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Criticality is considered as a fundamental category of production planning, maintenance 
process planning and management. The criticality assessment of machines and devices can 
be a structured set of activities allowing to identify failures which have the greatest potential 
impact on the company’s business goals. It can be also used to define maintenance strategies, 
investment strategies and development plans, assisting the company in prioritizing their al-
locations of financial resources to those machines and devices that are critical in accordance 
with the predefined business criteria. In a criticality assessment process many different and 
interacting criteria have to be taken into consideration,  despite the fact that there is a high 
level of uncertainty related to various parameters. In addition, not all assessment criteria are 
equally important. Therefore, it is necessary to determine the weight of each criterion tak-
ing into account different requirements of machine criticality process stakeholders. That is 
why a novel model of a machine criticality assessment is proposed in this paper. The model 
extends the existing methods of assessing machines criticality, taking into account not only 
the importance of machine criticality assessment criteria, but also possible interactions be-
tween them.
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1. Introduction
The recent  rapid development of production systems related to 

automatization and digitalization has required a new approach to de-
fining the function and role of a technical object in a production proc-
esses. Due to the client’s requirements for a product, the technologies 
used for their realization and the impact of failures on people and 
natural environment, the companies not only must plan maintenance 
activities, but also have to define the priorities for implementations of 
these activities taking into account the role they play in business goals 
[13, 41, 75]. Therefore, an important issue for any company is a ma-
chine criticality assessment. Referring to [1, 4, 70] criticality is a fun-
damental category of the production and maintenance process plan-
ning and management. A machine and device criticality assessment 
is a structured set of activities that allows to identify machines and 
devices which failures have the greatest potential impact on the com-
pany’s business goals. It can be used to define maintenance strategies, 

investment strategies and development plans, assisting the company 
in prioritizing the allocation of financial resources to those machines 
and devices that are critical in accordance with the predefined busi-
ness criteria [27, 37, 47, 60, 89]. Moreover, according to Roy [70], 
prioritizing of maintenance activities eliminates their instability and 
variability in activities, thereby increasing resource efficiency and re-
ducing maintenance costs.

Although the literature review describes many methods for assess-
ing the machine criticality and decision making systems in this area, 
itis still not a simple task [6, 13, 40, 48]. First of all, in a machine criti-
cality assessment process many different and interacting criteria have 
to be taken into consideration [21]. Secondly, due to the quality and 
method of data acquisition there is a high level of uncertainty related 
to various parameters such as: time between failures, time to repair 
and the quantity of spare parts needed for a repair [46]. Thirdly, not 
all assessment criteria are equally important. Therefore, it is neces-

machine criticality assessment, assessment criteria, assessment methods, interactions.
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sary to determine the weight of each criterion taking into account dif-
ferent requirements of machine criticality process stakeholders [75]. 
Considering the above issues, a novel model of a machine criticality 
assessment is proposed in this paper. The proposed model extends the 
methods of assessing the machine criticality described in the literature 
and used in practice taking into account not only the importance of 
machine criticality assessment criteria, but also the interactions be-
tween them. 

This paper is organized as follows: in Section 2 the literature re-
view according the criteria and methods used for a machine criticality 
assessment is presented. Then, in Section 3 a novel framework of a 
machine criticality assessment is developed. Moreover, in this section 
the study results of the importance for the criticality assessment in 
different industries are presented. In Section 4 a machine criticality 
assessment model for the aviation industry is presented. Finally, the 
conclusions and direction of the future research are presented. 

2. Problem statement of a machine criticality assess-
ment

2.1. Criticality criteria
As mentioned in work [80], criticality is a measure of importance 

defined on the basis of the analyzed factors. Moreover, criticality is 
used as a comparative measure to assess the consequences of actions 
taken and it can be used as a measure to highlight the differences 
between individual machines and action scenarios (action strategies). 
The criteria adopted for the evaluation may affect the final criticality 
often differ from one organization to another. They are often depend-
ent on the type of assets (resources) as well as adopted rules in the 

organization. In the literature many criteria for assessing the criticality 
of machines are defined. Because the classification of the criteria for 
assessing the criticality of machines proposed in the literature is not 
unambiguous and may cause problems related to their interpretation 
two – level- hierarchical classification for the machine criticality as-
sessment criteria was proposed in Table 1. 

Moreover, in the literature in different areas, other criteria of ma-
chine criticality assessment are proposed. In the area of manufactur-
ing systems, the following factors are indicated: redundancy, work 
load [4], production integrity [18, 50, 63, 86], machine importance for 
a process [5], breakdown time and stability of the machine [75], sen-
sitivity of operation [36], bottleneck and impact on throughput [44], 
applicability of CBM [63] and reliability [54, 63]. 

Furthermore, in the medical assessment, the following criteria are 
used: risk,  user competence and standards [71], performance assur-
ance [14, 71], support availability, clinical acceptability [14], function 
[14, 80], recalls and hazard alerts and maintenance requirements [80]. 

In the oil refinery assets the following criteria are proposed: failure 
detection and failure severity [33]. What’s more, the customer’s in-
convenience criterion [74] and effect of power generation in thermal 
power plants equipment assessment [34] as well as the impact of busi-
ness (shutdown duration) in chemical plants equipment assessment 
[65] are proposed. 

2.2. Criticality method assessment used and criticality 
levels

There are many different methods presented in the literature for 
assessing the criticality of machines. These methods use a variety 
of evaluation criteria and are used in different industries. The most 

Table 1. Criteria for assessing the criticality of machines – literature survey

No Main criteria Sub - criteria References

1. Safety Degree of influence on working conditions.
Machine failure costs due to health, safety and environment.

[5, 18, 24, 26, 34, 38, 50, 
53, 54, 63, 64, 65, 66, 67, 

75, 86]

2. Environment
In case of failure, the degree of risk for the environment.
Working environment.

[26, 28, 34, 53, 54, 64, 65, 
74, 86]

3. Maintainability 

MTTR (Mean Time To Repair).
OEE (Overall Equipment Effectiveness).
Failure detection.
Failure frequency.
Failure severity.
Downtime length.

[2, 5, 16, 19, 20, 31, 33, 
41, 43, 53, 63, 6, 73, 75, 

79, 92]

4. Quality

The degree of influence of a machine on the implementation of other operations in case 
of a failure.
Number of nonconformities due to the machine failure during the year.
The degree of influence of a technical object on the quality of the final product.
Costs of non-conforming products as a result of a failure.

[4, 18, 19, 20, 26, 31, 50, 
54, 66, 67, 68, 90]

5. Age Age of machine. [4, 14, 68, 80]

6. Cost

Costs incurred by production for machine downtime (breakdown).
Costs of non-conforming products as a result of failure.
Failure elimination costs (excluding OHS and environmental costs).
Machine failure costs due to health, safety and environment.

[4, 5, 6, 14, 19, 20, 26, 31, 
33, 53, 65, 68, 72, 74]

7. Risk
Mission criticality.
Operating conditions and equipment accidents.

[19, 20, 28, 31, 80]

8 Availability

Average downtime of a technical facility due to failures and repairs.
Availability of the required personnel.
MTBF (Mean Time Between Failures).
Machine replacement in case of failure (Machine changeability).
Work load.

[2, 31, 43, 53, 63, 66, 67, 
76]

9. Spare parts Spare parts availability. [36, 63] 
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commonly used method is the AHP (Analytical Hierarchy Process) 
method. This method is used to select the best alternative and analyze 
possible alternatives [17, 76, 84]. In the work [5] the authors indicate 
that thanks to the great alternatives it can be used to arrange a large 
number of machines. In order to create the ranking, it is possible to 
integrate both qualitative and quantitative criteria, as well as their in-
tegration [14, 46, 69]. The AHP method has been successfully applied 
to the classification of equipment in the thermal power plant [34, 74], 
for the prioritization in the medical industry [80] and machinery clas-
sification in the plastics processing industry [1]. Moreover, the au-
thors in [76] noted that it can be integrated with other methodologies, 
such as the Delphi method. This method relies heavily on experts. 
Such integration into the classification of equipment in an oil refinery 
is presented in [33]. In [85] it was noted that the calculation of the 
coefficients of coherence makes this method more reliable compared 
to the additive weighting method presented in [31, 75].

Additionally, in order to evaluate the criticality of machines, the 
rules of interconnection with the fuzzy logic and fuzzy grouping are 
used. The result of this assessment is the identification of different 
categories of machines. Rules are an appropriate method to evaluate a 
large number of machines for which common strategies and operating 
procedures are defined [41, 54]. The combination of rules with the 
fuzzy logic is presented in [36]. Furthermore, [28] presents a fuzzy 
cluster analysis structure divided into four sub-hierarchy models. 
Fuzzy grouping is also presented in the literature as a possible method 
for assessing the importance or criticality of equipment. Guo et al. 
[26] found that fuzzy assessments can deal with imprecise informa-
tion better, which can be beneficial for companies. However, its effec-
tive application depends on the function of membership and a set of 
weighting factors. The fuzzy logic application has some advantages. 
However, it is a complex methodology and difficult to advance as it 
requires some simulations before use [85].

Moreover, in the literature, the FMEA method (Failure Mode 
And Effects Analysis) is used to assess the criticality of machines. 
It allows the identification of the factors that were taken into ac-
count for the criticality assessment. Most often this method is used 
to assess the types of failures, with particular emphasis on the like-
lihood of failures and their consequences, taking into account such 
factors as: redundancy, use, quality, age of machine and costs [4, 
68]. Another variant of the FMEA – FMCEA (Failure Mode, Ef-
fects, And Criticality Analysis) method takes into account addition-
al factors such as environmental aspects when assessing criticality 
[12]. Based on the value of RPN (Risk Priority Number) index and 
risk matrix the machine criticality and the maintenance strategy are 
determined.

The applied criticality method allows to determine the machine 
criticality level (machine category). The authors in the works [8, 29, 
57, 82] classified machines into three groups on the basis of the ABC 
(Activity Based Classification) analysis method. The main goal of 
this method is based on Pareto’s principle, which classifies the top 
15–20% goods occupied 65–80% value of the whole system into A 
group, the following 30–40% goods occupied 15–20% value of the 
whole system into B group, and the other 40–55% goods occupied 
5–15% value of the whole system into C group [29]. Additionally, a 
scoring system is used to assess the criticality [68, 75]. The authors 
of the mentioned works used ABC or ABCD classification levels. 
ABC – type classifies machines into three groups: category A – ma-
chines which need special control, category B – machines which 
need less control and category C – machines which do not need any 
special control. The ABCD - type classification defines four cat-
egories of machines as: category A – particularly important (bot-
tleneck), category B – important, category C – relatively important, 
category D – not used. 

In addition to the ABC classification, there is another method of as-
sessing the criticality of machines, that is the GUT (Gravity, Urgency 
and Tendency) matrix [15].

2.3. Research challenges 
The analysis of the literature showed that many criteria are proposed 

for assessing the criticality of machines. The same criteria are often 
defined differently, e.g. breakdown /failure. Moreover, sometimes it is 
difficult to understand the meaning of the criterion unequivocally on 
the basis of the description provided by the author. The criteria analy-
sis presented in Table 1 allowed to systematize them. Nevertheless, 
there are no unequivocal studies indicating the real usefulness and 
importance of the specific criteria for different industries. 

In addition, various methods are available for assessing the criti-
cality. These methods take into account various criteria proposed (as 
discussed above). However, these criteria are often analyzed indepen-
dently, or their dependence is analyzed to a little extent. In the litera-
ture, the method that takes into account the interactions between the 
individual evaluation criteria used to assess the criticality of machines 
is not described. From the point of view of the machine criticality 
assessment, most of the proposed criteria aggregation methods have 
some drawbacks. Namely, they do not reflect the interaction between 
the criteria. In the real manufacturing environment machine critical-
ity criteria are usually not independent (there are some interactions 
among the criteria, positive or negative effects between them) Thus, 
an appropriate function must be used to aggregate multiple informa-
tion sources and to handle an interactive relationship. An example of 
such an environment is a noisy environment where complex criterion 
relationships between worker and machine can be identified [61].
Since ignoring the interaction between the assessment criteria may 
lead to distortions of its outcome and, consequently, ineffective and 
inefficient decisions, commonly used aggregation and ranking meth-
ods such as AHP, SAW and WSAW do not apply in this problem. 

That is why, in this paper, a new method of machine criticality as-
sessment is proposed. 

As part of the work, the following research questions were taken 
into consideration:

Is there a difference in the perception of the criteria importance 1. 
of the machine criticality assessment in various industries?
Which method is able to model the importance of machine crit-2. 
icality assessment criteria and the interaction between them?
How important are the particular machine criticality assess-3. 
ment criteria and the interactions between them in the case 
study industry?

3. The framework of machine criticality assessment

3.1. Development of the methodology
Machine criticality is a complex concept and depends on many fac-

tors. “Intuition” is usually not sufficient to make an objective decision 
about which machine is important and which is not. It is necessary 
to build a structured method to support decision makers in the ma-
chine criticality assessment process. A general scheme of the machine 
criticality assessment method used in this paper includes three main 
stages: (1) Selection of criteria, (2) Criteria assessment, and (3) Selec-
tion of the appropriate aggregation function (Figure 1).

Based on the final Machine Criticality Index (MCI), it is possible 
to define the prioritization of maintenance actions in order to ensure 
that the production system works as close to its nominal capacity as 
possible.

3.2.	 Identification	of	criticality	assessment	criteria
The main standard for evaluating the machine criticality is the cri-

teria. Based on the analysis of the literature (chapter 2.1), 24 criteria 
most frequently matched and used to assess the criticality of machines 
were selected: C1 - Operators’ competences; C2 - Machine replace-
ment in case of failure; C3 - Degree of influence on other tasks in case 
of a failure; C4 - Costs incurred by production for machine downtime 
(breakdown); C5 - Number of nonconformities due to a machine fail-
ure during the year; C6 – Degree of machine influence on the final 
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product quality; C7 - Costs of non-conforming products as the result 
of a failure; C8 - Frequency of failures per year; C9 - Average down-
time of a technical facility due to failures and repairs; C10 – Spare 
parts availability; C11 - Failure elimination costs (excluding OHS and 
environmental costs); C12 - In case of a failure, the degree of influ-
ence on working environment; C13 - In case of a failure, the degree 
of risk to environment; C14 - Machine failure costs due to health, 
safety and environment; C15 - Age of the machine; C16 - OEE; C17 
- MTBF; C18 - MTTR; C19 - Failure severity; C20 - Failure detec-
tion; C21 - Customer’s inconvenience; C22 - Mission criticality; C23 
- Operating condition; C24 - Work load.

In the next step, these criteria were assessed by company experts 
in order to identify the most important criteria from the industry point 
of view. The research on the perception of the importance of the ma-
chine criteria criticality assessment was carried out at the turn of 2019 
in 2020 in small, medium-sized and large production companies of 
various industries selected for the research purposely. A group of 66 
production companies participated in the study, of which 22.39% 
were enterprises from the automotive industry, 29.85% from the food 
industry, 31.34% from the aviation industry and 16.42% from other 
industries, e.g. medical, furniture, railway, printing house, etc. The 
biggest group of them was the large enterprises 57.58%, and smallest 
group was small sized companies (6.06%) (Figure 2).

Fig. 2. Structure of the enterprises participating in the survey

The survey was conducted with experts from these enterprises. The 
experts were asked to determine the degree of importance of the 24 
criteria on a scale from 1 to 5, where 1 meant – not important, while 
5 very important. The data set obtained from the enterprises was sub-
jected to a statistical assessment (an average assessment value - X , a 
standard deviation – S, ∑ - total importance obtained by the criterion 
in a given industry) (Table 2). 

Analyzing the results presented in Table 1 there are visible differ-
ences not only in the assessment of the importance of the criteria in 
individual industries, but also in each individual criterion in a given 
industry. In case of the automotive industry, the highest compliance in 
the assessment of the criterion by enterprises was identified for the C5 
criterion - the value of a standard deviation is s = 0.408. The lowest 

compliance was noted for the C16 criterion (s = 1.188). In the food 
and aviation industries, the highest compliance in the assessment of 
the importance was achieved by the C6 criterion, with the following 
values   of a standard deviation - food s = 0.413, aviation s = 0.359. 
On the other hand, the lowest compliance was achieved by the C17 
criterion in the food industry (s = 1.223), and the C24 criterion in the 
aviation industry (s = 0.949). Additionally, it should be noted that in 
case of the aviation industry, the values   of the standard deviation for 
the assessed criteria were the lowest, what proves high consistency in 
assessing the importance of criteria in individual companies in this 
industry. In case of enterprises identified as “other”, the highest com-
pliance in the assessment of the criterion by the enterprises was identi-
fied for the C8 criterion - the standard deviation value is s = 0.601, and 
the lowest, the same as in the automotive industry, for C16 (s = 1.481). 
An average value of the importance obtained by the analyzed criteria 
for individual industries is presented in Figure 3.

The analysis of the above results (Figure 3) made it possible to 
identify common assessment criteria for individual industries. When 
identifying the common criterion, similar or insignificant differences 
(± 0.5) in the obtained average assessment value ( X ) for a particular 
criterion were taken into account. The criteria common for all indus-
tries are: C3, C4 and C5. However, the C1 and C7 criterion is common 
for the automotive, aviation and food industries. Criteria C2, C20, 
C22 and C23 are common for the aviation, automotive industries and 
the enterprises defined as “other”. The C6 and C10 criterion obtained 
the highest value (4.93 and 4.47) for the food industry, but this crite-
rion is common for aviation, automotive industries and the enterprises 
defined as “other”. On the other hand, the C8, C15 and C16 criterion 
is common for the aviation industry and the enterprises defined as 
“other”. Moreover, the C9 criterion obtained similar X  values for 

Fig. 3. An average assessment value of importance ( X ) obtained by the ana-
lyzed criteria for individual industries

Fig. 1. A generic process for the machine criticality assessment
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the automotive industry and the enterprises defined as “other”, with 
the values of 3.78 and 4.06, respectively. Moreover, it should be noted 
that this criterion obtained also similar values for the food and aviation 
industries, 4.73 and 4.57, respectively. Additionally, the criteria C11, 
C12 and C14 obtained the highest values for the food and aviation in-
dustries. The C21 and C24 criteria for the aviation industry achieved 
the highest values, respectively 4.86 and 4.67. On the other hand, the 
C13 criterion with the obtained average value of 4.20 and C19 with 
the average value 4.80 dominated in the food industry. This criterion 
obtained similar values for the aviation (3.00) and automotive (3.23) 
industries. The C17 criterion dominated in the automotive industry 
(with the average value of 4.31), but this criterion is common for the 
aviation, food industries and the enterprises defined as “other”.

In Figure 4, the total importance obtained by the analyzed crite-
ria for individual industries is presented. The presented results show 
which of the individual criteria obtained the highest total value for 
individual industries. In the aviation and automotive industries, the 
lowest value was obtained by the C1 criterion (value 33, 22). How-
ever, in the aviation industry, the highest value was obtained by the 

C6 criterion, which was also dominant in the food industry. The most 
important criterion in the automotive industry was the C2 criterion. A 
completely different situation can be noticed in the enterprises defined 
as “other”. In this case, the C23 criterion had the lowest value and the 
C18 criterion the highest. What is more, it should be noted that the 
criteria from C2 to C14 in the aviation industry obtained the highest 
values among the surveyed criteria. On one hand, it is justified by the 
fact that most companies in this industry participated in the research. 
On the other hand, it turned out that these criteria are the most impor-
tant from the point of view of machine criticality in this industry. 

The criteria from C2 to C14 in the aviation industry were select-
ed for a further analysis (model building). Additionally, the factors 
determining the choice of these criteria were: the largest number of 
companies in the aviation industry in the conducted research as well 
as the fact that in case of this industry, the values of the standard de-
viation (s) for the assessed criteria were the lowest, what proves a 
high consistency in assessing the importance of criteria in individual 
companies (conformity of the assessment).

Table 2. Perception of machine criticality factors importance

Criteria
Automotive Food Aviation Other

∑ X s ∑ X s ∑ X s ∑ X s

C1 22 1.692 0.480 30 2.000 0.655 33 1.571 0.676 33 3.667 1.414

C2 61 4.692 0.480 26 1.733 0.884 99 4.714 0.561 37 4.111 1.364

C3 55 4.231 0.725 71 4.733 0.458 94 4.476 0.814 38 4.222 0.972

C4 59 4.538 0.519 68 4.533 0.743 93 4.429 0.507 37 4.111 0.782

C5 52 4.000 0.408 65 4.333 0.900 83 3.952 0.669 34 3.778 0.833

C6 51 3.923 0.494 74 4.933 0.413 102 3.333 0.359 33 3.667 1.225

C7 56 4.308 0.630 72 4.800 0.414 93 4.429 0.598 34 3.778 1.394

C8 49 3.769 0.439 43 2.867 1.060 98 4.667 0.483 37 4.111 0.601

C9 53 4.077 0.760 71 4.733 0.458 96 4.571 0.507 34 3.778 0.667

C10 48 3.692 0.751 67 4.467 0.834 82 3.905 0.436 36 4.000 1.323

C11 49 3.769 0.439 72 4.800 0.414 96 4.571 0.507 34 3.778 0.833

C12 48 3.692 1.032 65 4.333 0.976 90 4.286 0.644 32 3.556 1.130

C13 42 3.231 1.013 63 4.200 0.941 98 3.000 0.483 33 3.667 1.118

C14 39 3.000 0.816 63 4.200 0.941 86 4.095 0.539 32 3.556 1.333

C15 29 2.231 0.599 25 1.667 0.488 64 3.048 0.590 28 3.111 0.782

C16 40 3.077 1.188 21 1.400 0.507 56 2.667 0.913 34 3.778 1.481

C17 56 4.308 1.109 49 3.267 1.223 68 3.238 0.539 32 3.556 1.130

C18 55 4.231 1.092 67 4.467 0.915 68 3.238 0.436 39 4.333 1.000

C19 53 4.077 0.641 72 4.800 0.414 72 3.429 0.598 36 4.000 1.000

C20 44 3.385 0.768 43 2.867 0.990 71 3.381 0.865 32 3.556 1.236

C21 57 4.385 0.650 36 2.400 0.507 70 4.857 0.577 32 3.556 0.882

C22 50 3.846 0.376 38 2.533 0.834 65 3.095 0.700 35 3.889 1.054

C23 43 3.308 0.630 35 2.333 0.617 69 3.286 0.463 29 3.222 0.833

C24 52 4.000 0.577 46 3.067 0.594 63 4.667 0.949 35 3.889 1.054

Legend:
the lowest value of a standard deviation (s) for every industry

the highest value of a standard deviation (s) for every industry
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After identifying the criteria that will be further analyzed, we can 
proceed to the next step, i.e. building a function that aggregates indi-
vidual criteria values into one synthetic result.

3.3. Development of an aggregation function 

3.3.1. Assumptions
The purpose of aggregation functions is to combine multiple nu-

merical inputs into a single numerical value, which in some sense 
represents all the inputs. According to [3] many aggregation functions 
present some drawbacks, mainly from their natural assumption that 
input criteria are independent of each other (arithmetic mean, weight-
ed mean, median, mode etc.) and none is capable to find an interaction 
between criteria [51]. However, this fact does not limit their usability 
in many complex areas of application [62, 87].

Because the criteria of the machine criticality assessment are usu-
ally not independent (there are some interactions among criteria, posi-
tive or negative effects among them), an appropriate function must 
be used to aggregate multiple information sources and to handle an 
interactive relationship.Based on the literature review [11, 22, 45], 
in order to solve the problem of aggregating the criteria that are in-
terdependent, a non-additive function that defines a weight, not only 
for each criterion but also for each subset of criteria, is needed. Thus, 
these non-additive functions can model both the importance of cri-
teria and the positive and negative synergies between them. Taking 
the above into account, we propose the use of the machine criticality 
index (MCI) λ-fuzzy measure and Choquet fuzzy integral, which can 
handle both the challenges. According to [52] the Choquet integral 
has good properties for aggregation. It is continuous, non-decreasing, 
comprised between min and max, stable under the same transforma-
tions of interval scales in the sense of the theory of measurement, and 
it coincides with a weighted arithmetic mean when the fuzzy meas-
ure is additive. In view of the characteristics of the Choquet integral, 
it has been widely applied to multiple attribute decision-making in 
many areas [7, 9, 22, 23, 35, 56, 78]. However, the interest in the 
fuzzy integral is mainly due to its ability to represent interactions be-
tween criteria . This is due to the fact that weights in a fuzzy measure 
are assigned to every subset of all criteria.

3.2.	 Definitions	and	notations
The fuzzy set theory has been applied to many problems in differ-

ent fields of science and engineering. In order to describe this theory, 
some definitions are presented as follows:

Let { }1, , nX x x= …  be the set of all criteria and ( )X  the power 
set of X.

Definition 1 (Fuzzy measure, [10]): A discrete fuzzy measure on 
X is a set function µ: ( )X → [0, 1] satisfying the following condi-
tions:

µ(1. ∅)=0, µ(X)=1 (boundary condition)
if A 2. ⊆  B ⊆  X then μ(A) ≤ μ(B) (monotonic condition).

In this context, μ(A) represents the degree of importance of a 
given criteria set A. This way, additionally to the weight of a sin-
gle criterion, the weight of an arbitrary criteria combination is 
also directly described. The fuzzy measure is additive when 
if ( ) ( ) ( ) then  A B A B A Bµ µ µ∩ =∅ ∪ = +  and superaddi-
tive (subsdditive) when ( ) ( ) ( ) A B A Bµ µ µ∪ > +  (respectively 
( ) ( ) ( ) ).A B A Bµ µ µ∪ < +

Definition 2 (Discrete Sugeno λ-measure): A discrete fuzzy 
measure is called Sugeno λ-measure if it satisfies:

If A B then A B A B A B∩ = ∪( ) = ( ) + ( ) + ( ) ( )∅ µ µ µ λµ µλ λ λ λ λ,3. .

Note that (1) and (2) are fundamental properties for any types of a 
fuzzy measure and (3) is an additional property of λ-measure. To dif-
ferentiate this measure from other fuzzy measures, λ-fuzzy measure is 
denoted by µλ. Sugeno [77] proved that given those 3 axioms, a fuzzy 
measure can be uniquely determined using only n = |X| coefficients 
µi that are often called fuzzy densities which represent the degree of 
importance of the criteria i-th and can be calculated with parametric 
or nonparametric methods. The λ-measure can be calculated using the 
following formula:
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Based on the boundary condition in Eq. (1), µλ(X)=1, λ can be 
uniquely determined via the following equation:

 λ λ+ = +( )
=
∏1 1

1i

n
iµ ,  (2)

where µi = µ({xi}), i =1, 2, …, n is known as the fuzzy density func-
tion of a single element (singleton), xi X∈ .

According to Gürbüz et al. [30] and Hu and Chen [32]: 
If λ < 0 then it implies that the attributes share a redundancy ef-−	
fect. This means a significant increase in the performance of the 
target can be achieved by only enhancing some attributes in X 
which have higher individual importance. 
If λ > 0 then it interprets that the attributes share a synergy support −	
effect. This means a significant increase in the performance of the 
target only can be achieved by simultaneously enhancing all the 
attributes in X, regardless of their individual importance. 
If λ = 0, then it indicates that the attributes are non-interactive.−	

Definition 3 (Discrete Choquet integral): Let µ be a discrete 
fuzzy measure on X. The discrete Choquet integral of function 

[ ]: 0,1f X →  with respect to the fuzzy measure µ is defined by:

 C f f f f f An
i

n

i i iµ µ1 2
1

1, , , ( ) ,…( ) = − ( )
=

( ) −( ) ( )∑  (3)

Fig. 4. The total importance obtained by the analyzed criteria for individual 
industries
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and cognitive differences, linguistic variables are used and then they 
are  aggregated by fuzzy arithmetic.

The Fuzzy Number Ordered Weighted Average (FN-OWA) operator 
was used in the model for averaging expert evaluations. According to 
Sadiq and Tesfamariam [71]) the FN-OWA operator:

provides a flexible aggregation ranging between the minimum  –
and the maximum operators for fuzzy (or qualitative) data;
has ability to aggregate not only the quantitative data but can  –
also handle linguistic as well as crisp data;
can handle the missing information efficiently, i.e., a case of  –
complete ignorance about the value of a given input param-
eter;
provides flexibility in handling  – exaggeration and eclipsing in 
the aggregation process;
the aggregated value obtained through FN-OWA operator re- –
tains the same linguistic state as if all input criteria have equal 
values, i.e., idempotency property of the FN-OWA operator.

Aggregated fuzzy weights are then defuzzied in order to be ap-
plied in constructing a fuzzy measure. Mathematically, defuzzifying a 
fuzzy set is the process of rounding it off from its location to the near-
est vertex, what reduces the set into the most typical or representative 
value. Compared with a fuzzy value, a crisp value is more intuitive 
and easier for the final comparison because fuzzy sets have partial or-
dering. These crisp values (fuzzy density) can be treated as an average 
assessment of the importance of individual criteria/sub-criteria.

The next step is to build a fuzzy measure λ. The fuzzy measure is an 
extension of a probability measure. Probability measures are usually 
resistant in representing human subjectivity because of their additiv-
ity. In contrast, fuzzy measures do not require this property and, thus, 
can be interpreted as the subjective measures of a person evaluating an 
object [81]. This kind of measure is more flexible than a probability. 
According to Beliakov et al. [3]: Fuzzy measures map each subset of a 
given set to a weight or importance, what allows for the modelling of 
complementary or redundant relationships between variables.

There are three kinds of interactions between the assessment cri-
teria: synergy, inhibitory and non-interaction. The fuzzy measure can 
be applied to all three situations. In order to lower the number of coef-
ficients (which increases exponentially with a number of criteria) and 
satisfy the monotonicity and continuity, the criticality machine assess-
ment model uses λ-measure (see chapter …, Definition 2).

Let any subset Ai={x1, x2, …, xi} of X and given λ value (as cal-
culated in  Eq. (2)), the fuzzy measure µλ(An), for 1 ≤ i ≤ n can be 
determined recursively as:

 µ µ µ» »A x1 1 1( ) = { }( ) =  (8)

 µ µ µ µ µ» i i » »»A A Ai i i( ) = + ( ) + ( )− −1 1  (9)

In this application, the values of the fuzzy densities of the λ-measure 
are provided by experts according to their opinion on the worth of 
information sources. If experts choose to provide values that add to 
1, the unique real value of the parameter λ will be zero, and, hence, 
the λ-measure will actually be a probability-measure even though this 
might not be the best measure for modeling the system.

where: ( )if  indicates that the indices have been permutated so that 

( ) ( )10 1, nf f≤ ≤…≤ ≤  A x x f f xi i n i i( ) ( ) ( )= …{ } = ( ), , .and

Definition 4 (Shapley value - iν , [59]: Let µ be a fuzzy measure 
on X. The Shapley value (or the importance index) for every element 
xi X∈  is defined by the following formula:

 ν γ µ µi
A X x

n
X i
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A x A= ∪{ }( ) − ( ) 
⊂ { }
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,  (4)
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 γ X A
X A A

X
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The Shapley value with respect to the measure µ is a vector 
[ ]1 2, , , nν ν ν ν= … . It describes the global importance of every ele-

ment by considering the effects of all subsets with and without the 
given element. According to the definition, the Shapley value has the 
property that the sum of all its components is 1, which can be formu-

lated as 
1

1
n

i
i

ν
=

=∑ . Scaled by the factor n, the Shapley values greater 

than 1 indicate that the given element (criterion) is more important 
than the average.

The Shapley value ranges between 0 and 1. In essence, it measures 
how much a criterion contributes,  on average, to all the coalitions of 
criteria.

Definition 5 (Interaction Index - ,i jI , [58]). Let µ be a fuzzy meas-
ure on X. The interaction index of the criteria xi and xj is defined by:
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The interaction index takes values from [-1, 1] interval, where 
negative (positive) values indicate a negative (positive, synergic) in-
teraction.

Definition 6 (Ordered Weighted Mean - OWA, [88]). An OWA 
aggregation operator is a mapping OWA: [0.1]n →[0. 1] such as:

 OWA x x w xn
i

n
i i1

1
, , ,…( ) =

=
( )∑  (7)

where the weights w i n w xi
i

n
i i∈[ ] = … =

=
( )∑0 1 1 1

1
, , , ,for and  indicates 

that the indices have been permuted so that ( ) ( )10   1.nx x≤ ≤…≤ ≤

3.3.3.	Integrated	assessment	process	for	machine	criticality	identifi-
cation

The operation process of the Choquet integral for the machine criti-
cality criteria aggregation is described as follows (Figure 5 ).

The first step in developing a machine criticality index focuses on 
weighting the individual elements (criteria and sub-criteria). The as-
sessment of the importance of criteria is usually a subjective assess-
ment and is carried out by experts. The subjective approach requires 
evaluator(s) to evaluate the criteria in terms of a relative importance 
or influence of the criteria towards the final score [49]. Since this step 
is carried out by a team of experts and because of their subjectivity 

Fig. 5. λ-fuzzy measure and fuzzy integral
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One of the problems which can appear in case of expert assess-
ments is the situation in which individual criteria will be rated so 
high (close to 1) that pairs, triples etc. of the criteria, due to the 
monotonicity of the fuzzy measure, will have very similar values 
(effectively equal to 1). While in case of aggregation using a weight-
ed average such a situation is not a problem, in case of a fuzzy 
measure and the Choquet integral it can lead to undesirable results 
(shallowing / equalization of the criteria weights and total omission 
of interactions among criteria).

In order to reduce significantly the impact of these problems on the 
aggregation result, the q-measure proposed by Mohamed and Xiao 
[55] was applied. It is an extension of the Sugeno λ-measure that al-
lows to automatically rescale the input density values μi. In practice, 
using a raw expert input is not a plausible strategy, because the values 
provided by experts, or obtained by using some computations, are at 
best on an interval scale with an arbitrary position of one. Therefore, 
scaling of these numbers is arbitrary, and computing from these num-
bers is then meaningless. The proposed definition for the q-measure, 
which is merely a normalization of λ -measure, solves this critical 
problem efficiently. The q-measure formulation decorrelates λ and 
the density. Moreover, such a formulation ensures that the q-measure 
complies with the principle that the fuzzy measure of any set, includ-
ing the singleton sets, should not be determined by simply considering 
only that one set, regardless of the whole universe. This is a critical 
issue especially when we intend to find an appropriate fuzzy measure 
in order to model a complex system that manifests a high degree of 
interdependencies among its information sources. 

Let X x x xn= …{ }1 2, , ,  be a finite set. For all sets A, B ⊂ X with 

A B∩ =∅ , we define µ : ,2 0 1X →[ ]  by:

 µ X( ) =1

 µ µ µA B A B∪( ) = ( ) + ( ) + ( ) ( )λµ µA B  (10)

for any choice of λ ≥ ─1. The only two constraints on the choice of a 
density generator value are:

 0 1 1 2≤ ≤ = …µi i n, , , ,  (11)

 
i

n
i

=
∑ >

1
0µ  (12)

enforcing the density generators to have values in the unit interval 
with at least one of the values being strictly positive in order to in-
sure a proper definition of the proposed fuzzy measure. Given a set of 
the density generator values µ µ µ1 2, , ,…{ }n  that satisfy the require-
ments (11) and (12) Mohamed and Xiao [55] defined the q-measure  
µq: 2X → [0, 1]:

 µ
µ
µq A

A
X

A( ) = ( )
( )

∀  (13)

It is called the q-measure because it is defined with the afore-
mentioned quotient. Using Eq. (13), for any choice of the variable
λ∈ − ∞[ )1, , Mohamed and Xiao [55] construct a fuzzy measure. This 
provides a definition for a class of various fuzzy measures specified 
by the choice of the variable. The Sugeno λ-measure is a special case 
in this class, when λ is selected such that µ(X) = 1. All fuzzy mea-
sures in this research are obtained by the application of this pro-
cedure to expert data.

It is important to note that in a fuzzy measure the importance of a 
single criterion or a pair of criteria is not solely determined by µ xi{ }( )  

or µ x xi j,{ }( ) . One needs to consider all µ A( )  such as x Ai ∈  or 

x x Ai j,{ } ⊆ . Murofushi [59] and Murofushi and Soneda [58] pro-
posed a solution to this problem based on the game theory for a single 
criterion and utility theory for pairs of criteria. Based on a fuzzy mea-
sure, the importance index (Shapley value) and interaction indices of 
different perspectives and criteria were defined.

When a fuzzy measure is constructed, the next step is to apply it in 
the Choquet integral to obtain the value of MCI. The Choquet integral 
(Definition 3) with respect to a fuzzy measure, compute an average 
of their inputs while also accounting for input interactions. This way, 
redundant inputs are not double counted while complementary inputs 
reinforce each other. Thanks to the stability of Choquet integral under 
positive linear transformations, the exact numerical scale in relation 
to which the calculations are made is not relevant. As such, the col-
lection of the data from experts is a simplified  way and allows for the 
assessment with the use of a linguistic scale.

4. Machine criticality assessment model for aviation 
industry – results of empirical studies 

4.1. Development of the machine criticality assessment 
model

The research on the validity of the criteria for assessing the criti-
cality of machines was carried out in the aviation industry. Based 
on the analysis of the research results (chapter 3.2), thirteen criteria 
were selected. They were considered important in this industry (the 
highest total value for the criteria and the greatest consistency of 
respondents’ answers - standard deviation). These criteria are: “Ma-
chine replacement in case of a failure”; “Degree of influence on other 
tasks in case of a machine failure”; “Costs incurred by production for 
machine downtime (breakdown)”; “Number of nonconformities due 
to a machine failure during the year”; “Degree of machine influence 
on the final product quality”; “Costs of non-conforming products as 
the result of a failure”; “Frequency of failures per year”; “Average 
downtime of a technical facility due to failures and repairs”; “Spare 
parts availability”; “Failure elimination costs (excluding OHS and 
environmental costs)”; “In case of a failure, the degree of influence 
on the working environment”; “In case of a failure, the degree of 
risk to the environment”; “Machine failure costs due to health, safe-
ty and the environment”.

A large number of criteria indicated by experts shows that the 
problem of a machine criticality assessment on a manufacturing sys-
tem level is a complex multi-dimensional decision problem [79]In or-
der to solve this problem, an enterprise has to consider different view-
points from various stakeholders and, thus, include many (not always 
compatible) goals in a decision-making process. A possible strategy 
to deal with this problem is to combine multiple goals simultaneously 
into a hierarchical structure mapping the main stakeholder groups 
and the issues relevant to each of them. Considering the above, the 
problem of assessing machine criticality was structured as a hierarchy 
that shows the criteria and sub-criteria. This type of presentation is 
enterprise-friendly and enables more effective analysis.

The thirteen criteria are grouped into four categories: 1) Produc-
tion - P, 2) Quality - Q, 3) Maintenance - M, and 4) Safety, Health and 
the Environment - SHE. The adopted categories of grouping (herein-
after referred to as criteria) reflect the main groups of stakeholders, 
i.e. those who are affected by the criticality of machines and which 
influence this criticality. The model was discussed with experts from 
the aviation industry and its final structure is shown in Figure 6.

Because of the formulated goal, the research was of qualitative na-
ture. Qualitative research does not aim to draw a statistical inference 
or produce a statistically representative sample. Therefore, purposive 
sampling (also called judgment sampling) was used to select quality 
informants for this study by Tongco [83]. He asserted that there is 
no cap on how many informants should be considered in purposive 
sampling, but five is the minimum number for data to be reliable. Ac-
cording to Gray [24] and Guest et al. [25] a sample size of between six 
and twelve interviews is often sufficient to achieve data saturation for 
every theme. Experts from 8 aviation manufacturing companies were 
invited to participate in the research.
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4.2. Determining the degree of importance of the machine 
criticality criteria and sub-criteria

The determination of the importance of criteria was carried out by 
experts according to the scheme (Figure 6):

assessment of the importance of the criteria and sub-criteria (1) 
by experts; 
calculating the an average value for the criteria and sub-cri-(2) 
teria; 
developing a λ measure; (3) 
determining the importance and interactions between the cri-(4) 
teria and sub-criteria. 

First, the experts evaluated the importance of the criteria/sub-crite-
ria in a questionnaire. To increase the accuracy of the machine criti-
cality assessment, all aerospace experts in our sample checked that 
the machine criticality frame used was working in their maintenance 
systems before conducting the assessment. The experts were asked 

to answer the following questions: How important is the X criterion / 
sub-criterion if it were to be used alone to assess the machine critical-
ity? (following the hierarchical model - Figure 6, with the five-level 
linguistic scale (Table 3)). The experts had no imposed numerical in-
terpretation of the linguistic variables used [91].

The average importance for each sub-criterion was calculated using 
FN-OWA. As a result of this aggregation method, the most extreme 
evaluations were rejected. The same method was used to aggregate 
expert assessments for the criteria (second level). Averaged impor-
tance values for the first level criteria are given in Figure 7. 

The last step was to calculate single numerical values for each of 
the fuzzy numbers. These values (fuzzy densities µi) can be treated as 

an average assessment of the importance of individual crite-
rion/sub-criterion. Using Center of Gravity defuzzyfication 
method led to the results presented in Table 4 and 5.

