [6].     

Processes implemented by airport systems are mainly the so-called 
airside operations, i.e. operations performed near the airport and on its 
manoeuvring area. These include aircraft take-off, landing and taxiing 
operations [30], and ground handling [49]. Airport processes are lo-
gistics processes that focus on the operations associated with the flow 
of a passenger stream at a given airport. The efficiency of any logistic, 
transport process is based on its reliability in carrying out given logis-
tic operations [48]. Reliability of airport processes implementation is 
considered in the context of efficient functioning of the airport and its 
ability to serve passengers [42].

The procedures for take-off and landing are an important aspect in 
the implementation of airport operations. These procedures include 
several stages (Fig. 1):

stage 1 – during which the aircraft captain requests permission  –
to taxi for take-off. He receives information about the runway 
in use and permission to taxi;
stage 2 – the aircraft taxis along the taxiways to a designated  –
place in front of the runway (if the air traffic situation requires 
so, the departing aircraft will be stopped at a place safe for the 
performance of other airport operations);
stage 3 – in the absence of contraindications to the take-off op- –
eration, a take-off permission is issued, if the situation did not 
allow the issue of such permission in Stage 2;
stage 4 – a landing permission is issued if there are no factors  –
preventing the landing operation;
stage 5 – at this stage permission for the aircraft to taxi on the  –
apron is issued;
stage 6 – information is given on the location of the aircraft’s  –
parking on the apron.

At larger airports, the aircraft, after taxiing to a parking area des-
ignated by the air traffic coordinator, is connected to the passenger 
terminal by a mobile jetway. Many researchers [32] identify aircraft 
taxiing operations on the airport apron as the most important element 
affecting airport safety, reliability and capacity. In most cases, the 
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problem of determining a taxiway is solved solely by taking into ac-
count the shortest taxiway distance, disregarding the number of stops 
and accelerations or the necessity to wait for a free parking space.

Scheduling of take-off and landing operations has received quite a 
bit of attention in the literature. For example, in the study [45], the au-
thors present a stochastic approach to scheduling take-off operations 
by describing delays, taxi time, or deviation from the desired arrival 
time as random variables. The authors emphasize that the aircraft taxi-
ing system is a key factor generating delays in the landing and take-off 
phases during peak hours. However, scheduling of take-off operations 
in terms of minimizing potential delays and maximizing airport ca-
pacity is also the subject of the paper [35]. The authors propose a 
dynamic programming based, real-time method to generate a set of 
potential flight sequences given criteria related to airport delays and 
capacity. The constraints considered are distance separation, potential 
taxiway intersections, and separation due to aircraft induced air and 
exhaust turbulence. 

Importantly, many researchers point to the need for a new approach 
to scheduling and routing of taxiing operations due to the need to 
maintain adequate safe take-off intervals [40]. In the work presented, 
the authors proposed an approach using a combinatorial integer op-
timization task that takes into account the time windows of aircraft 
entry into an airport’s network of ground roads, taxiing speeds, and 
aircraft stopping characteristics on the apron. On the other hand, in 
the paper [34], the authors propose an airport taxiway network con-
dition monitoring algorithm using advanced stochastic hybrid linear 
algorithms. 

The main processes determining the reliability and capacity of air-
ports and thus their efficiency are operations of take-off and land-
ing on the runway [4] allocation of gates and parking places [9] and 
movement of aircraft on the apron [47]. 

Taking into account the fact that airport processes taking place on 
the apron affect the reliable and efficient functioning of the airport and 
determine the safety of passengers, it is advisable to develop modern 
methods and algorithms to improve safety and minimize the risk of 
accidents. The authors of this paper presented an original approach 
to evaluate the efficiency of airport processes by the application of a 
simulation tool based on a genetic algorithm.

In the first part, a critical analysis of the literature in the described 
research area is made. Then the author’s decision-making model is 
presented, which includes all the important elements of the process 
of aircraft management on the airport apron. The model takes into 
account, among other things, aircraft take-offs and landings and sep-
aration times between successive aircraft. The developed decision-
making model evaluates the efficiency of airport processes in terms of 
minimizing penalties associated with aircraft landing before or after 
the scheduled landing time. The factor that determines the amount of 
penalties associated with landing an aircraft outside of the designated 
time windows is the aircraft’s taxiing time on the apron. This time will 
be optimized by the developed simulation tool.

An important element of the article is the verification of the de-
cision-making model and the evaluation of the efficiency of the im-
plementation of airport processes using a simulation tool. The opti-
mization processes in the simulation tool used are implemented by 
a genetic algorithm. Genetic algorithms are algorithms often used in 
complex optimization issues, e.g. vehicle routing issue [24] in supply 
chain design [23] in airspace traffic management [12]. 

2. Research problems of airport process management 
- analysis of the literature

2.1.	 Decision-making	problems	in	air	traffic	management	
on the airport apron 

The movement of aircraft on the apron is actually a set of schedul-
ing problems and finding the most advantageous route. It is about 
transit of the aircraft on the ground routes at the airport in such a 
way that they can achieve their objectives within a given time, i.e.: to 
reduce the overall travel time and to match the arrival and departure 
time windows of other aircraft using the airport, bearing in mind the 
reliability and safety of all operations.

The issues of finding the most advantageous route show a signifi-
cant level of complexity, depending on the size of the airport and its 
traffic load. In simple cases where only a few aircraft are simultane-
ously moving through an area, there is little risk of collisions occur-
ring. In such cases, well-known algorithms for finding shortest paths 
in a graph, such as Dijkstra’s or A* algorithm, are used. More ad-
vanced systems require the use of simulation methods and complex 
optimization algorithms e.g. ant colony optimization (ACO) algo-
rithms [13]. 

The aircraft taxiing problem is a complex decision-making issue. 
The following groups of aircraft taxiing restrictions are encountered 
in reference literature [43]:

Maintaining an established taxiway. If a taxiway is designated  –
for non-planning reasons, only the issue of take-off and landing 
scheduling operations that are preceded by taxiing operations 
is considered [40]. Another approach is presented in  [12] in 
which the problem solving algorithm selects a taxiway from a 
set of predefined solutions. 
Separation between aircraft [14]. For the sake of reliability and  –
safety of all airport operations, the need for adequate time and 
distance intervals between aircraft results from the possibility 
of a direct collision between them.
The speed at which aircraft move on the apron. In literature  –
there are various approaches to the problem of determining the 
taxiing speed. Generally speaking, speed depends on the type of 
aircraft and the shape of the taxiway (curve characteristics) on 
which the aircraft is moving.
Taxiing time restrictions for arriving and departing aircraft. For  –
landing operations, it is assumed that the taxiing time from the 

Fig. 1. Specific aircraft positions as seen from the aerodrome control tower
 Source: own elaboration based on the developed application for simulation and management of aircraft traf-

fic within the airport.
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runway to the parking area may be constant or variable within a 
certain range. In most cases it is assumed that the aircraft taxis 
to a vacant parking area and is expected to reach it in the short-
est possible time. In the case of take-off operations, the mat-
ter is more complex as it is necessary to consider the problem 
of selecting the optimal route and, in addition, the problem of 
take-off sequencing [30]. 

The achievable number of aircraft landings and take-offs under cer-
tain infrastructure conditions is essential information for planning the 
expansion of airports with new taxiways, runways and aircraft park-
ing areas. Accurate information can significantly affect financial plan-
ning for airport expansion. In addition, accurate information on taxiing 
times is essential for planning airport operations and thus ensuring their 
reliability and safety. Air traffic controllers instruct pilots on departures 
and approaches to parking areas and designated take-off routes [29]. 
Reliable and predictable taxiing time information takes some of the air 
traffic coordination burden off the air traffic controller.

The airport ground traffic problem involves planning aircraft move-
ments between airport facilities so as to eliminate traffic conflicts in 
the most technically, economically, environmentally, and safety ef-
ficient manner possible [14]. Thus, it affects the reliability of airport 
operations.

Each arriving aircraft is directed off the runway to a parking area 
on the apron, or service area. The departing aircraft must be diverted 
from its current parking position to the runway. Taxiways for depart-
ing aircraft moving from established gates and parking areas to run-
ways are predetermined and if there is a conflict with another aircraft, 
one aircraft must stop and wait. This situation results in delayed de-
partures and potential delays in reaching the destination or increased 
travel cost due to the need to increase speed [1].

2.2. Issues of aircraft taxiing on the apron in terms of con-
gestion	consequences	of	aircraft	traffic

The limited capacity of the airport associated with the organization 
of ground traffic results in long waiting times for aircraft to take off. 
The airport ground traffic problem involves planning aircraft move-
ments between airport facilities so as to eliminate traffic conflicts in 
the most technically, economically, environmentally, and safety ef-
ficient manner possible.

One of the primary indicators for evaluating the quality of work 
in aircraft handling systems is the punctuality of flight completion. 
The European Organization for the Safety ofAir Navigation points 
out that the main factors determining flight punctuality are delays due 
to airport operations, including limited runway access. Minimizing 
take-off times improves runway safety, ensures good utilization of its 
capacity and ensures reliability of all operations. Minimizing parking 
waiting times reduces passenger waiting times, which increases the 
quality of service.

Taxiing time is the time when the aircraft uses its engines while re-
maining on the ground. For departures, it is the time between leaving 
the parking position and take-off; for arrivals, it is the time between 
landing and reaching the parking position. This includes any waiting 
time, as well as queuing time, not just time in motion.  The primary 
objective of the research work in this area is to minimize average 
departure and arrival delay times and average taxi waiting times and 
the associated safety and environmental impact criteria. Minimization 
of taxiing time implies reduction of pollutant emissions. The taxiing 
issue may be broken down into the following elements [2]:

decisions concerning the aircraft movement path on the apron,  –
to and from the parking position (if not already taken),
allocation of gates and aircraft parking areas, –
landing (and take-off) sequence decisions where ground routes  –
are already established.

Decision support is most often carried out by developing optimi-
zation and simulation models. The importance of the ground traffic 

optimization problem is highlighted in [4]. Most of the proposed ap-
proaches to solving taxiway determination problems are based on 
simplified decision-making models based on basic ground traffic in-
formation [7].  

Most of the available research work is devoted to the analysis of 
runway access planning using heuristic techniques: genetic and ant 
colony algorithms [28], or cellular automata [36].

An issue related to taxiing is congestion and its impact on the ef-
ficiency of airport operations. This paper [29] presents a model of 
aircraft taxiing on the apron and two strategies for solving it: varying 
aircraft departure and arrival times and varying departure times only, 
which greatly facilitates the use of the model. 

In airport processes, the flight controller managing aircraft traf-
fic has access to information on all aircraft and their location in the 
airspace. In this respect, ground air traffic control is similar to the 
systems used in Automated Guided Vehicles (AGVs) [10], which are 
computer controlled. 

The problem of aircraft taxiing is widely described in publications 
[39]. These publications offer some detailed solutions, but do not 
present a coherent model or methodology for studying and making 
decisions about the processes of taxiing and handling aircraft at air-
ports and their impact on the efficiency of airport operations.

The literature review has highlighted that it is reasonable to de-
velop new tools to support decision-making in the implementation of 
airport operations to eliminate conflict situations while minimizing 
the duration of airport operations [15], which consequently affects the 
efficiency of all operations.

3. Model of airport process implementation

3.1. Take-off and landing model parameters
The data necessary for the development of a mathematical model 

for scheduling aircraft take-offs and landings, taking into account the 
separation times between successive aircraft, the possibility of land-
ing on different runways/landing fields, and the costs of penalties for 
landing outside the time set are presented below in Table 1.

3.2. Quantities sought
The decision variables sought in the model relate to the values of 

aircraft landing times, landing sequence and runways/landing fields. 
Therefore, the aircraft landing sequence in the model was written in 
the form of a binary variable (taking the values 1 and 0). On the other 

Table 1. Decision-making model parameters

Parameter Description

I the set of flight/aircraft numbers, where i, j are elements 
of the set

SL the set of runways/landing fields, where sl, sl’ are ele-
ments of the set

Ai
the earliest possible time for landing by 

i-th flight/aircraft

Bi
the latest possible time for landing by 

i-th flight/plane

MLi planned time of landing by the i-th flight/aircraft

kAi
unit amount of penalty for landing the aircraft before its 

scheduled time of arrival

kBi
the unit amount of the penalty for landing the aircraft 

after its scheduled time of arrival

TSij
separation time between the landing of aircraft no. i and 

aircraft no.  j

tsij
separation time between landing of aircraft no. i and 

aircraft no. j on different runways/landing fields
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hand, the aircraft landing times were recorded in the form of variables 
taking values from the set of positive real numbers. The defined deci-
sion variables are shown in Tab. 2. 

3.3. Criterion function and constraints
The criterion function has the interpretation of minimizing penal-

ties associated with landing the aircraft before or after the scheduled 
landing time:

 ( ) ( )( )
1

mini i i i i i
i

kA ML lm kB lm ML
=

− + − →∑  (1)

The constraints imposed on the values of the decision variables are 
as follows:

Each landing must be made within the time interval determined  –
by the earliest and latest landing times:

 i i ii I A lm B∀ ∈ ≤ ≤  (2)

 ( )i i ij i ilm A g B A= + −  (3)

Constraint of the sequence in which aircraft land: –

 , 1ij jii j I j i f f∀ ∈ ∧ > + =  (4)

 , ij jii j I g g∀ ∈ =  (5)

Constraint of the separation time between successive landing  –
aircraft:

 ( ), 1-j i ij ij ij ij iji j I lm x TS g ts g M f∀ ∈ ≥ + + − ⋅  (6)

where: M – is a large number ensuring that this constraint is redundant 
when aircraft number j lands before aircraft number i.

Each aircraft is assigned to only one runway/landing field: –

 
1

1sl
i

sl
i I u

=
∀ ∈ =∑  (7)

 , 1sl sl
ij i ji j I sl SL g u u∀ ∈ ∀ ∈ ≥ + −  (8)

4. Application of genetic algorithm in the organization 
of aircraft traffic on the apron

4.1. General assumptions 
The simulation tool developed in this paper to evaluate the ef-

ficiency of airport processes is based on the genetic algorithm. The 

task of the algorithm is to determine the transit routes of aircraft 
when they take off and land, taking into account the sequence of 
their take-offs and landings. These routes will generate apron occu-
pancy times and thus determine the amount of penalties associated 
with aircraft landing before or after the scheduled landing or take-
off time. In addition, the landing times for individual aircraft at the 
airport are determined based on the apron occupancy times.    

The principle of the genetic algorithm can be presented in the fol-
lowing steps:
Step 1. Input data introduction: average transit time between point 

elements of the apron structure, times for additional aircraft 
handling, estimated landing and take-off times for aircraft, 
delays in aircraft landings and take-offs, take-off and arrival 
separations, etc. 

Step 2. Generating an initial population. Chromosomes (matrix struc-
tures) set the routes of aircraft movement on the apron, both 
take-off and landing routes.  

Step 3. Setting the input parameters of the genetic algorithm i.e. 
number of iterations, population size, crossover and mutation 
parameters. The setting of the input parameters determines 
the correctness of the result generation. 

Step 4. Each individual in the population is assessed according to 
its adaptation function. In the case under consideration, the 
evaluation function is the time of airport apron occupancy by 
aircraft, measured from landing to take-off (taxiing time).

Step 5. Using the roulette method, individuals with the best adapta-
tion function are selected for the next generation (iteration of 
the algorithm).

Step 6. The process of the algorithm rapidly aiming at undesirable lo-
cal minima blocked by the introduction of a scaling process.

Step 7. The purpose of the crossover process is to trigger genetic 
changes in a population of individuals to introduce new chro-
mosomes into the population.

Step 8. The purpose of the mutation process is to trigger genetic 
changes in a population of individuals to introduce new chro-
mosomes into the population.

Step 9. The repair algorithm is triggered in the case of an erroneous 
structure generated after the crossover and mutation process.

Step 10. Generating a final population about the interpretation of air  
 craft routing. 

Steps 3-9 of the algorithm are repeated a specified number of itera-
tions until a stop condition is obtained. The stop condition is a certain 
number of iterations. The matrix structure determines the routes of 
the aircraft movement on the apron. The matrix structure of the chro-
mosome was randomly generated according to developed algorithms. 
The matrix structure has an interpretation of the decision variables 
developed in the mathematical model. The initial population consists 
of a certain number of matrix structures determined at the beginning 
of the algorithm. 

The algorithm for selecting chromosomes for crossover takes 
into account the whole process of selecting chromosomes for 
crossover, in the case of chromosome oddity it randomly selects 
the chromosome to pair, randomly pairs the two chromosomes, 
randomly selects the cutting points of the chromosomes and ac-
tivates the crossover algorithm adequate to the proposed matrix 
structure. The crossover algorithm is supported by an individual 
repair algorithm. The mutation algorithm draws the chromosome 
for the mutation process and swaps the values of randomly selected 
genes. The crossover and mutation algorithms occur with a certain 
probability defined as input data. The end result of the genetic al-
gorithm is a generated population that determines a comprehensive 
set of aircraft movement routes on the apron. The parameters of the 
genetic algorithm i.e. crossover and mutation probabilities, number 
of iterations and population size were chosen experimentally. The 
process of verifying the genetic algorithm was carried out on the 
basis of comparison of the genetic algorithm solutions with those 

Table 2. The variables sought in the decision model

Variable Description

fij
fij =1 if the i-th aircraft lands before the j-th aircraft; oth-

erwise it takes the value 0;

gij
gij=1 if the i-th aircraft lands on the same runway/landing 

field as the aircraft no. j; otherwise it takes the value 0

ui
sl ui

sl =1 if the i-th aircraft lands on sl-th runway/landing 
field; otherwise it takes the value 0

lmi landing time of the i-th aircraft 
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obtained by means of a random algorithm. In every comparison 
test conducted, the genetic algorithm generated solutions that were 
better than the random algorithm, which proves that the genetic 
algorithm works correctly.

4.2. Development of chromosome structure
The chromosome structure was presented as a matrix defining the 

transit routes of individual landing aircraft, i.e. from the touchdown 
point through intermediate points to the parking points, and taking-off 
aircraft, i.e. from the parking points through intermediate points to 
the touchdown points. Assuming that the point elements of the airport 
apron structure for the purpose of implementing the genetic algorithm 
are presented as a network of cells interconnected by mutual relation-
ships (Fig. 2), the chromosome structure processed by the genetic al-
gorithm can be presented as a matrix structure (red cells – touchdown 
points, blue cells – parking points (gates), green cells – runway entry 
points, the remaining cells – intermediate points). The number of cells 
in the presented structures depends on the accuracy of the mapping of 
the airport apron points.

Fig. 2. Apron structure: a) arrival routes, b) take-off routes 

An example of a chromosome structure describing the organiza-
tion of aircraft traffic on the apron is shown in Figure 3, where three 
aircraft arrivals in a selected time interval are considered. Only one 
take-off route was completed in the same interval. 

The matrix structure of the chromosome processed by the genetic 
algorithm consists of the following substructures: the arrival route and 

the take-off route. The number of substructures of the arrival route 
depends on the number of arriving aircraft in the analysed time inter-
val, whereas the number of substructures of the take-off route – on the 
number of take-offs in a given time interval. Within each chromosome 
substructure, potential touchdown points (red cells), potential han-
dling points, and intermediate points of the aircraft transit route from 
the touchdown points to the handling points and in the opposite direc-
tion were distinguished. The routing windows provide information on 
the landing sequence of each aircraft. For the example analysed in 
Fig. 3, the take-off route 1 starts after the arrival route 3. The task of 
the algorithm is to determine the optimal combination of connections 
between point elements of the airport apron and the sequence of take-
offs and landings of aircraft.  

4.3. Development of the crossover and mutation processes
The crossover process begins with a random selection of two chro-

mosomes. In order to carry out the crossover process it is required to 
determine the crossover probability. The crossover probability is de-
termined at the beginning of the algorithm. With the chromosomes to 
be crossed, they are randomly combined into pairs. If an odd number 
of chromosomes is drawn, a randomly selected chromosome from the 
population must be added to complete the set to be crossed. 

The crossover process involves drawing a substructure in which 
the process will be implemented, and then drawing two points that cut 

that substructure. Between these points, the values of the sub-
structures are exchanged for each chromosome pair. A graphic 
interpretation of the crossover process is shown in Figure 4. 

A graphic interpretation of the mutation process is shown in 
Figure 5. In order to carry out the mutation process, it is required 
to determine the mutation probability. The gene to be mutated is 
selected randomly (Fig. 5a) and then its value is swapped (Fig. 
5b).  

5. Simulator of aircraft traffic on the apron
An IT tool mapping the various simulation scenarios was de-

veloped for the purpose of conducting studies on aircraft traffic 
on the apron and minimizing disruptions at the airport. The proposed 
simulation tool is based on the functional modules shown in Fig. 6. 
This software was written using the C# programming language.  

The simulation type selection module allows for the selection of 
one of three approaches to solving the problem of aircraft routing on 
the apron, including: taxiway simulation with transit time verification, 
taxiway simulation on real data, simulation based on a pseudorandom 
number generator. The first simplest type of simulation is the taxiway 
simulation with transit time verification. This simulation generates 
random results and verifies the correctness of the subsequent two sim-
ulations by comparing these results with the actual results and those 
generated by the genetic algorithm. Taxiway simulation on real data 
reflects the current status of routes and apron occupancy times. A sim-
ulation based on a pseudorandom number generator determines the 

Fig. 3. Chromosome structure in the organization of aircraft traffic on the apron 

Fig. 4. Crossing process: a, b) chromosomes to be crossed c, d) chromosomes 
after crossing

Fig. 5. Mutation process a) structure before mutation b) structure after muta-
tion
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initial population (initial aircraft transit routes) for the genetic algo-
rithm. This simulation is determined based on optimization processes 
so it is an effective tool for assessing the quality of airport processes.

The data feed module is used to enter various types of data such as 
service time of a given carrier and types of aircraft operated at a given 
airport. This data may also include the number of runways (RWY) or 
apron parking areas.    

The scheduled flight table is an element that shows the arrival and 
departure times of aircraft from a given airport based on the data en-
tered. This module is a kind of a schedule of the simulation set, thanks 
to which it is certain that given operations are planned and introduced 
correctly with simulation assumptions created on the basis of real data 
or random number generator.

Fig. 6. Functional modules of the simulator

Fig. 7. Graphic representation of the simulation visualization module
Source: printout of the simulation using the simulation tool (own elaboration)
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Table 3. Aircraft taxiing times on the ways

Measurement 
No.

Aircraft 
type

Taxiway mark-
ing

Taxiing time 
(min)

Measurement 
No.

Aircraft 
type

Taxiway mark-
ing

Taxiing 
time

(min)

1 ATR72 SOMZA32 2.06 37 ATR72 DAW76 1.56

2 ATR72 SOMZA32 1.59 38 ATR72 DAW76 1.35

3 ATR72 SOMZA32 1.35 39 ATR72 DAW76 1.29

4 B737 SA51 5 40 ER145 DA33 2.54

5 B737 SA51 4.58 41 ER145 DA33 2.35

6 B737 SA51 4.21 42 ER145 DA33 2.59

7 MD87 SOM24 2.55 43 AVRO DA36P 3

8 MD87 SOM24 2 44 AVRO DA36P 2.59

9 MD87 SOM24 2.22 45 AVRO DA36P 3.19

10 MD82 SOM70 2.26 46 B737 DAZM12 3.38

11 MD82 SOM70 2.15 47 B737 DAZM12 3.29

12 MD82 SOM70 2.18 48 B737 DAZM12 3.41

13 JS32 SAW87 4.13 49 B767 DAZ10L 2.28

14 JS32 SAW87 4.25 50 B767 DAZ10L 2.25

15 JS32 SAW87 4.33 51 B767 DAZ10L 3

16 A320 SOM11 8 52 ER190 DAZM32 2.3

17 A320 SOM11 8.36 53 ER190 DAZM32 2.1

18 A320 SOM11 9.05 54 ER190 DAZM32 2.45

19 A321 SOMZ10 2.38 55 ATR72 DAZM31 7

20 A321 SOMZ10 2.24 56 ATR72 DAZM31 6.54

21 A321 SOMZ10 2.17 57 ATR72 DAZM31 6

22 CRJ SOM35 1.15 58 FOCKER DAZM35 3.15

23 CRJ SOM35 1.21 59 FOCKER DAZM35 3.28

24 CRJ SOM35 1.36 60 FOCKER DAZM35 3.18

25 ER180 SOM14P 2.21 61 CRJ DA34 3.1

26 ER180 SOM14P 2.47 62 CRJ DA34 3.12

27 ER180 SOM14P 2.14 63 CRJ DA34 3.06

28 A319 SOM13L 2.45 64 ER170 DAZM21 4.3

29 A319 SOM13L 2.15 65 ER170 DAZM21 4.28

30 A319 SOM13L 3 66 ER170 DAZM21 4.56

31 A319 SOM19 3.56 67 B737 DAE48 6.29

32 A319 SOM19 3.48 68 B737 DAE48 6.45

33 A319 SOM19 3.23 69 B737 DAE48 6.18

34 B737 SOMZU5 5.42 70 ER145 DA33 2.54

35 B737 SOMZU5 5.3 71 ER145 DA33 2.59

36 B737 SOMZU5 6.01 72 ER145 DA33 2.38
Source: own stud y

The visualization module depicts the complete airport environ-
ment, including: depiction of aircraft (Fig. 7a), configuration of run-
ways and taxiways (Fig. 7b), airport apron (Fig. 7c), natural terrain 
surrounding the airport, man-made objects or runway conditions. 

The result analysis module verifies the correctness of the simula-
tion based on the genetic algorithm. In case of an erroneous verifica-
tion, the algorithm is calibrated by changing the initial settings of the 
algorithm parameters. Additionally, the performance analysis module 
evaluates the efficiency of a given airport in terms of existing airport 
infrastructure.

6. Practical example of using a simulation tool to evalu-
ate the efficiency of traffic management processes 
on the apron

6.1. Simulation assumptions
To analyse and evaluate the organization of aircraft traffic on the 

apron, simulation studies were conducted on real data obtained from 
the operation of a real airport. The simulation assumed that different 
“S” and “D” taxiways would be used, and assumed that aircraft have 
different technical parameters (e.g., ground speed, acceleration time, 
braking time, taxiing time, and handling time). 
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The purpose of conducting the simulation is to compare the ac-
tual aircraft taxiing times with the taxiing times in the simulation en-
vironment using the optimization algorithm proposed in this paper. 
Tab. 3 shows actual aircraft taxiing times at the airport selected for 
the study.

6.2. Comparison of results
Aircraft movement studies using the simulation tool provided a 

percentage representation of the differences between actual taxiing 
times and times generated by the simulation process. The time gains 
when applying the simulation method in several cases reach or exceed 
20%, which proves the high efficiency of the tool used and the cor-

rect verification of the optimization algorithm. The results of the per-
centage summary are presented sequentially in Tab. 4 for the taxiway 
starting from the “S” fast exit road (sierra) and Tab. 5 for the taxiway 
starting from the “D” fast exit road (delta).  

7. Conclusions
The movement of aircraft on the apron must be based on well-

considered decisions, taking into account many aspects of scheduling 
and finding the best route, in order to reduce overall travel times and 
to match the take-off and landing windows of individual aircraft to 
minimise the risk of potential collisions. 

Table 4. Taxiing times for aircraft on the “S” fast exit roads

Type of
Aircraft Taxiway Taxiing time [min]

Taxiing time ac-
cording to simula-

tion [min]
Difference 

ATR72 SOMZA32 2.06 1.35 -34%

ATR72 SOMZA32 1.59 1.35 -15%

ATR72 SOMZA32 1.35 1.35 0%

B737 SA51 5 4.15 -17%

B737 SA51 4.58 4.15 -9%

B737 SA51 4.21 4.15 -1%

MD87 SOM24 2.55 2.1 -18%

MD87 SOM24 2 2.1 5%

MD87 SOM24 2.22 2.1 -5%

MD82 SOM70 2.26 2.1 -7%

MD82 SOM70 2.15 2.1 -2%

MD82 SOM70 2.18 2.1 -4%

JS32 SAW87 4.13 4.2 2%

JS32 SAW87 4.25 4.2 -1%

JS32 SAW87 4.33 4.2 -3%

A320 SOM11 8 7.3 -9%

A320 SOM11 8.36 7.3 -13%

A320 SOM11 9.05 7.3 -19%

A321 SOMZ10 2.38 2.15 -10%

A321 SOMZ10 2.24 2.15 -4%

A321 SOMZ10 2.17 2.15 -1%

CRJ SOM35 1.15 1.1 -4%

CRJ SOM35 1.21 1.1 -9%

CRJ SOM35 1.36 1.1 -19%

ER180 SOM14P 2.21 2.12 -4%

ER180 SOM14P 2.47 2.12 -14%

ER180 SOM14P 2.14 2.12 -1%

A319 SOM13L 2.45 2.2 -10%

A319 SOM13L 2.15 2.2 2%

A319 SOM13L 3 2.2 -27%

A319 SOM19 3.56 3.12 -12%

A319 SOM19 3.48 3.12 -10%

A319 SOM19 3.23 3.12 -3%

B737 SOMZU5 5.42 5.29 -2%

B737 SOMZU5 5.3 5.29 0%

B737 SOMZU5 6.01 5.29 -12%
Source: own report based on data from the airport
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The research presented in this paper has confirmed the efficiency 
of a simulation tool based on a genetic algorithm used to evaluate 
airport processes. 

The proposed simulation tool allows the analysis and evaluation of 
airport processes in the context of, among others: increasing airport 
capacity, planning the positioning of aircraft on the apron, extending 
taxiways, selecting the number of runways, optimizing aircraft taxi-
ways on the apron, determining the order of take-offs and landings, 

Table 5. Taxiing times for aircraft on “D” fast exit roads

Type
Aircraft Taxiway Taxiing time [min]

Taxiing time ac-
cording to simula-

tion [min]
Difference 

ATR72 DAW76 1.56 1.2 -23%

ATR72 DAW76 1.35 1.2 -11%

ATR72 DAW76 1.29 1.2 -7%

ER145 DA33 2.54 2.1 -17%

ER145 DA33 2.35 2.1 -11%

ER145 DA33 2.59 2.1 -19%

AVRO DA36P 3 3 0%

AVRO DA36P 2.59 3 16%

AVRO DA36P 3.19 3 -6%

B737 DAZM12 3.38 3.15 -7%

B737 DAZM12 3.29 3.15 -4%

B737 DAZM12 3.41 3.15 -8%

B767 DAZ10L 2.28 2.12 -7%

B767 DAZ10L 2.25 2.12 -6%

B767 DAZ10L 3 2.12 -29%

ER190 DAZM32 2.3 2.11 -8%

ER190 DAZM32 2.1 2.11 0%

ER190 DAZM32 2.45 2.11 -14%

ATR72 DAZM31 7 - -100%

ATR72 DAZM31 6.54 - -100%

ATR72 DAZM31 6 - -100%

FOCKER DAZM35 3.15 3.18 1%

FOCKER DAZM35 3.28 3.18 -3%

FOCKER DAZM35 3.18 3.18 0%

CRJ DA34 3.1 2.59 -16%

CRJ DA34 3.12 2.59 -17%

CRJ DA34 3.06 2.59 -15%

ER170 DAZM21 4.3 4.11 -4%

ER170 DAZM21 4.28 4.11 -4%

ER170 DAZM21 4.56 4.11 -10%

B737 DAE48 6.29 6 -5%

B737 DAE48 6.45 6 -7%

B737 DAE48 6.18 6 -3%

ER145 DA33 2.54 2.3 -9%

ER145 DA33 2.59 2.3 -11%

ER145 DA33 2.38 2.3 -3%
Source: own report based on data from the airport
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Abstract
Reliability has been widely used as a potential indicator of the performance assessment for 
several real-life networks. Focus on a multistate transportation network in tourism (MTN), 
this study evaluates the reliability of the MTN as a basis for investigating the influence of 
transit time. Reliability is the probability to fulfill transportation demand under the given 
time threshold and budget limitation and evaluated at various levels of transit times. An 
algorithm, which employs the boundary points and recursive sum of disjoint products tech-
nique, is proposed to evaluate the MTN reliability. According to the obtained results, this 
paper analyzes the influence of transit times on MTN reliability. Particularly, this paper 
discusses and provides some suggestions about the appropriate transit time to maintain reli-
ability. Decision-makers in the tourism industry also can predetermine the significant drops 
of reliability to improve the relevant transit times. Besides, the proposed investigation is 
indicated and proved through an illustrative example and a practical case.
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1. Introduction
A transportation network, which combines various modes of trans-

port such as sea, air, road, and rail, becomes more popular and is 
applied in many systems [1, 8, 11, 14, 20, 23, 28, 34]. Toward en-
vironmental and economic sustainability, decision-makers in logis-
tics management often consider trains, trucks, and barges to design 
their multimodal transportation networks [14, 34]. As a crucial part, 
a transportation network contributes to thriving travel agents who 
business the tourism industry [2, 3, 30]. Besides, maintaining service 
quality stable and reliable is vital from the management perspective 
in most service industries. Thus, a reliable transportation network can 
efficiently complete operational functions and smoothly provide cus-
tomers high-quality tourism services. It raises a need to evaluate the 
performance of transportation networks in tourism. In recent decades, 
reliability, which is the ability to complete requested functions/ tasks 
under given constraints in a predetermined period, is an appropriate 
and widely used performance indicator [7]. In terms of connectivity 

performance, reliability has been defined as the probability that the 
source can link with the sink [10, 31]. Concerning the terms “flow” 
and “capacity”, the ability to fulfill a required demand is considered 
as reliability [6, 9, 11, 25]. For instance, reliability has been studied 
as the probability that a logistic network can deliver a given volume 
of goods to a specific destination [11]. Considering on-time perform-
ance, Nguyen and Lin [25] measured reliability as the ability of an air 
transport network to successfully carry a given number of passengers 
to the final destinations within a specific time threshold. To address 
the reliability evaluation, various methods including cross-entropy 
[24], state enumeration [21], percolation theory [16, 19], and minimal 
cut-sets and path-sets [25, 26, 31, 32] have been proposed.

Furthermore, many studies consider time and budget, which are 
two of the key influencing factors in customer satisfaction and trans-
portation choices [8, 15, 17, 18, 22, 27], when investigating the re-
liability of transportation networks. Survey the transport behavior 
during the COVID-19 pandemic, Das et al., indicated a significant 
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impact of some factors including monthly income and travel time on 
the transport switch of the participants [8]. Besides, the flights oper-
ated by low-cost carriers at Incheon international airport (Korea) re-
ported a double increase during the year 2012 to 2015, which differs 
from a 10% growth of full-service carriers [12]. In the same report, 
the passenger market share of low-cost carriers increased from 5.7% 
in 2012 to 15.9% in 2015. This boom of low-cost carriers infers an 
attractiveness of price to customers [5, 13]. In developing countries, 
people with low income tend to have a higher frequency of using 
public transports [1]. This issue may be explained by the budget gap 
between the two groups. Regarding transportation time, the choice 
of customers may be affected by both the time to change routes if 
necessary and the total transportation time. For example, if the first 
choice for customers to arrive at the destination is taking a bus in one 
and a quarter-hour to the nearest airport thirty minutes before their 
one-hour flight. Another choice is riding a public bike in forty to the 
metro station in their area, walking around fifteen minutes to enter the 
metro line, then taking the two-hour metro to the destination. Clearly, 
the first choice takes ten minutes less time than the second one, but 
its transit time from bus to flight is a half-hour while that of the sec-
ond choice is only fifteen minutes. Thus, customers may choose the 
second choice if they have enough time and do not want to check-in 
at the airport; otherwise, the first choice is a priority. Simply speak-
ing, not only the total transportation time but also transit times (i.e., 
the required time to transfer between two routes in the tourism trip) 
are considered by customers. Since the transit time is the necessary 
time to take the next route, the transit time in the first choice is thirty 
minutes to walk from the bus station to the boarding gate of the flight, 
check-in, and customs check. In the second choice, the transit time in-
fers the time that is around fifteen minutes for entering the metro line 
from the bicycle parking. Obviously, shortening the transit time can 
reduce the total transportation time and let customers enjoy journeys 
with multiple transport modes. However, not many studies appraise 
the effect on the transportation networks’ reliability of the transit time. 
Therefore, this study targets to fill this academic gap.

The purpose of this study is to provide a new reliability-based ap-
proach to investigate the influence of transit time. Normally, a trans-
portation network in tourism is a combination of air, sea, and road 
networks [23]. Like the studies in the literature [11, 20, 28], the trans-
portation network in tourism is a typical flow-network that contains 
vertices (i.e., stations, airports, seaports) and directed edges (routes). 
Each route connecting a pair of stations is served by a particular ve-
hicle and its capacity is the number of available seats. In general, 
the capacity is given and depends on the vehicle’s size and design. 
However, some seats may be booked or reserved by others such as 
individual tourists and travel agents/ tours operators. That is, the ca-
pacity (available seats) of edges is multistate. Regarded as multistate 
capacity, a transportation network in tourism can be formulated as 
a multistate flow-network [32, 33, 35]. “A multistate transportation 
network (MTN)” is referred to as a transportation network in tour-
ism herein. The MTN’s reliability is calculated as the probability 
to meet transportation demand within a specific time threshold and 
budget limitation under different required transit times. To address 
the research problem, an algorithm, which employs the concept of 
boundary points, is proposed for evaluating reliability and analyzing 
the influence of transit times accordingly. Simultaneously, this study 
applies the recursive sum of disjoint product (RSDP) technique [4, 
33] to compute reliability as the probability of the MTN’s states de-
marcated by the boundary points. As a basis, the obtained reliability 
contributes to indicating the performance of the MTN and investigat-
ing the effect of transit time. In addition, appropriate transit times are 
provided towards a more reliable performance of the MTN.

2. MTN model
In this section, the constructed model of a multistate transportation 

network (MTN) is introduced first. An MTN is characterized by V – 
set of vertices (stations), E – set of directed edges (routes) ej for j = 1, 
2, …, m, G – set of transport costs gj, and M – set of transport modes. 
Besides, the maximal capacity vector C = (c1, c2, …, cm) bounds all 
states (capacity vectors, Y) of the MTN. Thus, the maximal capacity 
cj of each edge limits its current capacity yj and flow f(ej). In short, 
the MTN is denoted as N = (V, E, G, M, C). Each directed edge ej in 
E is scheduled to move from its departure station dj at tdj (departure 
time) to its arrival station aj at taj (arrival time). Note that dj and aj 
belong to V. Besides, each edge uses a particular transport mode (mj 
∈ M) with a specific transport cost (gj ∈ G). The remaining notations 
are listed below.

s, t source and sink, ∈ V

f(s, t) flow from s to t

T time threshold

B budget limitation

A transportation demand

w transit time between the same modes

w* transit time between different modes

W (w, w*): transit time vector

W ≤ Wi ith level of transit times

Pk minimal path feasible under T and B (MTBP)

P set of all MTBPs

Uk
(u, u*): maximal transit time vector that guarantees 
the validity of Pk

Pi set of all feasible Pk if W ≤ Wi

f(Pk) flow through the minimal path Pk ∈ Pi

F (f(Pk)| Pk ∈ Pi): flow vector feasible under T and B 
with W ≤ Wi

Fi set of all flow vectors meeting A under T and B with 
W ≤ Wi

Y (y1, y2, …, ym): capacity vector 

Xi set of lower boundary point (LBP) candidates

Li set of lower boundary points of Xi

, ,
i
B A TR

reliability that N can meet transportation demand A 
under time threshold T and budget limitation B tran-
sit times W ≤ Wi

Furthermore, the following are all assumptions made in this study.

The conservation law of flows is followed.(i) 

The capacity of all routes is independent statistically.(ii) 

Transit times between the same and different transport modes (iii) 
are considered.

All routes are on time.(iv) 

3. Assess the MTN reliability
According to the research problem, it is not efficient to calculate 

the reliability of all transit times W = (w, w*), where w and w* are the 
required time for transferring to the next route with the same trans-
port mode and different transport mode, respectively. In this study, 
we consider different levels of transit times, W ≤ Wi, and accordingly 
assess the MTN’s reliability ( , ,

i
B A TR ). Note that all transit times (W ≤ 

Wi) have the same influence on reliability, and reliability is the prob-
ability to satisfy transportation demand A under the time threshold T 
and budget limitation B. In other words, , ,

i
B A TR  is the probability that 
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the MTN can transport at least A passengers within T hours and the 
total transport cost does not exceed B with the required transit time 
W ≤ Wi. Let Y be a capacity vector meeting A under T and B with W 
≤ Wi and store it in ∆. Any capacity vectors satisfying the following 
condition belong to ∆.

Condition 1. Under time threshold T and budget limitation B with the 
required transit time W ≤ Wi, there are at least A passengers transported.  
The MTN’s reliability is the probability of all Ys in ∆, 

, , Pr{ { | }}i
B A T

Y
R Y Y C

∈∆
= ≤



. However, employing the concept of all 

upper and lower boundary points to calculate is more efficient than 
enumerating to determine the set ∆. In fact, both lower and upper 
boundary points are in ∆ such that none in ∆ is less than lower bound-
ary points (LBP) and greater than upper boundary points (UBP). That 
means any Y in ∆ is between at least one LBP and one UBP. Note that 
the maximal capacity vector C is the only UBP of the MTN and the 
LBPs (X) must meet not only Condition 1 but also Condition 2.

Condition 2. There exists no Y ∈ ∆ that Y ≤ X.
After determining all LBPs and storing them in a set Li, the follow-

ing formula is used to compute the reliability:

 , , Pr{ { | }}
i

i
B A T

X
R Y X Y C

∈

= ≤ ≤
L
  (1)

3.1. Minimal paths feasible under time threshold and tran-
sit times

To partly fulfill Condition 1, we first determine all minimal paths 
feasible under T and B (MTBPs). Namely, a MTBP is a sequence of 
edges that can link s to t within T hours and B with W ≤ Wi and do not 
visit any vertex twice. Assume that all MTBPs are stored in Pi. Each 
Pk in Pi must satisfy that:

If • ej is the first edge and eh is the last edge of Pk then
The edge  – ej departs from the source (dj = s). 
The edge  – eh arrives at the sink (ah = t).
The transportation time on  – Pk does not exceed the time thresh-
old (tah – tdj ≤ T).

Only edge • ej arrives at the departure station of eh (aj = dh) with W 
= (w, w*) satisfying the following can connect to eh.

If the transport mode of two edges is the same ( – mj = mh) then 
tdh ≥ taj + w.
Otherwise,  – tdh ≥ taj + w*.

The total transport cost on • Pk does not exceed the limitation budg-
et ( )

j k
j

e P
g B

∈
≤∑ .

Let f(Pk) be a flow through the minimal path Pk. Based on the con-
servation law and the MTN’s capacity, the following constraints must 
be satisfied:

 
( ) ( )

( )
j k

j k
e P

j j

f e f P

f e c
∈

=


 ≤

∑
, for j = 1, 2, …, m. (2)

Consequently, a flow vector F = (f(Pk)| Pk ∈ Pi) meeting the time 
threshold T and budget limitation B with transit times W ≤ Wi is feasi-
ble under capacity Y if: 

 ( )
j k

k j j
e P

f P y c
∈

≤ ≤∑ , for j = 1, 2, …, m. (3)

Like constraint (2), ( , ) ( )
k

i
k

P
f s t f P

∈

= ∑
P

. The remaining of Condi-

tion 1 becomes:

 f(s, t) ≥ A where ( , ) ( )
k

i
k

P
f s t f P

∈

= ∑
P

. (4)

Hence, any capacity vector (X) is said to belong to ∆ if its feasible 
flows (F) meet constraint (5).

 ( ) ,
i

k

k
P

f P A
∈

≥∑
P

 for j = 1, 2, …, m. (5)

3.2. Lower boundary points and reliability evaluation
From all capacity vectors (Y) above, Condition 2 is tested to obtain 

lower boundary points (X). Let Fi be a set of all flow vectors fulfilling 
the following constraint:

 ( )
k

i
k

P
f P A

∈

=∑
P

 (6)

Any capacity vector X = (x1, x2, …, xm) satisfying constraint (6) and 
the following constraint belongs to ∆. They are less than or equal to 
other capacity vectors Y ∈∆  that ( )

j k
k j j

e P
f P y c

∈
≤ ≤∑  for at least 

one j or ( )
k

i
k

P
f P A

∈

>∑
P

:

 ( )
j k

k j
e P

f P x
∈

=∑ , for j = 1, 2, …, (7)

However, it is not sufficient for them to meet condition 2 because 
they may less than or equal to others. Hence, they are called lower 
boundary point candidates herein. Remark 1 indicates the features of 
an LBP candidate.

Remark 1. X is an LBP candidate if at least one F that satisfies 
constraints (6) and (7).

Let Xi store all LBP candidates. To gain exact LBPs in Li, compare 
and remove the duplicates and the components that are greater than 
others from Xi. By applying the RSDP method [4, 35], the MTN’s 
reliability can be easily derived through the formula (8):

 , , Pr{ { | }}
i

i
B A T

X
R Y X Y C

∈

= ≤ ≤
L
  (8)

3.3.	 Main	algorithm	to	investigate	the	influence	of	transit	
time on the MTN reliability 

The provided process describes how to evaluate the MTN reliabil-
ity. However, to examine the effect of different transit times on reli-
ability, evaluating reliabilities under all possible transit times is not 
efficient enough. This study employs the reliability evaluation and 
proposes an assessment algorithm under the budget limitation and 
time threshold. Firstly, suppose that the transit times are not required, 
W = (0, 0), we determine all minimal paths (Pk) feasible under B and 
T then record them in a set P0. Simultaneously, obtain the maximal 
transit time Uk = (u, u*) – the validity condition of each Pk. Namely, 
each MTBP (Pk) is valid if W ≤ Uk; otherwise, it is broken. A search 
procedure shown in Fig. 1 is developed to determine all MTBPs in Pi 
and their corresponding maximal transit time vectors. 

Without considering the impact of transit times, the set P0 contains 
all possible minimal paths of the MTN. And some of MTBPs in P0 
may be broken at a specific W = (w, w*) that w > u and/ or w* > u*. 
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Thus, the set Pi of all MTBPs in the case of existing transits times, 
W ≤ Wi, is the sub-union of P0. The MTN’s reliability is impacted if 
and only if the W ≤ Wi can make at least one MTBP in P0 invalid (i.e., 
Pi ⊂ P0). This research combines the values u and u* of the same or 
different maximal transit times Uk to create Wi. Considering levels of 
transit time W ≤ Wi is sufficient for the study’s analysis. The follow-
ing algorithm is used to access the effect of transit time on reliability 
under the time threshold and budget limitation.

Main algorithm – Reliability assessment subject to the impact of 
transit times

Input: N = (V, E, G, M, C), T, B, and A
Step 1: Apply the search procedure shown in Fig. 1 
to generate P0 – set of all feasible minimal paths Pk 
under time threshold T and budget limitation B with-
out required transit times. At the same time, obtain the 
corresponding maximal transit times Uk.

Step 2: From all maximal transit times Uk, create 
all possible Wi. Some Wi = Uk and other Wi = (w, w*) 
where w = u and w* = u* of two different Uk. 

Step 3: Conduct the following steps for each level of 
transit times W ≤ Wi:

Step 3.1: Accept from P0 all minimal paths Pk such 
that Wi ≤ Uk and store them as Pi.

Step 3.2: Determine all flow vectors F = (f(Pk)| Pk 
∈ Pi) that satisfy the following constraints to store 
as Fi:

 ( ) ,
i

k

k
P

f P A
∈

=∑
P

for j = 1, 2,…, m.                 (9)

Step 3.3: Through the following equation, convert from each F 
in Fi to gain LBP candidates X and store in Xi:

 ( ),
j k

j k
e P

x f P
∈

= ∑ for j = 1, 2,…, m.             (11)

Step 3.4: Compare all candidates in Xi to remove the dupli-
cates and the components that are greater than others. Exact 
LBPs are obtained as a set Li.
Step 3.5: By utilizing the RSDP method, compute the MTN’s 
reliability as equations (12):

 , , Pr{ { | }}
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Step 4: List all reliabilities under different levels of transit time 
in order of Wi.

4. Numerical example 
This section introduces an MTN example that consists of four 

stations, eight routes, and three transport modes, shown in Fig. 
2. Then, we demonstrate how to analyze the impacts of transit 
times on the MTN’s reliability. The source is the first station, 
and the sink is the last station. The relevant data of eight routes 
in the MTN is shown in Table 1. After applying the main algo-
rithm, the MTN’s reliabilities to meet transportation demand A 
= 80 passengers under budget limitation B = 200 USD and time 
threshold T = 8 hours with different transit times are evaluated 
as follows:

Fig. 2. An MTN example

Fig. 1. Procedure to determine all MTBPs (Pk) and their maximal transit time vectors 
(Uk)

Table 1. The relevant data about all routes in the MTN

Route Departure - Arrival 
time 

Departure - Arrival 
station

Transport 
mode Transport 

Cost (USD)

(ei) (dj – aj) (tdj – taj) (gi) (gi)

1 8:00 – 9:00 1 – 2 1 45

2 7:45 – 11:40 1 – 2 1 25

3 10:00 – 11:30 3 – 2 3 50

4 8:15 – 9:30 1 – 3 1 50

5 8:15 – 12:05 1 – 3 1 25

6 9:45 – 11:15 2 – 3 2 45

7 12:00 – 15:30 2 – 4 2 100

8 12:30 – 16:00 3 – 4 3 110
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Input: N = (V, E, G, M, C), T = 8 hours, B = 200 USD, and A 
= 80 passengers.
Step 1: Apply the search procedure shown in Fig. 1 to gener-
ate P0. In total, it contains six MTBPs in and the corresponding 
maximal transit times Uv are presented as below. Note that the 
unit of Uk is minute and the symbol “_” means that all transit 
times are accepted.

P1 = {e1, e6, e8} U1 = (45, _)

P2 = {e1, e7} U2 = (180, _)

P3 = {e2, e7} U3 = (_, 20)

P4 = {e4, e3, e7} U4 = (30, _)

P5 = {e4, e8} U5 = (180, _)

P6 = {e5, e8} U6 = (_, 25)

Step 2: From all minimal transit times Uv, create and gain eight 
possibilities of Wi that are W1 = (30, 20), W2 = (30, 25), W3 = (45, 
20), W4 = (45, 25), W5 = (180, 20), and W6 = (180, 25). 

Step 3: Conduct the following steps for all levels of transit times 
from W ≤ W1 to W ≤ W6. For example, with the required transit 
time W ≤ (30, 25), the reliability is computed as follows.

Step 3.1: From P0, five minimal paths are accepted to get P2 = 
{P1, P2, P4, P5, P6} because their Uk ≥ W2.

Step 3.2: Obtain 154 flow vectors F = (f(P1), f(P2), f(P4), f(P5), 
f(P6)) that satisfy the following constraints and store them as 
F2:
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Since c1 = c4 = c5 = c7 = c8 = 50 and c3 = c6 = 40, constraint (14) 
can be shortened as follows:
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Step 3.3: Convert from each F in F2 through the 
following equation to gain candidates X and store 
in X2:
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Step 3.4: Compare 154 candidates stored in X2 and remove the 
duplicates and the components that are greater than others. There 
are 67 exact LBPs obtained and recorded in a set L2.

Step 3.5: Through the RSDP method, compute the MTN’s reli-
ability as equations (17):
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= 0.927964. (17)

Step 4: All reliabilities under different levels of transit time from 
W ≤ W1 to W ≤ W6 are listed in the following figure.

Fig. 3. The MTN’s reliabilities at A = 80 passengers under 
the impact of transit times

As the results shown in Fig. 3, the MTN’s reliability varies from 
0.886554 to 0.933458. In which, it reaches a peak with transit times 
W ≤ {W1| W1 = (30, 20)} and drops a bottom with W ≤ {W6| W6 = (180, 
25)}. The reliability is higher than 0.8 at all cases of transit times and 
higher than 0.9 with four of six levels of transit times, which means 
that the ability to transport 80 passengers within 8 hours and 200 USD 
of the MTN is quite high. That means this MTN is quite reliable under 
the given time and budget limitations. When increasing the required 
transit time between the same modes, the reliability changes slightly 
with the required transit time between different transport modes w* 
≤ 20; but it changes significantly with w* ≤ 25. At the same time, the 

Table 2. The capacity probability of all routes in the MTN

Route (ei) Probability Pr (yj passengers)

41 – 50 31 – 40 21 – 30 11 – 20 1 – 10 0

1 0.81 0.05 0.1 0.02 0.01 0.01

2 0.80 0.1 0.05 0.02 0.01 0.02

3 0.93 0.05 0.01 0.005 0.005

4 0.81 0.05 0.06 0.05 0.02 0.01

5 0.80 0.08 0.05 0.05 0.01 0.01

6 0.93 0.04 0.005 0.015 0.01

7 0.86 0.01 0.1 0.01 0.01 0.01

8 0.90 0.05 0.02 0.01 0.01 0.01
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reliability also drops much when increasing the required transit time 
between different transport modes from w* ≤ 20 to w* ≤ 25, except 
from the case w ≤ 30. Namely, the reliability decreases only 0.5% 
from 0.933458. In short, it is recommended to put much effort into 
shortening transit time between the different transport modes. How-
ever, if the acceptable reliability is no lower than 0.9, the MTN will 
not qualify only at two levels of transit times: W ≤ (45, 25) and W ≤ 
(180, 25). A suggestion in this situation for the travel agent is control-
ling the transit time between the different transport modes at w ≤ 20 
(ie. up to 5% of the time threshold).

5. Practical case
This sub-section introduces a practical MTN in Fig. 4, constructed 

by 35 routes and 8 stations. The reliability to transport from the source 
– Changhua (CHU) in Taiwan to the sink – Haiphong (HPH) in Viet-
nam within 200 USD and 8 hours will be analyzed with various transit 

times at a range of demands. The relevant information and results are 
shown in Tables 3, 4, and 5.