The calculated values of µi were used to develop a fuzzy 
measure. An algorithm presented in Mohamed and Xiao [55] 
was implemented in the R 3.4.4 Statistical Computing Plat-
form and applied without fixing λ to the averaged importance 
values in order to construct the Sugeno λ-measure (Definition 
2). Once the fuzzy measures for the sub-criteria and crite-
ria are identified, the next step is to compute the Shapley 
value using Eq 4 and Eq 5. The obtained fuzzy densities µi , 
λ-values for the sub-criteria and criteria as well as the scaled 
Shapley value are presented in Table 3 and Table 4. 

In Table 5, the λ value equals -0.4788212, what indicates a high 
degree of an interaction between various criteria for assessing the ma-
chine criticality. Based on the fuzzy measure (Table 4 and Table 5), 
the importance index (Shapley value) of different criteria and sub-
criteria was defined.

Table 3. Linguistic values of the criteria/sub-criteria importance grade

Linguistic terms Description Linguistic values

Very important the criterion/sub-criterion can be 
used alone to assess the entire level (0.75, 1.0, 1.0)

Important (0.5, 0.75, 1.0)

Moderately important (0.25, 0.5, 0.75)

Equal important (0, 0.25, 0.5)

Irrelevant
the criterion/sub-criterion is 

almost irrelevant to the level as-
sessment

(0, 0, 0.25)

Table 4. Fuzzy densities µi , fuzzy measure and Shapley value ( iν ) for sub-
criteria 

Criteria Sub-criteria µi(●) λ
 

iν

Production

p1 0.3750

-0.0458

1.1085

p2 0.3281 0.9690

p3 0.3125 0.9225

Quality

q1 0.3125

0.1526

0.9840

q2 0.3438 1.0800

q3 0.2969 0.9360

Maintenance

m1 0.2250

0.1068

0.9360

m2 0.2875 1.1920

m3 0.2500 1.0388

m4 0.2000 0.8332

SHE

s1 0.3594

0.0484

1.0944

s2 0.3438 1.0473

s3 0.2813 0.8583

Table 5. Fuzzy densities µi , fuzzy measure and Shapley value ( ) iν for 
criteria

Criteria µi(●) λ iν

Production 0.2656

-0.4788

0.8368

Quality 0.3906 1.2688

Maintenance 0.2188 0.6816

SHE 0.3750 1.2132

Fig. 7. Averaged importance values for the first level criteria

Fig. 6. Machine criticality assessment criteria and related sub-criteria
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The Shapley value measures a relative importance of each sub-
criterion/criterion in terms of its contribution to the score of each 
coalition [7]. It can measure the importance of each feature in the 
contribution to the machine criticality assessing problem better. The 
results presented in Table 5 indicate that the most important criteria 
are ‘Quality’ ( iν =1.2688) and “Safety, Health and the Environment” 
( iν =1.2132), whereas the ‘Maintenance’ criterion is the least impor-
tant ( iν =0.6816). The results presented in Table 3 apply to the value 
of the Shapley index for the sub-criteria describing a particular cri-
terion. Analyzing the criterion ‘Production” (P), the experts indicate 
that “Machine replacement in case of a failure - p1” is more important 
than “Degree of influence on other tasks in case of a machine failure - 
p2” and “Costs incurred by production for machine downtime (break-
down) - p3”. Assessing the criterion “Quality” (Q) (Table 3), the ex-
perts indicate that the sub-criteria “Degree of machine’s influence on 
a final product quality - q2” is the most important. Another criterion 
analyzed is “Maintenance” (M). The distribution of the importance 
of the assessment sub-criteria indicates that the most important are 
“Average downtime of a technical facility due to failures and repairs 
- m2” and “Spare parts availability - m3”. The fourth criterion is ‘In-
novation and development’ (ID). According to the experts’ assessment 
the most important criteria are “In case of a failure, the degree of 
influence on the working environment - s1” and “In case of a failure, 
the degree of risk to the environment - s2”

Another interesting aspect is that of the interaction among the crite-
ria. When the fuzzy measure is not additive, then some criteria inter-
act. The weight of sets of the sub-criteria taken together is determined 
by the Interaction Index, measuring the synergies or redundancies ex-
isting between the sets of variables. The obtained interaction index for 
the sub-criteria is presented in Table 6.

According to the assessment of the experts from the aviation indus-
try, the sub-criteria describing the criterion “Production” are redun-
dant, which means that some criteria should be rejected. Nevertheless, 
since the values of the interaction ratios are close to zero, it is diffi-
cult to draw binding conclusions. The interaction indexes between the 
sub-criteria describing the remaining criteria for assessing the critical-
ity of machines are positive. Therefore, it can be assumed that they are 
synergistic (see chapter 3.3.2). The most complementary criteria are 
q1 and q2, and q2 and q3. 

4.3. Numerical example 
The above multicriteria criticality assessment model was applied 

to assess Machine Criticality Index (MCI) in a medium size aviation 
factory. The calculation procedure of MCI requires the fuzzy measure 
(µ) and actual values of the sub-criteria obtained from the company 

assessment team (fi) (see an outline of this procedure in Fig. 5). Based 
on the available data collected in various departments of the company, 
the supervisor of the maintenance department assessed each of the 13 
sub-criteria specified in the model for the selected machine A (Figure 
6). To assess the value of the individual sub-criteria a point method 
was selected. The literature review [66, 75] indicates that this is the 
most common method of assessing criteria used in the aviation indus-
try. Table 7 presents an assessment matrix for the example criteria.

Table 8 presents the value of the sub-criteria fi. The aggregated 
values ( )1 2, , , nC f f fµ …  was obtained by Eq.(3) using the impor-
tance weighting of µi(●) for the sub-criteria and for criteria (table 
3) in R 3.4.4 Statistical Computing Platform. The aggregated value 

( )1 2, , , nC f f fµ …  in Table 8 represents the overall criticality of the 
machine A of the four criteria: Production (P); Quality (Q), Mainte-
nance (M) and (SHE). Based on Table 7, the Choquet integral values 

( )1 2, , , nC f f fµ …  of each sub-criterion can further be employed to 
determine the next fi and obtain the MCI for machine A (Table 9). 

The output result is easy to interpret and understand, and can thus 
be used directly by all maintenance stakeholders. The value of µλ (●) 
enables the assessment of the impact of each of the analyzed criteria 
on the final value of the MCI index for machine A. Among the ana-
lyzed criteria, „Quality” has the greatest impact (µλ (M, SHE, Q) ̶ µλ 
(M, SHE) = 0.287). Therefore, in order to improve the maintenance 
strategies planned and implemented for machine A, first of all, actions 
should be defined in relation to the sub-criteria q1, q2 and q3. In this 
group of sub-criteria, q1 has the greatest impact (the highest value of 

iν =1.1085), therefore, potential solutions should be targeted at this 
area of impact.

5. Conclusions
Manufacturing equipment (machines, devices) are essential to pro-

duction environments. However, due to the importance in the product 
realization process and the consequences of failure (e.g. environmen-
tal impact, human health and safety), not all machines are equally 
important. Given that each enterprise has limited resources (e.g. fi-
nancial, human, material), it is necessary to prioritize (machine criti-
cality assessment) and have a strategy to manage machines according 
to how critical they are to operation and maintenance. 

In this paper the problem of machine criticality was analyzed. The 
criteria and methods proposed for assessing the criticality of machines 
were identified. Then, the research was conducted to identify the most 
important criteria used to assess the criticality of machines in various 
types of industries. On the basis of the obtained results, the criteria 
and industry, for which the machine criticality assessment model was 
developed, were selected. 

The proposed model of the machine criticality assessment has a 
two – levelled hierarchical structure. On the first level of the hierar-
chical structure there are the criticality assessment process stakehold-
ers. The criticality assessment process stakeholders are: maintenance 
managers who plan and realize maintenance activities and production, 
as well as quality and SHE managers, on whom the decisions and 
activities have impact. The second level of the hierarchical structure 
are sub-criteria – the aspects which are significant for all criticality 
assessment process stakeholders. 

In order to assess the machine criticality the Machine Criticality In-
dex was developed. The aim of the MCI index is to measure outputs of 
different criticality criteria and sub- criteria, and integrate them in one 
single index. Weighting and aggregation is an important step in this 
procedure. There are various weighting and aggregation methods re-
lated to specific purposes. Because the criteria and sub- criteria of the 
machine criticality assessment are independent, in order to aggregate 
them a non-additive fuzzy integral was selected. The fuzzy integral 
method applies fuzzy measures to deal with the problems of human 
subjective perception and uncertainty as well as to address the level of 
interdependency effects among the criteria [77]. In this research, we 
are motivated to implement the theory of fuzzy measures to model the 

Table 6. Interaction Index ,i jI  for sub-criteria

Cr
ite

ri
a

P
Sub-criteria (p1, p2) (p1, p3) (p2, p3)

,i jI -0.0056 -0.0053 -0.0047

Q
Sub-criteria (q1, q2) (q1, q3) (q2, q3)

,i jI 0.0168 0.0145 0.0159

M

Sub-criteria (m1, m2) (m1, m3) (m2, m3)

,i jI 0.0071 0.0062 0.0079

Sub-criteria (m1, m4) (m2, m4) (m3, m4)

,i jI 0.0049 0.0063 0.0055

SHE
Sub-criteria (s1, s2) (s1, s3) (s2, s3)

,i jI 0.0060 0.0049 0.0047
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importance and interaction between the features in the Choquet inte-
gral. According to the best knowledge of the authors, there is a lack of 
such framework of the criticality machine assessment in the previous 
research. Based on the fuzzy measure, the importance index (Shap-
ley value) and interaction index of different criteria and sub-criteria 
were defined. The analysis of Shapley values and interaction indexes 
demonstrate that the presented fuzzy machine criticality assessment 
is able to provide maintenance managers with a better understanding 
of the importance of individual criteria and sub-criteria in the assess-
ment of the machine criticality and their impact on the final value of 
the MCI index. Taking into account the final value of the MCI index 
they are able to develop better planning of machine maintenance pro-
grammes and resources allocation. 

The created model has some limitations. First of all, the model was 
developed only based on the research conducted in enterprises from 
the aviation industry. Secondly, in these enterprises only discrete man-
ufacturing processes were realized. Therefore, some of the analzyed 
criteria cannot be significant for continuous manufacturing processes, 
e.g. the sub–criterion p1 (Machine replacement in case of a failure). 
Thirdly, the calculation of the MCI index from a mathematical point 
of view is complicated. Therefore, it could be a potential limitation 
of the application of this model in practice. Finally, the development 
of an intelligent manufacturing system and digital twin technology 
with rich sensor data and AI technique for diagnostics and prognostics 
would have a great influence on the calculation of the MCI index. 
Thus, carrying out relevant research is suggested to be continued.

Table 7. The ranking of sub-criteria assessment – example 

Ranking scale

Sub-criteria

p3 q2 s1 s2

The failure

1 has no effect on production 
losses at all

has no effect on product qual-
ity at all has no effect on safety at all has no effect on environment 

at all

2
can cause minor losses of pro-

duction 
(p3 < a)

can create defects that will 
cause rejection or rework of 

parts of production lots

can cause only small injuries 
with no absence of the worker

can cause only a small impact 
only in the delimited area of oc-
currence inside the department 

3
can cause significant losses of 

production
a ≤ p3 < b

can create defects that will 
block online lots of production, 
causing high volumes of rejec-

tion or rework

can cause injuries with tempo-
rary absence of the worker

can cause an environmental 
impact internally in the plant

4
can cause extensive losses of 

production 
p3 ≥ b

can create defects that will be 
perceived by a customer (can-

not be blocked inside the plant)

can cause death or injuries 
with permanent absence of the 

worker

can cause an environmental 
impact outside the limits of the 

plant 

Table 8. The fuzzy measure and aggregated values of P, Q, M and SHE for the machine A

Criteria Sub-criteria fi µi(●)
( )1 2, , , nC f f fµ …

(λ – value)
µλ(●)

Production

p1 1 0.3750
P = 1.636 

λ = -0.0458

µλ(p2)=0.328

p2 2 0.3281 µλ(p2, p3)=0.636

p3 2 0.3125 µλ(p2,p3,p1)=1.000

Quality

q1 2 0.3125
Q = 2.000
λ = 0.1526

uλ(q1)=0.313

q2 2 0.3438 µλ(q1,q2)=0.673

q3 2 0.2969 µλ(q1,q2,q3)=1.000

Maintenance

m1 3 0.2250

M = 2.519 
λ = 0.1068

µλ(m1)=0.225

m2 3 0.2875 µλ(m1,m2)=0.519

m3 2 0.2500 µλ(m1,m2,m3)=0.783

m4 2 0.2000 µλ(m1,m2,m3,m4)=1.000

SHE

s1 3 0.3594
SHE = 2.068 
λ = 0.0484

µλ(s1)=0.359

s2 2 0.3438 µλ(s1,s2)=0.709

s3 1 0.2813 µλ(s1,s2,s3)=1.000

Table 9. Fuzzy measure and value of MCI for machine A 

Criteria fi µi(●)
( )1 2, , , nC f f fµ …

λ - value
µλ(●)

Production 1.636 0.2656

MCI = 2.079
λ = -0.4788

µλ(M)=0.219

Quality 2.000 0.3906 µλ(M,SHE)=0.554

Maintenance 2.519 0.2188 µλ(M,SHE,Q)=0.841 

SHE 2.068 0.3750 µλ(M,SHE,Q,P)=1.000
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1. Introduction
When scrutinizing the available literature sources, one may ob-

serve that the vibroacoustic processes generated by brake systems 
are analyzed in three directions. In the first, most numerous part, are 
works treating on the noise accompanying the braking process. In this 
respect, some of the researchers attempt to explore and identify the 
reasons for the occurring noise [8, 14, 15, 28, 41, 43]. Other research-
ers attempt to model the noise depending on the geometry features of 
the brake system and the components of the friction pair. The second, 
less numerous group of papers treating on the vibroacoustic processes 
in brake systems, constitute works on application of brake system vi-
brations in diagnostics of the wear level of a friction pair [29, 30]. The 
least numerous group of papers treating on vibroacoustics are works 
describing the use of brake system vibrations to evaluate the brak-
ing process itself. Simple analyses in the domain of amplitudes and 
frequencies to build regressive diagnostic models was applied in [28] 
that, upon transformation, allow assessing the value of the average 
coefficient of friction for selected braking speeds. Majority of models 
describing the vibrations of a brake system is based on the assumption 
that the increment of vibrations (a phenomenon heavily depending on 
a multitude of variables) is most dependent on the variability of the 
coefficient of friction between the brake pad and the brake disc. Addi-
tionally, the sensitivity of the brake system components (brake pads in 

particular) increases or reduces the vibrations generated by the brake 
system and its emission to the environment, which is described in [19] 
as a strongly unfavorable phenomenon, and to a decrease in vibrations 
generated by the braking system, which is a favorable phenomenon. 
The collected results from the operation of the braking system enable 
the analysis of its reliability as described in [1, 9, 16, 32], and, conse-
quently, the development of algorithms for estimation of the time to 
failure as presented in [31].

The vibroacoustic processes generated by friction in brakes refer to 
simple models in the literature. These are two-mass systems with only 
the friction pad and the disc considered. However, there is no descrip-
tion of the vibroacoustic phenomena generated by friction materials in 
complex braking systems in automotive or railway vehicles. In such 
cases, apart from the model of contact between the friction pad and 
the brake disc itself, the lever system of force transmission from the 
brake cylinder to the friction pads should also be taken into account.

2. Vibration models and a model of the disc brake lever 
system

The initial models assumed that self-induced vibration of a brake 
was related to the drop in the coefficient of friction and increased slip 
velocity [14, 22, 24]. These were models of the elastic friction system 
called the stick-slip phenomenon. On this basis, it was observed that 
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the necessary condition for vibroacoustic phenomena to take place in 
a brake is the dependence of the coefficient of kinetic friction on the 
increase in the velocity μo(v2) assuming inequality (1):

 
2

0od
dv
µ

<  (1)

where: μo – coefficient of kinetic friction,
v2 – velocity.

According to [14], if µ2 >c/mg, a self-induced vibration takes place 
generating the vibroacoustic phenomena, which, in the case of friction 
brakes, results in their squealing. It should be emphasized that the 
model of the stick-slip phenomenon of vibrations in the brake is cor-
rect in the case of a 1Bg single-block block brake. However, it does 
not work for the 2Bg double-unit block brake and disc brake. 

Fosberry and Holubecki in [7] published theses that vibration in 
brake systems is caused by the cooperation of the brake pad-brake 
disc friction pair of the coefficient of static friction μst greater than 
the coefficient of kinetic friction μo or when the coefficient of kinetic 
friction increase with the increase in velocity v2. Similar conclusions 
were stated by Sinclair [34] and by Earles [4]. Other researchers such 
as Mills, Bowden and Leben [2] conducted research on resilient fric-
tion systems comparing them to the stick-slip motion [43, 44]. Eventu-
ally, the researchers declared that the vibroacoustic phenomena were 
not fully explored but their most likely explanation is the stick-slip 
motion in the friction coupling, whose source of energy is the change 
in the coefficient of friction as a function of velocity.

Spurr, in [37] proposes a term ‘sprag-slip’ to describe vibroacoustic 
phenomena in brake systems. He claims that the vibroacoustic phe-
nomena generated by brake systems result from the contact of the 
friction pad with the brake disc. The friction force in such a system 
may be much greater than the same force in an ideally rigid system. 
In an actual brake system, due to elastic deformations and displace-
ments, cyclic instantaneous drop and increase in friction occurs. This 
particular case was described by Spurr as spragging. Later, this model 
was improved by Jarvis and Earles [4, 14].

This was the first attempt of a theoretical explanation of the sprag-
slip phenomenon, in which, in order to explain vibroacoustic phenom-
ena, a rotating plate with a support was used. Later models, based on 
the Jarvis, Mills and Earles considerations, were more complex, had 
more degrees of freedom and several models of friction [21]. It should 
be emphasized that in the case of the sprag-slip phenomenon, despite 
the unilateral impact of the brake block (slider) on the brake disc, the 
researchers introduced a variable in the form of the slider inclination 
angle. It is a model of vibroacoustic phenomena the most similar to 
the real braking system. The angle of inclination of the slider corre-
sponding to a change in the setting of the friction pads in relation to 
the brake disc has been taken into account in the model [36].

As Crolla and Lang [3, 17], have proven, this and other models 
do not entirely reproduce the actual brake. Yet, thanks to these mod-
els, one may obtain a qualitative indication for the process of design 
and search for solutions eliminating some classes of brake vibration, 
hence, the generated noise.

Then, Lang and Smales in [17] distinguished two types of vibroa-
coustic incidents originating in the brake systems. These distinctions 
are applied to date (phenomena occurring at low frequencies i.e. from 
1 to 5 kHz and phenomena occurring at high frequencies, above 5 
kHz.) The Lang’s and Smale’s model for low frequencies admits 
brake pads as rigid bodies. At high frequencies, one needs to addition-
ally allow for deformations of the friction components. The assump-
tion of a rigid body as a friction material was also utilized by Brooks 
[3], Milner [20] and Rudolph and Popp in their works [25, 26].

It should be emphasized that the models of vibroacoustic phenome-
na in brakes described in the literature concern a single disc and single 
pad system. In reality, a friction disc brake consists of a rotating disc 

to which friction pads are pressed from both sides. The models avail-
able in the literature analyse only the case of the friction pad acting on 
one side of the disc, assuming that the same phenomena and relations 
will occur on the other side of the brake disc. In this paper, an attempt 
has been made to present vibrations generated by friction pads on two 
sides of a brake disc, which differ from each other in amplitude val-
ues, and to present an analysis of probable reasons for the difference 
in these vibrations. Additionally, results of friction-mechanical and 
thermovision tests with significant differences in temperature values 
of individual friction linings are presented.

Railway disc brake is composed of a brake disc fixed to the axle 
and a lever mechanism [33]. The lever mechanism is composed of two 
main levers (right and left) connected with a central lever in the mid-
dle. On one end of the main lever, brake pad holders with the brake 
pads are fitted as well as the cantilevers and on the other end of the 
main lever there is a brake piston rod. The lever mechanism is fixed 
to the bogie frame at three points i.e. through the central lever and 
two cantilevers. Figure 1a and 1b presents the lever mechanism of a 
railway disc brake in two planes (side and top), while Figure 2 shows 
the diagram of the lever mechanism as a multi-mass model in the x-y 
and z-x plane. 

When analyzing Figure 1c, it is noteworthy that, as the wear of 
the brake pads increases, in order to keep the constant distance of 
the brake pad and the disc (approx. 1mm [35]) when the brake is not 
active, the angles of the right and left levers must vary in the range  
α1= 0-13°. This is an interval of the angle value for the maximum ad-
missible brake pad wear to the level of 5 mm (thickness of a new 
brake pad is 35 mm). Changes in the angle α1 directly influence the 
values of forces acting on the brake pad holders.

The operation of the lever system in the z-x plane was then as-
sessed. A diagram of the lever mechanism as a multi-mass model in 
this plane is shown in Figure 2b.

In the z-x plane, aside from the changes of the value of angle α2 
(Fig. 3b and 3c) due to the wear of the brake pads, additionally the 
action of the friction force on the contact point of the brake pads and 
the brake disc generates an inertia force FIW, which makes part of the 
lever mechanism drop or lift depending on the direction of the disc 
rotation. As a consequence, on the vertical levers (cantilevers) clamp-
ing or separating forces are applied. If the lever mechanism is lifted 
when the friction force is directed upwards, the upper brake pads in 

Fig. 1. View of the lever disc brake: a) side view, b) top view, 1-brake cylin-
der, 2-main lever (right and left), 3-central lever, 4-brake pad holder, 
vertical lever (cantilever), 6-brake cylinder pin, 7-central pin, 8-lever 
pin, 9-brake pad, 10-brake disc, c) structural model of the disc brake 
system
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the holder separate from the disc which increases the inclination angle 
α2 of the vertical levers When the friction force is directed down-
wards, a separating force acts on the vertical levers and the lower 
brake pads in the holder are separated from the brake disc and the 
angle α2 decreases. Figure 3 presents a diagram of the forces in the 
lever mechanism depending on the direction of rotation.

When analyzing the models presented in Figures 2a and 2b, one 
can observe that the railway disc brake, despite its simple design, is 
a multi-mass system [27]. Earlier research of the authors in the scope 
of identification of brake system vibration under laboratory (vibration 
frequency 4.5 kHz) and actual operation on a passenger railcar (vibra-
tion frequency 6 kHz) as well as those presented in [28, 30], confirm 

that vibroacoustic phenomena occur at high frequencies. According to 
the Lang’s and Smales’s theory, friction components are masses sus-
ceptible to deformation. Other researchers such as Rudolph, Popp and 
North [23, 26] built a model of a disc brake caliper of a passenger ve-
hicle of two degrees of freedom. Later, they expanded the model to six 
components, also of two degrees of freedom. They have observed that 
the vibroacoustic phenomena are influenced by the complexity of the 
brake system – the more components in the brake lever mechanism, 
the more components potentially generating vibroacoustic phenom-
ena [26]. Besides, in [30] the authors draw attention to the fact that 
the main components of a brake system have a common resonance 
frequency, which also may contribute to the generation and amplifica-
tion of vibroacoustic phenomena.

4. Analysis of the results of measurements of the 
masses of individual components of the disc brake 
lever mechanism

In order to assess the mass distribution of the complete brake cali-
per, all brake system components were dismantled and then weight. 
Table 1 presents the masses of individual parts of the lever mechanism 
divided into left and right side of the clamping mechanism.

When analyzing Table 1, it can be observed that the sums of masses 
of individual components of the lever mechanism on the right and left 
side are not the same. The uneven distribution of the masses in the 
lever mechanism is influenced by the mass of the main levers (left 
and right) and the mass of the piston, in which the mass of the piston 
rod is almost twice as high as the cylinder. This is partly related to the 
additional mechanism of the piston rod, whose task is to set a constant 
clearance between the pads and the brake disc after braking (brake is 
disengaged) irrespective of the brake pad wear. Then, in the process of 
operation of the railway disc brake, as the brake pads wear, the angle 
α1 increases on the main levers of the mechanism from 0 to 13° (in the 
case of the mechanism under analysis) and α2. 

Fig. 2. View of the lever mechanism with visible parts as a multi-mass model in the plane: a)  x-y b) z-x, 1- brake disc, 2- brake pad, 3- brake pad holder, 4, 6, 
10, 12- pin, 5- central lever, 7- main lever (left, right), 8- piston rod, 9- cylinder, 11- cantilever, Pc- pressure in the cylinder, F1- force from the piston rod,  
F2- force from the cylinder, F1-1, 2-2- forces acting on the brake pad holder with the brake pads, FIW- inertia force on the wheel circumference during braking, 
n- disc rotational speed, α1- angle of rotation of the main lever, α2- angle of rotation of the cantilever

Fig. 3. Schematics of the bogie with a lever mechanism, a) forces acting on the le-
ver mechanism during braking for a given driving direction, b) schematics 
of the brake pad setting when the friction force acts upwards, c) schematics 
of the brake pad setting when the friction force acts downwards, α2’-angle 
of the vertical lever during braking, α2- angle of the vertical lever at the 
moment of stopping v=0
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5. Methodology of tribological and vibroacoustic re-
search 

Friction-vibroacoustic research was conducted on the basis of 
the assumptions of the active experiment. During the tests, the in-
put parameters, i.e. the state of the braking system, understood as 
wear of the friction pads, as well as such parameters as the braking 
start speed, pads pressure on the disc, mass to brake, were changed 
intentionally and in a specific way. Then, their impact on changes in 
output parameters was observed, such as the instantaneous and aver-

age friction coefficient, and acceleration of friction pad 
vibrations from the right and left of the brake disc. 

The tests were carried out at a certified inertia brake 
stand, located at the Siec Badawcza Lukasiewicz - TA-
BOR Rail Vehicles Institute in Poznan (Fig. 4). It is pos-
sible to perform tests on the rail block brake and disc 
brake reflecting the real conditions that occur when 
braking a rail vehicle. In addition, the Flir e60 thermal 
imaging camera was used during the tests to observe 
the temperature distribution of the friction linings after 
stopping braking.

The tests covered a ventilated brake disc with dimen-
sions of Ø610×110 made of gray cast iron. The brake 
disc has been prepared for tests in accordance with the 
standard [5, 6]. In accordance with the manufacturer’s 
procedure and the requirements contained in the code 
[42], the pads were made of thermosetting resin, syn-
thetic elastomer, metal and organic fiber as well as fric-
tion modifiers.

Fig. 4. Object of tests at the brake stand for testing railway disc brakes: 
a) view of the left brake support with a vibration transducer,  
b) view of the right brake support with a vibration transducer,  
c) view of the driving part of the brake position with rotating masses,  
d) orientation of vibration measurement directions

Fig. 5. Diagram of the measuring track used during vibroacoustic tests 

Table 1. Masses in kilograms of individual components of the clamping mechanism

No. Component Symbol Mass on the left 
side

Mass on the right 
side

1 Brake disc m1 116

2 Brake pad
Upper m2,U,L, m2,U,P 1.760 1.755

Lower m2,D,L, m2,D,P 1.745 1.750

3 Brake pad holder (caliper) m3,L, m3,P 4.580 4.534

4 Brake pad holder pin
Upper m4,U,L, m4,U,P 0.858

1.452
Lower m4,D,L, m4,D,P 0.294

5 Central lever m5 18.540

6 Central lever pin m6,L, m6,P 1.238 1.325

7 Main lever m7,L, m7,P 6.963 7.205

8
Pneumatic brake piston

Piston rod m8 19.995 -

9 Cylinder m9 - 7.255

9’ Complete brake piston m8+m9 27.25

10 Pin of the brake piston
from cylinder (top and 

left) m10,U,L, m10,D,L 0.259 i 0.258 -

from the piston rod m10,P - 0.275

11 Vertical lever (cantilever) m11,L, m11,P 5.237 5.127

12 Cantilever pin m12,L, m12,P 0.370 0.372

13 Washers, safety pins mx 0.182 0.088

14 Sum of components on the left/right side mL,R 43.739 31.138

15 Difference in left and right weight rw 12.60

16 Complete lever mechanism m2-13 93.42



Eksploatacja i NiEzawodNosc – MaiNtENaNcE aNd REliability Vol. 23, No. 2, 2021 225

Three sets of pads were used for bench tests. The first new set of 
pads (4 pieces) with a thickness G1 = 35 mm and two sets worn down 
to a thickness of G2 = 25 mm and G3 = 15 mm. Friction pad masses 
were mG1 = 1.75 kg (new pad), mG2 = 1.45 kg (pad worn up to 25 mm 
thick), mG3 = 1.02 kg (pad worn up to 15 mm thick), respectively.

Vibroacoustic tests were carried out in parallel with friction (tribo-
logical) tests. One vibration transducer (Fig. 4a and b) was attached 
to the brake mountings (right and left). The study was also carried out 
in accordance with the assumptions of the active experiment, where 
the input parameters were intentionally changed to record the output 
signals. The input values were simulated braking start speed vo, brake 

pad pressure N, brake mass M, friction pad thickness G, and the out-
put signals were instantaneous value vibration acceleration a. Then 
it was possible to observe the impact of input parameters on changes 
in output signals. B&K 4504A transducers were used to measure the 
vibrations. Figure 5 shows a diagram of the measuring track at the 
brake stand, additionally extended with the measurement of vibration 
acceleration.

When choosing the measurement site, the principle was adopted 
that the transducers should be located closest to the place generating 
the vibroacoustic signal associated with the operation of the brake 
friction pair and in a place easily accessible for measurement. The 
acceleration of vibrations was measured in a direction perpendicu-
lar to the surface of the brake disc, based on the experience of other 
researchers presented in [28, 38]. Figure 6 shows the algorithm of 
vibroacoustic brake stand. 

6. Analysis of tribological test results  

Friction tests carried out at a certified brake stand during braking in 
various combinations of brake lining pressure, braking masses, speed 
and degree of wear of the friction linings proved that in each braking 
case, wear is uneven on the piston rod and brake cylinder side. Also on 
the same side of the brake disc, the wear of the upper linings (above 
the rotational axis of the disc) as well as the lower ones varies. The set 
of weight consumption after 40 brakings for the lining pressure to the 
disc N = 44 kN, braking mass M = 7.5 t for five braking start speeds 
(50, 80, 120, 160 and 200 km/h) repeated 8 times, shown in Table 2. 
Wear tests of the friction material also included less lining pressure 
on the disc (28 kN) and less mass to be braked by one disc, i.e. 4.4 t. 
Similar studies on motor vehicles are described in [39]. 

In addition, during braking at the brake stand, there was a case of 
work of the stand as in the diagram shown in Figure 3c, i.e. the rota-
tion of the brake disk pulls down the brake caliper. During the tests it 
was found that in each case of braking, both right and left bottom pads 
located in the brake mount wear slower. It was observed that in each 
case of braking, pads from the piston rod side (right side of the brake 
caliper) showed greater wear than pads from the brake cylinder side 
(left side of the caliper).

Due to the difficulty in determining the coefficient of slip friction, 
in the laboratory tests of the instantaneous coefficient of friction of 
the left and right side of the disc, the temperature distribution on the 
brake pads was determined with the thermo-visual methods. Figure 
10 presents the temperature distribution on four brake pads after 40 
instances of braking with the pressure N=44 kN and M=7.5 t.

Fig. 6. Algorithm of vibroacoustic brake stand, WHS – perform stopping 
braking, τ – time gain

Table 2. Consumption in grams of friction pads after 40 brakes with a pressure of N = 44 kN and a mass to brake M = 7.5 t

Weight consumption in grams of friction pads

The pads New, thich G1=35 mm Pads worn to thickness G2=25 mm

Left side of the disc 
(from the brake piston rod)

Right side of the disc  
(from the brake cylinder) 

Left side of the disc  
(from the brake piston rod)

Right side of the disc  
(from the brake cylinder) 

Top pad  Top pad Top pad Top pad

117 129 115 123

Lower pad Lower pad Lower pad Lower pad

112 114 105 112

Pads worn to thickness G3=15 mm

F1-1F2-2

Lower left pad Lower right
pad

Upper right
pad

Upper left
pad

Rotation
direction of 
the brake

discF
Pressing 

force of pads
to the brake

disc

Left side of the disc (from the 
brake piston rod)

Right side of the disc (from the 
brake cylinder) 

Top pad Top pad

97 119

Lower pad Lower pad

93 105
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When analyzing Figure 7, it is observed that the brake pads on 
the side of the piston rod  have a higher temperature compared with 
the pads on the side of the cylinder. Besides, it can be observed that 
the lighter part of the brake cylinder i.e. piston rod, allows a better 
contact of the brake pads with the brake disc than the heavier brake 
cylinder. Higher temperature of the brake pads on the side of the pis-
ton rod translate into greater wear also on that side compared with the 
brake pads on the side of the cylinder. In addition, it was found that 
the difference in weight (12.6 kg) between the two brake cylinder as-
semblies also affects the frictional resistance in the bolt connections. 
It was observed that the right brake lever with the brake cylinder slid-
ingly mounted on the central lever shows less resistance to movement 
in relation to the left brake lever with the piston rod.

7. Analysis of the result of vibroacoustic investigations
In the domain of amplitudes of analysis of vibration accelera-

tions, point measures are most frequently applied that, with a single 
value, characterize a given vibration process in compliance with [29, 
38]. Therefore, particularly in the vibroacoustic diagnostics (VD) it 

is possible to determine changes in the VD signal 
resulting from the change of the technical state of 
an object. There is a variety of papers available in 
literature presenting the application of vibroacoustic 
diagnostics in vehicles such as passenger vehicles, 
railway vehicles or aircraft [11, 12, 13, 22, 40]. In 
order to determine the relation between the average 
coefficient of friction and the vibration generated 
by the brake system, in the first place the authors 
have confirmed that there is a relation between the 
vibration measured on the brake pad holders and 
the condition of the brake system understood as the 
brake pad wear. To this end, on the test stand, for 
all velocities under analysis, instantaneous vibration 
accelerations of the brake pad holders together with 
the brake pads were recorded. Figure 8 presents the 
relation of the instantaneous vibration accelerations 
as a function of the braking time for the brake pad 
holders together with the brake pads on the side of 
the piston rod and the brake cylinder.  

Then, from the point measures, the RMS effective 
value of the vibration accelerations was determined 
according to [38] described with relation (2):

 ( ) 2

0

1 T

RMSA a t dt
T

=   ∫  (2)

where: T – averaging time in [s],
a(t) – instantaneous value of the vibration accelerations in 

[m/s2].

Then, applying the relation (2) from the instantaneous vibration 
accelerations for both pad holders, effective values were obtained for 
40 instances of braking in the run-in process (speed 120 km/h). Figure 
9 presents the ARMS relation for individual braking instances. From 
the experience gained during the test stand investigations of the disc 
brake, the authors know that the run-in of the pads is carried out for 
25-30 braking instances after which (in conformity with [42]) over 
75% of the surface is properly run in.

When analyzing the graph presented in Figure 9, one may observe 
that during subsequent braking instances performed under the same 
initial conditions (velocity, pressure, mass to be decelerated and disc 

Fig. 8. Instantaneous value of the vibration accelerations of the brake pad holders during the first 20 seconds of braking from the 
speed of v=120 km/h, at the pressure of the pads on the disc N=25 kN and mass to be decelerated of M=5.7 tons

Fig. 7. Temperature distribution on the brake pads, a) upper left pad, b) upper right pad, c) lower left 
pad, d) lower right pad
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temperature), the difference in the vibra-
tion of the left and right pad holder in-
crease reaching the highest value after the 
pads and the disc run in. However, on the 
side of the brake cylinder, the increment of 
vibration in subsequent braking instances 
is lower compared to the other side of the 
lever mechanism (the side of the piston 
rod). Besides, it was observed that, in the 
process of running in of the pads, the effec-
tive value of the accelerations increases, 
which is to be explained by the fact that 
in the first instances of braking not entire 
surface of the brake pads is pressed against 
the disc. When the pads are run in, after 
approx. 25 braking instances, the effective 
value of the vibration acceleration stabi-
lizes on the level of approx. 10 m/s2 for the 
pad holder on the side of the brake cylinder 
and approx. 8 m/s2 for the holders together 
with the pads on the side of the piston rod.

When analyzing the graph presented in 
figure 9, it was observed that, according 
to relation 3 [28] as the brake pads run in 
with the brake discs, the dynamics of the 
changes of vibration between both sides of 
the brake discs increases. The dynamics of 
the changes increase from 1dB in the first 
braking instance to 3 dB after 30 braking 
instances at fully run in brake pads of the 
disc brake:

 2

1
20lg AD

A
 

=  
 

                 (3)

where: A1 – value of the point measure (ARMS )  
determined during braking on the 
brake pad holders on the side of the 
piston rod in [m/s2],

A2 –  value of the point measure (ARMS ) 
determined during braking on the 
brake pad holders on the side of the 
cylinder in [m/s2].

Next, an analysis of the signals of vibration accelerations in the 
frequency domain was performed. Figure 10 presents the spectrums 
of the vibration of the brake pad holders together with the brake pads 
(on both sides of the brake disc).

In the first place, for various braking (stopping and constant pow-
er), the frequency bands associated with the change in wear of the 
friction pads in the range of their thickness from 15 to 35 mm are de-
termined, which directly influences the change in the geometry of the 
lever system. The α1 (Fig. 1c) and α2 (Fig. 3b and 3c) Angles change 
at the same time as the wear pads are worn in the lever mechanism. 
Frequency analysis has shown that in the 4600-4800 Hz frequency 
band is observed to change the effective vibration acceleration of fric-
tion pads both on the right side of the brake disc (brake cylinder side) 
and to the left of the disc, i.e. From the piston rod. For this frequency 
range, the dynamics of the change described by the dependence (3) in 
the vibrations of the pads new to the worn-out exceeds 6 dB. Table 3 
shows the ARMS values for each of the vibration frequency bands of 
the friction pads of different thicknesses on the two sides of the brake 
disc during braking. Figure 11 graphically illustrates the dependence 

Fig. 9. Variability of the effective value ARMS of vibration accelerations for 
40 braking instances during brake pad running-in

Fig. 10. ARMS dependence on frequency for two brake mounts with friction pads for the right and left sides of 
brake disc, a) for new pads, thicknesses  G1=35 mm, b) for pads worn to thickness G2=25 mm, b) for 
pads worn to thickness G3=15 mm

Fig. 11. ARMS relationship in the frequency band 4600-4750 Hz for two brake mounts with friction pads 
for the right and left of the brake disc, a) for new pads with a thickness of G1 = 35 mm, b) for 
pads worn up to a thickness of G2 = 25 mm, b) for pads worn up to a thickness of G3 = 15 mm
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of the values of vibration accelerations on the right and left sides of 
the brake disc during braking for three cases of friction material thick-
ness in the frequency function for the 4600-4700 Hz band.

Analyzing the results of vibration of the friction pads on both sides 
of the brake disc during braking, it is found that the analysis of lining 
vibration acceleration in the frequency domain relative to the analysis 
in the field of amplitude allows observation of a greater difference in 
the vibration of the right and left pad of the brake disc. The dynamics 
of changes is in the range of 4.6-7.2 dB for new pads, 2-3.6 dB for 
worn pads up to 25 mm thick and 3.5-5.6 dB for pads worn up to 15 
mm thick. In the case of amplitude analysis, the differences in right 
and left vibration of the disc are in the range of 1-3 dB depending on 
the surface condition of the friction pads. 

The paper [30] presents the results of vibroacoustic tests of a rail-
way disc brake in which it was shown that the 4600-4700 Hz frequency 
band enables the assessment of the disc condition of a railway brake. 
In contrast, pulse tests of the main disc brake assemblies showed that 
the 4400-4600 Hz band is a common resonance band of such elements 
as the disc, friction pads and a complex lever mechanism. 

Based on the vibroacoustic tests in the field of amplitudes and time, 
it was found that the non-uniformity of the vibrations of the right and 
left friction pad is the result of disturbances in the braking process. It 
was shown that this is caused by the uneven mass distribution of the 
elements of the lever system of the right and left side of the brake disc 
and friction in the pin joints of the mechanism. Consequently, the disc 
is not pressed by the pads with equal force, which would result from 
the design and assumptions of a symmetrical brake lever mechanism. 
In a broader sense, the demonstrated irregularity in the pressure of the 
brake pads on the disc may also affect the extension of the braking 
distance.

8. Conclusion
The article presents the results of the author’s tests on a certified 

brake station for testing brakes of rail vehicles in the field of tribology, 
thermovision and vibroacoustics. Based on these tests, it was proved 
that the brakes of the right and left of the disc brake friction pair were 
uneven. It was found that the propagation of unfavorable vibrations 
and noise through the lever system may also result from the geometry 
of the braking system. The conducted research proves that the cur-
rent models of vibration and noise in braking systems are insufficient 

and take into account only the case of interaction of one friction ele-
ment with the brake disc. Due to the design of the lever system, which 
should uniformly transfer the force from the brake cylinder to the fric-
tion pads, the friction phenomena and vibrations are different. It is 
caused by the uneven mass distribution of the elements of the right 
and left sides of the clamping mechanism, changes in the geometry of 
the system and friction in the kinematic nodes.

Uneven weight distribution of the braking system components rela-
tive to the right and left sides of the brake disc and friction in the bolt 
connections cause the following effects:

- an increase in vibration acceleration by an average of 25% on  –
the cast from the brake cylinder side relative to the cast from 
the brake piston rod side in the entire braking process based 
on analysis in the field of amplitude of acceleration of friction 
lining vibrations,
- increase in vibration acceleration by approx. 50% on the cast  –
from the brake cylinder side relative to the cast on the piston 
rod side in the 4600-4800 Hz frequency band by analyzing the 
vibration acceleration signals in the frequency domain,
- increased wear of the friction linings on the brake cylinder  –
side by approx. 10-18% compared to the friction linings on the 
brake piston rod side,
- an increase in the average temperature of the friction linings  –
by approx. 15-17% located on the side of the lighter brake cyl-
inder relative to the heavier piston rod. 

The paper shows that the unevenness in the mass distribution of the 
right and left side of the lever system is unfavorable from the point 
of the braking process. This results, differences in the value of forces 
acting on the disc. Vibrations on one side of the disc are intensified, 
which disturbs the braking process and may cause an increase in the 
braking distance.

Further work is planned to develop a model of a new lever mecha-
nism, characterized by equal mass distribution of the right and left 
sides of the disc and a constant value of forces acting on the disc re-
gardless of friction pad wear. Then, kinematic and dynamic analyses 
of the classic lever system (presented in the paper) in relation to the 
new one will be carried out, and an attempt will be made to carry out 
comparative tests on a brake stand.

Table 3. Statement of the ARMS values of the pads vibrations on the right and left side of the brake disc for 4600-4800 Hz band for three 
cases of friction material thickness during braking

For new pads thicknesses G1=35 [mm]

Frequency [Hz] ARMS-2 pads on the left side of 
the disc [m/s2]

ARMS-1 pads on the right side 
of the disc [m/s2]

Vibration differ-
ence [m/s2]

Dynamics of 
change [dB]

4600-4650 0.754 1.728 0.974 7.208

4650-4700 0.745 1.712 0.967 7.226

4700-4750 0.978 1.667 0.688 4.630

4750-4800 0.850 1.524 0.673 5.066

For pads worn to thickness G2=25 [mm]

4600-4650 2.228 2.820 0.592 2.048

4650-4700 2.041 2.724 0.682 2.507

4700-4750 1.678 2.547 0.868 3.624

4750-4800 1.848 2.311 0.463 1.943

For pads worn to thickness G3=35 [mm]

4600-4650 1.997 3.825 1.828 5.647

4650-4700 2.263 3.672 1.408 4.203

4700-4750 2.259 3.641 1.381 4.145

4750-4800 2.335 3.506 1.171 3.531
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1. Introduction
Structural reliability assessment has been widely recognized as vi-

tal in engineering product design and development [7]. In the context 
of structural reliability assessment, uncertainty propagation plays a 
significant role, which aims to quantify the uncertainties of input fac-
tors and calculate the overall uncertainty within the model response in 
reliability estimation [36].

Before propagating the structure’s uncertainty, a primary issue is 
to choose a reasonable mathematical theory related to the types of 
uncertainty, to quantify the uncertainty [12,38]. In practical structural 
engineering problems, uncertainty can be divided into two catego-
ries: aleatory uncertainty derived from inherent randomness of physi-
cal behavior, while the epistemic uncertainty arising out of lack of 
knowledge [10].

Probability theory is regarded as the most effective tools to de-
scribe aleatory uncertainty in structural reliability assessment. Over 
the last decades, numerous reliability assessment methods based on 
probability theory have been developed, including first-order reliabil-
ity method (FORM) [23], second-order fourth moment [29] Monte 
Carlo simulation (MCS) [24], FORM-sampling simulation method 

[22], envelope function method [28], response surface method (RSM) 
[6], and Bayesian networks method [26]. Although these probabilistic 
methods typically make sense in uncertainty quantification and propa-
gation when the structure is mainly affected by aleatory uncertainty, 
they do not work well in the scenarios involving great epistemic un-
certainty [37]. For example, the distribution of input factors may not 
be precisely obtained due to insufficient sample data. Consequently, 
several alternative non-probabilistic theories have been developed to 
describe the epistemic uncertainty in reliability assessment.

The general non-probabilistic structural reliability assessment the-
ories consist of fuzzy set theory [9], fuzzy random theory [13], pos-
sibility theory [1], interval theory [5, 27], and evidence theory [39]. 
The fuzzy and possibility measures fail to satisfy the duality prop-
erty, which will make it difficult for decision-makers to understand 
the results [33]. Moreover, interval and evidence theories will lead 
to an over-conservative result due to the interval extension problems 
[38]. To overcome the shortcomings of the above-mentioned theories, 
a new mathematical framework called uncertainty theory was intro-
duced to deal with epistemic uncertainty.

Uncertainty propagation plays a pivotal role in structural reliability assessment. This paper 
introduces a novel uncertainty propagation method for structural reliability under different 
knowledge stages based on probability theory, uncertainty theory and chance theory. Firstly, 
a surrogate model combining the uniform design and least-squares method is presented to 
simulate the implicit limit state function with random and uncertain variables. Then, a novel 
quantification method based on chance theory is derived herein, to calculate the structural 
reliability under mixed aleatory and epistemic uncertainties. The concepts of chance relia-
bility and chance reliability index (CRI) are defined to show the reliable degree of structure. 
Besides, the selection principles of uncertainty propagation types and the corresponding 
reliability estimation methods are given according to the different knowledge stages. The 
proposed methods are finally applied in a practical structural reliability problem, which il-
lustrates the effectiveness and advantages of the techniques presented in this work.
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Uncertainty theory proposed by Liu [18] in 2007 to describe the 
belief degree of human, has been successfully applied in various areas 
such as decision making [30], uncertain insurance [19, 32], uncertain 
risk and reliability analysis [34, 35]. Uncertainty theory is considered a 
reasonable and useful tool to express epistemic uncertainty, compared 
with the theories mentioned above [12]. Since the uncertain meas-
ure satisfies the axiom of duality, normality, and subadditivity, the 
results produced by the uncertainty theory are more in line with real 
engineering conditions [8]. Hence, in this work, uncertainty theory is 
chosen to express epistemic uncertainty and describe human thinking 
processes. In practical structural problems, there are usually two types 
of input factors that embody different types of uncertainties at the 
same time. Some input factors may suffer great epistemic uncertainty 
and are described by uncertainty theory, while some others may be 
primarily determined by aleatory uncertainty and are modeled based 
on probability theory. These structures comprising both aleatory and 
epistemic uncertainties are called uncertain random structures in this 
paper. It is impossible to analyze the reliability of uncertain random 
structures only by probability theory or uncertainty theory [38].

To solve this problem, chance theory was established by Liu [20] 
in 2013 to propagate aleatory and epistemic uncertainties together. 
Chance theory can be understood as a combination of probability 
theory and uncertainty theory, which also satisfies normality, duality, 
and subadditivity theorems. In recent years, chance theory has been 
successfully used in various fields such as project scheduling [11], un-
certain random risk analysis [8], uncertain random programming [25], 
and systems reliability analysis [31, 38]. Especially, a hybrid model of 
structural reliability analysis based on chance theory was proposed by 
Zhang [37] in 2019, and a new reliability index was proposed. How-
ever, this method has the following disadvantages. Firstly, there is no 
corresponding reliability analysis method when the implicit limit state 
function (LSF) contains both random and uncertain variables. Sec-
ondly, the defined reliability and reliability index do not involve time 
dynamic parameters. Thirdly, this reliability analysis method does not 
consider the problem of uncertainty propagation.

For completeness, this paper uses a uniform design (UD) combined 
with the least-squares (LS) method to simulate LSF, which adapts to 
both random and uncertain variables. The UD is a novel kind of ex-
perimental design method founded by Fang and Wang [3], defined 
according to the uniform distribution in number theory [40]. Com-
pared to the orthogonal design (OD), factorial design (FD), and Latin 
hypercube sampling (LHS) methods, the UD method appears to be 
more advanced if the number of experimental factors is large and the 
number of experiments is limited [4].

Besides the above research, this paper’s main contribution is to pro-
vide a new uncertainty propagation method for structural reliability 
assessment. Uncertainty propagation aims to estimate structural out-
put responses by propagating the input factors essential for structural 
reliability assessment and safety design [36]. Normally, uncertainty 
propagation can be classified into the form of level-1 and level-2 [14]. 
For level-1 propagation, the values of input factors can be charac-
terized by epistemic or aleatory uncertainties at the same level [2]. 
For level-2 propagation, the values of input factors are represented by 
aleatory uncertainties on the first level. Epistemic uncertainties de-
scribe the parameters of probability distributions in the second level 
[34]. These two types of uncertainty propagation methods are com-
monly used in risk assessment. Comprehensive research about this 
was reported by Hu et al. [8], who presented a framework for propa-
gation methods corresponding to different knowledge stages in fault 
tree analysis. However, there are no literature about the level-2 uncer-
tainty propagation modeling and propagation type selection methods 
for structural reliability assessment. Hence, this paper aims to develop 
some propagation analysis methods and the principles for the selec-
tion of propagation type in structural reliability assessment.

The remainder of this work is organized as follows: Section 2 brief-
ly discusses some important mathematical concepts of uncertainty 
and chance theory. A new surrogate model combining UD and LS 

method is proposed for implicit LSF in Section 3. Section 4 provides a 
novel structural reliability quantification model based on chance theo-
ry. Some principles for choosing appropriate uncertainty propagation 
types are discussed, and corresponding reliability calculation methods 
are provided in Section 5. In Section 6, a practical engineering case 
study is carried out to show the proposed method’s rationality. Finally, 
some conclusions are presented in Section 7.

2. Preliminaries
In this section, some fundamental knowledge and results regarding 

the uncertainty theory and chance theory are introduced.

2.1. Uncertainty theory
Uncertainty theory is a fairly new branch of axiomatic mathemat-

ics, and has been widely applied in various areas. In the uncertainty 
theory, the human belief degree of events are quantified by defining 
uncertain measures.

Definition 2.1 (Uncertain measure [15]) Let Γ be a nonempty set, 
and  be a σ- algebra over Γ. Each element Λ in  is called an event. 
Then, a set function M is defined as an uncertain measure if it satisfies 
normality, duality, and subadditivity axioms.

Definition 2.2 (Uncertain variable [18]) An uncertain variable is 
a measurable function τ from an uncertainty space (Γ, , M ) to the 
set of real numbers, i.e., {τ ∊B} is an event for any Borel set B of real 
numbers.

Definition 2.3 (Uncertainty distribution [15]) The uncertain-
ty distribution Φ(x) of an uncertain variable τ can be defined by  
Φ(x) =M{τ≤x} for any real number x.

A regular uncertainty distribution Φ(x) is defined as an uncertainty 
function that is continuous and strictly increasing with respect to x. 

Example 2.1 An uncertain variable τ is defined as a normal uncer-
tain variable if it has a normal uncertainty distribution:

 Φ( )  (1 + exp( ( )
3

)) 1x m x
=

− −π
σ

  x ∊R (1)

It is denoted by τ τ (m, σ), where m  is the expected value and σ 
is the standard deviation.

Example 2.2 An uncertain variable τ is defined as linear variable if 
it has a linear uncertainty distribution:

 Φ( ) 

0,          if  

,   if  

1,           i

x

x a
x a
b a

a x b=

≤
−
−

< ≤

ff  b x<










 (2)

It is denoted by τ τ  ( , )a b , where a and b are real numbers with 
a b< .

Since the uncertainty theory can describe the incomplete informa-
tion contained in design variables, the epistemic uncertainty (espe-
cially human) can be characterized by uncertain variables and uncer-
tainty distribution in the uncertainty space [16, 17].

Definition 2.4 (Inverse uncertainty distribution [15]) Let τ be an 
uncertain variable with regular uncertain distribution Φ(x). The in-
verse function Φ-1( )u  is known as the inverse uncertainty distribu-
tion of τ.

Theorem 2.1 (Operational law [18]) Let τ τ τ1 2, , ,  n  be inde-
pendent uncertain variables with regular uncertainty distributions 
Φ Φ Φ1 2, , ,  n , respectively. If f n( , , , )1 2τ τ τ  is continuous, 
strictly increasing with respect to τ τ τ1 2, , ,  m  and strictly decreas-
ing with respect to τ τ τm m n+ +1 2, , ,  , then τ τ τ τ= f n( , , , )1 2   is 
an uncertain variable with inverse uncertainty distribution:
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Ψ Φ Φ Φ Φ Φ− − − −
+

−
+

−= −1
1

1
2

1 1
1

1
2

1( ) ( ( ), ( ), , ( ), (1 ), (u f u u u um m m 11 ), , (1 ))1− −−u un Φ

 (3)

2.2. Chance theory
As a combination of uncertainty and probability theory, the chance 

theory is applied as a new tool to deal with problems affected by both 
uncertainty and randomness. The basic concept involves the chance 
measure of an uncertain random event in a chance space.

Definition 2.5 (Chance measure [20]) Let (Γ, , M ) ×  (Ω, , Pr) 
be a chance space, and let Θ È ∈   ×   be an event. Then the chance 
measure of  Θ can be defined as:

 Ch{ } Pr{ M{ ( , ) } }d0
1

Θ Ω Γ Θ= ∈ ∈ ∈ ≥∫ ω γ γ ω| | r r  (4)

Theorem 2.2 Let (Γ, , M ) ×  (Ω, , Pr ) be a chance space, then 
the chance measure Ch{ A}=M{ } Pr{A}Λ Λ× ×  for any ΛË ∈ and 
any A∈. Especially, we have Ch{ } 0, Ch{ } 1∅ = × =Γ Ω  [15].

Definition 2.6 (Uncertain random variable [20]) An uncertain ran-
dom variable is a measurable function ξ  from a chance space (Γ, , 
M ) ×  (Ω, , Pr ) to the set of real numbers such that { }ξ ∈B  is an 
event in  ×   for any Borel set B of real numbers.

Definition 2.7 (Chance distribution [15]) Let ξ  be an uncertain 
random variable. Then its chance distribution is defined as 
Φ( ) Ch{ }x x= ≤ξ  for any real number x.

Theorem 2.3 Let η η η1 2, , , m  be independent random variables 
with probability distributions Ψ Ψ Ψ1 2, , , m , and let τ τ τ1 2, , ,  n  
be independent uncertain variables with uncertainty distributions 
ϒ ϒ ϒ1 2, , ,  n , respectively. If f  is a measurable function, then the 

uncertain random variable ξ η η η τ τ τ= f m n( , , , , )1 2  1 2, , ,  has a 
chance distribution [20]:

 Φ Ψ Ψ Ψ( ) ( ; , , , )d ( )d d( ) ( )1 2 1 1 2 2x F x y y y y y ym m m m=
ℜ∫       (5)

where 1 2( ; , , , )mF x y y y  is the uncertainty distribution of the uncer-
tain variable f y y ym n( , , , , )1 2  τ τ τ1 2, , ,  for the any real numbers 

1 2, , , my y y .
Besides, assume f  is continuous, strictly increasing with respect to 

τ τ τ1 2, , ,  k  and strictly decreasing with respect to  τ τ τk k n+1 +2, , ,  .  
Then 1 2( ; , , , )mF x y y y  is the root u  of the following equation:

f y y y u u u um k k n( , , , ), ( ), , ( ), (1 ), , (1 )1 2 1
1 1

+1
1 1

  ϒ ϒ ϒ ϒ− − − −− − = xx  (6)

Theorem 2.4 (Expected value [21]) Let η η η1 2, , , m  be indepen-
dent random variables with probability distributions Ψ Ψ Ψ1 2, , , m , 
and let τ τ τ1 2, , ,  n  be independent uncertain variables with regular 
uncertainty distributions ϒ ϒ ϒ1 2, , ,  n , respectively. If f  is contin-
uous and strictly increasing with respect to τ τ τ1 2, , ,  k  and strictly 
decreasing with respect to τ τ τk k n+1 +2, , ,  . Then the uncertain 
random variable ξ η η η τ τ τ= f m n( , , , , )1 2  1 2, , ,  has an expected 
value:

E f y y y u u

u

m k

k

m[ ] ( , , , , ( ), , ( ),

(1 ), ,

1 20
1

1
1 1

+1
1

ξ =

−

− −

−
ℜ ∫∫  



ϒ ϒ

ϒ ϒϒ n m mu u y y− −1
1 1(1 ) ( ))d d ( ) dΨ Ψ

      (7)

Theorem 2.5 (Variance [15]) Let η η η1 2, , , m  be independent 
random variables with probability distributions Ψ Ψ Ψ1 2, , , m , 
and let τ τ τ1 2, , ,  n  be independent uncertain variables with regular 
uncertainty distributions ϒ ϒ ϒ1 2, , ,  n , respectively. Assuming f  is 

continuous, strictly increasing with respect to τ τ τ1 2, , ,  k  and 
strictly decreasing with respect to τ τk n+1, ,  , then 
ξ η η η τ τ τ= f m n( , , , , )1 2  1 2, , ,  has a variance:

V x F e x y y F e x y ym mm[ ] 2 (1 ( ; , , ( ; , , )

       

) )1 10ξ = − + −+
+∞

ℜ ∫∫  

      d d ( ) d ( )1 1x y ym mΨ Ψ

   (8)

where e is the expected value E[ ]ξ  of ξ , and 1 )( ; , , mF x y y  
is the uncertainty distribution of uncertain variable 
f y y ym n( , , , , )1 2  τ τ τ1 2, , ,  for any real numbers 1 2, , , my y y , 

which is also the root of Equation (6).

3. Advanced UD-LS surrogate model for implicit limit 
state functions

In the practical structural reliability problems, the analytical ex-
pression of LSF is generally unknown. The traditional RSM of struc-
tural reliability analysis is iteratively obtained based on the proba-
bilistic reliability index (PRI). Furthermore, the traditional RSM is 
only suitable for random variables and requires a large number of test 
sample data. Thus, a new surrogate model is established by combining 
UD with the LS method considering both of aleatory and epistemic 
information.

The structure’s response is obtained by experiment or finite ele-
ment analysis, and the sample points used to fit the surrogate model 
are determined by the design of experiments (DOE) methods. Com-
pared with traditional DOE methods, the UD method is more stable 
and efficient [4]. UD can maintain the results with high stability and 
accuracy even with a small sample data. Similar to the OD approach, 
the UD method can be used to generate experiment points by a series 
of designed UD tables. The representation of a specific UD table is 

( ) or  ( )n n
n nU m U m∗ , where U denotes the UD table, m represents 

the number of levels and the number of experiments required, n is 
the number of input factors, and ∗  represents the UD table with a 
smaller deviation and better uniformity. This work presents only a 
brief introduction of the UD method, and interested readers can refer 
to relevant research literature [3, 4, 40]. The quadratic polynomial 
surrogate model without the cross-terms is chosen as the response sur-
face function of the structure.

 

2
2

0
1 1

( )
n n

i i j j
i j n

f b b x b x
= = +

= + +∑ ∑x  (9)

where x = ( , , , )x x xn1 2   is the vector of input factors, ix  is a ran-
dom variable or an uncertain variable. b = ( , , , )b b b n0 1 2

T  is 2n+1 
undetermined coefficients vector in the surrogate model [4]. Accord-
ing to the LS approach, b can be estimated based on b a a a y= −( )T T1 , 
where a is the regression coefficients vector with (2 1)m n× +  orders, 
y = ( ( ), ( ), , ( ))f x f x f xm1 2 

T  is the real responses vector of the 
structure.

Some indexes are used for validation to verify the surrogate mod-
el’s fitting performance and check the accuracy. Among them, the co-
efficient of determination R2 is the most crucial measurement index:

 R
f f

f f
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i i
i
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i
i
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1
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1

21 0 1= −
−

−
≤ ≤=

=
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 x x

x x
 (10)

where f ( )x  is the expected value of all the real responses fi ( )x ,  
and f i

 ( )x  are the simulation values of the responses. The closer the 
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value of R2 to 1, the higher is the accuracy of UD-LS surrogate model 
fitting.

According to the stress-strength interference model and the UD-LS 
surrogate model, the LSF G( )x,α  of a structural system under mixed 
aleatory and epistemic uncertainties can be expressed as:

 G S f( ) ( )x x, ,thresholdα α= −   (11)

where x = ( , , , )x x xn1 2   is the input factor that affects the structural 
functioning, thresholdS  is the allowable threshold of structural re-
sponse, and α  is a dynamic input parameter associated with time.

4. Structural reliability assessment method under mixed 
aleatory and epistemic uncertainties

In a complex structural system, some design variables may have 
enough samples for estimating their probability distribution, which 
can be described by random variables. Nonetheless, some other de-
sign variables may lack sufficient data, which can be estimated by do-
main experts and regarded as uncertain variables. The structure can-
not be simply considered to be a random or uncertain structure model 
under mixed aleatory and epistemic uncertainties [37]. This section 
put forward an advanced structural reliability assessment method for 
this issue depending on chance measure and belief reliability theory.

4.1.	 Uncertainty	quantification	for	structural	reliability	based	
on chance measure

Let (Γ, , M ) ×  (Ω, , Pr ) be a chance space, and the LSF of 
structure contains uncertain random input factors 1 2, , , nx x x . In the 
present work, the input factors are uniformly described by uncertain 
random variables ξξ = ( , , , )ξ ξ ξ1 2  n , then the chance reliability of 
structure based on the chance measure can be defined as follows.

Definition 4.1 Assuming that G( )ξξ ,α  is the LSF of a structure, in 
which ξξ  is the vector of uncertain random variables, the chance reli-
ability is defined as the chance measure of the reliability event 
{ ( ) }G ξξ ,α > 0  at α:

 Ch Ch{ , }reliability ( ) ( )α α= >G ξξ 0  (12)

Because of the duality of chance measure, the chance measure of a 
failure event { ( ) }G ξξ ,α ≤ 0  at α can be derived as:

 
Ch Ch{ , }

1 Ch{ , }
1 Ch

failure

reliability

( ) ( )
( )

(

α α
α
α

= ≤

= − >
= −

G
G
ξξ

ξξ
0

0
))

 (13)

Consequently, the uncertainty of a safety event at α in structure 
can be quantified by Chreliability ( )α  with a numerical value of [0,  1] . 
Chfailure ( )α  describes the confidence how a failure even will be hap-
pened at α. Obviously, the higher the Chfailure ( )α , more is the pos-
sibility that the failure event will occur at α. The theorem to be defined 
below provides computational methods for practical engineering ap-
plications.

Theorem 4.1 Let the LSF of a structure contain independent 
random variables η η η1 2, , , p  with probability distributions 

1 2, , , pΨ Ψ Ψ , and independent uncertain variables τ τ τ1 2, , ,  q  
with regular uncertainty distributions ϒ ϒ ϒ1 2, , ,  q , respectively. 
If the LSF G p q( , , ; )η η τ τ α1   , , ; 1  is continuous and strictly in-
creasing with respect to τ τ τ1 2, , ,  k , and strictly decreasing with re-
spect to τ τ τk k q+1 +2, , ,  , then the chance reliability of the structural 
system at α can be rewritten as:

Ch ; ( )( ; , , , )d ( )d dreliability 1 2 1 1 2 2( )α α=
ℜ∫ F y y y y yp p p0  Ψ Ψ Ψ (( )yp   (14)

where F y y yp( ; , , , );1 20  α  is the root u of the following equation 
for any real numbers 1 2, , , py y y :

G y y y u u u up k k q( , , , ; (1 ), , (1 ) ( ), , ( );1 2   ϒ ϒ ϒ ϒ1
1 1

1
1 1− −
+
− −− − ,   )α = 0

(15)

Proof. According to the Theorem 2.3 and Definition 4.1, the chance 
reliability can be computed as follows:

Ch Ch  , , ; 

M ,
reliability 1

1

( ) { ( , , ; ) }

({

α η η τ τ α= >

=
ℜ∫

G

G y
p q

p

1 0 

,, d ( ) d , , ; ( )1 1 1y y yp q p p; ) }τ τ α > 0 Ψ Ψ

(16)

where M , , , ( ; , , , ) , , ; ;1 2 1 21{ }( ; )G y y y F y y yp q p τ τ α α> =0 0  
is the root u of Equation (15).

The proof is completed.

4.2. The new chance reliability index based on uncertain 
random variables

PRI in probability space is a vital indicator for quality of structure, 
and it can be used to describe the structural reliability under aleatory 
uncertainty. However, the PRI cannot accurately measure the reliabil-
ity under mixed aleatory and epistemic uncertainties. For complete-
ness, a novel chance reliability index (CRI) is defined using the ex-
pected value and variance of the uncertain random variable, showing 
the reliable degree of a structure in chance space.

Definition 4.2 Let (Γ, , M ) ×  (Ω, , Pr ) be an chance space, the 
LSF G G p q( , ) ( , , ; )ξξ α η η τ τ α= 1  1, , ;  of a structure contains inde-
pendent random variables η η η1 2, , , p  with probability distributions 

1 2, , , pΨ Ψ Ψ , and independent uncertain variables τ τ τ1 2, , ,  q  
with regular uncertainty distributions ϒ ϒ ϒ1 2, , ,  q , respectively. 
Then the CRI of the structural system at α can be given as follows:

 β α
α
αchance ( ) [ ( , )]

[ ( , )]
=

E G
V G

ξξ
ξξ

 (17)

where E G[ ( , )]ξξ α  is the expected value, V G[ ( , )]ξξ α  is the variance 
of LSF, and ξξ = ξ ξ ξ1 2,  p q+  is an uncertain random vector.

If the LSF is continuous and strictly increasing with respect to 
τ τ τ1 2, , ,  k , and strictly decreasing with respect to τ τ τk k q+1 +2, , ,  , 
then according to the theorems 2.4 and 2.5, the expected value and 
variance of LSF at α can be calculated as:

 
E G u u
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p p
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Ψ Ψ (19)

where e E GG( , ) [ ( , )]ξξ ξξα α= , and F x y yp( ; , , ; )1  α  is the root u  of 
the following equation for any real numbers 1 2, , , py y y :

G y y y u u u up k k q( , , , ; ( ), , ( ), (1 ), , (1 );1 2 1
1 1

+1
1 1

  ϒ ϒ ϒ ϒ− − − −− − α )) = x  (20)

The chance-measure-based CRI is offered as a tool to measure 
the confidence that a reliability event will occur in the structural sys-
tem affected by both aleatory and epistemic uncertainties. A larger 
β αchance ( )  indicates a better possibility that the reliability event will 
occur.
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5 Joint uncertainty propagation method for structural 
reliability assessment

Uncertainty propagation plays a significant role in reliability prob-
lem, which aims to estimate structural output responses by propagat-
ing the input factors essential for reliability assessment and safety 
design. To make it possible for decision-makers to find an appropri-
ate uncertainty propagation types under different knowledge stages, a 
new joint uncertainty propagation technique is presented in this sec-
tion. Therefore, the selection principles of uncertainty propagation 
types are developed in section 5.1. Section 5.2 briefly introduces the 
level-1 uncertainty propagation method, especially the propagation 
of uncertain random structure. The novel level-2 joint uncertainty 
propagation method for structural reliability assessment is proposed 
in Section 5.3.

5.1. The principles of uncertainty propagation types selec-
tion

In general, uncertainty propagation can be classified into the form 
of level-1 and level-2. The quantification and propagation of uncer-
tainty runs through the whole analysis process. To explain the uncer-
tainty propagation of level-1 and level-2 types, the probability theory 
is utilized to express aleatory uncertainties, while the uncertainty the-
ory is used to describe the epistemic uncertainties. G( )x  is assumed 
to be the LSF established in Section 3, where x = ( , , , )x x xn1 2   is the 
input factors vector, and G is the output. To analyze the uncertainty of 
output G, the uncertainty expressions of the input factors needs to be 
studied, in addition to their propagations through LSF.

According to the knowledge stage of reliability analyst, the reli-
ability evaluation types can divided into different stages. For exam-
ple, uncertainty propagation types can be divided into five different 
stages, shown in Fig.1. At stage 1, the reliability analyst has no sample 
data on 1 2, , , nx x x . So uncertain variables are used to describe all 
the input factors. In this situation, the uncertainty propagations are in 
level-1 type. At stage 2, the reliability analyst collects more sample 
data and improves his knowledge. The distribution function type of 

1x  is known, which is the probability distribution type. Nonetheless, 
the shaping parameters of this probability distribution are still lack-

ing and can be described by uncertain variables. 2 3, , nx x x  are still 
described by uncertain variables. In this case, the uncertainty propa-
gations will be in level-2 type. At stage 3, the knowledge of reliability 
analyst improves further. The probability distribution of 1x  is deter-
mined completely, while 2 3, , nx x x  are still described by uncertain 
variables, and the uncertainty propagations turns into level-1 type. At 
stage 4, the knowledge of reliability analyst improves by obtaining 
the probability distributions type of 2x  and 3x , but their shaping pa-
rameters are still lacking and can be described by uncertain variables. 

1x  and 4 , nx x  are perfectly described by probability distributions. 
In this situation, the uncertainty propagations turn into level-2 type. 
At stage 5, the probability distributions of all input factors are deter-
mined completely due to elimination of epistemic uncertainties, and 
random variables are used to describe all input factors. Meanwhile, 
the uncertainty propagations turn into level-1 type.

In summary, the selection of uncertainty propagation types depends 
on the knowledge stage and sample data owned by the reliability ana-
lyst. For more general situations, the decision-makers can match any 
circumstances in practical engineering by increasing the number of 
stages.

5.2. Level-1 uncertainty propagation in structural reliability 
assessment

As the example mentioned in Section 5.1, there are three differ-
ent knowledge stages in level-1 uncertainty propagation type, name-
ly, stage 1, stage 3 and stage 5. For stage 1, the uncertain variables 
describe all the input factors of LSF, and uncertainty propagations 
analysis is handled through a pure uncertainty model. The uncertain 
reliability and index can be obtained based on the uncertainty theory 
and the operational laws, and the specific calculation methods of un-
certain structure can be referred to the literature [35]. In stage 3, some 
input factors have sufficient data, so their probability distributions can 
be obtained, while some input factors lack data and can only be de-
scribed by uncertain variables. By analyzing the joint propagation of 
uncertainty and probability, the methods proposed in the Sections 4.1 
and 4.2 are used to estimate the reliability and index of uncertain ran-
dom structure. The structure that corresponds to stage 5 is called ran-
dom structure, and the uncertainty propagations analysis for random 

Fig. 1. Uncertainty propagation types of structure corresponding to different stages
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structure can be implemented by traditional pure probability model. 
The probabilistic reliability and index of random structure can be esti-
mated by the classical methods such as FORM and MCS.

5.3. Level-2 joint uncertainty propagation in uncertain ran-
dom structure reliability assessment

As the example mentioned in Section 5.1, there are two different 
knowledge stages in the level-2 uncertainty propagation type, namely, 
stage 2 and stage 4. For stage 2, some input factors in the LSF are 
expressed by probability distributions, of which the shaping param-
eters are described by uncertainty distributions, while other input 
factors can be expressed by uncertainty distributions. The next two 
subsections will introduce the detailed calculation methods in these 
two stages.

Let a LSF of structural system contain p q+  input factors, of 
which p input factors are expressed by random variables, and the 
shaping parameters of the probability distributions are described by 
uncertain variables, while q input factors are expressed by uncertain 
variables. The level-2 joint propagation in stage 2 can be considered 
as a more general situation of propagations in stage 3. Consequently, 
a new level-2 uncertainty analysis method and the corresponding reli-
ability calculation model are provided for stage 2 in this work.

Assuming that p input variables are represented as η η η1 2, , , p , 
and each probability distribution of ηi  is represented as Ψi i i( )η θ , in 
which θi  represents the shaping parameters of probability distribu-
tion. The shaping parameters are described by uncertainty distribu-
tions Φi i( )θ . Let τ τ τ1 2, , ,  q  represent the q input variables, and 
ϒ j j( )τ  represent each uncertainty distribution of τ j . According to 
the method presented in Section 4, if the LSF G p q( , , ; )η η τ τ α1   , , ; 1  
is continuous and strictly increasing with respect to τ τ τ1 2, , ,  k , and 
strictly decreasing with respect to τ τ τk k q+1 +2, , ,  . Therefore, the 

chance reliability of the structural system at α can be calculated as:

Ch ; ( )( ; , , , )d ( )dreliability 1 2 1 2( )α α θ θ=
ℜ∫ F y y y y yp p0 1 1 2 2 Ψ Ψ d ( )Ψ p p py θ

(21)

where F y y yp( ; , , , );1 20  α  is the root u of the Equation (15) for any 
real numbers 1 2, , , py y y .

Moreover, the CRI of the structural system at α can be computed 
from Equation (17), where the expected value and variance of LSF 
G( , )ξξ α  at α can be computed as follows:

E G u u
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where e E GG( , ) [ ( , )]ξξ ξξα α= , and F x y yp( ; , , ; )1  α  is the root u  of 
the Equation (20) for any real numbers 1 2, , , py y y .

Therefore, the chance reliability and CRI of the structural system is 
no longer a point value, but varies between the lower and upper bounds 
of shaping parameters with the uncertainty distribution Φi i( )θ  .

The level-2 joint propagation in stage 4 represents more general 
circumstances of random structure in stage 5. Thus, the reliability and 
index of random structure can also calculated by the traditional pure 
probability methods such as FORM and MCS. Consider a LSF 

G n( , , )η η α1  ;  of structure contains n input factors, m input factors 

are expressed by the probability distributions Ψi i i( )η θ , and the 
shaping parameters θi of Ψi i i( )η θ  are described by the uncertainty 
distributions Φi i( )θ , while n m−  input factors are expressed by ran-
dom variables with no epistemic uncertainties. The variation range of 
reliability and index can be calculated by replacing the original prob-
ability distributions with Ψi i i( )η θ  in classical FORM. Thus, the 
probabilistic reliability and index of the structure are also no longer a 
point value, and the variation range can be obtained based on the un-
certainty distribution of the shaping parameters.

6. An illustrated example
In this section, the propagation analysis methods developed herein, 

are applied to a practical engineering application of turbine disk reli-
ability assessment. The description of turbine disk and the implemen-
tation of UD-LS surrogate model are introduced in Section 6.1. Section 
6.2 shows the specific application process of the uncertainty propaga-

tion method proposed in this work. Some results and discussions on 
the advantages of the proposed method are given in Section 6.3.

6.1. Structure description and LSF simulation
Turbine disk is the key rotating component of modern aircraft en-

gines, driven based on high-temperature gas in the engine combustion 
chamber. Because the turbine disk converts the thermal energy in the 
gas into mechanical energy to drive the engine, its reliability level will 
directly affect the performance of the entire engine.

 As shown in Fig. 2(a), the three-stage turbine disk of a low-pressure 
compressor in a turbofan engine was selected as the research object. 
The pins on the roulette wheel are evenly and symmetrically distrib-
uted along the circumference. According to engineering analysis, the 
chief input factors affecting the reliability of roulette wheel include 
material characteristics, load and speed. In this work, the material of 
hollow pin was 3Cr13, while the material of roulette wheel was TC11. 
The blade load was applied perpendicularly to the hollow pin, and the 
average value of the load on each hollow pin was 24925N. The rel-
evant parameters of input factors are shown in Table 1. Since the main 
failure mode of the turbine disk requires that the maximum stress 
value is greater than the allowable strength thresholdS , the maximum 
stress value can be obtained by finite element analysis.

Because the shape and load of the turbine disk are completely sym-
metrical, 1/37 part of the turbine disk is considered to describe the 
entire structure. The average value of each input factor was chosen 
as the variable value, and the turbine disk was simulated using AN-
SYS 18.2 at a speed of 1000 rad/s. According to the simulation results 

Table 1. Input factors of three-stage turbine disk

Input factors Physical meaning Mean
value

Standard
deviation

1(GPa)E Elastic modulus of roulette wheel 123 5

1v Poisson’s ratio of roulette wheel 0.33 0.015

ρ1
3(g/ cm ) Density of roulette wheel 4.48 0.2

2(GPa)E Elastic modulus of hollow pin shaft 219 10

2v Poisson’s ratio of hollow pin shaft 0.3 0.015

ρ2
3(g/ cm ) Density of hollow pin shaft 7.76 0.3

F(KN) Resultant force on hollow pin shaft 24.925 0.315
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presented in Fig. 3, the stress-strain level at the junction between the 
roulette wheel and hollow pin is the highest, which is the dangerous 
failure point of the structure.

Since with the increase in rotating speed ω(rad/ s) , the maximum 
stress at the dangerous point will increase, the reliability of turbine 
disk will continue to degrade. According to the UD-LS surrogate 
model introduced in Section 3, a UD table 8

8 (25 )U ∗ with 8 fac-
tors and 25 levels was designed to arrange the experiment. Let the 
speed range is 0~2040rad/ s , and the range of other input factors is  
x fi i i= ±µ σ 4 , where µi  and σ i  are the mean value and standard 

deviation of each input factors, respectively, and 0,1,2, ,12f =  . 
Then, finite element simulation can be used to calculate the maximum 
stress of each experiment. The simulation results corresponding to 
each experiment are shown in Table 2.

According to the stress-strength interference model, the LSF of the 
three-stage turbine disk is established as:

 G S b b x b xi i
i

j j
j

( ) ( )x = − + +
= =
∑ ∑threshold 0

1

8
2

9

16
 (24)

Fig. 2. Model of three-stage turbine disk

Table 2. Finite element simulation results with uniform design

Sample 
number

ω(rad/ s) 1(GPa)E 1v ρ1
3(g/ cm ) E2(GPa) v2 ρ2

3(g/ cm ) F(KN) max (MPa)S

1 0 110.50 0.3000 4.18 209.00 0.2925 7.910 25.240 631.411289

2 85 114.25 0.3187 4.53 231.50 0.3337 7.085 24.531 610.493275

3 170 118.00 0.3375 4.88 189.00 0.2775 8.210 25.870 635.223855

4 255 121.75 0.3562 3.93 211.50 0.3187 7.385 25.161 620.446302

5 340 125.50 0.3750 4.28 234.00 0.2625 8.510 24.453 653.177425

6 425 129.25 0.2962 4.63 191.50 0.3038 7.685 25.791 685.938023

7 510 133.00 0.3150 4.98 214.00 0.3450 6.860 25.082 684.244701

8 595 136.75 0.3337 4.03 236.50 0.2888 7.985 24.374 689.337371

9 680 108.00 0.3525 4.38 194.00 0.3300 7.160 25.713 739.236521

10 765 111.75 0.3712 4.73 216.50 0.2737 8.285 25.004 746.209250

11 850 115.50 0.2925 5.08 239.00 0.3150 7.460 24.295 776.036791

12 935 119.25 0.3112 4.13 196.50 0.2587 8.585 25.634 792.389327

13 1020 123.00 0.3300 4.48 219.00 0.3000 7.760 24.925 804.746581

14 1105 126.75 0.3488 4.83 241.50 0.3413 6.935 24.216 819.019637

15 1190 130.50 0.3675 3.88 199.00 0.2850 8.060 25.555 826.739102

16 1275 134.25 0.2887 4.23 221.50 0.3262 7.235 24.846 863.456674

17 1360 138.00 0.3075 4.58 244.00 0.2700 8.360 24.137 877.634253

18 1445 109.25 0.3262 4.93 201.50 0.3113 7.535 25.476 893.024436

19 1530 113.00 0.3450 3.98 224.00 0.2550 8.660 24.768 912.663743

20 1615 116.75 0.3637 4.33 246.50 0.2963 7.835 24.059 934.261452

21 1700 120.50 0.2850 4.68 204.00 0.3375 7.010 25.398 999.430433

22 1785 124.25 0.3037 5.03 226.50 0.2813 8.135 24.689 1027.33931

23 1870 128.00 0.3225 4.08 249.00 0.3225 7.310 23.980 981.648181

24 1955 131.75 0.3412 4.43 206.50 0.2662 8.435 25.319 1071.52881

25 2040 135.50 0.3600 4.78 229.00 0.3075 7.460 24.610 1114.01504
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the LSF simulated in this experiment has a high degree of fit, which 
lays a good foundation for the next step of uncertainty propagation 
analysis.