Fig. 4. A practical MTN 

Table 3. The relevant data of the practical MTN

Route Dep. Arr. Dep. Arr. Mode Cost 

time time station station  (USD)

(ei) (tdi) (tai) (di) (ai)  (mi) (gi)

1 10:00 11:15 CHU TPE HSR 10
2 7:15 12:00 CHU TPE Rail 5
3 11:55 14:15 TPE HAN Air 95
4 19:45 22:00 TPE HAN Air 100
5 16:00 18:05 HAN HPH Bus 10
6 17:30 19:35 HAN HPH Bus 10
7 19:00 21:05 HAN HPH Bus 10
8 20:30 22:35 HAN HPH Bus 10
9 22:00 0:05 HAN HPH Bus 10

10 23:30 1:35 HAN HPH Bus 10
11 14:30 17:15 TPE DAD Air 115
12 17:45 18:40 DAD HPH Air 45
13 11:45 12:40 DAD HPH Air 45
14 9:10 12:00 TPE SGN Air 110
15 12:10 15:00 TPE SGN Air 110
16 15:10 18:00 TPE SGN Air 110
17 13:20 14:25 SGN HPH Air 55
18 15:20 15:30 SGN HPH Air 55
19 18:20 19:25 SGN HPH Air 55
20 9:05 9:20 CHU RMQ Rail 2
21 11:05 10:20 CHU RMQ Rail 2
22 12:05 11:20 CHU RMQ Rail 2
23 13:05 12:20 CHU RMQ Rail 2
24 14:05 13:20 CHU RMQ Rail 2
25 15:05 14:20 CHU RMQ Rail 2
26 16:05 15:20 CHU RMQ Rail 2
27 17:05 16:20 CHU RMQ Rail 2
28 15:00 18:15 RMQ HAN Air 115
29 13:15 16:45 RMQ DAD Air 120
30 10:00 11:15 CHU KHH HSR 10
31 7:15 12:00 CHU KHH Rail 5
32 9:10 12:00 KHH SGN Air 110
33 12:10 15:00 KHH SGN Air 110
34 15:10 18:00 KHH SGN Air 110
35 18:10 21:00 KHH SGN Air 110
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1. Introduction
The failures of technical objects that occur in the process of their 

use have various causes. In particular, failures caused by random fac-
tors and degradation processes of parts of machinery [8] (e.g. wear, 
fatigue, corrosion, erosion, ageing) can be distinguished, cf. [10, 11]. 
These processes start with the beginning of an object’s use, and for a 
long time proceed with no significant impact on the object’s proper 
operation (that is performing the required functions). The object, 
however, stops working properly when the impact of the degradation 
processes exceeds a certain threshold state (see [9]) resulting from 
structural conditions (excessive clearance between the interacting 
parts, inadequate cross-sectional area or a change of parts’ geomet-
ric dimensions, excessive surface roughness of interacting parts, too 
large proportion of corroded surface in the overall surface, etc.). In 
such cases in order to enable further correct functioning of the object 
it becomes indispensable to regenerate or replace its failed parts [20]. 

In planning the process of an object’s use and maintenance the im-
portant problem that should be analysed is (apart from the nature of the 
events leading to failure) the effects of failures. If the failure involves 
a threat or considerable losses (e.g. to human life and health, environ-

mental contamination, interruption in services provision, a secondary 
failure of other parts or subassemblies of a machine resulting from a 
primary failure of another part), the aim of developing an object’s use 
and maintenance strategy is to prevent failures of this type [23]. 

The negative effects of failures resulting from the degradation proc-
esses of parts of technical objects can be restricted in several ways: 
continuous verifying of the object’s technical state (monitoring and 
corrective maintenance actions if necessary) or preventive replace-
ment of parts (when they are still in the availability state) [13, 18]. 
The determination of the optimum time of preventive replacement can 
be assisted by relevant preventive maintenance models in which reli-
ability characteristics most frequently estimated on the basis of the 
data on objects’ failures history are used. Such models include block 
replacement strategy, age replacement strategy, etc. [28]. When the 
information on the technical condition (the extent of elements’ wear) 
can be obtained while the object is working a condition-based main-
tenance strategy can be employed, which is sometimes more effective 
[17, 27]. 

Technical means subject to intensive wear during their use [2, 3], 
whose replacement is most frequently caused by their reaching a cer-

The aim of the work was to develop a method of verification of the preventive renewal strat-
egies, which enables a simulation evaluation of the effects of the application of a specific 
schedule of inspections of parts that are important in the operation of complex renewable 
technical objects. Using it requires having an already established schedule of inspections, 
and the result of applying the method is determined by indicators that assess the usefulness 
of the strategy, even before implementation. 
The developed computational tool was used to evaluate the renewal strategy of the cur-
rent collector contact plates. Based on the real operational data, several renewal intervals 
were considered, determining the frequency of events involving the plate covering a specific 
mileage, from exceeding the wear control limit value to the next inspection (replacement). 
The proposed verification method is an important tool for testing and planning technical in-
spections for systems and elements with planned wear, and parts are periodically replaced. 
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tain limit value of a given dimension (which is detected in a sched-
uled inspection) include current collector contact plates used in rail 
vehicles. Their correct operation determines the proper interaction of 
the vehicle with the transport infrastructure and proper electric power 
supply of the vehicle itself, cf. [15]. This translates into operational 
safety and continuity of the provision of transport services, which de-
termines the economic results of carriers [25]. Problems of this kind 
are discussed in many studies [13]. 

In the present paper an original maintenance strategy verification 
method is proposed. It enables the simulation-based estimation of the 
effect of the adopted inspection strategy of parts most significant in 
the rail vehicle use (cf. [19]). It was assumed that in the framework 
of inspection procedures the current technical condition of tested cur-
rent collector contact plates is estimated and (each time) the decision 
is taken as to their replacement or further operation (until the next 
scheduled inspection). It was also assumed that the given contact 
plate, degrading during operation, should be replaced on exceeding 
a limit control value of its wear (cf. [4]). This value is selected with a 
certain allowance so that the contact plate that has exceeded it owing 
to wear continues to operate correctly (for some time). Consequently, 
the assumed wear control limit value is not identical with the wear 
extent at which the contact plate can no longer perform its function 
(fails).

The proposed method is a tool assisting the technical services who 
schedule the inspection periods, helping them select preventive main-
tenance strategies that should deliver better results of the actual use 
of objects. This method is, then, not a typical maintenance scheduling 
model – understood as a mathematical model serving merely to de-
termine the optimal periods of preventive replacement of objects. Its 
application requires a certain predefined inspection schedule, and its 
result is expressed with numerical indicators that provide an evalua-
tion of the usability of the proposed strategy before it is implemented. 
These results can be referred to the evaluation of other (modified) 
strategies in order to select one that yields the most favourable effects 
or better fits in with maintenance project of the given object. 

In practice also other strategies of current collectors use, facilitating 
their maintenance, but requiring the contact plates and current collec-
tors of a certain design are employed. In one of these state-of-the-art 
technical solutions are applied which enable automatic taking the cur-
rent collector out of operation on its exceeding the wear control limit 
specified in the design. In such emergency situation the safe solution 
is to drop the current collector to avoid its contact with the overhead 
line, which prevents damage to the interacting elements. This is done 
by a group of solutions called ADD (Automatic Drop Devices) by one 
of the leading manufacturers of current collectors – STEMMANN-
TECHNIK [30]. The most popular ones are based on two technolo-
gies, mechanical and pneumatic. In the former one, when the current 
collector shoe rotation exceeds the allowable values (e.g. due to a 
collision with a broken element of the contact wire) the mechanism 
loosening the tension spring that holds the current collector in the top 
position is activated – the collector is dropped automatically [31]. The 
other solution is based on the pneumatic system in which the pres-
sure that allows the current collector to be raised to the top position 
is maintained. When the pressure is inadequate, the current collector 
cannot be raised. A breach in the pneumatic circuit means pressure 
drop – in the matter of seconds the collector returns to the lower posi-
tion. This can happen in the case of allowable limit wear of the graph-
ite contact plate being reached – when the relevant friction device is 
damaged, the contact wire gets into contact with the compressed-air 
conduit in the current collector shoe, which becomes worn. When the 
pneumatic system is breached, the pressure is reduced and the current 
collector is dropped even before damage. 

Owing to the application of the solutions described above the con-
tact plate can be in operation to the value of the wear allowable limit, 
due to which it can be fully used over the entire durability and the mo-
ment of its failure is recorded accurately. The employment of this fact 
for inspections intervals optimisation will help make the maintenance 

processes management more effective, which will result in both the 
financial result and the reduction of the number of failures as well as 
cases of using current collectors whose contact plates exceed the wear 
control limit values. 

Although there are technical solutions that enable frequent, auto-
mated evaluation of the technical state of current collector contact 
plates [13] or taking out of operation the current collectors whose 
contact plates have been worn completely with no secondary, costly 
damage, it is still useful to predict and estimate the vehicle mileage to 
the moment of the collector contact plate reaching the limit value of 
wear, cf. [6]. Firstly, it enables planning in advance maintenance pro-
cedures connected with contact plates replacement, following which 
requires the provision of an adequate number of staff, service stands, 
tools and spare parts (new contact plates), cf. [14, 16]. Maintenance 
works planning, in turn, provides a basis of estimating the operating 
costs [1]. Secondly, when the presented design solutions of current 
collectors are not used in vehicles, it is indispensable to schedule their 
inspections adequately to the needs resulting from the durability of 
their parts so as to prevent their reaching the wear control limit while 
the vehicle is being used. Thirdly, if the solutions based on taking out 
of operation the current collectors at the moment their contact plates 
have been worn completely were employed and if the only mainte-
nance strategy was their post-failure replacement, the reliability of 
vehicles would be affected negatively as they would be used regularly 
with a (at least one) unavailable current collector. 

In view thereof, the design solutions based on degraded current 
collectors being automatically taken out of operation seem a valuable 
protection against serious consequences of uncontrolled wear limit 
being reached by a contact plate. The technical solutions of automated 
measurements of contact plates may definitely facilitate the schedul-
ing of parts replacement over a short time horizon. However, the op-
eration process course and costs planning over a longer time horizon 
requires the application of the tools of the theory of reliability and the 
renewal theory [24, 26]. 

2. Characteristics of the proposed calculation model 
To enable the evaluation of the expected results of the application 

of the inspections schedule and renewal strategy a simulation calcula-
tion model has been developed. 

Figure 1 presents a division of object’s operation time horizon (TH) 
into intervals. It is based on periodical inspections performed to de-
tect whether the wear control limit has been exceeded, according to a 
defined schedule.

Fig. 1. Object’s operation time horizon division into periodical inspections-
based intervals

After exceeding the wear control limit the object continues to oper-
ate until the next periodical inspection during which it is detected. The 
time to inspection, shown in Figure 2, between exceeding the wear 
control limit and the next inspection, is particularly important because 
of inspection scheduling and determination of the wear control limit. 

To estimate the time to inspection the simulation method, whose 
general description can be found in [21], was used. The graph of tran-
sitions for an object’s reliability-operation states is shown in Figure 3, 
where the absorption state denotes the object’s unavailability state. 

An algorithm of a single iteration is shown in Figure 4, where ob-
ject’s operation time horizon in simulation was marked as TH. 

The proposed algorithm for obtaining simulation data has been em-
ployed for the evaluation of several renewal strategies of a selected 
technical object. 
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3. Characteristics of the tested object and data on its 
failures

The study was performed for rail vehicle current collector con-
tact plates, in which case the technical condition inspections are a 
basis for the decision of the object’s replacement or continuation in 
the operation state until the next scheduled inspection. Contact plates 
belong to very important elements that guarantee the continuity of 
current flow between the overhead contact line and the vehicle [5, 
6]. These elements, small in dimension, must meet the requirement 
of good electrical conductivity in a variety of atmospheric conditions 
while preserving low friction coefficient as the current is drawn with 
a vehicle in both standstill and in motion, not infrequently at a very 
high speeds [3, 12, 22]. 

Overhead contact lines are made of copper which has very good 
electrical properties and adequate resistance to both mechanical and 
climate induced failures. When contact plates are also made of copper 
high strength current can be drawn (over 1200 [A]), which is needed 
for the start-up of heavy trains. The possibility of high currents trans-
fer is counterbalanced by the unfavourable properties of the contact 
joint of two elements made of the same materials – the static friction 
coefficient of such a joint is 1,5. It is reduced by the contamination 
of surfaces with oxides, but this phenomenon improves resistance. 
Owing to the above, the contact plates made of copper are subject to 
relatively high abrasive wear despite the fact that their design envis-

ages the application of lubricants between the contact plates mounted 
on the shoe [32].

In Poland contact plates made of graphite are much more common-
ly used. The material contains 85% carbon and the other components 
are copper and other additives. Carbon plates have very good fric-
tion coefficient which does not exceed 0,15 for the connection with 
the copper wire of the overhead contact line. The chemical composi-
tion of a given contact plate is modified according to its application 
– conduction of very high currents [2]. Moreover, carbon plates are a 
cheaper solution (mainly due to the limited percentage of expensive 
copper) [32].

In 2011 the Polish Railways (PKP Polskie Linie Kolejowe S.A.) 
introduced obligatory use of graphite contact plates on the lines under 
their control [25]. 

Regardless of the contact plate used, the nature of the current col-
lector’s operation inherently involves abrasive wear of the contact 
elements [7, 12, 29]. Exceeding the wear control limit of the contact 
plate may result in serious consequences – from degraded quality of 
current conduction, failure of the whole current collector, to breaking 
the overhead contact line. Therefore, very strict monitoring of this 
element is extremely important, because its timely replacement guar-
antees trouble-free operation and no need for costly and long-lasting 
failure.

The current collector can be monitored visually at any time. Then, 
any point damage that may lead to contact plate failure can be easily 
detected. The method of current collector’s failures evaluation in the 
scope of employed devices and inspection intervals depends on the in-
dividual practice of the operator. It takes place regularly (e.g. every  
3 000 [km]) and on its basis decision is taken as to the contact plate’s 
replacement or its continued operation until the next inspection. 

To estimate the probability distribution of the operation time-to-
replacement of all of the selected current collector contact plates the 
data gathered in the operation and maintenance of several dozen elec-
tric locomotives series EU07, in which AKP 4E type current collec-
tors are employed – shown in Figure 5, were used. 

On the basis of these data tests of the goodness of fit of the opera-
tion time to wear-induced replacement (expressed in the mileage in 
kilometers) with theoretical probability distributions (Weibull, nor-
mal, exponential, gamma) were performed. For this purpose Statistica 
13.1 software was used. After Kolmogorov-Smirnov test and χ2 test, 
the best fit was obtained for three-parameter Weibull distribution. The 
tests were performed at the significance level of α = 0,05. The results 
are given in Table 1 and Figure 6.

The probability density function and values of the estimated pa-
rameters of three-parameter Weibull distribution were adopted as for-
mula (1): 
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where:
- β = 17,007‧103 [km] – parameter of scale,
- α = 1,361 – parameter of shape,
- θ = 10‧103 [km] – parameter of shift. 

In the data set under consideration, no object was replaced be-
cause of the dominant forms of wear of the contact plates, which re-
sulted in their thickness decreasing before reaching the mileage of  
10000 [km]. 

The inspections schedule and replacements strategy which in their 
basic version (applied for the sets of contact plates analysed in the 
presented study) lies in a periodic inspection of plates’ technical con-
dition and the decision taken on this basis as to their replacement, 
together with the adopted probability distribution of plates’ time-to-
replacement were used for the presentation of the calculation model 
proposed in the paper. 

Fig. 2. Time to next inspection in the interval in which wear control limit has 
been exceeded

Fig. 3. Transitions of an object’s states

Fig. 4. Algorithm of simulation single iteration
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4. An example of an analysis of preventive renewal 
strategy 

In the framework of verification of the developed calculation 
model simulation experiments were performed for the statistically 
determined probability distribution. This distribution reflects the 
operation-to-replacement mileage of a contact plate, which replace-
ment was done based on the plate attaining or exceeding the adopted 
contact plate wear control limit. This means that this distribution was 
obtained only on the basis of the values of mileage which are a mul-
tiple of inspections interval. In the presented analysis, however, it is 
used as a model on the basis of which the potential moments of ex-
ceeding the wear control limit are identified by means of simulation. 
In the simulation experiment, as in real-life practice, the maintenance 
(replacement) as a response to this fact, can be undertaken only during 
the inspection, that is at one of the moments established in advance 
resulting from the inspection scheduling. However, in the experiment 
the potential mileage during which the wear control limit has been 

exceeded is simulated accurately, which allows check-
ing the delay-time between contact plate wear control 
limit being exceeded and the plate replacement. It is ad-
ditionally assumed that in simulation the replacement of 
the contact plate whose thickness is close to the wear 
control limit, which sometimes occurs in the real opera-
tion, is never performed. It should be emphasized that 
in the simulation experiment the replacement can take 
place only after this value has been exceeded, in the 

forthcoming inspection. For this reason, all the contact plates used in 
simulation work longer (if only for a short while) than until the wear 
control limit is exceeded. 

The calculations were performed for five different (3, 6, 12, 18 and 
36 [thousand km]) fixed values of mileage after which the current col-
lector scheduled inspection is done. In each experiment the moment of 
attaining the contact plate wear control limit defined with an accuracy 
of 100 [km], the simulation time horizon is 72 [thousand km], and 
the number of iterations 10 thousand. As assumed before, the contact 
plate is replaced only after its wear control limit has been exceeded, 
during the nearest inspection (so there are no typical preventive re-
placements). Another assumption was that this limit had been selected 
with a certain allowance so that its being exceeded does not involve 
any immediate interference in the object’s proper functioning. The re-
sult of each iteration is the mileage that the given contact plate covers 
from the moment of attaining the limit wear to the nearest scheduled 
inspection (which equals its replacement). 

Figures 7 – 11 illustrate the frequency of events of a contact plate 
covering a certain mileage, from exceeding the wear control limit un-
til the forthcoming inspection (replacement). In each case these events 
are analyzed for subsequent mileage ranges of 1 [thousand km] pre-
ceding the inspection. 

The obtained bar charts illustrate the dependence of the expected 
distribution of mileage (the usage time) after exceeding the wear con-
trol limit on the fixed inspections (interval) schedule. It is far from 
obvious when only the initial probability distribution is analysed. As 
can be seen, subsequent cases of exceeding the wear control limit add 
up to others within individual intervals preceding inspection. 

The analysis indicates how long the given part of objects continues 
to be used after the wear control limit has been exceeded. It is use-
ful in the evaluation of the analysed inspection schedule and renewal 
strategies because the proportion of objects that will be used over an 
excessive period of time can be identified. And it should be remem-
bered that the wear control limit considered in this study is nominal in 
nature and is not equivalent to the wear extent which prevents prop-
er functioning of an object. A settled wear control limit is therefore 
merely a supporting value, indispensable in taking the decision of an 
object’s replacement. Since the level at which an object no longer op-

Table 1. Results of test on data goodness of fit with Weibull shifted distribution 

Distribution
Characteristic 
value in test

K-S

Test K-S
p-value

Characteristic 
value in test

χ2

Test χ2

p-value

three-parameter 
Weibull 0,0825 0,980 0,483 0,785

Fig. 5. AKP 4E: a)  current collector, b) an example of a contact plate

Fig. 6. Histogram of data and density function of three-parameter Weibull 
distribution

b)a)
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erates correctly must be prevented, it should be replaced beforehand. 
The replacement should be performed at the mentioned settled wear 
control limit. A natural consequence of such an approach is that the 
selected wear control limit should guarantee the safe use of the object 
until the next inspection during which this value being exceeded will 
be identified. On the basis of the analysis of the presented results it 
can be stated what proportion of objects is used for a period longer 
than allowed by the selected allowance resulting from the adopted 
nominal allowable wear threshold, which is an estimate of a risk of 
the occurrence of a serious failure. An analysis of the presented results 
therefore indicates for how long (over what mileage) what number of 
contact plates is used after the adopted wear control limit has been 
exceeded, which constitutes an evaluation of the threat of the occur-
rence of a severe failure. 

In the case of the use of the contact plates of AKP 4E current col-
lectors in EU07 electrical locomotives, discussed in the present study, 
the probability of attaining the contact plate wear allowable limit can 
be established for each of the proposed inspection schedules. 

According to the operational specifications, contact plate worn 
thickness g – from the nominal value to the wear control limit after 
which it is replaced as scheduled – is 12 [mm]. Between the wear 
control limit value and the wear allowable limit a thickness margin 
gz of 5 [mm] is adopted. In accordance with the adopted probability 
distribution of contact plate wear, for the operational data specifying 
the contact plate wear control limit, the wear by the value of g occurs 
after the mileage of at least 10000 [km]. On this basis the contact plate 
maximum wear zmax per a mileage kilometer can be estimated:

 z g
max = = = ⋅ 





−

θ
12

10000
1 2 10 3. mm

km
 (2)

On this basis an approximate estimation can be made (assuming 
the same wear mean rate) of the shortest mileage xmin after which 
the thickness margin gz is used up if the wear control limit is attained 
between inspections:

 x g
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z
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= =

⋅
= [ ]−

5
1 2 10

41673.
�km  (3)

This value enables the identification of the potential numerical pro-
portion of working contact plates after reaching the wear allowable 
limit, that is, after the margin gz is completely used up before the next 
inspection. This value can be specified for each inspection schedule 
analyzed in the presented simulations. The contact plates estimate 
numerical proportion indicates the probability that the contact plate 
will reach the wear allowable limit before the next inspection, which 
means that the current collector’s proper operation will be disturbed. 
The probabilities in the proposed strategies are given in Table 2. 

As can be noticed, the schedule with inspections every 3000 [km] 
mileage nearly ensures that the contact plate will not reach the wear 

Fig. 7. Histogram of mileage from exceeding wear control limit to forthcoming 
inspection (replacement) for inspection intervals of 3 [thousand km] 

Fig. 9. Histogram of mileage from exceeding wear control limit to forthcoming 
inspection (replacement) for inspection intervals of 12 [thousand km] 

Fig. 10. Histogram of mileage from exceeding wear control limit to forthcoming 
inspection (replacement) for inspection intervals of 18 [thousand km]

Fig. 11. Histogram of mileage from exceeding wear control limit to forthcoming 
inspection (replacement) for inspection intervals of 36 [thousand km] 

Fig. 8. Histogram of mileage from exceeding wear control limit to forthcoming 
inspection (replacement) for inspection intervals of 6 [thousand km] 
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allowable limit between inspections, even in this pessimistic version 
which allows the fastest possible consumption of the gz. This inspec-
tion schedule is employed by the operator of the contact plates ana-
lyzed in the study. In the other schedules the probability of contact 
plate reaching wear allowable limit is greater. Based on the results 
obtained, however, it can be stated that the zero probability of contact 
plate reaching wear allowable limit between inspections could also 
be attained by lengthening the period between inspections up to 4000 
[km], that is, by about 30% compared with the schedule employed 
at present. 

If, however, the expected value E(T) of contact plate were after an 
adopted distribution was used as a basis, the analysis would be:

 E T( ) = +
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For such a case, the probabilities of contact plate reaching wear 
allowable limit before the next inspection in the discussed strategies 
are shown in Table 3. 

On the basis of the expected value of mileage xśr after which 
the contact plate thickness margin gz is used up, the schedule with 
inspections every 6000 [km], as the schedule with inspections every 
3000 [km], gives a zero value of probability of contact plate reach-
ing wear allowable limit between inspections. The results, however, 
should be interpreted remembering the fact that the margin gz may 
be used up at a mileage smaller than would result from the expected 
value. Such an approach introduces a broader range of uncertainty 
in decision taking and increases the risk that might not be acceptable 
to the operator. 

5. Conclusions
The proposed algorithm 

enables an evaluation of the 
expected effects of inspections 
schedule and renewal strategy 
of given objects, and the ana-
lytic method defines a procedure 
applicable for the comparison of 
the effects of various strategies 
in order to select the most fa-
vourable one to apply in practice 
(without direct consideration of 
the cost of inspections and the 

effects of failures). 
In the studied case, the analysis of the results leads to a conclusion 

that lengthening the intervals between inspections by 1000 [km] (in-
spection every 4000 [km]) is safe. Such lengthening the intervals be-
tween inspections is justified economically and, moreover, offers the 
probability of contact plate reaching wear allowable limit acceptable 
to the operator. It should, however, be remembered that the intensity 
of contact plates’ wear differs with the seasons of the year, which 
may be the subject of further, more detailed analyzes. The proposed 
method makes it possible to change the model used and conduct ana-
lyzes for various conditions and wear processes. 

The potential of the proposed model can be further developed to 
include a differentiation of object’s age-based inspection intervals, 
depending on the contact plate’s mileage. Higher inspection rate prior 
to the expected wear control limit being reached enables restricting 
the working time after this value has been exceeded thus providing a 
basis for the reduction of the reserve (surplus) of the material of the 
degraded parts. It is conducive to more effective use of contact plates 
in the aspect of their actual operational durability.

To ensure the operational safety of the discussed types of current 
collectors, the solution proposed in the present study can be used suc-
cessfully. And when the design allows, automation-based modern 
solutions of taking out of operation the collector with worn contact 
plate can be introduced additionally. The statistics-based forecasting 
models facilitate inspections scheduling and spare parts management, 
and the state-of-the-art diagnostic and design solutions help better use 
degrading parts thus protecting against failures resulting from, inter 
alia, the imperfections of forecasts. 

The proposed method is an important tool for testing and plan-
ning of inspection schedules for systems and elements which are 
subjected to expected operational wear, and parts are replaced in a 
cyclic formula. 

Table 2. Probability of contact plate reaching wear allowable limit in various inspection schedules determined with 
the use of the lowest mileage value till the margin gz is completely used up 

Mileage between inspections in schedule [km] 3000 6000 12000 18000 36000

Probability of contact plate reaching wear allowable limit 0 0,305 0,674 0,721 0,923

Table 3. Probability of contact plate reaching wear allowable limit in various inspection schedules determined with 
the use of the expected value of the mileage till the margin gz is completely used up 

Mileage between inspections in schedule [km] 3000 6000 12000 18000 36000

Probability of contact plate reaching wear allowable limit 0 0 0,120 0,378 0,743
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1. Introduction 
As one of the most important components in rotating machinery, 

rolling bearings play a vital role in the safe operation of mechanical 
equipment [5]. According to relevant statistics, 45% to 55% of the 
failure cases of rotating machinery are caused by the failure of rolling 
bearings [19]. Accurate RUL prediction technology can ensure both 
the safety of operator and equipment in good condition, and it is of a 
certain significance for the predictive maintenance.

The current methods used to predict RUL can be summarized into 
four categories [12]: physical model-based methods [11], statistical 
model-based methods [29], artificial intelligence-based methods [22], 
and hybrid methods [26]. The physical model-based methods describe 
the degradation process of machinery through the failure mechanism 
of mechanical equipment and mathematical model. Although this 
method can theoretically explain the degradation state of machin-
ery, as the complexity of the mechanical system becomes higher and 
higher, it is difficult to establish an ideal degradation model. These 
statistical model-based methods can achieve predictions under differ-
ent working conditions, but it is usually assumed that the degraded 
signal follows a parameterized process model, which may not be the 
case in reality [33]. The data-driven method gets rid of the shackles 
of traditional methods, and the degraded state of the bearing can be 

described based on the obtained bearing operating data. Therefore, the 
data-driven-based forecasting methods get wide attention. Recently, 
common models of data-driven methods gain very good effective-
ness, such as Artificial Neural Network (ANN) [1], Support Vector 
Machine (SVM) [20, 24], Extreme Learning Machine (ELM) [28], 
etc. But each of these models is a shallow neural network that is of 
bad extraction ability and it is unable to directly mine the degraded 
information from the original data.

As a branch of machine learning, in recent years, deep learning 
emerges for its powerful feature extraction ability. Great progress 
has been made in image recognition, target detection, medicine, and 
other fields [13, 22, 23]. At present, the commonly used deep learn-
ing models in the mechanical field include Long Short-Term Network 
(LSTM) [30], Convolution Neural Network (CNN) [32], Stacked De-
noise Autoencoding (SDA) [31], and Deep Belief Network (DBN) 
[21]. For instance, Wang et al [25] recurrent convolution layers were 
constructed to simulated the temporal correlation between different 
degradation states, and the variational inference was combined to 
measure the uncertainty of RUL prediction. It indicates that this neu-
ral network is obviously superior to other methods in terms of RUL 
prediction accuracy and convergence. Hinchi et al [9] use the convo-
lutional layer to extract the features from the original data, and the 

The accurate prediction of the remaining useful life (RUL) of rolling bearings is of im-
mense importance in ensuring the safe and smooth operation of machinery and equipment. 
Although the prediction accuracy has been improved by a predictive model based on deep 
learning, it is still limited in engineering because lots of models use single-scale features 
to predict and assume that the degradation data of each bearing has a consistent distribu-
tion. In this paper, A deep convolutional migration network based on spatial pyramid pool-
ing (SPP-CNNTL) is proposed to obtain higher prediction accuracy with self-extraction of 
multi-feature from the original vibrating signal. And to consider the differences of the data 
distribution in different failure types, transfer learning (TL) added with maximum mean dif-
ference (MMD) measurement function is used in the RUL prediction part. Finally, the data 
of IEEE PHM 2012 Challenge is used for verification, and the results show that the method 
in this paper has high prediction accuracy.
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degradation process is captured by the LSTM layer to predict RUL. 
Wang et al [27] Transform original one-dimensional signal into the 
grey-scale image and use 2D-CNN network for feature extraction. 
Then the double Gaussian model is used to fit and predict the degra-
dation curve. The results indicate that the method can predict the RUL 
of bearing, and this measurement has pretty good accuracy. Compared 
with the shallow neural network, the mentioned deep learning model 
has made some progress in the field of bearing RUL prediction., but 
two issues remain as follows:

Only the last layer feature is taken for the prediction of bearing 1. 
RUL in most of the literature. Because the last feature is the 
most abstract feature, which makes the generalization ability 
of the network model worse, thus, the forecasting results of 
bearing RUL under various failure types cannot be accurate 
enough.
The impact of inconsistent bearing data distribution on the 2. 
deep learning prediction model is not considered. Because 
the traditional deep learning model is suitable for the situation 
where the data distribution of the training set and the test set 
are consistent, however, even under the same working condi-
tions and the same type of bearings, each bearing will show 
inconsistent degradation trends during the full life test of the 
bearing, resulting in bearing data that does not meet the as-
sumptions of deep learning applications.

As a new learning paradigm in machine learning, transfer learning 
broadens the applicable conditions of deep learning. At present, it has 
been applied in the field of reliability. For example, Guo L et al [8] 
proposed a domain adaptive module to solve the difference between 
different bearing data distributions so as to realize bearing fault di-
agnosis across experimental platforms. Dong S et al [6] proposed a 
bearing degradation assessment model based on transfer learning and 
deep hierarchical feature extraction. Experiments show that the model 
can accurately identify the degraded stage of the bearing. Zhu J et al 

[33] applied the domain adaptive module proposed in Literature 23 to 
the field of bearing RUL prediction and successfully realized bearing 
RUL prediction under different working conditions. It can be seen 
that most applications of transfer learning in the mechanical field are 
dedicated to solving classification problems [6, 14], while regression 
problems have not been widely used [18]. However, transfer learning 
has great potential for simple prediction regression problems [15].

Therefore, in order to solve the above problems, a framework for 
RUL prediction of bearings based on SPP-CNNTL is proposed. First, 
the degradation stage of the bearing is divided by a binary classifi-
cation network. This method avoids human error caused by manual 
threshold division. Then, for the data in the degradation stage of the 
bearing, the frequency spectrum is extracted as input, and one-dimen-
sional CNN is used as the feature extraction network. The SPP layer 
is used as the last pooling layer of CNN to achieve convolutional fea-
tures observed from different directions. In addition, transfer learning 
based on the MMD function is introduced in the CNN model to solve 
the problem of low prediction accuracy caused by inconsistent bear-
ing data distribution of different fault types. Finally, the method in 
this paper is verified by the IEEE PHM 2012 data set, and the results 
show that the prediction accuracy of bearing RUL is better than other 
models.

The contributions of this article are summarized as follows:
The spatial pyramid pooling layer is used to realize multi-scale 1. 
feature extraction of input data, avoiding the shortcomings of 
insufficient bearing degradation information extracted.
Transfer learning is used to solve the problem of inconsistent 2. 
distribution of bearing degradation data and failure data, so as 
to realize the deep learning model to predict the RUL of differ-
ent failed bearings.
Propose an end-to-end prediction framework applicable to dif-3. 
ferent faulty bearings, and promote the development of predic-
tive maintenance technology for bearings.

The remainder of this paper is organized as follows: Section 2 de-
scribes the framework of the bearing remaining life prediction method 
proposed in this paper. The related theories of CNN and transfer learn-
ing networks are introduced, and the framework of the SPP-CNNTL 
neural network is proposed. In Section 3, the experimental analysis 
based on the full life data set of the bearing shows the effectiveness of 
the method. The comparison with other model methods highlights the 
superiority of this method. Finally, conclusions are given, and some 
future research directions are proposed in Section 4.

2. Proposed framework

2.1. Overall overview
In engineering applications, due to bearing processing and manu-

facturing errors, assembly errors, and material defects of the bearing 
itself, the entire degradation process of the bearing from the initial use 
to the final failure shows different trends. This leads to the problem 
of differences in the data distribution between the degradation data of 
each bearing. This violates the assumption that deep learning requires 
the training set and test set to have the same data distribution, so it 
reduces the RUL prediction accuracy. Therefore, this paper proposes 
a framework for predicting the remaining life of bearings based on 
a multi-scale convolutional transfer learning model. The flow of the 
framework is shown in Figure 1. It can be seen from Figure 1 that 
the method in this article is mainly divided into two parts: the first 
part is the degradation stage division. This part uses the normal stage 
data and the severe stage data of the bearing to construct a data set, 
trains the two-class neural network and realizes the degradation stage 
Automatic division. This method avoids the human error caused by 
the trouble of manually setting the fault threshold in the traditional 
method and makes the recognition effect more objective. When the 
bearing enters the degradation stage, the second part starts to predict 
the RUL of the bearing based on the SPP-CNNTL model. The model 
adds an SPP pool to solve the problem of the poor generalization abil-
ity of single-scale input. The domain adaptation technology in transfer 
learning is used to measure the difference between degraded data dis-
tributions in different directions and use the difference as a constraint 
condition of the prediction model so that the network model can learn 
the invariance between different failed bearing data.

2.2. Transfer learning
As a branch of machine learning, transfer learning can transfer 

learned knowledge in a different area, and its main idea is to find 
similarities between different datasets. Two basic concepts are mainly 
included in transfer learning, which are domain and task. The domain 
is the subject of learning, which is mainly composed of data and the 
probability distribution which can generate these data; Task is the 
goal of learning, which is mainly composed of tag and tag’s corre-
sponding function group. Thus, transfer learning can be expressed as 
follows: a labeled source domain { } 1, n

s i i iD x y ==  and an unlabeled 
target domain { } 1

n
t i iD x == . They have different data distribution, 

( ) ( )s s t tP X P X≠ . The goal of transfer learning is to use labeled data 

sD  to learn the knowledge of the target domain tD .
Domain adaptation is one of the research contents of transfer learn-

ing, which focuses on solving the problem of consistent feature space, 
consistent category space, and only inconsistent feature distribution. 
Domain adaptation mainly includes two strategies: One is to introduce 
the measurement function, minimizing its value to make the source 
domain and target domain obey the same distribution. Some measure-
ment functions, such as Maximum Mean Discrepancy (MMD), KL 
divergence and CORAL, are often used. The other is to draw on the 
experience of the strategy of Generative Adversarial Network (GAN) 
--- adding domain classification module [4, 33].

Domain adaptive technology is proposed to solve the problem of 
different failure types of bearing RUL prediction, because domain 
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adaptive technology can perform classification and prediction when 
the data distribution of the training set and the test set are similar. 
Questions in this article is described in transfer learning language as 
follows:

To get some labeled degenerative data and to be used as train-1. 
ing set, D P Xs s s= ( ){ }χ ,  and get some unlabeled degenera-
tive data as test set, D P Xt t t= ( ){ }χ , .
Assuming the feature space of the source of domain and the 2. 
target domain is the same, χ χs t= . But the marginal distribu-
tion of two domains is different, ( ) ( )s s t tP X P X≠ .

A classifier3.  : t tf x y→  is adopted to improve the accuracy of 
prediction by using the auxiliary data that are composed of la-
belled data- sD  and partial unlabeled data- tD .

2.3. CNN
CNN is a kind of feedforward neural network, which was first pro-

posed by LeCun in 1989 and used for image processing [10]. The 
CNN network mainly consists of convolution layers, pooling lay-
ers, and full connection layers. The convolutional layer reduces the 
parameter amount of the model by capturing the local regional con-
nection feature of input information and applying the weight sharing 
principle, and further reduces the amount of training data by combing 
the similar features through the pooling layer. In order to extract fea-
tures from the data, the CNN model usually alternately stacks convo-
lutional layers and pooling layers, and configures the output layer as 
a fully connected layer.

Convolutional layer1. 
The convolution layer consists of a set of convolution kernels, 

which are the core of feature extraction. The convolution kernel 

performs a convolution operation on the feature map output by the 
previous layer to achieve feature extraction of the local area. In ad-
dition, the convolutional layer also has the characteristics of weight 
distribution, which greatly reduces network parameters and avoids 
over-fitting. The specific convolutional layer operation is shown in 
the formula (1):

 x W x bc
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i c
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l

c
l

l

= +










=

−
−

∑σ
1

1
1

, *  (1)

where 1l
ix −  is the output of channel i of l-1 layer, ,

l
i cW  is the convo-

lution kernel for layer l, l
cb  is bias, * is convolution operation, l

cx  is 
the output of channel c of layer l. σ ⋅( )  is the activation function. In 
this paper, the ReLU function is used as the activation function of the 
CNN network because it has the ability to accelerate the convergence 
and alleviate the vanishing gradient problem. The calculation is as 
follows:

 ( ) ( )max 0,ReLU x x=  (2)

Pooling layer2. 
The main purpose of the pooling layer is to reduce the parameters 

of the neural network. It is usually added between two convolutional 
layers, and the input of the convolutional layer at a specific connec-
tion position is summarized in the form of non-linear sampling to 
improve the computational efficiency of the network and keep the 
feature translation unchanged. Common pooling layers include aver-

Fig. 1. Flow chart of the method proposed in this article
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age pooling, maximum pooling, etc. And maximum pooling is used in 
this paper partially. The equation (3) is as follows:

 p xc
l

c k c k
l= { }× +( )×max : 1  (3)

where k is the length of pooling, l
cp  is the output of channel c lay-

er1.
Spatial pyramid pooling3. 

In order to solve the problem of inconsistent input image size, a 
spatial pyramid pool for target detection task is first proposed. SPP 
can extract features of different dimensions from the feature map by 
using pool kernels of various sizes, and stitch them to obtain multi-
dimensional features. Therefore, this article adds SPP to the last layer 
of the CNN network model for multi-feature extraction to improve the 
generalization of the network.

Fully connected layer4. 
The purpose of the fully connected layer is to perform regression 

or prediction tasks on the extracted features. After executing the SPP-
CNN model in this article, the network will output multiple feature 
values and then pave them. The mapping between features and bear-
ing RUL uses fully connected layers. The calculation formula (4) be-
tween complete connections is as follows:

 h W v bl l l T l l= ( ) × +







−σ 1  (4)

where lσ  is the activation function of the layer l, 1lv −  is the output 
vector of layer l-1, lW  is the connection weight of the neurons in 
the l-th layer and the neurons in the l-1th layer, lb  is the bias, lh  is 
the output feature of the l-th hidden layer. The activation function of 
the output layer is the SoftMax function, and the other layers are the 
ReLU function.

2.4. SPP-CNNTL Learning model
The Figure 2 shows the framework of the SPP-CNNTL network 

model proposed in this paper. The network model mainly includes 
three parts: Multi-scale feature extraction module, regression predic-
tion module, domain adaptive module. Among them, multi-scale fea-
ture extraction mainly uses the SPP-CNN model for feature extrac-
tion. The features that can represent bearing degradation information 
are extracted layer by layer by convolution and pooling operations 
from the input source domain and target domain. The regression pre-
diction module is to predict the RUL of the bearing. The module uses 
the extracted multi-scale features as the judgment basis, and realizes 
the RUL prediction of the source domain samples through the fully 

connected layer. The domain adaptation module is based on the data 
distribution difference between the source domain and the target do-
main in the specified layer, and uses the MMD function value as a 
measure to constrain the RUL prediction part to minimize the differ-
ence between the data distribution. The specific network model struc-
ture is shown in the Table 1.

2.4.1. Domain adaptive model
Domain adaptive model is mainly to describe the difference among 

the data distribution of data set in some measures. Maximum mean 
difference is taken as the measurement function in this paper. This 
method measures the distance between two reproducing Hilbert space, 
which is a kernel learning method. The equation (5) is as follows:

 MMD h h
n

h
n

hs t
s

i

n
i
s

t
i

n
j
t

H

s t

,( ) = ( ) − ( )
= =
∑ ∑

1 1

1 1

2

φ φ  (5)

where sn  the number of samples from the source domain, tn  is the 
number of samples from the target domain, φ ⋅( )  is mapping which 
maps the original variable to the regenerative nuclear Hilbert space, 
⋅ H  is the regenerative nuclear Hilbert space.

2.4.2. Target of optimization
The loss function of the proposed method are two parts:

Root mean square error term of the minimized regression 1. 
task.

Fig. 2. SPP-CNNTL Network Model diagram

Table 1. SPP-CNNTL Network Model diagram

Layer Module Symbol Operation Parameter

1

Feature extraction

Input Input signal 1×2048

2 C1 Convolution 5×1×3

3 P1 Pooling 2

4 C2 Convolution 5×3×6

5 P2 Pooling 2

6 SPP Multi-Pooling /

7 Flatten / 126

8
Domain adaptive

FC1 Fully-connected 50

9 FC2 Fully-connected 10

10 RUL prediction FO Sigmoid /
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Minimized MMD term between the source domain and the 2. 
target domain.

Loss function 1: The accuracy of RUL prediction of bearing is im-
proved by minimizing differences in values. In other words, the main 
loss function is the difference between the predicted value and real 
labelled value. For regression tasks, the Mean Square Error (MSE) 
is the most commonly used as loss function. The equation is as fol-
lows:

 ( )2
1

ˆ1 m
r i i

i
Loss y y

m =
= −∑  (6)

where m is the size of batch of training set, iy  is the real label, ˆiy  is 
the label of prediction.

Loss function 2: The migration of the last two layers is selected 
after analysis: for the RUL prediction of bearing after the full connec-
tion layer, the difference among different domains is minimized after 
MMD is added into different layers. The equation is as follows:
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 1 2MMD MMD MMDLoss Loss Loss= +   (7)

where 1MMDLoss  is the value of the last layer, 2MMDLoss  is the in-
verted second layer, ( )k ⋅  is the kernel function, sm  is the number 
of source domain samples, tm  is the number of the target domain 
samples.

The final total loss function is as follows:

 r MMDLoss Loss Lossλ= +  (8)

where hyperparameter λ decide the effect of MMD differences on pre-
diction.

And set the parameter of feature extractor as θ f ,and set the param-
eter of regression prediction of bearing RUL as θr .The equation 8 can 
be rewritten as follows:

 Loss Loss Lossf r r f r MMD fθ θ θ θ λ θ, ,( ) = ( ) + ( )  (9)

Adam optimizer is used to minimize the loss function and to find the 
saddle point of the loss function. The equation is as follows:
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where η is learning rate.

3. Application of the proposed method

3.1. Introduction of data set
IEEE PHM 2012 Challenge [16] is adopted to verify the effective-

ness of the method proposed in this paper. Experiment platform of 
PRONSTIA is constructed as the Figure 3. The test-bed consists of 
two parts: part of experimental simulation and part of measurement. 
The power of the experimental simulation is output by a motor with 
a power of 250 W. And the load simulation is applied to the bearing 
to accelerate the degradation of the bearing by applying a radial force 
load. The measurement portion adopts an acceleration sensor whose 
sampling frequency is 25.6 kHz and the acquisition channel is two 
channels in the horizontal and vertical direction. A signal sample is 
collected every 10s, and the length of the collected time is 0.1 s.

The data set contains bearing work data under three different 
loads. Working-condition 1: under 1800 rpm and 4000 N; Working-
condition 2: 1650 rpm and 4200 N; Working-condition 3: 1500 rpm, 
5000 N. Total 17 data sets of bearing are acquired which are working 
to failure. In condition 1, there are 7 bearings numbered from 1-1 to 
1-7; In condition 2, there are 7 bearings numbered from 2-1 to 2-7; 
In condition 3, there 3 bearings numbered from 3-1 to 3-3. This paper 
selects the bearing in condition 1 for testing, and its partial degrada-
tion data is shown in Figure 4. Although the bearings are in the same 
working condition, they behave differently in degradation process. As 
pointed out in literature 3, under the working-condition 1, the bear-
ings, 1-1 1-3 1-4, belongs to the same type of progressive degradation 
failure; the bearings, 1-2 1-5 1-6 1-7, belongs to the same type of sud-
den burst degenerate failure.

Fig. 3. The experimental platform

Fig. 4. Bearing degradation data under working-condition 1, (a) bearing1-1; 
(b) bearing1-2.

3.2.	 Starting	point	identification	of	degradation	stage
The bearing 1-1 and 1-2 are selected as training set and the rest of 

them are used for testing. The full life diagram of raw signal is shown 
as Figure 5. The 500th-1000th collected data of bearing 1-1 and the 
320th-400th collected data of bearing 1-2 are used as the normal 
stage data; the 2400th-2700th collected data of bearing 1-1 and the 
831th-861th collected data are used as the data of severe fault stage. 
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Spectrum data is used as training data of binary classification neural 
network. Hardware of the experiment is a computer with i5-1035G1 
CPU @ 1.00 GHz 1.19 GHz, 16 GB memory and software are MAT-
LAB 2016a and PYTHON3.8.

After many attempts, the four-layer neural network is selected as 
the classifier, the number of the network nodes is 2048-10000-500-2 
and the activation function of the front three-layer is the RELU func-
tion, the last layer use SoftMax function as activation function to im-
plement the binary classification. The loss function is set as a cross-
entropy function, train the network 20 times and the batch size is 8. 
In order to avoid false alarms, three consecutive predictions into the 
degradation stage mean that the stage is into degradation. Figure 6 
shows some test bearing results. It can be seen from Figure 6 that the 
two-classification network can more accurately identify samples in 
the normal phase and samples in the degraded phase. Therefore, it can 
accurately determine the starting point of the degradation stage. The 
overall test results are shown in Table 2.

Fig. 5. The original vibration waveform of the bearing, (a) bearing1-1,  
(b) bearing1-2

Fig. 6. Stage identification effect diagram of bearings 1-3

3.3. Prediction of RUL

3.3.1. Evaluation index and sample label
In order to quantitatively evaluate the effectiveness of the predic-

tive RUL method proposed in this paper, this paper uses Root-Mean-
Square-Error (RMSE) and Mean-Absolute-Error (MAE) as evalua-
tion indicators. The calculation formula is shown in formula (11):
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where iy  is the actual value, iy
∧

 is the predicted value, and m is the 
number of samples.

Since the prediction model of RUL used in this paper is a super-
vised learning model, it is necessary to label the source domain sam-
ples. This article uses the remaining life percentage of the bearing as 
the label for these samples. This tag can control the amount of data 
used for network training not to be too large, and improve computa-
tional efficiency. (For example, assuming failure time of bearing is 
2500 s and time of degradation is 500 s, when the bearing running at 
1500 s, the label for that point is ( ( )

( )
1500 500

50%
2500 500

−
=

−
).

3.3.2. Hyperparameters of the network
In order to obtain the best model prediction effect, this section dis-

cusses the important hyperparameters and network structure of the 
network. Since the setting of the learning rate will affect the conver-
gence of the network model, which in turn affects the training effect 
of the model, the learning rate is an indicator that must be considered. 
Secondly, this paper uses the MMD function value as a scale function 
to measure the data of different failed bearings, and uses it as a part 
of the loss function, so it is of great significance to choose the MMD 
term trade-off coefficient. Therefore, this paper chooses the learning 
rate and the trade-off coefficient for experiments, and the selection 
range of hyperparameters is shown in Table 3.

When the fixed trade-off coefficient is 0.2, try to experiment with 
different learning rate values. The prediction results are shown in Ta-
ble 4. The values in Table 4 are the average values of multiple predic-
tion results of all training set bearings. It can be seen from Table 4 that 
when the learning rate is large, the effect of the model is the worst. 
The possible reason is that a higher learning rate will prevent the net-
work from converging to an optimal value. Because the gradient de-
scent step is too large, it can only make the model hover around the 
optimal value, resulting in lower prediction accuracy. As the learning 
rate decreases, the prediction accuracy continues to improve. How-
ever, too small a learning rate will reduce the convergence speed. Un-
der the same number of iterations, too small a learning rate may not 
achieve convergence. Therefore, considering the prediction accuracy 
and time-consuming considerations, this paper chooses the learning 
rate to be 0.001.

Table 5 shows the prediction effect of the compromise coefficient 
under different values. It can be seen from Table 5 that when the trade-
off coefficient is selected as 0.2, the performance of the network mod-
el is the best. If the trade-off coefficient is too small, the constraint in-

Table 2. Recognition of starting point during degradation phase

Bearing Failure time/s Failure point/s

1-1 2803 1517

1-2 871 821

1-3 2375 1332

1-4 1428 1090

1-5 2463 2444

1-6 2448 2100

1-7 2259 2241

Table 3. Value range of Hyper-parameters

Hyperparameters Range

Learning rate 0.1, 0.01, 0.005, 0.001, 0.0005, 0.0001

Trade-off value 0, 0.1, 0.2, 0.3, 0.5, 0.7, 10, 50, 100
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formation between different data sets will be reduced, and the model 
will not be able to learn domain-invariant features. When the trade-off 
coefficient is greater than 0.5, because the weight of the MMD term 
is too large, the loss of the prediction model cannot be trained well. In 
summary, the compromise factor of 0.2 in this article is reasonable.

In order to determine the influence of the architecture of the net-
work model, this paper adds the MMD function to the last layer of 
the network model (MMD1), adds the MMD function to the penulti-
mate layer (MMD2), and adds MMD function to the last two layers 
(MMD12). The experimental results are shown in Table 6. Since the 
network model extracts the shallow information of the network model 
in the first few layers, the features extracted by the network model 
are more abstract in the subsequent layers. It can be seen from Table 
6 that the effect of the single-layer MMD function is not as good as 
that of the double-layer MMD function. This is mainly because the 
single-layer MMD function is not enough to represent the difference 
in data distribution between the training set and the test. Therefore, it 
is reasonable to choose MMD12 as the network model architecture 
of this article.

3.3.3. Prediction of RUL
The PHM data set is used as the analysis data to verify the effec-

tiveness and feasibility of the method in this paper. The original data 
of bearing 1-1 is used as the training set, and the lifetime percentage 
is used as the sample label, which belongs to the source domain. Un-
marked data for bearings 1-5 and 1-7 are used as auxiliary data. The 
test sets are Bearing 1-2, 1-3, 1-4, 1-6.

Through theoretical analysis and experimental verification, the 
hyperparameters of the experimental model are set that Optimizer 
is Adam, Learning rate=0.001, Trade-off=0.2, Epoch=400, Batch-

size=32. The network adopts two convolution and pooling layers for 
feature exaction, the kernel size is 5 in convolution and 2 in max pool-
ing. In the transfer part of the full connection layer, the RBF function 
is selected as the kernel function for calculation of MMD distance and 
the width of the kernel is 1000. When the MMD measurement loss 
function accounts for 0.20 total loss, the network reaches the optimal 
effect. The batch size is 32, and half the data comes from the source 
domain, the rest is from the target domain. The epoch is set as 400. 
The loss function of the training process is shown in Figure 7. It can 
be seen that as the number of epochs increases, the loss of the training 
model does not decrease, indicating that the model has reached the ef-
fect of convergence. The prediction effect of the training set direction 
is shown in Figure 8. It can be seen from Figure 8 that this method 
shows a good fitting effect and good monotonicity for the bearings 
of the training set, and the failure time of the bearing can be almost 
perfectly predicted in the final stage. At the same time, it shows that 
the network architecture and hyperparameters selected in this paper 
are reasonable, and the network model can learn bearing degradation 
information from the training set.

As shown in Figure 9, it can be seen that the method in this paper 
shows high prediction accuracy for both the suddenly failed bearing 
1-2 and the gradually failed bearing 1-3, and the fluctuation of the 
predicted value is significantly reduced after sliding average process-
ing. Although in the process of predicting the degradation trend of the 
network model, the monotonicity of the bearing 1-2 is not satisfactory. 
However, in actual engineering, people pay more attention to the deg-
radation trend and final RUL value of the bearing in the later period of  

Table 4. Influence of different learning rates on the prediction model

Learning rate MAE RMSE

0.1 0.2518 0.2909

0.01 0.1803 0.2219

0.005 0.1870 0.2313

0.001 0.1702 0.2085

0.0005 0.1930 0.2340

0.0001 0.1905 0.2280

Table 5. Influence of different trade-off coefficients on model prediction

Trade-off value MAE RMSE

0 0.2121 0.2595

0.1 0.1923 0.2378

0.2 0.1702 0.2085

0.3 0.1858 0.2263

0.5 0.1876 0.2247

0.7 0.1992 0.2410

10 0.1999 0.2400

50 0.1909 0.2310

100 0.1999 0.2361

Table 6. Influence of different locations of MMD on prediction

Trade-off value MAE RMSE

MMD1 0.1723 0.2159

MMD2 0.1860 0.2254

MMD12 0.1702 0.2085

Fig. 7. Training loss diagram of network model

Fig. 8. The prediction effect of bearing in train set(bearing1-1)
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operation. It can be seen from Figure 9 that both bearing 1-2 and bear-
ing 1-3 have good monotonicity and higher prediction accuracy at the 
final moment. Even bearings 1-3 can predict the failure time almost 
without error at the last moment. In summary, the method proposed 
in this paper can meet the requirements of the RUL prediction of the 
bearing in actual engineering

3.4. Comparison analysis of model advantage
In order to verify the superiority of this method, this paper chooses 

the CNN model and the SPP-CNN model as the comparison model 
to verify the effectiveness of the improved strategy. Secondly, in or-
der to verify the effectiveness of the migration strategy in this arti-
cle, the current advanced migration learning models Transfer Com-
ponent Analysis (TCA) and Domain-Adversarial Training of Neural 
Networks (DANN) are used as comparison models. The comparison 
model introduction is shown in Table 7.

In order to ensure the accuracy of the comparison effect, the archi-
tecture and hyperparameter settings of the comparison model are con-
sistent with the selection of the proposed method. The experimental 
prediction results of different models are shown in Table 8.

From Table 8, compared with other models, there are three kinds of 
advantages in the proposed method in this paper.

The SPP-CNN model improves the accuracy of bearing RUL 1. 
prediction. Although the traditional CNN model has higher 
prediction accuracy on the training set, its prediction effect 
on the test set is worse than that of the SPP-CNN model. The 
main reason is that SPP can improve the generalization ability, 
thereby improving the RUL prediction effect of the bearing 
under different failure degradation. 

Transfer learning improves the accuracy of bearing RUL pre-2. 
diction. After using transfer learning, the model prediction 
ability of the training set and test set has been improved. It also 
has a better predictive effect for bearings that suddenly fail.
In order to demonstrate the superiority of the transfer strategy, 3. 
this paper chooses TCA and DANN as the comparison model. 
The TCA model maps the features of the source domain and 
the target domain to the high-dimensional replicable kernel 
Hilbert space to minimize the distance between the source do-
main and the target domain. The input of the TCA model is 24 
traditional statistical features, including time-domain features 
and wavelet packet energy. It selects the RBF function as the 
kernel function. The DANN model uses domain confrontation 
strategies to solve the problem of data distribution differences. 
The prediction effect of each model is shown in Table 7. It can 
be seen from the evaluation indicators in Table 7 that this paper 
has a higher RUL prediction accuracy for the tested bearing. 
Compared with other transfer learning models, the proposed 
method has higher prediction accuracy. The main reason is the 
use of adaptive technology to solve the problem of inconsist-
ent allocation between training data and test data. And use the 
SPP-CNN layer to improve the generalization ability of the 
network to obtain a better transmission effect.