6.2. Joint propagation of uncertainty and probability
Based on the different knowledge and sample data stages possessed 

by the reliability analyst on input factors, the reliability assessment 
can be implemented based on the uncertainty propagation model pro-
posed in Section 5. According to the selection principles proposed in 
Section 5.1, the uncertainty propagation of the turbine disk can be 
obtained as shown in Table 3. In stage 1, the reliability analyst does 
not have detailed sample data on all input variables. So a domain ex-
pert is invited to estimate the values of input factors. Seven normal 
uncertainty distributions are used to represent the expert’s beliefs cor-
responding to the input factors. In stage 2, the knowledge stage of reli-
ability analyst is improved, and the distribution of roulette wheel den-
sity ρ1  is confirmed as a normal probability distribution  
N ( , )µ σρ ρ1 1

 . Nonetheless, the expected value µρ1
 of N ( , )µ σρ ρ1 1

 is 

still uncertain, and a domain expert is 
invited to estimate the values of µρ1 . 
Therefore, a linear uncertainty distri-
bution  (3.78,5.18)  is used to repre-
sent the expert’s beliefs on the expect-
ed value µρ1 , but the other six input 
factors are still expressed as normal 
uncertainty distributions.

In stage 3, the knowledge stage of 
reliability analyst is improved further 
by obtaining sufficient data about 
roulette wheel density. So the normal 
probability distribution of ρ1  is de-
termined completely. Also, the normal 
uncertainty distributions of the other 
six input factors remain unchanged. In 
stage 4, the knowledge stage of reli-
ability analyst is improved, and the 
distributions of seven input variables 
is determined as a normal probability 
distribution. However, the expected 

values of N E E( , )µ σ
1 1

 and N v v( , )µ σ
1 1

 are still unknown, and do-
main experts believe that the expected values of N E E( , )µ σ

1 1
 and 

N v v( , )µ σ
1 1

 obey the linear uncertainty distributions  (95,151)  and 
 (0.274,0.386) , respectively. In stage 5, the expected values of 1E  
and 1v  are determined completely thanks to the sufficient sample data. 

where threshold 935MpaS =  is the threshold of roulette wheel strength, 
x = x x1 8,  is a vector of eight input factors, and b = ( , , , )b b b0 1 16

T  
is the vector of coefficients, which is estimated by the method in-
troduced in Section 3. The coefficient of determination is calculated 
as 2 0.99784R =  by Equation (10), and is very close to 1. Hence, 

Table 3. Distribution types and parameters at different knowledge stages

Stages
Distribution types and parameters of input variables

ρ1
3(g/ cm ) 1(GPa)E 1v 2(GPa)E 2v ρ2

3(g/ cm ) F(KN)

Stage 1  (4.48,0.2)  (123, 5)  (0.33,0.015)  (219,10)  (0.3,0.015)  (7.76,0.3)  (24.925,0.315)

Stage 2
N ( ,0.2)

1
µρ ,
µρ1 ~

 (3.78,5.18)
 (123, 5)  (0.33,0.015)  (219,10)  (0.3,0.015)  (7.76,0.3)  (24.925,0.315)

Stage 3 (4.48,0.2)N  (123, 5)  (0.33,0.015)  (219,10)  (0.3,0.015)  (7.76,0.3)  (24.925,0.315)

Stage 4 (4.48,0.2)N
N E( , 5)

1
µ ,
µE1 ~

 (95,151)

N v( ,0.015)
1

µ ,
µv1 ~

 (0.274,0.386)
(219,10)N (0.3,0.015)N (7.76,0.3)N (24.925,0.315)N

Stage 5 (4.48,0.2)N (123, 5)N (0.33,0.015)N (219,10)N (0.3,0.015)N (7.76,0.3)N (24.925,0.315)N

Fig. 4. Reliability assessment in level-1 propagation

Fig. 3. The finite element stress cloud diagram of turbine disk at ω=1000 
rad/s.
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In other words, all input factors are perfectly described by a normal 
probability distribution. The above-mentioned specific reliability as-
sessment processes under different knowledge and sample data stages 
are based on the joint uncertainty propagation method proposed in 
Section 5.

6.3. Results and discussion

Let the range of turbine disk speed ω be [0,2175] . Then the reli-
ability and index depending on ω in different stages can be calculated 
based on the methods developed in this paper. It is clear that with the 
increase in speed, the reliability and indexes of the turbine disk will 
degenerate because of the increase in stress.

As shown in Fig. 4, the reliability and indexes under three differ-
ent stages in level-1, namely pure uncertainty in stage 1, uncertain 
random in stage 3 and pure probability in stage 5 are compared. The 
results estimated from level-2 in stage 2 are shown in Fig. 5, where the 
reliability and index of turbine disk fluctuate with the unknown pa-
rameter µρ1

. In particular, when the rotation speed ω 1200rad / sω = , 
the reliability and index takes the values )0.9648,  0.9895(  and 

)1.8533,  2.3081( , respectively. Fig. 6 shows the variation of reli-
ability and index with unknown parameters µE1  and µv1

 at speed 
ω 1200rad / sω = , where the reliability and index take values in 

)0.9445,  0.9975(  and )1.5935,  2.8018( , respectively. The practical 
engineering example illustrates the specific implementation process 
of the presented method in detail, and the reliability of turbine disk are 
obtained in different knowledge and sample data stages.

Besides, the simulation results of the reliability and index for dif-
ferent knowledge stages at a specific speed ω 1200rad / sω =  are pre-
sented in Table 4. It is worth noting that the specific speed is selected 
arbitrarily and the same comparisons can be implemented at any speed 
value. As presented in Table 4, the reliability is transformed from the 
interval )0.9648,  0.9895(  in stage 2 to the determined value 0.9748 
in stage 3 due to the increase in sample data. Moreover, the reliabil-
ity is transformed from the interval )0.9445,  0.9975(  in stage 4 to 
the determined value 0.9871 in stage 5, which is a good explanation 
for the process of eliminating epistemic uncertainties. Similar conclu-
sions can be obtained from the reliability indexes in different stages. 
Besides, as shown in Fig. 4 and Fig.5, when the reliability values are 

close to 1 at some speed values, the 
reliability index can be employed 
to distinguish the reliability differ-
ences at these speed values.

In the context of structural reli-
ability assessment, the description 
of epistemic uncertainty is an in-
evitably common problem. Clas-
sical probability theory cannot be 
employed to express epistemic un-
certainty since the real frequency 
cannot be obtained due to lack of 
data. Fuzzy measure and possibil-
ity measure do not satisfy duality 
property, and hence the description 
of epistemic uncertainty is not rea-
sonable enough. Evidence and in-
terval theory leads to the problem 
of interval expansion in practical 
applications. Uncertainty theory 
is a newly proposed mathematical 
framework that firmly conforms to 
the normality, duality and subad-
ditivity theorems. This paper uses 
the uncertainty theory to describe 
epistemic uncertainty because it 
is more suitable for describing the 
human thinking processes. Also, 
the probability theory is chosen to 
represent aleatory uncertainty, and 
the chance theory is selected to deal 
with the situation when aleatory and 
epistemic uncertainties exist simul-
taneously. The results of case study 
shows that the level-1 and level-2 
joint propagation can be explained 
very well by combining the above 
three theories. Consequently, the 
practical engineering application 
shows that the various knowledge 
stages outcome the different reli-
ability levels, and the results high-
light that the presented methods are 
effective and could deliver clear 
messages to decision-makers.

Fig. 5. Reliability assessment in level-2 propagation (stage 2)

Fig. 6. Reliability assessment of level-2 propagation at ω =1200 rad/s (stage 4)

Table 4. Results of reliability and index corresponding to different stages

At ω=1200 rad/s Stage 1 Stage 2 Stage 3 Stage 4 Stage 5

Reliability 0.9565 (0.9648,0.9895) 0.9748 (0.9445,0.9975) 0.9871

Reliability index 1.7038 (1.8533,2.3081) 2.1092 (1.5935,2.8018) 2.2277
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The principles for choosing reasonable uncertainty propaga-(4) 
tion types are presented for structural reliability assessment.

Decision-makers can evaluate the structural reliability correspond-
ing to the different knowledge and sample data stages based on the 
uncertainty propagation method is proposed in this paper. As the mod-
el presented in this work is based on monotonic conditions, further 
research is required to focus on non-monotonic situations. Another 
interesting and important issue is to determine the distribution type of 
input factors based on small sample data.
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7. Conclusions
In this paper, a novel uncertainty propagation method is proposed 

for the structural reliability assessment under mixed aleatory and epis-
temic uncertainties. To enable the analyst to calculate the structural 
reliability according to the different knowledge stages, the principles 
of selecting the uncertainty propagation types and the corresponding 
reliability estimation methods are presented. In summary, the main 
contributions of this paper are as follows:

A new UD-LS surrogate model is proposed to solve the im-(1) 
plicit LSF problem involving random and uncertain variables.
The concepts of chance reliability and CRI are defined to de-(2) 
scribe structural reliability under mixed aleatory and epistemic 
uncertainties.
A novel level-2 uncertainty analysis method and the corre-(3) 
sponding reliability calculation model are provided for uncer-
tain random structures.
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1. Introduction
At the end of the 20th century, manufacturing companies entered a 

new era, which, on the one hand, offered tremendous technical and IT 
solutions, but, on the other, brought them into competition with other 
firms not only on a local and national, but also on a global level [11 
]. To meet the requirements of the market, enterprises have to manu-
facture a wide range of products, constantly adjusting their product 
offerings to the changing demand. In order to maintain an appropriate 
level of competitiveness, companies must use manufacturing systems 
that allow to produce good quality commodities at a low production 
cost and quickly make the necessary changes to adapt to the incom-
ing customer orders [14, 27]. These requirements can only be met 
by systems that combine the functional features of high-performance 
distributed manufacturing systems (DMS) and flexible manufacturing 
systems (FMS), and are, at the same time, scalable and dedicated to 
the processing of a particular family of products [3]. 

At the turn of the 21st century, a new concept of reconfigurable 
manufacturing systems (RMS) was developed to overcome the limita-
tions of DMS and FMS. RMS, by definition, are designed for rapid 

change in structure that allows to adjust the system’s functionality 
and production capacity to the current production requirements [22]. 
RMS, as a modern class of manufacturing systems, have an adap-
tive structure – both with regard to their hardware and software com-
ponents, and are characterized by six core features: modularity, in-
tegrability, customized flexibility, diagnosability, convertibility, and 
scalability [7,39]. These characteristics provide a framework for the 
design of reconfigurable machine tools and reconfigurable control-
lers, the use of which allows to reduce the time-to-market and the 
costs of reconfiguring the manufacturing system [6].

Among these six characteristics, scalability is the one that is the 
most important from the point of view of the possibility of adapting a 
system to uncertain market changes by adjusting/ reconfiguring ma-
chines and/or the structure of the manufacturing processes [8]. Scal-
ability is also a feature that allows to further optimize manufacturing 
systems and provides a basis for creating new manufacturing system 
paradigms focused on sustainable development and social welfare 
[32]. Moreover, scalability can be viewed as a buffer that allows to 
rapidly adjust a system’s productivity in the event of a decrease in 

Scalability is a key feature of reconfigurable manufacturing systems (RMS). It enables 
fast and cost-effective adaptation of their structure to sudden changes in product demand. 
In principle, it allows to adjust a system's production capacity to match the existing or-
ders. However, scalability can also act as a "safety buffer" to ensure a required minimum 
level of productivity, even when there is a decline in the reliability of the machines that 
are part of the machine tool subsystem of a manufacturing system. In this article, we 
analysed selected functional structures of an RMS under design to see whether they 
could be expanded should the reliability of machine tools decrease making it impos-
sible to achieve a defined level of productivity. We also investigated the impact of the 
expansion of the system on its reliability. To identify bottlenecks in the manufacturing 
process, we ran computer simulations in which the course of the manufacturing process 
was modelled and simulated for 2-, 3-, 4- and 5-stage RMS structures using Tecnomatix 
Plant Simulation software.
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the reliability of its component machines and devices [9, 
34]. 

Although from a technical and economic perspective, 
the scalability of a system should be defined at the stage 
of its design [23], this feature may actually be used for 
the analysis and optimization of the system’s functioning 
throughout its service life [16]. As a rule, each manufac-
turing system is designed for a specific lifetime, which 
means that it should maintain an appropriate level of 
productivity throughout this period [31]. However, over 
time, the reliability of any technical system is bound to 
decrease [4, 21]. Given this, a system should have re-
serve production capacity as a buffer against a planned 
decrease in system reliability [38] or be designed so that 
the missing production capacity can be easily and cheap-
ly offset [25, 29]. What is also important here are issues 
related to the nature and effectiveness of maintenance 
activities, which directly affect the dynamics of the de-
crease in a technical system’s reliability level [10, 19]. 

In the case of RMS, a decline in reliability can be 
compensated for by adding new machine tools to the system to main-
tain an appropriate level of productivity [33]. Unfortunately, this type 
of solution entails costs related to both purchasing machine tools and 
securing appropriate production space. In this paper, we analyze the 
impact of reduced machine reliability on changes in the number of 
machines in a system and the system’s reliability level. In particular, 
we examine selected system structures with different numbers of stag-
es and different flexibility of machine tools. The study was conducted 
using computer simulation methods which are broadly applied in 
testing design assumptions in the processes of designing manufactur-
ing systems, identifying bottlenecks, and increasing the efficiency of 
manufacturing systems (see, e.g. [20, 24]).

2. Scalability of RMS – a literature 
review

In designing manufacturing systems, 
designers focus on optimal selection of the 
systems’ physical components, such as ma-
chine tools and means of in-plant transport, 
and their optimal arrangement, in order to 
meet pre-defined production requirements 
[2]. In the case of an RMS, these require-
ments may include optimization of the sys-
tem’s modular structure (which allows to 
reconfigure the system), optimal selection 
of the system’s structure, and development 
of a system design that can accommodate 
changes in production demand.

A typical RMS consists of up to 20 stages 
with the machine tools of each stage having 
identical functional features (Fig. 1). In the 
machining process, parts are moved from 
one stage to the next using conveyors or 
overhead cranes. They are processed using 
CNC machine tools and/or RMS [8].

In order to adjust a system’s production 
capacity (throughput) to changes in the 
needs of the market, the structure of the 
system must be reconfigured quickly and 
cost-effectively [1]. Production capacity is 
scaled in small and frequent discrete steps 
to smoothly adjust the system’s function-
ality and throughput to match changes in 
customer demand [30]. As demonstrated 
by Putnik and colleagues [32], in practice, 
scalable capacity can be achieved by adding 

or removing specific machines, which is possible due to the parallel 
arrangement of the components of an RMS structure (Fig. 2). 

Production capacity planning, understood as a problem of optimal 
adjustment of production capacity to the existing production needs 
and tasks, has been the subject of interest of numerous researchers in 
the last 40 years. The first studies on increasing systems’ production 
capacity were carried out by Manne [28], and later elaborated on by 
Luss [26] and many other scholars (see e.g. [17, 41]). Their approach, 
however, was static. Considering that modern production systems 
have to deal with a rapidly changing and uncertain demand and that 
there are constant advancements in methods of designing manufactur-

Fig. 1. Schematic of the arrangement of the structural components of an RMS (diagram prepared 
by the authors based on: [13])

Fig. 2. Graphical illustration of RMS scalability based on [13]
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ing systems, the problem of production capacity planning must be 
analyzed using a dynamic approach. 

A review of the literature on scalability of manufacturing systems 
shows that there are two main lines of research in this area [8]:

design of RMS focused on increasing their scalability level, 1. 
and
capacity planning using the scalability of RMS to adapt their 2. 
production throughput to the existing demand.

Research on RMS design has been conducted, among others, by 
Spicer et al. [36], who investigated the problem of the impact of 
different system configurations (i.e. different degrees to which ma-
chines are arranged in parallel in a system’s n-stage structures) on 
the system’s productivity and production capacity. Son et al. studied 
the problems of stage paralleling and line balancing from the point of 
view of productivity and scalability of a production line. They showed 
that a completely balanced production line and an RMS could achieve 
an almost identical throughput, and that even an unbalanced RMS 
system generated smaller steps of production capacity changes than a 
balanced production line. Based on the results of a simulation study, 
Deif and ElMaraghy [12] proposed a new model for assessing system 
structures for different changing market demand scenarios. Wang and 
Koren [40] defined the scalability of a production system as its small-
est possible incremental capacity change, and determined the relation-
ship between the magnitude of this change and a system’s scalability. 
Putnik et al. [32] conducted an extensive literature review in which 
he showed how Wang and Koren’s method could be used to assess 
a posteriori the scalability level of different configurations of RMS 
by comparing the throughput gain obtained for a specified number 
of additional machines or the cost needed to achieve a given level 
of productivity. Their conclusion was that a system’s throughput and 
gain were higher in structures with a smaller number of stages. More 
recently, Hu et al. [18] analyzed the problem of joint optimization of 
production planning and adjustment of a system’s production capacity 
based on product specifications, delivery time constraints and recon-
figurable machine capabilities for assembly systems. Finally, Cerques 
et al. proposed their own metrics to evaluate the scalability of RMS 
by taking into account the parameters used for balancing operations 
on each stage of a production system [8].

The review of the literature shows that there are a large number 
of studies devoted to the problem of selecting an appropriate system 
structure in designing RMS. However, the focus of these studies is on 
the optimization of productivity and production capacity and their ad-
aptation to the changing market demand. Unfortunately, the existing 
literature does not offer any empirical analyses of the impact of the 
decrease in the reliability of machine tools on the scalability of RMS 
over the system’s entire service life, which is a large research gap.

To fill in this gap in research, we addressed the decision-making 
problem of choosing an appropriate RMS structure in experiments in 
which we evaluated selected RMS structures, taking into account the 

decrease in the level of reliability of machine tools during the system’s 
service life. We used computer simulation methods and techniques for 
calculating the reliability of complex systems with hybrid structures, 
which permit to verify research assumptions without the need to build 
a physical model (a demonstrator). The goal of the study was to an-
swer the question of how a decrease in the reliability of machine tools 
affects the need for expanding a scalable RMS and how it influences 
its reliability depending on the system’s functional structure.

3. Research problem
In this study, which is a continuation of our earlier research report-

ed in [15], we considered the problem of selection of the production 
structure of an RMS. As part of this study, we analyzed the structures 
of the RMS dedicated to the machining of body-type parts presented 
in article [22]. The decision-making problem under study can be for-
mulated in the following way:

A machine manufacturing company that provides machining serv-
ices is planning to launch a new RMS production line for machining 
parts. The goal is to design an RMS dedicated to the machining of a 
body-type part (Fig. 4) which is produced in a technological process 
that encompasses five operations performed on two faces of the part, 
each face requiring separate fixturing (Fig. 4 b). The system under 
design should be capable of manufacturing a minimum of 500 parts a 
day. The working time per day for the RMS (Fj) is 1000 seconds.

Over time, the reliability of the individual machines decreases, 
which leads directly to a reduction in the system’s productivity. If the 
existing system is not capable of producing 500 parts a day, it is ex-
panded by adding another (new) machine tool at an appropriate loca-
tion in the production line (a bottleneck). The main goal of this study 
was to find answers to the following questions.

How will the system be expanded (how many machine tools will 1) 
be added in what locations) for each of the analyzed structures 
as the reliability of the machine tools decreases?
What level of reliability will the system achieve (for each struc-2) 
ture) as it is scaled to the required productivity level?

These questions need to be answered to identify the structures of 
the RMS under design that allow to maintain the assumed level of 
productivity while the level of reliability of machine tools decreases 
and new machines are added to the system.

4. Methods and results
As previous analyses and research findings for the analyzed RMS 

(see [15, 22]) show, the required productivity level of 500 parts a day 
can be achieved (assuming that all machine tools are 100% reliable) 
using one of the eight structures shown in Fig. 4. Because the pro-
duction process must be carried out using at least two workholding 
fixtures (one for the execution of operation No. 10 and at least one for 
operations No. 20–50), we analyzed structures with from two (where 
operations No. 20–50 are executed using one type of multi-task ma-

Fig. 3. Body-type part : a) general schematic view of the product, b) structure of the product’s technological process
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Fig. 4. RMS structures analyzed in this study

chines) to five stages (where each operation is performed on a differ-
ent machine tool in the sequential stages of the process). 

To answer the questions formulated in point 3, we carried out stud-
ies in which we:

identified bottlenecks in the individual systems to find locations  –
for system expansion in the event the reliability of the individ-
ual machine tools should decrease preventing the system from 
achieving the required productivity level; 

calculated the system’s reliability level for each structure, tak- –
ing into account the necessity of expanding the system to meet 
the existing production demand.

4.1. Analysis of the scalability of selected RMS structures as 
related to a decrease in system reliability

The scalability of an RMS, apart from allowing to dynamically ad-
just the system’s structure to the existing production demand, also 
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plays an important role as a “safety buffer” against wear and ag-
ing of the system’s machines. Operation of any technical system 
is associated with a decrease in reliability, which translates into 
a reduction in its efficiency and productivity. In systems such 
as RMS, which ensure a short time-to-market and lower system 
expansion costs, the missing production capacity can be offset 
by adding new machines that will allow to execute the required 
production tasks. Obviously, excessive expansion of a system 
entails additional costs associated with purchasing machines 
and expanding the in-plant transport system as well as the need 
to find additional production space. This factor must be taken 
into account when selecting an appropriate system structure at 
the stage of designing an RMS.

We analyzed how a decline in the reliability of machine tools 
affected the expansion of the machine tool subsystem of the 
designed RMS for each of the eight structures shown in Fig. 
4. To determine the impact of the decrease in reliability on the 
system’s scalability, we assumed that the reliability of each ma-
chine tool was reduced by 1% in each observation period (this 
value was assumed to be sufficient to reliably interpret the re-
sults). Computer simulations were run to assess the impact of 
the decrease in reliability on the system’s productivity. A Tecno-
matix Plant Simulation model of the RMS was created for each 
of the eight structures, and a simulation of system operation was 
run, which covered a 1000-minute production period at a prede-
fined level of reliability of the machine tools used in the produc-
tion subsystem. An example of a model of the RMS developed 
for structure C (reliability level of 95%) is shown in Fig. 5.

In the context of the design requirements defined earlier, the 
overriding goal is to maintain the system’s pro-
duction capacity at the level of minimum 500 
parts per working day. When such a production 
volume cannot be obtained, it is necessary to 
identify the bottleneck (i.e. the production stage 
in which the machine tools have lost the ability 
to produce the specific number of products) and 
to eliminate it by “supplying” an additional ma-
chine tool that will provide reserve production 
capacity for the system’s remaining service life. 
In this present study, it was assumed that each 
time the RMS’s reliability is reduced, a new 
machine (with a 100% reliability level) with a 
functionality identical to that of the other ma-
chines at a particular stage of the system’s struc-

ture is added to the system. For example, in the case of structure H, a 
drop in reliability of the base machines (machines that were originally 
in the system) to 93% makes it impossible to achieve a throughput of 
500 parts (the system’s productivity at this level of machine reliability 
is 495 pcs.). To compensate for this reduction, a new machine tool has 
to be added to stage I of the process, which is the bottleneck (Fig. 6). 
A general algorithm for the assessment of the impact of the decrease 
in machine reliability on system expansion is shown in Fig. 7.

Simulation experiments were carried out for each of the structures, 
in which the level of reliability of the base machines was reduced to 
from 99% to 1%. The results regarding the number of machine tools in 
each structure and the level of system productivity obtained are shown 
in Table 1 (to increase the transparency of the data, the tables show ex-
perimental and calculation results for every 5% decrease in reliability).

Fig. 5. A Tecnomatix Plant Simulation model for structure C: a) two-dimensional model 
of the machine tool subsystem, b) 3D visualization of the RMS

Fig. 7. Algorithm for scaling RMS in the event of reduction in machine tool 
reliability

Fig. 6. Process of expanding the production structure of the RMS
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An analysis of the data given in Figure 8 shows that the largest 
number of machine tools had to be added to structures with the larg-
est number of stages (configurations E, F, G, and H) to ensure the 
required production capacity level. Regardless of the level of decrease 

in machine reliability, in all cases, the smallest number of machine 
tools were added to the system with the smallest number of stages 
(structure A).

Table 1. System productivity and number of machine tools required to achieve the desired production target (with a division into production 
stages)

Configuration

R A B C D E F G H

1.00
2+5 2+2+3 2+3+2 2+4+1 2+1+2+3 2+1+2+2 2+2+1+2 2+1+2+1+2

534 534 534 534 534 534 534 534

0.95
2+5 2+2+3 2+3+2 2+1+4 2+1+2+3 2+1+2+2 2+2+1+2 2+1+2+1+2

509 508 509 506 508 508 506 506

0.90
3+5 3+3+3 3+3+2 3+1+4 3+1+2+3 3+1+2+2 3+3+1+2 3+1+2+1+2

525 561 514 523 522 509 544 518

0.85
3+6 3+3+3 3+4+2 3+2+5 3+2+2+3 3+2+3+2 3+3+1+2 3+2+2+1+2

616 531 514 646 531 514 514 514

0.80
3+6 3+3+4 3+4+3 3+2+5 3+2+2+4 3+2+3+3 3+3+1+3 3+2+2+1+3

581 656 635 607 654 660 533 533

0.75
3+6 3+3+4 3+4+3 3+2+5 3+2+2+4 3+2+3+3 3+3+2+3 3+2+2+2+3

545 614 600 572 615 619 621 617

0.70
3+6 3+3+4 3+4+3 3+2+5 3+2+2+4 3+2+3+3 3+3+2+3 3+2+2+2+3

508 565 555 530 561 574 578 564

0.65
3+7 3+3+4 3+4+3 3+2+6 3+2+2+4 3+2+3+3 3+3+2+3 3+2+2+2+3

540 533 522 541 526 531 532 521

0.60
4+7 4+3+4 4+5+3 4+2+6 4+2+2+4 4+2+3+3 4+4+2+3 4+2+2+2+3

546 502 98 601 541 541 598 588

0.55
4+7 4+4+5 4+5+3 4+2+6 4+2+2+5 4+2+2+3 4+4+2+3 4+2+2+2+3

504 697 553 552 549 503 553 540

0.50
4+8 4+4+5 4+5+3 4+2+6 4+2+3+5 4+2+4+3 4+4+2+3 4+2+3+2+4

574 647 508 512 633 508 508 641

0.45
4+8 4+4+5 4+5+4 4+2+7 4+2+3+5 4+2+4+4 4+4+2+4 4+2+3+2+4

527 594 526 600 574 601 599 578

0.40
4+9 4+4+5 4+6+4 4+2+7 4+2+3+5 4+2+4+4 4+4+2+4 4+2+3+2+4

553 541 555 533 533 543 541 520

0.35
5+9 5+4+6 5+6+4 5+3+7 5+3+3+6 5+3+4+4 5+5+2+4 5+3+3+2+4

546 501 607 506 697 563 626 624

0.30
5+10 5+5+6 5+6+4 5+3+8 5+3+3+6 5+3+4+4 5+5+2+4 5+3+3+2+4

609 642 547 597 642 505 560 559

0.25
5+10 5+5+6 5+7+4 5+3+8 5+3+3+6 5+3+5+4 5+5+3+4 5+3+3+3+4

551 582 510 536 577 513 510 507

0.20
5+11 5+5+6 5+7+5 5+3+9 5+3+3+6 5+3+5+5 5+5+3+5 5+3+3+3+5

561 511 563 564 511 563 559 533

0.15
6+11 6+5+7 6+7+5 6+3+9 6+4+4+7 6+3+5+5 6+6+4+5 6+3+4+3+5

544 504 537 560 661 577 663 655

0.10
6+12 6+6+7 6+8+5 6+3+10 6+4+4+7 6+3+5+5 6+6+4+5 6+3+4+3+5

592 575 590 620 586 506 585 573

0.05
6+12 6+6+7 6+8+5 6+3+10 6+4+4+7 6+3+6+5 6+6+4+5 6+3+4+3+6

527 503 516 538 514 510 511 519
Legend:

2+2+3 - system configuration (number of machine tools in each stage of the process) 

508 - system productivity (number of products manufactured in 1000 minutes)
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The largest percent difference in the number 
of machine tools in relation to structure A was 
observed for structure H, which had the largest 
number of stages (Table 2, Fig. 9). The average 
percent increase in the number of machines rel-
ative to structure A ranged from 5.21% to 6.27% 
for the three-stage structures (B, C, and D), and 
from 5.35% to 12.32 % for the four-stage struc-
tures (E, F and G). The system with structure H 
(a five-stage structure) used 19.82% more ma-
chine tools than the system with two stages (the 
largest difference of 33.33% was found for ma-
chine tool reliability level of 70–75% (Table 2).

An important factor that needs to be consid-
ered in assessing RMS structures is the impact 
of scalability of a system on its productivity. In 
the case under study, the system is expanded by 
adding a new machine tool at a location identi-
fied as a bottleneck when the decrease in ma-
chine reliability makes it impossible to achieve 
the productivity level of 500 items per 1000 min 

(a day). Expansion of a system allows to maintain a required 
level of production capacity and, in many cases, also to build 
up production reserves as a buffer against a further decrease in 
productivity resulting from the aging of machines.

A system’s scalability, in accordance with the principles of 
RMS, permits to dynamically adjust production capacity to the 
current production demand. To evaluate the impact of the in-
vestigated system’s scalability on its productivity, simulation 
experiments were carried out for each structure in accordance 
with the algorithm presented in Fig. 5. The results are given in 
Figure 10

As shown in Figure 10, the system’s productivity (production 
capacity) increases stepwise as new machine tools are added to 
the system. However, it increases slightly differently for each 
of the structures. When the increase in production capacity is 

Fig. 8. Relationship between the number of machine tools in the system and reliability of the base machine 
tools

Fig. 9. A graph showing the percent increase in the number of machine tools in the indi-
vidual RMS structures relative to structure A

Table 2. Percent increase in the number of machine tools in the individual RMS structures relative to structure A

R B C D E F G H
1 0.00% 0.00% 0.00% 14.29% 0.00% 0.00% 14.29%

0.95 0.00% 0.00% 0.00% 14.29% 0.00% 0.00% 14.29%

0.9 12.50% 0.00% 0.00% 12.50% 0.00% 12.50% 12.50%

0.85 0.00% 0.00% 11.11% 11.11% 11.11% 0.00% 11.11%

0.8 11.11% 11.11% 11.11% 22.22% 22.22% 11.11% 22.22%

0.75 11.11% 11.11% 11.11% 22.22% 22.22% 22.22% 33.33%

0.7 11.11% 11.11% 11.11% 22.22% 22.22% 22.22% 33.33%

0.65 0.00% 0.00% 10.00% 10.00% 10.00% 10.00% 20.00%

0.6 0.00% 9.09% 9.09% 9.09% 9.09% 18.18% 18.18%

0.55 18.18% 9.09% 9.09% 18.18% 0.00% 18.18% 18.18%

0.5 8.33% 0.00% 0.00% 16.67% 8.33% 8.33% 25.00%

0.45 8.33% 8.33% 8.33% 16.67% 16.67% 16.67% 25.00%

0.4 0.00% 7.69% 0.00% 7.69% 7.69% 7.69% 15.38%

0.35 7.14% 7.14% 7.14% 21.43% 14.29% 14.29% 21.43%

0.3 6.67% 0.00% 6.67% 13.33% 6.67% 6.67% 13.33%

0.25 6.67% 6.67% 6.67% 13.33% 13.33% 13.33% 20.00%

0.2 0.00% 6.25% 6.25% 6.25% 12.50% 12.50% 18.75%

0.15 5.88% 5.88% 5.88% 23.53% 11.76% 23.53% 23.53%

0.1 5.56% 5.56% 5.56% 16.67% 5.56% 16.67% 16.67%

0.05 5.56% 5.56% 5.56% 16.67% 11.11% 16.67% 22.22%

Mean 5.93% 5.21% 6.27% 15.35% 10.19% 12.32% 19.82%
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considered over the range from 100% (R = 1.00) to 1% (R = 0.01) 
machine reliability, the smallest “leaps” in production capacity are 
observed for structure A (from 502 to 616 pcs/1000 min of system 
operation). The largest spread is observed for structures B and E (from 
501 to 697 pcs/1000 min.). The mean productivity values for the ana-
lyzed scenarios are as follows: structure A: 543 pcs/1000 min, Struc-
ture B: 568 pcs/1000 min, Structure C: 549 pcs/1000 min, Structure 
D: 552 pcs/1000 min, Structure E: 562 pcs/1000 min, Structure F: 555 
pcs/1000 min, Structure G: 549 pcs. A graphic interpretation of the 
statistical analysis of the results is shown in Fig. 11. 

The smallest spread between the minimum and the maximum in-
crease in production capacity was observed for the two-stage structure 
(A). Taking into account the fact that smooth adjustment of production 
capacity to current demand is one of the key principles of RMS, struc-
ture A seems to be the most desirable. The largest “leaps” occurred in 
structures B and E. In practical terms, this means that these structures 
had excessive reserve capacity, which is not beneficial from the point 
of view of the economics of maintanence of technical equipment.

4.2.  Evaluation of RMS reliability
The scalability of a system has a direct impact on its level of reli-

ability. In the case under study, on the one hand, reliability constantly 
decreases as a consequence of the decline in the reliability of the indi-
vidual machines, and on the other hand, it increases as new, 100% re-
liable machine tools are added to the system’s structure. Considering 
that the total reliability of the system depends both on the reliability 
of all its components and the way they are arranged, the impact of 
expansion of the system on its reliability is an important factor that 
should be evaluated at the stage of selecting the appropriate functional 
structure of the designed RMS. 

The reliability of a system is a derivative of both the number of 
production stages and the number of machines used in each stage. If 
components are added serially, the system’s reliability is reduced. In a 
case like this, if the reliability of each machine is R, and the number of 
machines is n, then the reliability of the system is Rn. Parallel arrange-
ment of two identical components increases the overall reliability of 
the system. More components added in parallel (Fig. 12 b) increase 
the reliability of the system, because the system will stop functioning 
only when all system components have failed. In this case, the prob-
ability that n identical machines arranged in parallel will fail is (1–R)n, 
and the system’s reliability is 1-(1-R)n [37]. All of the RMS structures 
analyzed in this example are hybrids that combine the characteristics 
of both parallel and serial structures.

Calculations of the system’s reliability for three selected structures 
are given in Table 3. To show precisely how the system’s reliability 
was calculated, structures with different numbers of stages and differ-
ent levels of reliability of the individual machine tools were selected.

The system’s reliability level for each of the structures was calcu-
lated under the assumptions regarding the decrease in the reliability 
level of machine tools and system scalability presented in section 4.1 
of this paper. The results of the calculations made for every 5% de-
crease in reliability are given in Table 4, and a graphic interpretation 
of the results is shown in Fig. 12.

The highest mean level of system reliability of nearly 98.92% was 
observed for the RMS with a two-stage structure (structure A). The 
poorest result was obtained for the five-stage structure (structure H), 
for which the mean level of system reliability was only 72.65%. It is 
worth emphasizing that it was only systems with two- or three-stage 
structures that had an over 90% reliability, and the system’s reliability 
decreased along with the increase in the number of processing stages 
(despite the fact that new machines characterized by 100% reliability 
were consistently added to the system).

The reliability curves for the analyzed period clearly show that the 
system with structure A had the highest and most stable level of reli-
ability, while structures D, E, F, G and H were characterized by the 
largest leaps in reliability. This is confirmed by the summary results 
of statistical analysis shown in Figure 13.

A detailed analysis of the results clearly shows that the two-stage 
structure (structure A) has the best properties from the point of view 
of system reliability over the entire period analyzed. The scalability of 
the system with this structure, despite the decrease in the reliability of 
the individual machines (from 99% to 1%), allows to maintain system 
reliability at the level from 94.3824% to 99.9998%. In the case of the 
three-stage structures (B and C), the system’s reliability ranges from 
88.5015% to 99.9999%, and for the remaining structures, it ranges 
from 47.6314% to 99.9799%. Considering the fact that the reliability 
of a system, in practice, translates into its flawless operation over the 
entire service life, this factor is key in selecting the appropriate system 
structure.

Fig. 10. Productivity of the RMS as a finction of the reliability of the base 
machine tools (taking into account system scalability)

Fig. 11. Results of the statistical analysis of system productivity for the inves-
tigated RMS structures

Fig. 12. Reliability of the scalable RMS (Rs) as a function of the decrease in 
the reliability of its base machines (R)
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5. Conclusions and further research
In the process of designing a manufacturing system, it is necessary 

to consider aspects related to the system’s entire service life. Particu-
larly important in this respect is the problem of wear of machine tools 

and other components of the system, which reduces its reliability and, 
consequently, also its efficiency and productivity. For that reason, re-
liability issues should be analyzed already at the stage of creating a 
technical design.

Table 4. System reliability level for each of the structures of the scalable RMS

R A B C D E F G H

1 100.0000% 100.0000% 100.0000% 100.0000% 100.0000% 100.0000% 100.0000% 100.0000%

0.95 99.7500% 99.4882% 99.4882% 94.7619% 94.5138% 94.2893% 94.2893% 89.5748%

0.9 99.9690% 99.8401% 98.8713% 89.9640% 88.9842% 88.1825% 89.0465% 79.3643%

0.85 99.8200% 99.3040% 97.5675% 99.6703% 97.0989% 97.3619% 82.7887% 80.8286%

0.8 99.4784% 98.9627% 99.3448% 98.2784% 94.3548% 97.8933% 79.1068% 75.2708%

0.75 98.8653% 97.6863% 98.2578% 96.1184% 90.0758% 94.9574% 97.3349% 89.5211%

0.7 97.8943% 95.6439% 96.4277% 93.1161% 84.6097% 90.7285% 93.4441% 82.4031%

0.65 96.5670% 92.6579% 93.6670% 89.4721% 78.0068% 85.1405% 88.1195% 73.9058%

0.6 99.9795% 93.5076% 96.4467% 89.5713% 74.2614% 82.5733% 90.5954% 67.8813%

0.55 99.5436% 99.3086% 93.9766% 85.6135% 68.3080% 75.6173% 85.2320% 58.4092%

0.5 98.9172% 97.7842% 90.5059% 80.8523% 80.6762% 74.3454% 78.6073% 70.2166%

0.45 97.7812% 95.2754% 96.2272% 75.7465% 73.8451% 74.5410% 79.3085% 61.1457%

0.4 96.1827% 91.4958% 94.8327% 69.5560% 65.8819% 67.0279% 71.8052% 51.4000%

0.35 99.9782% 94.0611% 96.9576% 99.3216% 92.6218% 92.7751% 71.9428% 66.2636%

0.3 99.5370% 98.8758% 94.0071% 97.1635% 86.6447% 86.1818% 64.5615% 56.1794%

0.25 98.6472% 96.6963% 91.0543% 93.5488% 79.0229% 86.1307% 89.7804% 72.7402%

0.2 97.1968% 93.0106% 96.5654% 88.9814% 69.7254% 87.4975% 91.8359% 68.4206%

0.15 99.9875% 95.1974% 97.9106% 87.2665% 99.1206% 83.6950% 98.5187% 79.8808%

0.1 99.5791% 98.7923% 96.3801% 81.8705% 95.5585% 75.2534% 95.5665% 69.1655%

0.05 98.6743% 96.3186% 92.7535% 75.1184% 89.8394% 70.7615% 90.4742% 60.3720%

Mean 98.9174% 96.6953% 96.0621% 89.2996% 85.1575% 85.2477% 86.6179% 72.6472%

Table 3. Method of calculating the reliability level of the RMS under design 

RMS structure System reliability (Rs)
Structure H, reliability of base machines R = 0.94

Rs = [1 - (1 - 0.94)2] * 0.94 * [1-(1-0.94)2]* 0.94 * [1-(1-0.94)2] = 0.874091

Structure D, reliability of base machines R = 0.91

Rs = [1 - (1 - 0.91)2 * (1 - 0.98)] * 0.91 * [1-(1-0.94)4] = 0.909793

Structure A, reliability of base machines R = 0.59

Rs = [1 - (1 - 0.59)2 * (1-0.66) * (1-0.99)] * [1 - (1 - 0.59)5 * (1-0.74) * 
(1-0.91)] = 0.999157



Eksploatacja i NiEzawodNosc – MaiNtENaNcE aNd REliability Vol. 23, No. 2, 2021 251

As part of the present experiments, we analyzed eight structures of 
an RMS dedicated to the production of body-type parts. In particu-
lar, we wanted to find answers to the following questions: (1) How 
will the system be expanded, for each structure, in order to ensure the 
minimum required level of system productivity? (2) How will sys-
tem expansion contribute to building up production reserves for the 
production subsystem? (3) How will the level of reliability change 
over the system’s service life? Computer simulation methods were 
used to evaluate the system’s productivity and to identify bottlenecks. 
The system’s operation was modelled and simulated for each of the 
eight structures, assuming that machine reliability decreased in a lin-
ear manner over the system’s service life. 

The results clearly indicate that RMS structures that have the best 
properties are those with the smallest number of stages. Systems with 
this type of structures, when expanded, show small increments in 
production capacity (and thus a minimum redundancy of production 
reserves) and exhibit the highest levels of reliability. Unfortunately, in 
practice, the use of structures with fewer stages requires the deploy-
ment of multi-task machine tools, generating higher per-unit purchase 
costs. Given all this, in our future research, we plan to carry out a 
multicriteria analysis, in which, apart from the functional and efficien-
cy-related features of the individual structures, we will look into the 
economic aspects of system construction, such as the price of machine 
tools, the methods and costs of organizing a system’s transport and 
storage subsystems, as well as the use of elements for controlling the 
individual components of a system in accordance with the assump-
tions of Industry 4.0.