4. Conclusion
This paper proposes a RUL prediction model of bearing based on 

multi-feature deep convolution transfer learning. First of all, this paper 
uses the SPP layer to avoid the problems of poor prediction accuracy 
and poor generalization ability of a single feature. Then, based on the 
MMD migration mechanism, the SPP-CNN model was improved, and 
the problem of inconsistent data distribution of the degradation trend 
of each bearing caused by the failure of each bearing was solved. Fi-
nally, by using the PHM2012 bearing public data set, and comparing 
the results with the prediction effect of the transfer learning model, 
the following conclusions are drawn: 1. The method proposed in this 
paper has good monotonicity in the final stage of various types of 
failed bearings. Higher prediction accuracy can meet the actual needs 
of engineering applications. 2. The domain adaptive module can re-
duce the data distribution difference between different failure trends, 
so that the model in this paper has a wider application range. From the 
above content, it can be seen that compared with the current advanced 
RUL prediction, the method in this paper has obvious advantages. 

Considering the great potential of deep learning models in RUL 
prediction, future work shows that the RUL prediction of bearings 
under different working conditions should be considered, so that the 
RUL prediction model has stronger practicability.
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Fig. 9. The prediction effect of bearing in test set, (a) bearing1-2; (b) bear-
ing1-3

Table 7. Comparison model

Model Input Transfer method

CNN frequency spectrum None

SPP-CNN frequency spectrum None

TCA [17] traditional feature MMD

DANN [7] frequency spectrum adversarial strategy

SPP-CNNTL
(Proposed method) frequency spectrum MMD

Table 8. The MAE value of different models

Model bearing1-1 bearing 1-2 bearing 1-3 bearing 1-4 bearing 1-6

CNN 0.0160 0.2828 0.2595 0.2083 0.3062

SPP-CNN 0.419 0.2580 0.1454 0.1651 0.3062

TCA 0.5023 0.2543 0.2034 0.1823 0.3124

DANN 0.0432 0.2392 0.1224 0.1523 0.3034

SPP-CNNTL 0.0201 0.1802 0.1115 0.1332 0.2477
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1. Introduction
Maintenance processes have a significant impact on manufactur-

ing companies such as: production efficiency, safety and environment 
requirements and customers satisfaction [19, 23, 28, 38]. In addition, 
delivering high-quality products with tighter tolerances and lower 
waste and rework levels also depends on well-maintained equipment, 
which is another reason to develop more efficient maintenance proc-
esses [39]. Moreover, Marksberry [52] determined as the waste of 
production process the ‘maintenance of machines and devices’. Vari-
ous concepts have been used to decrease reliability and availability of 
machines and devices, one of them is Lean Maintenance (LMn) [29]. 
LMn deals with the integration of people in the production process, 
using certain methods and tools for continuous improvement, as well 
as the elimination of waste in value-added activities.

The complexity of various LMn tools and methods as well as the 
investment costs make the LMn implementation a difficult and com-
plex process, although this concept has an impact on the business re-
sults of the organization [10]. The problem of inadequate understand-
ing of the relationship between LMn and the operating environment 
of manufacturing companies causes the LMn implementation to fail 
[17]. Therefore, an important aspect is the development of systems 
supporting the assessment of the effectiveness of LMn implementa-
tion. [91]. 

The aim of the article is to develop a decision support system, 
which will be helpfull for decision-makers from companies in select-

ing appropriate LMn methods and tools that have the greatest impact 
on the company’s operational results. In the proposed decision mak-
ing system the machine learning methods and rough set theory was 
used. The main research question was: Which of the LMn tools had 
the greatest impact on reducing the number of unplanned downtime?

The remainder of this paper is structured as follows. In Section 2 
the literature review according the importance of maintenance func-
tion in manufacturing and lean maintenance is presented. Then, in 
Section 3 the research methodology is presented. In Section 4 the 
results of using decision trees and rough set theory to generate cat-
egorization models in the assessment of the implementation of lean 
maintenance are presented. Finally, the conclusions and direction of 
the future research are presented. 

2. Background

2.1. The importance of maintenance function in manufac-
turing

Modern manufacturing companies focus on the availability, reli-
ability and productivity of their manufacturing machines and devices 
[39, 84]. Equipment maintenance and system reliability are important 
factors that have impact on the ability to provide quality and timely 
products to clients, comply with legal requirements, and meet busi-
ness goals. These needs have placed the maintenance function in the 

Lean maintenance concept is crucial to increase the reliability and availability of mainte-
nance equipment in the manufacturing companies. Due the elimination of losses in main-
tenance processes this concept reduce the number of unplanned downtime and unexpected 
failures, simultaneously influence a company’s operational and economic performance. De-
spite the widespread use of lean maintenance, there is no structured approach to support the 
choice of methods and tools used for the maintenance function improvement. Therefore, 
in this paper by using machine learning methods and rough set theory a new approach was 
proposed. This approach supports the decision makers in the selection of methods and tools 
for the effective implementation of Lean Maintenance.
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spotlight as a strategic function for manufacturing companies [54, 58, 
78, 79].

As defined by European standard EN 13306, maintenance is a “the 
combination of all technical, administration and management actions 
during the life cycle of an item intended to retain it in, or restore it 
to, a state in which it can deliver the required function (function or a 
combination of functions of an item which are considered necessary 
to provide a given service).” The presented definitions express the 
multidisciplinary character of maintenance operations, which include 
both technical aspects of the technical facility performance and all in-
service aspects, referring to the facility itself and to all stakeholders 
and resources engaged into maintenance processes. According to [66] 
“Maintenance operations are much like manufacturing operations 
where both employ processes that add value to the basic input used to 
create the end product”

As maintenance management in a manufacturing company combines 
various functions (organizational and business) its implementation is 
complex and requires the utmost attention. According to [89] ”mainte-
nance is not just ensuring healthiness of equipment in a facility but it 
also plays a crucial role in achieving organization’s goals and objectives 
with optimum maintenance cost and maximum production. […] and 
needs to be viewed as a strategic function in an organization”. Defin-
ing an appropriate maintenance strategy is seen as a way to turn your 
company’s goals into maintenance goals [89]. Maintenance objectives 
at strategic and tactical levels of the organization can be define in five 
categories [88]. First category is maintenance budget, which consists 
e.g. maintenance costs and maintenance value. In the second category 
functional and technical aspects such as: availability, maintainability, 
reliability, Overall Equipment Effectiveness (OEE), productivity, main-
tenance and output quality are described. Third category contains plant 
design life. Next category includes inventory of spare parts and logis-
tics. Finally, people and environment are counted in the last category. 
To achieve this objectives maintenance strategies have evolved with 
the course of time, From reactive maintenance (“run-to fail” logic) to 
proactive maintenance (PrM) strategies such as: Preventive Mainte-
nance (PM) or Predictive Maintenance (PD). The main goal of PrM 
strategies is to monitor the equipment and making minor repairs to keep 
them in the good condition with high performance. Research conducted 
by [32] shows that adopting predictive maintenance in an enterprise can 
minimize maintenance costs up to 30% and eliminate breakdowns up to 
75% compared to preventive maintenance.

Today, maintenance with a strategic role in revenue generation is 
seen as source of added-value, with key role for driving performance 
improvement [51]. According to [37] “advanced practice in mainte-
nance can play a role in achieving more competitive, responsible and 
sustainable performance in manufacturing companies.” In this line 
maintenance should be view as an important function in achieving 
sustainability in manufacturing processes. Many researcher start to 
study the impacts and contributions of maintenance function to more 
sustainable operations in manufacturing companies. From the eco-
nomic dimension of sustainable manufacturing four factors quality 
and productivity, delivery on time, innovation and cost are affected 
by the maintenance function [40, 49]. From environment dimension 
of sustainable manufacturing most frequently prevention of environ-
mental damage, emissions reduction and land conservation, energy 
consumption reduction and energy savings are underlined [60, 72]. 
Finally, from the social dimension of suitability manufacturing are 
underlined the relationship of the maintenance function with its stake-
holders within and outside the company, with a particular focus on 
the maintenance personnel, who is affected by decisions made in the 
maintenance department [22, 41].

Manufacturing industry has now embarked on a digital transforma-
tion following the Industry 4.0 paradigm in which the maintenance 
organization is expected to play a key role in enabling robust autono-
mous systems [49]. According to [56], many companies consider main-
tenance processes improvement as the one of the initial stages towards 
Industry 4.0 concept. 

The growing complexity of the production environment, new re-
quirements and new opportunities force the maintenance managers to 
constantly search for opportunities to improve activities and process-
es. Dekker [27] stress that “the main question faced by maintenance 
management, whether maintenance output is produced effectively, in 
terms of contribution to company profits”. Although this question was 
asked many years ago, it is still timely and is very difficult to answer. 
Many researchers and practitioners proposed models to solve mainte-
nance-related problems and pointed out that successful implementa-
tion of these models depends on appropriate understanding and using 
properly tools and techniques indicated in this models. 

2.2. Lean and maintenance
Lean Manufacturing (LM) is worldwide recognition methodology 

for the improvement of internal processes, popularised by the book 
‘The Machine that Changed the World’ [15]. The main challenge of 
LM is to increasing customer satisfaction while decreasing waste 
and losses. The benefits of lean implementation are divided in two 
field. Firstly, LM eliminates wastes, decreases delivery, lead and cy-
cle times, decrease inventories, and increase the productivity [11, 45]. 
Secondly, LM improves the workers satisfaction, good communica-
tion, and decision-making process [25].

LM demand for a reliable and stable machine operation gave way 
to another concept - Lean Maintenance [82] also known as Lean TPM 
(Total Productive Maintenance) [55]. According to [82] “without a 
Lean Maintenance operation, Lean Manufacturing can never achieve 
the best possible attributes of Lean”, so “first – Lean Maintenance, 
and next – Lean Manufacturing”. 

According to [77] “Lean production shifts the attention of main-
tenance improvement from the technical matters to the manage-
ment side, which focuses on eliminating the root causes of problems 
through team-based decisions and implementation”.

Smith and Hawkins [82] defined LMn as “proactive maintenance 
operation employing planned and scheduled maintenance activities 
through total productive maintenance (TPM) practices, using main-
tenance strategies developed through application of reliability can-
tered maintenance (RCM) decision logic and practiced by empowered 
(self-directed) action teams using the 5S process, weekly Kaizen im-
provement events, and autonomous maintenance together with multi-
skilled, maintenance technician-performed maintenance through the 
committed use of their work order system and their computer main-
tenance management system (CMMS) or enterprise asset manage-
ment (EAM) system”. This definition extends beyond the classic LM 
concept of TPM including a reliability approach based on the RCM 
method. It indicates the need to identify hazards, assess their conse-
quences and on this basis, determine the criticality of technical facili-
ties and appropriate maintenance activities for the function performed 
by the facility. 

LMn is based on a multidimensional management concept focused 
on the waste and losses elimination. [26]. Each maintenance opera-
tion is associated with unwanted side effects and wastes, such as [35]: 
(1) Over-maintenance; (2) Waiting for resources; (3) Task sequenc-
ing and scheduling; (4) Maintenance task processing; (5) Excessive 
inventory; (7) Motion; (8) Correction. 

One of the main steps for improving the maintenance processes is to 
develop a system to identify VA (Value Added) and NVA (Non Value 
Added) activities and recognize the types wastes [76]. To achieve this 
LMn includes several tools and methods, such as: 5S, Value Stream 
Mapping (VSM), Single Minute Exchange od Die (SMED), TPM, 
Visual Management (VM) (Figure 1).

These methods and tools simplified maintenance processes and 
improve the maintenance performance.. The reduction of waste in 
maintenance means a reduce setup time and increase OEE [9, 57, 
92], better management of consumable materials and spare parts [68], 
downtime reduction [36, 85] and lower the Mean Time To Repair 
(MTTR) and standardization of maintenance procedures [29]. Bar-
nard [12] pointed out that lean can help to develop Reliability Pro-
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gram Plan and to select only VA activities for execution. In the work 
[53] the authors sugest how LM principles can be adopted to LMn 
and underlined the importance of data in maintenance management 
process decision-making.

Evidence of LMn tools im-
plementation is found in various 
sectors, such as the automotive 
industry [6, 67], aerospace indus-
try [21], power plants [29] textile 
industry [7, 73], food industry [8], 
oil and gas industry [24, 76] among 
others. Such evidence points to a 
number of universality and the use 
of the LMn tools in different con-
texts and companies, increasing 
its importance as an approach to 
continuous improvement [30, 70, 
86]. However, implementation of 
LMn tools / practices is time con-
suming and costly process and 
needs continuous efforts to get ef-
fective results. Furthermore, there 
is no roadmap, no unified model 
and standard answer on the way to 
achieve lean [93].

Many researchers are identi-
fied industrial problems regarding 
LM implementation [1, 59]. To 
support practitioners in effective 
implementation of LM methods 
and tools, various models suit-
able for different industries were 
developed [2, 16]. For selection 
of lean tools in a manufacturing 
organisation [47] propose fuzzy 
FMEA, AHP and QFD-based approach, [61] use of AHP method and 
illustrate based on example related to the construction works, [42] 
proposes the improved VIKOR method and idea of multiple criteria 
decision-making for LM tool selection, [80] applies grey method for 
LM tool selection.

The above analyzes show that the choice of LM practices is not 
a simple problem. Moreover, the benefits of implementing LM may 
be different [86]. Since maintenance management in manufacturing 
companies connects various function (organizational and business) 
and activities, LMn methods tools implementation is complex and 
requires knowledge and skills. Maintenance managers, a specially in 
small in medium-sized enterprises, have a problem of selecting the 
best in a given operational context of the enterprise. Thus, develop-
ment of decision-making support tools can assist in LMn tools per-
formance appraisal, facilitating appropriate LMn practices [29]. 

3. Research methodology
The purpose of this research was to identify the main factors im-

pacting on effectiveness of LMn implementation in manufacturing 
companies. To archive this goal the machine learning (ML) method 
and rough set theory (RST) was proposed. 

The research methodology consist of two stages. The first 
stage presents the results of the study, conducted in the manu-
facturing companies, concerning the maintenance management 
and lean tools implementation. Then, the obtained data was pre- 
proceed and statistical analyses was performed (Section 3.1) 

In the second stage firstly the data set was divide into two sets: 
training and test data set. Then the decision trees (DT) (Section 
3.2) and RST (Section 3.3) to generate the decision rules were 
used. The main goal of this stage was to generate the decision 
rules, which shows the relationships between the activities un-
dertaken as part of the implementation of the lean maintenance 
concept and the results achieved. DT and RST were used for 

the variable of the number of unplanned downtime (NUD) indicator. 
Finally the obtained results were compared (Section 3.4). The detailed 
research methodology on Figure 2 is presented. 

3.1.  Data collection and preliminary analysis 
In the first stage the data for the research in manufacturing compa-

nies were collected. For participation in this research the companies of 
various sizes and from various industries were invited. The research 
involved companies that had been implementing the LMn concept for 
at least 5 years such as SMED, TPM, 5S. For the research the survey 
method was used. The research involved mainly representatives of top 
and middle management as well as employees directly related to the 
supervision of the maintenance process in the company. An important 
element of the research was to obtain information about the types of 
benefits identified by enterprises after the implementation of LMn 
tools such as: TPM, 5S and SMED. The obtained data from the sur-
vey was adequately prepared. The first stage was their pre-processing, 
which included data selection and cleaning. The purpose of this step 
was to remove inconsistent or erroneous data. In the data preparation 
the processing technique by removing the missing data was used. This 
had the effect of reducing the size of the dataset After then, the statisti-
cal analyse for identification the factors which have the impact on the 
NUD value in surveyed companies was used. In Section 4.1 and 4.2 
the results of the first stage of the research are presented. 

Fig. 1. From waste to benefits – Lean Maintenance perspective

Fig. 2. The research methodology
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3.2. Machine learning and decision trees 
In the second stage firstly the pre-proceed data set was divided into 

two sets: training and test data set. The training data set for developing 
the classification models was used. Hoverer, the test set for them vali-
dation was used. Firstly the machine learning method (decision trees) 
for generating the decision rules (classification model) was used. 

ML combines solutions from the fields of statistics, computer sci-
ence, cognitive sciences, recognition theory and many other fields 
[14]. Developed in the nineties of the last century, data mining meth-
ods are one of the most widely used IT tools at the present time [33]. 
These methods are included in modern applications. Moreover, these 
methods are used by the middle and top management level to make 
decisions based on the knowledge “retrieved” from the internal docu-
mentation of the organization and the results of the conducted research. 
The use of machine learning methods is divides in three stages: data 
preparation, data analysis (model building) and implementation. ML 
methods were successfully implemented in many different areas [14, 
65] also in maintenance management [43, 46, 74, 87, 90].

One of the ML methods used for constructing the models are DT. 
DT are the one of the most popular and effective methods of ML [13]. 
DT are built mostly recursively (top-down approach) [34, 71]. 

DT construction is performing by in-depth search of all available 
variables and all possible splits in the data set for each decision node (t) 
by choosing the optimal partition [48]. y xi i i n

,( ){ } ≤ ≤1
 denotes the ana-

lysed data set, where y c c ci s∈ …{ }1 2, , ,  and x x x x Ri i i ik
k= …( )∈1 2, , , . 

The values c c cs1 2, , , �…  means possible classes characteristic y. The 
task of classification consists is to divide space Rk  on q separated 
areas, where each area corresponds to a certain class. Based on the ob-

servation of the characteristics x x x xi i i ik= …( )1 2, , ,  can be analyzed 
object classification [3].

In this study the Classification and Regression Trees (CART) al-
gorithm was used. This algorithm is one of the basic algorithms pro-
posed by [18]. The Gini index, also called as the impurity measure, 
has been proposed by the authors of the algorithm. The entire space 
Rk  is divided into q separated regions, R R R Rq

k
1 2∪ ∪…∪ = . For 

the node m, 1≤ ≤m q , representing region Rm, the Gini index is de-
termined as follows (1) [3]:
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The decision rule generated by CART algorithm were used to de-
velop an expert system (with the use of PC-Shell /Aitech Sphinx). 
In the system, for creation the knowledge base two blocks: faset and 
rules were used. For declaration the values and attribues of decision 
the fasets block was used. In the decision nodes the explanatory vari-
ables as decision attributes were placed. The target attribute represent-

ed the results of system inference. The NUD value 
was finally obtained in a separate output window. 

For validation the developed decision rules in 
the expert system the data from companies (test 
set data) was used. Then, the confusion matrix 
and k-fold cross-validation to assess the quality of 
developed DT was used. In the confusion matrix 
the following values were determined: TP (True 
Positive), TN (True Negative), FP (False Positive) 
and FN (False Negative). To assess the quality of 
the developed classifier the indicators proposed 
by [31, 62, 83] were used (Table 1). 

In Section 4.3 the results of the this step of the 
research are presented. 

3.3.  Rough Set Theory 
For developing the second classification mod-

el the RST was used. This theory is recognized 
as a tool that allows to reduce the input dimen-
sion and finds a way to reduce the uncertainty 
and ambiguity of data. Recently, there has been a 
very rapid development in this area and the pos-
sibilities and application of this theory in ML and 
decision-making systems. [50, 64, 81]. The main 
advantage of this theory is the ability to find the 
relationship between the explanatory variables 
and the dependent variables, which allows to sup-
port the decision-making process based on data 
analysis. Moreover, RST allows for dimensional-
ity reduction (elimination of explanatory variables 
that have no influence on the explained variables). 
Knowledge extracted using RST is generated in 
the form of decision rules [50]. 

The formal description of the rough set theory 
in the works [63, 64] is presented. In order to start 
data analysis using this theory, the concept of an 
information system and a decision table should 
be defined. Let S be a decision system define as 

, , , .S U A V f=  Where U is a non-empty, finite 

Table 1. Indicators – quality of DT

No. Indicator Formula

1. Accuracy (Acc)
TP TNAcc

TP TN FP FN
+

=
+ + +

2. Overall error rate (Err)
FP FNErr

TP TN FP FN
+

=
+ + +

3. True positives rate (TPR)
TPTPR

TP FN
=

+

4. True negatives rate (TNR)
TNTNR

TN FP
=

+

5. Positive predictive value (PPV)
TPPPV

TP FP
=

+

6. Negative predictive value (NPV)
TNNPV

TN FN
=

+

7. False positive rate (FPR) 1FPFPR TNR
FP TN

= = −
+

8. False discovery rate (FDR)
FPFDR

FP TP
=

+  

9. False negatives rate (FNR) 1FNFNR TPR
TP FN

= = −
+  

10. Matthew’s corr. coefficient 
(MCC) ( )( )( )( )

TP TN FP FNMCC
TP FN TP FP FN TN FP TN

× − ×
=

+ + + +

11. F1-score (F1)
21 PPV TPRF

PPV TPR
× ×

=
+

12. Youden’s J statistic (J)  1J TPR TNR= + −
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set of n objects x x xn1 2, ,...,{ } , called the universe. A is a non-empty, 
finite set of m attributes a a am1 2, , ...,{ } which characterize the ana-
lyzed objects. On the other hand, V Va A a= ∈  , where Va is called the 
domain of the attribute a A∈ , which contains the values of this at-
tribute. In turn f U A V: × →  is an information function such that 
∧ ( )∈∈ ∈a A x U af a x V, , . An information system (IS) is called a deci-
sion table DT when there are separate sets of conditional C attributes 
and decision attributes D such as: C D A∪ =  and C D∩ =∅. Then 
the decision table DT is described as follows: DT U C D V f= , , , , . 
Using the properties of RST allows for extending the possibilities 
of such a table, which leads to a significant simplification of the 
rules. Consequently, the decision-making system takes on the fea-
tures of generalization and constitutes an effective and intelligent 
data processing tool. RST proposes to replace an imprecise concept 
with a pair of precise concepts, called the lower and upper approxi-
mation of this concept [69]. The difference between the upper and 
lower approximations is precisely the boundary area to which all 
cases belong that cannot be correctly classified on the basis of current 
knowledge. If IS = <U, A, V, f > is an IS such that B ⊂ A and X ⊂ U 
are: B* – the lower approximation of the set X in the IS, is the set:  
XB∗ = {x ∈ U : B(x)⊆X}); B* - the upper approximation of the set X in 
the IS is the set: XB* = {x ∈ U: B (x) ∩ X ≠ ∅}; B – positive area of the 
set X in the IS we call the set: POSB (X) = XB∗; B – the boundary of 
the set X in the IS we call the set: BNB(X) = XB*− XB∗; B – a negative 
region of X in the IS is the set: NEGBX = U − XB*. The definitions 
formulate the following conclusions: XB* ⊂ X ⊂ XB* ; X is B when: 
XB* = XB* <=> BNBX = ∅ and X is B-approximate when: XB* = XB* 
<=> BNBX ≠ ∅.

The lower approximation of the concept is therefore the area that 
defines all the objects that there is no doubt that they represent the 
concept in the light of the possessed knowledge. The upper approxi-
mation includes objects that cannot be ruled out that they represent 
this concept [20]. The edges are all those objects for which it is not 
known whether or not they represent a given set. There is also the 
so-called a numerical characteristic of the approximation of a set, 
which, using the coefficient of accuracy of the approximation (ap-
proximation), allows us to quantitatively characterize the blurriness 
of concepts [44]. 

In this study the RST allowed to generate a set of decision rules that 
can be used to construct decision systems. They are usually created in 
four iterative steps: identification of possible sets of values, isolation 
of conditional attributes (premises) and decision attributes, creation 
of decision rules in the form of IF - THEN, implementation in the 
decision system. 

As in the case of DT the developed decision rules were imple-
mented in the expert system. Moreover, the data test set to validate 
the decision rules and to assess the quality of the classifier the same 
indicators were used. The results of this step of the research in Section 
4.4 are presented. 

3.4. Comparison of the results
In the last step of the research the comparison of the results ob-

tained form the assessment of developed classification models by DT 
and RST was performed. In the comparison the value of the indicators 
for DT and RST (Table 1) was analayzed. The analyses for the most 
frequently occurring classes was performed. In Section 4.5 the results 
of this step of the research are presented. 

4. Results and analyses 

4.1. The structure of the surveyed companies 
The research was carried out in manufacturing companies in Pod-

karpackie Voivodship (Poland). The companies participating in the 

study used various methods and tools of LMn. Figure 3 shows the per-
centage of surveyed companies implemented various tools of LMn. 

The research was carried out in manufacturing companies in Pod-
karpackie Voivodship (Poland). The companies participating in the 
study used various methods and tools of LMn. Figure 3 shows the per-
centage of surveyed companies implemented various tools of LMn. 

Fig. 3. Structure of the companies - LMn implementation

The surveyed companies were classified, inter alia, according to 
the following criteria: size of the organization, type of production, 
type of industry, and maintenance strategy. In the research the biggest 
group were large companies (70.77%) and companies from aviation 
industry (41.54%) and also companies with large batch production 
(25.68%) (Fig. 4, 5 and 6).

Fig. 4. Structure of the companies - the size of the company

In the analysed companies dominated preventive maintenance 
(PM) strategy, in particular: maintenance scheduled inspections (PM), 
maintenance scheduled inspections and repairs (PM) and autonomous 
maintenance (AM) (Fig. 7).

The implementation of the TPM system in the production plant sig-
nificantly facilitates the process of supervising machines and techno-
logical devices. The main benefit of implementing TPM is the aware-
ness of employees who, in conflicts and accompanying problems, 
find opportunities for continuous improvement. The decisive role in 

Fig. 5. Structure of the companies - the type of industry

Fig. 6. Structure of the companies - type of production
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assessing the effectiveness of TPM implementation in the enterprise 
allows the ongoing monitoring of the effects of TPM implementation. 
Many of the surveyed companies emphasized that the main effect 
is to reduce the number of unplanned downtime (UD). Any sudden 
shutdown of a machine from the production process was called an 
unplanned downtime. The most common reason for such a downtime 
is a mechanical, electrical or electronic failure, which poses a risk 
to safety at the workplace and failure to maintain proper operating 
parameters. To assess the effectiveness of the implementation of the 
LMn concept, enterprises used mainly OEE indicator and the number 
of unplanned downtimes (NUD). The research results concerning 
OEE are presented in the work [4]. This paper presents the results of 
the impact of LMn concept implementation on reducing the number 
of unplanned downtimes (NUD).

Figures 8 and 9 show the effects of implementing the LMn sys-
tem – decreasing of NUD, in the surveyed companies. The analysis 
of this indicators was based on the following criteria: enterprise size 
and industry. When analyzing the results presented in Fig. 6, it should 
be noted that in the surveyed companies, the implementation of LMn 
most often resulted in a reduction of NUD in the range of 10-30% in 
the case of medium and large companies. The least, however, is above 
50%. Small companies most often reported a reduction of NUD of 
less than 10%.

Fig. 8. The effects of implementing the LMn system (decreasing of NUD) – 
size of the company

The companies from various industries most often indicated a re-
duction in unplanned downtime also in the range of 10-30%. In 7.15% 

of the aviation industry enterprises, NUD indicator is reduced by more 
than 50%.

4.2. Statistical analyses 
Table 2 presents the analyzed factors which have potential influ-

ence on NUD indicator and the p-value.

For the analyzed Hypotheses 9 and 12, there is a statistically dif-
ference in the value of the NUD indicator (p-value NUD = 0.001 and 
NUD = 0.000 - H0 rejected, H1 accepted). It means that there is a 
statistically justified difference in reducing the NUD from the factors 
studied. This proves that in the surveyed companies, decreasing the 
NUD depends on the implementation of the SMED method and from 
different types of supervision. 

The presented analyzes allowed to identify the factors that have 
impact on the effectiveness of LMn. Moreover, the analyses showed 
the, which factors did not have the influence on the effectiveness of 
LMn. Despite the analyzed single factors, for example, such as: types 
of machines, Kanban, the way of supervision in the companies, it does 
not have a significant impact on the effectiveness of LMn, their inter-
action with other factors may already have a significant impact on the 
LMn effectiveness. 

Therefore, in the next stage of the research, the concept of using 
ML method an RST to search for relationships between the identified 
factors, and thus their impact on the effectiveness of the LMn concept 
implementation, was proposed.

4.3. Decision trees in evaluation the effectiveness of Lean 
Maintenance implementation

Not all surveyed companies used the same LMn tools and meth-
ods, therefore CART decision trees were used for analysis. The main 
criterion for selecting this method was the possibility of its effective 
use for data sets that have numerous shortcomings in the independ-
ent variables. Moreover, this method is insensitive to the occurrence 
of atypical observations that may come from a different population. 
The CART classification tree for the dependent variable - reduction 
in the number of unplanned downtimes (NUD) was developed for the 
studied group of companies. 

In the decision tree the training data set (from 65 companies) and 
the variables e.g. size of the companies, type of industry, type of pro-
duction whose impact on the effectiveness of LMn implementation 
were analyzed (Table 2) as explanatory variables (predictors) were 
adopted. In addition, the following indicators were introduced: the 
TPM number of actions indicator (NTPMA), the number of preven-

Fig. 7. Structure of the companies - maintenance strategy

Table 2. Potential factor influencing on NUD indicator and p-value

Number Factor 
p-Value

NUD 

1 The size of the company 0.318

2 Type of production in the company 0.383

3 Type of industry 0.262

4 Type of ownership of the company 0.680

5 Company situation 0.540

6 Type of capital in the companies 0.210

7 Types of machines owned 0.102

8 5S implementing 0.284

9 SMED implementing 0,001

10 Kanban system for spare parts implementing 0.312

11 The way of supervision in the companies 0.412

12 The type of supervision in the companies 0,000

13 The MTTR value 0.071

Fig. 9. The effects of implementing the LMn system (decreasing of NUD) – 
industry
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tive actions indicator (NPA) and the maintenance strategy indicator 
(MSI). The NPA is the activities number to prevent UD. The NTPMA 
indicator is calculated as the sum of the value of activities by the max-
imum number of implemented activities (3):

 
11

1 *100%
max

ii x
NTPMA

number of activities
== ∑   (3)

The NTPMA indicator can take values on four levels from low to 
very high. The calculation of the MSI indicator value is assumed as: 
the sum of the activities value by the number of implemented activi-
ties (4).

 1
n

ii x
MSI

n
== ∑  (4)

Detailed information about these indicators are presented in the 
work [4, 5]. 

While building the tree, the following assumptions were made: the 
costs of misclassifications were equal, the Gini measure as a measure 
of goodness, the discontinuation of the process of creating new nodes 
using trimming according to the variance (the stop rule) and the mini-
mum frequency criterion in the split node, and a 10-fold cross vali-
dation as a quality measure. A developed tree consists of 15 divided 
nodes and 16 end nodes, which means that 16 decision rules may be 
defined. The developed decision tree is presented on Figure 10. 

Selected decision rules were defined for the developed tree. These 
rules were defined for the end nodes that achieved the best results in 
reducing NUD using additional LMn methods and tools. Based on the 
decision tree, the chosen decision rules were defined:

If the company’s type of supervision expressed by the MSI 1. 
indicator is different than 5.5, the 5S method is implemented in 
different areas, it is not a representative of the metal processing 
industry, it is not a small enterprise and implements a differ-
ent type of production than small batch production (MS), it 
achieves a reduction in the NUD in the range from 10 to 30%. 
If in the enterprise the supervision method expressed by the 2. 
MSI indicator is different than 5.5, the 5S method is imple-
mented in various areas, it is not a representative of the metal 
processing industry, the supervision method expressed by the 
MSI indicator is not equal to 5 or 4, mainly has numerical ma-

chines or referred to as “other” machines achieve a reduction 
in the NUD indicator in the range of 10 to 30%.
If in the enterprise the supervision method expressed by the 3. 
MSI indicator is different than 5.5, the 5S method is imple-
mented in various areas, it is not a representative of the metal 
processing industry, the supervision method expressed by the 
MSI indicator is not equal to 5 or 4, mostly it has conventional 
machines and an average repair time of over 24 hours achieve 
a reduction in NUD by more than 50%.

In order to evaluate the quality of the developed classification mod-
el (DT), the validation for the test data was performed. 

The obtained decision rules were used to develop the expert sys-
tem. For validation the developed decision rules in the expert system 
the data from 25 companies was used. Among the analyzed compa-
nies, the major group were large companies (70%) mainly from the 
aviation industry (40%). Large batch production dominated (35%) in 
these companies. Then, using the obtained results the classification 
quality of the developed decision rules were tested.

The purpose of the qualitative analysis was to generate confusion 
matrices for the most frequently occurring classes. When develop-
ing the confusion matrix, the analyzed class was considered as posi-
tive, while other classes were considered as negative. Tables 3 and 4 
present confusion matrices for the classifier - the value of NUD for 
the two the most frequently occurring classes: 10-30% and 30-50%.

Fig. 10. The developed decision tree

Table 3. Confusion matrix for the classifier value of the NUD 10 – 30 % 
class

Real Classes
Predicted Classes

Positive Negative

Positive 11 1

Negative 0 13

Table 4. Confusion matrix for the classifier value of the NUD 30 - 50 % class

Real Classes
Predicted Classes

Positive Negative

Positive 11 0

Negative 2 12
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The indicators from Table 2 have been used to assess the quality of 
the classifier (Table 5). 

For easier analysis the results presented in the Table 5, the indica-
tors into two groups were divided. The first (marked in red) contains 
indicators, of which the value should be as small as possible - in the 
case of the classifier without errors, the result will be 0. The second 
of them (other indicators) contains indicators, of which the expected 
value should be as high as possible = 1. The results presented in the ta-
ble indicate that the NUD classifier in the 30-50% class is more likely 
to assign objects to the class to which in fact belong (Acc = 1). For the 
10-30% class, the Acc is 0.96, which means that Err = 0.04. 

The main goal of the validation was to confirm, that the developed 
decision rules actually lead to the planned results. The obtained values of 
calculated indicators confirmed the high usefulness of the classifiers.

4.4. Theory of Rough Sets in Lean Maintenance implemen-
tation assessment

In this stage the RST for the described variable NUD was used. In 
the analyses the same training data set as input (data from 65 compa-
nies and explanatory variables (predictors)) were adopted. The follow-
ing algorithms were used to generate the decisions rules: exhaustive 
algorithm (ExhAlg), coverage algorithm (CovAlg), genetic algorithm 
(GenAlg) and LEM2 algorithm. The scheme for the explained vari-
able “reduction in the NUD” is presented on Figure 11. 

In Table 6 number of decision rules generated by each algorithm 
are presented. 

The rules generated by each algorithm were used to classify the 
NUD indicator. The classification of objects (companies) from the 

appropriate decision tables was per-
formed. The standard voting meth-
od was used for classification. The 
results of the classification for each 
of the algorithms in the form of a 
confusion matrix is presented. The 
rows of the matrix show the values 
for the actual decision classes (the 
values of the dependent variable). 
On the other hand, in the columns 
of the matrix the results of predic-
tion are presented. Additionally, the 

matrix contains the information about the number of objects belong-
ing to a given decision class, accuracy and coverage. Moreover, a true 
positive rate is presented. 

In the Table 7 the results of classification for GenAlg, ExHAlg and 
LEM2 are presented. In the case of the explained variable NUD, the 
confusion matrices were the same for these algorithms. All 65 objects 
in the decision table were correctly classified (Total Acc = 1).

 In the Table 8 and 9 the results of the classification for CovAlg 
with different value of coverage parameter are presented. 

In the case of rules created by the coverage algorithm it was differ-
ent. When assuming a small value of the coverage equal to 0.001 or 
less, the algorithm generates rules that give the maximum coverage 
calculated for all decision classes jointly. It is approximately 0.977 
(Table 8). However, with this value of the coverage factor, the classi-
fication accuracy is not maximum - it amounts to 0.95. It is caused by 
an incorrect classification of three objects which have been assigned 
to the class > 50%. In fact, these objects belong to the decision class of 
10-30%. To increase the accuracy of the classification the value of the 
coverage should be increased. Already for the coverage value equal 
to 0.12, the accuracy is 1, which means no classification errors (Table 
9). However, the coverage is less than that generated previously, and 
is approximately 0.895. This is due to the lack of classification of two 
objects from classes <10%, two objects from the class 10 - 30% and 
one object from the class 30 - 50%.

As in the case of decision trees, the developed decision rules were 
implemented in the expert system. Again, the data from 25 companies 
to validate the decision rules was used. To assess the quality of the 
classifiers the confusion matrices were developed. These confusion 
matrices by comparison of the results from the studied companies 
with the result from the expert system were performed. In the Table 
10 the results of NUD classification for the LEM2 algorithm are pre-
sented. Total Accuracy for this algorithm is 0.958. 

In the Table 11 the results of the classification for CovAlg are pre-
sented. 

Total Accuracy for this algorithm is 0.940, which means that the 
ability of this classifier is lower than in the case of LEM2 algorithm. 
In the Table 12 the results of the classification for ExhAlg are pre-
sented. Total Accuracy of this classifier is 0.980. 

The best results for GenAlg algorithm were obtained. All 25 objects 
in the decision table were correctly classified (Total Accurancy = 1).

4.5.  Results comparison
In the Table 13, the comparison of the results for the most frequent-

ly occurring classes: 10–30% 30–50% is presented. The comparison 
presents the indicators values for the models generated using DT and 
RST.

Results for the genetic algorithm are not included in the Table 13, 
because the results are the same as for exhaustive algorithm in the 
marked class of 10–30%. Considering the 10-30% class, the Accuracy 
ratio shows that the genetic algorithm and the exhaustive algorithm 
are most likely to assign objects to the class to which they actually 
belong. Only a slightly worse Accuracy result was obtained for the 

Table 5.  Indicators used to assess the quality of classifier

Indicators Acc Err TPR TNR PPV NPV FPR FDR FNR MCC F1 J

Cl
as

si
fie

r:
 N

UD
 

va
lu

e

M
ar

ke
d 

cl
as

s

30
–5

0%

1.00 0.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 1.00 1.00 1.00

10
-3

0% 0.96 0.04 0.92 1.00 1.00 0.93 0.00 0.00 0.08 0.92 0.96 0.92

Table 6. The number of decisions rules generated for the explained vari-
able NUD

Name of a Rule Set Number of Rules

NUD_ExhALg 6920 

NUD_GenAlg 458 

NUD_CovAlg 43

NUD_LEM2 27

Legend: 
 - Decision rules generated with an exhaustive algorithm (ExhAlg), 

genetic algorithm  (GenAlg), covering algorithm (CovAlg) and LEM2 
algorithm (LEM2). 

 - A confusion matrix - results of the classification for all algorithms.

Fig. 11. The scheme for the explained variable “reduction in the NUD”
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other two RST algorithms and for DT. The Ac-
curacy results for the 30-50% class are differ-
ent. The maximum value was obtained for the 
LEM2 algorithm, the genetic algorithm and 
for DT. The lowest value was recorded for the 
coverage algorithm. Similar conclusions can 
be drawn by looking at the general classifier 
error (Err) (keeping in mind that the lower the 
value of the Err, the better the classifier). This 
shows that the ability to predict of the models 
created varies depending on the NUD indi-
cator, and the results contained in discussed 
table may be valuable for future users of the 
developed models.

The differences in the results can also be 
seen in cases of sensitivity (TPR), which 
shows the ability to recognize objects belong-
ing to the distinguished class. For the 30-50% 
class, the TPR indicator obtained the maxi-
mum value for all models except for the clas-
sifier generated with the coverage algorithm. 
However, in the case of the 10-30% class, the 
LEM2 and DT algorithm did not reach the 
value of 1. The results of the TPR index are 
very similar to the NPV, which indicates the 
probability that an object assigned to the un-
marked class by the classifier actually belongs 
to this class.

One of the best results was obtained for 
the TNR index, which indicates the ability to 
correctly classify objects not belonging to the 
marked class. Comparing the TNR and TPR 
values for the LEM2 algorithm and DT in the 
10-30% class, it can be seen that these clas-
sifiers better recognize objects not belonging 
to this class. A similar situation occurs for the 
coverage algorithm in the 30-50% class. The 
values of the Precision index (PPV) were al-
most identical to those in the TNR.

In the case of the last three indicators from 
Table 12 (Matthew’s correlation coefficient, 
F1-score, and Youden’s J statistic), the results 
calculated for each of them are similar. All 
three indicators show that the best classifiers 
for the marked class 10-30% are classifiers 
built on the basis of the exhaustive algorithm 
and the genetic algorithm. However, for the 
class 30-50%, the best classifiers come from 
the LEM2 algorithm, the genetic algorithm 
and DT.

The probability of omitting marked objects 
by assigning them to an unmarked class is 
called FNR. This indicator is the lowest in the 
case of the exhaustive, coverage and genetic 
algorithms in the 10-30% class. However, in 
the 30-50% class, all classifiers have the low-
est possible FNR value, except for the clas-
sifier built on the basis of the coverage algo-
rithm. On the other hand, the FPR and FDR 
indicators, which refer to the probability of 
so-called false alarms generated by the clas-
sifier, show that the mentioned probability is 
equal to zero for all classifiers except CovAlg 
in the 10-30% class, as well as ExhAlg and 
CovAlg in the 30- class 50%.

Table 7. Confusion matrix - GenAlg, ExHAlg and LEM2

Actual
Predicted

< 10% 10–30% 30–50% > 50% No. of obj. Accuracy Coverage

< 10% 44 0 0 0 44 1 1

10–30% 0 10 0 0 10 1 1

30–50% 0 0 6 0 6 1 1

> 50% 0 0 0 5 5 1 1

True positive rate 1 1 1 1

Total Accuracy 1

Total Coverage 1

Total no. of obj. 65

Table 8. Confusion matrix - CovAlg (coverage value  = 0.001)

Actual
Predicted

< 10% 10–30% 30–50% > 50% No. of obj. Accuracy Coverage

< 10% 0 40 0 3 44 0.91 0.98

10–30% 9 0 0 0 10 1 0.90

30–50% 0 0 6 0 6 1 1

> 50% 0 0 0 5 5 1 1

True positive rate 1 1 1 0.6

Total Accuracy 0.977

Total Coverage 0.95

Total no. of obj. 65

Table 9. Confusion matrix - CovAlg (coverage value = 0.012)

Actual
Predicted

< 10% 10–30% 30–50% > 50% No. of obj. Accuracy Coverage

< 10% 0 42 0 0 44 1 0.95

10–30% 8 0 0 0 10 1 0.80

30–50% 0 0 5 0 6 1 0.83

> 50% 0 0 0 5 5 1 1

True positive rate 1 1 1 1

Total Accuracy 1

Total Coverage 0.895

Total no. of obj. 65

Table 10. Confusion matrix – LEM2

Actual
Predicted

< 10% 10–30% 30–50% > 50% No. of obj. Accuracy Coverage

< 10% 3 0 0 0 3 0.917 1

10–30% 1 8 0 0 9 0.958 1

30–50% 0 0 10 0 10 1.000 1

> 50% 1 0 0 1 2 0.958 1

True positive rate 0.6 1 1 1

Total Accuracy 0.958

Total Coverage 1

Total no. of obj. 25
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5. Conclusions
Many companies use LM mainly to eliminate production loss-

es. These companies not only increase their productivity, but also 
strengthen their position on the market. It turns out that companies 
have started to recognize the importance of maintenance, so they have 
started implementing LMn.

In this paper the problem of LMn implementation assessment was 
analyzed. Firstly the data from the manufacturing companies were 

collected and preliminary analyzed. The chi-
square test for identification the factor affect-
ing for LMn were used. 

Then, the machine learning method to de-
veloped the classification models was pro-
posed. These models by using DT (CART) 
and RST (four different algorithms: LEM2, 
Exh.Alg. Cov.Alg and GenAlg). were devel-
oped. To develop these models, data obtained 
from companies, that implemented LMn were 
used. In the first stage of the survey, informa-
tion from companies was collected on: used 
maintenance strategies, implemented LMn 
methods and tools, and the results of the im-
plementation. To assess the benefits of the 
LMn implementation the indicator NUD was 
analyzed. 

The obtained results indicate, that both for 
the classifiers obtained, RST and DT have a 
high prediction ability. However, the accuracy 
of the prediction depends from the analyzed 
class. The predictive model generated by DT 
show the better prediction ability in the ana-
lyzed class 30-50%. However, the situation 
in RST is slightly different. The same high 
prediction ability was demonstrated by the 
model generated with the use of the genetic 
algorithm. For the two most frequently occur-
ring classes, this model has the same high pre-
dictive ability. However, better accuracy for 
the class of 30–50% were achieved for RST 
for LEM2 algorithm. It should be noted that 

this algorithm generates the smallest number of decision rules. This 
shows that a large number of decision rules is not required to obtain 
good ability of prediction models. For the 10-30% class, the best pre-
diction ability was obtained for the model with the use of the cover-
age algorithm. The worst prediction ability for the most frequently 
occurring classes was achieved by models generated with the use of 
the coverage algorithm.

The created models have some limitations. First of all, these 
models were developed only based on a small group of companies in 

Table 12. Confusion matrix - ExhAlg

Actual
Predicted

< 10% 10–30% 30–50% > 50% No. of obj. Accuracy Coverage

< 10% 2 0 1 0 3 0.960 1

10–30% 0 9 0 0 9 1.000 1

30–50% 0 0 10 0 10 0.960 1

> 50% 0 0 0 3 3 1.000 1

True positive rate 1 1 0.91 1

Total Accuracy 0.980

Total Coverage 1

Total no. of obj. 25

Table 13. Comparison of results – DT and RST

Indicators

Classifier: reducing the NUD Value

Marked Class

10–30% 30–50%

DT
RST

DT
RST

LEM2 Exh.Alg. Cov.Alg. LEM2 Exh.Alg. Cov.Alg.

Acc 0.960 0.958 1.000 0.960 1.000 1.000 0.960 0.880

Err 0.040 0.042 0.000 0.040 0.000 0.000 0.040 0.120

TPR 0.920 0.889 1.000 1.000 1.000 1.000 1.000 0.818

TNR 1.000 1.000 1.000 0.938 1.000 1.000 0.933 0.929

PPV 1.000 1.000 1.000 0.900 1.000 1.000 0.909 0.900

NPV 0.930 0.938 1.000 1.000 1.000 1.000 1.000 0.867

FPR 0.000 0.000 0.000 1.000 0.000 0.000 1.000 0.333

FDR 0.000 0.000 0.000 0.100 0.000 0.000 0.091 0.100

FNR 0.080 0.111 0.000 0.000 0.000 0.000 0.000 0.182

MCC 0.920 0.913 1.000 0.919 1.000 1.000 0.921 0.757

F1 0.960 0.941 1.000 0.947 1.000 1.000 0.952 0.857

J 0.920 0.889 1.000 0.938 1.000 1.000 0.933 0.747

Table 11. Confusion matrix - CovAlg (coverage = 0.12)

Actual
Predicted

< 10% 10–30% 30–50% > 50% No. of obj. Accuracy Coverage

< 10% 3 0 0 0 3 1.000 1

10–30% 0 9 0 0 9 0.960 1

30–50% 0 1 9 1 11 0.880 1

> 50% 0 0 1 1 2 0.920 1

True positive rate 1 0.9 0.9 0.5

Total Accuracy 0.940

Total Coverage 1

Total no. of obj. 25
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the specific region. Secondly, despite the fact that companies of vari-
ous sizes and from various industries were invited to participate in the 
research, large enterprises from the aviation industry were the largest 
group. As a result, the developed models are based primarily on the 
experience and effective implementations of LMn by these compa-
nies. Therefore, it may be a potential limitation of the implementation 
of these models in practice. Finally, a high level detailing has been 
taken to develop the model using DT. This can over-fit the model to 
the data. Thus, it is planned to continue relevant research in the future 
to eliminate the limitations of the developed models.

Although the conducted research has some limitations, the pre-
sented results can be used by all manufacturing companies to predict 
and assess the effectiveness of the implementation of LMn methods 
and tools. In addition, the research results can be used by comapnies 
and scientists for the effective organization of maintenance, selection 
of an appropriate maintenance strategy, but above all for improvement 
of already implemented activities in this area.
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1. Introduction
Automated storage and retrieval systems (ASRS) are the key com-

ponents of automated warehouse facilities of high throughput and 
storage capacity. ASRSs are the automatic solutions around which 
the warehouse process is built-in or which directly feed high-efficient 
order-picking or production systems. ASRS defines the physical as-
pects of the facility, is often an integral part of the picking system, 
and creates the buffer capacity of the warehouse. The spectrum of 
ASRS technological solutions and variants is vast. However, the set of 
common features and mechanisms can be distinguished and put into 
its definition. ASRSs revolutionize warehousing since the 1970s. One 
of the most important features of these systems deciding about its us-
ability is the reliability or dependability of this technology. 

The system’s reliability is a component of its dependability, de-
fined as the ability to perform as and when required [17]. Depend-
ability is then a holistic measure of availability, reliability, maintain-
ability, and maintenance support provided. In some cases, it covers 
durability, safety, and security [17] to describe how users can trust 
the services within a time period. Since the ASRS is not an isolated 
system but a part of the warehousing facility, it should be discussed in 
the broad context of its dependability (see section 3 for discussion on 
dependability). In contrast, its dependability is not researched, while 
reliability research is scarce.

ASRSs are perceived dependable, especially when appropriate 
maintenance is provided, the system is well configured, and support-

ed by solutions that guarantee the high quality of handled units [24, 
40, 48]. But the perception about the dependability of ASRS is a bit 
warped by the users and developers. In most cases, it refers to the sys-
tem’s uptime (see [24]) and downtime as it results from the definition 
of reliability. Still, when investigated deeper, the ASRS reliability (or 
dependability) is rarely explored and usually replaced in the literature 
and commercial offers by the performance. Performance determines 
the ability to perform the logistics tasks of the entire ASRS. Usually, 
it is assumed that it is not significantly affected by the failure of a 
particular system component so that dependability can be (to some ex-
tend) extrapolated by performance bypassing the engineering correct-
ness. Replacing the dependability with the performance requires (or 
allows for) significant simplifications in research and development, 
and most important – in selling. When dependability is removed, the 
performance is easy to measure. But replacing dependability with per-
formance features requires a set of simplifying assumptions that the 
material flow in ASRS is uniform and homogeneous (without family 
grouping or selectivity), no slotting mechanisms are used, and the ac-
cess to all rack aisles is not disturbed by failures or congestion on 
feeding conveyor system. With this simplified approach, it is possi-
ble to express the transition of ASRS to a state of partial unfitness 
through reduced performance. This approach is applicable only in 
general considerations, but applied to the operational level can result 
in process errors in advanced storage systems. These errors will be 
the result of limited access to selected product or family groups in the 
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ASRS, which will disturb the schedule of the warehouse process and 
shipments (cf. Kłodawski et al. [23] and Jacyna-Gołda et al. [21]).

A review of market solutions and currently published scientific 
studies on the Automated Storage and Retrieval Systems indicates 
that ASRS dependability is discussed in a simplified manner or only 
concerns technical functioning. Meanwhile, ASRSs are built into the 
warehouse process. Their functioning depends not only on their fea-
tures but also on external conditions imposed by the supplies, order 
picking organization, schedule, and shipments. The assessment of 
ASRS dependability needs to consider the organization of the material 
flows resulting in an uneven load on the ASRS components, their role 
in the warehouse process, and the effects of a potential shutdown.

The author proposes the simulation study of the dependability of 
typical ASRS system in the FlexSim environment. The study bases 
not only on the technical features of the system but also its configura-
tion (different number of corridors to stacker cranes, conveyor system, 
transferring module), potential damage to working and conveying ele-
ments, the condition of material units, warehouse activity profiling, 
and assortment distribution. The research will determine the impact 
of the above-mentioned factors on the dependability and performance 
of ASRS and the value of OTIFEF (on-time, in-full, error-free pa-
rameter) embracing logistics time measures and timely execution of 
warehouse tasks.

The remainder of this article is as follows. Section 2. provides the 
literature review on the ASRS reliability or dependability in the con-
text of warehouse processes. The 3. section discusses the problem of 
dependability in logistics systems and in ASRSs and the areas of de-
pendability that should be investigated for a complete picture of the 
problem. The 4. section contains the assumptions and measures for 
the simulation experiments described in the section 5. Section 6. is 
for ASRS dependability simulation and discussion of the results. The 
article is closed by the discussion of results and conclusions.

2. Literature review on dependability of automated stor-
age and retrieval systems

The literature on automated storage and retrieval systems is quite 
extensive and multi-threaded due to the great importance of these solu-
tions for automated warehouse facilities, but reliability and especially 
dependability of ASRS as complete systems have hardly been stud-
ied in academic literature. The literature can be divided into several 
cross-sectional research areas, within which analytical, experimental, 
implementation and review works are present. Despite the fact that 
reliability is a key technical parameter of industrial installations, this 
issue is not a popular topic of research in warehousing technology 
at all. Most of the publications on ASRS, usually in the Introduction 
section, indicate the high reliability of these solutions, but apart from 
a single word at the beginning, it is not referred to further. 

Nowakowski [36, 38, 37], Werbińska-Wojciechowska [46, 47], 
Bukowski and Feliks [8, 7], or Quigley and Walls [39] present gen-
eral considerations on the reliability of logistics systems and complex 
supply chains on the overall level. These publications provide a cer-
tain basis for defining the reliability of elements of logistics systems, 
including warehouse systems, but are not focused on details of tech-
nology and technical solutions. The advantage of these studies is the 
consolidation of the ASRS dependability issue in the science of the 
reliability of logistics systems. Numerous studies related to problems 
of dependability in logistics [3, 4, 21] are focused on the reduced ef-
ficiency of the system. Sohn and Choi [43] analyse issues related to 
managing a supply chain in relation to the reliability of subsequent 
stages – logistic processes, including warehouse processes. They em-
phasise the need to include reliability issues already at the stage of 
designing, but their considerations are on the general level. Jacyna 
and Semenov [19] discuss the topic from the perspective of informa-
tion uncertainty. Szaciłło et al. [44] touch the problems of reliability 
applied to railway systems.

The crucial feature of dependability of supply chain, warehouse or 
ASRS itself is the determination of the faultless probability [22]. This 
is difficult for structures like ASRSs, in the case of which classical 
damage causing lack of fitness of use is not applicable. 

The problem of the dependability of warehouse facilities and their 
elements is discussed in general by Lewczuk [27] and Jacyna and 
Lewczuk [22]. They define the reliability framework for warehouse 
facilities and their components that may be useful for the assessment 
of ASRS systems. The authors discuss the OTIFEF index (on-time, 
in-full, error-free) that can be used to evaluate ASRS similarly as 
to complete warehouse since this bodies have common definition 
points. Neo et al. [34] analyse how the limited warehouse technical 
efficiency influences criteria of its operation assessment. Werbińska-
Wojciechowska [47] presents a model of maintaining technical sys-
tems on the example of logistic systems using the concept of time 
delays. Author points to the effectiveness of the devised model on 
the example of internal transport devices. In other work Werbińska-
Wojciechowska [46] discusses the integration of the system executing 
the task with the supportive system like the maintenance system.

Focusing on the problem of Automated Storage and Retrieval Sys-
tems can already see that it reached the cross-sectional publications 
presenting the state of knowledge about it. Roodbergen and Vis [41], 
Gagliardi, Renaud, and Ruiz [14], and Azadeh et al. [2] provided a 
comprehensive literature review on automatic technologies in ware-
housing. Still, the reliability is mentioned only without discussion, 
while the dependability is not mentioned at all. Marchet et al. [32] 
propose a framework for developing and designing some versions of 
automated storage and retrieval systems but address mostly the sys-
tem performance and don’t mention the reliability or dependability. 
The majority of publications deal indirectly with the ASRS depend-
ability and its components. The situation when the high reliability of 
ASRS is called by the authors in the introduction but never referred 
to in the text is common and applies to all listed publications. This 
is typical for research on ASRS, which focuses mostly on time ef-
ficiency and performance.

Two important studies relating directly to the reliability of the 
ASRS were conducted by the Material Handling Industry of America 
and reported by Kluwiec in a White Paper: Reliability of Automated 
Storage/Retrieval Systems (ASRS) [24]. Studies investigated systems 
in size from 1 to 25 aisles, with an average size being 7,4 aisles (57% 
of systems had only 1 to 5 aisles). Both studies confirmed the ex-
pected high reliability of these solutions, taking the uncertainty out of 
a long-standing question about ASRS performance. The top concerns 
of users formulated in the White Paper are downtime (unreliability), 
potential low flexibility, sunk costs, customer service, implementa-
tion, and maintenance issues. Perceptions of low reliability may be re-
lated to the experience during the trying period (about three months), 
even though new ASRS in most cases have fairly high uptime and full 
performance gain within the first year. The survey shows that uptime 
increases insignificantly in the first year of operation from 94.05% 
to 96.22%, and after ten years of operation is decreasing, but still not 
significantly. The average uptime for the group of respondents was 
97.34% during the full performance period [24].

The White Paper [24] reports that insertion/extraction equipment 
posed the greatest problems for almost 40% of respondents, and the 
control software was in second place but only for the first three years. 
The report shows that fast recovery is crucial for minimizing down-
time. To that end, the warehouse must have quick access to skilled 
personnel and immediate availability of needed repair parts. The 
scheduled maintenance did not have a significant impact on overall 
uptime while the majority of system downtime was unexpected.

An important factor of ASRS reliability is presented by Ripple 
[40], which calls pallet/load condition a cause of ASRS faults. These 
faults are excluded from availability calculations, similarly to the time 
between the fault occurrence and addressing the problem by person-
nel. Ripple concludes that equipment failures are quite rare, and when 
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totes or high-quality pallets are used, the reliability rate can exceed 
99.98% or 99.99%.

Methods aimed at researching and increasing the reliability of 
warehouses use a variety of techniques. Chung, Chan and Chan [9] 
propose genetic algorithms for maximizing handling reliability of 
distribution centers. Fazlollahtabar and Saidi-Mehrabad [12] use 
multi-objective methods for assessing reliability of AGV systems in 
a multiple AGV jobshop manufacturing system with fuzzy logic. The 
methods are applied to ASRS exactly as tool presented by Jacyna, 
Wasiak and Bobiński [19] and Jachimowski et al. [18]. The tool for 
integrated modelling and simulation of material handling and storage 
solutions can simulate ASRS in warehouse and state its reliability-
related parameters present in the databases for the tool.

An interesting approach to modelling of reliability of warehouse 
automatic systems was presented by Yan, Dunnett, and Jackson [49], 
who investigated the reliability of automated guided vehicles system 
through Failure Modes Effects and Criticality Analysis and then the 
Fault Tree Analysis (FTA) to model the causes of phase failure. The 
authors focus on mechanical and constructional aspects of the system 
and not on the organization or surroundings influence, but their ap-
proach can be developed with these factors.

Yang et al. [50] research the problem of goods location assign-
ment in automatic warehouses. Ekren et al. [11] add the element of 
class-based storage policy to automatic storage and retrieval systems. 
Both studies prove that proper assignment function for optimizing the 
cargo space and optimizing the stacker crane operation route can im-
prove overall operating efficiency, which is a part of uptime rationali-
zation. A similar problem, but formulated concerning order-picking, 
is presented by Atmaca and Ozturk [1]. They show that the appro-
priate storage assignment in ASRS impacts picking efficiency, thus 
discussing dependability of ASRS fragmentarily as an element of a 
larger system. The class-based storage allocation in ASRS was also 
the main thread of work [30] by Manzini, Gamberi, and Regattieri. 
Their multi-parametric dynamic model of a product-to-picker assign-
ment and simulation tool confirmed that ASRS should be considered 
an important chain in the warehousing process.

Liu et al. [28] represent a wide group of authors focusing on travel 
time models for different automated storage and retrieval systems ver-
sions which are important for reliability assessment. Liu et al. provided 
an extended comparison of models present in the literature and look 
for better system efficiency, which forms performance characteristics 
and influences the reliability expressed through uptime function. The 
models are not very different than those presented by Sarker and Babu 
[42] in 1995. Boysen and Stephan [5] present a survey on schedul-
ing methods applied to ASRS cranes work organization, like the one 
presented by Hachemi and Besombes [15] or Zhang et al. [51]. Dif-
ferent approaches are used in these papers, like statistical modelling 
[44], analytical modelling [31, 26], simulation [25, 10, 35], model 
predictive control [33], and optimization of all types [13, 50] includ-
ing evolution algorithms [6]. These studies aim to model and optimise 
ASRS cycle time, a base for performance analysis, and touch on the 
problem of material assignment and its influence on the operation. 
Authors combine elements of spatial configuration, handling equip-
ment, task interleaving, and material assignment but do not touch the 
dependability issues.

The literature review showed that the reliability and dependability 
of ASRS are not raised in the literature. This may be the extent and 
multifactorial nature of this problem and the inability to indicate un-
ambiguous guidelines regarding the dependability, which depends on 
several factors external to ASRS. The literature does not discuss the 
impact of the configuration of ASRS racks and conveyors on depend-
ability and the impact of material assignment or tasks resulting from 
customer orders.

3. The aspects of ASRS dependability

3.1. Dependability of logistics systems
The reliability of the systems is a component of its dependability as 

it results from the definition presented in [17]. This is especially im-
portant for logistics systems like ASRS. ASRS is considered a logis-
tics system since it has the buffering capacity, material handling com-
ponents to transform the material flow, and input and output defined 
by the qualitative and quantitative material flow structures. In conse-
quence, dependability is a better way to describe its global features 
than the commonly used reliability. Dependability is a set of features, 
including readiness, reliability, maintainability, and maintenance sup-
port for the system [17, 22]. Nowakowski [38] defines the depend-
ability of any logistics system as a measure of task implementation 
over time, which may be compared to the reliability of the technical 
system. He states that no equivalent of maintainability or reliability 
of the technical system has been formulated for logistics systems of 
large scale. Still, both terms can be applied to the ASRS when the 
assumptions are made, especially in a colloquial sense. Nowakowski 
also defines the dependability of the system through its availability. In 
technical science, the availability of a recoverable object describes the 
probability of its proper functioning in a specific moment [22]. Still, 
the ASRS’s availability can be defined as the probability of finding a 
piece of equipment at any given time during the period of operation, 
in a state which will allow a requested operation to be carried out 
correctly and without malfunction [40]. It depends on the availability 
of resources; cranes, transfers, conveyors, empty storage locations, 
or required material in the rack (see [46] and Logistics Management 
Institute definitions).

Dependability is a factor difficult to measure considered in design-
ing logistic and warehouse systems. It can be indirectly measured by 
the disturbances and reduction of the system’s performance [16, 37]. 
The additional measurements are created to reflect the flexibility of 
the system – its ability to adapt and overcome the difficulties [22], 
which can be interpreted as the possibility to reconfigure or use other 
pieces of the system to bypass those unavailable or damaged for task 
completion.

3.2. Dependability of ASRS
The dependability of ASRS is briefly discussed in the literature, 

and, as the literature query shows, it is also not an element of the 
material handling systems design procedure. Both the designers of 
automatic solutions and a few scientific works refer to the reliability 
of ASRS, which is based on the failure rate of technical devices that 
make up the system. Since such a failure rate, especially with appro-
priate preventive service, is very small, this factor is not considered in 
designing and is often used as a marketing argument. The rightness of 
this approach is justified by the industry information materials. Mean-
while, in our opinion, the dependability of ASRS should be treated 
much more broadly since the system is an expensive component of 
the warehouse facility and cannot operate separately. This category 
includes technical reliability of components, condition of cargo units, 
material assignment (slotting), spatial configuration of the rack sys-
tem and handling devices, configuration of conveyor system, automa-
tion logics, and adaptive algorithms. When these factors are mixed 
into one with the structure of the material flow, then the system’s de-
pendability can be assessed.

For this article, the scope of ASRS solutions was limited to fully 
automated, combined systems of storage and internal transport con-
sisting of stationary racks (single or double depth fixed-aisle system), 
stacker cranes equipped with a single or multi-seat fork carriage, a 
system of conveyors delivering and retrieving units from delivery 
and collection points, a system of sensors and identification devices, 
and possible connecting elements. Cranes use the single or combined 
transport cycles according to the adopted work logic. Carousels, ver-
tical lift modules, and other forms of ASRS are excluded from this 
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study. A system defined in this way can be treated as a technical sys-
tem characterized by certain reliability and dependability in the face 
of a logistic task.

The dependability of the automated storage and retrieval system 
should be considered concerning the following technological and or-
ganizational issues constituting the grounds for the problem formula-
tion:

Availability of handling elements of ASRS (stacker cranes, 1. 
conveyor systems, sensor systems, control systems).
Technical condition of ASRS devices and components (drives, 2. 
control modules, construction frames, power supply).
Quality (condition) of handled logistic units (pallets, plastic 3. 
containers, boxes) and its influence on handling processes.
Slotting patterns resulting from warehouse activity profiling 4. 
and conditioning the flow congestion.
Configuration of structural components of ASRS (racking 5. 
system, aisles, number of cranes, types of fork carriage, crane 
transfers).
Logic of operation.6. 
Efficiency of low-level components of ASRS.7. 
Information flow irregularities.8. 
Material flow irregularities and accumulations resulting from 9. 
orders structure.

Increased dependability of technical systems requires installed re-
sources that potentially increase its cost or reduce its performance. 
So, the system’s dependability can be influenced by its configuration 
and scale. Common methods for governing the dependability of the 
ASRS are as follows:

Technological redundancy:1. 
Increasing the number of stacker cranes leads to an increased  ◦
number of working aisles at the expense of the aisles’ length 
and/or height.
Permanent assignment of stacker cranes to the aisles or using  ◦
the transfer bridges and sliding mechanism to move the cranes 
between the corridors.
Use of multi-unit fork carriages. ◦
Using single-deep racking systems instead of the double- or  ◦
more deep lanes.
Universal and reconfigurable conveyor systems with redun- ◦
dant passages between main transport routes.
Doubled feeding system. ◦
Material handling support systems:2. 
The restrictive material carriers’ quality policy (pallets, con- ◦
tainers, boxes) when using units exchanged within the supply 
chain.
Advanced sensors systems detecting units bent out of shape  ◦
or damaged.
Dedicated plastic containers or trays for material handling. ◦
Slotting techniques:3. 
Representing most popular or key SKUs in more than one  ◦
aisle.
Functional division of the ASRS area into independent ware- ◦
house instances (two or more) in which all material groups 
(family groups) are independently represented.
Applying standard material assignment procedures based on  ◦
warehouse activity profiling.
ASRS’s place in the material flow organization:4. 
Reduction of material flows pile up against the ASRS by ra- ◦
tional work plan.
Equal load on individual working aisles (related to slotting). ◦
Rationalization of the ASRS work schedule. ◦

Redundancy always must be confronted with the effectiveness of 
the system. Typical ASRS solutions use one stacker crane in one aisle, 
so the number of stacker cranes equals the number of aisles. Such a 
configuration, with high relative technical reliability of devices, gives 
satisfactory results, simplifies the system, reduces the space require-

ment due to the lack of transfer mechanisms, and shortens the average 
operation time. 

Multi-unit fork carriage enables task interleaving and increases 
system efficiency while maintaining partial efficiency of the stacker 
crane in non-critical damage to the handling device. The fork carriage 
is perceived to be quite vulnerable to damage, especially when inter-
acting with a damaged load unit.

The use of single-deep racks ensures full stock selectivity in the 
ASRS area, which may be important in case of damage to the han-
dling elements. It leads to a significant increase in the number of 
stacker cranes and space, but in case of failure of one of the devices, 
the cranes in other working aisles have access to the units of required 
material. Of course, the use of such a configuration requires an eco-
nomic calculation of profitability. It is also strictly dependent on the 
number of SKUs and the number of material groups to be handled.

Conveyor systems are the second key component of ASRS supply-
ing and receiving units from the ASRS. Conveyors can be configured 
in various ways. In most cases, the mainline system performs material 
flow, and the input and output separation is realized directly in front of 
the stacker cranes. To increase the reliability of the conveyor system, it 
is necessary to introduce the possibility of changing the flow direction 
of the selected conveyor sections (quite difficult to implement) and to 
place additional connections that will bypass damaged or congested 
places on the network. For warehouse process reasons, separated sup-
ply and receiving systems are used, as well as duplicated systems.

Practitioners report that potential failures in ASRS are often as-
sociated with poorly formed material units that lose stability, shape, 
or structural integrity during handling. This causes blocking of units 
in conveyor systems, stacker cranes and racks, damage to the instal-
lation, and requires operator intervention. Advanced sensor systems 
built into the conveyor network detect and withdraw damaged units to 
avoid problems, or manual quality control stations are used. Such sys-
tems increase the cost of installation but eliminate downtime caused 
by material quality problems. Another solution in this area is dedicat-
ed additional material carriers like a doubled pallet, plastic container, 
or tray, which are easily operable by the system but require additional 
handling and space.

The last of the essential techniques for increasing the dependability 
of ASRS is tailored slotting. In ASRS, apart from failures in power 
or control systems, single installation elements are damaged, making 
one of the working cranes inoperable. The other ones are functional. 
For this reason, it is important to represent all the key products in 
more than one place in the ASRS. Of course, solutions in this area 
must consider the number and type of products and warehouse activ-
ity profiles.

ASRS’s place in the material flow organization may also impact 
the dependability of its work. The uneven workload of the system may 
temporarily exceed the efficiency of individual working aisles and 
conveyor systems supplying them. This, in turn, will cause conges-
tion and, in the case of simplified control algorithms, may interfere 
with the operation of other ASRS elements. It is also important to 
maximize the available work time of the ASRS, which results from 
the schedule of the warehouse process.

4. ASRS dependability measures
The dependability of ASRS cannot be measured without the con-

text of the warehouse system in which it works. Synthetic measures 
should be used to address the above-mentioned factors holistically 
and at the same time fit into the superior assessment of the ware-
house process through OTIFEF (On-time, in-full, error-free) or POR 
(Perfect Order Rate). The OTIFEF measure is described in detail in 
[22] and usually if formulated separately for inbound and outbound 
processes since these processes have a little correlation in short time 
(daily regime). Still, it can be formulated as the probability of han-
dling all periodical (daily) supplies and shipments on time and free 
of qualitative and quantitative errors or the percent of all supplies and 
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shipments handled in a standard way and in line with perfect-order 
requirements [23]. This measure can be reduced to the needs of the 
ASRS assessment to the time-related component since qualitative and 
quantitative errors are not generic to the automatic solutions.

The impact of ASRS operation on the OTIFEF of the entire ware-
house can be significant, especially when it feeds the material-to-
human picking systems (wave picking) or direct shipments in the 
same-business day model. A delay in delivery of a single sku delays 
the execution of the entire order. In extreme cases, the order will be 
shipped incomplete if ASRS cannot deliver the material before the 
time window pass. This is strongly related to the warehouse process 
scheduling problem (as referred in [28]):

 OT IF EFOTIFEF P P P= ⋅ ⋅  (1)

where: POT, PIF, and PEF are the probability of handling all planned 
shipments on-time, in-full, and with no errors respectively.

To evaluate the POT component for ASRS the relation between re-
sources R put into process realization and volume of orders must be 
found. Efficient resources assigned to ASRS will increase plausibility 
of immediate put-away and retrieval – dependability but cost more. 
Figure 1 shows the exemplary warehouse process in which ASRS is 
responsible for replenishing the picking area and directly outbound 
area with materials under the customer’s orders. Distribution of re-
sources constituting the dependability of ASRS will then influence the 
total order realization time t3:

t E T R E T R E T R E T RRP RP P P RS RS SCP SCP3 = ( )( ) ( )( ) ( ) ( )( )max{ , , , , ( , , , , EE T RL L, }( )( )
(2)

where:
E(TRP,(RRP)) – expected time of retrieving materials from ASRS 

with resources RRP,
E(TP,(RP)) – expected time of picking in picking area with re-

sources RP,
E(TRS,(RRS)) – expected time of retrieving from ASRS for direct 

shipment with resources RRS,
E(TSCP,(RSCP)) – expected time of sorting, consolidation and packing 

with resources RSCP,
E(TL,(RL)) – expected time of loading materials with resources 

RL,

In Figure 1, only the outbound processes are shown. In the analysed 
system, inbound processes requiring the same resources additionally 
load the ASRS. However, they are not directly responsible for the 
perfect-order-rate perceived by the client and then the dependability. 
Thus, inbound processes will affect the execution time of outbound 
processes, which will be considered in the simulation model.

Resources R reduced to their monetary value include ASRS equip-
ment, mainly stacker cranes, which impact the productivity of the sys-
tem. Resources influence directly handling potential (performance) 
and then the dependability of the system:

 RP P RS SCP LR R R R R R= + + + +

The above equation includes all resources in the analysed ware-
house process. Still, if the resources not assigned to the ASRS are 
reduced to constant values, then it is possible to control the depend-
ability of the warehousing system through the ASRS configuration. 
Then two tangled general criteria functions are used:

 
               

3 1  mint t− →  (3)

 
               

 minR →  (4)

bounded by the constrain:

 0 3 1 STW STWt t t≤ ≤  (5)

where tSTW0 and tSTW1 are the start and the end moments of shipment 
time-window resulting from external to warehouse process condi-
tions.

Therefore, the operation time is the main factor influencing the de-
pendability of ASRS and, therefore, will be the basic factor tested in 
the simulation experiment.

5. Assumptions for the simulation experiment
The experiments were carried out in the simulation model pre-

pared in FlexSim – 3D simulation modeling and analysis software (v. 
21.2.0). Prepared model allows for simulation of single-deep ASRS of 
any configuration and with any workload. 

Model uses 1 to 10 work aisles with fixed or transferred cranes, 
single-deep racking system, two in/out conveyor systems for sepa-
rated or combined delivery and retrieval, MTBF and MTTR functions 
for all elements and range of slotting patters (Figures 2 and 3).

The configuration of the experimental system is based on:
20 single-deep rack walls (20 bays, 12 levels, 3 slots per rack • 
cell) for 1200x800 EUR1 pallet units with a maximum height of 
1200 mm,
1 to 10 pallet cranes (V• max = 1,6 m / s, acceleration / deceleration 
A = 0,3 m/s2),
1 transfer for cranes (V• max = 1 m/s, acceleration / deceleration  
A = 0,2 m/s2),

upper conveyor system (only for optional • 
separated collection, Vmax = 1m/s),

bottom conveyor system (collection and de-• 
livery, Vmax = 1 m/s).

Stacker cranes are assigned to working aisles, 
but the activated stacker cranes are less than 10, 
the transfer moves them between the working 
aisles, searching for the nearest stacker crane 
at idle. The system of conveyors delivering and 
collecting units from racks is either integrated 
or separated. 

The conveyor system allows the circulation 
of units addressed into the racks. If it is not pos-
sible for the unit to enter the conveyor segment 

supplying a given rack, the unit will perform a maximum of 3 loops, 
and after the third attempt, it will leave the system unhandled.

The examined ASRS supplies the dynamic order picking system 
with required materials and deposits the units leaving this system. It 
is also used to buffer homogeneous units directly from delivery and 
releases units outgoing directly to customers. Therefore, delays in 
the put-away or retrieval of units by ASRS will impact the remaining 
components of the warehouse process and thus on OTIFEF.

Fig. 1. Warehousing process using ASRS for order realization
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According to the ABC principle, the material in the system was di-
vided into 7 material groups with different turnover and initial stock. 
The system operates 16 hours a day, while the schedules for deliveries 
retrievals assume an uneven flow at selected hours (Table 1). It was 
assumed that the system realizes on average 300 orders of 6 pallets 
(SKUs) each. Initial stock represents the material structure in line with 
the distribution of material groups and their parameters (Table 2).

All elements of equipment are described by reliability functions: 
Mean time between failures (MTBF) and Mean time to repair (MTTR) 
as it results from [24] (Table 3).

To illustrate the aspects of ASRS dependability discussed above, 
the 160 simulation runs for 40 scenarios were done. The spectrum of 
scenarios is based on a changing number of active cranes (2, 5, 7, and 
10, respectively), the use of a separate entry and exit system, and five 
variants of product slotting patterns (Figure 4).

Random location (SP1).1. 
Volume-based product location along work aisles (SP2).2. 
Volume-based left-to-right product location (SP3).3. 
Two separated storage areas with a random location (SP4).4. 
Two separated storage areas with volume-based left-to-right 5. 
product location (SP5).

Selected slotting patterns will reveal the bottlenecks of the system 
affecting its actual dependability.

6. ASRS dependability simulation
The simulation was presented in a one-day and monthly regime 

to show the impact of potential damage to the operating components 
on the system’s dependability. During the simulation, the basic pa-
rameters determining ASRS usability in the warehouse process were 
examined: the average put-away time (Table 4 and Figure 5) and the 

Table 1. Material flow schedule

Hours % of daily delivery % of daily retrieval

8.00 – 9.00*) 5 1

9.00 – 10.00 5 7

10.00 – 11.00 5 7

11.00 – 12.00 10 7

12.00 – 13.00 20 7

13.00 – 14.00 15 7

14.00 – 15.00 10 10

15.00 – 16.00 10 10

16.00 – 17.00 1 10

17.00 – 18.00 5 8

18.00 – 19.00 5 8

19.00 – 20.00 3 8

20.00 – 21.00 2 5

21.00 – 22.00 2 5

22.00 – 23.00 1 0

23.00 – 24.00 1 0
*) Intervals are rounded to whole hours.

Table 2. Simulation scenarios

Group of 
material

% of 
stock

% of flow (% of 
total number of 

units)

Number of 
SKUs in the 

group

Initial stock 
[units]

A 1 10 10 239

B 4 25 40 998

C 10 30 100 813

D 10 10 100 389

E 10 7 100 595

F 10 7 100 345

G 55 11 550 1921

Fig. 2. General view of the ASRS model in operation

Fig. 3. General view of the pallet cranes in operation

Fig. 4. Stock visualization for different slotting patterns (SP)

Fig. 5. Mean (95% confidence interval) of average put-away time
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average retrieval time (Table 5 and Figure 6), the number of units han-
dled in a given time, and the number of delayed units (Table 6).

The above data present dependencies between ASRS configuration 
(assigned resources R) and slotting rules at constant loads and de-
vice reliability functions. The most important measure for the ASRS 
dependability is the retrieval and depositing time (Figures 5 and 6). 
These parameters determine the time component of the material re-
lease process, which is crucial for the Perfect Order Rate index, and 
thus for the quality of customer service (conf. [21]).

Following the assumptions given in point X, the unit service time 
in the ASRS depends on the speed of unit movement, the availability 
of the cranes in the working corridor, congestion in the elements of the 
conveyor system, and technical reliability of the system components.

As shown in Figure 5, the average put-away time is strictly de-
pendent on the number of stacker cranes in the system. When 2 of 10 
cranes (scenarios S1 and S5) are used, the unit put-away times range 
from appr. 1 200 s (20 min) to appr. 1 450 s (25 min), which results 
from the lack of available stacker crane in the corridor and the need 

to move it between corridors. This causes the congestion of units in 
the conveyor system, which pushes out units from the system after 3 
unsuccessful attempts (Table 6).

By increasing the number of stacker cranes to 5, 7, and 10 respec-
tively, the access time is reduced. For 5 of 10 stacker cranes, the con-
gestion in the conveyor system is not visible.

The separation of the input and output conveyors (scenarios S5 to 
S10) reduces the put-away time with a small number of stacker cranes 
but does not significantly affect this time with 5 or more cranes.

Average retrieval time is shaped by the same principles (Figure 6). 
The very long retrieval time is particularly exposed in scenarios with 
2 of 10 stacker cranes (S1 and S5), which is an extreme case reached 
3,2 hours with a common conveyor system for entry and exit. This is 
an obvious aberration resulting from the extreme congestion of units, 
which makes it impossible to complete the ASRS logistics task. As 
the number of stacker cranes increases, times are normalized. Longer 
times of retrieval operations result indirectly from the logic of the 

Table 3. Statistical distributions of MTBF and MTTR

Type of equipment Down time [s] Up time [s]*)

Cranes Uniform (between 1800 and 28800) Exponential (location 14400, scale 5400000)

Cranes control system Uniform (between 900 and 57600.) Exponential (location 403202, scale 1612800)

Transfer Uniform (between 1800 and 5400) Exponential (location 52200, scale 1607400)

Lower conveyor set Uniform (between 1800 and 5400) Exponential (location 52200, scale 1607400)

Upper conveyor set Uniform (between 1800 and 5400) Exponential (location 52200, scale 1607400)
*) First failure time equal to up time distribution.

Table 4. Mean (95% confidence interval) of average put-away time [s]

Scenario No of cranes Upper conveyors SP1 SP2 SP3 SP4 SP5

S1 2 Not used 1378,16 ± 105,74 1458,42 ± 210,63 1422,21 ± 314,82 1229,70 ± 206,57 1248,46 ± 161,95

S2 5 Not used 299,77 ± 63,37 287,63 ± 24,97 309,93 ± 81,66 294,22 ± 40,43 291,53 ± 40,65

S3 7 Not used 175,16 ± 25,62 166,30 ± 16,59 174,81 ± 14,64 174,17 ± 16,31 168,62 ± 11,72

S4 10 Not used 104,31 ± 3,50 104,70 ± 6,27 105,67 ± 2,73 104,76 ± 2,69 108,34 ± 2,80

S5 2 Used 1300,00 ± 248,10 1424,91 ± 538,32 1291,54 ± 166,68 1359,02 ± 123,95 1325,65 ± 146,61

S6 5 Used 270,50 ± 22,33 264,58 ± 17,18 291,12 ± 46,92 300,37 ± 85,13 332,45 ± 71,26

S7 7 Used 183,13 ± 28,61 182,47 ± 19,90 188,11 ± 12,80 175,65 ± 22,92 189,79 ± 7,01

S8 10 Used 106,99 ± 3,49 106,28 ± 4,86 107,45 ± 2,88 106,42 ± 2,57 110,13 ± 3,79

Table 5. Mean (95% confidence interval) of average retrieval time [s]

Scenario No of 
cranes Upper conveyors SP1 SP2 SP3 SP4 SP5

S1 2 Not used 3753,93 ± 1714,11 2759,37 ± 1555,10 3357,70 ± 1502,94 6315,52 ± 5374,42 4713,04 ± 2392,40

S2 5 Not used 1214,31 ± 764,99 1261,35 ± 689,56 1102,20 ± 884,82 1259,55 ± 711,66 1241,70 ± 770,32

S3 7 Not used 333,29 ± 43,13 305,87 ± 89,77 373,19 ± 19,95 352,29 ± 70,50 303,33 ± 92,11

S4 10 Not used 174,12 ± 2,41 172,93 ± 3,37 177,72 ± 5,31 176,09 ± 3,39 175,61 ± 2,86

S5 2 Used 8512,85 ± 5651,78 11458,12 ± 7652,40 8675,32 ± 4258,15 7279,63 ± 3787,02 8321,44 ± 4176,63

S6 5 Used 812,99 ± 503,59 711,26 ± 559,23 1094,83 ± 1042,79 1091,60 ± 945,93 1529,83 ± 596,95

S7 7 Used 336,96 ± 52,08 357,69 ± 54,87 354,88 ± 69,20 325,58 ± 118,36 337,84 ± 73,45

S8 10 Used 174,90 ± 2,91 173,29 ± 3,20 178,49 ± 5,24 176,93 ± 3,06 176,57 ± 2,80
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stacker crane. The crane to be moved between the corridors will per-
form an average of 2 put-away operations per 1 retrieval operation.

Slotting scenarios based on the random distribution of the assort-
ment (SP1) in the locations are characterized by the shortest operation 
times, which results from the logic of the stacker crane operation. The 
crane changing the corridors performs combined cycles, and traverses 
the entire corridor length regardless of the picking address. Slotting 
patterns using volume-based material assignment (especially SP2) al-
low for a slight reduction in the operation time, but it is related to the 
logic of the cranes.

According to the literature on the subject, the technical reliabil-
ity of the ASRS elements (stacker cranes, transfer, control system, 
conveyors) does not have a noticeable effect on the ASRS opera-

tion. It is clear especially when scheduled maintenance programs 
are executed outside the regular work time. Recorded occurrences of 
damage and recovery times did not affect the reliability of the entire 
ASRS in this case.

7. Conclusions
The article presents a discussion on reliability in logistic systems, 

which cannot always be used as a measure for the assessment of ware-
house technologies. Complex storage systems, especially multi-unit 
integrated automatic solutions such as Automated Storage and Re-
trieval Systems, pose new challenges in measuring their reliability. 
While it is quite clear on the technical level, the complex conditions 
of the surrounding logistics process make the assessment of ASRS 
solutions difficult. A much better solution turns out to be the use of 
dependability measures, which also consider non-structural factors of 
warehouse technology, especially related to work patterns and allo-
cated labour resources (cost-effectiveness).

The ASRS configuration and allocated resources affect its per-
formance, especially at high workloads. They must be considered as 
important factors forming the dependability of ASRS and the entire 
warehouse process.

The simulation studies showed the influence of configuration fac-
tors and organizational factors such as material slotting on expected 
retrieval and put-away times, which in turn are of great importance for 
the perfect-order-rate of the entire warehousing process.

Therefore, the approach used in practice presented in the Introduc-
tion section seems to be right. In this approach, the reliability meas-
ures are abandoned in warehouse automation in favour of efficiency 
measures. However, in this case, they should also be related to spe-
cific working conditions, which is postulated in this article.

Further research in this area should include developing a catalogue 
of standard factors (and their measures) influencing the dependability 
of ASRS as components of a warehouse system focused on the execu-
tion of customer orders.

Table 6. Mean (95% conf. int.) of average number of put-away / retrieved / not served units

Scenario No of 
cranes

Upper con-
veyors SP1 SP2 SP3 SP4 SP5

S1 2 Not used 440.25/ 416.50/ 
273.50

357.50/ 332.75/ 
178.25

398.75/ 380.50/ 
229.00

835.75/ 570.50/ 
658.00

513.50/ 500.50/ 
388.75

S2 5 Not used 1787.25/ 
1028.00/ 24.50

1791.50/ 998.00/ 
20.25

1779.25/ 
1120.50/ 32.50

1791.00/ 990.25/ 
20.75

1782.00/ 962.75/ 
29.75

S3 7 Not used 1810.00/ 
1305.00/ 1.75

1808.25/ 
1019.25/ 3.50

1809.00/ 
1346.50/ 2.75

1809.00/ 
1540.00/ 2.75

1808.25/ 
1149.75/ 3.50

S4 10 Not used 1811.75/ 
1795.25/ 0.00

1811.75/ 
1795.25/ 0.00

1811.75/ 
1795.25/ 0.00

1811.75/ 
1795.25/ 0.00

1811.75/ 
1795.25/ 0.00

S5 2 Used 705.50/ 697.50/ 
569.00

645.25/ 986.75/ 
511.00

608.50/ 714.25/ 
454.00

501.00/ 628.00/ 
365.25

546.00/ 675.75/ 
435.75

S6 5 Used 1794.75/ 727.75/ 
17.00

1801.25/ 655.25/ 
10.50

1786.00/ 845.75/ 
25.75

1778.00/ 891.00/ 
33.75

1766.25/ 
1243.50/ 45.50

S7 7 Used 1809.00/ 
1537.50/ 2.75

1809.25/ 
1440.50/ 2.50

1807.50/ 
1795.00/ 4.25

1810.25/ 
1249.00/ 1.50

1807.75/ 
1791.25/ 4.00

S8 10 Used 1811.75/ 
1795.25/ 0.00

1811.75/ 
1795.25/ 0.00

1811.75/ 
1795.25/ 0.00

1811.50/ 
1795.25/ 0.25

1811.75/ 
1795.25/ 0.00
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1. Introduction
The improvement of rolling stock raises several problems of the 

mechanical wheel-rail interaction: the risk of derailment, the intensity 
of rolling surface wear and the discomfort caused to passengers by 
vibrations [12, 14, 30]. In typical cases, technical solutions are under 
development to eliminate these problems. However, there are also un-
solved aspects of the problems as mentioned above.

The wheel conicity ensures the stability and guidance of rolling 
stock with solid (ordinary) wheelsets and uniform rotational speed, 
respectively higher or lower linear speed in contact with rails [23]. It 
does not work on rail vehicles with independently rotating wheels, so 
other methods are needed. The damping of rolling contact of wheel 
and rail in dry friction provided by the primary suspension dampers of 
cargo rolling-stocks is considered in numerical simulations performed 
by Polish scientist Piotrowski [22]. Noticeable that the stability and 
smoothness of rolling stock running influenced the wear intensity of 
running gear and track components [11, 26].

The proposed power-steering railway bogie consists of independ-
ently rotating wheels (IRWs) with a power-steering device. It ena-
bles us to eliminate steering vibration while realising ideal steering 
with slight power assist on curving [3, 18]. There is a proposed use 
of IRWs with inverse tread conicity to get self-steering ability with-
out any complex bogie structure. The testing and numerical simula-
tion results show that the proposed IRWs with inverse tread conicity 

have good performance [27, 28]. The benefits of implementing active 
steering systems in railway vehicles mounting bogies with IRWs and 
outlines a design methodology for such systems are presented [21]. 

Noticeably that the parameters and characteristics of wheelsets with 
IRWs are regulated by law. In research, scientists also examine them, 
for example, the standard ISO 2631, EN 12299:2009 [10]. However, 
legal issues are not the subject of this research.

Solving rolling stock stability issues leads to passenger comfort 
issues, and peculiarities also occur here. One of them is passenger 
comfort in terms of vibrations. The Sperling’s comfort index (SCI) is 
commonly used in scientific research to assess the passenger car ride 
smoothness in terms of vibrations. One of the main directions of rail-
way development is to increase the running speed of trains. Naturally, 
research is usually carried out at high speeds, and the SCI is examined 
at high speeds (more than 160 km/h). However, with the development 
of rail transport, specific cases always occur, such as running vehicles 
with IRWs on small radius curves (less than 300 m radii). This refers 
to railway track repair works, where vehicles need to move from one 
track to another or manoeuvring in railway stations or tunnels. In this 
case, the speed is lower (there may be restrictions of 50 km/h and 
less). Passenger car ride smoothness is also essential here, and a study 
of the SCI for such issues is needed. The rolling surface of the wheels 
could be damaged when vehicles are running on poor quality railway 
tracks. With larger than the allowable damage, continued running on 
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rail vehicles is prohibited. However, the permissible extent of damage 
caused by vibrations affects passenger car ride smoothness and must 
be estimated by SCI.

Examples of the study of the impact of rolling stock wheels with 
damage on the rails and on the rail vehicle ride smoothness are de-
scribed in scientific papers [2, 20]. The most common damage to 
the wheelset is the unevenness of the rolling surface, the wear of the 
flange, wheel flats and cracks. The unevenness of the wheel rolling 
surface of the wheels can be divided into three types according to their 
effect on the rail:

Unevenness causing impact and loss of contact (flats, bends, 1. 
abrasions, cracks, etc.). The unevenness of the wheel rolling 
surface is usually characterised by the depth and the length of 
the flat. 
Insulated irregularities increase the vertical impact of the 2. 
wheel on the rail without loss of contact (uneven wear, “out-
of-roundness”, etc.).
Wheel flange damage. The flange prevents the wheelset from the 3. 
derailment.  A wheel is considered unusable and unsafe when its 
flange is critically thinned (equal to or less than 25 mm). 

Problematic of wheel rolling surface are considered in the most 
publications about the long-term interaction between rolling stock 
running gear and track [8, 17, 4], the intensity of wheelset wear is 
also examined [1, 7, 13, 23]. The phenomena of wheelset wear have 
been extensively studied [1, 6, 15]. The wear of the wheel rolling sur-
face is divided into even and uneven. Even wear is wear of the wheel 
rolling surface when the wheel rolling surface wears evenly (regular 
“circle”). Uneven wear of the wheel rolling surface differs from even 
wear in that the rolling surface wears unevenly (“out-of-roundness”), 
which increases the dynamic impact of the wheel on the rail [15, 25]. 
It is difficult to find such damage without removing the wheelset dur-
ing a wagon inspection, as uneven wear can account for one-fifth or 
more of the total wheel surface [28].

The flats are the most common wheel running surface damages due 
to wheelset slip or jammed brake pads [5, 27, 31]. Flats result from 
wheel skidding, wheel jamming, or brake failure (especially during 
the wagon sorting on hubs). Flats occur in winter much more often 
than in summer. Mathematical models of the impact effect of wheel-
set with a flat on the rail have been discussed in the works of various 
scientists [5, 26].

The combination of short-term dynamics and long-term wear proc-
esses is a very complicated and unexplored phenomenon, but the 
influence of physical factors such as surface unevenness, material 
properties, or micro-crack intensity must be considered [24, 32]. In 
most scientific research, wear processes are usually simplified and 
conditioned only by frictional forces, and the dependence on plastic 
deformation and other processes influencing the formation of cracks 
are not considered [20, 16]. The study of wheelset damage observed 
that the damage formation process is a complicated and complex proc-
ess. Finally, the analysis of wheelset damage shows that the safe and 
smooth movement of rolling stock is greatly influenced by the shape 
and condition of the rolling surface of the wheelset wheel [9].

Some research has been performed by scientists of Korea Railroad 
Institute to correlate various evaluation methods by using different vi-
bration models [12]. The ride comfort indexes defined in ISO 2631 and 
EN 12299:2009 are commonly adopted in favour of the SCI method is 
seldom applied and discussed.  Ride comfort in railway ve-
hicles on a track with vertical irregularities was evaluated by 
implementing two different comfort indexes, corresponding 
to the EN 12299:2009 and SCI method, respectively [24]. 
The ride comfort level of passengers in two positions, sit-
ting and standing, was compared using the EN 12299:2009 
and SCI methods [19]. The Ride Comfort Index discussed in 
both studies is the Mean Comfort Index. Another frequently 
used Ride Comfort Index in EN 12299:2009 is called the 
Continuous Comfort Index. This index uses a quadratic 

average (r.m.s) of the frequency weighted accelerations measured to 
evaluate the Mean Comfort [14]. Since the mean comfort is determined 
in the longitudinal, lateral, and vertical directions, respectively, and it 
has similarities to Sperling’s comfort index.

Based on a comparative analysis of the methods in the literature, 
the SCI was selected by Authors as the most appropriate indicator to 
assess the running comfort of a passenger car. This study aims to pro-
vide different ways of SCI identification under specific operating con-
ditions of passenger wagon, such as running on a small radius curve 
of a track or when the wheel running surface is damaged. In order to 
reduce the intensity of wear of the rolling stock wheel flange due to 
the friction on the track curves, the possibility of installing IRWs on 
the rolling stock (instead of the usual solid wheelsets) is investigated. 
Various issues of rail vehicle running smoothness are examined in the 
research, as one of the main subjects is rail vehicles’ stability. 

2. Methodology of research on running gear vibration 
During the assessment of rail vehicle running gear vibration level 

and considering the passenger comfort, the SCI was used as an indica-
tor of running smoothness [6, 29]. The value of SCI was calculated 
according to the formula:
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where: k = 0.737, if oscillations are lateral, and k = 0.588 if oscilla-
tions are vertical. 

The smooth-running indicators calculated based on Equations 
(1-2) are compared with the standard assessment scale. The quality 
of rail vehicle running gear behaviour is finally assessed according to 
comparative results. 

At SCI values up to 1, the human senses do not feel the impact of 
vibrations; at SCI values from 1 to 3, vibrations are felt but do not 
cause any discomfort, and at SCI values from 3.0 to 3.5, the discom-
fort is felt. Exceeding the SCI value of more than 4, the vibrations are 
hazardous to human health. Therefore, the SCI limit for vehicles is 
taken up to 3.25. 

Based on this methodology, examples of the values of the SCI un-
der the specific operating conditions of a passenger car running gear 
are further analysed, for example, the case of a passenger car with 
independently rotating wheels, a small radius curve or when the wheel 
running surface has damage.

At first, the SCI was modelled for a passenger car with IRWs and 
with typical (unmodified) suspension, which parameters are presented 
in Table 1.

Table 1. Typical parameters for passenger car suspension

Parameter Value

Primary suspension stiffness coefficient in the lateral direction, N/m 1∙106

Primary suspension stiffness coefficient in the vertical direction, N/m 1∙106

Secondary suspension stiffness coefficient in the lateral direction, N/m 2∙105

Secondary suspension stiffness coefficient in the vertical direction, N/m 2∙105

Total damping factor of primary and secondary suspension, Ns/m 1∙104
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3. Results of numerical modelling of a passenger car 
running

3.1. Sperling’s comfort index values of typical suspension of 
passenger car

During the study, SCI in lateral and vertical directions at differ-
ent running speeds were simulated by software package “Universal 
Mechanism” (UM) on different sections of the track. The obtained 
values of SCI are provided in Figure 1 and Figure 2.

The diagram of Figure 1 shows that the SCI (in terms of vertical 
oscillations) decreases steadily with increasing speed from 180 km/h 
for both the one solid wheelset (SW) and the independently rotating 
wheels.

The curves of Figure 2 show that divergences occur in the variation 
of the SCI in terms of lateral vibrations at a speed of 200 km/h. Ex-
amining the change of the SCI according to the speed when the track 
section is tangent, different tendencies of the criterion change can be 
seen by analysing the oscillations in the vertical and horizontal planes. 
The values calculated from the vibration parameters of the vertical 
plane decrease gradually with increasing speed from 180 km/h to 210 
km/h. Meanwhile, in the horizontal plane, at a speed of 200-210 km/h, 
divergences of value change are observed. The graphs of the variation 
of the values of the SCI in the 200 m radius curve according to the 
speed are shown in Figure 3 and Figure 4.

The diagram of Fig. 3 shows that the SCI changes consistently in 
terms of vertical oscillations, and in the 200 m radius curve, only the 

lower speed range is considered in the curve; the SCI, in this case, 
increases consistently (almost consistently).

As in the tangent section of the track, divergences (in the speed 
range 60-70 km/h) are observed in the change of the SCI in terms of 
lateral oscillations with the 200 m radius curve (Fig. 4). Examining 
the change of the SCI in terms of the speed at the 200 m radius of the 
track curve, as in the case of a tangent track, different trends of the 
criterion change can be seen by analysing the oscillations in the verti-
cal and lateral planes. The values calculated from the vertical plane 
oscillation parameters increase steadily as the speed increases from 
50 km/h to 80 km/h (the trend changes slightly at 90 km/h). In the 
horizontal plane, at speeds of 60-70 km/h, the divergences of change 
of SCI values are observed. The Authors of the study pointed out that 
so far, only cases with standard passenger car suspension have been 
considered. By changing the stiffness of the rail vehicle suspension, 
the dynamic parameters of the passenger car running also change. 

3.2. Sperling’s comfort index values of adjusted suspension 
of passenger car

In order to improve the dynamic parameters of the passenger car 
with IRWs, the stiffness values of the primary and secondary suspen-
sion elements of their running gear were adjusted. Prior to adjusting 
the values, a study was performed to determine how the mean square 
of carbody accelerations depend on the stiffness of the respective sus-
pension [28]. The dependences of the mean square of carbody ac-
celerations on the stiffness of the primary suspension are presented in 
Figure 5 and Figure 6.

The dependences of the mean square of carbody accelerations on 
the vertical and the lateral stiffness of the primary suspension, respec-

Fig. 1. Sperling’s comfort index values in the vertical direction in the track 
tangent section

Fig. 2. Sperling’s comfort index values in the lateral direction in the track 
tangent section

Fig. 3. Sperling’s comfort index values in the vertical direction in 200 m ra-
dius curve

Fig. 4. Sperling’s comfort index values in the lateral direction in 200 m radius 
curve

Fig. 5. Dependence of mean square of carbody accelerations on the vertical 
stiffness of the primary suspension

Fig. 6. Dependence of mean square of carbody accelerations on the lateral 
stiffness of the primary suspension
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tively, indicate that the stiffness of the standard suspension elements 
needs to be adjusted to improve the dynamic characteristics of the 
passenger car with IRWs.

The dependences of the mean square of carbody accelerations on 
the stiffness of the secondary suspension are presented in Figure 7 
and Figure 8.

The dependence of the mean square of carbody accelerations on the 
secondary suspension damping parameters is shown in Figure 9.

The dependence of the mean square of carbody accelerations of the 
secondary suspension for vertical and lateral stiffness, respectively, 
as well the dependence on the mean square carbody accelerations on 
the secondary suspension damping parameters indicate that the stiff-
ness of the standard suspension elements also needs to be adjusted to 
improve the IRW dynamic performance.

Based on the research data, the stiffness values of the suspension 
elements were chosen. These data are submitted in Table 2.

By using the newly selected values of the stiffness of the passenger 
car suspension elements, the regularities of the change of SCI values 
were remodelled. SCI gained values are presented in Figures 10 and 
Figure 11, respectively.

The curves of Fig. 10 show that in the case of a standard suspen-
sion, the SCI on tangent track (in terms of vertical vibrations) de-
creases steadily with increasing the speed from 180 km/h for both the 
SW and the IRWs.

The curves of Figure 11 show that, as with the standard suspension, 
the SCI divergences occur on the tangent section in the variation of 
the SCI in terms of lateral vibrations. This is especially true in the case 

of IRWs. Comparing the tendencies of the change of the value of the 
SCI on the track tangent section in the vertical and lateral directions 
was noticed that in the vertical direction, the consistent decrease is ob-
served with increasing running speed. The divergences of change of 
SCI value in the lateral direction in the, are observed when the speed 
of a passenger car with IRWs reaches the values of (240-280) km/h.

The variation of SCI values on the 200 m radius curve is shown in 
Figure 12 and Figure 13.

SCI values in the vertical direction on a track curve with a radius of 
200 m, as in the case of a standard suspension, changes consistently, 
i.e. without observable divergences.

Table 2. Values of stiffness coefficients of passenger car suspension ele-
ments after adjustment

Parameter Value

Primary suspension stiffness coefficient in the lateral direc-
tion, N/m 9∙105

Primary suspension stiffness coefficient in the vertical direc-
tion, N/m 9∙105

Secondary suspension stiffness coefficient in the lateral 
direction, N/m 2.2∙105

Secondary suspension stiffness coefficient in the vertical 
direction, N/m 1.2∙106

Total damping factor of primary and secondary suspension, 
Ns/m 7∙104

Fig. 7. Dependence of mean square of carbody accelerations on the vertical 
stiffness of the secondary suspension

Fig. 11. The value of the Sperling’s comfort index in the lateral direction in 
tangent track

Fig. 12. The value of the Sperling’s comfort index in the vertical direction in a 
200 m radius curve

Fig. 10. The value of the Sperling’s comfort index in the vertical direction in 
tangent track

Fig. 9. Dependence of mean square body accelerations on secondary suspen-
sion damping parameters

Fig. 8. Dependence of mean square of carbody accelerations on the lateral 
stiffness of the secondary suspensionsuspension
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The divergences of the variation of SCI values in the 
lateral direction on the 200 m radius curve of the track, 
as in the case of standard suspension, were observed. The 
change of SCI values according to the speed in the 200 
m radius curve shows the same tendencies as previously 
analysed: in the lateral direction – consistent change, in 
the lateral direction – divergences appear.

The modelling results show that the divergences of the 
change of the SCI occur precisely due to the oscillations 
in the lateral direction. This fact raises the question to the study Au-
thors as to whether this is not a systematic error in the modelling (e.g., 
the assumption made in the programmed conditions). For searching 
for an answer to this question, the Authors of this study conducted 
further study, which included not only the theoretical calculation of 
the SCI but also its determination based on the vibration parameters 
measured in field tests. A specific case of observation was a passenger 
car with a damaged wheel.  

3.3. Sperling’s comfort index values in case of a damaged 
wheel 

As in the other cases examined, the SCI in the presence of a dam-
aged wheel was primarily modelled by numerical simulation. These 
wheel damage parameters for the modelling were selected: flat depth 
h = 0.001 m and length L = 20 mm.

After having processed the data obtained during the simulation by 
means of the Fourier transform method, the dependence of the vehi-
cle body acceleration amplitude repetitions on the running time was 
obtained. These data make it possible to assess the comfort of the 
passengers through the SCI. The obtained SCI values are shown in 
Figure 14.

The diagram of Figure 14 shows that the SCI values of running 
smoothness are acceptable (see Table 2) when the passenger cars ope-
rate with the damaged wheel with a flat depth of 1 mm depth and a 
length of 20 mm on the track tangent section. However, after intro-
ducing track roughness, the SCI values increased about 3 times and 
approached the limit values for passenger cars. 

To test these data and the previously hypothesised that the diver-
gences of the change of the SCI values occur when examining the 
oscillations in the lateral direction of the passenger car, a field test 
(experiment) was performed. During it, the oscillations of the passen-

ger carbody were measured in practice, and the trends of SCI value 
change were determined based on the results.

4. Identification of passenger car running smoothness 
parameters by field testing

The main parameters of the measurement equipment used for the 
experiment are presented in Table 3. The mounting of the sensors in 
the passenger car is shown in Figure 15. The recorded data of the ex-
periment were estimated by the SCI for the assessment of smoothness 
of passenger car rides, and gained results are presented in Figure 16.

As seen from Figure 16, the SCI values comply with the require-
ments for ride stability, sufficient for passenger cars, whereas good re-

sults have not been reached in the lateral direction. The highest value 
of the index in lateral direction has been reached at the running speed 
of 40 km/h, while with speed increasing, the index values went on de-
creasing. The SCI values received in the vertical direction fluctuates 
in the zone of “sufficient for passenger cars”. With the car running 
speed augmenting, they are evenly increasing.

The insight of the experiment is that SCI values in terms of vertical 
oscillations change consistently with varying speeds. In contrast, the 
regularity of the change of these values in the lateral direction devi-
ates from the consistent change. Therefore, it is expedient to analyse 
the regularity of the change of the values of the SCI according to the 
vibrations in the lateral direction.

The experimentally determined regularity of the change of the SCI 
(according to the oscillations in the lateral direction) can be described 
by the equation of the 2nd, the 3rd or the 4th  degree, respectively, the 
following expressions are possible:

Table 3. Basic parameters of the equipment used for the experiment

Equipment Measurement 
limits, g

Measurement
frequency, Hz

Sensor mass,
kg

Accuracy,  
%

Corrsys-Datron HF-500C ±3 10 0.230 ±0.2 

Kistler Type 8395A ±3 1000 0.155 ±0.2 

Fig. 13. The value of the Sperling’s comfort index in the lateral direction on a 
curve with a radius of 200 m

Fig. 14. Values of Sperling’s comfort index

Fig. 15. Mounting of the sensors in the passenger car
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The values of the coefficients pi of the 2nd, the 3rd and the 4th-degree 
function (coefficients 3, 4 and 5, respectively) and the coefficients of 
determination R2, respectively, are given in Table 4.

According to the last row of Table 4, the coefficient of determi-
nation of the 2nd-degree mathematical correlation is too small: R2 = 
0.304, the coefficient of determination of the 3rd-degree function R2 = 
0.8628, and the coefficient of determination of the 4th-degree function 
R2 = 0.9938 – very strong mathematical correlation. It can be conclud-
ed that it is recommended to describe the regularity of the variation of 
SCI according to the rail vehicle speed with the equation (polynomial) 
of the 3rd or the 4th degree. The accuracy of SCI description ensures 
the possibility to maintain an acceptable level of a passenger car run-
ning smoothness during exploitation.

5. Conclusions
The investigation of the tendency of Sperling’s comfort index vari-

ation is an appropriate way to define the smoothness of passenger cars 
under various exploitation conditions. By monitoring the variation of 
the Sperling’s comfort index according to the running speed of the 
vehicle, ride smoothness level can be assessed. In cases such as when 

vehicle running gear is with independently rotating wheels, when a 
car is curving the small radius curves of a track or when the wheel 
surfaces are damaged.

To verify the suitability of Sperling’s comfort index for assessing the 
smoothness of a passenger car ride, the Authors performed a numerical 
simulation of the vehicle with independently rotating wheels.  These 
simulations are running in a track tangent section and 200 m radius 
track curve and adjusting the passenger car suspension parameters.

The Authors also performed a numerical simulation and experimen-
tal research of a passenger car with a damaged wheel 
running surface and compared the obtained results. 
During examining the variation of the Sperling’s 
comfort index according to the running speed of the 
vehicle, it was observed that to operate the vehicles 
safely with independently rotating wheels, and it is 
necessary to adjust the suspension parameters of the 
passenger car. It is necessary to change the stiffness 
and damping of the primary and secondary suspen-
sion parameters. Otherwise, Sperling’s comfort index 
values, especially in the lateral direction, change cha-
otically and indicate the inadmissible quality of ride 
smoothness control.

After summarising the results of this study, the Au-
thors recommend describing the tendency of the vari-

ation of the Sperling’s comfort index (considering the running gear 
oscillations in the lateral direction) according to the rail vehicle speed, 
with the equations of the 3rd or the 4th-degree. The coefficient of deter-
mination was defined by describing the dependence of the 4th-degree 
function (R2=0.9938 – a very strong mathematical correlation).

The investigation of vibration parameters of passenger cars shows 
that the divergences of the change of the Sperling’s comfort index 
occur especially due to the oscillations in the lateral direction – this 
is confirmed both by theoretical calculations and by vibration param-
eters measured in practice. Therefore, the study of the regularities of 
lateral oscillations of a passenger car is a reasonable direction for fur-
ther research.
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Fig. 16. Experimental Sperling’s comfort index values at different running speeds: a) in vertical direction; b) in lateral direction

b)a)

Table 4. Coefficients of polynomial function according to experimental data

Coefficients
Values

The 2nd degree function The 3rd degree function The 4th degree function

p1 – 0.0004 0.00005 – 0.000002

p2 0.0369 – 0.0092 0.0006

p3 2.0884 0.494 – 0.0492

p4 - – 5.304 1.848

p5 - - – 21.69

R2 0.304 0.8628 0.9938
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1. Introduction
In a broader sense, offering products to warranty can benefit si-

multaneously manufacturers and consumers. Due to this, the warranty 
policies (or models) have been recently researched widely from the 
manufacturer’s perspective. The research stream on warranty policies 
is dependent on reliability modeling (or evaluation) technology. It is 
less difficult to discover that there are two types of reliability mod-
eling technology, which are being used frequently in academia and 
industry. One type is that the product lifetime is modeled as a distribu-
tion function with self-announcing failure. For example, Li et al. [11] 
studied the reliability evaluation using limited and censored time-to-
failure data, by means of the uncertainty theory; Zhang and Zhang 
[29] first proposed a reliability model of aviation cables by using 
nonlinear mixed model and Bayesian estimation, and then analyzed 
accuracy of reliability model by the failure time of cable. Other type 
is that the product failure is modeled as a type of degradation failure 
(which is referred to as not self-announcing failure [18]). For exam-
ple, Gao et al. [5] developed methods to analyze the system reliability 

of two-phase degradation model with a random change point; Huang 
et al. [6] proposed a degradation model for soft failure by considering 
continuous degradation processes with recoverable shock damages 
for reliability assessment and lifetime prediction of products. 