Fig. 13. Results of the statistical analysis of the reliability of the RMS for each 
of the analyzed structures
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Owing to expensive cost and restricted structure, limited sensors are allowed to install in 
modern systems to monitor the working state, which can improve their availability. There-
fore, an effective sensor placement method is presented based on a VIKOR algorithm con-
sidering common cause failure (CCF) under epistemic uncertainty in this paper. Specifically, 
a dynamic fault tree (DFT) is developed to build a fault model to simulate dynamic fault 
behaviors and some reliability indices are calculated using a dynamic evidence network 
(DEN). Furthermore, a VIKOR method is proposed to choose the possible sensor locations 
based on these indices. Besides, a sensor model is introduced by using a priority AND gate 
(PAND) to describe the failure sequence between a sensor and a component. All placement 
schemes can be enumerated when the number of sensors is given, and the largest system 
reliability is the best alternative among the placement schemes. Finally, a case study shows 
that CCF has some influence on sensor placement and cannot be neglected in the reliability-
based sensor placement.
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Notations

iP (x)       Lower bound of the failure probability of a component i

iP (x)       Upper bound of the failure probability of a component i
λI         Independent failure rate
λc         Common failure rate
β          Proportion of the probability of CCF in the total failure  
 probability
Pind           Probability of independent failure
Pccf        Probability of CCF
Pij         Proportion of the ith alternative on the jth attribute
hj          Entropy value of the jth attribute
ωj         Weight value of the jth attribute
Cj

+        Maximum range of each attribute
Cj

-         Minimum range of each attribute 
cij         The jth attribute value of the ith component
cj

+        Positive ideal solution
cj

-         Negative ideal solution
Si          Group benefit value
Ri         Individual regret degree
Qi         Compromise value
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1. Introduction
Driven by the support from modern technology, industrial produc-

tion systems are seeing more synthesized and intelligent mechanical 
equipment. Predictably, the equipment is characterized by high risk, 
long cycle and expensive cost, which has more rigorous standards on 
diagnosis and maintenance. Therefore, it is particularly essential to 
avoid failures or locate the fault promptly when failures occur. Sensors 
are added to monitor the important components in the system, which 
not only provide early warning information to avoid major economic 
losses but also improve the efficiency of diagnosis when a fault occurs. 
The failure of the sensor to respond accurately matters much to the 
entire life of the sensor, which will escalate the difficulty of opera-
tion of the related equipment and make it delicate to satisfy specific 
environmental requirements. Under the assumption that the sensor will 
not fail, a sensor monitoring model constructed by static logic gates is 
given, and the sensor is added outside the structure of a fault tree [2]. 
Obviously, this model is no longer in step with the reality. The addition 
of sensors is bound to affect the reliability of the monitored system. To 
improve this, sensors are directly positioned on the monitored compo-
nents in the concept of information fusion method [8], in effect diag-
nosing system fault using DFT analysis and DEN. However, the thorny 
problem of epistemic uncertainty remains unsolved and this approach 
has no access to consider that the addition of sensors will impact the 
system reliability. In reference [28], The sensor is taken as a component 
added in this system. A logic AND gate is adopted to describe the rela-
tionship between the component failure and sensor failure. When both 
failures occur, a failure will be output. However, this sensor monitor-
ing model is not only easy to cause false alarms and increase the fre-
quency of system maintenance unnecessarily, but also ignores missed 
alarms caused by the sequence of sensor failures and component fail-
ures. Hence, proposed by references [7, 11, 27], PAND gates are used 
to describe the time sequence between sensor failures and component 
failures. The Monte Carlo simulation and dynamic Bayesian network 
(DBN) are adopted to analyze DFT, which can effectively solve the 
above problems. Nevertheless, static fault tree is used to build the fault 
model and fails to describe the dynamic fault behaviors.

In the monitoring process of system status, the acquisition of sys-
tem status dramatically depends on the effective sensor placement. The 
placement of sensors affects the monitoring capability of the sensor 
and the performance of the system. The location, type and quantity of 
sensors are major indices that determine the functionality, cost advan-
tage and effectivity of sensor networks [28]. To assess the effectiveness 
of the sensor configurations, similarity of sensor locations and sensor 
distribution are usually taken into account [36]. The main goal of ef-
fective sensor placement is to select a set of sensor locations from a 
larger candidate set based on some available criteria. The Fisher infor-
mation matrix (FIM) is used to give the solution of sensor placement 
for on-orbit modal identification and correlation of large space struc-
tures [15]. At the heart of FIM is to start from all possible monitoring 
positions, calculate the information matrix of each position and select 
the information matrix with the largest trace as the final position of the 
sensor. For this purpose, an optimal sensor placement is performed us-
ing the FIM [12]. On the other hand, an effective independence method 
(EFI) for optimal sensor placement is developed by using the FIM by 
Kammer [16]. Subsequently, the EFI method gains the growing pop-
ularity in the aspect of the best sensor placement [3, 5]. To achieve 
the goal of maximizing the effective information matrix determinant, 
a novel optimization of sensor placement is proposed using random 
EFI in reference [18]. The information matrix-based sensor placement 
method usually needs to decompose the eigenvalue of the matrix and 
calculate the inverse of the matrix. The calculation process is com-
plicated and inefficient. Considering that the reduction of the modal 
assurance criterion has access to fewer iteration in sensor placement, 
a new multi-dimensional sensor placement criterion is presented by 
Yi [38] and a distributed wolf algorithm in the context of the paper is 
introduced to improve computational efficiency. Aiming at the defects 

of low modal energy and long calculation time of the modal matrix, a 
new modal shape matrix, established by He et al.[14], can overcome 
the above limitations. In reference [24], the locations of sensors are 
selected by minimizing information entropy, which is suited to assess 
the feasibility of sensor placement schemes in different forms. An op-
timization method based on information entropy, developed by Chow 
et al.[4], determines the sensor position of a typical power transmis-
sion tower with the updated structural model. Model-based optimiza-
tion rules that consider diagnosable and cost constraints are another 
commonly used optimization method. Under certain condition of the 
known number of sensors, Duan [9] sets the objective function of the 
optimal sensor placement as the minimum expected diagnostic cost 
to resolve the sensor placement by the expected diagnostic cost, but 
ignoring sensor reliability. Xie et al.[35] presents an optimization strat-
egy of the sensor placement, seeking the effective sensor placement by 
minimizing the average coherence while meeting budget constraints. 
Based on a hybrid model and data-driven method, a more effective and 
lower cost diagnosis and placement scheme in the system is presented 
by Zhang et al.[41]. It can quickly detect and locate the leakage area 
of the water-supply system. Steffelbauer et al.[33] incorporates differ-
ent types and sources of uncertainty into the leak location of optimal 
sensor placement. For different numbers of sensors, the uncertainty of 
different intensities is considered. In addition, in order to depict the 
relationship between the number of sensors and the quality of leak lo-
cation, a cost-benefit function is introduced using the different sensor 
placement results and GoF statistics. Generally, these methods are only 
suitable to specific systems. In fact, optimization algorithm is an issue 
that should be taken seriously during the process of optimizing sen-
sor placement. Non-linear programming [31] is also widely used op-
timization method, but it is tempting to get a locally optimal solution. 
Targeting the above flaws cited, some optimization algorithms, such 
as genetic algorithms [37] and hybrid firefly algorithm with particle 
swarm optimization [25], are gaining the growing popularity in the do-
main of sensor placement. Arguably, the construction of a sensor model 
should be emphasized, a noteworthy problem in sensor placement. In 
reference [27], from the perspective of system fault diagnosis, a PAND 
gate is used to establish the sensor model and importance parameters 
of components are calculated to determine the potential sensor loca-
tions. Finally, the scheme with the least probability of system failure is 
the best sensor placement scheme. The above methods are essentially 
based on single-attribute decision-making, and the decision-making 
ability is not enough precise. For the placed object, the reliable and 
precise placement can be made by comprehensively considering multi-
dimensional information. For this reason, in reference [28], a combina-
tion criterion based on the sensor failure risk and uncertainty of sensor 
information is developed to determine the effective placement of sen-
sors, providing decision support for system health monitoring. 

For the purpose of high reliability, some redundancy techniques 
are used in complex systems and make CCF exist when these systems 
break down. For the CCF problem, many scholars at home and abroad 
have established multiple CCF models, including the α-factor model 
[21], the β-factor model [17], the Multi Greek Letter (MGL) model 
[20] and the multiple error shock model (MESH) [19]. In reference 
[32], under the premise of considering CCF, a discrete-time Baye-
sian network (DTBN) is proposed to analyze the system reliability. 
Interval number theory is used for epistemic uncertainty and Matlab 
software is applied to calculate the reliability parameter. The β-factor 
model is built to handle the CCF problems, which converts static logic 
gates into DTBNs for analysis. Aiming at the epistemic uncertainty, 
a new sensor placement is proposed by using a DEN in reference [7], 
ignoring the CCF problem caused by simultaneous failure of blades 
and partitions in steam turbines due to high temperatures. In reference 
[44], an evidence network model is proposed to deal with the uncer-
tainty of modal parameters and CCF. On this basis, the concept of 
multi-common cause failure and processing method is proposed [23]. 

According to the research of sensor placement mentioned above, 
most methods neglect CCF, epistemic uncertainty or dynamic fault 
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behaviors. Additionally, a single indicator is used to choose the pos-
sible sensor locations, which will affect the effectiveness of sensor 
placement. This paper proposes a new effective sensor placement 
method to improve the effectiveness of sensor placement based upon 
the reliability criterion considering CCF problem and epistemic un-
certainty shown as Fig. 1. A DFT is utilized to develop a fault model 
to simulate the dynamic fault behaviors. Besides, some reliability 
indices are calculated by mapping a DFT into a DEN, which can ef-
fectively handle CCF and solve the DFT with interval failure rate of 
components. Furthermore, a VIKOR-based method for determining 
the potential locations of the sensors is proposed based on multiple 
reliability parameters. Additionally, a sensor model is presented by 
using a priority AND gate (PAND) to describe the failure sequence 
between a sensor and a component. Finally, all placement schemes 
can be enumerated when the number of sensors is given, and the larg-
est system reliability is the best alternative. 

The remainder of this paper continues as follows. Section 2 fo-
cuses on the model construction of complex systems and solution 
for DFT considering CCF and epistemic uncertainty. An effective 
VIKOR method is developed to choose the possible sensor positions 
in section 3. Section 4 proposes a new sensor model to consider the 
failure sequence between components and sensors. The optimization 
of sensor placement is also proposed based on the optimal reliability 
criterion in Section 4. In Section 5, an ATP system is given to evaluate 
the effectiveness of the proposed method. Finally, some conclusions 
are made in Section 6.

Fig. 1. Effective sensor placement method based on a VIKOR algorithm 
considering common cause failure in the presence of epistemic un-
certainty

2. Reliability analysis based on DEN considering CCF

2.1. Construction of DFT Model 
A fault tree [10] is a logical causal diagram representing the inter-

actions between the components in a system when a failure occurs. In 
the fault tree, a series of specific logic gate symbols and transferring 
symbols are generally used to describe the causal relationship between 
various fault events and normal events in the system. Quantitative 
reliability and safety analysis are responsible for the growing accept-
ance of the fault tree analysis (FTA) [13]. The analysis is introduced 

to calculate the occurrence probability of the top event and recognize 
some important events in order to improve the system reliability. The 
traditionally static fault tree mostly includes some static logic gates. 
It is far from easy for the traditional static fault tree to describe the 
dynamic fault behaviors. In order to address this problem, the concept 
of DFT is developed by adding some dynamic logic gates based on the 
traditional fault tree approach. These dynamic logic gates generally 
include functional dependency gate, priority gate, sequential gate and 
spare gate. DFT can describe dynamic failure behaviors and are suited 
to evaluate the reliability of complex systems. In this paper, interval 
numbers are used to describe the failure rates of components based 
upon some datasheet over the period of product design.

2.2. Solution for DFT based on DEN under epistemic uncer-
tainty

2.2.1. DEN
For two-state systems, all events only have two states: “occur” 

(F) and “not occur” (W). Accordingly, the knowledge framework of 
a component is Θ ={F, W} in evidence theory [6, 30], and all focal 
elements are defined as follows:

 2Θ = ∅{ ,{ },{ },{ , }}F W F Wi i i i  (1)

where {Fi} and {Wi} respectively represent the fault state and normal 
state of a component or system, and {Fi ,Wi } represents the epistemic 
uncertainty. 

Belief Function (Bel) represents the lower bound of the probability 
that the focus element exists, and Plausibility Function (Pl) represents 
the upper bound of the probability that the focus element exists. Ac-
cordingly, the basic probability assignment (BPA) of a component i is 
calculated as follows:
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Evidence network, a widely used uncertainty reasoning method, 
has the advantages of D-S evidence theory and Bayesian network. 
It can more effectively solve the uncertainty problem of complex 
systems. DEN, an extension of initial evidence network in time, is a 
graphic structure and includes the original initial network and the time 
transfer network, where each time segment corresponds to a static evi-
dence network. Each time segment is composed of a directed acyclic 
graph GT=<VT, ET> and conditional probabilities, where VT and ET are 
represented as node sets and directed edge sets of time T respectively. 
Each time segment is connected by directed edges which are called 
transfer networks. In DEN, the state of the current time segment T 
depends only on the current state and the previous time segment T-∆T, 
and has no relation with other states. The state of the current time seg-
ment T should meet the following requirements:
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However, the conditional belief distribution for the current focal 
element X with time k and the next focal element X with time k+1 
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2.2.2. Conversion of DFT into DEN
Static logic gates are majorly composed of AND gate, OR gate, 

and voting gate. The AND gate and PAND gate are applied to dem-
onstrate the conversion of DFT into DEN in the following section. 
A logic AND gate outputs if any input event fails among the logical 
AND gate. A logic AND gate and the corresponding DEN are given 
in Fig. 2. The conditional probability table of node B(T+∆T) in DEN 
is shown in Table 1 [22]. Formula (5) can be obtained from formula 
(2), showing the BPA of node B, and the conditional mass distribution 
formula of node C(T+∆T) is given by formula (6). 

Fig. 2. A logic AND gate and the equivalent DEN
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The model of the PAND gate in the DEN is given in Fig. 3. The 
conditional probability table of node A(T+∆T) is shown in Table 1. By 
using equations (7) and (8), the conditional probability formulas of 
the node E(T+∆T) and C(T+∆T) are obtained.

Fig. 3. A PAND gate and the equivalent DEN
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2.3. DEN model considering CCF
Redundant structure is usually used in complex systems to im-

prove their performance. It is common that correlated failures often 
cause these systems to break down. If these correlated failures are 
ignored, it will lead to a big deviation in the reliability evaluation. 
CCF, one of the most common correlated failures, attracts more atten-
tion nowadays, and many researchers focus on this topic. CCF [43] 
is the simultaneous failure of two or more components due to some 
common causes. Explicit and implicit modeling methods are usually 
implemented to solve the CCF problem in reliability analysis [39]. 
The key to modeling a CCF system using DEN model is to make 
the component with CCF equivalent to an independent failure sub-
component and a CCF sub-component, that is, the failure rate of CCF 
components in the system is divided into independent failure rate λI 
and CCF failure rate λc. The logical structure of the independent fail-
ure sub-component and the CCF sub-component is in series, and the 
common cause component failure occurs when any sub-component 
fails. Accordingly, in the DEN, the common cause event is regarded 
as the basic event of the system, that is to add a layer of independent 
failure sub-nodes and CCF sub-nodes on the basis of the root node, 
determine the edge probability of each sub-node, derive the condi-
tional probability between each failure sub-node and components, and 
then construct the DEN model considering CCF. This paper adopts a 
β factor model to deal with CCF in the DEN. A network node without 
time change is added in the DEN, and its initial state is determined by 
the β factor value, as shown in Fig. 4.

Fig. 4. An explicit modeling of AND gate considering CCF in the DEN

Generally, the parameter β can be defined as the proportion of the 
probability of CCF in the total failure probability. If a component 

Table 1. The conditional mass distribution tables of node B(T+∆T)

B(T)
B(T+∆T)

{W} {F} {W, F}

{W} mB(W) mB(F) mB(W, F)

{F} 0 1 0

{W, F} 0 mB(F) 1− mB(F)
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obeys the exponential distribution, and the independent failure 
rate and the β-factor value are given, common failure rate can 
be calculated by the following equation.

 β
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where λI is the independent failure rate of the component; λc is 
the CCF rate; λs is the whole failure rate of the component. 

When the independent failure rate of the component is ex-
pressed by an interval number [ , ]λ λI I , the interval CCF rate 
[ , ]λ λc c  of components can be obtained according to the fol-
lowing formula:
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The value of β usually range from 0 to 0.25. Actual components 
and the corresponding CCF influence should be considered to deter-
mine the specific value of β. 

2.4. Calculating reliability results
Once the DFT model of a system is constructed, DFT is converted 

into the corresponding DEN based on the above approach. Some in-
ference algorithms for DEN are applied to calculate some reliability 
indices. Three reliability parameters of DIF, BIM and RAW can be 
employed to quantify the influence of component on system reli-
ability. However, each parameter has its unique characteristics. DIF 
[29] can describe the contribution of component failure to system 
failure. BIM [26] is defined as the influence of a failed component 
on the system and it has nothing to do with the reliability of the 
component, and only depends on the reliability of other components 
and the structure of the system. In general, RAW [40] is defined as 
the ratio of the risk metric value obtained when a component fails at 
the base case value of the risk metric. It is used to estimate the risk 
achievement of the system failure caused by a component failure 
and represents the significance of keeping a component at the cur-
rent level of reliability.

3. Determining the possible sensor positions based on 
a VIKOR algorithm

This section proposes a method to determine the potential positions 
of sensors using VIKOR-based method under epistemic uncertainty 
[1]. The specific flow chart is shown in Fig. 5.

3.1. Constructing the decision matrix
The evaluation object is a component in the system in the 

process of selecting potential locations. Then, each compo-
nent represents an evaluation scheme, which is shown by set  
C = {C1, C2, … , Cm}. The reliability parameter of a component 
can be used as an evaluation attribute (evaluation indicator), which 
is represented by set v = {v1, v2, …, vn}. The weight vector of is  
ω={ω1, ω2, … ωn}, where ωj is the corresponding weight value of 
the evaluation attribute vj. An original decision matrix composed of 
m evaluation schemes and n evaluation attributes can be expressed by 
the following formula:

 C c

c c c
c c c

c c c

ij m n

n

n

m m mn

= ( ) =



















×

11 12 1

21 22 2

1 2





   



 (12)

3.2. Calculating the weights of attributes using an entropy 
weight approach

Step 1. Standardize the decision matrix to tackle the homogeniza-
tion of attributes’ values. The negative and positive indexes can be 
calculated by the following equations:
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where min(cj) and max(cj) are the minimum and maximum value of 
the jth index respectively.

Step 2. Calculate Pij using the following equation:
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where Pij is the proportion of the ith alternative on the jth attribute.

Step 3. Entropy values of attributes can be obtained as follows:

 e K p pj ij ij
i

m
= −

=
∑ ln

1
 (16)

where 1 / lnK m= , (K > 0 ,0≤Pij).

Step 4. Weight values of attributes can be calculated by the follow-
ing equation:
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Fig. 5. A VIKOR-based method for determining the potential locations of sensors under 
epistemic uncertainty

(10)
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Using the above four steps, the weight matrix ω={ω1, ω2, … ωn} of 
attributes can be obtained, and ω satisfies the following formula 

ω j
j

n

=
∑ =

1
1 , 0 ≤ωj≤ 1.

3.3. Determining the possible locations of sensors using a 
VIKOR method

The steps of determining the possible locations of sensors are given 
as follows based on the VIKOR algorithm.

Step  1.  Construct the decision matrix C = (cij)m×n, where  
cij = [cij

-, cij
+] is the jth attribute value of the ith component in the sys-

tem. The specific process is shown in formula (12). 

Step 2. Determine the range of each attribute value:
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Step 3. For the attributes described in interval numbers, the follow-
ing two formulas can be used to calculate the positive ideal solution 
cj

+ and negative ideal solution cj
- of the attribute respectively:
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min , min
1 1













− +,[ , ] is a cost attributec cij ij

(19)
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(20)
Step 4. Original decision matrix C can be normalized based on the 

Hamming distance, and the normalized decision matrix B = (bij)m×n is 
calculated by using the following equation:

 b
c c c c

C Cij
j ij j ij

j j
=

− + −

−

+ − + +

+ −2( )
 (21)

Step 5. Apply formula (17) to get the weight matrix ω={ω1, 
ω2,  … ωj… ωn}, where ω1+ ω2+  ⋯ ωn=1, ωj∈[0,1].

Step 6. Calculate the group benefit value Si, the individual regret 
degree Ri and the compromise value Qi:

 S bi j ij
j

n
= ⋅

=
∑ω

1
 (22)
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1
ω  (23)
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+

+ −ν ν( )1  (24)

where S+ and S− are the maximum and minimum values of group ben-
efit Si respectively; R+ and R− are the maximum and minimum values 

of individual regret Ri respectively. v is a constant. This paper assumes 
v=0.5, which means that maximizing group benefits is worthwhile 
minimizing group individual regret. The compromise value Qi is sort-
ed in ascending order. An equivalent number of system components 
or nodes with ranking among the top in Qi are selected as the possible 
locations of sensors in light of the number of sensors. 

4. Sensor placement method using reliability criterion

4.1. Sensor model 
Some sensors are installed to monitor the operation state of some 

components in modern systems. When the value detected by a sensor 
is above the threshold, the sensor will give the alarm to the main-
tenance staff to repair or replace the component. Nevertheless, if a 
component fails after a sensor, and the monitored value is above the 
threshold, an alarm is not activated by this sensor until the component 
fails. In the following section, the temporal and logic relation will be 
described by using a new sensor model.

The output failure situation of the sensor monitoring model con-
structed in this paper has the following three situations.

If the sensor does not fail before the monitored component fails, (1) 
the sensor can monitor the state of component normally, and find 
the abnormal component in time to maintain or replace it. At this 
time, the entire model is considered normal.
If the monitored component fails after the sensor fails, the sen-(2) 
sor loses its function. At this time, the normality or failure of the 
entire model is determined by the working status of the detected 
component.
The entire model is considered as a failure when the sensor and (3) 
the monitored component fail at the same time.

A sensor is thought of as a component in a system in light of con-
sidering the reliability of this sensor. This paper uses the PAND gate 
to construct a sensor monitoring model based on the above discus-
sion. This sequential failure can be captured by using a PAND gate, 
as shown in Fig. 6.

4.2. Determining the optimal sensor placement scheme
Given the restrictions of structure and economic cost, only several 

sensors are allowed to be installed in some important locations. Let us 
suppose that the number of sensors is given. Usually, the number of 
locations detected is greater than the number of sensors. In this paper, 
there are M sensors installed in the system and N possible locations 
monitored by sensors (M < N), all possible placement schemes can be 
obtained using the following equation:

 C N M N
M N M

( , ) !
!( )!

=
−  (25)

Fig. 6. A PAND gate to model the logic relation between a component and a 
sensor
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For example, if there are only three allowed 
sensors to be placed in the system, X1, X2, 
X3 and X4 at the top of components, can be 
selected as the potential monitored positions of 
the sensors based on the described method for 
determining the potential position of the sen-
sor. Assuming that there are four specific types 
of sensors S1, S2, S3 and S4 corresponding to 
four components, system will have the follow-
ing four candidate placement schemes.

Scenario 1: Mount sensor S1 on component X1, 
mount sensor S2 on component X2, and mount 
sensor S3 on component X3.

Scenario 2: Mount sensor S1 on component X1, 
mount sensor S2 on component X2, and mount 
sensor S4 on component X4.

Scenario 3: Mount sensor S1 on component X1, 
mount sensor S3 on component X3, and mount 
sensor S4 on component X4.

Scenario 4: Mount sensor S2 on component X2, 
mount sensor S3 on component X3, and mount 
sensor S4 on component X4.

According to the proposed method, all pos-
sible placement scenarios can be obtained. A 
PAND gate, used to model the time dependences, is added to each 
scenario and the system reliability is calculated by the analysis of 
the updated DFT using the DEN based method. The best placement 
scheme is the scenario in which the system reliability is the largest.

5. A case study
The CTCS-3 ATP system [42] is a critical subsystem to guarantee 

the stable operation of trains and realize ultra-high-speed protection. 
Analyzing the reliability of the ATP system, finding out the key com-
ponents or weak nodes of the system as potential installation locations 
of sensors, and optimizing the sensor placement scheme are of great 
significance to ensuring the safety of trains and reducing maintenance 
costs. The fault tree model of CTCS-3 ATP system is given in Fig. 7. 
Supposing that all components in the ATP system follow the exponen-
tial distribution and the failure rate of each component is expressed 
in the form of a definite value. In the presence of the epistemic un-
certainty, the failure rate of the component is described in the form of 
interval numbers, as shown in Table 2. 

To improve the reliability of ATP system, dual module redundant 
structure is used in the D1~D9 elements, and CCF exists in these 
modules. In this paper, a β-factor model is used to solve the problem 
of CCF. Under the condition that the independent failure rate λI of the 
component is given, and the interval failure rate [ , ]λ λI I  is obtained 
by formula [ , ] [0.8 ,1.2 ]λ λ λ λI I I I= . If β is known to be 10%, the CCF 
rate λc and interval CCF rate [ , ]λ λc c  can be obtained by formula (9), 
formula (10) and formula (11), as shown in Table 3.

The assumption is that the mission time T is 4000 hours and ∆T 
is 1000 hours. the DFT of ATP system can be converted into a DEN 
based on the approach mentioned above. In the two cases of consid-
ering CCF or not, the DEN is used to calculate DIF, BIM and RAW 
as the evaluation attributes. Two original decision matrices are given 
in Table 4 and Table 5. The entropy weight method determines the 
weight of each attribute as shown in Table 6. Table 7 shows the group 
benefit value S, individual regret R and the compromise value Q ob-
tained by the VIKOR algorithm. Since interval numbers cannot be 
directly compared, then, the interval number ranking approach based 
on NSG possibility degree [34] is used to calculate the corresponding 
ranking values of BIM in Table 4 and Table 5, as shown in Table 8.

Assuming that only two sensors are allowed to be placed in the 
system, three nodes are designated as the potential sensor positions 
by the formula (24). Regardless of whether the CCF is considered, it 

Table 2. Failure rates of all components in ATP system

Components Failure rate λI /h Interval failure rates [ , ]λ λc c /h

X1, X2 1.20e-5 [0.96e-5, 1.44e-5]

X3, X4 2.30e-6 [1.84e-6, 2.76e-6]

X5, X6 2.10e-5 [1.68e-5, 2.52e-5]

X7, X8 1.80e-5 [1.44e-5, 2.16e-5]

X9, X10 1.45e-8 [1.16e-8, 1.74e-8]

X11, X12 1.20e-5 [0.96e-5, 1.44e-5]

X13, X14 1.49e-5 [1.19e-5, 1.79e-5]

X15, X16 2.50e-9 [2.00e-9, 3.00e-9]

X17, X18 6.00e-6 [4.80e-6, 7.20e-6]

X19 2.00e-6 [1.60e-6, 3.20e-6]

X20 7.00e-8 [5.60e-8, 8.40e-8]

X21 5.00e-6 [4.00e-6, 6.00e-6]

Fig. 7. A simplified fault tree model of ATP system

Table 3. The interval CCF rates of all components in ATP system

Components CCF failure rate λc /h Interval CCF failure 
rate [ , ]λ λI I /h 

X1, X2 1.20e-5 [1.02e-6,1.50e-6]

X3, X4 2.30e-6 [2.03e-7,3.03e-7]

X5, X6 2.10e-5 [1.73e-6,2.51e-6]

X7, X8 1.80e-5 [1.50e-6,2.18e-6]

X9, X10 1.45e-8 [1.29e-9,1.93e-9]

X11, X12 1.20e-5 [1.02e-6,1.50e-6]

X13, X14 1.49e-5 [1.25e-6,1.84e-6]

X15, X16 2.50e-9 [2.22e-10,3.33e-10]

X17, X18 6.00e-6 [5.22e-7,7.75e-7]
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is painfully obvious that the compromise value Q of nodes D3, X19 
and X21 is smaller in Table 7; The BIM of nodes D3, X19 and X21 
correspond to larger ranking values are obtained in Table 8. Therefore, 
under the above conditions, these nodes are chosen as the possible po-
sitions of sensors in the ATP system. Suppose that sensors S1, S2 and 
S3 are specific types of sensors that monitor nodes X19, X21 and D3, 
respectively. The sensor monitoring model composed of PAND gates 
introduced in this paper is added to the system fault tree model, then 
all sensor placement schemes of the system are as follows.

Scheme 1:  Install sensor S1 on node X19 and install sensor S2 on 
node X21.

Scheme 2:  Install sensor S1 on node X19 and install sensor S3 on 
node D3.

Scheme 3:  Install sensor S2 on node X21 and install sensor S3 on 
node D3.

Table 9. Failure rate of sensors

Sensors Failure rate λI/h Interval failure rate [ , ]λ λI I /h

S1 4.05e-7 [3.24e-7, 4.86e-7]

S2 9.30e-7 [7.44e-7, 11.16e-7]

S3 4.20e-6 [3.36e-6, 5.04e-6]

Table 4. The original decision matrix ignoring CCF

Nodes DIF BIM RAW

D1 [0.0004, 0.0009] [0, 0.0123] [0.6714, 1.9919]

D2 [0, 0] [0, 0.0123] [0.6714, 1.9919]

D3 [0.0879, 0.0891] [0.9814, 0.9887] [47.6190, 80.6451]

D4 [0.0008, 0.0018] [0, 0.0094] [0.6095, 1.7581]

D5 [0, 0] [0, 0.0094] [0.6095, 1.7581]

D6 [0.0004, 0.0008] [0, 0.0094] [0.6095, 1.7581]

D7 [0.0006, 0.0013] [0, 0.0094] [0.6095, 1.7581]

D8 [0, 0] [0.9790, 0.9876] [47.6190, 80.6451]

D9 [0.0074, 0.0075] [0.9792, 0.9877] [47.6190, 80.6451]

X19 [0.2573, 0.2696] [0.9853, 0.9907] [47.6190, 80.6451]

X20 [0.0090, 0.0091] [0.9792, 0.9877] [47.6190, 80.6451]

X21 [0.6416, 0.6431] [0.9909, 0.9955] [47.6190, 80.6451]

The sensor, as a high-reliability component, is generally dozens of 
times lower than the failure rate of the monitored component. There-
fore, it can be reasonably assumed that the sensor failure rate is given 
in Table 9. For the interval failure rate of node (component), the fault 
tree model of ATP 

system can be mapped into the DEN to calculate the system reli-
ability under various scenarios, or, the normal probability of the sys-
tem at the end of the system task time. Table 10 gives the system 
reliability and its corresponding ranking values under various place-
ment schemes when failure rate of the node (component) is interval 
number. It can conclude that the optimal sensor placement scheme in 
the ATP system ignoring CCF is scenario 1 and the optimal placement 
scheme considering CCF is scenario 3 according to Table 10. Consid-
ering whether CCF or not, the optimal placement scheme is different. 

Table 6. The weight table of attributes

Weight Ignoring CCF Considering CCF

ωDIF 0.1931 0.1899

ωBIM 0.1931 0.1893

ωRAW 0.6138 0.6208

Table 10. The reliability of ATP system and the corresponding ranking value 
when failure rate is an interval value

Schemes System reliabil-
ity ignoring CCF

Ranking 
value

System reliability 
considering CCF

Ranking 
value

1 [0.9972, 0.9987] 0.5000 [0.9905, 0.9942] 0.3864

2 [0.9877, 0.9958] 0.2043 [0.9860, 0.9907] 0.1706

3 [0.9932, 0.9966] 0.2957 [0.9916, 0.9955] 0.4430

Table 8. The sort value corresponding to BIM

Nodes Ignoring 
CCF

Consider-
ing CCF Nodes Ignoring 

CCF
Consider-

ing CCF

D1 0.0596 0.0605 D7 0.0580 0.0576

D2 0.0596 0.0605 D8 0.1043 0.1040

D3 0.1064 0.1106 D9 0.1044 0.1054

D4 0.0580 0.0576 X19 0.1108 0.1092

D5 0.0580 0.0576 X20 0.1044 0.1041

D6 0.0580 0.0576 X21 0.1184 0.1156

Table 7. S, R and Q values of each node

Nodes
Ignoring CCF Considering CCF

S R Q S R Q

D1 0.8657 0.4817 0.9979 0.8616 0.4876 0.9920

D2 0.8659 0.4817 0.9980 0.8630 0.4876 0.9929

D3 0.1679 0.1663 0.2690 0.0821 0.0813 0.1299

D4 0.8670 0.4828 0.9998 0.8661 0.4916 0.9987

D5 0.8674 0.4828 1.0000 0.8683 0.4916 1.0000

D6 0.8672 0.4828 0.9999 0.8669 0.4916 0.9992

D7 0.8671 0.4828 0.9998 0.8665 0.4916 0.9990

D8 0.1948 0.1929 0.3120 0.6830 0.4916 0.8933

D9 0.1925 0.1906 0.3084 0.1641 0.1625 0.2597

X19 0.1148 0.1138 0.1840 0.1141 0.1132 0.1808

X20 0.1920 0.1901 0.3076 0.1887 0.1868 0.2987

X21 0 0 0 0 0 0

Table 5. The original decision matrix considering CCF

Nodes DIF BIM RAW

D1 [0.0037, 0.0051] [0, 0.0248] [0.9453, 2.4970]

D2 [0.0006, 0.0009] [0, 0.0248] [0.9453, 2.4970]

D3 [0.2691, 0.2711] [0.9798, 0.9876] [36.4964, 59.8802]

D4 [0.0044, 0.0067] [0, 0.0148] [0.7153, 1.9581]

D5 [0, 0] [0, 0.0148] [0.7153, 1.9581]

D6 [0.0028, 0.0042] [0, 0.0148] [0.7153, 1.9581]

D7 [0.0035, 0.0054] [0, 0.0148] [0.7153, 1.9581]

D8 [0, 0] [0.9726, 0.9831] [0.7153, 1.9581]

D9 [0.0672, 0.0678] [0.9743, 0.9842] [36.4964, 59.8802]

X19 [0.1893, 0.1918] [0.9788, 0.9863] [36.4964, 59.8802]

X20 [0.0066, 0.0067] [0.9727, 0.9832] [36.4964, 59.8802]

X21 [0.4720, 0.4741] [0.9843, 0.9910] [36.4964, 59.8802]
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Hence, conclusions can be made that CCF generates an incredibly 
important impact on sensor placement using reliability criterion and 
cannot be neglected in sensor placement analysis.

6. Conclusion
This paper proposes an effective sensor placement method based 

on the reliability criterion in the presence of epistemic uncertainty. It 
is designed to tackle two important challenges emerging in complex 
systems, for example, CCF in components and dynamic fault behav-
iors. Aiming at the problem of CCF, the β-factor model is adopted 
to address the CCF failure rate and independent failure rate of com-
ponents. For the issue of dynamic fault behaviors, a DFT is used to 
construct a fault model and the DFT is mapped into a DEN to com-
pute several reliability indices used as evaluation attributes to build 
a decision matrix. Additionally, the potential locations of sensors are 
obtained using an efficient VIKOR algorithm and a diagnostic sensor 
model is constructed based on a PAND gate to capture the sequence 

between sensor failures and the monitored component failures. Fur-
thermore, the best sensor placement scheme is obtained based on the 
system reliability among the placement schemes. Finally, an actual 
ATP system is given to evaluate the effectiveness of the proposed 
method. Some conclusions are made that CCF generates an incred-
ibly important impact on sensor placement using reliability criterion 
and cannot be neglected in sensor placement analysis. The proposed 
method makes full use of the advantages of DFT for modeling, DEN 
for solving the problem of epistemic uncertainty and a VIKOR algo-
rithm for decision making, which particularly is appropriate for effec-
tive sensor placement in complex engineering systems.
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1. Introduction
In many enterprises the issue of making accurate business decisions 

often depends on the quality of demand forecasts for manufactured prod-
ucts. “Demand forecasting is crucial for decision making and operations 
in organisations” [38]. In the era of globalization, market uncertainty, 
and growing supply chain complexity the need for integrated and effi-
cient planning increases [55]. Predicting future demand values provides 
the basis not only for proper production planning, but also for preparing 
precise material, financial and employee demand schedules. The proper 
resources management is a challenging task in every manufacturing 
company [25]. The accurate demand forecasting for the manufactured 
products allows reducing inventory and improving order indicators, 
whereas “inaccurate forecasts can be costly for company operations, 
in terms of stock-outs and lost sales, or over-stocking, while not meet-
ing service level targets” [39]. Forecasting is widely used not only in 
production planning, but also in maintenance – it enables the companies 
to predict failures or demand for spare parts (examples of forecasting 
applications in maintenance-related problems include for instance 
time-based machine failure prediction in multi-machine manufac-
turing systems [75] or lifetime prediction of bearings or bearing-based 
systems [4]). In manufacturing processes the quality of the end product 
is in general defined by multiple critical outputs or responses and there-

fore, the efficient forecasting of quality is both critical and challenging for 
practitioners [72]. In fact in every single area of activity of a manufactur-
ing company, for which it is possible to collect the appropriate dataset and 
it is necessary to make effective decisions regarding future operations, 
accurate prediction techniques should be implemented. 

In [29] Hall discusses a number of cases presenting how improve-
ment of forecasting influences profitability of companies – for exam-
ple Hyundai Motors has reduced delivery time by 20% and increased 
inventory turns from 3 to 3.4, whereas Reynolds Aluminum has reduced 
forecasting errors by 2%, which in turn caused a reduction of 1 million 
pounds in inventory. Moreover, Unilever has reduced forecasting errors 
from 40% to 25%, which has brought multi-million dollar savings. SCI 
Systems on the other hand has reduced on-hand inventory by 15%, which 
resulted in annual savings of 180 million dollars. It is also worth men-
tioning that Virgin Atlantic Cargo – being one of the largest air freight 
operators in the world –  has identified forecasting accuracy as of strategic 
importance to its operational efficiency, due to the reason that efficient 
predictions ensure to have the right resources available at the right place 
and time [37]. 

Another important area of forecasting implementation in manufac-
turing companies is spare parts management. According to Suomala 
et al. the impact of the spare parts business is significant in terms of 
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a company’s profit [76]. “Strategically aligned and efficiently imple-
mented spare parts logistics can differentiate a business from its com-
petitors, lower costs, increase revenues, and thus help firms generate 
greater value for customers and ultimately increase profits”[80]. In 
consequence it can be stated that improvement of processes related 
to spare parts management is a matter of great importance for many 
industrial companies. Especially challenging is the issue of lumpy and 
intermittent demand forecasting – a sort of demand typical for spare 
parts, which can be observed in aerospace, automotive, mining and 
railway industry as well as in advanced manufacturing or electron-
ics. Forecasting the failure rate of machines based on data obtained 
from the monitoring systems is an extremely important solution for 
maintenance departments, which goal is to minimize the number of 
failures. When weighing these considerations against industrial im-
plementations results, it can be noticed that predictive maintenance 
reduces the time needed for planned machinery maintenance by 20-
50%, equipment availability can be increased by 10-20%, whereas 
overall maintenance costs can be reduced by 5-10% [17]. 

In the era of Industry 4.0, which can be defined as “an integration 
of intelligent machines, systems and the introduction of changes in 
production processes aimed at increasing production efficiency and 
introducing the possibility of flexible product changes”[70], the is-
sue of accurate forecasting becomes especially important. The impact 
of new technologies like Big Data, Industrial Internet of Things and 
Cloud Computing, which are considered to be the pillars of Indus-
try 4.0, changes the way how manufacturing companies operate. Es-
pecially “the field of big data time series has dramatically evolved 
in the last years”[56]. Cloud Computing “has become a new type of 
Internet service because of its high scalability, flexibility, and cost-
efficiency”[9]. What is more, “from an ICT point-of-view, during 
the last decay, “Data, Information and Knowledge” (DIK) became a 
central capital with a critical value. ICTs introduced huge changes 
in Knowledge Management (KM) and AI applications”[8]. Flexible 
Manufacturing Systems - representing an opportunity for shifting 
from fixed to customized production - when associated with compu-
tational technology they lead to industry of the future [47]. According 
to a report on Industry 4.0 by PricewaterhouseCoopers huge data vol-
umes generated by control systems, which are currently used mainly 
to monitor the state of technological processes, in the future will ena-
ble predicting their behaviour and product quality parameters, as well 
as global production control. Therefore it is expected that manufactur-
ing management processes will be subjected to major changes [88]. 
In consequence, currently, a number of manufacturing companies are 
facing the challenge of transforming into so-called smart factory or 
factory of the future. In Poland, as most companies are currently at 
the stage of the third industrial revolution, the process of implement-
ing Industry 4.0 technologies is still ahead. As the increasing amount 
of collected data requires effective analytical tools [41], there still is a 
need to develop new ways and models enhancing this transformation 
process. As Frank at al. underline “the effective implementation of 
Industry 4.0 technologies is still a subject of research”[22].