Along with the above frame on reliability modeling technology, 
similarly, the research stream on warranty policies can be distinctly 
divided into two research streams. The first stream concentrates on 
the design of the distribution-based warranty policies, namely design 
warranty policies by modeling the product lifetime as a distribution 
function with self-announcing failure. For example, Hooti et al. [7] 
proposed an extended two-dimensional warranty plan which includes 
limitation on time and the number of repairs, under the assumption 
that the lifetime of the system follows distribution function; Huang et 
al. [8] developed a model to determine the optimal sale price, warran-
ty period and product reliability to maximize the discounted profit for 
a repairable product sold with a free replace-repair warranty policy, 
by assuming that the product failure time follows distribution func-
tion; He et al. [9] established the decision model of extended warranty 
price from the perspective of win-win by assuming that the product 

Advanced sensors and measuring technologies make it possible to monitor the product 
working cycle. This means the manufacturer’s warranty to ensure reliability performance 
can be designed by monitoring the product working cycle and the consumer’s post-warranty 
maintenance to sustain the post-warranty reliability can be modeled by tracking the prod-
uct working cycle. However, the related works appear seldom in existing literature. In this 
article, we incorporate random working cycle into warranty and propose a novel warranty 
ensuring reliability performance of the product with random working cycles. By extending 
the proposed warranty to the post-warranty maintenance, besides we investigate the post-
warranty random maintenance policies sustaining the post-warranty reliability, i.e., replace-
ment last (first) with preventive maintenance (PM). The cost rate is constructed for each 
post-warranty random maintenance policy. Finally, sensitivity of proposed warranty and 
investigated polices is analyzed. We discover that replacement last (first) with PM is supe-
rior to replacement last (first).
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failure time follows distribution function; Knopik and Migawa [10] 
investigated the effects of introducing preventive replacement to 
maintenance system implemented by age-replacement of technical 
objects with valid manufacturer’s warranty and non-repairable, by 
means of Weibull distribution. Wang et al. [24] studied an optimal 
extended warranty policy after the expiration of base two-dimensional 
warranty with repair time threshold by assuming that the failure time 
of the equipment follows distribution function. The second stream 
aims to design the degradation-based warranty policies, namely de-
sign warranty policies by modeling the product failure as a type of 
degradation failure. For example, Cha et al. [2] and Zhang et al. [30] 
studied warranty policy of the product by modeling the product failure 
as degradation failure.

Usually, the manufacturer adopts some methods (maintenance or 
replacement, and so on) to ensure the product reliability performance 
during the warranty period. However, consumers (or users) tend to be 
concerned about how to sustain reliability during the post-warranty 
period (i.e., the post-warranty reliability). Due to increased mainte-
nance costs, how to model a post-warranty maintenance to sustain 
the post-warranty reliability has recently received considerable at-
tention. This type of problem has been also investigated extensively 
along with the above reliability modeling technology. For example, 
Liu et al. [14] investigated the optimal replacement problem for a 
warranty product subject to ( 1)M +  types of mutually exclusive fail-
ure modes, including M  repairable failure modes and a catastrophic 
failure mode, by supposing that the warranty product’s lifetime fol-
lows Weibull distribution; Park et al. [17] developed mathematical 
formulas to evaluate the long-run expected cost rates during the life 
cycle of the product, by considering the failure time of the product and 
a Weibull distribution; and Shang et al. [19] investigated an optimal 
maintenance-replacement policy after the warranty expiry by assum-
ing that the product lifetime follows distribution function; Shang et 
al. [20] investigated the post-warranty maintenance by modeling the 
product failure as a degradation failure. 

By modeling the product failure as a type of degradation failure, 
in essence, designing warranty policies and modeling post-warranty 
maintenance are undoubtedly driven and powered by in-situ sensor 
and measuring technologies, which can accurately or approximately 
measure/inspect health condition of the product. In addition to mea-
suring product health condition, in-situ sensor and measuring tech-
nologies can monitor working cycle of the product effectively that 
performs successively projects or missions at random working cycle. 
In real word, lots of products work at random working cycle. For ex-
ample, the intelligent air pump inflates the tire at random working 
cycle; and the intelligent cutter cuts the material at random working 
cycle, and so on. For the product with random working cycles (i.e., 
the product which works at random working cycle), from reliability 
theory, it deteriorates with respect to its working time. Considering 
this reality, Chang [3] and Sheu et al. [21, 22] researched preven-
tive maintenance policies to ensure or enhance the product reliability 
performance of the product with random working cycles by modeling 
the product working cycles as an independent identically distributed 
random variable sequence; Nakagawa [16] and Zhao et al. [31] re-
searched various maintenance policies of the product with random 
working cycles by assuming working cycle as an independent identi-
cally distributed random variable. 

If the product working cycle is integrated into the warranty pe-
riod and the post-warranty period, the following advantages can be 
brought: ① the manufacturer or the consumer can calculate the prod-
uct reliability by making use of the monitored total working time 
in real time; ② The manufacturer can more precisely evaluate the 
warranty budget and more efficiently control warranty cost; ③ the 
post-warranty maintenance planning techniques (such as repair, re-
placement, imperfect preventive maintenance) of the consumer can 
be programmed and scheduled more reasonably, and the related main-
tenance cost can be reduced appropriately, and so on. However, few 
warranty policies and the post-warranty maintenance policies to sus-

tain the post-warranty reliability have been developed by integrating 
the product working cycle.

In this article, we introduce the limited number of random working 
cycle to the warranty period and proposes a novel warranty from the 
manufacturer’ perspective. The proposed warranty requires that if the 
failure doesn’t occur until the warranty period before the completion 
of the limited number of random working cycle, then the proposed 
warranty expires at the warranty period; and if the failure doesn’t oc-
cur until the completion of the limited number of random working 
cycle before the warranty period, then free repair (minimal repair) 
warranty [4, 15] will be triggered to warrant the product from the 
completion of the limited number of random working cycle to the 
warranty period. Defining that the proposed warranty is extended to 
the consumer’s post-warranty maintenance model, we investigate 
two kinds of the post-warranty random maintenance policy to sus-
tain the post-warranty reliability. The first type is replacement last 
with preventive maintenance (PM), where PM at the warranty period 
is integrated into random periodic replacement last [16]. The second 
type is replacement first with PM where PM at the warranty period 
is integrated into random periodic replacement first [16]. For each 
post-warranty random maintenance policy, we construct the related 
cost rate model by integrating the product’s depreciation expense de-
pending on the total working time. By means of the numerical ex-
periments, we compare the performance of the post-warranty random 
maintenance policies.

The contribution of this article can be highlighted in three key as-
pects: (1) we propose a novel warranty to ensure reliability perfor-
mance of the product with random working cycles; (2) we investigate 
two types of random maintenance policy to sustain the post-warranty 
reliability of the product, which seldom exists in literature; (3) the 
performance of replacement last (first) with PM is more excellent.

The structure of this article is organized as follows. Section 2 pro-
poses the manufacturer’s warranty, derives the related warranty cost. 
In Section 3, replacement last with PM and replacement first with PM 
are defined, and the related cost rate models are derived. Section 4 
presents a comparing approach, which can help manufacturer to make 
decision on the post-warranty random maintenance policies. In Sec-
tion 5, numerical experiments are used to illustrate the proposed ap-
proach and sensitivity analysis on some key parameters is performed. 
Finally, conclusions are drawn in Section 6.

2. Warranty model
It is assumed that the product does projects or missions succes-

sively, and random working cycle jY  of the thj  ( 1,2,j = 

) project 
is independent identically distributed to the distribution function 

( ) Pr{ }jG y Y y= <  with the lack-of-memory property. The product 
deteriorates with respect to its working time and the time-to-first-
failure X  of the product is subject to a general distribution function 

( ) Pr{ }F x X x= <  with a failure rate function ( )r u  where 0u > . Be-
sides, it is assumed that the downtime resulted from each replacement 
or each minimal repair is completely negligible in this article.

2.1. Warranty assumptions
The particular attractiveness of renewing (or renewable) free re-

placement warranty [13, 19] (RFRW) is that it makes possibly con-
sumers to obtain freely a new identical product with the same warranty. 
Due to this particular characteristic, RFRW is an attractive warranty 
which can be used as a significant advertising tool from the manufac-
turer’s perspective. Basing on the product working cycle monitored 
by using in-situ sensor and measuring technologies, besides the manu-
facturer can design warranty policies to ensure the product reliability 
performance. However, the existing RFRW model neglects univer-
sally to make proper use of the product working cycle.

In view of this, we consider the particular attractiveness of RFRW 
and study a novel warranty of the product which performs succes-
sively projects or missions at random working cycle, as below.
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Given the number m  (a limited value) of random working cycle 
and the warranty period w , the warranty proposed in this article is 
described as follows:

The product will be replaced by a new identical one with the (1) 
warranty proposed in this section (i.e., failure replacement) if 
the failure occurs before the completion of the thm  random 
working cycle or before the warranty period w , whichever 
occurs first.
The manufacturer shoulders whole failure replacement cost (2) 
(including labor cost, transport cost and so on) resulted from 
unit failure replacement.
If the failure doesn’t occur until the completion of the (3) thm  ran-
dom working cycle before the warranty period w , then free re-
pair warranty [24, 28] (FRW) with a time span mw S−  will be 
triggered to warrant the product, where mS  is the total work-
ing time of the product when the thm  random working cycle 

is completed and satisfies 
1

m
m j

j
S Y

=
= ∑ ; if the failure doesn’t 

occur until the warranty period w  before the completion of the 
thm  random working cycle, then the warranty expires. 

FRW requires that any failure in the interval (4) ( , ]mS w  is re-
moved by minimal repair and the related minimal repair cost is 
also shouldered by the manufacturer.

Note that ① in this warranty, m  and w  are obviously two types of 
failure replacement limit, and so the warranty region related to failure 
replacement can be represented as (0, ] (0, ]m w× ; ② the product goes 
through warranty (i.e., the proposed warranty, hereinafter similarly) 
at the completion of the thm  random working cycle before the war-
ranty period w  or at the warranty period w  before the completion of 
the thm  random working cycle, whichever occurs first; ③ for some 
consumers with a higher product working frequency, their warranty 
expires very easily at the completion of the thm  random working 
cycle before the warranty period w , therefore the manufacturer of-
fers them a FRW so that they are treated as equal as other consumers 
whose warranty expires at the warranty period w  before the comple-
tion of the thm  random working cycle. 

2.2. Warranty cost modeling
Let ( )F x  be survival function of the time-to-first-failure X  of 

the product, where ( ) 1 ( )F x F x= − . And let the Stieltjes convolution 
( ) ( )mG s  ( ( ) ( 1)

0( ) ( )d ( )sm mG s G s u G u−= −∫ ) and the Stieltjes convo-

lution ( ) ( )mG s  ( ( ) ( )( ) 1 ( )m mG s G s= − ) be respectively distribution 
function and survival function corresponding to the total working 
time mS . According to the warranty proposed in Subsection 2.1, the 
case that the product goes through warranty can be divided into two 
types of case. The first case is that the product goes through warranty 
at the completion of the thm  random working cycle before the war-
ranty period w ; and the second case is that the product goes through 
warranty at the warranty period w  before the completion of the thm  
random working cycle. By summing the probability of two types of 
case, the probability q  that the product goes through warranty can be 
computed as:

( ) ( ) ( )
0 0Pr{ , } Pr{ , } ( )d ( ) ( ) ( ) 1 ( )d ( )w wm m m

m m mq S w S X w S w X F u G u G w F w G u F u= < < + < < = + = −∫ ∫

(1)

Since the event that the product doesn’t go through warranty and 
the event that the product goes through warranty form jointly a com-
plete event group, the probability p  that the product doesn’t go 
through warranty is expressed as:

 ( )
01 ( )d ( )w mp q G u F u= − = ∫  (2)

It is less difficult to conclude that the probability that until the thi  
( 1,2,i =  ) product goes through the thm  random working cycle or 
the warranty period w  is a geometric distribution 1ip q− , and the 
number of failure replacement is precisely 1i − . Further, the expected 
number of all failure replacements produced by the proposed war-
ranty can be modeled as:

 
( )

1 0
( )1

0

( )d ( )
[ ] ( 1)

1 ( )d ( )

w m
i

w mi

G u F upE p q i
q G u F u

κ
∞

−

=
= − = =

−

∫∑
∫

 (3)

Let kX  ( 1,2,k =  ) be lifetime of the thk  product failed during 
the warranty region (0, ] (0, ]m w× . According to probability theory, 
then every element of the sequence { }kX  is independent identically 
distributed to the distribution function ( )H x  with the below expres-
sion:

 { }
( )

0
( )

0

( )d ( )
( ) Pr | ,

( )d ( )

x m

k k m k w m

G u F u
H x X x X S X w

G u F u
= < < < = ∫

∫
    (4)

where 0 x w< < . 
Suppose that the depreciation expense of the product is only af-

fected by its working time t  and is increasing with respect to t , then 
we model the depreciation expense ( )D t  at t  as:

 D t t( ) =α β
1 1  (5)

where 1α  ( 1 0α > ) is depreciation rate; 1 10 log ( / )w Rc aβ< ≤  where 
Rc  is unit failure replacement cost suffered for the manufacturer.
For the thk  product failed during the warranty region (0, ] (0, ]m w×  , 

its working time is its lifetime kX . So, the related depreciation ex-
pense is ( )kD X  and the thk  product failed prompts the manufacturer 
to suffer a cost ( )R kc D X− . Until the th( 1)i −  failure replacement 
is completed, the replacement cost 1iWC −  of the manufacturer can be 
obtained as:

 ( )
1

1
0

( )
i

i R k
k

WC c D X
−

−
=

= −∑  (6)

where 0 0X = .
Since the random variable kX  is an independent and identically 

distributed to ( )H x  in (4) and the number 1i −  of failure replace-
ment satisfies the geometric distribution 1ip q− , the expected value 
[ ]RE WC  of the replacement cost 1iWC −  can be obtained as:

[ ] ( ) [ ]
( ) ( )1

1 1 0
1 ( )1 1 0

0

( ) ( )d ( )
( ) ( )

1 ( )d ( )

w mi Ri i
R i R k R k w mi i k

c D x G x F xpE WC E p q WC E p q c D X E c D X
q G u F u

∞ ∞ −
− −

−
= = =

−    
= ⋅ = − = ⋅ − =          − 

∫∑ ∑ ∑
∫

(7)

When the product goes through warranty at the completion of the 
thm  random working cycle, the total working time of the product is 

mS . In this case, the distribution function ( )
mSH s

 
of the total work-

ing time mS  can be derived as:

 { }
( )

0
( )

0

( )d ( )
( ) Pr | ,

( )d ( )m

s m

S m m m w m

F u G u
H s S s S w S X

F u G u
= < < < = ∫

∫
    (8)

where 0 s w< < . 
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By the third term [i.e., (3)] of the proposed warranty, when the 

product goes through warranty at the thm  random working cycle be-
fore the warranty period w , its past age is equal to its total working 

time mS  and it is warranted by FRW with a time span mw S− . Let 

mc  be unit minimal repair cost, then the minimal repair cost mWC  
produced by FRW can be estimated as: 

 
0 ( )dw

m m mWC c r S u u= +∫  (9)

Since the past age (i.e., the total working time) mS  is subject to the 
distribution function ( )

mSH s
 
in (8), the expected value [ ]mE WC  of 

the minimal repair cost mWC  can be computed as:

E WC E c r S u u c r s u u H s
c r

m m m
w

m
ww

S
m

m[ ] = +




= +( ) =∫ ∫∫( ) ( ) ( )d d d0 00

(( ) ( ) ( )

( ) ( )

( )

( )

s u u F s G s

F u G u

w mw

mw

+( )∫∫

∫

d d

d

00

0

 (10)

It is well known that the probability that until the first product goes 

through the thm  random working cycle is 1
1 1

1
/i

i
p q q q

∞
−

=
=∑ , where 1q  

is the probability that the product goes through the thm  random work-

ing cycle and satisfies ( )
1 0Pr{ , } ( )d ( )w m

m mq S w S X F u G u= < < = ∫ ; 
q  has been offered in (1). By summing, the warranty cost [ ]E WC  produced by the proposed warranty can be derived as:

E WC E WC q
q

E WC
c D x G x F x

G u
R m

R
mw

m
[ ]

( ) ( ) ( )

( )

( )

( )
= [ ] + ⋅ [ ] =

−( )
−

∫1 0

1

d

dFF u

F s G s

G u F u

c r s u u F
w

mw

mw

m
w

( )

( ) ( )

( ) ( )

( )( )

( )
0

0

0

0

1∫
∫
∫

∫
+

−
⋅

+( )d

d

d (( ) ( )

( ) ( )

( ) ( ) ( )

( )

( )

( )

s G s

F s G s

c D x G x F x c

mw

mw

R
mw

m

d

d

d

0

0

0

∫

∫

∫
=

−( ) + rr s u u F s G s

G u F u

w mw

mw

( ) ( ) ( )

( ) ( )

( )

( )

+( )
−

∫∫

∫

d d

d

00

01 (11)

When m →∞ , ( ) ( ) 1mG s →  and ( ) ( ) 0mG s → . This means that 
the failure replacement limit m  fails and the proposed warranty is 
reduced to RFRW. Therefore, the above model can be reduced to a 
warranty cost ( )0lim [ ] ( ) d ( ) / ( )w

R
m

E WC c D x F x F w
→∞

= −∫ , which is 

produced by RFRW.

3. The post-warranty random maintenance policies

As mentioned in above, how to model a post-warranty maintenance 
to sustain the post-warranty reliability has recently received consid-
erable attention. Although the post-warranty maintenance policies to 
sustain the post-warranty reliability have been investigated exten-
sively, the post-warranty random maintenance policies considering 
the product working cycle are investigated seldom. In this section, we 
incorporate the product working cycle into the post-warranty period 
and investigate the post-warranty random maintenance policies of the 
product with the warranty proposed in Section 2.

When the product goes through warranty, the total working time 
of the product is w . This means that reliability is lowered after the 
product goes through warranty. Therefore, it is necessary to improve 
reliability of the product through warranty so that the post-warranty 
period is extended and the post-warranty maintenance cost is reduced. 
In view of this, we integrate imperfect preventive maintenance (PM) 
at the warranty period w  into the post-warranty maintenance model 
and investigate two types of the post-warranty random maintenance 
policies, which will be next provided in Subsection 3.1 and Subsec-
tion 3.2.

In order to model conveniently, besides we define similarly the life 
cycle of the product as an interval from the product installation time 
to the product replacement occurrence time at the consumer’s expense 
[17, 19], which is composed of the warranty service period and the 
post-warranty period. By means of this definition, we can derive cost 
rates model, as below.

3.1. The post-warranty random maintenance policy 1
In this subsection, we introduce imperfect PM at the warranty pe-

riod w  to random periodic replacement last [16] and investigate a 
post-warranty random maintenance policy satisfying ① imperfect 
PM is done at the warranty period w ; ② replacement is done at the 
replacement time T  or at the completion of a random working cycle, 
whichever occurs last; ③ minimal repair removes every failure before 
replacement. In this article, we refer to this type of maintenance poli-
cy as replacement last with PM, which can sustain the post-warranty 
reliability of the product with random working cycles.

3.1.1. Life cycle cost modeling
In the reliability engineering practice, PM cost is increasing with 

both the reliability increment resulted from PM and the time where 
PM is done. The reliability increment resulted from PM is usually 
estimated by age reduction or/and failure rate reduction [26]. In this 
article, age reduction is used as a measure of the reliability increment 
resulted from PM. At the expiry of the proposed warranty, age of the 
product equates its total working time w . Denote the decreased func-
tion 1−( )ϕ( )n w  with respect to the decision variable n  ( 0,1,n =   )
by the reliability increment

 
resulted from PM at w , then PM cost 

PMC  at w  can be modeled as an increasing function with both 
1−( )ϕ( )n w  and w , as follows:

 C c n w w c n wPM h h= −( )( ) ( ) = −( ) ( ) +1 12 2 2 2 2ϕ ϕα β α α β( ) ( )    (12)

where hc  is a cost coefficient and satisfies 0hc > ; 2α  is an elasticity 
coefficient of input on reliability improvement and satisfies 2 0α > ; 

2β  is an elasticity coefficient of input on implementation at w  for 
PM and satisfies 2 0β > ; ( )nϕ  satisfies 0 ( ) 1nϕ< <  where n  is the 
maintenance ability level. Note that when ( ) 0nϕ = , PM is reduced 
to perfect PM; when ( ) 1nϕ = , any maintenance (including PM and 
minimal repair) is not implemented.

In this article, we have assumed that the random working cycle jY  
( 1,2,j =  ) is independent identically distributed to the distribution 
function ( )G y  with the lack-of-memory property. This assumption 
means that remaining completion time of a project is still subject to 
the distribution function ( )G y . Besides, the probability that replace-
ment is done at the replacement time T  or at the completion of a 
random working cycle, whichever occurs last, can be respectively 
represented as ( )G T  and ( )G T . Thus, the costs related to them can 
be respectively computed as:   

G T c D n w T c c r n w u uP f m
T( ) ( ( ) ) ( ) ( ( ) )− + + + +( )∫ϕ ϕ d0

 and 

c D n w t c c r n w u u G tP f m
t

T − + + + +( )∫∫
∞ ( ( ) ) ( ) ( ( ) ) ( )ϕ ϕ d d0

, where 

( )n wϕ  is virtual age after PM at w ; fc  is unit failure cost resulted 
from each failure; Pc  ( P Rc c< ) is unit replacement cost suffered for 
the consumer. By summing, further the expected value [ ]( , )lE C n T

 of the total cost during the post-warranty period is computed as:

E C n T G T c D n w T c c r n w u u

c D

l P f m
T

P

( , ) ( ) ( ( ) ) ( ) ( ( ) )[ ] = − + + + +( ) +
−

∫ϕ ϕ d0

(( ( ) ) ( ) ( ( ) ) ( )

( ) ( (

ϕ ϕ

ϕ

n w t c c r n w u u G t c

c c r

f m
t

T P

f m

+ + + +( ) +

= +

∫∫
∞ d d0

nn w u u c D n w T G t d n w t c c r n w tT
P f m) ) ( ( ) ) ( ) ( ( ) ) ( ) ( ( )+ + − + + + + + +∫ d0 ϕ ϕ ϕ ))( )∞

∫ dtT

(13)
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where ( ( ) )d n w tϕ +  is first-order derivative with respect to t  of the 
depreciation expense ( ( ) )D n w tϕ + .

By multiplying fc
 
on the expected number [ ]E κ  of failure re-

placement, the expected value of the total failure cost resulted from all 
failure replacements can be obtained as

E c c G u F u G u F uf f
mw mw[ ] ( ) ( ) / ( ) ( )( ) ( )κ ⋅ = −( )∫ ∫d d0 01 . By replac-

ing mc  in [ ]mE WC  as fc , the total failure cost resulted from all 
failures in the interval ( , ]mS w  can be obtained, i.e., 

c r s u u F s G s G u F uf
w mw mw( ) ( ) ( ) / ( ) ( )( ) ( )+( ) −( )∫∫ ∫d d d00 01 . Besides, 

the expected value [ ]( , )lE C n T  of the total cost during the post-war-
ranty period have been offered in (13) and PM cost PMC  at w  has 
been obtained in (12). On the basis of life cycle definition, by summing, 
the expected value [ ( )]lE C L  of the life cycle cost is derived as:

E C L
c G u F u

G u F u

c r s u u
l

f
mw

mw

f
w
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(14)

3.1.2. Life cycle length modeling
Until the thi  product goes through warranty, the manufacturer per-

forms totally 1i −  failure replacements. In this case, the total war-
ranty service period resulted from 1i −  failure replacements can be 

obtained as 
1

0

i
k

k
X

−

=
∑  where 0 0X = . Since the number 1i −  of failure 

replacement satisfies the geometric distribution 1ip q− , the expected 
value [ ]E W  of the total warranty service period resulted from all 
failure replacements can be expressed as:

[ ] [ ]
( )1

1 0
( )1 0

0
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where kX  is subject to ( )H x  in (4) and 

[ ] ( ) ( )
0 0( )d ( ) / ( )d ( )w wm m

kE X xG x F x G u F u= ∫ ∫ . 

For the product through warranty, its warranty service period is 
equal to w  and the probability that it is replaced at the replacement 
time T  or at the completion of a random working cycle (whichev-
er occurs last) can be respectively computed as ( )G T  and ( )G T . 
The corresponding replacement times are respectively ( )G T T  and 

d ( )T u G u∞
∫ . On the basis of life cycle definition, by summing, the 
expected value [ ]lE L  of the life cycle length can be expressed as:
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3.1.3. Cost rate modeling
The expected value [ ( )]lE C L  of the life cycle cost 

and the expected value [ ]lE L  of the life cycle length 
have been presented respectively in (14) and (16). Let 

A c G u F u c r s u u F s G sf
mw

f
w mw

= + +( )
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and B xG x F x G u F u wmw mw
= −( ) +∫ ∫( ) ( )( ) ( ) / ( ) ( )d d0 01 , by the renewal 

rewarded theorem [1], the expected cost rate ( , )lCR n T  can be cal-
culated as:
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(17)

Since the expression of ( )r u  is undefined and unspecific, it is dif-
ficult to obtain optimum analytical solutions. But, the existence and 
uniqueness of optimum solutions can be summarized by discussing 
the first-order derivative with respect to decision variables of cost rate 
models. The detail process has been presented and extensively dis-
cussed by the literature [19, 22, 31]. In view of this, the existence and 
uniqueness of optimum solutions are no longer summarized in this 
article and interested reader consults the above literature, hereinafter 
similarly.

3.1.4. Special cases

The expected cost rate ( , )lCR n T  in (17) is constructed by defin-
ing that the proposed warranty is used to ensure reliability preference 
during the warranty period and by defining that replacement last with 
PM is used to sustain the post-warranty reliability. By discussing, the 
expected cost rate ( , )lCR n T  can be reduced to some special models 
representing special problems, as follows:
Case 1: when m →∞ , model in (17) can be reduced to:

CR n T
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(18)

where ( ) / ( )f PA F w c F w c= +  and 0 ( )d / ( )wB F x x F w= ∫ .

As mentioned in above, m →∞  means that the failure replace-
ment limit m  is failed and the proposed warranty is reduced to 
RFRW. Therefore, model in (18) represents an expected cost rate 
where RFRW is used to warrant the product and replacement last with 
PM is used to sustain the post-warranty reliability.

Case 2: when ( ) 0G t =  and m →∞ , model in (17) can be reduced 
to:

CR n T
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(19)

( ) 0G t =  means that replacement at the completion of a random 
working cycle is not existed. Therefore, model in (19) represents an 
expected cost rate where RFRW warrants the product and periodic 
replacement with PM sustains the post-warranty reliability. 

In addition to these special models, some other models are also 
obtained by discussing one or more of other parameters in the model 

( , )lCR n T , here we no longer offer them.

3.2. The post-warranty random maintenance policy 2
In this subsection, we introduce imperfect PM at the warranty pe-

riod w  to random periodic replacement first [16] and investigate oth-
er post-warranty random maintenance policy satisfying ① imperfect 
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PM is done at the warranty period w ; ② replacement is done at the 
replacement time T  or at the completion of a random working cycle, 
whichever occurs first; ③ minimal repair removes every failure be-
fore replacement. In this article, we refer to this type of maintenance 
policy as replacement first with PM to sustain the post-warranty reli-
ability of the product.

Obviously, the unique difference between replacement last with 
PM and replacement first with PM is that replacement occurrence of 
the former is decided by ‘whichever occurs last’ and while replace-
ment occurrence of the latter is decided by ‘whichever occurs first’.

3.2.1. Life cycle cost modeling
The probability that replacement is performed at the replacement 

time T  or at the completion of a random working cycle, whichever 
occurs first, can be respectively represented as ( )G T  and ( )G T . 
Besides, the costs related to them can be respectively computed 
as G T c D n w T c c r n w u uP f m

T( ) ( ( ) ) ( ) ( ( ) )− + + + +( )∫ϕ ϕ d0
 and 

c D n w t c c r n w u u G tP f m
tT

− + + + +( )∫∫ ( ( ) ) ( ) ( ( ) ) ( )ϕ ϕ d d00
. By sum-

ming, the expected value [ ( , )]fE C n T
 
of the total cost during the 

post-warranty period is computed as:
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(20)

PM cost PMC  at w  has been obtained in (12) and the to-
tal failure cost resulted from the proposed warranty is 

c G u F u c r s u u F s G s Gf
mw
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which is similar to (14). On the basis of life cycle definition, by sum-
ming, the expected value  of the life cycle cost is derived as:
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3.2.2. Life cycle length modeling
For the product through warranty, the probability that it is replaced 

at the replacement time T  or at the completion of a random working 
cycle, whichever occurs first, can be respectively computed as ( )G T  
and ( )G T , and the corresponding replacement times are respectively 

( )G T T  and 0 d ( )T u G u∫ . On the basis of life cycle definition, by sum-
ming, the expected value [ ]fE L  of the life cycle length can be ex-
pressed as:
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where [ ]E W  has been offered in (15).

3.2.3. Cost rate modeling
The expected value [ ( )]fE C L  of the life cycle cost and the ex-

pected value [ ]fE L  of the life cycle length have been offered respec-
tively in (21) and (22). Then, the expected cost rate ( , )fCR n T  can be 
calculated as:

CR n T
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where A  and B  have been offered in (17).

3.2.4. Special cases
The expected cost rate ( , )fCR n T  in (23) is constructed by defin-

ing that the proposed warranty warrants the product and by defining 
that replacement first with PM sustains the post-warranty reliability 
of the product. The expected cost rate ( , )fCR n T  can be reduced to 
some special models representing special problems, as below.

Case I: when m →∞ , model in (23) can be reduced to:

CR n T
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When m →∞ , ( ) ( ) 1mG s →  and ( ) ( ) 0mG s → . Similar to the 
above discussions, this means that the failure replacement limit m  
fails and the proposed warranty is reduced to RFRW. Therefore, mod-
el in (24) represents an expected cost rate where RFRW is used to 
warrant the product and replacement first with PM is used to sustain 
the post-warranty reliability.

Case II: when ( ) 1G t = , 0n =  and m →∞ , model in (23) can be 
reduced to:
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( ) 1G t =  means that replacement at the completion of a random 
working cycle is removed. 0n =  means that PM is not performed 
and replacement first with PM is reduced to classic periodic replace-
ment policy. Therefore, model in (25) represents an expected cost rate 
where RFRW warrants the product and classic periodic replacement 
policy sustains the post-warranty reliability. 

Besides, some other models are also offered by discussing one or 
more of other parameters in the model ( , )fCR n T , here we no longer 
present them.

4. Comparison
Both replacement last with PM and replacement first with PM can 

sustain the post-warranty reliability of the product. However, making 
decision on which to sustain the post-warranty reliability is a con-
cerned problem for consumers. In view of this, we present a com-
paring approach, which can help consumers to make decision on the 
post-warranty random maintenance policies.

Firstly, let *[ ]lE L  and *[ ]fE L  be respectively optimum expect-
ed values of the life cycle length, which are corresponding to two 
types of the post-warranty random maintenance policy; secondly, let 

*[ ( )]lE C L  and *[ ( )]fE C L  be respectively optimum expected values of 
the life cycle costs related to two types of the post-warranty random 
maintenance policy; thirdly, let **

lL  and **
fL  be respectively cycle 

lengths related to two types of the post-warranty random maintenance 
policy, under the case that total costs related to two types of the post-
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warranty random maintenance policy are equal. Finally, the compar-
ing approach presented in this article can be summarized as below:

Step 1: Let ** * *[ ( )] [ ]l f lL E C L E L= ⋅  and ** * *[ ( )] [ ]f l fL E C L E L= ⋅ .

Step 2: If ** **
l fL L> , then replacement last with PM should be 

selected to sustain the post-warranty reliability of the product; if 
** **
f lL L> , then replacement first with PM should be selected to sus-

tain the post-warranty reliability of the product; if ** **
l fL L= , then any 

one of them can sustain the post-warranty reliability of the product 
because both are equivalent from the performance’s perspective. 

Note that decision-making result between post-warranty random 
maintenance policies can also be obtained by comparing total costs 
related to two types of the post-warranty random maintenance policy, 
under the case that cycle length of each post-warranty random main-
tenance policy is equal to a common value. Besides, the comparing 
approach presented in above can be extended to make decision on 
three or more the post-warranty random maintenance policies (or 
maintenance policies).

5. Numerical experiments
The intelligent mobile equipment is frequently used to inspect the 

remote hidden trouble of the high-voltage electric power equipment. 
Management can detect operating information of the intelligent mo-
bile equipment by means of the advanced network technology, such 
as turn on, turn off, failure and working time. The intelligent mobile 
equipment is powered on when used and is powered off when use is 
completed. The time interval between power on and power off is a 
random working cycle.

From the perspective of reliability engineering practice, it is an 
impossible reality that the product after maintenance is „as good as 
new”. This means the maintenance ability is limited, namely value 
n  of the maintenance ability level is not infinite. This article uses 
ϕ( ) ( )n n e n= + −1  to model the reliability alteration resulted from PM, 
where n  ( 0,1,2,3,4,5n = ) represents maintenance ability level. The 
maximum value of maintenance ability level is reached when 5n =  
and PM is not needed to be performed when 0n = .

In order to illustrate the proposed warranty and the policies inves-
tigated in this article, assume that lifetime of the intelligent mobile 
equipment is subject to a two-parameter Weibull function ( )F x  with 
a failure rate r(u)( ) ( )bu a uλ = , where 0a >  and 0b > ; and assume that 
working cycle is subject to an exponential distribution function ( )G y  
with a constant failure rate λ  (i.e., ( ) 1 exp( )G y yλ= − − ) and some 
constant parameters are offered in Table 1. Other parameters (except 
decision variables) not to be assigned value in Table 1 are provided 
when needed. 

5.1. Sensitivity analysis of the proposed warranty
In order to illustrate characteristic of the proposed warranty, we 

plot Figure 1 where 2w =  and 1b = . As shown in Figure 1, when 
the failure replacement limit m  increases for a given λ , the warranty 
cost produced by the proposed warranty increases first and then tends 
to the warranty cost (i.e., constant warranty cost) produced by RFRW. 
As mentioned in above, m →∞ means that the proposed warranty 
is transformed into RFRW. Therefore, the above change law with re-
spect to m  is existed. This indicates that when the limited number of 
random working cycle is used as warranty term of the proposed war-
ranty, then the warranty cost produced by the proposed warranty can 
be reduced compared with traditional RFRW and the manufacturer 

can control the warranty cost produced by the proposed warranty by 
adjusting m . From Figure 1, besides we can find that the warranty 
cost produced by the proposed warranty is decreasing with respect 
to λ  when the failure replacement limit m  is same and is a smaller 
number. 

Fig. 1. Warranty cost versus m  and λ  

In order to further illustrate characteristic of the proposed warranty, 
we make Figure 2, where 0.1λ =  and 1b = .

Fig. 2. Warranty cost versus m  and w

As shown in Figure 2, the warranty cost produced by the proposed 
warranty increases first and then tends to a constant warranty cost 
produced by RFRW as m  increases when w  is given. This change 
law indicates that the warranty cost produced by the proposed war-
ranty can be reduced compared with traditional RFRW and the manu-
facturer can control the warranty cost produced by the proposed war-
ranty by adjusting m , which is similar to conclusions in Figure 1.

5.2. Sensitivity analysis of the post-warranty random main-
tenance policy 1

For description convenience, in this subsection we represent ran-
dom periodic replacement first as replacement first, and represent ran-
dom periodic replacement last as replacement last.

In order to display the existence and uniqueness of the optimum 
solutions (i.e., *n  and *T ) and the optimum value * *( , )lCR n T , we 
make Figure 3 where 2m = , 2w =  and 1b = . 

Table 1. Parameter value

mc fc 1α 1β 2α 2β hc Rc pc a

0.1 0.1 0.1 1 1 1 0.1 10 12 0.1
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As shown in Figure 3, the optimum replacement time *T  and the 
optimum cost rate * *( , )lCR n T  are existed uniquely. From Figure 3, 
we can find that the optimum replacement time *T  is increasing with 
respect to n , whereas the optimum cost rate *( , )lCR n T  is decreasing 
with respect to n . From Figure 3, besides, we can conclude that 

* 5n =  and replacement last with PM (i.e., 0n ≠ ) is superior to re-
placement last (i.e., 0n = ) because replacement last with PM can 
produce a longer *T  and a lower * *( , )lCR n T .

In order to indicate the effect of the failure replacement limit m  on 
replacement last with PM, we make Table 2, where 0.1λ = , 1b =  
and 2w = .

As shown in Table 2, the optimum replacement time *T  and the op-
timum cost rate *( , )lCR n T  decreases gradually to a constant with re-
spect to the failure replacement limit m  for a given n . As mentioned 
in Subsection 3.1.4, the proposed warranty is reduced to RFRW when 
the failure replacement limit m  increases. As m  increases, there-
fore, the optimum replacement time *T  and the optimum cost rate 

*( , )lCR n T  decreases gradually to a constant, which is obtained by 
optimizing the model in (18). From Table 2, besides, we can conclude 
that * 5n =  and replacement last with PM (i.e., 0n ≠ ) is superior to 
replacement last (i.e., 0n = ) for a given m  because replacement last 
with PM can produce a longer *T  and a lower * *( , )lCR n T  .

5.3. Sensitivity analysis of the post-warranty random main-
tenance policy 2

In this subsection, we display the existence and uniqueness of 
the optimum solutions (i.e., *n  and *T ) and the optimum cost rate 

* *( , )fCR n T , and the effect of the failure replacement limit m  on 
replacement first with PM.

In order to display the existence and uniqueness of the optimum 
solutions (i.e., *n  and *T ) and the optimum value * *( , )fCR n T , we 
make Figure 4 where 2m = , 2w =  and 2b = . As shown in Fig-
ure 4, the optimum replacement time *T  and the optimum cost rate 

* *( , )fCR n T  are existed uniquely. From Figure 4, we can find that 
the optimum replacement time *T  is increasing with respect to n , 
whereas the optimum cost rate * *( , )fCR n T  is decreasing with re-
spect to n . As shown in Figure 4, besides, * 5n =  and replacement 
first with PM (i.e., 0n ≠ ) is superior to replacement first (i.e., 0n =  ) 
because replacement first with PM can produce a longer *T  and a 
lower * *( , )fCR n T .

Fig. 4. Optimum solution and optimum value

We make Table 3 where 0.1λ = , 2b =  and 2w = . As shown in 
Table 3, the optimum replacement time *T  and the optimum cost rate 

*( , )fCR n T  decreases gradually to a constant with respect to the fail-
ure replacement limit m  for a given n . The cause of this result is 
similar to the above analysis. From Table 3, additionally, the optimum 
replacement time *T  resulted from replacement first with PM (i.e., 

0n ≠ ) is greater than the optimum replacement time *T  resulted 
from replacement first (i.e., 0n = ), and the optimum cost rate 

*( , )fCR n T  resulted from replacement first with PM (i.e., 0n ≠ ) is 
lower than the optimum cost rate *( , )fCR n T  resulted from replace-
ment first (i.e., 0n = ) for a given m . This again means that replace-
ment first with PM is superior to replacement first. From Table 3, 
thirdly, * 5n = .

5.4. Comparison
Consumers’ concern is that which post-warranty random mainte-

nance policy should be used to 
sustain the post-warranty reli-
ability. This concern is a decision 
problem. From the consumer’s 
perspective, the post-warranty 
random maintenance policy with 
most superior performance is an 
ideal selection. This indicates that 
consumers need to make deci-
sion on the post-warranty random 
maintenance policy by comparing 
performance. In Subsection 5.2 
and 5.3, we illustrate performance 
by comparing optimum replace-

Fig. 3. Optimum solution and optimum value

Table 2. Sensitivity analysis

n 2m = 3m = 4m = 5m =

*T *( , )lCR n T *T *( , )lCR n T *T *( , )lCR n T *T *( , )lCR n T

0 16.3068 0.8008 16.2934 0.8004 16.2926 0.8004 16.2926 0.8004

1 16.8873 0.7917 16.8747 0.7913 16.8740 0.7913 16.8740 0.7913

2 17.5560 0.7799 17.5443 0.7795 17.5437 0.7795 17.5437 0.7795

3 17.9494 0.7722 17.9382 0.7718 17.9375 0.7718 17.9375 0.7718

4 18.1470 0.7681 18.1361 0.7677 18.1354 0.7677 18.1354 0.7677

5 18.2395 0.7661 18.2286 0.7658 18.2280 0.7658 18.2280 0.7658
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ment time and optimum cost rate. Similarly, here we illustrate per-
formance by comparing optimum replacement time and optimum cost 
rate. 

We make Figure 5 where 0.1λ = , 2m = , 1w = , 2b =  and 
* 5n = . 

Fig. 5. Comparison

As indicated in Figure 5, optimum cost rate 
produced by replacement last with PM is greater 
than optimum cost rate produced by replacement 
first with PM, whereas optimum replacement 
time produced by replacement last with PM 
is not greater than optimum replacement time 
produced by replacement first with PM. These 
changes can’t rank the post-warranty random 
maintenance policies because the information 
provided by them can’t manifest any priority 
order of the post-warranty random maintenance 
policies.

Next, we use the comparing approach presented in Section 4 to 
rank the post-warranty random maintenance policies. We make Table 
4 where 0.1λ = , 2m = , 2b =  and 2w = . 

Table 4 shows that the cycle length **
lL  related to replacement last 

with PM is less than the cycle length **
fL  related to replacement first 

with PM, i.e., ** **
l fL L< , when total costs related to two types of the 

post-warranty random maintenance policy are equal and n  is same. 
This means that the performance of replacement first with PM is su-
perior to the performance of replacement last with PM.

In order to indicate the robustness of the above conclusion, we 
further make Table 5 where 0.1λ = , * 5n = , 2b =  and 2w = . As 

shown in Table 5, the cycle length **
lL  related to replacement last with 

PM is lower than the cycle length **
fL  related to replacement first with 

PM, i.e., ** **
l fL L< ,  under the case that total costs related to two types 

of the post-warranty random maintenance policy are equal and m  is 
same. This indicates again that replacement first with PM is superior 
to replacement last with PM.

Note that we only analyzed sensitivities of n  and m , then we ob-
tained the above conclusion that replacement first with PM is superior 
to replacement last with PM. If analyzing sensitivities of other param-
eters, then the conclusion obtained in above may not be established. 
In either case, the comparing approach presented in Section 4 is a 
forceful priority method for selection problem of the post-warranty 
random maintenance policies (or maintenance policies).

6. Conclusions
Taking advanced technologies as the technical background and by 

designing number of random working cycle as a warranty term, in 
this article, we proposed a manufacturer’s warranty, which can ensure 
the product reliability performance by monitoring working cycle dur-
ing the warranty period. The warranty cost produced by the proposed 
warranty was derived and special model was offered by discussing 

warranty term. From the consumer’s perspective, we extended the 
proposed warranty to the post-warranty maintenance and proposed 
replacement last (and first) with PM, which can sustain the post-
warranty reliability by tracking the post-warranty working cycles. 
Some classic cost rate models representing some special cases were 

provided by discussing parameters in each cost 
rate model. We presented a comparing approach 
to make decision on the post-warranty random 
maintenance policies. Sensitivities on some key 
parameters about both the proposed warranty and 
the proposed post-warranty random maintenance 
policies were analyzed in numerical experi-
ments. It was discovered that the manufacturer 
can control the warranty cost when the limited 
number of random working cycle is used as a 
warranty term, and it was further discovered that 
replacement last (first) with PM is more superior 
compared with replacement last (first).
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Table 4. Comparison 

n
Replacement last with PM Replacement first with PM Cycle lengths

*[ ]lE L *[ ( )]lE C L *[ ]fE L *[ ( )]fE C L **
IL **

fL

0 13.7122 25.3621 10.6994 16.9864 232.9209 271.3593

1 13.8448 25.0106 10.7892 16.8387 233.1284 269.8444

2 14.0455 24.5192 10.8965 16.6368 233.6722 267.1735

3 14.1880 24.2005 10.9613 16.5000 234.1020 265.2689

4 14.2664 24.0346 10.9942 16.4253 234.3299 264.2412

5 14.3047 23.9561 11.0097 16.3890 234.4397 263.7495

Table 5. Comparison

m
Replacement last with PM Replacement first with PM Cycle lengths

*[ ]lE L *[ ( )]lE C L *[ ]fE L *[ ( )]fE C L **
IL **

fL

1 13.9115 24.0210 10.7308 16.6252 231.2815 257.7645

2 14.3047 23.9561 11.0097 16.3890 234.4397 263.7495

3 14.3401 23.9480 11.0343 16.3650 234.6757 264.2494

4 14.3421 23.9470 11.0356 16.3636 234.6884 264.2695
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1. Introduction
A general trend in simulation models for mechanisms and ma-

chines is to achieve an accurate solution in acceptable time. Gears and 
gear units are very often analyzed because of their importance [3, 26]. 
Analytical models are efficient and based on basic principles ensur-
ing the correctness of results for a given condition [5]. Mechanisms 
are very often described by equations of motion that do not have an 
exact solution [18]. In effect, numerical methods must be employed to 
resolve this problem, and numerical models can be called as semi-an-
alytical. Numerical models are very popular, the dominant numerical 
technique being finite element analysis (FEA) [16]. FEA models are 
usually very detailed and can include different types of phenomena. A 
disadvantage of these models is their very long computation time. To 
overcome this drawback, hybrid models [12] are used.

All model types are developed to minimize their disadvantages. In 
this study, analytical formulas are derived to describe spur gears in a 
more precise and detailed way that can be used in analytical, semi-
analytical and hybrid models. A common practice in modeling is to 
orient the axes of a coordinate system according to the line of action 
(LOA) and off-line of action (OLOA). This simplifies calculations 
because then both the normal force and the friction force do not con-
sist of two components. Also, if the center distance is changed along 
LOA, the same displacement is made between the surfaces of the in-

volute profile teeth that are in mesh. As far as gear movement along 
OLOA is concerned, its impact on the meshing tooth surface distance 
is neglected in most studies [4, 6, 17, 21, 24, 27]. In this study, the 
relationship between the varying distance of gears along OLOA and 
its effect on the distance between the teeth in mesh is established. 
Obtained equations are precise for involute gears and no simplifica-
tions were made to derive them. To the author’s best knowledge, this 
is a novel solution.

In some studies, the problem of varying center distance and its in-
fluence on gear parameters is investigated. A change in the distance 
between the mating teeth can be considered as varying backlash. In the 
LOA direction it is normal backlash. In study [13] a single stage spur 
gear is analyzed. Geometric eccentricity and its influence on backlash 
are considered. The change in backlash is calculated according to the 
formula ∆b r r r rb b b b= +( ) ( ) − +( ) ( )′1 2 1 2inv invα α  where α  is the 
theoretical meshing angle and the theoretical meshing angle ′α  is 
20°. The term “meshing angle” is ambiguous. This formula is also 
used in [25] and the previous study is quoted as a source. In the study, 
bearing deformation is the reason for changing the center distance 
and the influence on backlash is included. Time-varying backlash is 
defined as ∆b R R= +( ) ( ) − ( )( )2 1 2 0inv invα α  where b∆  is the dy-
namic backlash, α0  denotes the initial pressure angle for the initial 
center distance 0d , α = +( )( )−cos /1

1 2R R d  is the actual pressure 

When gears change their distance along the off-line of action (OLOA) direction, this affects 
the distance between the working surfaces of the meshing teeth along the line of action 
(LOA). This effect is usually neglected in studies. To include this effect precise equations 
are derived for spur gears. The analysis is carried out for the general case of spur gears with 
shifted profiles frequently used in the industry. The influence of OLOA gear displacement 
on LOA direction is also a function of gears parameters. An analysis is conducted, and the 
impact of parameters such as module, pressure angle, gear ratio, and the number of teeth is 
determined. As an example, a simulation of a 12 DOF analytical model is presented. The 
movement of gears along OLOA is caused by a frictional force that can be high during tooth 
degradation e.g. scuffing. Results show that when the movement of gears along the OLOA 
direction is significant, its influence on the distance between the mating teeth should not be 
neglected.
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angle. According to these equations, the backlash b∆  depends on two 
parameters: the pressure angle and the center distance. This formula 
is, however, incorrect. For simplicity, let us consider the movement 
of one gear. Along the LOA direction, changes in center distance and 
pressure angle are not significant but have the greatest impact on back-
lash. In contrast, the movement of a gear along the OLOA direction 
has a significant impact on center distance and pressure angle, but its 
impact on backlash is minimal. This stands in contradiction with the 
above formula, and results will differ by several orders of magnitude, 
according to the author’s calculations. In [7] the effect of eccentricity 
on backlash is investigated. Time-varying backlash for a driving gear 
caused by eccentricity is expressed as ∆b e= − ±( )2 1 1 1cos tanθ ϕ α , 
where e  and θ  are the gear eccentricity and its initial phase, ϕ  is the 
angular displacement of gear, and α  is the pressure angle. This is a 
simplified equation. Pressure angle is maintained constant and chang-
es in backlash do not have an exact cosine shape. According to Fig. 
1 given in the reference article, the initial phase angle θ  is measured 
from the line which connects the axes of gear rotation. Assuming that 
θ1  and ϕ1  are equal to 0, the displacement of gears will take place 
along a direction passing through the axes of rotation. Backlash will 
reach the maximum value, which is not the case with involute gears. 
Large bearing clearance and variations in backlash were reported in 
[14]. The relationship between center distance and backlash was es-
tablished with approximation of tooth profile. The involute curve was 
treated as a line. A planetary gear unit used in a turbo-fan engine is 
studied in [22]. The model presented in the work is comprehensive 
and many of its parameters are made depended on time. One of them 
is backlash. The authors derived the formula for calculating backlash 
from [13], which is incorrect. 

From the above paragraph, it can be concluded that information 
about normal backlash as a function of gear displacement is of vital 
importance for the model to be more accurate and comprehensive. 
The relationship between the movement of gears along OLOA and 

the distance between the mating tooth surface along LOA (changes 
in normal backlash) is especially important when the movement (dis-
placement) of gears along OLOA is considerable. Suitable conditions 
are ensured when e.g. bearing clearance, eccentric gear movement 
and high friction force are considered in analysis. These three cases 
will be discussed for different displacement values. An analysis of a 
rotor-bearing-pedestal system was presented by Cao et al. [1]. With 
the bearing fit clearance equal to 10 µm and unbalance mass on the 
rotor, the axis orbit can have a diameter of about 60 µm. The prob-
lem of clearance between the rolling bearing outer ring and housing 
was modelled and analyzed by Chen and Qu [2], who considered a 
fit clearance of up to 500 µm. Radial internal clearance in the roll-
ing bearing was set to 20 µm in [19, 20]. In a model for analyzing 
the vibration behavior of a rotor-bearing system, Wang and Zhu [23] 
set an internal clearance of the cylindrical roller bearing at 60 µm in 
compliance with ISO 5753-1:2009. Grade accuracy has a great impact 
on the runout of gears. According to the ISO 1328-2 Cylindrical gears 
– ISO system of accuracy [9], the runout for gears with a diameter of 
up to 125 mm can amount to about 200 µm for grade 12. Variations 
in the center distance reported in [25] amount up to 30 µm and those 
reported in [22] up to 120 µm. The gear friction coefficient is high 
when failure occurs. Insufficient lubrication or lack thereof may be its 
cause. This can lead to scuffing [8, 15]. During this process the fric-
tion coefficient has a high value.

For these reasons, it is important to take into account the influence 
of gear movement along OLOA on distance between the meshing 
teeth along the LOA direction (normal backlash). An accurate algo-
rithm is derived and an analysis is carried out. In the first simulation 
the impact of gear parameters such as module, pressure angle, gear ra-
tio and the number of teeth on the distance between the meshing teeth 
is examined. The other simulation compares results obtained with and 
without taking into account the movement of gears along OLOA on 
the dynamic meshing force and bearing force. 

Nomenclature

mT  – input motor torque [Nm]

dT  – output device torque [Nm]

mI – mass moment of inertia of the motor rotor and half of coupling [kg m2]

pI  – mass moment of inertia of the pinion, shaft and half of coupling (pinion subassembly) [kg m2]

gI  – mass moment of inertia of the gear, shaft and half of coupling (gear subassembly) [kg m2]

dI  – mass moment of inertia of the device rotor and half of coupling [kg m2]

pxI  ( px pyI I= ) – mass moment of inertia of the pinion, shaft and half of coupling about opy  axis [kg m2]

gxI  ( gx gyI I=  ) – mass moment of inertia of the gear, shaft and half of coupling about the ogy  axis [kg m2]
ϕ  – angular acceleration [rad/ s2]: ϕm  – motor rotor, ϕ p  – pinion, ϕg  – gear, ϕd  – device rotor
θ px  – angular acceleration of the pinion about the opy  axis [rad/ s2]

θgx  – angular acceleration of the gear about the ogy  axis [rad/ s2]

θ py  – angular acceleration of the pinion about the opx  axis [rad/ s2]

θ py  – angular acceleration of the gear about the ogx  axis [rad/s2]

xp  – linear acceleration of the pinion on plane defined by the opx  axis and pinion axis of rotation [m/s2]
xg  – linear acceleration of the gear on plane defined by the ogx  axis and gear axis of rotation [m/s2]

pyx – distance between new contact point and pinion tooth flank along LOA (x) caused by the movement of gears along OLOA (y) [m],

gyx – distance between new contact point and gear tooth flank along LOA (x) caused by the movement of gears along OLOA (y) [m],

yp  – linear acceleration of the pinion on plane defined by the opy  axis and pinion axis of rotation [m/s2]

yg  – linear acceleration of the gear on plane defined by the ogy  axis and gear axis of rotation [m/s2]
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M c rcm m m p m= −( ) ϕ ϕ  – torque applied on the motor coupling from damping [Nm]

M k rkm m m p m= −( )ϕ ϕ  – torque applied on the motor coupling from stiffness [Nm]

M c r x x r x x rcp b p p py b g g gy b= + − − + −( )1 2 1     ϕ ϕ  – torque applied on the pinion from damping [Nm]

M k r x x r x x rkp b p p py b g g gy b= + − − + −( )1 2 1ϕ ϕ – torque applied on the pinion from stiffness [Nm]

M k r x x r x x rkg b p p py b g g gy b= + − − + −( )1 2 2ϕ ϕ  – torque applied on the gear from damping [Nm]

M k r x x r x x rkg b p p py b g g gy b= + − − + −( )1 2 2ϕ ϕ – torque applied on the gear from stiffness [Nm]

M c rcd d g d d= −( ) ϕ ϕ  – torque applied on the device coupling from damping [Nm]

M k rkd d g d d= −( )ϕ ϕ  – torque applied on the device coupling from stiffness [Nm]

fp f fpM F r=  – torque applied on the pinion from tooth friction [Nm]

fg f fgM F r=  – torque applied on the gear from tooth friction [Nm]

F k r x x r x x c r x x r xn b p p py b g g gy b p p py b g= + − − + −( ) + + − − +1 2 1 2ϕ ϕ ϕ ϕ    gg gyx−( )
 –  normal force [N]

fF  –  tooth friction force [N]

2 2
d n fF F F= +  –  resultant meshing force [N]

fr  – moment arm of sliding friction force [m]

1 1 1 kb x b bF k x=  – reaction force of bearing 1 from stiffness parallel to the x(LOA) axis [N] (Subscript 2, 3, 4 – bearing 2, bearing 3, bearing 4)

1 1 1 cb x b bF c x=   – reaction force of bearing 1 from damping parallel to the x(LOA) axis [N]

2. Calculation of the dependency between the move-
ment of gears along OLOA on the contact point on 
LOA

A change in the position of gear axis of rotation along the OLOA 
direction has impact on the distance between the meshing teeth. From 
the point of view of dynamic analysis, it is important to know a for-
mula describing changes in the tooth distance along LOA depending 
on the movement of gears along OLOA. This affects dynamic forces. 
For clarity of the figure, below is given an example of the displace-
ment of pinion axis of rotation when the center distance is increased 
without gear movement. Relationships will be derived for a general 
case describing the displacement of two gears or one gear only. 