A properly constructed database is a key aspect of effective fore-
casting. Collecting data of adequate quality is a prerequisite for 
building accurate models. Currently, due to advanced information 
and manufacturing technologies, companies have the opportunity to 
gather a huge amount of data that characterize the work of machines, 
their technical condition and production processes. These data can be 
collected, for instance through sensors that are installed in particular 
machines and devices. In consequence, production management based 
on digital data allows adding value in the areas of production and lo-
gistics mainly due to very precise forecasting of demand and making 
manufacturing process more flexible, reducing failures by implement-
ing predictive models in maintenance as well as elimination of root 
causes of defects through intelligent quality assurance processes.

As an access to data is getting easier in manufacturing systems, the 
companies are willing to possess the knowledge hidden in the data 
and develop efficient predictions. On the other hand, obtaining ap-

propriate data to build accurate forecasting models is still rather chal-
lenging – especially, when data characterizing explanatory (independ-
ent) variables are desirable. Often companies interested in effective 
forecasting face the problem of lack of available, reliable, complete 
and comparable statistical data.  Therefore there still is a need to de-
velop approaches allowing the companies to create a set of potential 
explanatory variables when access to data is limited and to develop 
new ways enhancing companies in transformation to Industry 4.0. To 
answer this need the Author proposes new hybrid forecasting models 
dedicated to manufacturing systems. 

2. Literature review on hybrid forecasting 
Literature review on forecasting problems shows that nowadays 

research on the application of artificial intelligence methods is devel-
oping very dynamically. According to  Hall “a new generation of ar-
tificial intelligence technologies have emerged that hold considerable 
promise in helping improve the forecasting process including such 
applications as product demand, employee turnover, cash flow, dis-
tribution requirements, manpower forecasting, and inventory” [29]. 
Typically manufacturing/distribution planning decisions focus on 
achieving following goals: “(1) set overall production levels for each 
product category for each source (manufacturer) to meet fluctuating 
or uncertain demands for various destinations (distributors) over the 
intermediate planning horizon and, (2) generate suitable strategies re-
garding regular and overtime production, subcontracting, inventory, 
backordering and distribution levels, thereby determining the appro-
priate resources to be utilized”[46]. Increasing number of decision-
making problems related to manufacturing systems (e.g. production 
scheduling or optimal arrangement of machines) can be solved with 
the use of algorithms like genetic algorithm, Artificial Bee Colony Al-
gorithm [50] or Tabu Search [13]. There is also a significant number 
of papers focusing on the application of the artificial intelligence 
methods for prediction of different aspects related to manufacturing 
processes (e.g. artificial neural networks (ANN) for predictive com-
pensation of thermal deformations of ball screws in CNC machines 
[62] or for prediction of average surface roughness and formability 
[51]) or maintenance in general (e.g. forecasting of mains reliabil-
ity [77],  intelligent forecasting of automatic train protection system 
failure rate [35],   modified convolutional neural network for intel-
ligent fault diagnosis of industrial gearbox [45], ANN-based failure 
modeling of classes of aircraft engine components [2] or hybrid fault 
diagnosis of railway switches [54]).

Simultaneously it can be observed that a number of publications 
on hybrid forecasting is growing rapidly [28]. It is said that hybrid 
modelling is developed to improve the accuracy of forecasts obtained 
through the use of individual models. What is more, it is assumed that 
the forecasts based on combining several methods are simply more 
accurate than individual ones. According to Hajirahimi and Khashei 
main advantages of hybrid forecasting models listed in a number 
of research papers include: “improving forecasting accuracy due to 
comprehensive pattern detection and modeling”, “reducing the risk of 
using inappropriate model due to the combination of forecasts” and 
“simplifying the procedure of model selection due to the use of differ-
ent components”[28]. 

In [28] Hajirahimi and Khashei performed an in-depth analysis of 
hybrid forecasting structures on the basis of 150 research papers fo-
cused on various hybrid models in time series modeling and forecast-
ing domains. They proposed a classification of hybrid models cover-
ing three main combination structures, namely: parallel, series, and 
parallel-series [28]. This study presents a very detailed and up-to-date 
review on hybrid forecasting approaches. Nevertheless, taking into 
account forecasting fields addressed in the analyzed papers, namely 
[28]: stock market, interest rate, bank circulation, oil price and de-
mand, wind energy, power and speed, tourism and passenger, stream 
flow, traffic flow, exchange rate, weather and pollutant, GDP, through-
put, solar, health, sales and demand, production, hot rolling, internet 
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Table 1. Review on hybrid forecasting approaches

Hybrid approach DM ANN TQTF QLF OM Implementation area Source

Combining a multi-layered perceptron neural network and a traditional 
recursive method  x  x Spare parts demand fore-

casting in process industries [5]

Combining Support Vector Machine (SVM) as a classification tool and au-
toregressive integrated moving average (ARIMA) model  x x

Remaining useful life pre-
diction for real-time moni-
toring of the manufacturing 
process

[42]

Integrating “the demand autocorrelated process and the relationship be-
tween explanatory variables and the nonzero demand of spare parts dur-
ing forecasting occurrences of nonzero demands over lead times”

  x  
Spare parts lumpy demand 
forecasting in the petro-
chemical industry

[30]

Using SVM model to forecast occurrences of nonzero demand of spare 
parts and then integrating the forecast being an output from the SVM and 
the relationship of occurrence of nonzero demand with explanatory vari-
ables

x   x  Forecasting intermittent 
demand of spare parts [31]

Outputs of moving average (MA) and exponential smoothing as inputs to 
an ANN model  x x  Sales forecasting in furni-

ture industry [66]

Combining  Syntetos-Boylan method (being a modification Croston’s meth-
od) and exponential smoothing   x  Spare parts demand fore-

casting [10]

Two-stage approach to forecast intervals of market clearing prices (MCPs) 
– at first extreme learning machine (ELM) is used to estimate point fore-
casts of MCPs, next the maximum likelihood method is applied to estimate 
the noise variance

x  x Forecasting of electricity 
prices [81]

Historical sales data, popularity of article titles, and the prediction result 
of a time series based on ARIMA are inputs to backpropagation neural 
network (BPNN)

  x  x  Sales forecasting in the 
publishing industry [52]

Hybrid of ARIMA model and ANN model x x Short-term price forecast-
ing in deregulated market [6]

Integrating empirical mode decomposition (EMD), long short-term memo-
ry (LSTM) and ELM x x Forecasting of biofuel pro-

duction [85]

Hybrid feature selection method (HFS) combining Cuckoo search-based 
feature selection with singular spectrum analysis and SVM x x Short-term electricity price 

forecasting [86]

Combining seasonal autoregressive integrated moving average (SARIMA) 
model in the ANN model x x Number of inspections 

forecasting [67]

Combinations of Kalman filtering (KF), Wavelet Neural Network (WNN) 
and ANN schemes x x Short-term load forecasting [3]

Combining adaptive Fourier decomposition, quantitative identification of 
the average periodicity length and the sine cosine optimization algorithm 
to select the penalty and kernel parameters of SVM

x x x Electricity demand time 
series forecasting [44]

Combining the ARIMA model with time delay neural network (TDNN) and 
with nonlinear support vector regression (NLSVR) model. x x x Production forecasting [60]

Merging the principal component regression method (PCR), the partial 
least squares regression method (PLSR) and the modified partial least 
squares regression method (MPLSR).

x x Forecasting of product qual-
ity evaluation [84]

Consisting of an ARIMA model and feed-forward, backpropagation network 
structure with an optimized conjugated training algorithm x x Quality prediction [53]

Combining Stepwise Regression Method and RBF Neural Network x x Production forecasting [83]

Combining nonlinear autoregressive with exogenous input (NARX) model 
and autoregressive moving average (ARMA) model for long-term machine 
state forecasting based on vibration data.

x x Long-term machine state 
forecasting [58]

Combining the SARIMA and computational intelligence techniques such as 
ANN and fuzzy models x x x Production value of machin-

ery industry forecasting [36]

Combining traditional forecasting techniques based on time series with 
artificial intelligence-based methods (ANN and SVM) x x x Spare parts demand fore-

casting in mining industry [64]

Hybrid SVM-based models where three optimization algorithms: gray wolf 
optimization, whale optimization algorithm and moth flame optimization 
where applied to optimize the hyper-parameters of the SVM 

x x Advance rate forecasting of 
a tunnel boring machine [87]

Combining a Mahalanobis–Taguchi System (MTS), support vector regres-
sion (SVR), bootstrap prediction interval (PI), and derivative-free Nelder-
Mead (NM) optimisation strategy.

x x
Prediction-based multivari-
ate manufacturing process 
quality control

[72]
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traffic, morbidity, birth immigration, NN3 competition, electricity, 
energy consumption, computer science, rainfall, drought, quality, in-
flation, solid waste generation, machine state, property crime rates, 
tidal current, inspection, price, it can be noticed that little research has 
been done on forecasting dedicated to manufacturing systems. Con-
sidering above-listed fields it can be indicated that only a few of them 
are directly or indirectly related to manufacturing systems – in this 
aspect forecasting of sales, demand, throughput, production, energy 
consumption, quality, machine state, inspection and price is signifi-
cant and should be further investigated.

In general, it can be stated that researchers merge predictive meth-
ods and models in very different ways. Table 1 presents an analysis 
and summary of research results related to hybrid forecasting, which 
can be applied to specific areas of manufacturing systems. The first 
column contains a brief description of each hybrid approach, columns 
2-6  summarize type of calculation techniques addressed in particular 
approaches (ANN stands for artificial neural networks, DM stands for 
data mining techniques (other than ANN), TQTF stands for traditional 
quantitative forecasting methods, QLF stands for qualitative forecast-
ing methods and OM stands for other methods), whereas the column 
7 indicates the implementation area.

According to [28], in general, hybrid forecasting models can be 
divided into four main groups – data preprocessing based hybrid 
models, parameters optimization based hybrid models, component 
combination based hybrid models, and post processing based hybrid 
models. Analysis of the Table 1 in turn leads to a conclusion that the 
majority of proposed hybrid methods which can be applied to fore-
casting manufacturing-related phenomena combines ANN models 
with traditional quantitative forecasting techniques (especially ARI-
MA). Quite common is also merging data mining techniques (other 
than ANN, like e.g. SVM) with ANN models and TQTF. Another no-
ticeable trend is combining DM with other classical mathematical or 
statistical methods. Very rare is on the other hand combining ANN 
and qualitative forecasting techniques. “The possibility of generaliza-
tion of knowledge on new data (that were not presented in the learning 
process) is an essential characteristic that distinguishes artificial neu-
ral networks (ANN)” and thus makes ANN models very often used in 
hybrid forecasting [63].

Apart from the above-presented analysis which focuses on hybrid 
forecasting applied to different areas of manufacturing systems, in-
teresting research on hybrid forecasting can be found in results of the 
M4 Competition, which “follows on from the three previous M com-
petitions, the purpose of which was to learn from empirical evidence 
both how to improve the forecasting accuracy and how such learning 
could be used to advance the theory and practice of forecasting” [48]. 
“The field of forecasting has progressed a great deal since the original 
M Competition, which concluded that “more complex or statistically 
sophisticated methods are not necessarily more accurate than simpler 
methods”, and over time, new methods have been proposed that have 
clearly proven to be more accurate than simpler ones”[48]. From the 
point of view of the research discussed in this paper the most interest-
ing results following from the M4 Competition include a hybrid and 
hierarchical forecasting method, which “utilizes a dynamic computa-
tional graph neural network system that enables a standard exponential 
smoothing model to be mixed with advanced long short term memory 
networks into a common framework” [74] and “a combination-based 
approach that combines statistical and machine learning techniques” 
presented in [34].

“Controlling production systems to match supply and demand in an 
uncertain environment received considerable attention in the manufac-
turing systems literature”[49], however results of the above-presented 
literature analysis show that although increasing number of scientific 
papers is focusing on hybrid approaches, rather little research has 
been done on hybrid forecasting models dedicated to manufacturing 
systems. Therefore this paper aims to fill in this gap. The main goal 
of the study presented in this paper is to propose new artificial intel-
ligence-based hybrid forecasting models and assess their accuracy in 

comparison to traditional techniques. The research focuses on solving 
the problem of limited access to explanatory (independent) variables. 
The research covers three areas of manufacturing, namely: produc-
tion planning, maintenance and quality control. In order to verify the 
forecasting accuracy, real data coming from different manufacturing 
companies are used.

3. Research methodology
Based on the literature review conclusions and bearing in mind 

experiences gained from cooperation with industrial companies, in 
this paper new hybrid models are proposed – their goal is to obtain 
more accurate forecasts in comparison to traditional prediction meth-
ods. What is more, the new approach is aiming at solving common 
problems which still exist in industrial practice (especially in manu-
facturing companies aiming at transformation into Industry 4.0) – the 
limited access to data or simply the lack of available data (particularly 
in terms of  explanatory, independent variables). The models are dedi-
cated to forecasting challenges of the manufacturing systems. In the 
paper four hybrid forecasting models are proposed:

a Hybrid forecasting econometric model (hybrid_ECO),• 
a Hybrid forecasting artificial neural network model (hybrid_• 
ANN),
a Hybrid forecasting support vector machine model (hybrid_• 
SVM),
a Hybrid forecasting extreme learning machine model (hybrid_• 
ELM).

The research methodology is schematically presented in Fig. 1. It is 
composed of 4 main steps: (1) preparation phase, (2) forecasts compu-
tation based on traditional forecasting methods, (3) hybrid forecasting 
models development and (4) assessment phase. The calculations are 
done in the R language (R version 3.5.3), in which a dedicated algo-
rithm was developed. 

According to the presented scheme (Fig. 1), in the preparation 
phase, a forecasting aim and a dependent variable y should be defined. 
Next, data should be collected – either from appropriate systems (e.g. 
Enterprise Resource Planning (ERP), Computerised Maintenance 
Management System (CMMS)) or any adequate database (DBx), 
which can contain for instance data coming from the sensors mounted 
on the machines. Depending on the forecasting aim, the required da-
taset will differ. Subsequently, the collected data should be initially 
analyzed and processed. The data is initially divided into a training set 
(80%) and a test set (20%). In the second phase a parameter should 
be defined. This parameter on one hand represents the value of a vari-
able which indicates from how many periods an average – in average-
based forecasting methods  – should be computed and on the other 
hand it defines how many loops the algorithm will implement. For 
example for the scope 2 ≤ a ≤ 3, the algorithm will compute 2 loops 
– in the first one, for a=2, all the average-based forecasting methods 
will apply the average from the last 2 periods, whereas for a=3, in all 
the average-based forecasting methods the average will be calculated 
from the last 3 periods. In the next step the 9 analyzed forecasting 
methods are applied and corresponding forecasts (F1-F9) are comput-
ed. In the algorithm following methods are implemented:

F•	 1: autoregressive-integrated moving average (ARIMA),
F•	 2: simple exponential smoothing (SES),
F•	 3: Holt model (Holt),
F•	 4: trigonometric exponential smoothing (TES),
F•	 5: simple moving average (SMA),
F•	 6: exponential moving average (EMA),
F•	 7: weighted moving average (WMA),
F•	 8: zero-lag exponential moving average (ZLEMA),
F•	 9: Syntetos-Boylan method (SBA).

Formulas describing each of the 9 analyzed methods are given in 
Table 2. To check components of all formulas please refer to sources 
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Table 2. Formulas of the forecasting methods 

Method Formula No./ Source

ARIMA Æ ' 'y c y yt t p t p t t q t q= + + + + + + +− − − −Φ Φ Θ Θ Θ1 1 0 1 1 ε ε ε (1) [33]

SES Æ Æy y yt t t= + −( )− −α α1 11 (2) [33]

Holt
Æy F St t t= +− −1 1 ,     F y F St t t t= + −( ) +( )− −α α1 1 1

S F F St t t t= − + −− −β β( ) ( )1 11
(3) [33]

TES

Æy l b s dt t t
i

T

t m
i

ti
= + + +− −

=
−
( )∑1 1

1
ϕ , l l b dt t t t= + +− −1 1ϕ α ,  b b b dt t t= −( ) + +−1 1ϕ ϕ β , s s dt

i
t m
i

i ti
( )

−
( )= + γ

d dt
i

p

i t
i

q

i t t= + +
=

−
=

−∑ ∑
1

1
1

1ρ θ ε ε
(4) [20]

SMA Æy
m

yt
j k

k
t j=

=−
+∑

1
(5) [33]

EMA Æy
y y y y

t
t t t

n
t n

=
+ −( ) + −( ) +…+ −( )
+ −( ) + −(

− − − − +( )1 2
2

3 11 1 1

1 1 1

α α α

α α )) + −( ) +…+ −( )2 31 1α α n (6) [59]

WMA Æy a yt
j k

k
j t j=

=−
+∑ (7) [33]

ZLEMA Æ Æy
n

y y
n

yt t lag t=
+( )

−( ) + −
+( )









×− −

2
1

2 1 2
11 1 (8) [89]

SBA
Æ ,y Z

P
Z X Zt

t

t
t t t= −






 = + −( )−

−
−1

2
11

1
1

α
α α

P G Pt t t= + −( ) −α α1 1

(9) [18]

given in the last column ( ˆty  is a forecasted value of the variable y in 
the t period).

In the phase 3, after the forecasts according to 9 traditional methods 
are calculated, hybrid models are developed – one based on econo-
metric modeling (hybrid_ECO) and three based on artificial intel-
ligence – Hybrid ANN model (hybrid_ANN), Hybrid SVM model 
(hybrid_SVM) and Hybrid ELM model (hybrid_ELM). Explanatory 
variables set (EXS) is composed of forecasts coming from the 9 tradi-
tional methods (F1-F9). It represents an input to each of the proposed 
hybrid model. 

Hybrid econometric model (hybrid_ECO) can be described by the fol-
lowing expression:

 0 1 1 2 2ˆ ˆ ˆ ,ˆˆt m my F F Fα α α α= + + + +  (10)

where: ˆiα  – parameters, Fi – explanatory variable composed of the 
forecasts. For constructing the hybrid_ECO model the Bayesian 
Schwarz information criterion (BIC) is used to select appropriate sub-
set of explanatory variables from the EXS [1, 68]:

 ( ) ( )2log log .BIC L p n= − +  (11)

where: p – number of model’s parameters, L – the maximized value 
of the likelihood function of the model, n – sample size.

Hybrid ANN model (hybrid_ANN) is developed on the basis of 
neurons, where the output hi  of neuron i is given by the following 
formula [69]:Fig. 1. Algorithm for the forecasting accuracy assessment and optimal meth-

od selection

ˆty

ˆty

ˆty

ˆty

ˆty

ˆty

ˆty

ˆty

ˆty

ˆty

ˆty



Eksploatacja i NiEzawodNosc – MaiNtENaNcE aNd REliability Vol. 23, No. 2, 2021268

 h W x Ti
j

N
ij i i

hidden= +










=

∑σ
1
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where: σ() – the transfer function, N  – the number of input neu-
rons; Wij  – the weights; xj  – inputs to the input neurons, Ti

hidden  – the 
threshold of the hidden neurons. More details on ANN development 
can be found in [21].

Hybrid SVM model (hybrid_SVM) is based on the functional depend-
ence of the dependent variable y on a set of explanatory variables x. The 
relationship between the explanatory variables and ˆty  is given by a de-
terministic function f and the addition of some noise [90]:

 Æ ,y f x noiset = ( ) +  (13)

where x is a set of explanatory variables (x=F1, F2, … , F12). The 
functional form for f which can correctly predict new cases can be 
achieved by training the SVM model on a sample set –  a process 
involving the sequential optimization of an error function (for details 
see [90]). Radial basis function (RBF) will be the kernel type K used 
in the Hybrid SVM model [90]:

 K X X X Xi j i j, ( ),( ) = − −exp γ
2  (14)

where K X X X Xi j i j,( ) = ( ) ⋅ ( )φ φ , ϕ – transformation.

Hybrid extreme learning machine model is based on the algo-
rithm which can be summarized as follows [32]: “given a training set 
ℵ= ( ) ∈ ∈ =…{ }x t x t i Ni i i

n
i

m, , , , ,R R  activation function ( )g x , 
and hidden node number  N ,

Step 1: Randomly assign input weight  iw and bias ib , i=1, …, .N
Step 2: Calculate the hidden layer output matrix H.
Step 3: Calculate the output weight β

 β = H T , (15)

where 1, , 
T

Nt t… =  T ”.
After the hybrid models are developed, the last step of the research 

methodology can be applied – accuracy assessment of estimated fore-
casts for each analyzed method. 

The third phase is finished when 4 forecasts (F10 - F13) from hybrid 
models are computed. The last, fourth phase, is the assessment phase. 
The algorithm allows to compute five types of forecasts accuracy 
measures, namely: mean error (ME), mean absolute error (MAE), 
root mean squared error (RMSE), relative forecast error ex post (I) 
and coefficient of determination (R2), yet in the proposed methodol-
ogy, the selection of the most accurate forecasting method is based on 
the value of I. Therefore, the best model is the one with the lowest I. 
Relative forecast error ex post I is given by the formula:
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In case of models with equal I, as the most accurate will be considered 
the one with the highest coefficient of determination R2 , which can be 
defined as follows:
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According to the presented approach, the calculations are over 
when  the algorithm computes all the accuracy measures in all loops 
for the 13 considered methods (9 traditional and 4 hybrid) and – ac-
cording to the above-mentioned rule  – indicates the most effective 
method for the given forecasting aim. The proposed algorithm de-
veloped in R language is very flexible – it can be easily adjusted by 
adding other forecasting methods or – if necessary – more accuracy 
measures. It can serve as a supporting tool in the decision-making 
process of manufacturing companies trying to select the most appro-
priate forecasting method. It can also be considered as an approach 
supporting the transformation process of Industry 4.0 implementation 
in industrial factories. According to Bożejko et al., nowadays,  in the 
ERP systems supporting the management, “particularly important are 
numerically efficient methods and algorithms for solving the new op-
timization problems derived from real manufacturing systems which 
constitute “intelligent engines” for these support systems” [11]. What 
is more, they are considered as critical for the production efficiency 
of large manufacturing companies. The proposed algorithm can be 
integrated into such support systems.

The further research discussed in this paper will be carried out ac-
cording to the methodology presented in this chapter. It will be applied 
to 3 case studies and the calculations will be performed on real data 
from the manufacturing companies. In order to exemplify manufactur-
ing areas, which will be considered in the practical part of this paper, the 
model of the manufacturing system was developed (Fig.  2). 

Fig. 2. Manufacturing system model

According to Caggiano a manufacturing (production) system can 
be defined as “an organization in the manufacturing industry for the 
creation of production. In the mechanical and electrical engineer-
ing industries, a manufacturing system, in general, has an integrated 
group of functions, e.g., the sales, design, production, and shipping 
functions”[14]. The case studies presented in the next chapter ad-
dress three areas of the manufacturing system – production planning, 
maintenance and quality control. They are schematically presented 
in Fig. 2. 

4. Performance assessment of the hybrid models – real 
data analysis

4.1. Forecasting in manufacturing systems – case studies
As presented in the Introduction, forecasting in manufacturing sys-

tems plays a very important role. In this chapter three case studies refer-
ring to particular areas of the manufacturing system will be addressed 
– production planning, maintenance, and quality control. The Author’s 
intention was to apply the hybrid models to datasets coming not only 
from different areas of the production system, but also from different 
manufacturing sectors, therefore to verify the proposed models 3 dif-

ˆty
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to unsatisfactory precisions of daily forecasts of demand for selected 
types of furniture (caused by a shortage of available historical data in 
the investigated company), the analysis was carried-out in aggregated, 
monthly terms. 

4.1.2. Maintenance case study
The second case study is related to the forecasting of spare parts 

and consumable materials demand in a copper mine. The details of the 
research concerning this case can be found in [16, 64, 65]. This study 
is related to the aspects of preventive maintenance, which can be de-
fined as: “maintenance executed at predetermined intervals or accord-
ing to prescribed criteria, aiming to reduce the probability of failure 
or the probability that an item will only fulfill its functions to a lim-
ited extent (degradation of functioning)”, where an item is “any part, 
component, devise, subsystem, functional unit, equipment, or system 
that can be individually considered. Failure is regarded as the termina-
tion of the ability of an item to perform an action as required” [71]. 
Predictive maintenance “helps to avoid downtimes due to unexpected 

failures during the production proc-
ess” [22]. When investigating differ-
ent sectors of economy, it can be ob-
served that in particular enterprises 
from underground mining are char-
acterized by very high failure rates 
of machines [43]. The main reasons 
for that are the very specific working 
environment characterized by high 
temperatures, high humidity and poor 
road conditions. What is more, min-
ing machines are almost constantly 
in motion. Besides, the complexity of 

these machines and the high loads to which they are subjected im-
pose very strict requirements on their reliability and maintenance [12, 
27]. Mining processes are unstable and cost-intensive, which makes 
that controlling them very difficult [82]. Hence the aspect of accurate 
spare parts demand forecasting is essential because it directly influ-
ences the availability of machines and their maintenance processes. 
“When a critical part is requested and not available in stock, the com-
pany is not able to perform the maintenance operation in time. This 
could jeopardize a client’s productivity, causing time delays and high 
costs” [78]. It is also worth mentioning that according to Chen et al. 
“in practice, the forecast and inventory planning of service parts depend 
on accurate predictions of product failure rates” [15].

For the purpose of this paper real data from the underground copper 
mine were used. The data were gathered within the research project 
“Adaptation and Implementation of Lean Methodology in Copper 
Mines” co-financed by the Polish National Centre for Research and 
Development. To assess the forecasting accuracy of the proposed in 
this study hybrid models in maintenance area 4 datasets were selected, 
namely: demand for brake pump, actuator, hydraulic oil and diesel 

ferent companies were selected and addressed. The idea behind this 
approach was to check if the developed algorithms are versatile and 
comprehensive enough to meet forecasting challenges from various 
industries.

4.1.1. Production planning case study
The first case study is related to the forecasting of a product de-

mand in a furniture factory. The details of the research concerning this 
case can be found in [66]. The main problem in the addressed com-
pany, which sells its products mainly via Internet, was to develop a 
new manufacturing system that would allow to increase effectiveness 
and production volume, reduce delivery time to 48 hours (in the online 
sales channel) and to compute more accurate sales forecasts, which, 
in turn, would result in more efficient production planning. Develop-
ment of the manufacturing system answering all these challenges was 
a demanding and a complex task. While constructing the concept of 
the expected system, several research questions were raised, namely: 
(1) how the sales level can be predicted, if the company did not have a 
sufficient and reliable database; (2) how in such circumstances a set of 
explanatory variables can be prepared, (3) how to control the manufac-
turing process if the demand was very diversified – series production 
and individual, customized orders; (4) how to develop production strat-
egy for various product types; and last but not least, (5) how to verify, if 
the proposed system was immune to disturbances. The answers to these 
questions were addressed in [66]. In this paper however, only selected 
aspects will be tackled – particularly – how to select the right fore-
casting method and how to assure the most accurate forecasts to given 
datasets. Due to the reason that “future demand plays a very important 
role in production planning and inventory management, fairly accu-
rate forecasts are needed” [26]. What is more, “in the customization 
processes, it is important to keep the manufacturing system reliable, 
therefore, a prognostic method is essential” [73]. For the purpose of this 
study 5 datasets were investigated – the basic information about them 
contains Table 3. Moreover, for each product a box plot (Fig. 3) and a 
histogram (Fig. 4) were developed.

Fig. 3. Box plots of products A-E

In order to verify the accuracy of the proposed in this paper hy-
brid forecasting models and compare their effectiveness with other 
methods, 5 types of products were investigated (Products A-E). Due 

Table 3. Production planning case study – summary of the datasets

No. Product Unit n Demand 
type Expected result: Forecasted value of variable y

1 Product A piece 23 monthly Expected monthly demand for product A (e.g. 10 pieces)

2 Product B piece 23 monthly Expected monthly demand for product B (e.g. 20 pieces)

3 Product C piece 23 monthly Expected monthly demand for product C (e.g. 30 pieces)

4 Product D piece 23 monthly Expected monthly demand for product D (e.g. 15 pieces)

5 Product E piece 23 monthly Expected monthly demand for product E (e.g.   5 pieces)

Fig. 4. Histograms of products A-E
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oil. The basic information about the investigated cases is presented in 
Table 4, Fig. 5 (box plots) and Fig. 6 (histograms).

Spare parts demand is very hard to predict – it is characterized by 
the large degree of uncertainty and by unpredictable fluctuations. This 
type of demand is often classified as lumpy, which can be defined as 
“a demand with great differences between each period’s requirements 
and with a great number of periods with zero requests” [23] or as 
intermittent, which means that this demand “is characterised by vari-
able demand sizes coupled with irregular demand arrivals, with many 
observations having zero demand”[57]. An in-depth literature review 
on the spare parts demand forecasting can be found in works by Bac-
chetti and Saccani, who discuss spare parts classification and demand 
forecasting for stock control [7], Van Horenbeek et al., who present a 
review on joint maintenance and inventory optimization systems [79], 
Rego and Mesquita, who have developed a literature review on spare 
parts inventory control [61], and De Gooijer and Hyndman, who have 
investigated and described 25 years of time series forecasting [19]. An 
accurate forecasting of spare parts demand is very challenging – usu-
ally obtained predictions are characterized by large errors. Therefore, 
forecasting in maintenance area is especially hard, yet at the same 
time very important. It is worth mentioning that the management of 
spare parts is considered to be of the most neglected areas of manage-
ment whereas its meaning cannot be overemphasized [24, 65]. 

4.1.3. Quality control case study
The third case study addressed in this paper was focused on the 

forecasting of defects. The data which was used in order to assess 
the forecasting accuracy of the proposed in this paper hybrid models, 
came from an industrial company which manufactured ceramic insu-
lators. In this example the main challenge was to develop an efficient 

solution supporting process control in production of ceramic insula-
tors to ensure the desired product quality. The details of this study can 
be found in [40]. The goal of this research was to find a correlation 
between grain-size distribution of aluminum oxide and the number of 
quality defects. It was assumed that it was possible to control addition 
of raw aluminum oxide (and its graining) to obtain its desired grain-
size composition in the mass and thus to reduce to acceptable level the 
number of insulators’ defects, namely: (1) cracks (on bodies, on sheds, 
on face surfaces and in holes), (2) twists and (3) disturbed structure. 
In this research 2 datasets from 2 different periods were investigated – 
their summary is presented in Table 5. What is more, for each dataset 
a box plot (Fig. 7) and a histogram (Fig. 8) were developed.

In this case study the forecasted variable y is an expected monthly 
level of defects. The challenge in this case was to create effective 
models (model A based on the first data set, model B based on the 
second data set) enabling accurate forecasting of the level of defects. 
For the purpose of this study the explanatory variables were ignored and 
only dependent variable was investigated. It is expected that the analyzed 
level of defects should be easily forecasted and controlled. It should be 
underlined that the precise defects forecasting is one of the pillars of the 
effective quality control.

4.2. Accuracy assessment of the hybrid models 
According to the research methodology presented in the previous 

chapter, computations were carried out in R language. The scope of a 
parameter was set from 2 to 7, which means that the algorithm com-
puted 6 loops for each dataset. In total 11 datasets were investigated – 
5 products A-E from production planning case study, 4 datasets from 
maintenance case study (brake pump, actuator, hydraulic oil, diesel 
oil) and 2 datasets from quality control case study. The accuracy as-

Fig. 6. Histograms of investigated spare parts and consumable materials

Table 4. Maintenance case study – summary of the datasets

No. Spare part/ consumable material Unit n Demand 
type Expected result: Forecasted value of variable y

1 Brake pump piece 47 weekly Expected weekly demand for brake pump (e.g. 5 pieces)

2 Actuator piece 52 weekly Expected weekly demand for actuator 
(e.g. 3 pieces)

3 Hydraulic oil litre 248 weekly Expected weekly demand for hydraulic oil 
(e.g. 500 litres)

4 Diesel oil litre 313 weekly Expected weekly demand for diesel oil 
(e.g. 5000 litres)

Fig. 5. Box plots of investigated spare parts and consumable materials

Table 5. Quality control case study – summary of the datasets

No. Dependent variable: Unit n Level of defects Expected result: Forecasted value of variable y

1 level of defects % 21 monthly Expected monthly level of defects (e.g. 2%)

2 level of defects % 22 monthly Expected monthly level of defects (e.g. 4%)
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sessment was performed in two steps – at first analysis based 
on relative forecast error ex post I was done, and secondly 
analysis based on coefficient of determination R2.

For each case study a dedicated table was prepared cover-
ing values of relative forecast error ex post I calculated for 
every analyzed method. Table 6 contains obtained results for 
production planning case study – particular columns repre-
sent products A-E and corresponding values of a parameter 
for which the highest accuracy was obtained (the lowest value 
of I for the most accurate method). In rows all 13 investigated 
methods are listed. The lowest value of I for the most accurate 
method for each product is marked in bold.

Analysis of obtained results in Table 6 shows that in case of 
3 products out of 5 the most accurate method is hybrid_ANN. 
For the products A and E the lowest I were obtained by Hybrid 
forecasting econometric model (hybrid_ECO). In general it can 
be said that for production planning the forecasts from the most 
efficient hybrid models are very accurate – relative forecast er-
rors ex post vary from 11,8% to 16,7%.

Table 7 presents computation results for the maintenance 
case study. There were 4 types of datasets analyzed  – 2 repre-
senting spare parts (brake pump, actuator) and 2 representing 
consumable materials (hydraulic oil, diesel oil). 

The values of a parameter for which the highest accuracy 
was obtained for particular cases are following: a=6 for brake 

Table 6. Relative forecast error ex post for production planning case study

Method

Production planning

Product A Product B Product C Product D Product E

a=4 a=2 a=5 a=6 a=7

ARIMA 0,374 0,271 0,399 0,353 0,421

SES 0,504 0,281 0,445 0,379 0,458

Holt 0,433 0,282 0,445 0,365 0,422

TES 0,343 0,270 0,437 0,338 0,311

SMA 0,385 0,258 0,466 0,360 0,535

EMA 0,414 0,272 0,436 0,369 0,490

WMA 0,408 0,262 0,440 0,352 0,472

ZLEMA 0,486 0,322 0,443 0,377 0,419

SBA 0,608 0,611 0,489 0,443 0,600

hybrid_ECO 0,118 0,226 0,292 0,242 0,155

hybrid_ANN 0,446 0,161 0,142 0,167 0,316

hybrid_SVM 0,289 0,206 0,258 0,271 0,276

hybrid_ELM 0,216 0,193 0,303 0,219 0,165

Table 7. Relative forecast error ex post for maintenance case study

Method

Maintanance

Brake pump Actuator Hydraulic oil Diesel oil

a=6 a=7 a=2 a=6

ARIMA 0,887 0,819 0,282 0,183

SES 1,160 1,052 0,315 0,211

Holt 1,061 0,971 0,298 0,207

TES 0,825 0,821 0,282 0,182

SMA 0,949 0,886 0,302 0,201

EMA 0,965 0,878 0,301 0,194

WMA 0,971 0,892 0,306 0,199

ZLEMA 1,099 0,994 0,407 0,222

SBA 0,900 1,301 0,539 0,197

hybrid_ECO 0,815 0,768 0,284 0,180

hybrid_ANN 0,260 0,550 0,263 0,157

hybrid_SVM 0,635 0,638 0,266 0,174

hybrid_ELM 0,731 0,744 0,280 0,180

Table 8. Relative forecast error ex post for quality control 
case study

Method

Quality control

No. of defects A No. of defects B

a=4 a=3

ARIMA 0,300 0,333

SES 0,288 0,314

Holt 0,300 0,308

TES 0,292 0,265

SMA 0,327 0,319

EMA 0,292 0,299

WMA 0,300 0,309

ZLEMA 0,323 0,326

SBA 0,334 0,367

hybrid_ECO 0,242 0,168

hybrid_ANN 0,146 0,151

hybrid_SVM 0,217 0,260

hybrid_ELM 0,251 0,223

Fig. 7. Box plots presenting levels of defects [%] – datasets A and B Fig. 8. Histograms presenting levels of defects – datasets A and B
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pump, a=7 for actuator, a=2 for hydraulic oil and a=6 for diesel oil. 
In maintenance case study the lowest values of relative forecast errors 
ex post were obtained by hybrid_ANN models, which delivered the 
most accurate forecasts. Analogous to the production planning and the 
maintenance case studies, the calculations were performed in terms of 
the quality control example. The obtained results are presented in Ta-
ble 8. In this research only 2 cases were investigated – level of defects 
based on 2 datasets (A and B).

For both analyzed datasets, the most accurate method of forecast-
ing level of defects turned out to be Hybrid forecasting ANN model 
(I = 14,6% for dataset A, I = 15,1% for dataset B). Other investigated 
methods were less accurate.

In order to assess the accuracy of the analyzed forecasting methods 
in terms of particular manufacturing system’s areas, an average rela-
tive forecast error ex post was computed in percentage terms for each 
case study separately. Table 9 contains the obtained results. The aver-
age I values were divided into three groups:

accurate forecasts: • I ≤ 25% (results marked in bold);
moderately accurate forecasts: 25% <• I <50% (results marked 
in   light grey ); 
not accurate forecasts: • I ≥ 50% (results marked in  dark grey ).

An analysis of obtained results leads to several conclusions. First 
of all it can be noticed that only in 2 manufacturing areas accu-
rate forecasts were obtained – in production planning and in quality 
control. In case of maintenance all methods provided either mod-
erately accurate forecasts (for the proposed artificial intelligence 
based hybrid models: 31% ≤ I ≤ 48%) or not accurate forecasts at all 
(all the other 10 investigated methods). In production planning only 
Hybrid forecasting econometric model (average I = 21%), Hybrid 
forecasting ANN model (average I = 25%) and Hybrid forecasting 
ELM model (average I = 22%) provided satisfactory results – the 
obtained I was not higher than 25%. Among conventional forecast-
ing methods SBA turned out to be not accurate, whereas the other 
methods can be classified as moderately accurate. In quality control 
all the four proposed hybrid models (hybrid_ECO, hybrid_ANN, 
hybrid_SVM, hybrid_ELM) provided accurate forecasts (average 
I did not exceed 24%). Other analyzed methods – ARIMA, SES, 
Holt, TES, SMA, EMA, WMA, ZLEMA, SBA – occurred to gener-
ate moderately accurate forecasts.

In order to assess the accuracy of the four proposed hybrid models 
in comparison to 9 other researched forecasting methods an average I 
was computed (in percentage terms) and presented in Fig. 9.

The average I was computed from 11 investigated datasets for each 
method separately. Obtained results show that the proposed in this 
paper hybrid models deliver much more precise forecasts in compari-
son to other researched methods. The accuracy of estimated forecasts 
from hybrid models is significantly higher. An analysis of efficiency 
of other methods leads to a conclusion that for investigated cases they 
seem to be not effective. 

The second part of the accuracy assessment was based on R2. The 
analysis was performed analogous to the above presented. For each 
case study a dedicated table was prepared with values of coefficient 
of determination computed for every analyzed method. Table 10 con-
tains obtained results for production planning case study – particular 
columns represent products A-E and corresponding values of a param-
eter for which the highest accuracy was obtained (the highest value of 
R2 for the most accurate method). In rows all 13 investigated methods 
are listed. The highest value of R2 for the most accurate method for 
each product is marked in bold.

Analysis of obtained results shows that in case of 3 products out 
of 5 the most accurate method is Hybrid forecasting artificial neural 
network – R2 in percentage terms is equal respectively for product B 
93,0%, for product C 88,2%, for product D 77,1%. For product A and 
E the highest R2 was obtained by hybrid_ECO models (R2 = 91,3%,  
R2 = 92,7%). These results confirm the conclusion derived from  

Table 10. Coefficient of determination for production planning case study

Method

Production planning

Product 
A

Product 
B

Product 
C

Product 
D

Product 
E

a=4 a=2 a=5 a=6 a=7

ARIMA 0,278 0,837 0,110 0,005 0,520

SES 0,024 0,820 0,119 0,002 0,447

Holt 0,087 0,823 0,118 0,006 0,486

TES 0,306 0,824 0,106 0,072 0,740

SMA 0,207 0,852 0,045 0,018 0,410

EMA 0,125 0,819 0,075 0,008 0,496

WMA 0,143 0,844 0,086 0,009 0,488

ZLEMA 0,042 0,737 0,185 0,016 0,537

SBA 0,232 0,452 0,014 0,002 0,498

hybrid_ECO 0,913 0,852 0,484 0,373 0,927

hybrid_ANN 0,406 0,930 0,882 0,771 0,710

hybrid_SVM 0,555 0,885 0,633 0,272 0,836

hybrid_ELM 0,710 0,892 0,446 0,487 0,917

Table 9. Comparison of the forecasting methods accuracy based on I

Average relative forecast error ex post

Method Production  
planning Maintanance Quality  

control

ARIMA 36% 54% 32%

SES 41% 68% 30%

Holt 39% 63% 30%

TES 34% 53% 28%

SMA 40% 58% 32%

EMA 40% 58% 30%

WMA 39% 59% 30%

ZLEMA 41% 68% 32%

SBA 55% 73% 35%

hybrid_ECO 21% 51% 21%

hybrid_ANN 25% 31% 15%

hybrid_SVM 26% 43% 24%

hybrid_ELM 22% 48% 24%

Fig. 9. Average relative forecast error ex post for analyzed methods
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I analysis – it can be stated that for production planning the forecasts 
from hybrid models are accurate  – in case of all investigated products 
R2 exceeded 77%.

Table 11 presents computation results for maintenance case study, 
in which 4 types of datasets were analyzed.

In maintenance case study the highest values of R2 were again ob-
tained by hybrid models – in 3 out of 4 cases Hybrid forecasting ANN 
model delivered the most accurate forecasts – R2 in percentage terms 
reached respectively: 91,4% for brake pump, 82,0% for hydraulic 
oil, and 66,8% for diesel oil. In the case of the actuator the hybrid_
SVM model turned out to be the most effective forecasting method  
(R2 = 74,3%). 

Next, the calculations for quality control example were applied. 
The obtained results are presented in Table 12. As mentioned before, 
in this research only 2 cases were investigated – level of defects based 
on dataset A and level of defects based on dataset B.

The obtained values of R2  confirm the results based on I analysis 
– for both datasets the most accurate method of forecasting level of 
defects turned out to be Hybrid forecasting ANN model (R2 = 80,8% 
for dataset A and R2 = 85,1% for dataset B).

Assessment of the accuracy of the analyzed forecasting methods 
in terms of particular manufacturing system’s areas, was based on 
average R2  (in percentage terms) calculated for each case study 
separately. Table 13 contains the obtained results. The average R2 
values were divided into three groups:
accurate forecasts: • R2 >70% (results marked in bold);
moderately accurate forecasts: 61% ≤ • R2 ≤ 70% (results marked 
in   light grey ); 
not accurate forecasts: • R2 ≤ 60% (results marked in  dark grey ).

An analysis of average R2 values shows that accurate forecasts 
were obtained in each analyzed manufacturing system area: 
in production planning (hybrid_ECO: R2 = 71%, hybrid_ANN:  
R2 = 74%), in maintenance (hybrid_ANN: R2 = 74%) and in quality 
control (hybrid_ANN: R2 = 83%). In case of maintenance example 
– apart from hybrid_ANN and  hybrid_SVM (moderately accurate 
forecasts) all the other 11 investigated methods provided not accu-
rate forecasts. In production planning hybrid_SVM and hybrid_ELM 
delivered moderately accurate forecasts, whereas all the other meth-
ods  can be assessed as not accurate. In quality control, apart from 
hybrid_ANN, which turned out to provide accurate forecasts,  two 
methods can be classified as moderately accurate (hybrid_ECO and 
hybrid_SVM), whereas other investigated methods – ARIMA, SES, 
Holt, TES, SMA, EMA, WMA, ZLEMA, SBA – brought not satis-
factory results. On the basis of these results it can be concluded that 
hybrid models can be more efficient forecasting tools in the areas of 
production planning and quality control, than in maintenance, where 
the accurateness of the proposed hybrid methods is lower. 

In order to assess the accuracy of the four proposed hybrid models 
in comparison to 9 other researched forecasting methods an average 
R2 was computed (in percentage terms). The average R2 was calculated 
from 11 investigated datasets for each method separately (Fig. 10).

The obtained values of average R2 show that the proposed hybrid 
models provide significantly more accurate forecasts in comparison to 
the other  9 researched methods. The average R2 in percentage terms 
in case of hybrid_ECO equals 59%, in case of hybrid_ANN 76%, in 
case of hybrid_SVM 66% and in case of hybrid_ELM 58%, whereas 

Table 11. Coefficient of determination for maintenance case study

Method

Maintanance

Brake pump Actuator Hydraulic oil Diesel oil

a=6 a=7 a=2 a=6

ARIMA 0,231 0,561 0,794 0,549

SES 0,001 0,000 0,753 0,461

Holt 0,007 0,001 0,776 0,463

TES 0,156 0,020 0,794 0,562

SMA 0,039 0,001 0,768 0,469

EMA 0,021 0,000 0,770 0,502

WMA 0,022 0,000 0,764 0,482

ZLEMA 0,010 0,003 0,639 0,417

SBA 0,011 0,022 0,618 0,489

hybrid_ECO 0,156 0,121 0,788 0,562

hybrid_ANN 0,914 0,573 0,820 0,668

hybrid_SVM 0,639 0,743 0,817 0,592

hybrid_ELM 0,321 0,175 0,796 0,567

Table 12. Coefficient of determination for quality control 
case study

Method

Quality control

No. of defects A No. of defects B

a=4 a=3

ARIMA 0,337 0,343

SES 0,342 0,379

Holt 0,283 0,384

TES 0,292 0,637

SMA 0,168 0,401

EMA 0,280 0,493

WMA 0,262 0,415

ZLEMA 0,354 0,418

SBA 0,155 0,540

hybrid_ECO 0,455 0,814

hybrid_ANN 0,808 0,851

hybrid_SVM 0,579 0,678

hybrid_ELM 0,416 0,674

Table 13. Comparison of the forecasting methods accuracy based on aver-
age R2

Average coefficient of determination

Method Production 
planning Maintanance Quality control

ARIMA 35% 53% 34%

SES 28% 30% 36%

Holt 30% 31% 33%

TES 41% 38% 46%

SMA 31% 32% 28%

EMA 30% 32% 39%

WMA 31% 32% 34%

ZLEMA 30% 27% 39%

SBA 24% 29% 35%

hybrid_ECO 71% 41% 63%

hybrid_ANN 74% 74% 83%

hybrid_SVM 64% 70% 63%

hybrid_ELM 69% 46% 54%
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for the other methods R2 reached only 41% (ARIMA, TES) or less. 
The least efficient turned out to be conventional time series forecast-
ing methods, namely: SES, Holt, SMA, EMA, WMA, ZLEMA and 
SBA – R2 did not reach 34%.

5. Conclusions
The main aim of the paper was to propose the new artificial in-

telligence-based hybrid forecasting models and assess their accuracy 
in comparison to traditional techniques. The analysis was performed 
based on the assumption that the access to explanatory (independent) 
variables was not possible – lack of corresponding data. The results of 
the study were satisfactory – the analysis of the forecasting accuracy 
of the new hybrid models (hybrid_ECO, hybrid_ANN, hybrid_SVM, 
hybrid_ELM ) showed that they are more precise than other inves-
tigated methods, namely: ARIMA, SES, Holt, TES, SMA, EMA, 
WMA, ZLEMA and SBA. Obtained values of the relative forecast 
errors ex post I and the coefficients of determination R2 proved that 
hybrid models proposed in this paper are significantly more accurate 
than the rest of the methods. Moreover,  the study fills in the literature 
gap on application of hybrid forecasting in manufacturing systems. 
According to the presented research methodology, the proposed mod-
els were verified on real data from the three areas of the manufactur-
ing system – production planning, maintenance and quality control. 
The investigated case studies showed that the proposed hybrid models 
can serve as efficient forecasting tools in manufacturing companies. 
The obtained forecasting results were especially satisfactory in terms 
of production planning and quality control. The accuracy of predic-
tions in maintenance was acceptable, yet less efficient than in two oth-
er investigated areas of the manufacturing system. Bearing in mind, 
however, that the analyzed demand was lumpy and intermittent, the 
obtained results were sufficient. In general conventional time series 
forecasting methods were ineffective in the researched areas of the 
manufacturing system.

Results of the literature review showed also that although an in-
creasing number of scientific papers is focusing on the development 
of the hybrid forecasting models, the majority of them is combining 
only a few methods (usually two or three). The distinguishing feature 
of the proposed hybrid models is that each of them combines in total 
10 methods. This approach also helps to solve a common problem 
in manufacturing companies which is related to the limited access to 
appropriate data. The preparation of the right set of potential explana-
tory variables is sometimes impossible due to the lack of available, 
reliable, complete and comparable statistical data. Due to this reason 
the companies cannot use the forecasting methods based on the inde-
pendent variables. The proposed hybrid models solve this problem.

What is more, in the paper, the algorithm for the forecasting accu-
racy assessment and optimal method selection was introduced. It can 
serve not only as an efficient and costless tool for advanced manu-
facturing companies willing to select the right forecasting method for 
their particular needs, but also as an approach supporting implemen-
tation of Industry 4.0 technologies and transformation towards smart 
factories. It is an important and required solution as still many manu-
facturing companies are facing the challenge of transformation from 
the so-called 3rd to the 4th industrial revolution. 

The presented case studies showed that the accurate forecasts can 
efficiently support production planning, quality control and main-
tenance management, through: (1) controlling the product quality 
parameters, (2) making a manufacturing process more flexible, (3) 
reducing failures and (4) elimination of root causes of defects. In con-
sequence, thanks to improved forecasts, the manufacturing companies 
can reduce their inventory, increase inventory turns and improve order 
indicators, which brings significant savings and leads to lower costs, 
increased revenues and thus influences profitability. 

The future research will focus on the further development of the al-
gorithm for the forecasting accuracy assessment and optimal method 
selection – it is planned to add more prediction methods. The pro-
posed hybrid models will be tested on more real datasets from a wider 
range of manufacturing applications. It is also planned to optimize the 
models parameters, so that the obtained forecasts are as accurate as 
possible. Further works include also studies on the implementation of 
the algorithm to a comprehensive information system which will be 
an extension of integrated systems currently used in companies (e.g. 
the Enterprise Resources Planning) or as a part of the company inte-
grated management system. What is more, it is planned to develop the 
integration capabilities to form a connection with a range of sensors 
and monitoring equipment so as to collect more accurate machine/
device data directly to the algorithm.

Fig. 10. Average coefficient of determination for analyzed methods
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1. Introduction
The problem of machines and devices assessment is considered 

as one of the most important and relevant reliability analysis issues 
[12, 13, 27, 29]. It is directly related to many aspects of technical 
systems exploitation, including efficiency and sustainability dimen-
sions [16, 18, 19, 22]. The exploitation assessment is also a key com-
ponent of an operational decision-making process as a result of the 
established maintenance policy [28, 37]. One of the most important 
features underlying the construction of the exploitation assessment 
models is reliability. In recent years, more and more engineers and 
statisticians have acquired and processed degradation data through the 
measurement of performance parameters of several products in order 
to predict their reliability. Mathematical and other solutions built on 
the basis of the reliability methodology are still up-to-date [22, 41], 
especially when it is necessary to take into account a particular degree 
of uncertainty [22, 38, 46]. 

The key element to increase the reliability and performance of me-
chanical devices is the structural reliability analysis. The contempo-
rary complexity of machines and devices still makes it a big challenge 
for both scientists and practitioners. Because of a very large number 
of calculations required for assessing small failure probabilities, this 

is a labor-intensive and time-consuming process [30]. Design and op-
erational parameters of mechanical elements of devices due to the ef-
fects of environmental changes are often uncertain. According to [10], 
different typologies of uncertainty and analysis, methods for reliabil-
ity can be divided into two main categories: time-variant and time 
invariant methods. Therefore, the analysis of machines and devices 
reliability is focused on the identification and evaluation of various 
types of uncertainty, their effects and the assessment of the probability 
of a component failure [38]. 

These research challenges appear when spool valves are taken into 
consideration as an example of a mechanical element. Spool valve is 
a basic part in a hydraulic system, where reliability has a significant 
influence on the entire system [35]. The reciprocating sliding opera-
tions result in the inevitable wearing of a spool and sleeve, which 
leads to leakage in the sealing and eventually causes the failure of the 
sealing [25]. The wear degradation was investigated by Liu et al [26] 
and Yang et al [43]. In these studies, the failure is caused by the wear 
volume exceeding the threshold. Various degradation models have at-
tracted the attention of researchers all over the world [33]. Gorjian 
et al [15] and Shahraki et al [32] reviewed various degradation mod-
els in a reliability analysis. Moreover, in the work [8], a probabilistic 
method based on a stochastic differential calculation for the reliability 

In the reliability analysis of a sealing structure, radial clearance of the contact surface is usu-
ally regarded as a failure criterion, and the sample size is usually quite small, which brings 
great challenges to uncertainty quantification. Therefore, this paper proposes a reliability 
analysis method based on the leakage mechanism of the sealing. With the application of 
dynamic interval, the proposed method can be used to deal with problem of degradation in 
small sample to evaluate reliability. Moreover, the dynamic reliability with the mixture of 
the probabilistic and non-probabilistic variables can be obtained using the proposed method. 
An illustrative numerical case study of a spool valve is conducted in order to validate the 
proposed method and the implemented reliability sensitivity analysis. The proposed method 
is of great help in evaluating and predicting reliability with small degradation sample and 
hybrid uncertainties.
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assessment of structural components is defined. Andrieu-Renaud et al 
[1] developed a method known as PHI2, based on a cross approach 
that solves reliability problems using classic time-invariant reliability 
tools. In the aspect of a modern performance-based design, Au and 
Beck [2] implemented Subset Simulation (SS) to evaluate the per-
formance of structures. The SS method, for the assessment of small 
failure probabilities, was also used by Bourinet et al [5] in the ap-
proach referred as 2SMART.

As a matter of fact, the failure of the sealing of a spool valve is 
caused by internal leakage [31], whose mechanism shall be taken into 
account in order to conduct the reliability analysis [11]. The leakage 
between contacting surfaces in valves is likely to be influenced by the 
direction of the surface anisotropy or lay [3, 23]. A quantitative multi-
scale analysis of the surface morphology or curvature are considered 
as valuable tools for elucidating changes in the anisotropy caused by 
processing, and for the performance indication including sealing, lu-
brication, and friction [4].

The existence of degradation brings the issue of time-variant reli-
ability [25], which indicates that the reliability of the seal varies with 
a task. In practice, the wear data is usually hard to measure [1] and the 
observed data is often insufficient to quantify the uncertainty using a 
probabilistic approach [42]. Therefore, the interval method is applied 
to deal with the problem of a small sample [20]. In order to solve this 
problem, Liao et al [24] built a reliability model of aviation seal with 
an interval method. The interval method is able to quantify the uncer-
tainty with limited data, and has been eagerly wildly applied in the 
field of epistemic uncertainty and non-probabilistic reliability. Kang 
et al [21] proposed belief reliability as a reliability metric under the 
epistemic uncertainty. You et al [45] presented a novel structural reli-
ability analysis method with fuzzy random variables. Besides, more 
than one type of uncertainties exist due to the interval and random 
variables [36]. Hence, the reliability modelling with the hybrid un-
certainty has become another research focus in recent years [6, 17]. 
Moreover, Wang [39], according to [40, 47], defined a hybrid reliabil-
ity analysis (HRA) as a task that quantifies two types of uncertainties, 
and as a core one in the structural reliability research. Chakraborty 
et al [7] analyzed structural probabilistic safety under the hybrid un-
certainty. Sun et al [34] built the time-variant reliability model using 
the hybrid non-probability method. Jiang et al [20] reviewed several 
main research directions in the probability-interval hybrid uncertainty 
analysis, and provided an outlook for the potential research aspects. 
A Bayesian approach for a sealing failure analysis was presented in 
[44], where the radial clearance height was regarded as a failure crite-
rion, and where the observed data was assumed to follow the gamma 
distribution. 

However, in the reliability analysis of the sealing, a performance 
function shall be established based on a leakage mechanism. The 
sample of degradation data is usually very small, and the existing re-
search cannot solve the problem of a small sample with degradation. 
Therefore, this paper proposed a physics of a failure-based reliability 
analysis model, where the dynamic interval is applied to deal with the 
issue of degradation in a small sample. The proposed method takes 
a failure mechanism into consideration to build a dynamic reliabil-
ity model, and the reliability is resolved with the hybrid uncertainty 
method. Moreover, an illustrative case study of the sealing in a spool 
valve is conducted to validate the proposed method and to analyse the 
dynamic reliability of the sealing.

2. Dynamic reliability model considering degradation 
and hybrid uncertainty
For the need of the dynamic reliability model design, it’s neces-

sary to introduce an uncertainty process and, next, a dynamic interval 
process. The uncertainty process can be expressed as:

 X t X t t Ti
I( )∈ ( ) ∈{ },  (1)

where: ( )iX t  denotes an interval value at a given time it . For the 
time 1 2, , , nt t t… , the joint distribution region composed of interval 
variables is a hypercube domain. Therefore, the uncertainty process is 
defined as a dynamic interval process [38].

The dynamic interval can be described as a time-variant inter-
val process where an interval changes with time. For the given in-
terval process ( )X t , ( )X t  and ( )X t  denote the upper and lower 
limits, respectively, and the mean function of the interval process is 
expressed as:

 X
X t X tc =
( ) + ( )

2
 (2)

and the radius function is expressed as:

 X
X t X tr =
( ) − ( )

2
 (3)

Once rX  and cX  are obtained, the uncertainty characteristics of 
each specific moment can be determined. The mean and radius func-
tions can be obtained using the fitting methods, such as a linear mod-
el, an exponential model or a stochastic process model. The dynamic 
interval process requires the interval information at each observation 
point, which enables the proposed method to appraise the dynamic re-
liability with very limited data. Furthermore, the fitted curve with the 
observation can be used to predict the reliability in a longer period.

When both the random uncertainty and interval uncertainty exist 
at the same time in a structure, the performance function can be ex-
pressed as:

 Z g X Y= ( ),  (4)

where: ( ) ·g  denotes the function of X  and Y ,
{ }1 2, , , nX X X X= …  denotes independent n-dimensional in-

terval vector,
1 , , 1,2, ,L U

i i i iX X X X i n ∈ = = …  ,

{ }1 2, , mY Y Y Y= …  denotes independent m-dimensional ran-
dom vector.

The structure is considered as reliable with Z>0, and unreliable 
with Z<0. In practice, Z is the difference between the performance 
threshold and performance parameters, which can be expressed as:

 Z P P x x xth n= − …( )1 2, , ,  (5)

where: P x x xn1 2, , ,…( )  is the function of critical performance param-
eters modelled with a failure mechanism of a product,
thP  denotes the performance threshold.

The reliability is expressed as:

 R P g X Y= ( ) >{ }, 0  (6)

The reliability result becomes an interval instead of a probability 
value due to the existence of interval vectors, of which the lower limit  

LR  and upper limit UR  are given by the following equations:
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R P g X YL = ( ) >{ }min , 0

 (7)

 
R P g X YU = ( ) >{ }max , 0

When interval vectors or random vectors are time-dependent, the 
reliability given in (7) becomes a time-variant interval with RL(t) and 
RU(t). In the proposed model, the leakage mechanism of the sealing 
in a spool valve with necessary features is presented to determine the 
reliability.

Fig. 1. Schema of a spool valve and clearance [44]

A typical directional valve is shown in Fig. 1. As discussed in [44], 
an internal leakage is given by the following equation:

 Q P dc
L

= ∆
π 3

12µ
 (8)

where: Q - internal leakage of a spool valve,
P∆  - pressure difference,

d - diameter of a spool valve,
c - radial clearance height,
µ - dynamic viscosity of hydraulic oil,
L - clearance length.

The high frequency of the back and forth sliding movements 
cause the wear of spools and sleeves [14]. The wear will finally 
cause the increase of the clearance and internal leakage exceed-
ing its allowable threshold. Thus, the sealing of the spool valve 
is regarded as a failure. Therefore, according to formula (5), the 
performance function of the sealing is given by:

 Z Q P dc
Lth= − ∆

π
µ

3

12
 (9)

where: thQ  - the threshold of leakage.

For each observation, the maximum and minimum are regarded as 
interval limits:

 c c c S i S in
I L U
i
= 


 = ( )( ) ( )( ) , ,min max  (10)

where:  S(i) - the samples from the thi  observation,
,L Uc c  - interval limits.

Based on the performance function in (9), the reliability can be cal-
culated using the first order second moment (FOSM) method. In this 
circumstance, Z is the function of , , , , ,thQ P d L cµ∆ . Z varies with the 
stroke, which is expressed as:

 Z n g Q P d L c nth( ) = ( )( ), , , , ,∆ µ  (11)

In formula (11), c(n) varies with the stroke and is modelled with 
a dynamic interval process. The reliability decreases monotonically 
with the increase of c. Therefore, the dynamic reliability interval of 
the sealing can be obtained using the following formulas:

 R n P g Q P d L c c c nL
th

U( ) = ( ) > = ( ){ }, , , , ,∆ µ 0  
(12)

 
R n P g Q P d L c c c nU

th
L( ) = ( ) > = ( ){ }, , , , ,∆ µ 0

 

3. Numerical example 
In the case study, the variables , , , ,thQ P d Lµ∆  (9) are regarded 

as random variables, and the distributions of the random variables 
are assumed to be normal, as shown in Table 1. The clearance of the 
spool and sleeve c is usually measurable with a small sample which is 
regarded as an interval variable and described with a dynamic interval 
process.

For the purposes of determining the dynamic interval of clearance, 
the wear volumes are observed per 50,000 strokes. The clearance of a 

Table 1. Random variables in sealing

Parameter Type of distribution Mean Coefficient of variation

thQ Normal distribution 14.54 ml/min 0.03

P∆ Normal distribution 27.50 MPa 0.03

d Normal distribution 7.60 mm 0.03

µ Normal distribution 0.013 kg/(m·s) 0.03

L Normal distribution 0.50 mm 0.03

Table 2. Wear volumes and interval of clearance[44]

Unit
Number of Strokes (10 thousands)

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

Sample1 9 13 25 28 31 35 41 45 49 56 61 63 69 76 81 85 92 96 104 113

Sample2 5 10 17 24 30 39 44 51 58 63 68 76 80 85 93 99 104 108 113 119

Sample3 6 12 18 23 26 30 38 43 49 57 63 70 74 77 84 92 99 101 107 113

Sample4 3 6 17 20 25 33 41 46 54 60 64 69 72 83 89 93 96 100 104 111

Sample5 10 15 19 24 34 43 49 54 61 65 70 74 77 82 84 91 99 103 108 115

Uc 10 15 25 28 34 43 49 54 61 65 70 76 80 85 93 99 104 108 113 119

Lc 3 6 17 20 25 30 38 43 49 56 61 63 69 76 81 85 92 96 104 111
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spool valve of 5 samples is listed in Table 2, followed by the interval 
limits of Lc  and Uc  (10).

With the interval data of clearance, the trend of the upper and lower 
limits can be obtained using the curve fitting method, such as the least 
square method. The functions of Lc  and Uc  vary with the strokes n 
and are fitting curves as:

 
c n nL ( ) = −1 113 2 179. .

 (12)

 
c n nU ( ) = +1 138 6 811. .

where n denotes the number of strokes with a unit of 10 thousand. 
The initial sample data and the fitting curve of limits are depicted in 
Fig. 2.

With the increase of clearance, the internal leakage also ascends 
with the strokes. The leakage also becomes an interval variable due 
to the interval uncertainty of clearance. The limits and mean curves 
are depicted in Fig. 3. With the stroke of the spool valve increase, the 
internal leakage gets closer to a failure criterion, which will cause the 
descending of the sealing reliability.

The sealing reliability from the discrete interval and fitting dy-
namic interval of c  are depicted according to (12) in Fig. 4.

It can be concluded from the performance function that , P d∆  and 
c have a negative effect on the reliability of the sealing, while ,thQ µ  
and L have a positive effect. In addition, the variation of all the pa-
rameters in the spool valve will also influence the reliability trend of 
the sealing.

In order to compare the differences caused by the variation of the 
parameters, dynamic curves with various coefficients of the variation 
are depicted in Fig. 5. It can be seen from the curves in Fig. 5 that 
with the increase of the variation, the reliability of the sealing will 
decrease earlier with a lower terminal point. Therefore, it is suggested 
that the inconsistency and uncertainty shall be reduced to obtain a 
longer lifetime with higher reliability. It can be seen from the curves 
in Fig. 5 that with the increase of the variation, the reliability of the 
sealing will decrease earlier with a lower terminal point. Therefore, it 
is suggested that the inconsistency and uncertainty shall be reduced to 
obtain a longer lifetime with higher reliability.

As it was mentioned above, the proposed method enables the reli-
ability prediction with less data. Therefore, the first 15 observed data 
in Table 2 was used to build a dynamic reliability model with the 
proposed method. Additionally, the reliability curves with less obser-
vations and full observations are depicted in Fig. 6.

Fig. 3. The trend of internal leakage

Fig. 5. Dynamic reliability with various coefficients of the variation

Fig. 2. Sample data of clearance and fitting limits

Fig. 4. Dynamic reliability of the sealing varies with the stroke
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As shown in Fig. 6, the predicted reliability is basically consistent 
with the evaluated reliability., The numerical comparison results are 
listed in Table 3. 

The last 5 groups of the data (observed at 80 to 100) in Table 2 are 
used to verify the proposed method. The relative error at each obser-
vation point is very small. It can be seen from the comparison in Table 
3 that the predicted reliability limits with partial data are quite close to 
the evaluated limits with full data, revealing that the proposed method 
is very efficient in predicting the reliability limits with the insufficient 
observed data.

4. Conclusions
This paper proposed a failure-based reliability analysis method for 

sealing. In the reliability analysis of sealing, the allowable leakage is 
regarded as a failure criterion. The proposed method takes a failure 
mechanism of sealing into consideration and establishes a perform-
ance function of sealing with an explicit expression with which the 
sensitivity of different variables can be easily obtained. Besides, a 
dynamic interval is adapted to deal with the issues of a small sample 
degradation. The reliability can be evaluated with the hybrid uncer-
tainty method. The obtained reliability result becomes two boundary 
curves instead of one reliability curve due to the existence of both 
interval variables and random variables.

The proposed method can be used to predict the wear interval in 
sealing with small sample and hybrid uncertainties, and the reliabil-
ity can be evaluated and predicted with limited observation data. The 
operators can make dependable maintenance decision with the reli-
ability trend curve, thus replacing the sealing when reliability drops 
to a certain level.

Moreover, an illustrative case study is conducted to verify the pro-
posed method, where the data in [44] is applied to build a dynamic 
reliability model. The method proposed in this paper is more con-
cise and confident under the circumstance of only a small amount 

of data than that with the gamma process 
and Bayesian estimation. Furthermore, it 
is verified if the proposed method can be 
used to predict the reliability with high pre-
cision in case of partial data, as well as to 
evaluate the reliability with a reasonable 
interval result in case of full data. The fol-
lowing can be concluded from the previous 
discussions:

    The proposed method can deal with the 1. 
problem of degradation with a small sam-
ple, which is common in many engineer-
ing practices. The dynamic interval process 
can be applied to quantify the dynamic un-
certainty with insufficient data.

    A failure mechanism shall be taken into 2. 
account when establishing the performance function. The influ-
ences and sensitivity of different parameters can be obtained eas-
ily with an explicit expression.
The hybrid uncertainty problem is transformed into the probabil-3. 
istic reliability in the proposed method, with which the reliability 
boundary curves can be obtained.
Compared with the approach of the reliability analysis in [44], the 4. 
proposed method has the advantage of simplicity and credibility 
without any subjective hypothesis for the observed data.

Table 3. The predicted and evaluated reliability

Items
Number of Strokes (10 thousand)

80 85 90 95 100

Predicted upper limits 0.9998 0.9970 0.9774 0.9125 0.7894

Evaluated upper limits 0.9999 0.9980 0.9899 0.9143 0.7548

Relative Error 0.01% 0.10% 1.2% 0.19% 4.5%

Predicted lower limits 0.9726 0.8968 0.7598 0.5931 0.4366

Evaluated lower limits 0.9739 0.9143 0.8323 0.6984 0.5270

Relative Error 0.13% 1.9% 8.7% 15% 17%

Fig. 6. Comparison between the predicted reliability curves and the evaluated 
reliability value
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1. Introduction
Screw conveyors are intended for the short-distance transportation 

of bulk materials in food, agricultural, energy, or lime industry plants. 
They are also used when other processes, such as mixing, heating, 
cooling, drying, moistening, or precise proportioning, are required. A 
screw conveyor can be used for transportation in three planes: verti-
cal, horizontal, or at a certain inclination angle. Simple construction 
and working principle, together with an easy adjustment of their ef-
ficiency through the change of the shaft’s rotational speed, are the key 
advantages of the screw conveyors. Currently, screw conveyors can 
be equipped with screw flights of diverse shapes. Depending on the 
application, the screws may have varying pitches, conical internal and 
external diameters through the whole length, and the flights may be ir-
regular in shape. In so-called reversible conveyors, used for bi-direc-
tional transportation of material, we can even find flights of opposite 
twist directions mounted on one shaft. Such untypical constructions 
of screws are possible with advanced flight production technologies, 
such as forming in hydraulic presses without preheating the prefabri-
cated parts.

Producing any shapes and sizes of the screw flights is not a techno-
logical problem. What is challenging for the engineers is the design-

ing process of the screw conveyors. Their construction and exploita-
tion parameters must meet the defined requirements concerning the 
mass efficiency, filling rate of the trough, or providing the necessary 
power to the drive. The behavior of bulk materials during transporta-
tion by a screw conveyor is very complicated. It depends on many 
factors, such as the type and shape of the screw flights, the rotational 
speed of the shaft, the way of proportioning of the material, or the 
physical properties of the material. Theoretical methods for designing 
the screw conveyors do not consider all the factors mentioned above 
or oversimplify them. In the case of typical bulk materials of uniform 
granulation and standard constructions of the screws (constant pitch, 
constant internal and external diameters) and fed by one source, e.g., 
a hopper, theoretical methods allow reasonable estimation of the ex-
ploitation parameters of the screw conveyors. In the case of materials 
of specific properties (cohesive or strongly aerated materials) or for 
unusual shapes of screws or multiple feeding points, these methods 
do not provide reliable results of efficiency and power [16]. For this 
reason, the external diameters of the screws and power demands are 
very often chosen to be safely larger. Such an approach is unfavorable 
because of the excessive use of materials, ineffective use of the drive 
unit, and high exploitation costs. On the other hand, the difficulties in 
making decisions on the construction of screw conveyors are caused 

The paper describes the problem of designing screw conveyors in terms of determining their 
exploitation characteristics. Based on the actual values of mass efficiency and power de-
mand obtained in a laboratory experiment, the theoretical design methods and the numerical 
discrete element method model results were verified. The obtained results have shown that 
the currently used theoretical methods underestimate the mass efficiency and power demand 
compared to experiments when typical values of filling rate coefficient and progress resist-
ance coefficient are used. It was also shown that the results of DEM simulations are in good 
agreement with the experiments in terms of mass efficiency and power demand. Based on 
the exploitation characteristics determined in DEM simulations for different constructions 
of the screw and different rotational speeds, multi-objective optimization of the exploitation 
parameters of the screw was performed in order to minimize the power demand of a screw 
conveyor and simultaneously maximize its mass efficiency. The optimization results showed 
that it is possible to find such construction and the rotational speed that will maximize the 
mass efficiency of the conveyor and keep the power demand low, reducing the exploitation 
costs of the device.

Highlights Abstract

Verification of theoretical design methods with • 
experiments and simulations results.

Computer DEM simulations as an advanced tool • 
for designing screw conveyors.

Optimization of construction and exploitation pa-• 
rameters of a screw conveyor.

Optimization of a screw conveyor's exploitation parameters

Bolesław Karwat a, Piotr Rubacha a, Emil Stańczyk a

a AGH University of Science And Technology, al. Mickiewicza 30, 30-059 Kraków

Bolesław Karwat, Piotr Rubacha, Emil Stańczyk. Optimization of a screw conveyor's exploitation parameters. Eksploatacja i Niezawodnosc 
– Maintenance and Reliability 2021; 23 (2): 285–293, http://doi.org/10.17531/ein.2021.2.8.

Article citation info:

screw conveyor, discrete element method, bulk material, exploitation characteristics.

Keywords

This is an open access article under the CC BY license 
(https://creativecommons.org/licenses/by/4.0/)

B. Karwat - karwat@agh.edu.pl, P. Rubacha - prubacha@agh.edu.pl, E. Stańczyk - stanczykemil@gmail.com



Eksploatacja i NiEzawodNosc – MaiNtENaNcE aNd REliability Vol. 23, No. 2, 2021286

by insufficient exploitation data of the existing systems. Implement-
ing the diagnostic, measuring, and expert systems would allow col-
lecting and processing of the data on the exploitation parameters of 
the screw conveyors, which are working under different conditions in 
the industry [10, 12-14].   

Nowadays, the design can be aided by advanced tools of virtual 
prototyping [4, 13, 17, 28]. Computer simulations are also used for 
studying the behavior of bulk materials during transportation by a 
screw conveyor. High computational powers of the workstations and 
highly developed numerical methods allow an accurate representation 
of the physical phenomena. As a result, the physical properties of a 
given bulk material and its interactions with a conveyor’s components 
can be considered. In the simulations of bulk materials’ behavior, the 
discrete element method (DEM) is used. Numerous simulation studies 
have confirmed the reliability of the results obtained in the simula-
tions with comparison to the actual measurement results for different 
machines and devices used for the transportation of bulk materials 
[9, 24-25].

Screw conveyors have been a subject of research for years, studied 
theoretically, experimentally, and in computer simulations. The stud-
ies published so far have identified several phenomena observed dur-
ing the transportation of a material by a screw conveyor. This, in turn, 
was used to determine how the physical properties of the transported 
materials, the geometry of the screw, the rotational speed of the shaft, 
and the conditions of material feeding influence the exploitation pa-
rameters of the device. 

The authors of [15, 20-21, 25] have shown a good agreement be-
tween the results of DEM simulations and the results of experiments 
in determining a screw conveyor’s efficiency. Besides, the research 
in [20] shows that theoretical models overestimate the values of mass 
efficiency compared to the actual results. The authors of [9] have 
shown a good agreement between the results of DEM simulations and 
the experiments in determining power demand. In [19], the authors 
used DEM to investigate the influence of filling rate, the rotational 
speed of the screw, the external diameter of the shaft, and the exter-
nal friction coefficient of the material on the efficiency of a screw 
conveyor. The paper [11] shows the methodology for the calibration 
of a DEM material model during the simulation of the transportation 
of bulk materials by the screw conveyors of varying geometries (a 
screw with a constant pitch and external diameter on a regular shaft, a 
screw with changing external diameter, a screw with a varying pitch, 
a screw with a shaft of a changing external diameter). A good agree-
ment was obtained between the efficiencies obtained in the simula-
tions and experiments for all the studied variations of the screws, 
except for the screw with varying pitch – in this case, the simulated 
mass efficiency was underestimated by 24%. The authors explain this 
discrepancy with the size of DEM particles; they were too large com-
pared to the screw pitch. In [27], the influence of the conditions of 
feeding the bulk material to the conveyor on the mass efficiency and 
power demand of the device was studied in laboratory conditions. It 
was shown that the efficiency of a screw conveyor increases with the 
rotational speed of a shaft, up to a value above which the centrifu-
gal force causes the movement of the material towards the outside, 
which as a result limits the metering of the material from the hopper 
to the inside of the trough. It was also observed that the efficiency 
of the conveyor and its power demand are determined by the size of 
the trough inlet opening. Higher efficiency values were obtained for 

larger inlet openings. What is more, the paper [18] showed that the 
largest possible inlet opening together with a low rotational speed 
of the shaft provided the best efficiency because of the minimized 
power demand. The authors of [26] showed a correlation between 
the physical properties of the bulk material and the efficiency of the 
screw conveyor, based on the performed laboratory tests (shear cell 
test, compressibility test, permeability test, dynamic flow test). The 
papers [2,22,29] showed discrepancies between the experimental and 
theoretical efficiencies of a tubular screw conveyor. According to the 
theoretical models, the efficiency increases linearly with the increase 
of the rotational speed of the screw. In reality, the efficiency increases 
to a specific limit value of the rotational speed above which the ef-
ficiency curve flattens. It means that the further increase of rotational 
speed causes a smaller increase in efficiency. Paper [3] shows the 
results of the experiments on the power demand of a screw conveyor. 
It was observed that in the case of not aerated materials (sand and 
gravel), the power demand increases proportionally to the rotational 
speed of the screw. The increase of the rotational speed caused the 
decrease of the power demand for the transportation of an aerated 
material. It was caused by the decreased bulk density of the material 
after aeration. The authors of [23], based on the experiments’ results, 
concluded that the smaller the ratio of the screw pitch and its exter-
nal diameter, the greater the mass efficiency. The authors suggested 
that there is such a construction of a conveyor that ensures effective 
relation between efficiency and power demand. A good agreement 
between theoretically and experimentally obtained values of mass ef-
ficiency and power demand of a conveyor was observed. The calcu-
lations considered the working conditions and physical properties of 
the transported material (sand) very accurately, which, according to 
the authors, allowed such a good agreement.

 Many papers correctly and purposefully indicated the influence 
of several factors connected with the transported material’s prop-
erties, ways of manufacturing the material, or the construction and 
exploitation parameters of the screw on its work parameters. How-
ever, there are no clear guidelines for the constructors on how to 
include these factors in the designs using theoretical methods. The 
authors of some of the papers have confirmed the weaknesses of 
the theoretical methods for calculating the screw conveyors. The 
up-to-date simulation studies have shown a very good agreement 
between DEM simulations and experimental results regarding the 
mass efficiency of a screw conveyor. However, little attention is paid 
to the estimation of the power demand of a screw conveyor using 
the DEM method. Correct determination of power demand and effi-
ciency of a screw conveyor allows the determination of exploitation 
characteristics, facilitating the choice of construction parameters and 
rotational speed to minimize the power demand and ensure effec-
tive transportation. There is also a lack of papers on the possibilities 
of optimizing the construction of the screw conveyors. This is why 
this paper shows the DEM simulation results of the transportation 
of cement performed to estimate the mass efficiency and power de-
mand based on the experimental results. What is more, the results 
of multi-objective optimization of the exploitation parameters of a 
conveyor aimed at minimizing the power demand and maximizing 
the efficiency of a conveyor, performed with the use of the DEM 
method, are presented.

2. Methods of determining the exploitation parameters 
of a screw conveyor

The currently used theoretical methods allow the determination of 
mass efficiency of a conveyor and the drive power based on the ad-
opted dimensions of the screw (pitch, external diameter), bulk density 
of the material, the rotational speed of the shaft, filling rate, and the 
progress resistance coefficient [1,16]. The basic method of determin-
ing a conveyor’s mass efficiency and its power demand is described 
by Eq. (1) and (2).

Fig. 1. A DEM simulation of a reversible conveyor



Eksploatacja i NiEzawodNosc – MaiNtENaNcE aNd REliability Vol. 23, No. 2, 2021 287

 Q D n s k t hz
n= ⋅

⋅
⋅ ⋅ ⋅ ⋅ ⋅60

4

2π
Ψ ρ , /  (1)

where:
Dz – external diameter of the screw, m,
n – rotational speed of the screw, rpm,
s – screw pitch, m,
ρ – bulk density of the material, t/m3,
ψ – filling rate (within the range of 0.15-0.45, depending on the 

type of the material),
kn – coefficient dependent on the angle of inclination of the con-

veyor (for a horizontal conveyor, the coefficient takes the value 
of 1),
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where:
co – progress resistance coefficient of the transported material, 

dependent on the type of the material,
Q – efficiency of the conveyor, t/h,
L – length of the conveyor, m.

Eq. (3), proposed by CEMA (Conveyer Equipment Manufacturers 
Association), is very similar to Eq. (1), defined as per the basic meth-
od, i.e., mass efficiency is the function of the dimensions of the screw, 
rotational speed, and the filling rate of the trough. The CEMA method 
uses the imperial units, and the calculation models are shown in such a 
system. All the quantity units are taken according to CEMA [1]:
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where:
C – mass efficiency, ft3/h,
n –  rotational speed of the shaft, rpm,
Ds – external diameter of the screw, in,
Dp – diameter of the shaft of the screw, in,
P – screw pitch, in,
K – filling rate percent,
W – bulk density of the material, lbs/ ft3.

Eq. (4) expresses the power required for the transportation of mate-
rial by a screw conveyor, without including the efficiency of the drive 
and friction in the bearings. Unlike the basic method, this equation 
includes the type and the shape of the screw flights.

 hp
C L W N F F F

hpm
f m p=

⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⋅1 106 ,  (4)

where:
C – mass efficiency, ft3/h,
L – length of the conveyor, ft,
W – bulk density of the material, lbs/ft3,
Ff – flight factor,
Fm – material factor,
Fp – paddle factor. 

The equations for mass efficiency and power demand shown above 
are linear relations of the screw dimensions, filling rate of the trough, 
bulk density of the material, and empirical progress resistance coef-
ficient. However, because of the limitations o these methods, the cal-
culated exploitation parameters are not reliable. With an inaccurate 

calculation method, it is impossible to optimize the construction and 
exploitation parameters of a screw conveyor because of the signifi-
cant risk of underestimating the results.