The nominal position of the gears is marked with a blue dashed 
line (Fig. 1). The teeth are in mesh at the pitch point C  on LOA. Ac-
cording to Fig. 1, the pinion is displaced by a value py  in the y  axis 
direction. In effect, the distance between the gear axes is increased. 
To calculate a new center distance 1wa  , it is convenient to divide 
the pinion displacement py  into two separate displacements, pe  and 

pf  , according to a system of coordinates with the e and f axes:

 a O O a f f e ew w p g p g1 11 2
2 2

= = + −( ) + −( )  (1)

where:
wa =  1 2O O   –  center distance of gears with shifted profiles,

2O   –  point of intersection with gear axis of rotation,

f yp p w= cosα  – displacement of gear axis of rotation about the  

f axis,
f yg g w= cosα  – displacement of  gear axis of rotation about the  

f axis,

e yp p w= sinα  – displacement of pinion axis of rotation about the  
e axis,

e yg g w= sinα  – displacement of gear axis of rotation about the  
e axis.

Fig. 1. Pinion displacement by a value py  about the y  axis, leading to a 
change in pinion axis of rotation position from 1O  to 11O

Changes in the center distance of gears have impact on tooth mesh-
ing conditions. The green line marks the new LOA. In the magnified 
image in Fig. 1 one can clearly see a clearance between the mating 
gear teeth (distance 1 2P P ) at the contact point C  before pinion dis-
placement.

For convenience, the distance 1 2P P  can be divided into two sec-
tions. One is the pinion tooth distance 1P  from a new contact point 

1C , while the other is the gear tooth distance 2P  from the contact 
point 1C . Fig. 2 shows the pinion along with the relationships en-
abling the determination of the 1 1PC  distance. It should be stressed 
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that the figure is not drawn to scale due to the fact that actual displace-
ments  are very small.

The angle ζ  between the line connecting the gear center distance 
before displacement 1 2O O  and after displacement 11 2O O  is equal 
to:

 1

1
sin p g

w

e e
a

ζ − − 
=  

 
 (2)

Next, the angle 1 11 11U O U  denoted by β  is calculated as:

 β α α ζ= − −inv invw w1  (3)

where:
invα α αw w w1 1 1= −tan ˆ  is the involute function,

invα α αw w w= −tan ˆ  is the involute function,

αw
b

w

r
r1

1 1

11
= −cosˆ  is the contact pressure angle after pinion dis-

placement (for the center distance 1wa ) [rad],
ˆwα  is the contact pressure angle before pinion dis-

placement – nominal position (for the center dis-
tance wa  ) [rad].

Fig. 2. Relationships for determining the pinion profile distance between 1P  
and 1C

The distance 1 1PC  is equal to the arc length 1 11U U . This is due to 
the fact that the involute profile pitch is constant (involutes generated 
on the base circle are spaced by a constant distance measured tangen-
tially to this circle). 

                      PC x rpy b1 1 1= = β̂                   (4)

where β̂  is given in radians.

A similar approach can be adopted to calcu-
late the distance 2 1P C

 
. By knowing the dis-

tance 1 1PC , the distance between gear tooth 
profile and new contact point 1C  can be cal-
culated as:

2
2 1 1 1

1
gy

zP C x PC
z

= =                (5)

The total displacement resulting from the displacement of gears is:

 1 2 1 1pgyP P x PC= = + 2 1P C  (6)

Formulas (4), (5) and (6) describe simultaneous displacement of 
two gears, one gear and a pinion. The displacement can be positive or 
negative about the y  axis (OLOA). The gear teeth in contact can take 
any position on LOA. In all cases, whether the gear axis displacement 
along OLOA causes a decrease or increase in the center distance, this 
always results in a clearance between the mating teeth.

The above formulas were derived for a general case in which the 
gears have shifted profiles. If the gears are without this correction, the 
following parameters simplify to: wa a= , α αw = , wr r= .

3. Simulation of the influence of gear parameters on 
the total displacement xpgy  

The displacement of gears along the OLOA direction can have 
different effects on the resultant distance between the mating teeth 
along LOA pgyx . Tooth size and shape, contact ratio and center dis-
tance are the main parameters affecting pgyx  and thus will be inves-
tigated in this study. The following properties of gears were selected 
for simulations, depending on the case under analysis: m = 3 mm,  
aw = a = 100 mm, zp = 20, zg = 20, αw = 20°. In all five cases (Fig. 
3-7) only the pinion was displaced (yp = – 200 µm ÷ 200 µm) along 
OLOA, which affected the nominal center distance. 

Figure 3 illustrates the influence of module m. On changing this 
parameter, the center distance, gear diameters and tooth height change 
significantly too. The smaller the value of the module is, the greater 
the total displacement pgyx  becomes. This relationship is nonlinear. 
The maximum value pgyx  2.7 µm is obtained for m = 1 mm and  
yp = − 200 µm or 200 µm.

The influence of the gear ratio u is presented in Figure 4. Differ-
ent values of the gear ratio u are obtained by changing the number of 
gear teeth zg = 16 ÷ 105, with the number of pinion teeth maintained 
constant at zp = 20. By changing the number of gear teeth, the gear 
diameter, center distance and contact ratio change, too. The smaller 
value of the gear ratio is, the greater the total displacement pgyx  be-
comes. This relationship is nonlinear. The maximum value pgyx  1.1 
µm is obtained for u = 0.8 and yp = – 200 µm or 200 µm.

The pressure angle α is another investigated parameter. In this case, 
other parameters do not change like in previous cases, the only excep-
tion being the base circle dimension. The smaller the pressure angle 
value is, the greater the total displacement pgyx  becomes. This rela-
tionship is nonlinear (Fig. 5). The maximum value pgyx  1.8 µm is 
obtained for α = 11° and yp = – 200 µm or 200 µm. 

The last examined parameter is the number of the gear teeth zp, zg. 
Their number is the same (zp = zg = 18 ÷ 60) and has impact on the di-
mension of gears and center distance. To obtain more general results, 

Fig. 3. Relationship between module m, pinion displacement yp and total tooth displacement xpgy , pre-
sented in three types of diagrams
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two variants are considered. In the first one (Fig. 
6), the center distance a has a constant value of 
100 mm, hence the module m must be changed. 
The total tooth displacement xpgy does not de-
pend on the number of teeth in this case. 

In the second variant, the module m is main-
tained constant at 3 mm, therefore the center 
distance must vary. Under these conditions, the 
total tooth displacement xpgy depends on the 
number of gear teeth. The smaller the number of 
teeth is, the greater the total displacement pgyx  
becomes. This relationship is nonlinear (Fig. 7). 
The maximum value pgyx  1.1 µm is obtained 
for zp = zg = 18 and yp = – 200 µm or 200 µm.

It can be seen that the total tooth displace-
ment xpgy is not the same despite the identical 
pinion displacement yp along the positive and 
negative sense of the y axis, which is especially 
visible in Figure 5. If the pinion displacement 
along OLOA causes a decrease in the center 
distance (negative value), its impact on the total 
tooth displacement is greater. The same relation-
ship can be observed for the gears. It makes no 
difference whether one gear or two gears move 
along the OLOA direction. The resulting center 
distance is a factor affecting the total tooth dis-
placement xpgy. This conclusion can be drawn 
from Equation (1).

4.  Simulation of spur gears for different 
values of tooth friction coefficient and 
bearing stiffness

To analyze the influence OLOA displace-
ment of gears on their dynamics, a simulation 
was performed. One of the situations in which 
gear displacement along OLOA can be signifi-
cant is when the force in a radial direction is 
high. This situation occurs during scuffing. The 
tooth friction force can achieve significant val-
ues as a result of this phenomenon. Nine cases 
of friction coefficient µ were considered with a 
step changed every 0.1, from 0.02 to 0.82. Bear-
ing stiffness has a great impact on gear displace-
ment, too. Four values of the bearing stiffness kb 
were analyzed: 1.1 · 108 N/m; 1.1 · 108,5 N/m;  
1.1 · 109 N/m; 1.1 · 109,5 N/m. The stiffness 
values were the same for all bearings and in all 
directions. Parameters of gear unit and other 
components are presented in Table 1 and 2.

The simulation was performed on a 12 DOF 
model (Fig. 8). The model consisted of rigid el-
ements. Every shaft had 5 DOF. The gears were 
located in the middle of the bearings. The gear 
unit was connected by couplings with a motor 
and output device. Dynamic equations were as 
follows:

 I M M Tm m cm km mϕ + + =              (7)

I M M M M Mp p cp kp cm km fpϕ + + = + +    (8)

I M M M M Mg g cd kd fg cg kgϕ + + + = +   (9)

Fig. 5. Relationship between pressure angle α, pinion displacement yp and total tooth displacement xpgy , 
presented in three types of diagrams

Fig. 4. Relationship between gear ratio u, pinion displacement yp and total tooth displacement xpgy, , pre-
sented in three types of diagrams

Fig. 7. Relationship between the number of gear teeth zp, zg (a = var., m = 3 mm), pinion displacement yp  
and total tooth displacement xpgy , presented in three types of diagram

Fig. 6. Relationship between the number of gear teeth zp, zg (a = 100 mm, m = var.), pinion displacement yp  
and total tooth displacement xpgy , presented in three types of diagrams
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 I T M Md d d cd kdϕ + = +  (10)

 F l F l m l l I F l lxkb x p cb x p p pCoM p p px px n p p1 1 2 1+ + −( ) − = −( )

θ  (11)

 F l F l m l I F lxkb x p cb x p p pCoM p px px n p2 2 2 1+ + + =

θ  (12)

F l F l m l l I F l lxkb x g cb x g g gCoM g g gx gx n g g3 3 2 1+ + −( ) + = −( )

θ  (13)

 F l F l m l I F lxkb x g cb x g g gCoM g gx gx n g4 4 2 1+ + − =

θ  (14)

F l F l m l l I F l lykb y p cb y p p pCoM p p py py f p p1 1 2 1+ + −( ) − = −( )

θ  (15)

 F l F l m l I F lykb y p cb y p p pCoM p py py f p2 2 2 1+ + + =

θ  (16)

F l F l m l l I F l lykb y g cb y g g gCoM g g gy gy f g g3 3 2 1+ + −( ) + = −( )

θ   (17)

 F l F l m l I F lykb y g cb y g g gCoM g gy gy f g4 4 2 1+ + − =

θ  (18)

Detailed information about tooth stiffness, Coulomb friction and 
other details concerning the analytical model can be found in [10, 
11]. 

Table 1.  Properties of gears

Parameter Pinion Gear

Number of teeth zp = 20 zg = 20

Module [mm] m = 2

Pressure angle [°] α0 = 20

Contact ratio ɛ = 1,557

Moment of inertia (pinion/gear, shaft and half of motor/device coupling) [kgm2]
Ip = 0.0033315;
Ipx = Ipy = 0.0117285

Ig = 0033315; 
Igx = Igy = 0.0117285

Mesh damping [Ns/m] c = 40

Initial angular speed [rad/s] ωp = 157,0796 (np = 1500 
rpm) ωg = 157.0796

Max stiffness of one pair of teeth [N/m] 6380 10⋅

Table 2. Properties of other components

Parameter Motor rotor Device rotor

Moment of inertia [kgm2] Im = 0.075 Id = 0.12 

Torque [Nm] Tm = 31.83 Td = 31.83

Initial angular speed [rad/s] ωm = 157.0796 (nm = 1500 rpm) ωd = 157.0796

Motor coupling Device coupling

Stiffness [N/m] 49.3 10mk = ⋅ 49.3 10dk = ⋅

Damping [Ns/m] 10mc = 10dc =

Bearings

Damping [Ns/m] 40bc =

Fig. 8. Analytical model of gear unit with motor M and output device D
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Fig. 9. Percentage change in the resultant reaction force of bearings obtained by considering gear displacement along OLOA and its influence on gear meshing. 
Results were obtained for the following bearing stiffness values: a) 1,1 · 108 N/m, b) 1,1 · 108,5 N/m, c) 1,1 · 109 N/m, d) 1,1 · 109,5 N/m

Fig. 10. Percentage change in the resultant meshing force obtained by considering gear displacement along OLOA and its influence on gear meshing. Results were 
obtained for the following bearing stiffness values: a) 1,1 · 108 N/m, b) 1,1 · 108,5 N/m, c) 1,1 · 109 N/m, d) 1,1 · 109,5 N/m
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The reaction force in Fig. 9a is slightly higher than the nominal 
value for the coefficient of friction ranging from 0.2 to 0.22. For a 
higher coefficient of friction, the reaction force decreases below the 
nominal value (nominal value means, that result is obtained without 
taking into account influence of OLOA displacement of gears on 
LOA direction). The situation changes when the bearing stiffness is 
increased (Fig. 9b). For this case, the reaction force is always higher 
than the nominal value. The difference in the reaction force values in 
Fig. 9c is very small and in Fig. 9d it is negligible.

The resultant meshing force is a load on the bearings, thus the re-
sults in Fig. 9 and Fig. 10 show very similar trends. The maximum 
difference between the resultant meshing force and the nominal value 
is 12.1% for the bearing stiffness of 1.1 · 108,5 N/m (Fig. 10b). For the 
bearing stiffness equal to 1.1 · 108 N/m the difference in the resultant 
meshing is 5.1% (Fig. 10a), while for the bearing stiffness of 1.1 · 109 
the difference is 18.1% (Fig. 10c). In Fig. 10d one can only observe 
one slight change for the highest friction coefficient value. 

Examples of waveforms of the total displacement xpgy are presented 
in Fig. 11. Different colors mark different values of the friction coef-
ficient. The value xpgy is always positive. The maximum displacement 
is obtained for the bearing stiffness value equal to 1.1 · 108,5 N/m. A 
straight line in Fig. 11d means that displacement does not occur. 

5. Conclusions
This study investigated the effect of varying the center distance 

along OLOA on the gear tooth position along LOA. An exact formula 
has been derived for a general case of spur gears with shifted profiles. 
It has been found that changes in the nominal center distance result in 

an increased distance between the working surfaces of the gear teeth, 
i.e. normal backlash. The presented method for determining the dis-
tance between the working tooth surface along LOA (normal back-
lash) is suitable not only for the OLOA direction, but for any other 
directions, too.

A simulation was performed to establish the relationship between 
gear parameters and total tooth displacement. It has been found that 
the module has the greatest impact out of all tested parameters. The 
second highest result was obtained for the pressure angle. Given that 
most gear parameters are interdependent, it is not easy to formulate 
general conclusions. Nonetheless, the movement of gears along the 
OLOA direction has a greater impact on the movement of the mating 
teeth along LOA for small gears with a lower gear ratio and a smaller 
number of teeth.

The effect of the total displacement xpgy on the dynamic behavior 
of gears was investigated. Based on an analytical model of reaction 
forces for bearings, resultant meshing force and waveforms of total 
displacement xpgy were presented. The reaction forces of bearings and 
the resultant meshing force are strictly interdependent, and the trends 
obtained for these two parameters are very similar. In the presented 
example, the reaction forces were higher by more 12 %, and the re-
sultant meshing force was higher, too. The trends are not linear, so a 
higher frictional force does not always mean that the bearing reac-
tion forces and resultant meshing force will be higher too. It has been 
found that bearing stiffness has a great impact on the total displace-
ment xpgy and dynamic behavior of gears. 

Fig. 11. Total displacement xpgy (increased distance) of the pinion and gear teeth in mesh along the LOA direction as caused by gear displacement along OLOA. 
Results were obtained for the following bearing stiffness values: a) 1.1 · 108 N/m, b) 1.1 · 108,5 N/m, c) 1.1 · 109 N/m, d) 1.1 · 109,5 N/m
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1. Introduction
Accurate prediction of the remaining useful life (RUL) is extreme-

ly valuable for decision-making in condition-based maintenance for 
preventing catastrophic field failure. For degradation-failed products, 
the data of performance deterioration process plays a major role in 
RUL estimating. The methods of RUL estimation can be divided into 
three categories: 1) method based on failure mechanism analysis [9, 
22], 2) method based on data-driven approach, and 3) hybrid method 
that combines the first two. The key point of RUL prediction using the 
first method is to fully understand the degradation mechanism of the 
target equipment. Prior knowledge in the target field is indispensable 
when establishing a mathematical model of the degradation process. 
However, as the complexity of the equipment increases and auto-
mation advances, obtaining complete knowledge of the degradation 
mechanism becomes difficult [7, 14]. The aircraft turbine engine data 
set of the National Aeronautics and Space Administration (NASA) 
was built from more than ten sensors. These data should be analyzed 
together to reveal the health indicators of the turbine engine. Different 

from the method based on failure mechanism analysis, the data-driven 
approach does not require researchers to have a comprehensive under-
standing of the target equipment [12, 23]. After collecting sufficient 
degradation data from sensors, researchers could constructs a nonlin-
ear mapping between degradation data and the real equipment health 
indicators, and meanwhile solves the dynamic dependency problems 
[8, 28]. This nonlinear mapping network can be used to predict the 
RUL of the equipment used on site. 

Data-driven methods, especially the deep learning approach have 
developed substantially in recent years [3, 6, 16–18, 24].  Consider-
ing the problem of weak dependence of time-series information, Zhu 
[36] combined the information of the previous convolutional layer 
with the current layer and proposed a multiscale convolutional neu-
ral network (CNN) for RUL prediction. The long-range dependence 
problem exists in many studies on time-series data. Li [11] selected 
the long short-term memory network (LSTM) and CNN as the base 
model to build the RUL prediction model. LSTM can save past in-
formation for the current network parameter update and CNN has a 

Remaining useful life (RUL) prediction plays a crucial role in decision-making in condition-
based maintenance for preventing catastrophic field failure. For degradation-failed products, 
the data of performance deterioration process are the key for lifetime estimation. Deep learn-
ing has been proved to have excellent performance in RUL prediction given that the degrada-
tion data are sufficiently large. However, in some applications, the degradation data are insuf-
ficient, under which how to improve the prediction accuracy is yet a challenging problem. To 
tackle such a challenge, we propose a novel deep learning-based RUL prediction framework 
by amplifying the degradation dataset. Specifically, we leverage the cycle-consistent genera-
tive adversarial network to generate the synthetic data, based on which the original degrada-
tion dataset is amplified so that the data characteristics hidden in the sample space could be 
captured. Moreover, the sliding time window strategy and deep bidirectional long short-term 
memory network are employed to complete the RUL prediction framework. We show the 
effectiveness of the proposed method by running it on the turbine engine data set from the 
National Aeronautics and Space Administration. The comparative experiments show that our 
method outperforms a case without the use of the synthetically generated data.
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strong ability in local feature extraction. The combination of the two 
improves the accuracy of the prediction network. Group method of 
data handling-type neural network (GMDH) can self-organize and 
generate the optimal network structure based on the training data [22]. 
Ge [4] generates three GMDH networks through different division of 
training data, and integrates the results of the three GMDH networks 
with a three-layer back propagation (BP) neural network to solve the 
disadvantage of local optimum of GMDH and improve the generali-
zation ability. A.Ragab [19] developed a data-driven prognostic meth-
odology using both the age and condition monitoring data as inputs, 
which can deal with any number of condition indicators. Under differ-
ent test conditions, different workloads, environmental conditions and 
noise levels may lead to different distribution of training set and test 
set. To solve this problem, Wen [26] used domain-adversarial neural 
network(DANN) and proposed a data-driven framework with domain 
adaptability using a bidirectional gated recurrent unit (BGRU). This 
method can effectively reduce the impact on the performance of RUL 
prediction due to the different distribution of training data and testing 
data. Deep learning methods are adopted to address the RUL predic-
tion issue of a specific field, such as bearings [20, 36], lithium-ion 
batteries [32, 34], lathe tool wear [37], and nuclear systems [38]. 

Nevertheless, the estimation effect of these mentioned methods is 
highly dependent on the capacity of the degradation data set. That 
means the scale of the dataset available in model training phase has a 
great influence on the RUL prediction accuracy [13].  Abdulraheem 
[1] explored the effect of the dataset size on prediction results under 
supervised learning techniques, their findings showed that the model 
with the largest dataset had the best prediction effect under three da-
tasets listed as dataset size of 400, 800, and 1200. The larger the da-
taset is, the better is the model established. However, in many actual 
industrial production practices, obtaining a largescale dataset is not 
realistic due to the longer degradation time and high cost of collecting 
degradation data. The XJTUSY rolling bearings dataset mentioned by 
Wang [25] only collected the complete life cycle of 15 bearings (type 
LDK UER204), the entire life cycle is only 42h and 18min.  Many re-
strictions on obtaining large-scale degradation data restrict the further 
development of deep learning data-driven methods in RUL predic-
tion. Moreover, for those newly emerging equipment, there is also a 
lack of degradation data. Under these scenarios, the RUL prediction 
performance will be severely affected. Hence, how to improve the 
prediction accuracy with insufficient degradation data is yet a chal-
lenging task.

In the case of insufficient degradation data, the low accuracy of 
RUL prediction is mainly caused by the low sample diversity, which 
can be effectively improved by data augmentation [29]. Generative 
adversarial network (GAN) is a common data augmentation strategy, 
which can capture the characteristics hidden in the sample space and 
enrich the diversity of samples [30]. Yoon [31] applied the GAN to 
the task of generating medical data and produced a patient electronic 
health dataset containing discrete time series data. In the sequence data 
generation task, Li [10] utilized GAN to capture the temporal correla-
tion of time series distributions, the generator and discriminator inside 
the GAN adopt the LSTM network as the basic network, which is 
friendly to time-series data. Subsequently, Xie [27] generated bearing 
datasets for various working conditions based on the cycle-consistent 
generative adversarial network (CycleGAN) framework and its GAN 
discriminator was trained for fault diagnosis.

Based on the above research, this study developed a complete 
framework to improve the RUL prediction performance when degra-
dation data is insufficient. Four steps are involved in this framework. 
Firstly, constructing a data amplification model using the LSTM net-
work which is also as the Generator inside the CycleGAN and min-
ing the inherent distribution of existing degradation data samples of a 
machine. Second, a data preprocessing strategy is designed for time-
series degradation data before they are sent to the augmentation net-
work. Third, the obtained amplified data are preprocessed using slid-
ing time window method and their labels for prediction model training 

are obtained. Finally, a data-driven method is built with amplified data 
for RUL prediction. The contributions of this study are summarized 
as follows:

Proposed an amplification network for generating time series • 
degradation data based on CycleGAN; this method uses a small 
amount of data to train CycleGAN and uses the designed genera-
tor based on the LSTM network for data amplification without 
excessive prior knowledge of the data.
Designed a data preprocessing strategy to resize the time-series • 
degradation data before they are sent to the designed amplifica-
tion network.
Constructed a data-driven RUL prediction model and integrated • 
the above work into a complete set of RUL prediction methods, 
which is suitable for the degradation data of time-series.
Compared the performance differences between RUL prediction • 
models trained with amplified data obtained from various amounts 
of degradation data.

The rest of this paper is organized as follows. Theoretical founda-
tion of the CycleGAN is introduced in section II. Proposed an amplifi-
cation network based on LSTM and related theory of data preprocess-
ing strategy and RUL prediction model constructed are introduced in 
section III. An experiment is introduced in section IV. The conclu-
sions are summarized in section V.

2. Theoretical Foundation
CycleGAN is a type of unsupervised learning generative network 

that was designed to solve the problem of image-to-image translation 
in the field of vision and graphics by learning the mapping between a 
set of aligned image pairs from source domain to target domain. The 
key to achieve this function is an adversarial structure composed of 
two networks called generator and discriminator. The generator cap-
tures the distribution of the true image and constructs a fake one, and 
the discriminator estimates the probability that the image came from 
the true image rather than the generator. Ideally, the discriminator’s 
recognition success rate should be approximately equal to 0.5, which 
means that the discriminator cannot distinguish whether the test image 
is real or generated, that is, the generator obtained the true mapping 
between image pairs. To ensure improved learning efficiency, we built 
a cycle-consistent structure from two directions. Two generators and 
two discriminators are used in each direction; one of the generators is 
used to transform the data from domainA  to domainA , and the other 
generator aims to reconstruct the generated data back to domainA . 
The structure is shown in Figure 1.

Fig. 1. Structure of CycleGAN

There two types of data X with domainA  and data Y with 

domainB . In the upper part, data X x x xA A A
m= …{ }1 2, , , from domainA  
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are sent into the generator GA→B randomly. The generated data 


  Y y y yB B B
m= …{ }1 2, , ,  obtained with probability distribution are simi-

lar to domainB , Discriminator DB distinguishes the generated data 
Y  and from the real data Y y y yB B B

m= …{ }1 2, , , . The generated data  Y  
obtained through GA→B are sent to generator GB→A. The reconstructed 
data   


X x x xA A A

m= { }1 2, , ,  obtained from the generator GB→A are dis-
tinguished with the real data X of domainA  via discriminator DA.

Value function is shown in Formula 1. To simplify the function, we 
define GA→B as G and GB→A as F.
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In the process of optimizing this value function, the distribution of 
the data generated by the generator G is updated close to domainB  , 
and the discriminator DY distinguishes the generated data from the 
real data. The value function aims to minimize the generation error of 
G, and maximize the recognition success rate of YD . Similarly, we 
can obtain the value function of another generator F and discrimina-
tor DX  :
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Combining both two parts shown above can obtain a cycle-consis-
tency loss:
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The value function is shown as Formula 4:
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3. Methodology
In the task of RUL prediction with data-driven approach, the actual 

effect of the model is largely determined by the data size. Insufficient 
run-to-failure degradation data are the key to limit the reliability of the 
prediction model. This work focuses on how to mine potential data 
distribution information from limited samples and improve the effect 
of the RUL prediction model using deep learning technology.

In the model our primary hypothesis is that the time series degra-
dation data used to construct RUL predictions are scarce. If the deep 
learning method is directly used to summarize the degradation features 
from the limited degradation data and perform RUL prediction, then 
the prediction effect will not be as good as expected. We proposed a 
method that consists of three parts. The first part is an amplification 
network designed by the LSTM network, which can mine the data 
distribution information from known samples to expanding sample 

size [15]. The second is a designed data preprocessing strategy. Ow-
ing to the time-dependent dynamic characteristics of the degradation 
data, the sliding time window strategy is used to fix the dynamic deg-
radation information of the data and adjust the size of the degradation 
data before sending them to the amplification network to improve the 
network processing efficiency. The third is described as follows: using 
the amplified data obtained from the first part to construct a predic-
tion network mainly based on bidirectional long short-term memory 
(BiLSTM); in the training process, the cyclic neural structure in BIL-
STM can effectively solve the problem of long-range dependence in 
time series, obtain the optimal parameters of the model through the 
backpropagation algorithm, and construct an RUL prediction network 
to predict the samples.

3.1.	 Data	Amplification	Network	Based	on	CycleGAN
In CycleGAN, using the data of two different domains, the genera-

tor can make the mutual conversion of the data from the two domains 
through the adversarial with the discriminator. To obtain the information 
of the sparse degradation data in our hypothesis, we replaced the data of 
the two domains with the degradation data of a single domain. Unlike 
the previous CycleGAN in which the two generators learned the dis-
tribution information from one domain, the scheme we proposed aims 
to learn from each other with scarce degradation data, and the trained 
generator is used to complete the generation of degradation data.

The generator based on the LSTM was designed as the amplifi-
cation network. LSTM is a type of recurrent neural network whose 
structure contains units with functions such as forgetting and remem-
bering; this network is suitable for processing time series data [35]. In 
actual situations, the degradation data of the device is usually strongly 
correlated with time and can be used to solve long-range dependence 
problems [21].

To establish a connection in the calculation unit cycle at each mo-
ment, three gate structures in LSTM was designed, namely, forget 
gate layer, input gate layer and output gate layer. These gate structures 
control the information flow at different times, and store short-term 
time-step dependent information for network parameter update, which 
alleviate the problem of gradient disappearance or gradient explosion 
of the classic neural network structure during backpropagation. The 
LSTM cell structure at time t is shown in Figure 2. The input of the 
current moment consists of the data from current moment input and 
the data from previous output, the input of the next moment is com-
posed of the data from the current moment output and the data from 
the next moment input. The related formula is shown as follows: 

Forget gate layer:

 f W h x bt f t t f= ⋅[ ] +( )−σ 1,  (5)

Input gate layer:

 i W h x bt i t t i= ⋅[ ] +( )−σ 1,  (6)

 C W h x bt C t t C
 = ⋅[ ] +( )−tanh 1,  (7)

 C f C i Ct t t t t= +−
* *1

  (8)

Output gate layer:

 
o W h x bt o t t o= [ ] +( )−σ 1,  (9)

 ( )*tanht t th o C=  (10)
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where σ is the activation function, fW , iW , CW , oW  are the weight 
matrices,  tx  is the input data at time t , th  is the output data at time t, 
Ct represents the information flow participates in parameters updated 
throughout the entire training process.

As the degradation data is basically a continuous time series, we 
improved the output form of the LSTM network and fixed the input 
and output sizes of the generator network to be consistent to improve 
the spatial structure of the sequence to reduce the loss of degraded in-
formation. Specifically, the dimensions of the input and output should 
be consistent. We saved the output obtained from each  th of LSTM 
from timestep 1 to timestep m, which are used to form the final output 
from the network. The dimension of the output could be a series in-
stead of a scale. The series can meet the requirements of the network 
for the input data with time dynamic characteristics. The schematic is 
shown in Figure 3. On the left is an input data with dimension n×s, 
where n represents the length of input data and s represents the di-
mension of sensors in input data. In the center is the generator with 
timesteps equal to m. On the right is the first output data with dimen-
sion m × s. The second output data are obtained with a dense operation 
at dimension n × s.

The dimension of the input data  n s×  is given by the task, where 
n represents the length of input data and s represents the dimension of 
sensors. The timestep of LSTM is about to set a larger number than 
the length of the input data. In Figure 3, timestep ts   is set to m, where  
m > n. In the training process, the first line of the input data 1 s×  is sent 
to the generator, the output of the generator with size of 1 timesteps×  
consists of values obtained from each timestep After all the input data 
are sent into the network, all the outputs are combined into a matrix of 
dimension n × m. Finally, a dense operation is performed to obtain an 
output data with size consistent the input data.

To ensure that the generated data are similar to the real data in dis-
tribution and avoid the difference of actual generated data that affects 
the characterization of degradation information, we add maximum 
mean difference (MMD) into the generator’s loss function, which is 
shown as follows:

 J G
n

y y MMD
i

n
i i( ) = −
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=
∑

1 1
21

2
  (11)

where J(G) is the loss function of the generator, n is the number of 
samples,  iy  is the generated sample of i-th instance, and  iy is the 
target sample of i-th instance.

MMD was designed to measure the difference in data distribution 
by comparing the statistical information of the two sets of data and 
was used as a training objective functions for generating networks. In 

practice, the inner product between the two samples is replaced with 
the kernel calculation, and the MMD formula is as follows:
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The inner products are replaced by Gaussian kernel between two 
samples, and the formula is as follows:

 K x y x y, exp /( ) = − − ( )( )2 22σ  (13)

where σ is the bandwidth. We select a group of different σ, and the 
calculated MMD is averaged as the final value.

In the training process, we optimize the parameters of the gener-
ated model by gradient descent algorithm. The samples generated by 
the model further reduce the difference between the target samples 
and enable them to meet the task requirements.

3.2.	 Data	Preprocessing	Strategy	for	Amplification
The RUL of the degradation data for training under ideal condi-

tions should be clear. However, even the same type of equipment has a 
various life cycle due to different qualities or operating environments. 
To accurately characterize the temporal dynamics of degradation data, 
we need a data preprocessing strategy before the degradation data 
with different life cycles is sent to the amplification network.

The strategy of processing data with inconsistent length of life span 
is as follows. We obtained the initial value of the rapid data degrada-
tion stage through statistical analysis. The initial value of the rapid 
degradation stage divides the degradation data into a normal stage and 
a rapid degradation stage. We retain the values of the rapid degrada-
tion stage. Then, the process of resizing the data occurs in the normal 
stage, because the value in the normal stage usually maintains a small 
range of changes and the significance of predicting the RUL in the 
normal stage is not as important in the rapid degradation stage.

Given time-series degradation data ,s nX  with size s n× , as shown 
in Formula 14, we obtain the output ,s nX ′  that meets the require-
ments with size s n× ′ .

Fig. 3. Structure of the generator based on LSTM

Fig. 2. Cell structure of LSTM at time t
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where s represents the number of data features and n represents the 
life span of the degradation data. We assume that the initial value of 
the rapid degradation stage obtained by the statistical analysis is m.

In the rapid degradation stage, the value is directly retained without 
any processing. In the normal stage, two types of resize data strategies 
are proposed as follows:

If the current degradation data length is more than 1) n', then we 
remove the excess part directly to obtain the data that meets the 
requirements as follows:
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The size of the processed data is s n× ′ , where l n n= − ′ . The ex-
cess part is removed from the beginning.

If the length of the current degradation data is shorter than 2) n′ , 
then we design a data padding strategy. We calculate the aver-
age value of the same sensor data in the first time window 
as the padding data. The substituted x′  value for sensor s is 
expressed as Formula 16.

 x
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where  twL  is the length of time window, and γ is a Gaussian noise in 
the range of , which are the maximum and minimum 
values of the data at sensor s in one time window. The processed data 
are shown as follows:
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where n0 = l + n.

3.3.	 Data	Degradation	Strategy
The degradation data of the generated network should be processed 

into the same dimensions as the data during training. The time-series 
degradation data can be expressed as follows:
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where s is the number of data features; for instance, bearings data 
may have features such as vibration, rotation speed, and temperature. 
n represents the length of the data on the time scale, which can reflect 
the working time or service life of the data; this value is directly re-
lated to RUL.

All the real degradation data are sent into the CycleGAN for train-
ing the generator. The first batch of degradation data are sent into 
the trained generator to obtain the first batch of amplified data. The 
degradation data of the next batch is obtained from the amplified data 
of the previous batch, and the amplification is stopped until a pre-
determined amount of amplified data is obtained. To ensure that the 
amplified data retains more original degradation information during 
the iterative process, the number of iterative amplifications should 
not be excessive.

3.4.	 RUL	Prediction	Model	Construction
Sliding Time Window Strategy: 1) For RUL prediction on time-
series degradation data, the problem of label identification 
needs to be solved. One of the intuitive and efficient methods 
is the sliding time window method [11, 15, 33].

For example, given data sample ( )1 2, , , , 1,2,3...nX x x x n n= … =  , 
where n is the length of the data sample on the time scale. we specify 
the sliding time window size l, then k time windows are obtained 
which  1nk

l
= + . Each time window can be expressed as follows and 

the schematic is shown in Figure 4.

Fig. 4. Schematic of Sliding Time Window

where  tw iX =   is the ith window. The time window records a piece of 
information of the degradation data. For complete degradation data, 
we can obtain k pieces of degradation data and the RUL label of each 
segment in order. 
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Prediction Model: 2) A non-linear mapping from data to labels is 
built by a data-driven method with sufficient labeled data. We 
use the deep BiLSTM network [5] to build a prediction model. 
The difference between LSTM and BiLSTM is that the latter 
increases the reverse transmission process of data information 
and contains more hidden layers. The structure of BiLSTM is 
shown in Figure 5.

Fig. 5. Structure of BiLSTM

The final output ty  of the bidirectional LSTM consists of three 
parts: input of the model, input of the forward propagation process, 
and input of the reverse propagation process:

 h f w x w ht t t= +( )−1 2 1  (19)

 h f w x w ht t t
' '= +( )+3 5 1 � (20)

 y g w h w ht t t= +( )4 6
' � (21)

where w1−6 represents network parameters, tx  is the input in timestep 
t,  th is the value from the forward propagation process, '

th  is the val-
ue from reverse propagation process, and g is the activation function.

Owing to the flexibility and versatility of the BiLSTM, a deep net-
work with a stronger non-linear fitting ability was obtained, which 
is beneficial for RUL prediction by stacking the BiLSTM into three 
layers. Under this framework, the architecture of a mapping between 
time window and RUL tag is established, as presented in Figure 6.

Fig. 6. Structure of RUL prediction model

The main components of the framework are composed of two parts. 
The first part is a deep learning network composed of stacked BiL-
STM. The deep architecture has strong representation capabilities and 
can learn the time dynamic characteristics between time window deg-
radation data. The other part is a fully connected neural network for 
regression tasks. Data from stacked BiLSTM which contains degrada-
tion information, are used to obtain the predicted RUL from the acti-
vation function with ReLU f x max x( ) = ( )( )0,  .

RUL prediction objective: 3) The parameters in the prediction 
network are obtained through the back propagation through 
time (BPTT) algorithm and the given value function is shown 
as Formula 22. It’s defined as the error between the model out-
put and the label:
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where θ = [w1−6] is parameter set of the prediction model and n is the 
number of units in one batch, yi and y˜i are the model output and label 
of i-th instance respectively.

3.5.	 Algorithm	Summary
Algorithm of data amplification and RUL prediction is summarized 

in Algorithm 1. The entire flowchart of data amplification and RUL 
prediction is shown in Figure 7.

Fig. 7. Flowchart of data amplification and RUL prediction

4. Experiment
An experiment was conducted to validate that our proposed data 

amplification strategy can improve the prediction effect by data-
driven methods when using insufficient training data. We selected the 
degradation data with the multi-sensor turbo aero engine dataset from 
NASA. This dataset contains the operational data of the complete 
life cycle of multiple turbo aero engines, and each engine contains 
multiple sensor data. The multi-sensor degradation data have higher 
requirements for the RUL prediction model and show the universality 
of our proposed methods.
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4.1.	 Data	Preprocessing	and	Analysis
The turbo-aero engine dataset is divided into four sub-datasets: 

FD001, FD002, FD003 and FD004. Differences only exist in operat-
ing conditions and failure modes, and no dependency exists among 
the sub-datasets. In this experiment, FD001 was selected as the ex-
perimental dataset. FD001 contains the complete degradation data of 
100 turbine aero engines. the maximum life span is 362, which means 
that the entire working cycle of this turbine aero engine is 362. Details 
of the dataset are shown in Table I.

The sensors are located in all important parts of the turbine aero 
engine and record the possible parameters related to corresponding 
degradation indicators. Data from more sensors are considered to pro-
vide comprehensive information on engine degradation. Details are 
shown in Table II.

A total of 21 sensors were used. Among them, 14 were related to the 
potential degradation mechanism during the entire degradation pro-
cess; these sensors are numbered 2, 3, 4, 7, 8, 9, 11, 12, 13, 14, 15, 17, 
20, and 21. In the stage of data preprocessing, to avoid any interfer-
ence of useless information, we select the information of these 14 sen-
sors as target data. Most of the equipment can be divided into normal 
stage and rapid degradation stage in its life cycle. For the purpose of 

RUL prediction, the prediction of RUL in the stage of rapid degrada-
tion is more important than the that under normal stage. According to 
the work of Babu [2], when 125 cycles remain, a clear degradation 
trend appears. The degradation failure threshold is set to 125 cycles, 
as shown in Figure 8.

Fig. 8. Degradation failure threshold

Since the rapid degradation trend under normal stage is not obvi-
ous, the data intercepted before entering the rapid degradation stage 
is used as the training data, and the length of the data is set to 160 
cycles.

To prevent the increase of network training difficulty caused by dif-
ferent sensor numerical scales, we need the z-score normalization for 
all the training data. The formula is shown as follows:

 x x u
i

i i

i

' =
−
σ
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where iu   is the mean value and σ i  is the corresponding standard 
deviation.

4.2.	 Data	Generated
The preprocessed data are sent to the amplification network as in-

put. Different from the regression task, the customized generator is a 
single-layer LSTM network that prevents the output of the network 
from becoming highly abstract and affecting the expression of the de-
tails of the original degradation data.

The number of parameters in LSTM has a positive correlation with 
the complexity of the model. In this experiment, the number of pa-
rameters in LSTM is set to 160. To keep the input and output dimen-
sions of the network consistent, a dense operation is conducted at the 
output of the network. For the discriminator, features with degraded 
information need to be extracted extensively, so a stacked three-layer 
LSTM network is applied, and the number of parameters in LSTM is 
set to 100.

The trained generator from CycleGAN is used to amplify the train-
ing data. The data selected in this experiment are all from FD001. We 
divide 100 data into three groups of 7: 2: 1 as training set, validation 
set, and test set. In the training set, we use different numbers of data 
(10, 30, 50, and 70) to train the generator and explore the effect of 
various amounts of degradation data on the experimental results. The 
generators are constructed from different amounts of training data to 
generate FD001 Unit 1. The obtained data are shown in Figure 9. For 
further explanation, we number the data shown in Figure 9.

As shown in Figure 9, 1# indicates the original data, and 2#, 3#, 4#, 
and 5# are the degradation data from the generator trained from the 
original data with different numbers of scales. In the case of the Gen-
erator built from less training data, such as Figure 9(b), the model can 
still learn the approximate distribution of samples. We compared the 
MMD differences between them, and the results are shown in Table 
III. Although these samples look similar from an intuitive point of 
view, they are not simply copied.

Furthermore, to find out the difference in the overall distribution 
of the generated degradation data, we compared the MMD between 

Table I. C-MAPSS dataset
items FD001 FD002 FD003 FD004

Engines in dataset 100 260 100 248

Conditions 1 6 1 6

Fault Modes 1 1 2 2

Maximum life span(cycles) 362 378 525 543

Minimum life span(cycles) 128 128 145 128

Table II. C-MAPSS sensors dataset
Num Symbol Description Units trend

1 T2 Total temperature at fan inlet °R ∼

2 T24 Total temperature at LPC outlet °R ↑

3 T30 Total temperature at HPC outlet °R ↑

4 T50 Total temperature at LPT outlet °R ↑

5 P2 Pressure at fan inlet psia ∼

6 P15 Total pressure in bypass-duct psia ∼

7 P30 Total pressure at HPC outlet psia ↓

8 Nf Physical fan speed rpm ↑

9 Nc Physical core speed rpm ↑

10 epr Engine pressure ratio (P50/P2) – ∼

11 Ps30 Static pressure at HPC outlet psia ↑

12 phi Ratio of fuel flow to Ps30 pps 
psi ↓

13 NRf Corrected fan speed rpm ↑

14 NRc Corrected core speed rpm ↓

15 BPR Bypass Ratio – ↑

16 farB Burner fuel-air ratio – ∼

17 htBleed Bleed Enthalpy – ↑

18 Nf dmd Demanded fan speed rpm ∼

19 PCNfR dmd Demanded corrected fan speed rpm ∼

20 W31 HPT coolant bleed lbm/s ↓

21 W32 LPT coolant bleed lbm/s ↓
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a single generated sample in Figure 9 and all original training data 
shown in Figure 10.

As the amount of data participating in training increases, the MMD 
between the generated and target samples is gradually reduced, which 
means that the generated samples and overall real samples are getting 
closer in distribution. Simultaneously, the trend of data degradation 
generated by the generator is more obvious, because the network sum-
marizes the distribution of overall training data and provides the most 
common distribution. The generated degradation data are close to the 
real data in distribution. As the amount of data increases, the differ-

Table III. MMD between real FD001 Unit 1 and generated FD001 Unit 1

Data 1# 2# 3# 4#

MMD 0.194 0.148 0.143 0.113

Fig. 9. FD001 Unit 1 generated from generator trained with different numbers of samples

Fig. 10. MMD results of different groups. The figure shows a box plot of the 
MMD value between the FD001 Unit 1 generated by the generator con-
structed from different training samples and entire training samples

(a)1#: FD001 Unit 1 for real

(b)2#: FD001 Unit 1 generated by Generator trained with 10 samples

(e) 5#: FD001 Unit 1 generated by Generator trained with 70 samples(d) 4#: FD001 Unit 1 generated by Generator trained with 50 samples

(c) 3# : FD001 Unit 1 generated by Generator trained with 30 samples



Eksploatacja i NiEzawodNosc – MaiNtENaNcE aNd REliability Vol. 23, No. 4, 2021 753

ence between the generated data and real data narrows, which is also 
in accordance with expectations.

C. RUL Prediction

To test whether the generated data can be used as training data to 
build a prediction network and explore the effect of our proposed 
model on training data of different sizes, we add the amplified data 
to the training data, and establish some prediction networks. To meet 
the requirements of controlled experiments, we built several sets of 
prediction models using real and generated data. The details are pre-
sented in the Table IV.

To accurately measure the prediction effect of the model, we 
present the evaluation method of RUL for the multi-sensor turbo aero 
engine as follows:
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where '  i i id RUL RUL= − indicates the prediction error of the i-th in-
stance, '

iRUL  and iRUL  respectively represent the predicted RUL 
from model and the actual RUL from dataset of the i-th instance. A 
score function is given as:

 

s

s

s

d

d

i

N
i

d

i
d

i

i

i

=

=










− <

− ≥

=

−

∑
1

13

10

1 0

1 0

e �for�

e �for�

,

,

 (25)

The score function from the dataset provider has a more practical 
significance. The penalty with smaller prediction deviations is small, 
but that for a larger prediction deviation is larger. The difference is 
shown in Figure 11.

Fig. 11. Evaluation of RMSE and score function

The training data are grouped as A#, B# ,C# ,D#, and used to con-
struct the RUL prediction model. To reduce the influence of the er-

ror on the experimental effect, each set of data builds a prediction 
model 10 times, and verifies the data on the test set. The average of 
the results is considered as the final results. The RMSE and scores are 
shown in Tables V and VI, and the results are plotted into the histo-
gram in Figures 12 and 13.

Fig. 12. RMSEs of the predicted RUL with the general method and proposed 
method

Fig. 13. Scores of the predicted RUL with the general method and proposed 
method

As shown in the Figure 12 and 13, the general method is reflecting 
on the blue histogram which is the result of a model built using the 
real data, and the proposed method is reflect on the orange histogram 
which is the result of a model built using not only the real data but also 
the generated data from the real data, what needs to be reminded is 
that both methods use the same predictive model, but the data used to 
build the model is different. When the MSE function is used to evalu-
ate the test results, our proposed method achieves leading experimen-
tal results in all four groups of experiments. However, for the score 
function, the effect of groups A# and B# did not show obvious advan-
tages, and the score of group B# is higher than that of group A#. In our 
analysis, the difference between the individual and test samples in the 
middle part of group B# is extremely large, and the score function is 
closer to the actual situation, resulting in the poor performance of the 
model built under the extremely small training data scale. When the 
real data increases, especially in the C# and D# groups, the proposed 
method performs better than the RUL prediction.

Intuitively, the RUL prediction in test set FD001 Unit 95 is shown 
in Figure 14. Sub-figures (a) to (d) indicate four results predicted by 
model constructed with real data. Sub-figures (e) to (h) indicate four 

Table IV. Prediction network build with different data

Group General Method Proposed Method

A# 10 real samples 10 real + 10 generated samples

B# 30 real samples 30 real + 30 generated samples

C# 50 real samples 50 real + 50 generated samples

D# 70 real samples 70 real + 70 generated samples



Eksploatacja i NiEzawodNosc – MaiNtENaNcE aNd REliability Vol. 23, No. 4, 2021754

results predicted by model constructed with mixed data. Each result 
is predicted by a model built with different amounts of training data. 
Various amounts of training data can also build prediction networks, 
but the prediction effect constructed by the mixed data composed of 
real data and generated data is better. By comparing the results of 
MSE, we find that the curve convergence is better than the model built 
from real data. On the other hand, the prediction model with more 
training data has better model prediction effect, especially at the end 
of the life cycle, where the accuracy of the prediction is improved.

In the MSE evaluation, the proposed method can also improve the 
prediction accuracy. It is not obvious in the score evaluation of sam-
ples 10 and 30, but in samples 50 and 70, the proposed method has 
higher prediction scores.

4.3.	 Applicability	analysis
The method proposed in this study is suitable for devices with mul-

tiple sensors and degradation data presented in time series. On the 
premise of having a small number of run-to-failure degradation data, 
our proposed method shows good performance, when a small amount 
of data is obtained, the remaining useful life of the equipment can also 
be effectively predicted. In the case of having sufficient degradation 
data, the sample space of the degradation data is sufficiently com-
plete, and the prediction model established on this basis already has 
good performance, our proposed method has limited improvement 
under such circumstances. In view of the fact that obtain large amount 
of degradation data in actual industrial production is still not ideal, our 
proposed method still has very important significance.

Table VI. Score of RUL result

Group 1 2 3 4 5 6 7 8 9 10 Average

General Method / A# 2148 1839 2134 2040 2014 2178 2077 1919 1865 2012 2023

Proposed Method / A# 1996 2963 1999 2152 1829 1605 1851 2879 2251 1965 2149

General Method / B# 3616 3393 2906 3556 2832 3729 3105 3339 2821 3408 3270

Proposed Method / B# 2632 3669 2793 2835 2498 2475 2510 3417 5610 3243 3168

General Method / C# 2324 1573 1729 1523 1947 2077 1566 1812 2058 1835 1844

Proposed Method / C# 1246 1295 1149 1677 1034 1294 924 1509 1554 1605 1329

General Method / D# 961 1940 2143 1467 2328 2205 1034 1631 1711 1519 1694

Proposed Method / D# 1218 1164 1141 922 1215 1192 1098 1281 1053 1138 1142

Table V. MSE of RUL results

Group 1 2 3 4 5 6 7 8 9 10 Average

General Method / A# 19.16 18.99 19.10 19.24 18.83 19.34 19.11 19.25 19.01 19.18 19.11

Proposed Method / A# 18.36 18.45 18.87 18.75 18.45 18.23 18.49 18.55 18.75 18.42 18.53

General Method / B# 19.92 19.64 19.03 19.87 18.88 19.08 19.20 18.95 19.21 19.22 19.30

Proposed Method / B# 18.67 19.20 18.54 17.05 18.74 19.03 18.26 19.09 19.08 18.06 18.57

General Method / C# 18.75 17.92 18.20 17.83 18.19 18.10 17.92 18.56 18.29 18.23 18.20

Proposed Method / C# 17.33 16.96 17.09 18.11 17.08 17.19 16.40 17.41 17.91 17.42 17.29

General Method / D# 16.77 17.34 18.47 17.10 17.32 18.02 17.09 16.26 18.09 16.86 17.33

Proposed Method / D# 17.05 16.33 15.66 15.11 16.44 15.58 16.24 16.07 15.57 16.60 16.07

Fig. 14. RUL prediction results in the test set Unit 95

(a) General Method with A#

(e) Proposed Method with A#

(b) General Method with B#

(f) Proposed Method with B#

(c) General Method with C#

(g) Proposed Method with C#

(d) General Method with D#

(h) Proposed Method with D#
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5.	 Conclusion
In this study, a framework for predicting the RUL with insufficient 

data was proposed, in which two main parts are involved. First, based 
on the characteristics of the sequence degradation data, an amplifica-
tion network was designed using CycleGAN. Second, sliding time 
window strategy and deep BiLSTM network are jointly employed to 
construct the RUL prediction model based on the amplified degrada-
tion data. The following conclusions can be obtained: 1) Generating 
an adversarial network, as an unsupervised deep learning network, 
can indeed learn relevant information about data distribution. 2) The 
improved generated network based on LSTM can generate data with 
distribution similar to that of real data, and the RUL prediction net-
work constructed using these amplified data has proved to be effec-
tive. 3) In the case where the RUL prediction accuracy is generally 
limited by the size of the training data, our proposed method provides 
a new reference for the development of RUL prediction.

Some possible topics for future research include the follows.
In many applications, the test set and training set may come (1) 
from different test conditions, under which the equipment 
workloads, environmental condition and noise levels may 
vary. That may lead to different distribution of training set and 
test set. It would be interesting to improve the domain adapt-
ability of our RUL prediction framework.
Due to the variability of raw materials quantity and manu-(2) 
facturing accuracy, it is common to see that the degradation 
characteristics of individuals may show unit-to-unit variability. 
How to improve prediction accuracy considering individual 
characteristics deserves further investigation.
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Managing the exploitation of technical equipment under conditions of uncertainty requires 
the use of probabilistic prediction models in the form of probability distributions of the 
lifetime of these objects. The parameters of these distributions are estimated with the use 
of statistical methods based on historical data about actual realizations of the lifetime of ex-
amined objects. However, when completely new solutions are introduced into service, such 
data are not available and the only possible method for the initial assessment of the expected 
lifetime of technical objects is expert methods. The aim of the study is to present a method 
for estimating the probability distribution of the lifetime for new technical facilities based on 
expert assessments of three parameters characterizing the expected lifetime of these objects. 
The method is based on a subjective Bayesian approach to the problem of randomness and 
integrated with models of classical probability theory. Due to its wide application in the field 
of maintenance of machinery and technical equipment, a Weibull model is proposed, and its 
possible practical applications are shown. A new method of expert elicitation of probabilities 
for any continuous random variable is developed. A general procedure for the application of 
this method is proposed and the individual steps of its implementation are discussed, as well 
as the mathematical models necessary for the estimation of the parameters of the probability 
distribution are presented. A practical example of the application of the developed method 
on specific numerical values is also presented.

Highlights Abstract

A new method for estimating the probability dis-• 
tribution of the lifetime based on expert assess-
ments is developed.

The expert lifetime elicitation procedure is devel-• 
oped and applied to the Weibull lifetime.

The quantile function is used to develop the ex-• 
pert method. 

The subjective Bayesian approach with models of • 
classical probability theory is integrated.

The objectification of the evaluation of experts to • 
assign weights to their opinions is proposed.

A method for estimating the probability distribution of the lifetime  
for new technical equipment based on expert judgement
Karol Andrzejczak a, Lech Bukowski b

a Poznan University of Technology, Faculty of Control, Robotics and Electrical Engineering, Institute of Mathematics, ul. Piotrowo 3A, 60-965 Poznań, Poland 
b WSB University, ul. Zygmunta Cieplaka 1c, 41-300 Dabrowa Górnicza, Poland

Andrzejczak K, Bukowski L. A method for estimating the probability distribution of the lifetime for new technical equipment based on 
expert judgement. Eksploatacja  i Niezawodnosc – Maintenance and Reliability 2021; 23 (4): 757–769, http://doi.org/10.17531/
ein.2021.4.18.

Article citation info:

uncertainty, expert elicitation of lifetime, quantile function, Weibull distribution.

Keywords

This is an open access article under the CC BY license 
(https://creativecommons.org/licenses/by/4.0/)

Acronyms
CDF Cumulative Distribution Function
ED  Expert Data
EEL Expert Elicitation of Lifetime
ELV Expanded Lover Value
ETD Expanded Triangle Distribution
EUV Expanded Upper Value
IRF Invers Reliability Function
LF Lifetime Family
PDF Probability Density Function
REE Reliability Engineer Expert
RF Reliability Function
TD Technical Device

Notation
β  shape parameter
β  shape parameter in the EEL procedure


β  aggregated shape parameter
η   scale parameter
η  scale parameter in the EEL procedure
η  aggregated scale parameter
λ t( )   failure rate function

Γ ⋅( )   gamma function

( )f t   PDF

( )F t   CDF 

k  number of experts

K. Andrzejczak - karol.andrzejczak@put.poznan.pl, L. Bukowski - lbukowski@wsb.edu.pl



Eksploatacja i NiEzawodNosc – MaiNtENaNcE aNd REliability Vol. 23, No. 4, 2021758

( )1 2;kM r r  matrix of the theoretical values of the location param-
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wbl β η;( )  two-parameter family of Weibull distributions 
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1. Introduction
In today’s increasingly competitive environment, designing and 

manufacturing reliable products is essential to the company’s surviv-
al. An innovative reliability program for a manufacturing company 
can significantly improve the quality, performance and durability of 
a product, and ultimately the company’s profitability and customer 
satisfaction. Reliability analysis of industrial equipment is one of the 
most dynamic branches of research and continues to be a challenge 
for many applications. For decades, statistical methods have been de-
veloped and used in reliability research, see, e.g., [1, 15, 24, 29, 31]. 
Software tools to support more and more complex reliability analyses 
are being developed, see, e.g., [16, 17, 18]. 

Nowadays, empirical statistical methods are supported by other 
methods. The Bayesian modelling framework is based on incorpo-
ration of different sources of quantitative and qualitative data in the 
model [4, 22, 37]. The article [8] concerns the estimation of low prob-
abilities of failure in terms of structural reliability. Analytic models 
for predicting system lifetime are based on reliability block diagrams 
[22], fault trees [25], Markov chains, semi-Markov processes [14], 
stochastic Petri nets [10] or hierarchical models. Typically, such mod-
els capture uncertainty that is natural in the system being modelled. 
This includes random times to failure of components, random times 
for various recovery actions and randomness in the ability to detect a 
failure. The methodology of examining uncertainty in various aspects 
is presented in the articles [20, 33, 38]. Such uncertainty, known as 
aleatory uncertainty, is usually captured by beta, gamma, exponen-
tial, triangular, Weibull, lognormal, Bernoulli and other distributions. 
Computations and results obtained from such models thus account 
for the aleatory uncertainty in the system. Results of the model will 
depend upon the validity of the assumed distribution forms as well as 
the parameter values attached to these distributions. Assuming that 
the distribution forms are valid, parametric uncertainty is the subject 
of this paper.

The main challenge of fitting distribution to reliability data is find-
ing the family of distribution and the values of the parameters that 
give the highest probability of producing the observed data. One of 
the most common probability density functions used in industry is 
the Weibull distribution [1]. The paper [2] gives an extensive review 
of some discrete and continuous versions of the modifications of the 
Weibull distribution. 

Other concepts of uncertainty description are based on the notion 
of imperfect knowledge [9] and use methods beyond classical proba-
bility theory. Such concepts include methods of so-called generalized 
uncertainty [5], which also allow the use of expert knowledge based 
on data and information of an incomplete and sometimes ambiguous 

nature. These methods provide opportunities for quantitative uncer-
tainty assessment considering three main criteria, which can some-
times conflict with each other, namely:

inclusion in the analysis and calculation of all verified data and • 
information at the disposal of the expert,
the abandonment of assumptions in the model which cannot be • 
clearly and reliably justified,
the orientation of the modelling process towards achieving the • 
main objective, which is to develop an effective tool to support 
decision-making under uncertainty.

As the predominant type of uncertainty within this concept is epis-
temic uncertainty, the most used methods for its description are sub-
jective probabilities (e.g., in the Bayesian approach) and the so-called 
imprecise probabilities (e.g., in the approach of fuzzy set theory).

In many industrial applications the basic criterion for the usability 
of a technical device is the quality of the product, which is a func-
tion of the technical condition of this device. However, in the case 
of other types of technical devices, such as e.g., infrastructural facili-
ties, and especially of unique character, this methodology is not ap-
plicable. Our proposal concerns exactly such devices, for which it is 
not possible to obtain either direct – historical data, or indirect – data 
concerning the influence of the degradation of the examined device on 
the quality of the product.

The aim of this article is to present a method of estimating the life-
time probability distribution of new technical devices based on expert 
assessments of only a few parameters characterizing the expected life-
time of these objects. The method is based on a subjective Bayesian 
approach to the problem of randomness and integrated with models of 
classical probability theory. Due to its widespread use in maintenance 
of machinery and technical equipment, a Weibull model is proposed, 
and possible practical applications are shown for it.

This article is organized as follows. Section 2 presents a literature 
survey on the determination of subjective probability distributions 
based on expert opinion data. Special emphasis is placed on discuss-
ing methods that have been positively validated in so-called critical 
infrastructure (e.g., in risk analysis of dams). On this basis, and in 
particular the analysis of the strengths and weaknesses of these meth-
ods, a modified procedure for expert elicitation of probabilities for 
any continuous random variable, consisting of eight main steps is pro-
posed in Section 3. A general procedure for applying this method is 
developed and the various steps in its implementation are discussed. 
Section 4 proposes a formal construction of the expert lifetime elici-
tation procedure and presents the mathematical models necessary to 
estimate the parameters of its distribution. Application of the Expert 
Elicitation of Lifetime (EEL) procedure to the Weibull lifetime distri-
bution is the subject of Section 5. The next section presents a practical 
example of using the developed method on concrete numerical values. 
The article ends with a summary, conclusions and plans for further 
work within the ongoing research project.

2. Determination of subjective probability distribution 
based on expert judgement – literature review

The subjective probability should reflect a starting point of knowl-
edge of an object of interest (so-called prior probability distribution), 
based on which a rational person would use Bayes’ methodology, 
by means of new available information, to determine the modified 
probability distribution (so-called posterior probability distribution). 
Thus, this methodology is implemented in multiple steps; first the 
prior probability is elicited and then it is modified based on further 
available information.

The stimulus for the dynamic development of methods based on 
Bayesian inference has been the challenge of managing the risk of 
unitary systems with high levels of reliability and potentially high 
safety risks, such as reactors in the nuclear power industry. An ex-
ample of an attempt to solve this problem can be found in the safety 
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study of nuclear reactors, concluded with a guide recommending the 
use of appropriate elicitation methods [36]. This type of methodol-
ogy has also been used to assess environmental risks and their impact 
on the safety and health of whole populations as well as individual 
people [27].

As interest in this issue grew, more and more papers appeared in 
the field of psychology on human decision-making under uncertainty. 
The experiments generally consisted of asking questions to which the 
subjects did not know the answers, and then respondents were asked 
to quantify the degree of uncertainty in these responses. Mostly the 
psychologists who compiled the results of these studies assigned cor-
responding probabilities to the different degrees of uncertainty. As a 
result of this research, it was found that assessing the uncertainty of 
one’s own knowledge tends to be subject to systematic errors, which 
were called biases. Galwey’s publication [12] defines the most impor-
tant of these biases, namely:

accessibility - overestimating the chance of events that have hap-• 
pened recently and that we have easy access to in our memory,
representativeness – assessing the chance of events based on ir-• 
relevant data, often incidentally linked to those events,
anchoring – ignoring new data and information about events about • 
which we have already formed an opinion, particularly in terms of 
the likelihood of their occurrence, and
overconfidence – overestimating our knowledge and therefore un-• 
derestimating the uncertainty of our assessment.

Until the early-1990s, assessments of these errors were descriptive 
based on widely accepted concepts presented in the work by Kahne-
man, Slovic, and Tversky [21]. In contrast, Morgan and Henrion’s 
book [27] proposed a general procedure that could be used as a basis 
for developing a guide for performing rational elicitation. Summariz-
ing the literature in this area, it can be stated that (based on [12]):

the selection of experts should consider their technical, techno-• 
logical, managerial, and economic competence in the subject mat-
ter of the expert opinion, and ensure their independence from the 
owner of the object under assessment,
elicitation should take place under the minimum constraints of • 
both time and money, and should provide the experts with full ac-
cess to all information on the object of the evaluation,
the elicitation methodology should be carefully prepared before • 
the experts start their work, and the experts should know and ac-
cept it,
the entire elicitation process should be carefully and explicitly • 
documented so that it can be reproduced in the future and its cor-
rectness and effectiveness critically analysed.

Current Best Practices by determination of subjective probability 
distribution based on expert judgement can be synthesized to the fol-
lowing procedure, which is based on several sources (e.g., [11, 12, 
26, 27]): 

Using multiple experts, if possible, the more the better. It is a) 
particularly important to ensure that independent experts with 
in-depth knowledge and engineering experience participate in 
the elicitation.
Asking experts not only about the expected or most likely b) 
value, but also about the smallest and largest possible values 
of the parameter being evaluated. It is recommended that the 
order of the questions should force the experts to first ask for 
the dispersion of the values of the parameter and only then for 
the expected value.
Use of triangular decomposition for graphical description of c) 
elicitation results. In works [6] and [13] it is recommended to 
modify this distribution by assuming that it covers only 90% 
of the entire range of variability of the evaluated parameter. 
The remaining 10% can be distributed symmetrically between 
the lower and upper areas of variation of the parameter [6], or 
asymmetrically, with 2% around lower values and 8% around 

upper values [13]. Figure 1 shows an example of the Expanded 
Triangle Distribution (ETD) concept (based on [7] and [12]).
Some authors recommend that experts provide additional per-d) 
centile values for the assessed parameter to verify the plausi-
bility of the assessment and check its compliance with the as-
sumed triangular distribution.
Provide experts with the opportunity to access the results of e) 
the entire elicitation process and organise an additional session 
with all experts to critically analyse both the process procedure 
itself and its results.
Documentation in full of all stages of the elicitation process, f) 
including a description of their progress, analysis of the results 
obtained and archiving of the whole so that each element of the 
process can be reproduced at any time in the future.

Fig. 1. The Expanded Triangle Distribution (ETD) concept – an example

Practical advice on the implementation of points b), c) and d) can 
be found e.g., in the publication on risk analysis of dams [32] in the 
form of suggested questions to experts:

What is the lowest reasonably plausible number you can imagine • 
the likelihood to be?
What is the highest reasonably plausible number you can imagine • 
the likelihood to be?
Is it more likely to be somewhere in between these values?• 
If so, what is the most likely value? • 
The probability is not likely to be less than x? (e.g., 10th percen-• 
tile) 
The Probability is not likely to be more than y? (e.g., 90th per-• 
centile)
It cannot be less than v? (e.g., 0th percentile) nor more than z? • 
(100th percentile)
It is equally likely to be more or less than m? (50th percentile)• 

The above-described methodology, based on the ETD concept, has 
been used successfully in several cases, e.g., in cost risk analysis [12]. 
However, in many cases, such as estimating the expected life of new 
technical facilities, it has proved unreliable. We see the main reasons 
for this situation in the following limitations of the ETD concept: 

The assumption that the range of a random variable X is restricted • 
to a closed interval between ELV and EUV is contrary to mainte-
nance experience on the durability of machinery and equipment.
The values of 8 and 2% define the skewness of the probability • 
distribution, but these are not universal values, and their adoption 
has not been sufficiently justified anywhere.
In many practical situations it is crucial to determine probabilities • 
for values of variable X outside the ELV to EUV range, which is 
impossible when using the ETD method.
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In view of the above-mentioned limitations of the ETD method, the 
authors propose an alternative method devoid of these deficiencies. 
The assumptions of this method and the general procedure for its ap-
plication is presented in Section 3.

3. Modified procedure for expert elicitation of a prob-
ability distribution for a continuous random variable  

Based on the literature analysis conducted in Section 2 and our own 
experience, we propose a modified procedure for expert elicitation of 
a probability distribution for random variables, those of a continuous 
nature (e.g., expressed in units of time). The general procedure for 
the practical application of this method, consisting of eight steps, is 
shown in Figure 2.

Step one requires a clear, precise, and unambiguous formulation of 
the problem to be addressed by the experts. The experts should have 
all the relevant information for the evaluation, but not be burdened 
with unnecessary details that add little or nothing to the subject of 
the evaluation. The proper formulation of the task is the basis for the 
selection of appropriate experts who are authorities in the relevant 
field of knowledge. 

The creation of as numerous and competent a group of experts 
is the objective of phase two. This is a difficult task, because usu-
ally these two criteria conflicts with each other – the more numerous 
the expert group, the greater the chance that it will also include less 
competent representatives. This step should also include selecting and 
adding to the expert team (or selecting from among them) an experi-
enced facilitator, responsible for the harmonious work of the whole 
team – the group leader.

The next step is to develop an elicitation implementation plan, con-
sidering both organizational and scheduling aspects. All constraints 
(e.g., time, financial, etc.) should be considered, as well as possible 
disruptions that may occur during the elicitation process (e.g., threats 
and hazards). The plan should be as detailed as possible, but at the 
same time flexible (e.g., considering the possibility of one of the ex-
perts being indisposed). An important part of the plan is the prepa-
ration of appropriate forms for collecting data from experts, which 
should easily allow further computer processing of the information 
obtained.

Fig. 2. General procedure for modified expert elicitation procedure of the life-
time distribution

Step four is a key part of the evaluation process, so it should pro-
ceed as quickly and smoothly as possible. To avoid possible mistakes 
of anchoring and suggesting the opinions of other team members 
each expert should perform the evaluation without contacting other 
experts. 

The discussion on the assessment and arguing for or against cer-
tain opinions can take place in step five, after the work of step four 

has been completely closed. In case of significant divergence between 
expert opinions, it is recommended to carry out an in-depth analysis, 
which should provide a conclusive answer to the question: are the 
results plausible? If the answer to this question is positive, you can 
proceed to step seven, which is to aggregate the results from all expert 
evaluators. If, on the other hand, the answer is negative, additional 
tasks must be taken to reach a compromise among the experts or to 
eliminate the opinions of those experts who could not convincingly 
justify their decisions. 

In the first part of step six, additional verification of the consist-
ency of the expert judgements should be carried out using a consist-
ency test. The results of this test can be used as a basis for assessing 
the credibility of the individual experts and for assigning appropriate 
weights to their opinions in the second part of this step. This will al-
low the quality of individual elicitation to be considered in the process 
of aggregating the opinions of different experts.

The next step is to aggregate the verified elicitation results. The 
aggregation process uses the ratings of all the experts, considering 
the weights estimated in the previous step, in order to obtain unam-
biguous data allowing the estimation of the parameters of the assumed 
probability distribution. 

The last step of the procedure is to create a parametric model of 
the lifetime probability distribution sought and to use it for practical 
purposes, e.g., determination of the expected lifetime of new technical 
equipment, for which the lack of operational data precludes the use of 
statistical methods.

The innovation of the proposed model is that the first 5 steps have 
been developed by modifying best practice in different areas of ap-
plication of expert assessments used for critical infrastructures. The 
sixth and seventh steps, which aim to objectivize the assessments of 
individual experts, are fully innovative. We propose that verification 
of the consistency of the expert judgements should be carried out us-
ing a consistency test. The results of this test can be used as a basis 
for assessing the credibility of the individual experts and for assigning 
appropriate weights to their opinions in the second part of this step. 
This will allow the quality of individual elicitation to be considered 
in the process of aggregating the opinions of different experts. The 
aggregation process uses the ratings of all the experts, considering the 
weights estimated in the previous step, to obtain unambiguous data 
allowing the estimation of the parameters of the assumed probability 
distribution.

4. Formal construction of the expert lifetime elicitation 
procedure 

We use the quantile method in the proposed procedure of the Ex-
pert Elicitation of Lifetime (EEL) of a Technical Device (TD). This 
method is often used in engineering research. For example, in the arti-
cle [3], the quantile method was used to identify the costliest damage 
to parts of fleet vehicles. On the pages of Transport Topics [19] Evan 
Lockridge wrote “Engine makers are providing customers a gauge 
to help them determine how dependable and durable an engine is 
supposed to be, called a B-life rating.” The construction of this life-
time measure is also based on a quantile function. The BX% rating 
in Weibull ++ is used to estimate the time when the probability of 
failure reaches a certain point (X%). Industry specialists consider this 
measure as a standard for measuring the life expectancy of technical 
products. For example, in predicting engine life, the most frequently 
heard ratings are B10% and B50% of life rating [19]. In this case 
B10% life is the expected engine durability expressed in kilometres 
of operation, before 10% of all operated engines of a specific type 
will require a major overhaul, renovation, or replacement. Thus, such 
information is very useful in giving customers a good idea of engine 
life expectations for a specific engine family. In practice BX% ratings 
are based on the durability data that engine manufacturers have on 
file and operating data [35]. So, a research problem appeared: How 
to build an equivalent of this measure of lifetime for new technical 
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devices for which operational data will appear only in the future? Our 
research is an attempt to solve this problem.

In our research, we do not have operational data or there is very 
little data, so we cannot use statistical methods to estimate param-
eters. Hence the need to develop an expert method for the assessment 
of unknown TD lifetime parameters. The primary role of the Reli-
ability Engineering Expert (REE) is to identify hazards and manage 
the risks associated with the reliability of assets that may adversely 
affect the operations of a facility or company investing in new equip-
ment. In such a case, we believe that the method of determining the 
lifetime of these equipment, developed in this article, may be useful. 
In the presented research, the BX% lifetime estimates are replaced 
with 100p% percentiles obtained from REE. Based on Expert Data 
(ED), the lifetime parameters of a predetermined family distributions 
are determined.

The likelihood of a system failure can be assessed under different 
circumstances using the REE group’s opinion. It provides an applica-
ble method for a facile computational prediction of future perform-
ances that aims to replace the usage of failure rates by a combination 
of instructed REE elicitation [28]. Due to the lack of historical data, 
expert judgment is used regarding the probability of the system failure 
in the planned operating conditions. Data on selected parameters of 
the lifetime are obtained using an appropriately designed question-
naire. In the designed survey, experts are asked to express their opin-
ion on the potential lifetimes pt  at certain levels ( )1, , 0,1 lp p… ∈  of 
the unreliability in the assumed process of use and service for given 
TD. The originality of the developed lifetime parameter estimation 
procedure results from the application of this expert information for 
a specific lifetime model, instead of historical data. Such an approach 
to the issue of parameter evaluation has not yet been developed in the 
reliability theory. 

Potential lifetime pt  at the unreliability level p  is the quantile de-
termined from the one of the equations F t pp( ) =  or R t pp( ) = −1
. We assume that the potential lifetime is continuous, so pt  lifetime 
is derived from the quantile equation t R pp = −( )−1 1 , where 1R−  is 
the Invers Reliability Function (IRF). Potential lifetime pt  is the time 
during which the new TD will not fail with probability 1r p= − . The 
potential lifetime pt  plays a fundamental role in developing the EEL 
procedure of TD. In the proposed EEL procedure, we use the fact that 
it is enough to know as many different potential lifetimes as there are 
parameters for the assumed Lifetime Family (LF) distributions. The 
characterization of the LF parameters of a given TD with the elabo-
rated EEL procedure relies only on the potential lifetimes reported by 
a group of k independent REE experts. 

Let TD be a new device (equipment) whose lifetime is to be esti-
mated by a group of k  REEs. Moreover, let LF α α1, ,…( )s  denote 
the s  parametric lifetime family of this device determined based on 
the knowledge of damage physics. The lack of historical data does 
not allow the use of statistical estimation of these parameters. In such 
a situation, we suggest using the EEL procedure to determine their 
value. As already indicated, the general idea of the expert elicitation 
is to use a potential lifetime. Experts from the REE group make in-
dividually elicitation the potential lifetimes 1, ,i ist t…  for 1, ,i k= …  
and s  different levels of reliability 1, sr r…  or dually levels of unreli-
ability 1 11 , , 1r sp r p r= − … = − . Moreover, they provide at least one 
location parameter as control values. Let 1, ,i iql l…  denote the control 
parameters of the i -th expert. The control parameters should be dif-
ferent from the selected potential lifetimes. Thus, we obtain ED as a 
two-block input matrix (1):
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Before we proceed to identifying lifetime distributions from the ob-
tained ED, the group leader examines the plausibility of this data. At 
this stage, not plausible experts are rejected, and new experts are ap-
pointed in their place. The procedure is repeated until a fixed number 
of experts remain. The result of the work of the group leader is to 
establish a group of k  experts and obtain an updated expert plausible 
data matrix ( )1; ;k sM r r… . Only the data of the first block is needed to 
determine the LF parameters. The data contained in the second block 
we will use to determine weights for individual experts. To determine 
the LF parameters α αi is1, ,…  for the i -th expert, a system of equa-
tions (2) is solved:
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where R
sLF α α1, ,…( )  is RF of the LF α α1, ,…( )s . If there exist Invers 
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expert lifetime can be determined by solving equivalent systems of 
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Thus, for the i -th expert we obtain a random lifetime iT , the prob-
ability distribution of which has the form (4):

 

 T i ki i is~ , , , , ,LF α α1 1…( ) = …  (4)

Based on the first block of the ED matrix, we obtained expert pa-
rameters  α αi is1, ,…  of the given LF distribution for all k  experts. 
The obtained random lifetimes 1, , kT T…   are necessary to perform 
consistency tests. In this step, we proceed to determine the theoretical 
values 1, ,  i iql l…  of the control parameters for all k  experts. In this 
way, we obtain the matrix (5) of the theoretical values of the control 
parameters for all k  experts:
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The data consistency test is carried out for each expert separately. 
It consists in comparing the control parameters 1, ,i iql l…   given by the 
i -th expert and recorded in the second block of the ED matrix, with 
their theoretical equivalents 1, ,i iql l…  determined from the obtained 
lifetimes 1, , kT T…  . If the control parameters given by a certain expert 
do not meet the conditions specified by the group leader, the data of 
that expert is omitted, and a new expert is appointed in his place. 

If the ED matrix is plausible and consistent, then we proceed to the 
next step of the EEL procedure. In this step, based on the selected 
control parameter, the weights of the obtained lifetimes 1, , kT T…   are 
determined. These weights are measures of the quality of the expert 
information contained in the ED matrix. The quality of the opinion of 
the i -th expert is assessed based on the relative measures of devia-
tions 1 dev or 2dev  of the expert value θ  of a given control parameter 
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from the theoretical value θ  of this parameter. To determine the qual-
ity measures of expert opinions, we propose the formulas (6) and (7):

 dev1
θ( )

θ θ
θ
−≝  (6)

 ≝dev2
θ( )

θ θ

θ

−  (7)

The obtained measures of relative deviations of expert values of 
control parameters from their theoretical values are used to deter-
mine the weights of the obtained lifetimes 1, , kT T…  . If θ θi ≠  for 

1, ,  i k= … , then the weights are determined separately for the param-
eters as follows:
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If θ θi =  for a certain expert, then as the difference θ θ−  we take 
a small value, e.g., 0,000001. Then the obtained weights are used to 
determine the aggregated parameters  α α, ,… s  of the TD lifetime 



T  . 
Lifetime 



T  parameterized in this way finalizes the presented EEL 
procedure, and its result is the weighted probability distribution (9):

 


 T s~ , ,LF α α1 …( )  (9)

The obtained lifetime 


T  can be used to determine the functional 
and numerical both unconditional and conditional reliability charac-
teristics of a TD.

However, it should be remembered that determining the LF pa-
rameters and its functional and numerical characteristics based on the 
EEL procedure is not always an easy task, as it may be necessary to 
know the specific properties of the families of lifetime distributions. 

In the next section, we will do this for the family of Weibull life-
time distribution. Weibull lifetime can be applied to many situations. 
The main advantage of using this probability distribution is that it is 
flexible enough to accommodate different types of TD lifetimes and 
its well-known properties. Some of them that are useful for the EEL 
procedure are also presented in the next section. 

5. Application of the EEL procedure to the Weibull life-
time distribution

Starting with a three-parameter Weibull lifetime distribution, the 
general Weibull model is given by the following Probability Density 
Function ( PDF ) [30]:
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where β is the shape parameter, η is the scale parameter, γ is the loca-
tion parameter and  γ ,∞( )  is the indicator function (11):
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Since the main properties of the Weibull lifetime distribution is de-
termined by the scale and shape parameters, we will focus further on 
the one- and two-parameter family of Weibull lifetime.

5.1. One-parameter Weibull lifetime distribution
This part of the publication presents the results of research on the 

properties of the Weibull distribution depending only on the shape 
parameter. These properties allow for a better eliciting information of 
the location characteristics and hence, the one-parameter Weibull life-
time plays a special role in our study. This special case occurs when 
the scale parameter is one and the location parameter is zero. In this 
case, one can only speak of a relative lifetime without entering unit 
names. PDF fwbl β( ) for the one-parameter Weibull lifetime wbl β( )  
reduces to (12):
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Now let’s look at the effects of the beta shape parameter. The Fig. 3 
shows the effect of different values of the shape parameter, β, on the 
shape of the PDF, independently of the other parameters. As you can 
see, the shape can take on a variety of forms based on the value of β.

Fig. 3. One-parameter Weibull density curves for β 0,5β = ; 1; 3; and 5

As can be found in [34] for β 2,6β <  the Weibull PDF is positively 
skewed, for 2 6 3 7, ,< <β  coefficient of skewness approaches zero 
and consequently, it may approximate the normal PDF. For β > 3 7,  
it is negatively skewed. If 1 2< ≤β , then density function is concave 
downward and then upward, with inflection point given in (13):
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If β 2β >  density function is concave upward, then downward, then 
upward again, with inflection points at (14):
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The Fig. 4 shows the effects of these varied values of β on the reli-
ability plot. From the Fig. 4 it is clear, that all the reliability curves in-
tersect at the point ( )1; 0,368 . The following is the plot of the Weibull 
failure rate with the same values of β as above.

In Fig. 5 we can see that the failure rate can take various shapes 
informing about the type of aging of the TD. If β 2β > , then the curve 
λ t( )  is convex and its slope increases with the increase of t . Conse-
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quently, the failure rate increases at an increasing rate as t  increases, 
indicating wear out life. Depending on how skewness is measured we 
have different values of β giving a value of zero for the measure of 
skewness chosen [30]: 

β 3,60235β ≈  for skewness = zero, 

β 3,43954β ≈  for mean = median,

β 3,31247β ≈  for mean = mode,

β 3,25889β ≈  for mode = median. 

Regarding the kurtosis, we have two values of β (β 2,25200β ≈  
and β 5,77278β ≈ ) giving kurtosis 3= . The standardized normal and 
Weibull distributions have the same mean hazard rate 0,90486=  
when β 3,43927β ≈ , which is neartly the value of shape parameter such 
that the mean is equal to the median. The effect of β can be translated 
into various modes of failures, as given in Table 1.

As we can see, the shape parameter provides important information 
about the aging process of the TD for which we do not have statistical 
data yet. Determination of this parameter based on ED plays a key 
role in predictive research.

5.2. Two-parameter Weibull lifetime distribution
We now assume that the expert elicitation of the potential lifetimes 

refers to TD, whose lifetime T  belongs to the two-parameter family 

of Weibull distributions wbl β η;( ) , where β is the shape parameter 
and η is the scale parameter. The Weibull lifetime with its two param-
eters permits the modelling of different regions of the bathtub curve in 
the lifecycle of a great number of components [37]. PDF fwbl β η;( )  of 
the two-parameter Weibull’s lifetime takes the form (15):
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Scale parameter η is life characteristic because it is the time T  such 

that Pr ,T ≤( ) =η 0 632 . For two-parameter family wbl β η;( )  
, if β 1β = , 

then failure rate is constant λ
ηηwbl t1
1

;( ) ( ) =  and LF wbl 1,η( )  is the 

exponential LF. For β 2β =  the family wbl 2;η( )  is the Rayleigh LF 
with a linearly increasing failure rate. For 0 1< <β  Weibull lifetime 
are characterized by decreasing failure rate. Thus, depending on the 
shape parameter, the Weibull distribution belongs to one of the class-
es: IFR, DFR or CFR, denoting, respectively, classes of increasing, 
decreasing or constant failure rate. For more details on this distribu-
tion and application, see the work of [30]. 

Potential lifetime pt  of the Weibull lifetime in engineering termi-
nology defined as [23] takes the form (16):
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The experts’ task is to assess potential lifetimes pt  for two given 
probability levels ( )1 2, 0,1 p p ∈ . The data comes from the k  REE 
group with comparable knowledge and sufficient experience in the 
management, maintenance, and design departments. As opinions dif-
fer, aggregation is performed to produce a single Weibull lifetime 
model. For this purpose, a weighting factor is calculated for each 
expert so that a weighted average of the opinions can be calculated. 
In summary, the steps to be taken to create an effective aggregate 
potential lifetime 



T  of a TD using the EEL procedure for family 
wbl β η;( )  are as follows:

Appointment of a group of a) k  experts and a group leader to 
assess the durability of a new TD designed to operate under 
established operating conditions.
 Obtaining a plausible and consistent ED matrix of input data b) 
composed of potential lifetimes ;1 ;2,i it t   for two reliability lev-
els 1 11r p= − , 2 21r p= −  and additional location parameters 

;1 ;, ,i i ql l…   for control purposes. 
 Determination of Weibull’s lifetime c) 





T wbli i i~ ;β η( )  of the 
i -th expert, for 1, ,i k= … .

 Calculation of the theoretical values of the control param-d) 
eters ;1 ;, ,i i ql l…  for the obtained expert lifetime , 1, ,iT i k= …

 . 
The control parameters can be a mode, median, expected val-
ue, or other numeric localization measures.

 Selection of a control parameter as a weighting criterion and e) 
calculation of weights for individual expert opinions.

 Determination of the weighted Weibull potential lifef) time 
 

T wbl~ ;β η( )  for the selected criterion and two different 

reliability levels 1 2, r r .
Finally, it remains to use the obtained lifetime g) 



T  to calculate 
the unconditional or conditional probabilities of survival of the 
TD and its functional and numerical characteristics useful in 
reliability tests.

Using the presented EEL procedure for determining the aggregated 
lifetime, we move to the formal calculation side. Let 1it  and 2it  for 

Table 1. Type of failures corresponding to β values

β value type of failure meaning

β <1
β =1

1< β <4
β ≥4

infant mortality 
random failures
early wear out
rapid wear out

high probability of failing at early stages
failures are independent of time
can be due to generic failure modes, such as corrosion
steep curve with fast wear out at some point 

Fig. 4. One-parameter Weibull reliability curves for β 0,5β = ; 1; 3; and 5

Fig. 5. One-parameter Weibull failure rate for β 0,5β = ; 1; 3; and 5
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1, ,i k= …  be given the potential lifetimes for two different reliability 
levels 1r  and 2r  for the TD starting the mission at age zero be given. 
To determine the parameters βi  and ηi  for the ED of the i -th expert, 
system of equations (17) should be solved:
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The aim is to determine the parameters βi  and ηi  of the Weibull’s 
lifetime iT  as a function of the pairs ( )1 1,it r  and ( )2 2,it r  given by i -th 
expert. Solving the system (17) due to the scale parameter we get 
(18):

 









η

η

β

β

i
i

i
i

t

r

t

r

i

i

=

− ( )( )
=

− ( )( )














1

1

1

2

2

1

ln
�

ln

 (18)

After comparing the right sides of the (18), we get an equation with 
one unknown parameter βi , which can be expressed as a function of 
the variables ( )1 1,it p  and ( )2 2,it p . Thus, the solution (19) for the 
parameter βi  is obtained as a function of ( ) ( )1 1 2 2, ,  ,i it r t r :

 βi t
t
i

i

r
r
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( )
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By inserting the determined shape parameter βi  into the first equa-
tion (18) we get scale parameter ηi :
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The lifetime distribution wbl i i


β η;( )  determined in this way 
is an expert distribution of the two-parameter Weibull lifetime iT . 
The random lifetime iT  obtained by the EEL procedure is denoted 
by T wbl t r t ri i i~ , , ,1 1 2 2( ) ( )( ) . For the obtained iT , its functional and 
numerical characteristics can be determined. In such parameteriza-
tion, the RF takes the form (21):
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Weibull’s potential lifetime ti;p, for i=1,…, k, r ∈(0,1) and p =1− r 
takes the form (22):
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Thus, for the Weibull’s potential lifetime, having the ED in the form 
( ) ( )1 1 2 2, ,  ,i it r t r , it is possible to determine the scale parameter ηi , 
and the shape parameter βi , and then calculate the lifetime location 
parameters for the i -th expert, such as: expected value ( ev ), mode  
( mo ) and quartiles, in particular the median ( me ) and measure of de-
viation or skewness. Of course, having an ED, we can directly use it to 
calculate these measures. Apart from the expert’s index, the calcula-
tion formulas for them take the form (23), (24) or (25), respectively:

ev wbl t r t r t

r r
r

t
t

1 1 2 2
1

1 1
2

1

2

1, , ,
ln log ln

ln

( ) ( )( )( ) =
− ( )( )

+
( )
( )

Γ
11

1

2

1

2
log

ln
lnt

t

r
r
( )
( )

































  (23)
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These are the potential localization characteristics that are used 
in this article to construct quality measures of the EEL by compar-
ing REE characteristics with their theoretical counterparts. The re-
sulting Weibull’s lifetime is used to determine the potential lifetime 
for a given reliability level r . Of course, complementary probability 

1p r= −  is the unreliability with which we want to determine the 
potential lifetime. The potential life pt  is calculated from the equa-
tion R t pwbl pβ η γ; ;( ) ( ) = −1 . The lifetime pt  at the percentile level 

( )100 1 %p−  denotes that the TD will be operational during this time 
at the reliability 1r p= − . For example, 0,1t  is the lifetime at which 
given TD will be operational with the probability 0,9 . Fig. 6 shows 
the relationship between potential lifetime and shape parameter β for 
various values of risk level p  ( 0,02;0,04;0,06;0,08;0,10)p =  and 
scale parameter η = 3500 . For 0,02p =  potential life 0,02t  is the 
lifetime counted in adopted units of time, for which the TD will have 
a failure probability of 0,02 . 

Larger the value of β, longer the potential lifetime for the same val-
ue of η. In the presented probabilistic concept of determining Weibull 
distribution parameters, the potential lifetime pt  of the TD for a given 
probability level p  is assessed by experts, because of their specialist 
knowledge. 

6. Exemplification of the presented EEL procedure 
Assuming that, the lifetime of the tested TD belongs to the family 

wbl β η;( ) , k  REE assess potential lifetimes 1t  and 2t  for two dif-
ferent reliability levels ( )1 2, 0,1 r r ∈  and basic location parameters: 
modal value mo , median me  and expected value ev . Thus, the ED 
received from REE takes the form of the mapping (26):

 ED : , , , , ,0 1 2
1 2 1 2

5( ) ( ) → ( )∈ + r r t t mo me ev 

    (26)

where 5
+  denotes the Cartesian product of positive real numbers. 
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If k  experts evaluate the location parameters of the potential life-
time of the same TD, based on the same two reliability levels 1 2, r r , 
then we obtain the set of ED in the form of five-dimensional vectors 
arranged in the matrix kM  (27):
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The theoretical values of the location parameters are determined 
based on two potential lifetimes 1it  and 2it , given by REE for 

1, ,i k= … . In this way we obtain a matrix kM  of the theoretical val-
ues of the lifetime location parameters , , i i imo me ev :

 M r r

mo me ev
mo me ev

mo me ev

k

k k k

1 2

1 1 1

2 2 2;( ) =
… … …



















 (28)

Let’s illustrate these matrices with a practical example for given 
reliability level 1 0,9r =  and 2 0,1r = . The opinions of the group of 

4k =  REE on potential lifetime parameters for a certain TD used 
continuously, presented in the form of a matrix ( )4 0,9;0,1M , are as 
(29), where the unit of time is the one day of using TD:

 M4 0 9 0 1

3500 4500 4000 4000 4000
3200 4800 4000 4000 4000
3000 4

, ; ,( ) =
5500 3500 3500 3500

2800 4000 3500 3500 3500



















 (29)

To assess the quality of the ED, we calculate the theoretical values 
of the control parameters for all four experts. This is how we get the 
matrix (30):

 M4 0 9 0 1

4175 4081 4032
4223 4099 4041
3959 3843 3788
3581 3843 34

, ; ,( ) =

333



















 (30)

The Table 2 summarizes the parameters and potential lifetime pt  
at the unreliability level 0,01p =  of the Weibull distribution deter-
mined for the given ED. 

In all four cases, the beta parameter is greater than 4, which proves 
that all experts treated the tested TD in the same way as a high-quality 
object whose rapid wear occurs only after a longer period of use. For a 
graphical comparison, graphs of PDF curves (Fig. 7), reliability func-
tion (Fig. 8) and failure rate function (Fig. 9) were prepared for the 
obtained four expert Weibull lifetimes 1 2 3 4, , ,T T T T    . 
Fig. 7. Two-parameter Weibull PDF curves for the first (blue), second (or-

ange), third (gray) and fourth (yellow) expert

Figure 7 shows that the expert lifetimes are generally similar and 

are almost completely concentrated in the range of 1600 to 5600 days. 
As for Weibull distributions, they are characterized by high symmetry. 
This is due to the high values of the shape parameter. The mode val-
ues of the obtained lifetimes differ the most for the second and fourth 
experts, the difference being around 600 days. The lifetime by the 
first expert has the lowest dispersion, and the second and third experts 
have the greatest dispersion. 

The presented graphs of the reliability function illustrate the dif-
ferences of expert predictions. As can be seen from Fig. 8, the first 
and fourth expert are characterized by the maximum difference in 
the reliability value. This difference is achieved at 4000  days and 

is approximately 0,5 , but for 3000 and fewer days, this difference is 
already below 0,2 . 

Fig. 6. Potential lifetime pt  versus β for η = 3500  and 0,02p =  (bright 
blue), 0,04p =  (light brown), 0,06p =  (gray), 0,08p =  (yel-
low), 0,1p =  (dark blue)

Table 2. Parameters of the Weibull distribution determined for given ED

Expert 
number

Shape param-
eter β Scale parameter η t0,01 [days]

1 12,273071 4204,35587 2890

2 7,607066 4301,55567 2350

3 7,607066 4032,708436 2203

4 8,647649 3632,23519 2134

Fig. 8. Two-parameter Weibull RF for the first (blue), second (orange), third 
(gray) and fourth (yellow) expert
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The last presented function for individual experts is the failure 
rate (Fig. 9). This function at any time characterizes the relative de-
terioration of the reliability of the TD per day. In engineering prac-
tice, historical data on the device or system under consideration is 
traditionally used to determine this function. Here we showed how to 
derive this function based on the ED. In all cases, the λ( )tλ  curves are 
convex, and their slopes increase with the increase of t . Consequent-
ly, the failure rates increase with the increase of t , which additionally 
indicates the wear of the TD.
Fig. 9. Two-parameter Weibull failure rate for the first (blue), second (or-

ange), third (gray) and fourth (yellow) expert

Fig. 9 shows that only after 3500 days of using the technical de-

vice, the failure rates for all experts are greater than 0,001 , and then 
their growth significantly accelerates. The greatest increase results 
from the data obtained from the first and fourth experts.

In the EEL procedure, we propose that the quality of the i -th ex-
pert eliciting information should be assessed based on relative devia-
tion measure 1dev  of the expert value of control parameters, i.e., the 
mode, the median or the expected value from their theoretical values. 
Calculation results are summarized in the Table 3. 

Table 3 shows that for the experts’ elicitation based on the modal 
value, all four opinions were slightly underestimated and the opinion 
of the fourth expert was rated the highest. The fourth expert is also 
rated the highest in the median criterion, and this time this expert was 

the only one to provide a minimally overestimated value. In the case 
of the expected value criterion, except the fourth expert, the other ex-
perts again slightly lowered the expected value, and the first expert 
assessed this value most accurately.

The measure 2dev  of relative deviations of expert values of con-
trol parameters from their theoretical values are used to determine the 
weights of individual experts. The results of the weight calculations 
for all experts are presented in the Table 4. 

The calculated weights of expert lifetime assessments confirm the 
expert opinion quality ranking. Taking a specific location parameter 
as a criterion, the obtained weights are used to calculate the aggre-
gated shape 



β  and scale η  parameters. The calculation results are 
presented in the Table 5. 

In this way, using the EEL procedure, we obtained the following 
aggregated lifetime distribution for the individual criteria:
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Density curves for the obtained aggregate distributions are pre-
sented in Fig. 10.

Fig. 10. Two-parameter aggregated Weibull density curves for the mo  (blue), 
me  (orange) and ev  (gray) criterion

As can be seen from Fig. 10, the differences between the obtained 
distributions are relatively small. If we take the centrally located den-
sity curve as the criterion for selecting the aggregate lifetime, then in 
this case the lifetime mode should be selected.

Then, for the obtained aggregate lifetimes 
  

T T Tmo me ev, ,  the mode, 
the median and the expected value were calculated from the formulas 
(32), (33) and (34), and for the three criteria under consideration. 

 mo T( ) = −








 >η

β
β

β
1 1 1

1

,  (32)

 me T( ) = ( )η βln 2
1

 (33)

Table 3. Expert deviation for the first measure of deviation

Expert 
number

dev mo1
( ) dev me1

( ) dev ev1
( )

1 0,04199− 0,01977− 0,00802−

2 0,05271− 0,02420− 0,01013−

3 0,11587− 0,08926− 0,07612−

4 0,02261− 0,005312 0,019426

Table 4. Weights of ED for individual location parameters 

Expert 
number

w moi
( ) w mei

( ) w evi
( )

1 0,25 0,17 0,43

2 0,20 0,14 0,34

3 0,09 0,04 0,05

4 0,46 0,65 0,18

Table 5. List of the aggregated lifetime parameters for three criteria

Characteristics 
Criterion 

mo
Criterion 

me Criterion ev

Shape parameter 


β
8,998 8,923 9,386

Scale parameter 
η

3945 3843 4129
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 ev T( ) = +








η

β
Γ 1 1  (34)

The results of the calculations are presented in the Table 6. 

As would be expected for the mode criterion, we obtained the inter-
mediate values of the mode, the median and the expected value. The 
values of these localization parameters differ very little for all three 

criteria, which confirms the previously noted large PDF symmetry of 
the obtained aggregated lifetimes 

  

T T Tmo me ev, , . 
At the end of this article, the standard deviation ( sd ), the coef-

ficient of variation ( cv ) and the skewness coefficient ( cs ) were cal-
culated using the formulas (35), (36) and (37) for T wbl~ ,β η( )  and 
all three aggregated lifetimes:
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 cs T
ev T mo T

sd T
( ) = ( ) − ( )

( )  (37)

The calculation results are summarized in Table 7. 
The performed calculations show that considering the mode crite-

rion, the standard deviation as well as the coefficients of variation and 
skewness have intermediate values compared to the other two criteria. 

Moreover, as would be expected in all cases, the skewness is negative. 
In the presented example, the mode criterion was adopted as the result 
of the performed EEL procedure. The lifetime 



Tmo  obtained according 
to this criterion has a Weibull distribution with a shape parameter of 
8,998  and a scale parameter of  3945 , i.e., 



T wblmo ~ , ;8 998 3945( ) . 
For the obtained lifetime 



Tmo , graphs of the reliability function (Fig. 
11) and the failure rate (Fig. 12) are prepared. 

Potential lifetimes for selected failure probabilities, i.e., for 
0,01; 0,05; 0,1p =  and 0,9  are listed in the table 8. This informa-

tion is very important in planning inspections of newly manufactured 
technical devices.

Using the formula (38), the failure rate function was determined 
(39) and then its graph was prepared (Fig. 12).

 λ
β
ηβ η β

β
wbl t t;( )

−( ) = 1  (38)

 λwbl t t t8 998 3945
7 9983 95289 32 0, ;

,, ,( ) ( ) = −( ) >E  (39)

Fig. 12. Graph of the predicted failure rate

Note that from the predicted failure rate obtained using the EEL 
procedure up to 4050 days of use of the TD in question, its failure 
rate will be less than 0,003 . Of course, the final verification of the 
obtained results will take place in the process of using the tested tech-
nical devices. 

7. Summary, conclusions, and orientations for future 
work

Maintenance of machinery and technical equipment under condi-
tions of uncertainty requires the use of probabilistic prediction models 
in the form of lifetime distributions. Estimation of the parameters of 
these distributions is carried out with the use of statistical methods 
based on data about real life realizations of these objects. However, in 
cases when completely new solutions are introduced into exploitation, 

Table 6. List of the aggregated lifetime location parameters for three 
criteria

Parameter Criterion mo Criterion me Criterion ev

mo 3894 3792 4080

me 3787 3688 3971

ev 3736 3637 3918

Table 7. List of lifetime characteristics for chosen criteria

Characteristics Criterion mo Criterion me Criterion ev

sd 496 487 500

cv    0,1329    0,1339    0,1277

cs -0,3182 -0,3168 -0,3245

Table 8. List of the potential lifetimes 

p  0,01 0,05 0,1 0,9

[ ] dayspt 2366 2836 3072 4328

Fig. 11. Graph of the obtained reliability function
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we do not have such data and the only possible way of estimating the 
expected lifetime of these objects is the use of expert methods. 

The paper proposes a modified method for estimating the probabil-
ity distribution of the lifetime for new technical equipment based on 
expert assessments of parameters characterizing the potential lifetime 
of these objects. For the Weibull distribution, we use three parameters, 
two of which characterize the distribution and the third one to assess 
the quality of lifetime prediction by experts. 

The innovation and originality of the developed lifetime parameter 
estimation procedure results from the application of this expert infor-
mation for a specific lifetime model, instead of historical data. Such 
an approach to the issue of parameter evaluation has not yet been 
developed in the reliability theory. 

The method is based on a subjective Bayesian approach to the 
problem of randomness and integrated with models of classical prob-
ability theory. A new procedure for expert elicitation of probabilities 
for any continuous random variable was developed, consisting of 
eight main steps. The first five steps have been developed based on 
good practices used in expert assessments of critical infrastructures. 
The sixth and seventh steps, which aim to objectivize the assessments 
of individual experts, are fully innovative. We propose that verifica-
tion of the consistency of the expert judgements should be carried out 
using a consistency test. The results of this test can be used as a basis 
for assessing the credibility of the individual experts and for assigning 
appropriate weights to their opinions in the second part of this step. 
This will allow the quality of individual elicitation to be considered 
in the process of aggregating the opinions of different experts. The 

aggregation process uses the ratings of all the experts, taking into ac-
count the weights estimated in the previous step, in order to obtain 
unambiguous data allowing the estimation of the parameters of the 
assumed probability distribution, which is a novelty not previously 
published in the literature.

Verification of the developed model on practical numerical ex-
amples for Weibull distribution has shown that the proposed method 
eliminates the basic limitations of the methods so far known and used 
in engineering practice. The calculations carried out demonstrated that 
considering the mode criterion, the standard deviation as well as the 
coefficients of variation and skewness have intermediate values com-
pared to the other two criteria. Moreover, as would be expected in all 
cases, the skewness is negative. In the presented example, the mode 
criterion was adopted as the result of the performed Expert Elicitation 
of Lifetime procedure.

Further work of the authors will aim to generalize the developed 
method also to other probability distributions and to integrate this 
method with Bayesian inference process in operational decision mak-
ing. This will require, among other things, consideration of economic 
aspects, and above all of the costs arising from the unreliability of the 
system under consideration. 
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1. Introduction 
Maintaining a continuous flow of materials is one of the most im-

portant tasks in numerous operating systems. The problem is particu-
larly relevant for systems with continuous operation, which addition-
ally need to be resistant to hazardous environmental effects (safety 
function [23]). Security risk reduction through a security information 
transmission model was considered by Lei [17]. These systems should 
be resistant to abnormal disturbances (disasters) [5]. For a broad treat-
ment of the safety assessment issue, see [16]. In case of tasks where 
failure of a work item results in mission failure, Levitin proposed 
models based on Poisson processes [18]. Redundancy of operational 
components is often used in the structures of such systems. A meth-
od for evaluating the security level of k z n systems was proposed 
by Młynarski [27], while a formulation using a Markov process for 
multi-state k z n systems was presented by Ruiz-Castro in his paper 
[29]. Balancing the probability of mission success and the risk of sys-
tem failure by allocating redundancy has been described by Levitin 
in his publication [19]. Determining the optimal structure for these 
systems is the subject of numerous studies. A novel method for assess-

ing the reliability of multi-state systems based on structure learning 
algorithm was described by Li [21]. An optimal operation and main-
tenance schedule for m z n systems with reusable components was 
presented by Levitin in [20]. The use of Semi-Markov processes to 
assess readiness and reliability was demonstrated in the paper [31]. A 
reliability model for parallel systems under simultaneous failures was 
presented by Zhang [34]. In some areas, there are additional safety 
restrictions imposed by relevant directives and regulations. This is 
the case, for example, in aviation [10], or in offshore oil platform 
systems. Furthermore, the mining industry imposes additional restric-
tions on mine drainage (both in underground and open-pit mining). 
The problem with disposing of water of natural origin, flowing from 
the rock mass, is particularly important. The factors affecting the 
amount of inflowing water and the hazards resulting from them were 
described in many papers, such as by Bukowski [2] and others [7], 
[15], [24]. The effect of random factors on mine water inflow was 
analysed by Miladinović [26] and Quazizad [28]. For the safety of 
people and the operation of the deposits, the waters are pumped out 
using an appropriate system [3], [12], [33] and modern techniques [9], 
[13], [22]. These systems are very expensive to maintain and operate. 
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Having considered the foregoing, issues related to cost reduction are 
the focus of many papers, including those by Du Plessis [6], Gunson 
[9] and Afum [1], as well as Huang [14]. Over the last years, the is-
sues of prevention and predictability were the focus of numerous re-
searchers. A comprehensive approach to the issue was demonstrated 
in a paper by Werbińska [32]. Multi-criteria optimization for systems 
maintenance was proposed by Syan [30]. On the other hand, Han [11] 
proposed predictive strategies for multi-state systems, and Fauriat [8] 
proposed aperiodic control optimization based on information value. 
An example analysis of repair effectiveness using TPM techniques 
was presented in [4]. Most of the papers described herein deal with 
theoretical considerations related to typical reliability and operational 
problems. In the literature, there are no solutions related to forced re-
dundancy. Cases of improper operation of such systems, known to the 
authors, were the genesis for the development of a method to evaluate 
and upgrade these systems.

2. General system model
An SPM material flow system is a certain ordered collection of E 

elements and R relationships between them (Figure 1):

SPM = < (E, R)> = < { X, Y, T }, R > ,
T:   XY

where:
X =  {X1, X2,...Xi,...XM}; for i = 1,…M – a set of external quantities 

describing the input elements (machines, material, among oth-
ers),

Y =  {Y1, Y2,... Yj, ...YN}; for j = 1,…N – a set of external quantities 
describing elements of the output (e.g., performance evaluation 
indicators, process performance),

T =  {T1, T2,... Tk, ...TS}; for k = 1,…S – a set of quantities describing 
the transformation of the input vector processing into an output 
process,

R =  RX × RY × RT – material, information couplings between ele-
ments (X, Y, T) of the SPM system.

Fig. 1. SPM material flow system model

In the most general terms, two cases can be considered:
developing new systems, –
modernization (retrofitting) of systems that have been in opera- –
tion for many years.

In the studied system, the quantities that determine its specificity 
are (Figure 2):

continuous supply of material (24 hours a day, all year round), –
the need to receive and move the material at the precise time  –
and in the quantity requested,
maintaining very high reliability of operation - system failure  –
poses a threat to human life and can result in environmental 
degradation, hence the need to apply law-imposed safety condi-
tions through a specific redundancy in the system structure.

Because of that, the quantities describing the outputs from the sys-
tem should include information about the cost of process execution, 

the efficiency achieved, the efficiency of operation, as well as the 
availability and utilization rate of the redundant system components. 

Fig. 2. Model of the continuous delivery and forced oversupply system

An example of redundancy forcing is shown in Figure 3.
For the case of 2-element operation (n = 2), the minimum number 

of system elements is i = 2n + 1 = 5.

Fig. 3. A system model for the two-element operation case

In case of a three-element structure (n = 3), the minimum number 
of system elements is i = 2n + 1 = 7.

Observed cases of improper operation of these systems became the 
genesis for the development of a method to assess their technical con-
dition. The assessment result is a variant solution – continue operating 
the system or upgrade it.

3. The method of assessing the condition and upgrading 
the system 

The proposed method is multi-stage (consisting of seven stages). A 
simplified block diagram of the method is shown in Figure 4.

The main components of each stage are described below.

Stage I – Process identification – Actions: 1-2-3-4-5-6
Selecting a process for analysis.1. 
Establishing security constraints for system operation (direc-2. 
tives, industry regulations).
Drawing up an accurate process diagram (process structure, 3. 
including forced redundancy of components).
Identifying the basic quantities that describe the process.4. 
Determining the parameters (characteristics) describing the 5. 
assumed quantities (making measurements, necessary calcula-
tions).
Collection of process data (database, including historical).6. 

Stage II – Identifying machine functioning – actions: 7-8-9-10
Describing losses and waste in the process (e.g., 7 muda, 6 big 1. 
losses).
Identifying machine downtime and damage.2. 
Drawing up a Pareto diagram – causes of downtime. Selecting 3. 
causes for improvement.
Setting targets – MTTR and MTBF limits.4. 
Determination of OEE effectiveness measure.5. 

Stage III – Establishing criteria for evaluating system condi- 
         tion and performance – actions: 12-13

Defining criteria for evaluating the system.1. 
Determining the values of evaluation indicators (measure-2. 
ments, calculations).
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Stage IV – Analysing system effectiveness – actions: 14 – 16
Analysing the compliance of the identified redundant structure 1. 
with process requirements and enforced constraints.
Analysing the timing of system operations.2. 
Analysing the system performance evaluation metrics ob-3. 
tained.

Stage V – Evaluating the system and selecting a strategy for 

        further action – actions 17-18
If the assessment complies with the adopted criteria – further 1. 
operation in accordance with the implemented schedule.
If the assessment is non-compliant – a proposal to upgrade the 2. 
system.

Stage VI – Implementing changes – actions: 20-21
Making changes to improve system performance evaluation 1. 
metrics.
Developing a schedule for machine operation, maintenance, 2. 
and overhaul.
Developing a schedule (implementation map) for system up-3. 
grades.

Stage VII - Analysing the effects and improving - actions: 22-23
Analysing effects after making changes.1. 
Persistent2.  implementation of kaizen principles!

Fig. 4. Block diagram of the system state assessment method

4. Exemplification – the main drainage system

4.1.	 System	identification
The main water drainage system analysed (Figure 5), is located 

in an underground mine at the 500 m level. Ten pumping units (P1 
to P10) consisting of OW250/8 pumps and SCUd134u motors are 
installed in the main drainage pumping station. Each pumping unit 
is connected to two pressure pipelines with diameters of 500 mm, 

through which water is pumped to the surface at the height of H = 
500 meters. Based on the hydrological conditions and the size of the 
underground excavations, the projected water supply is 0.28 m3/sec 
(16.83 m3/min), which means that the daily water supply is equal to 
24235 m3. The capacity of the water roads in which water is collected 
is 20196m3. The requirements for the main drainage equipment are 
governed by the Regulations of the Minister of Energy of 2016 and 
stipulate that the discharge of the daily inflow of water must be real-
ized in a time not exceeding 20 hours, and the minimum number of 
pumps is determined by the relation: i = 2n + 1 (n –  the calculated 
number of pumps). 

A schematic of the main drainage system under study is shown in 
Figure 5. 

Fig. 5. Diagram of the main drainage system

With the forecasted mine water inflow, the required total pump-
ing capacity, meeting the limitations of the mining regulations, is  
Q = 20,20 m3/min (pumping for 20 hours), while the pumping head 
Hu = 530 m.. The eight-stage OW250/8 pumps installed in the pump-
ing station have a rated capacity of Q = 8.33m3/min (500 m3/h) and a 
head Hu = 560 m. The requirements specified by mining regulations 
are met with two pumps working continuously and the third pump 
working half the time. Having considered that, the number of pumps 
required (assuming a total number of pumps n=3) is seven – according 
to the rules: i = 2n + 1. There are ten pumping units in the pumping 
station, i.e., the main drainage system analysed is definitely overdi-
mensioned.  

The basic principles of monitoring the technical condition of pump-
ing units were described by Nowicki [21, 22], and other diagnostic 
tests related to the test object (drainage system) were presented in 
papers [25] and [35].

A complete analysis of the main drainage system operation in-
cluded:

Measurement of operating parameters 1. 
analysis of water composition and quality, –
determination of pump characteristics,  –
characteristics of flow pipelines (manifolds), –
the suction height of the pumping system. –
Assessing the technical condition of pump units2. 

testing the thickness of the discharge manifold walls, –
measuring the power consumed by the pump, –
vibro-acoustic diagnostics of pump units.  –
Qualitative and quantitative assessment and classification of 3. 
failures and damages for a 5-year period.

To calculate the parameters of the flow characteristics of the pumps, 
known relationships were used to determine the values:

useful lifting height  – Hu,
c  – velocities of water in the suction and discharge ports,
P – u power output transferred to the pumped water flow,
η – zp efficiency of the pump unit (related to the power of electric 
motors),
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P – m power on the pump shaft,
η – p pump efficiency.

In order to evaluate the condition of the pumps, sections of the 
catalogue characteristics in terms of measured changes in pump per-
formance are plotted on the figures. Figures 6 and 7 show examples 
of the characteristics of pump #1 (P1). 

Fig. 6. P1 pump utility power characteristic 

Fig.7. Efficiency characteristics of pump P1

The efficiency of pump no. 1 is lower than catalogue efficiency 
from about 8% at 8 m3/min to 14% at 4.5 m3/min. The nature of pump 
operation means that the useful head characteristics are minimally af-
fected by throttling. The decisive factor is the geometric head Hg = 
489. The pressure increase in the pump depending on the flow resist-
ance is relatively small, amounting to a few percent (approx. 5% on 
average) with respect to the geometric head.

Similar characteristics were developed for all other pumps (P2 
through P10). Additionally, characteristics were developed for each 
pump unit:

flow Q in relation to the discharge height H, –
power output P as a function of stream flow rate Q. –

4.2. Analysis of the study results 
Efficiency, energy consumption, and unit pumping costs were de-

termined for all of the main drainage pumping units studied. The re-
sults obtained are placed in Table 1. 

The value of the quotient of the efficiency ratio ηp and the cata-
logue efficiency ηpk of the pump at a fixed water flow was taken as 
a quality measure of the pump condition. A smaller quotient value 
indicates a worse condition of the operating pump. For the pumps 
tested, the value of the ηp/ηpk quotient takes values in a wide range. 
For pumps 1 and 3, it has a value above 0.90, while for pump 10, it 
is only 0.73. The condition of pumps for which this quotient takes 
values below 0.80 should be considered unsatisfactory. The average 
value for all pumps in the pumping station is ηp/ηpk = 0.82 (relatively 
low, close to unsatisfactory). 

Table 1 also shows the coefficients determining the pumps energy 
consumption qP. The qP coefficient determines the amount of electric-
ity in kWh needed to pump out 1 m3 of water. This is one of the most 
important indicators of system evaluation, as it directly affects operat-
ing costs. For the pumping units of the studied pumping station, the 
energy consumption of the water pumping-out process takes the val-
ues qP = 2.173 ÷ 2.671 kWh/m3, whereas the mean value is qP = 2.465 
kWh/m3. The value of costs should be related to the current price per 
unit of delivered electricity. The energy consumption of water pump-
ing is shown in Figure 8, with the red line indicating the average value 
for the main drainage pumping stations. 

Fig. 8. Energy consumption of the pumping-out process

Figure 9 shows the efficiency of the pumps as a function of operat-
ing time – it can be observed that operating time above 5,000 hours 

Table 1. Comparison of operating parameters of pump units at maximum efficiency

P 1 P 2 P 3 P 4 P 5 P 6 P 7 P 8 P 9 P 10 average

Volumetric stream Q m3/min 7,9 8,1 9,2 8,1 8,5 8,4 8,0 9,2 7,6 8,2 8,3

Effective head Hu m 514,7 523,6 535,1 508,8 516,4 513,9 498,2 514,0 503,3 498,2 512,6

Electrical power Pel kW 1030 1214 1200 1195 1263 1275 1266 1399 1137 1314 1229

Pump efficiency ηp -- 0,694 0,614 0,721 0,615 0,613 0,595 0,553 0,594 0,591 0,547 0,614

Relative pump efficiency ηp/ηpk -- 0,93 0,82 0,97 0,82 0,81 0,79 0,74 0,80 0,79 0,73 0,82

Energy consumption qP kWh/m3 2,173 2,498 2,174 2,459 2,476 2,530 2,638 2,534 2,493 2,671 2,465

Total pomp operating time Δτ h 3336 12032 757 21000 24000 29017 24015 6015 23473 32041 17569

Pump operating time ΔτR h 238 3142 1667 1470 1857 646 299 2883 1936 3837 1634
Pi – pump units, i = 1 ÷ 10. 
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results in a clear drop in efficiency. The dependence of energy con-
sumption on operating time is illustrated in Figure 10. The course of 
the energy consumption curve is obviously the opposite of the effi-
ciency characteristics.

Fig. 9. Dependence of average pump efficiency on time 

Fig. 10. Time dependence on the mean energy consumption

Above 5000 hours, there is a deterioration of pump technical con-
dition due to operational wear, which results in an increase in demand 
for electricity to pump out 1m3 of water – from about 2.17 to 2.67 
kWh/m3.

4.3. Suggested changes
The conducted study and the analysis of the obtained results al-

low to clearly state that the assessment of the drainage system techni-
cal condition is unsatisfactory. According to the proposed evaluation 
method (stages V and VI – Figure 4), a system upgrade is required. 
The most significant elements of the proposed upgrade are:

taking out of service units showing high wear (P6, P7, P10), –
double-variant operational improvement (for existing and new  –
units),
developing a model schedule for units (Figure 11), –
developing an implementation map for system upgrades (sev- –
eral years, high purchase and investment costs).

OPTION 1 – for existing units (motor + pump)
Proposed model unit operation schedule (3 + 3 + 1).
Decommissioning of units: P6, P7, P10, monthly unit cycles.

OPTION 2 – for new units (purchase)
Structure: 5 pumping units; arrangement (2 + 2 +1). 
unit selection (motor + pump): to be determined – the best.
Selection criteria: performance, efficiency, electrical power, price.

5. Summary 
In systems executing tasks associated with continuous supply of 

the material (24 hours a day) and with limitations imposed on the 
reception and movement of these materials, there is a necessity to ap-
ply redundancy of the system elements. In case of a task in which the 
failure of the system poses a threat to human life and leads to environ-
mental degradation, there are additional rules applied to determine the 
necessary redundancy (dependence on the industry, industry branch). 
The encountered cases of improper operation of these systems were 
the basis for the development of an original method of condition as-
sessment and retrofitting to improve system evaluation indices. The 
proposed method is multi-stage (consisting of seven stages) and re-
quires numerous identification tests, measurements, and calculations. 
However, it does result in correct operation of the system and a clear 
reduction in costs.

The application of the developed method is presented on the ex-
ample of the main drainage pumping station located at 500 m level of 
an underground mine. The system consists of ten pumping units (P1 
to P10). Continuous pumping activity requires the operation of 2.5 
pumping units with a total capacity of 20.20 m3/min. This results in 
a requirement for 7 pumping units (as per i = 3+3+1). The analysed 
system is thus clearly overdimensioned. The measurement results 
and the characteristics and quality indicators determined from them 
demonstrate unsatisfactory or poor condition of most pumps. This is 
mainly a consequence of long pump operation times with no over-
hauls (with 6 pumps working for over 20,000 hours). Analyses show 
that the operation runs properly up to 5,000 operating hours, with a 
clear drop in efficiency above this number. Most pumps are about 
20% less efficient than the catalogue efficiency of new pumps. Pump-
ing efficiencies as low as those obviously translate into increased en-
ergy consumption and unit cost of pumping the water out (with en-
ergy consumption increasing from 2.173 to 2.671 kWh/m3).  It can be 
concluded that the energy consumption and the cost of the pump-out 
process increases at the same rate as the efficiency decreases, which is 
about 20%.  System upgrades are required due to the high energy con-
sumption and operating cost ratios. Modernization should include the 
gradual installation of new pumps, with significantly better technical 
and economic indicator values. The authors proposed a new solution 
for this system, in which one can optionally choose a version with five 
(2+2+1) new units (more expensive solution) or with seven (3+3+1) 
pump units. A schedule for implementing changes to the system was 
also proposed as a part of the modernization. 

Fig. 11. Work schedule for pumping units – variant (3+3+1)
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1. Introduction 
Innovative technological machines are constructed as advanced 

mechatronic systems facing extremely high demands with respect to 
their performance, reliability and product quality. In both, their con-
struction and operation, the problem of maximum productivity, where 
several factors such as efficiency, production costs or resources and 
energy consumption must be taken into account, is important too, all 
in the context of sustainable manufacturing requirements [21, 32]. 
Machine tools together with other technological machines used in pro-
duction systems of high technology industry form complex systems 
functioning as Industry 4.0 elements. Such terms as Industrial Inter-
net of Things (IIoT) or Machine to Machine Communication (M2M) 
do not only describe the current industrial revolution but they also 
characterize any modern machine tool. According to the paradigm of 
the fourth industrial revolution complemented by the mentioned high 
demands in quality and reliability, machine tools are equipped with 
several sensors, diagnostic and monitoring systems. 

The measuring methods of machine tool key elements wear are 
classified as direct (intermittent, offline) and indirect [28, 45, 49]. For 
example, tool wear is measured based on various sensor signals con-
taining cutting force, torque, vibration, acoustic emission, sound, sur-
face roughness, temperature, displacement or spindle power. The fea-
tures of the signals correlating to the tool wear are captured to monitor 

tool condition and to do this, a mass of signal processing methods 
were used, such as time series modeling, Fast Fourier Transform and 
time–frequency analysis, the amount of data gathered and calculation 
involved in corresponding parameters with tool wear is enormous. 
According to the detailed analysis presented in [49], up to now, many 
types of sensors and signal processing techniques are used in machine 
tool and especially in cutting tool condition monitoring and RUL pre-
diction. However, most of these sensors are wired, mounted incon-
veniently on the machine during the machining operations, and the 
prognostic information is not easy to be integrated into the manufac-
turing system [28, 31, 45, 49]. One of the problems is huge amount of 
data gathered. As a result, we face two types of research challenges 
concerning machine tools systems which are actually strongly inter-
connected. First of all, we force the problems related to their adequate 
measurement techniques for service life, health monitoring and relia-
bility, especially with respect to predicting future states in order to en-
able the inference and implementation of executive activities in terms 
of failure-preventing servicing [24]. In addition, potential new solu-
tions according to digital era requirements have to go beyond typical 
tool wear monitoring methods in real-time by tracking for example 
force model coefficients during the cutting process [30, 32]. On the 
other hand, diagnostic or maintenance systems require an operator to 
make reliable predictions and decisions under uncertainty. All these 

An advanced milling machine multi-sensor measurement system as a condition monitor-
ing tool was presented. It was assumed that the data collected from the 3-axis force and 
torque sensor can be used as a new approach and an alternative to the typical vibration signal 
based health monitoring and remaining useful life prediction (RUL), when integrated with 
machine learning techniques that are regarded as a powerful solution. Measurement system 
integration with the proposed signal processing method based on decision trees with dif-
ferent types and levels of wavelets for the cutter reliability decision-making process was 
presented together with proving their ability to trace the tool condition accurately. Prediction 
errors achieved with the use of different signal sources and data processing methods were 
presented and compared.
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aspects create the so called information overload problem, which can 
be solved with the use of data mining and existing data reduction 
techniques. Unfortunately, in complex production systems machinery 
operating under diverse conditions requires more advanced measure-
ment and data processing approaches. As it was pointed by Zhao et 
al. [50], as a key component in modern manufacturing system, ma-
chine health monitoring has fully embraced the big data revolution. 
In order to extract useful knowledge, to create information based on it 
and, finally, to make appropriate decisions from the big data, machine 
learning techniques were regarded as a powerful solution. Machine 
learning has a potential for improving products and processes, ena-
bling successful predictions using past experience, data and informa-
tion. It encompasses several algorithms and tools used for a vast array 
of different data processing tasks [6, 40]. However, as mentioned by 
Ahamad et al. [1],  the Big Data analytics require innovative tools 
that address the challenges faced by data volume, variety and veloc-
ity. Especially, when data fusion - integration of data and knowledge 
from several sources is necessary to be taken into consideration [23, 
48]. These techniques may act as an effective bridge connecting ad-
vanced machinery sensors systems, big data and intelligent machine 
health monitoring systems. On one hand, it requires monitoring sys-
tems equipped with adequate sensors in order to collect the data. On 
the other hand, the transition from raw industrial big data to knowl-
edge-based executive actions without any human action also requires 
the development of new analytical tools. This means another need 
of new expert and intelligent systems. For the purpose of mechani-
cal systems development, studies must be conducted particularly on 
the measurement systems construction, and further the development 
of the integrated analytical solutions for intelligent modules that take 
advantage of a data analysis and intelligent decision support tools in 
order to predict and prevent a potential failure of machines or their 
crucial elements [24]. Machine tools are considered as a representa-
tive example of such studies needs and their real-world applications. 
For example, the new methods enable early prediction of the machine 
tool remaining useful life, its current condition classification, or both 
of them simultaneously.  

For this purpose, numerous research works have been carried out 
providing new knowledge, although not without several weaknesses 
that should be solved. Condition monitoring techniques such as tem-
perature, vibration or acoustic signal analysis, play an important role 
as indicators of a developmental failure, and have a wide range of 
different applications for the purpose of fault diagnosis. These dif-
ferent applications in technological machines such as machine tools 
or in any other mechanical systems, allow to compare the proposed 
methods and achieved results. Vamsi et al. [43] simulated the non-sta-
tionary load profile acting on a wind turbine. The vibration, acoustic 
signal and lubricating oil signals were simultaneously acquired. The 
raw signals were processed using a wavelet-based feature extraction 
technique. Next, the efficiency of each of these condition monitoring 
techniques under stationary and non-stationary loads were compared 
by using Support Vector Machine (SVM) as the classification tech-
nique. A decision tree algorithm was used to identify among the ex-
tracted features the dominant one (which was a standard error). SVM 
was used to classify the features among the fault levels. The main 
purpose of these investigations was to verify diagnostic capabilities 
of vibration signal analysis, compared to other techniques in the fault 
detection of a gear tooth root crack and a gear tooth chip. The authors 
[2] did not go beyond the standard diagnostic. The RUL prediction 
with the use of the collected data and modelling techniques as a de-
cision support tool, unfortunately were not taken into consideration. 
The remaining useful life prediction via the combined use of the SVM 
as a classification tool and AutoRegressive and Integrated Moving 
Average (ARIMA) based identification as an expert system tool for 
the real-time monitoring of a manufacturing process was presented 
by Kozłowski et al. [24]. The objective of the study was to develop 
a new method for the proper estimation and representation of uncer-
tainty in the RUL prediction. Therefore, in the analysed case, sensor 

data management involved the application of the SVM in order to 
construct a classifier for the cutter condition assessment, investigation 
of the effect of an acoustic signal correlation displacement length on 
the diagnostic error and the number of support vectors, and, finally, 
the development of the RUL prediction method. Several different ad-
vances in modelling of metal machining processes were also analysed 
in details by Arrazola et al. [2], as a result of a significant progress in 
developing industry-driven predictive models. The authors claim that 
the operation-level predictive models still need to be developed, espe-
cially for direct, industrial applications. As a part of a similar research 
project, mechanics of the milling system with serrated end-mills were 
studied by Pelayo et al [34], using force and surface topography mod-
els. A stationary milling force model was developed to predict the re-
sulting machined surfaces. The authors point that the available cutting 
tools in standard catalogues are not homogeneous from one seller to 
another. Large differences are seen on the tool’s features suggesting 
that there is not a unified criterion. It requires more effective meas-
urement systems but also more universal analytical tools. The spindle 
bearing system as one of the most important parts of a machine tool 
was the subject of dynamic modelling by Xi et al. [47]. Based on the 
developed spindle bearing system model, the dynamic response of the 
system with different cutters and under different cutting conditions 
was simulated and compared with the experiment measured results. 
The presented results show that the simulated responses are in accord-
ance with the experiment measured responses. However, they were 
achieved only in the laboratory conditions that do not directly reflect 
actual industrial production. According to [22], when avoiding chat-
ter and improving machining efficiency and accuracy, the machining 
process analysis is extremely important. This type of analysis is es-
sential in order to enable high productivity without sacrificing surface 
quality and inducting significant surface errors. Its exact implementa-
tion depends on the dynamics modelling with a reliable requirement of 
the system’s dynamic parameters. With regard to this, a novel model 
testing strategy was proposed for obtaining the system’s dynamic pa-
rameters. A triaxial acceleration sensor was used there and the related 
parameter processing techniques were proposed. Unfortunately, for 
validation, only two cutters with different diameters were employed 
in the experiments what makes the achieved results very limited. 

As proved by Bousdekis et al. [4], the emergence of Industry 4.0 
led to a wide use of sensors which facilitate manufacturing opera-
tions. Machining technology is one of the core examples. Predictive 
maintenance has significantly benefited from these technological 
advancements with the use of real-time detection and prediction al-
gorithms regarding future failures. For the last few years, there has 
been  an increasing interest on the decision making algorithms trig-
gered by failure predictions, especially in production engineering. 
From the presented above state-of-the-art analysis we can make a 
similar conclusion as in [16], i.e.: machines without vibrations in the 
industrial environment are something non-existent. During machining 
operations, these vibrations are directly linked to the problems in sys-
tems having rotating or reciprocating parts, such as bearings, engines, 
gear boxes, shafts, turbines and motors. The vibration analysis has 
proved to be a measure for any cause of inaccuracy in manufactur-
ing processes and components, or any maintenance decisions related 
to the machine. However, we should remember that a vibration sig-
nal analysis, on which most researchers are focused, is not the only 
one existing condition monitoring technique. Technological machines 
and machine tools as their typical example are equipped with several 
different sensors. The data gathered with them could be alternatively 
used in effective structural health monitoring. These aspects should be 
additionally discussed from the perspective of the internet of things-
based intelligent decision support systems need [17], as a tool for 
data processing in manufacturing. With regard to the above presented 
research gaps and research challenges related to them, contributions 
of this work are twofold. An advanced milling machine multi-sensor 
system as a condition monitoring tool was presented. Its integration 
with the proposed signal processing method based on decision trees 
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with different types and levels of wavelets for the cutter reliability 
decision-making process was presented as well. The assumed indi-
cators of achieving the research goal are: low calculation time and 
data processing complexity, a universal analytical tool, data gathered 
directly reflecting typical industrial production, and finally a high ac-
curacy model to assess the condition of the cutter state in real-time. 

The research presented in the article is based on the cooperation 
of the authors with the aviation industry, in which providing the 
quality of the manufactured components, including aircraft engine 
components, is a critical factor due to a potential threat to the lives 
of the aircraft passengers that is connected to this issue. In turn, the 
final and inter-process quality control introduces significant costs. 
What’s more, it doesn’t provide a full guarantee of the quality that, in 
many cases, could be only obtained by carrying out destructive tests. 
Therefore, it is purposeful to perform the works that will enable the 
development of the methods which increase the effectiveness of  a 
technological process supervision, even at the expense of installing 
additional  sensors, including the construction of  machining handle 
instruments with the built-in sensors of e.g. force and torque. Com-
ponent machining, including large components, always requires the 
use of appropriate instruments which position and hold the machining 
component to the machine tool workstation. The aviation industry is 
open to designing the instruments in a way to allow for installing in 
them appropriate sensors as soon as it is possible to achieve the ben-
efits mentioned above.

The aim of the research covered in this article is to develop an 
effective and dedicated measurement system for monitoring critical 
machining procedures implemented in the aviation industry with the 
use of a single type tool. The proposed solution allows to achieve high 
efficiency for a particular machining procedure with the limited solu-
tion generality. The article consists of the introduction, followed by a 
chapter describing the experimental setup and data processing with 
the use of the selected techniques. Finally, prediction errors achieved 
with the use of different signal sources and data processing methods 
were presented and compared.

2.  Experimental evaluation
In the first phase of the research presented, an advanced milling 

machine multi-sensor system was designed and constructed. It was 
assumed that the data had to be collected from different signal sources 
for the purpose of health monitoring and later on for the RUL predic-
tion. The system should not only be universal from the research per-
spective but should also conform to the industrial conditions. For the 
wide analytical purposes a typical industrial milling machine working 
in real industrial conditions was equipped with such sensors as (Fig. 
1): accelerometers collecting signals from the lower spindle bearing, 
upper spindle bearing, Z axis, upper motor bearing and lower motor 
bearing; an acoustic emission sensor, 3-axis force and torque sensor, 
spindle velocity and spindle load sensor. 

The data collected with the use of this milling machine and mul-
ti-sensor condition monitoring system were used for the previously 
presented research results [24, 25]. Their aim was to apply vibration 
and acoustic signals analysis in health monitoring, cutter state clas-
sification or its remaining useful life prediction. For the purpose of 
the presented in the this article sensor system and signal processing 
integration for cutter reliability decision-making process, we have as-
sumed that the data collected from the 3-axis force and torque 
sensor can be also applied. It may be used as an effective alter-
native to the typical vibration signal based health monitoring 
and the RUL prediction.

2.1. Experimental setup and data description
The main goal of the experiment was to collect the data de-

scribing the cutter state during a milling process. The state of 
the cutter was categorized into two classes: sharp and blunt. The 
experiment was carried out on an industrial Haas VM-3 CNC 

machine. This machine is equipped with a 12,000 RPM direct drive 
spindle. The rotational speed of the spindle during machining was 
equal to 860 rpm. A multi-component CL16 ZEPWN sensor was used 
for the tests. The sensor enables force measurement in the range of 
10 kN and torque measurement in the range of 1 kNm. The accuracy 
class of the sensor is 0.5, and the sensitivity is 1mV/V. The following 
signals were collected from the multi-component sensor: signals from 
the force sensor (P1x, P2y, P3z) and torque (M1x, M2y, M3z). A plat-
form for rapid prototyping of intelligent diagnostic systems was used 
to collect data during milling experiments [51]. The platform includes 
Beckhoff industrial computer, an EtherCAT-based distributed I/O sys-
tem. A hard disk of the engineering workstation was used to store 
the gathered data, collected in the real time with a sampling interval 
of 2 ms. The duration of the signal buffer stored in one file was 640 
ms. During the experiments the data were collected from various real 
production tasks in the milling process on the machine. 

2.2. Data processing 
During the experiment a set of the collected data included 2172 

observations. The data were gathered from the force sensor (signals: 
P1x, P2y, P3z) and torque (signals: M1x, M2y, M3z). These data were 
analysed in accordance with the methodology used to discover knowl-
edge from the measurement database. The knowledge discovery in 
databases is a process of which the main task is a comprehensive data 
analysis, starting from the proper understanding of the problem under 
study, through the data preparation, execution and analysis of appro-
priate models, up to their evaluation. Then, the identified information 
is transformed into the knowledge that can be used to build decision 
support systems [3, 9]. In this paper the knowledge discovery proc-
ess was divided into three stages: data pre-processing, data mining 
(processing), analysis of the results and evaluation of the created 
models (post-processing) (Fig. 2). 

Fig. 1. Industrial CNC milling machine with a set of condition monitoring 
sensors [51]

Fig. 2. Data processing methodology
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In the first stage, the data obtained with the use of discrete wave-
let transformation (DWT) were pre - processed. Different types and 
levels of wavelet were used [10]. The second stage of the knowledge 
discovery process was data mining. According to [26], which gives an 
overview of the methods used at this stage, primarily the methods re-
lated to the statistical data analysis, artificial intelligence and machine 
learning can be applied. Generally, these methods can be divided as 
follows:

classic statistical methods, which include, among others: linear • 
regression, multiple regression, analysis of variance,
methods based on the use of artificial intelligence, machine learn-• 
ing and deep learning; for example: classification trees, regres-
sion trees, random forests, artificial neural networks, genetic algo-
rithms, evolutionary algorithms, fuzzy sets, rough sets, enhanced 
and fuzzy trees, support vector machines and Bayes classifiers. 

The authors of the aforementioned work [26] after analysing the 
results obtained in many publications,  point out that in the case of 
large data sets, the methods from the second group are the most effec-
tive and most often used for data processing. In this paper, decision 
trees for data processing were used. In many publications, i.e. [7, 38], 
this method is widely used and it is considered as one of the best data 
mining algorithms. The results of their application in various research 
areas indicate their advantages such as: easy and transparent data in-
terpretation, the ability to identify variables importance and ability to 
analyse large amounts of data [39, 41]. 

The third stage of the knowledge discovery was the interpretation 
and evaluation of the developed models. Receiver Operating Charac-
teristics (ROC) was used as a tool to help to analyse the performance 
of predictive models. This method is often recommended for assess-
ing the quality of models [8, 15, 36, 37]. 

2.2.1. Discrete Wavelet Transformation (DWT)
The data gathered from the force sensor (P1x, P2y, P3z) and torque 

(M1x, M2y, M3z) were preprocessed with the use of the wavelet 
analysis. The wavelet transformation is based on wavelet functions. 
Wavelet functions are irregular, asymmetric and, most of all, they are 
not periodic. The main goal of the wavelet transformation consists 
in the decomposition of the tested signal into component functions. 
Instead of harmonics, wavelet functions are used with a different scale 
(scale / frequency) and position (time / space) [10, 12]. The wavelet 
coefficients describe the extent to which the wavelet function is with a 
certain scale and position is similar to the considered signal fragment. 
The wavelet transformation consists in determining the coefficients 
for wavelets of various scales and positions.

Let   denote a set of natural numbers,   - set of real numbers, 
  - set of integer numbers. Let { }t tx ∈  be a time series and ( )tΨ  
ortogonal wavelet basis - mother wavelet and φ t( )  denotes the scal-
ing function (father wavelet) corresponding to wavelet Ψ . For any 
j∈  we define a sequences Ψ jk k{ } ∈

 and φ jk k{ } ∈  as follows: 
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where jkc  is a scaling coefficient, ikd  is a detailed coefficient.

In many cases we perform a wavelet transformation for a time se-
ries with a finite number of observations xt t n{ } ≤ ≤1 . A decomposing 

level j  meets the condition 1 2≤ ≤ = ∈ ≤{ }j m s nsmax  : . To sim-
plify, we assume that 2sn = .

From the equations (1) and (2) we can see, that ( )jk tΨ  and φ jk t( )  

take non-zero values on the interval 2 2 1j jk k, .+( )( 
  From above the 

time series { }1t t nx ≤ ≤  we can present as follows:
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for 1 j m≤ ≤ . Based on the equation (4) we see that the time series 
{ }t tx ∈  can be presented in different forms due to the level j∈ .

According to [17], we define the time series projection operator
{ }1 t t nx ≤ ≤  for the level j  in the base φ jk k

t n
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More about the DWT can be found in [11, 35, 44].

2.2.2. Decision trees
Decision trees were used to develop predictive models for the proc-

essed signals. Decision trees are a family of data mining and machine 
learning methods that can be used for both classification and regres-
sion tasks. The classification task is performed for a variable charac-
terized by a predetermined set of possible states or values, otherwise 
it is defined as a regression task.  Decision trees use different algo-
rithms. In this study, the CART (Classification and Regression Trees) 
algorithm was used, as presented in [5]. CART splits the observation 
sample for the target variable as a binary tree structure with non-inter-
secting subsamples called nodes, according to specific rules.

The construction criteria are used to stop the tree growth and to 
avoid the model overfitting. These include: a minimum number of ob-
servations in the parent node, a minimum number of observations in 
the child node, tree depth, a cross-validation type, reaching the speci-
fied error type and others. In the case of machine learning, the stand-
ard recommendation is to use 10 fold cross-validation. The resulting 
model includes all target cases classified in the terminal nodes of the 
tree. In order to classify a given data set with the help of decision 
trees, the conditions should be formulated in such a way as to obtain 
the greatest gain of information or the smallest Gini index. Therefore, 
the process of selecting an attribute is based either on the Gini index or 
on obtaining information [13, 19]. The Gini index is a measure used to 
measure the frequency with which the randomly selected items would 
be misclassified. The Gini index is defined as follows [18, 20]:

 ( ) ( ) 2
 

1 1
 1 1

s s
G mi mi mi

j j
Q m p p p
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where mip  is a conditional probability for j − th class in a node, 
s – a number of classes. In node m  with mn  observations the condi-
tional probability for j − th class is equal to:
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2.2.3. Receiver Operating Characteristics (ROC) analysis
Receiver Operating Characteristics (ROC) indicators were used as 

a tool to help to determine the performance of predictive models. The 
ROC curve is a graph characteristic for a given classifier, showing 
TP (True Positives) and FP (False Positives) values on the Y and X 
axes. Classification errors are defined as FP (False Positives) and FN 
(False Negatives). They mean appropriately classifying objects from 
the positive to negative class and assigning cases from the negative to 
positive class. The values of TP, TN, FP and FN create the confusion 
matrix presented in Table 1.

Based on the confusion matrix (Table 1), the following assessment 
indicators were used to assess the quality of classification models ana-
lysing the results from most of the classifiers of machine learning [14, 
29, 36, 42, 46]:

Accuracy (Acc), which is determined as the sum of TP and TN, it • 
indicates that the results are correctly classified to all the analysed 
data. This indicator evaluates the prediction ability of  the model:

 TP TNAcc
TP TN FP FN

+
=

+ + +
  (8)

True Positive Rate (TPR) is the rate that determines the fraudulent 
free transactions classified as fraudulent:

TPTPR
TP FN

=
+

                (9)

True Negative Rate (TNR) is the rate that • 
determines the fraudulent free transactions 
classified as legitimate:

TNTNR
TN FP

=
+

            (10)

Positive Predictive value (PPV) is an in-• 
dicator that describes the relationship be-
tween the number of true positives and the 
total number of positives: true positives and 
false positives:

TPPPV
TP FP

=
+

           (11)

Negative Predictive Value (NPV) is an in-• 
dicator that describes the relationship be-
tween the number of true negatives and the 
total number of negatives: true negatives 
and false negatives:

 TNNPV
TN FN

=
+

 (12)

Prevalence (PV) is an indicator that determines the frequency of • 
occurrence of the distinguished class:

   
      

TP FNPV
TP TN FP FN

+
=

+ + +
 (13)

Detection Rate (DR) is an index that measures the ratio of true • 
positives to the total number of predictions:

  
      

TPDR
TP TN FP FN

=
+ + +

 (14)

Detection Prevalence (DPV) is an index defined as the number • 
of predicted positive cases divided by the total number of predic-
tions:

 
   

      
TP FPDPV

TP TN FP FN
+

=
+ + +

  (15)

The ROC analysis is most often used to show how a change in the 
threshold value of a classifier affects its ability to classify. Using the 
ROC analysis, it is possible to select an optimal threshold value, also 
known as the cut-off point. Looking at the ROC curve only in this 
context, performing the ROC analysis would make sense only for a 
model that gives a numerical value on the output indicating the degree 
of belonging to the class (scoring). The ROC curve can also be used as 
a measure of the quality of a classifier by determining the Area under 
Curve (AUC) [29, 42].

3. Results and discussion 
The main aim of the task was to recognize if the cutter was blunt 

or not, based on the observation of the signals obtained from sensors. 
From sensor for each signal P1x, P2y, P3z, M1x, M2y and M3z the 
sequence contained 320 observations was created. The sample realisa-
tion of signals are presented in Figure 3. 

To analyse the relationship between the main characteristics of data 
and cutter state, the statistical analysis was performed. The Kruskal-
Wallis test for hypothesis testing was used and the basic statistics were 
analysed. The Table 2 and Table 3 present the basic signal statistics 
for the cutter state.

Table 1. Confusion matrix 

Predicted classes 
Real classes

Positive Negative

Positive TP (True positive) FP (False positive)

Negative FN (False negative) TN (True Negative)

Fig. 3. Sample realisation of P1x, P2y, P3z, M1x, M2y and M3z signals
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The Kruskal-Wallis test to compare the mean of the received 
torque and force signals was used. The test results are presented in 
the Table 4.

Analyzing the above data, it should be noted that at the significance 
level α = 0.01 for M1x, M2y, M3z and P3z signals, there are no reason 
for rejecting the null hypothesis, that there is no statistically signifi-
cant difference between the mean values for the sharp and blunt cut-
ters (p-value >0.01). That’s why  it should be noted that on the basis 
of the mean of the received signals it is not possible to determine the 
condition of the cutter. Therefore, signals were pre-processed by the 
application of a wavelet analysis. 

For the possible wavelet a data set ( ){ }1,i i i n
D w y

≤ ≤
= , was de-

fined,  where for i th−  sample the value { }0,1iy ∈  denotes the cutter 
state, but m

iw ∈   denotes the vector of predictors based on wavelet 
pre-processing.  When the cutter was sharp then we put 0iy = , other-
wise if the cutter was blunt then 1iy = . For designing a decision tree 
the data set which contains 2172 samples was used. For the chosen 
wavelet and filtering level l∈  the signals from sensors were pre-
processed, i.e. the same preprocessing was applied to the observation 
sequences from P1x, P2y, P3z, M1x, M2y and M3z signals.

Thus, for each sample the sequences of approximation coefficients 
clk

j s
k n

,{ }
≤ ≤1

 and detail coefficients dlk
j s

k n
,{ }

≤ ≤1
 were estimated, 

where 1 2172j≤ ≤  and { }1 , 2 , 3 , 1 , 2 , 3s P x P y P z M x M y M z∈ .
For the signal decomposition the following different wavelets were 

applied:
Daubechies 2,4,6,8,10,12,14,16,18,20;• 
Least Asymmetric 8,10,12,14,16,18,20;• 
Best Localized 14,18,20;• 
Coiflet 6,12,18,24,30.• 
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The set D w yi i i
= ( ){ } ≤ ≤

,
1 2172

, where { }0,1iy ∈ , ( )6 2n
jw +∈ , 

is a learning set based on which classification trees were designed. 
The realizations of some features in the dataset for sharp and blunt 
cutters differ significantly. The density function and the distribution 
for one of the analyzed features are shown in Figure 4.

Significance of differences between sharp and blunt cutters based 
on possible feature which distribution is presented on figure 4 was 
confirmed by Kolmogorov-Smirnov and Kruskal-Wallis tests. For 
Kolmogorov-Smirnov test the statistic D  is equal 0.7297983, for 
Kruskal-Wallis test the statistic χ 2  is equal 935.8446284. For both 
tests p - value is to approximately 0. Hence, at the significance level 
of 0.01, it should be assumed that the values of the presented feature 
for sharp and blunt cutters differ significantly.  

The following tree construction criteria were used: a classifica-
tion tree (method = ‘class’) and the following parameters that control 
the tree designing procedure: a complexity parameter (cp = 0.005), 
a minimum number of observations that have to exist on the node in 
order to be able to attempt a split (minsplit = 7), a number of variables 
competing at the output (maxcompete = 10), a number of surrogate 
variables (maxsurrogate = 10), a method of determining which surro-
gate variables will be used (usesurrogate = 2), and a maximum depth 

Table 2. The basic signal statistics for a sharp cutter

Signals M1x M2y M3z P1x P2y P3z

min −0.1171427 −0.0228960 −0.6303399 0.0010815 0.2567350 0.0149973

max 0.0029251 0.1296336 −0.5869904 0.0713316 0.3263204 0.0405637

mean −0.0529555 0.0403286 −0.6181026 0.0248948 0.2874076 0.0282353

std 0.0310903 0.0302851 0.0062023 0.0172853 0.0095725 0.0055035

0.25% −0.0803710 0.0146124 −0.6218952 0.0100079 0.2840958 0.0235235

0.5% −0.0514923 0.0402213 −0.6191194 0.0209323 0.2882440 0.0283904

0.75% −0.0248435 0.0671787 −0.6148348 0.0389972 0.2938729 0.0329296

Table 3. The basic signal statistics for blunt cutter

M1x M2y M3z P1x P2y P3z

min −0.1439127 −0.0656999 −0.6350875 0.0030977 0.2707327 0.0058511

max 0.0510880 0.1436246 −0.5717976 0.1140984 0.4079226 0.0521933

mean −0.0511779 0.0389308 −0.6186331 0.0421332 0.3625294 0.0280621

std 0.0480753 0.0476963 0.0080547 0.0259049 0.0452849 0.0108821

0.25% −0.0882373 0.0005646 −0.6243047 0.0233395 0.3643719 0.0192413

0.5% −0.0545385 0.0386228 −0.6188666 0.0355519 0.3847081 0.0277085

0.75% −0.0106254 0.0772895 −0.6136879 0.0590801 0.3919459 0.0366029

Table 4. Kruskal-Wallis test results for torque and force signals

M1x M2y M3z P1x P2y P3z

chi-squared 0.0619675 0.5523552 2.1087337 250.9589 687.9325 0.715012

p-value 0.8034128 0.4573570 0.1464605 0.0000 0.0000 0.397785
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of a tree (maxdepth = 7). A decision tree was generated for the defined 
parameters. 

In order to evaluate the quality of recognition, the following ratios 
were estimated: accuracy, sensitivity (True Positives Rate), specificity 
(True Negatives Rate), positive predictive value, precision, negative 
predictive value, prevalence, detection rate and detection prevalence. 
Additionally, 10-fold cross validation was done. For each wavelet, the 
number of variables used in the training set (n.var) and the number 

of variables used in the tree (n.used) were checked. In order to 
carry out the cross validation procedure, the learning set was di-
vided into 10 portions. The classification tree was created every 
time based on the training set containing 9 portions. However, 
the accuracy was determined based on the test set containing 
only one portion. Each time the test set was different. For the 
obtained accuracy sequence the mean and standard deviation 
were estimated. The values of these parameters were attached to 
Table 5 as Acc.cv and Acc.sd respectively. The obtained results 
are presented in Table 5. 

When analysing the results presented in Table 5, it should 
be noted that the first indicator (accuracy - Acc) shows that the 
highest value was obtained for the Daubechies 20 wavelets at 
level l = 4 (Acc = 0.9926).On the other hand, the lowest Acc 
value was obtained for the Coiflet 30 wavelet, level l = 3 (Acc = 
0.9797). The results for the sensitivity (TPR) of the classifiers 
look similar. The ability to detect objects from the selected class 
is the highest for the Daubechies 20 wavelets at level l = 4 (TPR 
= 0.9904) and the lowest for Coiflet 30 wavelets level l = 3. The 
analysis of the TNR and PPV indicator shows its highest value 
for the Coiflet 6 wavelet at level l = 5. The highest probability 

of belonging of an object to the category recognized by the classifier 
as a not distinguished class in the actual non-displayed class (NVP) 
was obtained for Daubechies 20 wavelets at level l = 4. Though, the 
number of predicted positive cases (DPV) was obtained for Best Lo-
calized 14 wavelets at level l = 4. The value of the PV indicator for all 
the analysed wavelets was at a comparable level, that is ≈ 0.4314. Fig-

Table 5. The values of prediction models quality indicators

level n.var n.used Acc TPR TNR PPV NPV PV DR DPV Acc.cv Acc.sd

d2 5 120 9 0.9862 0.9808 0.9903 0.9871 0.9855 0.4314 0.4231 0.4286 0.9630 0.0104

d4 5 120 7 0.9834 0.9691 0.9943 0.9923 0.9769 0.4314 0.4180 0.4213 0.9713 0.0067

d6 5 120 7 0.9843 0.9723 0.9935 0.9913 0.9792 0.4314 0.4194 0.4231 0.9722 0.0115

d8 5 120 7 0.9802 0.9616 0.9943 0.9923 0.9715 0.4314 0.4148 0.4180 0.9706 0.0090

d10 5 120 8 0.9853 0.9723 0.9951 0.9935 0.9793 0.4314 0.4194 0.4222 0.9669 0.0096

d12 4 168 10 0.9890 0.9829 0.9935 0.9914 0.9871 0.4314 0.4240 0.4277 0.9623 0.0122

d14 4 168 8 0.9848 0.9744 0.9927 0.9902 0.9808 0.4314 0.4203 0.4245 0.9685 0.0130

d16 4 168 8 0.9866 0.9829 0.9895 0.9861 0.9871 0.4314 0.4240 0.4300 0.9719 0.0100

d18 4 168 8 0.9834 0.9701 0.9935 0.9913 0.9777 0.4314 0.4185 0.4222 0.9663 0.0092

d20 4 168 12 0.9926 0.9904 0.9943 0.9925 0.9927 0.4314 0.4273 0.4305 0.9684 0.0121

la8 5 120 6 0.9853 0.9755 0.9927 0.9902 0.9816 0.4314 0.4208 0.4250 0.9768 0.0080

la10 5 120 8 0.9894 0.9808 0.9960 0.9946 0.9856 0.4314 0.4231 0.4254 0.9795 0.0100

la12 4 168 8 0.9862 0.9808 0.9903 0.9871 0.9855 0.4314 0.4231 0.4286 0.9735 0.0107

la14 4 168 7 0.9848 0.9712 0.9951 0.9934 0.9785 0.4314 0.4190 0.4217 0.9708 0.0112

la16 4 168 7 0.9843 0.9701 0.9951 0.9934 0.9777 0.4314 0.4185 0.4213 0.9677 0.0085

la18 4 168 9 0.9876 0.9808 0.9927 0.9903 0.9855 0.4314 0.4231 0.4273 0.9689 0.0126

la20 4 168 7 0.9816 0.9648 0.9943 0.9923 0.9738 0.4314 0.4162 0.4194 0.9705 0.0071

bl14 4 168 7 0.9857 0.9840 0.9870 0.9829 0.9878 0.4314 0.4245 0.4319 0.9747 0.0116

bl18 4 168 7 0.9820 0.9658 0.9943 0.9923 0.9746 0.4314 0.4167 0.4199 0.9677 0.0115

bl20 4 168 10 0.9871 0.9808 0.9919 0.9892 0.9855 0.4314 0.4231 0.4277 0.9658 0.0101

c6 5 120 7 0.9908 0.9840 0.9960 0.9946 0.9880 0.4314 0.4245 0.4268 0.9782 0.0096

c12 4 168 7 0.9820 0.9658 0.9943 0.9923 0.9746 0.4314 0.4167 0.4199 0.9659 0.0101

c18 4 168 9 0.9885 0.9829 0.9927 0.9903 0.9871 0.4314 0.4240 0.4282 0.9694 0.0088

c24 3 276 8 0.9834 0.9691 0.9943 0.9923 0.9769 0.4314 0.4180 0.4213 0.9650 0.0107

c30 3 276 7 0.9797 0.9594 0.9951 0.9934 0.9700 0.4314 0.4139 0.4167 0.9657 0.0076

Legend:  Prediction model with the highest Acc value

   Prediction model with the lowest Acc value

Fig. 4. Analysis of the distribution of an exemplary feature
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ure 5 shows the decision tree for the wavelets with the highest value of 
the accuracy coefficient (Daubechies 20 wavelets for the level l = 4). 

Fig. 5. A decision tree for the wavelets with the highest value of the accuracy 
coefficient (Daubechies 20 wavelets for the level l = 4)

Analysing Figure 5 it should be noted that with the defined 168 
variables only 12 were used (Table 2) for the tree construction. The 
developed tree has 12 split nodes and 13 terminal nodes, and, thus, it 
generates 13 decision rules defining the cutter state. The ranking of 
the variables importance was used to build the tree in the training set 
for Daubechies 20 wavelets for the level l = 4 and presented in Figure 
6. The highest values indicate the largest variable influence on the 
cutter state. In this case, from 168 variables used (Table 2) the most 
important variables are: V38, V54, V45, V47, V43, V46, V39, V40, 
V41, V36 and V92. The importance of the variable determines the 
participation of the variable in the created decision tree. Importantly, 
the specific meaning of a variable applies only to the analysed deci-
sion tree for which it was determined. 

Variables included in the decision tree nodes do not necessarily 
mean its high importance. It can be observed that among these most 
important variables, only V38 and V39 were included in the analysed 
tree out of all 12 variables (nodes) in the tree. The variables which are 
to be included in the tree largely depend on the set of variables and 
its specificity. Input fields that contain relevant information may not 
be included in the decision tree and, thus, the quality of the forecast 
will not be affected. The analysis of the importance of the variables 
allowed to identify those input variables that have the greatest impact 
on creating the decision tree, and, thus, have an impact on the condi-
tion of the cutter state.

Table 6 presents the confusion matrix for the Daubechies 20 wave-
lets level l = 4. The sharp cutter is assumed to be a negative case (N), 
while a blunt cutter is a positive case (P). The confusion matrix analy-
sis shows that 16 out of 2172 analysed variants were incorrectly clas-
sified, which means that the prediction error is ≈ 0.74%. This value 
indicates a very high predictive ability of the developed classifier. 

On the other hand, the highest value of the accuracy indicator  
(Acc.cv = 0.9795) after the application of a 10-fold cross-validation 
was obtained for the Least Asymmetric 10 wavelets for the level l = 5. 
Figure 7 shows a decision tree created for the training set for the coef-
ficients obtained on the basis of data processing using Least Asym-
metric 10 wavelets. 

Analysing Figure 7 it can be noted that with the defined 120 vari-
ables only 7 were used (Table 5) for the tree construction. The de-
veloped tree has 7 split nodes and 8 terminal nodes. It means that 
8 decision rules define the cutter state. Table 7 shows the analysis 
results of the cutter state using a 10-fold cross-validation. In one of 
the analysed cases, the training set contained 1947 records, while the 
test set contained 225.

The analysis of the confusion matrix shows that 4 out of 225 set 
records analysed variants were incorrectly classified. Moreover, the 
lowest Acc.std value (Acc.std = 0.0067) (Table 2) was obtained for 
Daubechies 4 wavelets at level l = 5, which means that the changes 
in the Acc indicator value with the 10-fold cross-validation were the 

Table 6. Confusion matrix for classification tree designed on from wavelets 
Daubechies 20

Reference

State Blunt Sharp

Prediction
Blunt 928 7

Sharp 9 1228

Table 7. The chosen confusion matrix for the classification tree designed on 
the coefficients obtained from wavelets Least Asymmetric 10

Reference

State Blunt Sharp

Prediction
Blunt 91 1

Sharp 3 130

Fig. 6. The ranking of variable importance for a decision tree (Daubechies 20 
wavelets for the level l = 4)

Fig. 7. A decision tree with the highest accuracy value after 10-fold cross-
validation ( Least Asymmetric 10 wavelets for level l=5)
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smallest. It should be assumed that the predictive model for these 
wavelets is the most stable. However, the value of the accuracy indi-
cator for this model was only Acc = 0.9834, which means the predic-
tion error is ≈ 1.7%.

4. Conclusions
Technological machines designed for the Industry 4.0 applications, 

among which are also machine tools, are advanced mechatronic sys-
tems equipped with several sensors. The data gathered from them are 
usually used for diagnostic, monitoring and other purposes including 
their components remaining useful life prediction, condition classifi-
cation, or both of them. Typical condition monitoring techniques (tem-
perature, vibration or acoustic signal analysis) play an important role 
as data sources and indicators of a developmental failure, and having 
a wide range of different applications. Among them, a vibration signal 
analysis is usually applied as a measure for any cause of inaccuracy in 
manufacturing processes and components, or any maintenance deci-
sions related to the machine. On the other hand, technological ma-
chines are equipped with several different sensors, from which the 
data gathered could be alternatively used in effective structural health 
monitoring. That is why, the aim of this article was to verify how 
effective appropriate data processing of such alternative signals col-
lected from the multi-component sensor: signals from the force sensor 
and torques could be. All this with a strong relation to the expected 
solutions necessary in digital transformation, which will help to elimi-
nate current barriers such as heterogeneous data streams that cannot 
be well processed to realize the automated decision support due to the 
lack of strong analytic capabilities Another research challenge in this 
area should also be considered, that is the  development of predictive 
data analytics techniques in order to aggregate and process the sensor 
data to assist in the maintenance operations or scheduling. It requires 
advanced information analytics for the networked machines that will 
finally be able to perform more efficiently and collaboratively. Vast 
research is conducted in this area. However, it is mainly theoretical 
considerations where new methods or mathematical models are usu-
ally verified only with the use of simulation data. Although there are 
many works investigating SHM or RUL in production engineering, 
they are usually limited to small and academic problems. Monitoring 
smart structures poses a big challenge in terms of fault or damage de-
tection, due a huge amount of noisy data collected from many sensors 
on a periodic basis. 

For the purpose of the presented sensor system and signal process-
ing integration for a cutter reliability decision-making process, we as-
sumed that the data collected from the 3-axis force and torque sensor 
can be also used as an alternative to a typical vibration signal based 
health monitoring and the RUL prediction, while integrated with ma-
chine learning techniques that are regarded as a powerful solution. 
An industrial milling machine multi-sensor system as a condition 
monitoring tool was presented. Its integration with the proposed sig-
nal processing method based on decision trees with different types 
and levels of wavelets for the cutter reliability decision-making proc-
ess was a part of the research results discussed. In the first stage, the 
data gathered were pre-processed with the use of discrete wavelet 
transformation. The main goal of the wavelet transformation consists 
in the decomposition of the tested signal into component functions. 
Different types and levels of wavelet were used. Next, decision trees 
(a family of data mining and machine learning methods that can be 
used for both classification and regression tasks) were applied for data 
processing in order to develop predictive models for the processed 
signals.  The third stage of the knowledge discovery was the interpre-
tation and evaluation of the developed models. Receiver Operating 
Characteristics (ROC) was used as a tool to assess the performance 
of the developed predictive models. The presented confusion matrix 
for the classification tree designed on the coefficients obtained from 
wavelets Least Asymmetric 10 allowed to achieve a prediction error 
equal to 1.7%. On the other hand, much better results were achieved in 

the case of the classification tree designed with the use of Daubechies 
20 wavelets. Only 16 out of 2172 analysed variants were incorrectly 
classified, which means that the prediction error was equal to 0.74%. 

The data gathered during the same industrial production process 
but coming from other sensors were also analysed for classification 
and prediction on earlier research stages. The comparison of the re-
sults achieved before with these, presented in the current work, will 
allow to verify the research hypothesis i.e.is it possible to use the data 
collected from the 3-axis force and torque sensor as an alternative to 
the typical vibration signal based health monitoring and RUL predic-
tion? In [25] the prediction was evaluated by the SVM application. 
Cutter condition identification was done by registering and processing 
vibroacoustic data, in conjunction with torque measurement using a 
three-axis sensor mounted in the chuck. A correlation analysis, which 
is related to the spectral analysis, was used to identify the parametric 
property of an vibroacoustic signal, but  torque signals were identified 
as ARIMA models. This information was used to create a data set. 
Additionally, for the prediction based on SVM the modified kernel 
function as a linear combination of kernels representing the acoustic 
signal and torque data was used. The prediction error achieved was 
equal to 2.1 %. In [9] SVM was applied only for the preprocessed 
vibroacoustic signals. In this case the achieved prediction error was 
equal to 2.6%. In [24] the prediction was assessed by a logistic re-
gression application into the preprocessed vibroacoustic signals. The 
classification error was obtained at the level of 8.6%. The comparison 
of the results achieved previously and in the current analysis indi-
cates a very high predictive ability of the analysed tree and alternative 
condition monitoring data source. A novel approach for a predicting 
tool remaining useful life was also proposed by Li et al. [27], who 
emphasize that most current approaches for the predicting tool RUL 
are based on historical failure and truncation data, while for the new 
types of tools or when a similar tool has just been launched, such 
failure and truncation data are limited or even unavailable. In order 
to address this problem, a novel method for the prediction of the tool 
RUL using limited data was proposed and, for this purpose, a time 
window was constructed to track the tool condition using sensor data, 
with its size to be dynamically adjusted according to the wear factor 
and increase rate. Then, a deep bidirectional long short-term memory 
neural network in which sequential data are predicted and smoothed 
by forwards and backwards directions respectively, was developed to 
encode temporal information and identify long-term dependencies. 
On this basis, multi-step ahead rolling predictions were employed to 
predict the tool RUL. The presented results [27] show that  with this 
method it is possible to predict the tool RUL However, its weakness 
stems from the time consuming and complicated multi-step frame-
work of the proposed prediction algorithm. In addition, this algorithm 
is also quite sensitive to changes in tool working conditions. The mean 
absolute error and root mean square error of the method proposed by 
[27] were 0.1130 and 0.1592. They are much higher than prediction 
errors achieved in this study.

To sum up, the novelty aspect and most important achievements of 
the research results presented in the article are:

It was proved with the use of real world industrial production 1. 
process data that the 3-axis force and torque sensors can be 
considered as a data source alternative to the typical vibration 
signal for health monitoring and RUL prediction, while inte-
grated with adequate pre- and post-processing methods.
The possible application of different types and levels of wave-2. 
lets for signal processing with their efficiency analysis in in-
dustrial condition monitoring were presented and discussed.
Different predictive models were developed with the use of 3. 
decision trees for the signals processed with various types and 
levels of wavelets proving their ability to accurately trace a 
tool condition.
The ROC analysis was used to identify the most stable pre-4. 
dictive model and  the model with the lowest prediction error 
selection method. 
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