Unlike the theoretical methods, the numerical discrete element 
method allows reliable simulations of the bulk materials’ behavior 
since it accounts for the interactions between the grains of the mod-
eled material and the interactions between the material and the parts 
of the device. The modeled material is represented by a number of 
rigid spheres, whose behavior is described by various contact models 
[7, 9]. These models simulate the behavior of different materials, such 
as dry materials, strongly cohesive materials, or highly compressive 
materials. A DEM simulation accounts for the physical properties of 
the bulk material and, as a result, reflects its behavior very reliably. 
The material DEM model’s basic inputs are the shape and size of a 
particle representing the actual grain of the material, the density of a 
particle, external and internal friction coefficients, and the restitution 
coefficient. It is worth noting that the material model’s parameters in a 
DEM simulation are defined microscopically, i.e., for individual par-
ticles. Therefore, to reflect the macroscopic physical properties, the 
properties of individual particles must be chosen in a way that enables 
reflecting the behavior of the whole material. This process is called 
the DEM material model calibration and is further described by [5, 6, 
7]. Having calibrated the model, we can simulate the transportation of 
the bulk material by a screw conveyor, determine its exploitation pa-
rameters (mass efficiency, power demand), and assess the filling rate 
of the trough, the behavior of the material in the feeding zone, and the 
abrasion wear of the flights.

3. Experimental and simulation studies on the exploita-
tion parameters of a screw conveyor

The experiment aimed to measure the actual exploitation param-
eters of a screw conveyor, such as mass efficiency and power demand, 
depending on the rotational speed of the screw. The experiment was 
performed on a laboratory line designed for determining the exploita-
tion parameters of a screw conveyor. The visualization of the labora-
tory line is shown in Fig. 2.

Fig. 2. Visualization of the laboratory line.

The experimental laboratory line was equipped with a hopper of 
4 m3 volume. The screw conveyor under study, with an external di-
ameter of 160 mm and the screw pitch of 75 mm, was mounted on 
a shaft of a 70 mm diameter. A helical gear unit with a frequency 
converter supplied the power. The material from the screw conveyor 
was transported to a weighing unit type WMTP B-650, which allowed 
the measurement of the efficiency within the range up to 10 Mg/h, 
with an accuracy of 0.5%. The material from the weighting unit was 
then transported to a belt conveyor that fed the elevator transporting 
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the material back to the hopper and closing the loop. The power de-
mand was measured as the power consumption of the drive unit at a 
given rotational speed. Dimensions and exploitation parameters of the 
screw conveyor under study are shown in Table 1.

In order to minimize the increase of the power demand caused by 
the shear in the layer of the material at the interface of the hopper and 
the trough, the amount of the material was chosen to fill the trough 
without accumulating in the hopper as shown in Fig. 3. 

Fig. 3. a) Shear layer at the interface of the hopper and the trough  
b) Filling rate of the trough during the experiment

The efficiencies of the belt conveyors and the bucket conveyor 
used for the closed-loop of the transported material were chosen to fill 
the trough, without the aforementioned accumulation of the material 
in the hopper. A Portland cement was used in the experiment, as it is 
a representative bulk material used in the cement, energy, and chemi-
cal industry plants. The granulation of the Portland cement is very 
fine, within 1μm to 50 μm. Its physical properties are very similar 
to the materials such as gypsum, limestone powder, and raw mate-
rial powder. In the experiment and in the simulations, the assumption 
was made that the transported material is dry and non-cohesive. The 
physical properties of the Portland cement are shown in Table 2.

The DEM simulation model of the screw conveyor reflected the ac-
tual object used for the experiment. In order to ensure similar working 
conditions, the model included the hopper, the trough, and the central 
working unit – the screw, as shown in Fig. 4. 

Only the screw conveyor and the hopper were included in the simu-
lations, without the remaining  equipment of the closed transportation 
loop. The constant amount of the material was ensured by the use of 

the periodic boundary condition. It means that the material from the 
end of the trough was fed back to the hopper, creating the closed loop. 
The parameters of the DEM model are shown in Table 3.

4. Results
Fig. 5 shows the mass efficiency as a function of the rotational 

speed of the screw shaft, obtained in experiments, simulations, and 
using the theoretical models. In the calculations, typical values of the 
filling rate of the trough were adopted. In the basic theoretical mod-
el, the filling rate was set to ψ = 0.25 and the inclination coefficient 
kn = 1.0. In the CEMA method, the filling rate coefficient was set to 

Table 1. Dimensions and exploitation parameters of the screw conveyor 
under study.

Parameter Value

Dz – external diameter of the screw 160 mm

dw – diameter of the screw shaft 70 mm

P – screw pitch 75 mm

L – length of the conveyor 4000 mm

n – the range of the rotational speed 20 – 70 rpm

α – the angle of inclination of the conveyor 0°

Table 2. Physical properties of the Portland cement

Physical property Value

Bulk density, kg/m
3

1050

Moisture, % 0.2

The angle of repose, ° 35.9

External friction coefficient 0.52

Table 3. Parameters of the material model of the cement used in the DEM 
simulations

Parameter Value

Size of a DEM particle 3 mm

The shape of a DEM particle Sphere

Shear modulus (G) for the interaction be-
tween the particles 1.0e+7 MPa

Shear modulus (G) for the interactions 
between the particles and the walls 1.0e+7 MPa

Poisson ratio 0.25

The density of a DEM particle 1675 kg/m3

Coefficient of restitution 0.5

Internal friction coefficient 0.25

Rolling resistance coefficient between the 
particles 0.1

External friction coefficient 0.52

Rolling resistance coefficient between the 
particles and the walls 0.01

Timestep 2.66e-5 s

Number of particles used in the simulation 422, 000

b)

a)

Fig. 4. The geometrical model under study

Fig. 5. Mass efficiency as a function of the rotational speed of a screw shaft
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K = 0.3. The results obtained in the CEMA method were converted 
from the imperial units to the SI units. 

In Fig. 5 we can see a good agreement between the DEM simula-
tions and the experiment results. The efficiencies obtained in the basic 
theoretical method and CEMA are also very similar. However, with 
the adopted values of the filling rate, the theoretical values are much 

lower than those obtained in the DEM simulations and the experi-
ment.

Fig. 6 shows the power demand as a function of the rotational 
speed of the screw shaft in a similar way. The actual power required 
for the transportation of the cement with a defined rotational speed 
was determined as a difference of the total power measured during the 
transportation of the material and the power of an empty conveyor. 
For the theoretical calculations, in the Portland cement case, the resis-
tance coefficients were taken to be c0 = 4.0 for the basic method and 
Fm = 1.4 for the CEMA method. 

Fig. 6 shows that the power demand of a crew conveyor during the 
cement’s transportation determined in DEM simulations is in good 
agreement with the actual results of the experiment. The theoretical 

calculations underestimated the results significantly compared to ex-
periments and DEM simulations. What is more, there is a discrep-
ancy between the results of the basic and CEMA methods. For the 
adopted values of the material’s progress resistance coefficient inside 
the trough, the CEMA method resulted in lower values.

The use of DEM simulations facilitated the assessment of the fill-
ing rate of the trough at different values of the rotational speed. Fig. 
7 shows the filling rate of the trough at the rotational speed equal to 
20, 50, and 70 rpm.

The presented distributions of the filling rates of the trough show 
that the trough is filled in 100% through the whole length of the screw 
conveyor. Based on the above results, the filling rate coefficients were 
corrected to ψ = 0.9 for the basic method and K = 1.0 for the CEMA 
method, which significantly improved the consistency between the 
theory and the experiment. Fig. 8 shows the comparison of the results 
of mass efficiency for the corrected filling rate coefficients.

With the corrected values of filling rate coefficients both theoreti-
cal methods resulted in values very similar to the results of the DEM 

simulations and the experiment. 
A similar procedure was repeated to determine the power re-

quired for the transportation of the material by a screw conveyor. 
The mass efficiencies calculated for the corrected values of the 
filling rate coefficients were used, and the progress resistance 
coefficients were chosen in such a way that allowed a good 
agreement with the actual results of experiments. For the basic 
method, the coefficient c0 was determined to be c0 = 5.5, and for 
the CEMA method, the coefficient Fm = 3.1. Fig. 9 shows the 
comparison of the power demand with the corrected resistance 
coefficients.

Fig. 9 implies that using the corrected progress resistance 
coefficients results in a good agreement between the results ob-
tained during the laboratory tests and determined in the DEM 
simulations.

5. Multi-objective optimization
Decision-making is an integral part of the design process. 

The constructors decide which solutions are the most effective 
for specific criteria, such as efficiency, power, durability, etc. 
Usually, these criteria (objectives) are conflicting, e.g., design-
ing a durable device with a minimized use of materials, achiev-
ing the best possible efficiency with minimum power demand, 
etc. In most cases, such solutions cannot be found. This is be-
cause the minimization of one objective causes the maximiza-
tion of the other. We can say that the objectives are conflicting, 
but one dominates the other [7]. Hence, the optimization results 
can be divided into dominated and non-dominated solutions. 

Fig. 6. Power demand as a function of the rotational speed of the screw shaf

Fig. 8. Mass efficiency results for the corrected values of filling rate coef-
ficients

Fig. 7. Filling rate of the trough together with the distribution of the velocity of the mate-
rial in the cross-section through the trough
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The dominated solutions are the ones, for which both criteria can be 
improved. In Fig. 10 these are the solutions D, E, F, and G. The choice 
of such solutions is unjustified since there are better solutions in terms 
of F1min and F2min. Such solutions are called non-dominated or Pareto 
optimal [7]. This means that a solution that improves one of the crite-
ria without degrading the other does not exist. Figure 10 shows a set 
of solutions A, B, and C called a Pareto front; the elements of such a 
set are Pareto optimal. A perfect solution is such a vector of variables, 
for which all the objective functions take the minimum value. Finding 
such a point is practically very rare since each objective function takes 
its minimum for a different set of variables [7].

In the case of the above example, we can specify three variants. Solu-
tion A reaches the minimum of the objective function F1 and the maxi-
mum of the objective F2, Pareto optimally. Solution B takes middle 
values of F1 and F2, and solution C reaches the minimum of F2 and the 
maximum of F1, Pareto optimally. From this example, we can see that 
in multi-objective optimization, the decision-maker can choose a solu-
tion from the Pareto front depending on their preferences.

Mathematically, a general decision-making model takes the fol-
lowing form:

 
F x f x x min maxn( ) = …( )→1, , ,

 (5)

 
g x x i mi n1 0 1, , , , ,…( ) ≥ = …

where:
F(x) – objective function (criterion), which should be mini-

mized or maximized,

x1,…xn – variables,
g(x1,…xn) – constraints.

The value of the objective function (criterion) can be defined as a 
measure of the decision to be made. Depending on the requirements, 
this function can be either minimized or maximized. The variables 
describe alternative decisions. In many cases, the decision must be 
made considering numerous criteria F1(x),  F2(x),  …, which comes 
to the problem of multi-objective optimization.

6. Results of the multi-objective optimization of the 
exploitation parameters of a screw conveyor

Based on the calibrated DEM material model, several simulations 
were performed for different constructions of a screw conveyor and 
different rotational speeds in order to determine the efficiency char-
acteristics and power demand. Table 4 shows the construction param-
eters of the screw conveyors under study.

The simulations were performed for the rotational speeds within 
the range of  20 to 80 rpm. In order to ensure identical working condi-
tions in each case, the amount of material in the hopper and the trough 
was constant and equal to 150 kg, as shown in Fig. 11.

Fig. 11. Simulated transportation of the material by a screw conveyor

Fig. 12 shows the simulated mass efficiency values for each con-
struction of the conveyor as a function of the rotational speed of the 
screw.

Fig. 12. Mass efficiency of the simulated screw conveyors as a function of the 
rotational speed of the screw shaft

As it is indicated by the above graphs, the efficiency increases lin-
early within the studied range of the rotational speed of the shaft. For 

Table 4. Construction details of the simulated screw conveyors.

Construction 
No.

D – external 
diameter, mm

d – internal 
diameter, mm

s – screw 
pitch, mm

1 150 60 100

2 150 60 150

3 150 60 200

4 200 60 100

5 200 60 150

6 200 60 200

Fig. 9. The power demand for the corrected values of the resistance coeffi-
cients as a function of the rotational speed of the screw

Fig. 10. Sets of dominated and non-dominated solutions
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individual rotational speeds, the efficiency increases with the increase 
of the screw pitch and the flights’ external diameter.

Fig. 13 shows the power demand required for cement transporta-
tion by a screw conveyor at defined rotational speeds of the screw 
shaft.

Similarly, like in the case of mass efficiency, the power demand of 
each conveyor increases together with the increase of the rotational 
speed. We can see that also in this case at a constant rotational speed, 
the power demand increases with the increase of the screw pitch and 
the flights’ external diameter.

Both characteristics show how the construction parameters of the 
screw conveyors and the rotational speed of the shaft influence the 
mass efficiency and power demand. The interpretation of the results 
does not determine which option is the best possible to maximize the 
efficiency with simultaneous minimization of the power demand. 
Therefore, in order to be able to choose the best construction, we can 
perform multi-objective optimization.

The exploitation parameters of a screw conveyor, i.e., mass ef-
ficiency and power demand are determined by the construction pa-
rameters, such as the external diameter of a screw and screw pitch. 
According to the principles of multi-objective optimization, the fol-
lowing objective functions were determined:

F1 – power required for the transportation of the material (6) 

 F x f x x x min1 1 2 3( ) = ( ) →, ,  (6)

F2 – mass efficiency of a conveyor (7) 

 F x f x x x max2 1 2 3( ) = ( ) →, ,  (7)

With such objective functions, the following variables were taken 
into account:
x1– external diameter of the screw,
x2 – screw pitch,
x3 – the rotational speed of the screw.

The constraints g(x) were adopted as follows: rotational speed 
within 40-60 rpm, screw pitch within 100-200 mm, and the external 
diameter of the screw flights within 150-200 mm. This relation is de-
scribed by Eq. (8):

 g x f x x x( ) = ( )1 2 3, ,  (8)

For such an optimization task, the optimization of a screw con-
veyor’s construction parameters can be performed. Table 5 shows the 
defined objective functions and constraints.

Figure 14 shows the possible solutions in the space of objective 
functions, together with a perfect solution.

The Pareto front was obtained for three values of the rotational 
speed (40, 50, and 60 rpm), the external diameter of the conveyor 
Dout=200 mm and the screw pitch s=200 mm, and for the rotational 
speed equal to 40 rpm for a screw conveyor of the external diameter 
of Dout=150 mm and the screw pitch s=100 mm. Obtaining a perfect 
solution in terms of (6) and (7) is impossible due to the adopted con-
straints. As can be easily seen, these functions are conflicting, and the 
increase in efficiency caused the increase of the power demand.

When one of the objective functions is minimized, and the other 
one is maximized, the optimal solutions of (6) and (7) can be found 
by solving Eq. (9): 

 max
F x
F x

x D
1
2
( )
( )

∈








:  (9)

where:
D – the set of possible solutions,
F2 (x) ≠ 0: x ∈ D

For each construction of a screw conveyor, the ratios of F1(x) – 
power demand and F2(x) – mass efficiency were determined. The 
values of the obtained ratios are shown in Table 6.

The maximum ratio of the objective functions F1(x) and F2(x) was 
obtained for the screw conveyor of the external diameter Dout=200 
mm and the screw pitch s=200 mm. It means that this construction is 
the optimal solution of (6) and (7) with the adopted constraints.

Fig. 13. Power demand of the simulated screw conveyors as a function of the 
rotational speed of the screw shaft

Table 5. Defined objective functions and constraints.

F1(x) F2(x) g(x)

Power demand → 
minimum

Efficiency → 
maximum

g(x1) ∈ <100; 200 mm>
g(x2) ∈ <150; 200 mm>
g(x3) ∈ <40; 60 rpm>

Fig. 14. Possible solutions of the optimization and a Pareto front

Table 6. Ratios of the objective functions

Construction details F1(x)/F2(x)

D150-d60-s100 0.0071

D150-d60-s150 0.0090

D150-d60-s200 0.0093

D200-d60-s100 0.0106

D200-d60-s150 0.0149

D200-d60-s200 0.0183
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7. Conclusions
Designing screw conveyors requires much attention and caution 

from the constructors. The conveyors’ construction parameters (ex-
ternal diameter, screw pitch) and the rotational speed of the screw 
significantly influence the exploitation parameters, i.e., efficiency and 
power demand. The goal is to ensure the required mass efficiency at 
the defined filling rate of the trough and the rotational speed of the 
screw, and to allow efficient transportation of the material. On the 
other hand it is important to ensure some capacity reserve in cased a 
temporary increase of the material fed to the conveyor. As shown in 
the so-far research and by the experiments’ results, theoretical calcu-
lation methods are not sufficient since they do not provide reliable 
results of mass efficiency and power demand required for the trans-
portation of the material. The theoretical methods are based on the 
assumption that mass efficiency and power demand are the functions 
of the dimensions of the screw, bulk density, filling rate of the trough, 
and empirical progress resistance coefficient of the bulk material in-
side the trough. Such methods simplify the physical properties of the 
transported materials. They do not include their interaction with the 
trough and the screw and the bulk density change during the transpor-
tation. Keeping in mind all the limitations of these methods and the 
fact that the results are very often far from reality, the constructors 
rarely risk optimizing the construction of the screw conveyors.

As shown in the simulations, the results of the mass efficiency 
ad power demand obtained in the numerical discrete element method 
(DEM) are in good agreement with the experiments’ results. This 
method reflects the behavior of a bulk material during transportation 
by a screw conveyor since it includes the physical properties of the 

materials and their interaction with the components of the screw con-
veyors. Large possibilities offered by the DEM method for modeling 
bulk materials make it a universal tool aiding the design of screw 
conveyors. In order to obtain reliable results of the simulation, the 
input parameters of the DEM material model must be calibrated care-
fully, based on the actual physical properties of the bulk material. 
Computer simulations allow the determination of mass efficiency 
and power demand of a screw conveyor and the estimation of filling 
rate of the trough, assessment of the behavior of the bulk material in 
the feeding zone, and the abrasion wear of the flights. With such a 
reliable tool, the construction parameters of the screw conveyor can 
be optimized to decrease its power demand (and, as a consequence, 
exploitation costs caused by the electric energy consumption) with 
the maintained high efficiency. As it was shown by the results of the 
performed multi-objective optimization, the transportation is more ef-
fective with a conveyor of a larger external diameter of the flights and 
larger screw pitch (the efficiency is maximized, and the power de-
mand is minimized). Obtaining a perfect Pareto solution was not pos-
sible due to the adopted constraints. Nevertheless, the multi-objective 
optimization facilitates the decision on the choice of the construction 
parameters and the rotational speed of the screw.

Further research on the optimization of the construction of screw 
conveyors should include additional objectives concerning minimi-
zation of flights’ abrasion wear and minimization of the conveyor’s 
mass. Together with the minimization of the power demand and maxi-
mization of the efficiency, these functions may allow such construc-
tion that will reduce the costs of producing, exploitation (e.g. replace-
ment of the worn flights), and the power supplied to the device while 
working.
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1. Introduction 
The maintenance of technical systems is of particular importance 

in the era of growing competition and ever higher requirements in 
quality, reliability, and productivity of organizations’ functions and 
tasks. According to [5], maintenance for complex socio-technical sys-
tems can be defined as a combination of activities which ensures that 
physical assets continue to fulfill their intended tasks effectively (per-

forming required functions), efficiently (at minimum use of resources), 
and safely (at a minimum human and environmental risk). Therefore, 
the main goals of the maintenance processes of technical systems are 
today considered to provide [42]: 1) an appropriate level of function-
ality of a technical facility, 2) declared durability of a facility, 3) secu-
rity of a facility and its environment, and 4) effective use of available 
resources supporting basic processes. The achievement of these goals 
is possible thanks to an appropriately selected maintenance strategy 

Many authors have highlighted the importance of physical assets maintenance management 
in relation to resilience engineering, especially for systems operating under significant un-
certainty. Thus, the authors presented a new approach to system maintenance based on re-
silience concept implementation. They introduced Maintenance Support Potentials (MSP) 
as a measure of an organization's maintenance support capacity. Moreover, based on the 
MSP definition, they developed a fuzzy-based organization's maintenance support potential 
level assessment method. The proposed approach takes into account two main MSP param-
eters – potential readiness level and process regency. It followed four main steps, including 
organization's MSP identification/evaluation, MSP weights assessment, Maintenance Sup-
port Capacity assessment, and final reasoning. A case study of a global manufacturer from 
the automotive industry is presented to illustrate the method's applicability. The authors 
also indicated further research directions to optimize the maintenance strategy based on 
Resilience-Based Maintenance concept.
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for technical systems. Currently, the primary forms of maintenance 
can be [25]: 

Pre-planned maintenance:•  includes early maintenance tasks 
such as cleaning, greasing, lubricating, zero-setting, and record-
ing key measurements. Often conducted by non-maintenance 
staff. Usually called First-line maintenance. 
Planned maintenance:•  also known as scheduled maintenance, 
and its timing and scope are both known in advance.
Shutdown maintenance:•  planned maintenance but carried out 
when production or plant is shut down.
Breakdown maintenance:•  carried out when equipment fails 
to meet its desired function. This may involve repairs, replace-
ments, or adjustments as considered necessary. 
Emergency maintenance• : carried out only when either inspec-
tion or breakdown maintenance has identified its necessity.

As all technical systems operate under conditions of uncertainty 
and variability resulting from, among others, the uncertainty of op-
erating processes, environment, or a modeling process, the problem 
of appropriate selection of the maintenance strategy arises. This is 
especially visible for systems performing in deep uncertainty, where 
the disruptive events occur very rarely. For these systems, the classi-
cal probabilistic approach to maintenance modeling cannot be imple-
mented due to a lack of operational data. 

The possible solution to this problem may be connected with the 
provision of resilient organizations to prevent or minimize the effects 
of high-level failures [23, 26]. 

Resilience theory is concerned with successfully responding to the 
unpredictability and uncertainty of change [4]. When referring to the 
resilience of industrial assets, several authors have highlighted the im-
portance of maintenance to physical asset management and suggested 
ways to improve maintenance in relation to improved dependability 
of the assets (e.g. [29]). Moreover, the relations between maintenance, 
safety, risk, and resilience are especially highlighted in work [14]. 
Later, safety performance of organizations in relation to the decision-
making processes is analyzed in [12]. The research findings constitute 
the base for the authors in [2], where resilience engineering issues are 
investigated in safety research and organizational practice. Based on 
the obtained survey results, in another work [20] the authors define 
maintenance as a safety barrier in process system operations. They 
analyze overall system performance in terms of, among others, main-
tenance costs, safety impact, environmental impact, and asset dam-
age. Safety-II domain, defined as safety management through guided 
adaptability, is later investigated in [33]. The authors analyze the rela-
tions between resilience engineering and safety domains. In this new 
approach to safety, it is assumed that failures were the flip side of 
successes, or in other words, things that go right and things that go 
wrong happen basically the same way. Therefore, we may state that 
resilience is a key issue in ensuring the safe and reliable operation of 
systems and organizations’ effective management.

Following this, there is a necessity to investigate the relationship 
between resilience and maintenance performance. For this reason, this 
article aims to introduce a new approach to system maintenance based 
on resilience concept implementation, called Resilience-Based Main-
tenance (RBM). The proposed concept is based on Maintenance Sup-
port Potentials (MSP) introduction. The MSP constitutes the base for 
measuring an organization’s Maintenance Support Capacity (MSC). 
Moreover, based on the MSP definition, the authors develop a fuzzy-
based organization’s maintenance support potential level assessment 
method. The proposed approach considers two main maintenance 
support potentials parameters – potential readiness level and proc-
ess regency – and four main steps, including organization’s MSP and 
their assessment parameters identification/evaluation, MSP weights 
assessment, Maintenance Support Capacity in an organization assess-
ment, and final reasoning in terms of maintenance recommendations 
proposition. The fuzzy theory is implemented in the MSP parameters 
estimation process.

The developed assessment method’s implementation possibilities 
are based on the example of a selected global manufacturer from the 
automotive sector.

The proposed concept was preliminarily introduced in the authors’ 
research work [5], where the simple investigation of maintenance 
potentials assessment possibilities based on scoring method was pre-
sented. In this study, the authors extend the previously done research 
by introducing a more systematic description of the approach, new 
assessment methodology, and the implementation possibilities of the 
RBM concept. 

To sum up, the authors’ contribution in this study includes:
introduction of a new Resilience-Based Maintenance concept that • 
bases on Maintenance Support Potentials definition,  
a new concept of organization’s maintenance support potential • 
level,
development of a three-step assessment method to assess the or-• 
ganization’s maintenance support potential level ratio in order to 
define the organization’s Maintenance Support Capability,
definition of 5-grade scales for maintenance support potentials • 
and organization’s maintenance support potential level assess-
ment to define the maintenance support capability achieved by 
an organization, 
finally, the developed two-stage assessment method is imple-• 
mented to verify the proposed method’s diagnostic function and 
determine its labor intensity.

Therefore, the article structure includes, apart from the Introduc-
tion section, a detailed review of the literature in the area of classi-
fication of basic maintenance strategies for technical systems, based 
on which the concept of Resilience-Based maintenance is described. 
Next, a proposed new maintenance concept based on resilience the-
ory is introduced. Moreover, the Maintenance Support Potentials are 
defined as a measure of an organization’s support capability in the 
area of maintenance management. Later, in Section 4, the authors in-
troduce the proposed method for an organization’s maintenance sup-
port potential level assessment. The implementation possibilities of 
the developed method are presented in Section 5. Section 6 presents 
the obtained results and their discussion. Finally, Section 7 provides 
conclusions, limitations of the study, and suggestions for the authors’ 
future research works to optimize the maintenance strategy based on 
the concept of Resilience-Based Maintenance.

2. Related work

2.1.	 Defining	maintenance	process
Today, technical systems should be designed, operated, and main-

tained in a safe, reliable, robust, durable, sustainable, and resilient 
way [34, 42]. In order to satisfy such goals, organizations develop 
and implement effective maintenance management processes. Fol-
lowing the European Standard PN-EN 13306:2010 [31], maintenance 
management may be defined as all activities of the management that 
determine the maintenance objectives, strategies, and responsibili-
ties and implement them by means such as maintenance planning, 
maintenance control and supervision, improvement of methods in the 
organization including economic aspects. The main challenge for the 
maintenance manager is to structure maintenance procedures and ac-
tivities to be undertaken to achieve the strategic objectives associated 
with them [6, 11]. In addition, following the European Standard EN 
17007:2017 [32], proper maintenance needs technical skills, tech-
niques, methods to properly utilize assets like factories, power plants, 
vehicles, equipment, and machines (Figure 1). As a result, it is nec-
essary to consider maintenance issues in an organization in a more 
holistic way, not only limited to such problems, like maintenance 
planning or selection of an appropriate maintenance strategy [43]. 
It also requires looking at the issues related to ensuring an effective 
maintenance system by considering issues related to safety, risk, and 
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rationales underlie the granulation of attributes and the use of lin-
guistic variables:

the bounded ability of sensory organs to resolve detail and store • 
information, 
when numerical information is not available,• 
when an attribute is not quantifiable because we do not have a • 
numerical scale for it,
when there is an acceptance for imperfection (e.g., inaccuracy • 
or imprecision), which can be exploited through granulation to 
achieve tractability and communication economy. 

There is a close connection between granularity and uncertainty. 
Suppose X is a variable, and we are looking for the value of this vari-
able. If the answer is “X is a”, where a is a singleton, then there is no 
uncertainty in X’s information because the information is singular. 
Nevertheless, if the answer is “X is approximately a”, in the abbrevia-
tion “X is *a”, there is some uncertainty in the information because 
information is described as granular. Therefore, the granularity may 
be equated to non-singularity. In the context of standard probability 
theory, *a would generally be interpreted as a probability distribution 
centered on a. In GTU, X’s information is viewed as a generalized 
constraint on X, or more specifically, as a granule characterized by 
a generalized constraint. A probability distribution can be seen as a 
particular case of a generalized constraint. 

A generalized constraint, GC, is defined as an expression of the 
form [47]: 

  :   GC X isr R  (1)

where: X is the constrained variable; R is a constraining relation 
which, in general, is non-bivalent; and r is an indexing variable that 
identifies the modality of the constraint, that is, its semantics. 

The principal modalities of generalized constraints are summarized 
in the following.

Probabi l is t ic  (a) r  = p )

    X isp R  (2)

with R – the probability distribution of X. For example:

 X isp N m,σ( ) (3)

means that X is a normally distributed random variable with mean m 
and variance σ2 . 

If X is a random variable that takes values in a finite set {u1,..., un} 
with respective probabilities p1,..., pn, then X may be expressed as:

resilience [19]. This is especially important for such systems, where 
many fluctuations due to the uncertainty may significantly influence a 
system’s performance and its elements [18]. 

Therefore, the challenge of mastering uncertainty in the mainte-
nance area seems to be the biggest problem currently facing mainte-
nance management. To be able to do this, it is necessary to understand 
the nature of uncertainty and the methods for modeling it, as briefly 
discussed in the following Subsection 2.2. 

Fig. 1. Maintenance process according to the European Standard EN 
17007:2017 

2.2.	 Uncertainty	modelling
The consequence of knowledge imperfections is the uncertainty in 

the maintenance process. We understand the concept of uncertainty as 
a situation of having limited knowledge such as:

the order, nature, or state of things is unknown, and• 
the consequence, extent, or magnitude of circumstances, condi-• 
tions, or events is unpredictable.

There are many forms of uncertainty, but the most common is its 
division into two categories: aleatory and epistemic uncertainty [8, 
46]. The aleatory uncertainty is understood as an inherent variation 
associated with the engineered system or the environment under con-
sideration. It can be observed in random experiments and described 
by probability distributions. Traditional reliability engineering and 
risk analysis applications tend to model only the aleatory uncertain-
ties, leading to significant underestimations of the real risks and over-
estimation of reliability [16]. However, the epistemic uncertainty is 
not an inherent property of the system or its environment, and it re-
sults from our inability to understand as well as describe and model 
reality. Thus, in this case, the standard probabilistic methods are not 
useful [41, 52].

In 2005 Lotfi A. Zadeh proposed a generalized uncertainty theory 
(GTU), which attempts to unify the approach to uncertainty [48]. The 
GTU theory was based on the concepts of granular structures and 
generalized constraints. The basic assumptions of these concepts are 
illustrated in Figure 2. Let X  be a variable taking values in a universe 
of discourse, U, then a is a singular value of X (e.g., a singleton), 
implying that there is no uncertainty about X’s value. If this is not the 
case, then a granular value of X, A, may be viewed as a representation 
of the state of knowledge about X’s value. 

Informally, a granule of a variable X is a clump of X values 
drawn together by indistinguishability, equivalence, similarity, 
proximity, or functionality. For example, intervals (crisp or fuzzy) 
are granules and different probability distributions [1]. The con-
cept of granularity underlies the concept of a linguistic variable - a 
concept introduced by L. A. Zadeh in the paper “Outline of A New 
Approach to the Analysis of Complex Systems and Decision Proc-
esses” [49]. A linguistic variable’s concept plays a pivotal role in 
many fuzzy logic applications [7, 10, 21, 30, 35, 45]. Four primary 

Fig. 2. Singular and granular values
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 ( )1 1   \   \n nX isp p u p u+…+  (4)

with the semantics:

 Prob X u pi i=( ) =   i = 1, ... , n (5)

In GTU, a probabilistic constraint is viewed as an instance of a gen-
eralized constraint. When X is a generalized constraint, the expression 
X isp R is interpreted as a probability qualification of X, with R as X’s 
probability [47]. For example:

 X is big isp likely( )  (6)

It means that the probability of the fuzzy event {X is big} is likely, 
where “big” is a fuzzy subset of the real line. 

Possibi l is t ic  (b) r  =  blank)

 X is R (7)

with R playing the role of the possibility distribution of X. For exam-
ple:

 X is a b,[ ] (8)

means that [a, b] is the set of possible values of X. Next example:
 

 X is small (9)

In this case, the fuzzy set labeled small is the possibility distribu-
tion of X, and μsmall is the membership function of small, then the 
semantics of “X is small” is defined by [48]:

 Poss X u usmall={ } = ( )µ  (10)

where u is a generic value of X. 
Veris t ic  (c) r  =  v )

    X isv R  (11)

where R plays the role of a verity (truth) distribution of X. In particu-
lar, if X takes values in a finite set {u1,..., un} with respective verity 
(truth) values  t1,...,tn, then X may be expressed as:

 
X isv t u t un n1 1 +…+( ) (12)

meaning that  Ver (X = ui) = ti, i = 1, ..., n. 

When X is a generalized constraint, the expression X isv R is inter-
preted as verity (truth) qualification of X. For example: 

 X is small isv very true( ) .  (13)

should be interpreted as „It is very true that X is small.” The semantics 
of truth qualification is defined in [47]:

 Ver X is R is t X is tR( ) = − ( )−µ 1 1  (14)

Where μR
-1  is the inverse of the membership function of Ri and t is 

a fuzzy truth value, which is a subset of [0, 1]. 
Therefore, there are two classes of fuzzy sets: (b) possibilistic and 

(c) veristic. In the case of a possibilistic fuzzy set, the grade of mem-

bership is the degree of possibility. In the case of a veristic fuzzy set, 
the grade of membership is the degree of verity (truth). 

L.A. Zadeh [50] introduced the concept of fuzzy sets as a gener-
alization of the classical set theory. In fuzzy sets, each space X ele-
ment can belong partially to a set A and partly to its complement A . 
Fuzzy sets are defined by the membership function corresponding to 
the functional characteristics of classical sets. Each set X element has 
the assigned value that defines the degree of membership to the fuzzy 
set. The standard fuzzy sets membership function belongs to a range 
[α, β] and if we deal with the normal fuzzy sets α = 0 and β = 1. Thus, 
the membership function of the set X is:

 µA X: [ , ]→ 0 1  (15)

We can distinguish three cases here: 
µA x( ) =1a)  – means full membership in the fuzzy set A

µA x( ) = 0b)  – means the lack of membership in the fuzzy set A

0 1< <µA x( )c) – means a partial membership in the fuzzy set A

A fuzzy set A is contained in the fuzzy set B only when 
µ µA Bx x( ) ( )<  for each x X∈ , and the fuzzy set A equals the fuzzy 
set B only when µ µA Bx x( ) ( )= . The complement of set A is a fuzzy 
set A  with a membership function µ µA A= −1 .

Although the inference based on the fuzzy set theory and multi-
valued logic is more complex and less intuitive, thanks to widely 
available computer tools supporting the fuzzy inference process, it is 
becoming more common [22].

Uncertainty assessment is particularly important for planned main-
tenance and is mainly based on probabilistic models (r = p). However, 
these models’ effective use is only possible if the data on the damage 
processes are sufficiently numerous and stationary processes. These 
conditions are not fulfilled in high uncertainty situations, where rare 
events occur, and these events’ consequences are difficult to predict. 

The authors propose to use possibility-based procedures to model 
the maintenance process under these conditions (r = blank) and fuzzy 
set theory. In the absence of statistical data, this approach allows ob-
jectifying expert knowledge, which is inherently subjective partially.  

3.	 The	concept	of	Resilience-Based	Maintenance
The starting point for our considerations is the model of the mainte-

nance process presented in Fig. 1. From this model, it follows that the 
prerequisite for the proper performance of the maintenance process in 
the organization is an extensive system implementing all support pro-
cesses. We called it Maintenance Support System (MSS) and assumed 
that its fundamental characteristic is Maintenance Support Capability 
(MSC), which is defined as follows:

Maintenance Support Capability is the ability of an organization 
to ensure that physical assets continue to fulfill their intended tasks 
effectively, efficiently, and safely, under given expected as well as un-
expected conditions of use and maintenance.

Following this, a measure of an organization’s Maintenance Sup-
port is its capacity to create and maintain specific potentials over time 
to resiliently respond to any foreseeable and unpredictable operating 
events. 

We propose to name these potentials Maintenance Support Poten-
tials (MSP) and the entire maintenance system based on this concept - 
Resilience-Based Maintenance. These potentials are as follows (based 
on [13]):

PR – The Potential to respond:•  knowing what to do and being 
able to react correctly to any threats and hazards (e.g., changes, 
disturbance, and disruptions) by activating correctly planned 
and prepared actions, by adjusting the required mode of opera-
tion, or by introducing new activities, procedures or processes.
PM – The Potential to monitor:•  being able to monitor all sig-
nals from the internal and external environment that may affect 
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an organization’s performance in the near-term or long-term 
future.
PL – The Potential to learn:•  being able to draw conclusions 
from experience, in particular ‘to learn the right lessons from 
the right experiences’. It also includes changing values, crite-
ria, and even the organization’s goals, depending on the type of 
change in the situation.
PA – The Potential to anticipate:•  knowing what to be expected 
and predicting future developments considering particular po-
tential disruptions, constraints, and changing operating condi-
tions.

A functional diagram of the Maintenance Support System broken 
down into individual subsystems: monitoring, response, learning, and 
anticipation is shown in Figure 3. Thus, the general model of Mainte-
nance Support Capability can be represented as follows:

 MSC={PM,PR,PL,PA}  (16)

Fig. 3. A functional diagram of the Maintenance Support System

The main goal of monitoring subsystem is to improve an organiza-
tion’s Potential to cope with possible threats and hazards (PM). Moni-
toring should be proactive, recognizing upcoming situations and using 
information that comes from indicators that represent the current state 
of the performance. If the signal value from the indicator changes sig-
nificantly, the response should be triggered to change the monitored 
system’s status. The monitoring subsystem’s main task is to detect 
disruptive situations using trigger rules and trigger a response poten-
tial (RP) when such a situation is detected. Monitoring should be car-
ried out continuously but may change the frequency of measurements 
depending on the situation. In practice, a trade-off between effective-
ness and accuracy of measurements is necessary. Therefore, when us-
ing the monitoring results, one must remember the uncertainty arising 
from this compromise.

The response to disruptive events should be both appropriate to 
a given situation and effective. Because no organization has infinite 
resources, responses can only be prepared for a limited number of 
disruptive events or situations. It is cost-effective to prepare a specific 
response for events and situations that occur frequently, but a general 
kind of readiness for unexpected events should be prepared. Usually, 
the main problem is determining the answer to two fundamental ques-
tions: when to answer and how to answer. Therefore, it is necessary to 
specify the conditions under which RBM system inputs activate (e.g., 
triggering rules) the response. These inputs can be seen as the outputs 
of a monitoring system (e.g., performance indicators).

In many cases, the timing of the Potential to respond (PR) can be 
critical. It is essential that the response stops neither too early nor too 
late. Because the triggering signal must be external to the responding 
subsystem, the stop rule should be internal to the response (e.g., as a 
part of a procedure).

Before beginning a response action, some special conditions must 
be fulfilled, such as requesting and receiving permission or authoriza-
tion. When a response is started, the availability of specific resources 
should be required (e.g., information, staff, materials, and tools). 
While the response is being carried out, it may be necessary to main-
tain a given degree of normal functioning, even during an emergency 
action. Because responses are often complex and aggregated process-
es, the proper timing and synchronization of them can also be crucial 
in creating the Potential to respond.

Learning can be understood as the active and intended modifica-
tion of processes and procedures describing the organization’s behav-
ior in specific situations. The primary purpose of Potential to learn 
(PL) is to improve the organization’s ability to respond, monitor, and 
anticipate. Each organization should learn from both negative and 
positive examples. In general, negative situations are rare and irregu-
lar, so learning, in this case, is a reaction to some unusual event or 
situation (e.g., a disruption or an accident). A typical rule for starting 
the learning process is to state that an event or signal is significantly 
different from expectations. This type of learning is called reactive 
or event-driven.

An influential learning culture should meet four necessary condi-
tions, namely:

create favorable conditions and learning opportunities,• 
establish main rules at which learning take place (e.g., limits and • 
thresholds for monitored signals),
define conditions of similarity between individual situations to • 
enable the generalization of results obtained from monitoring,
create objective conditions for verifying the learning process and • 
confirming its effectiveness.

Usually, a high level of learning culture is achieved primarily by 
using a broad-perspective and focusing on exceptional but rare cases.

Creating Potential for anticipation (PA) in an organization is con-
ducive to supporting anticipatory thinking technologies. Where moni-
toring is about observing and looking at something to see whether 
it is significantly changing, anticipation is more about thinking and 
imaging outside the event horizon. The primary purpose of anticipa-
tion is to imagine alternative scenarios and predict what can happen in 
the future. Therefore, anticipation depends on the assumptions made 
about the future and models used for prediction. Three basic types 
of modeling are applied in practice: deterministic, probabilistic, and 
realistic. The first one relies on the assumption that the future is a 
simple reflection of the past, both in terms of similarity in size and 
frequency. The basis of the probabilistic approach is the assumption 
that the unknown future is an extrapolation of the known past, taking 
into account randomness. The third method is based on the assump-
tion that understanding past events and relationships between them 
makes it possible to predict the possible course of events in the future, 
taking into account the uncertainty that such a prediction is burdened 
with. Therefore, the anticipation can be seen as an art of art rather than 
a science and depends very much on the person or team’s imagination 
that deals with it. This process runs at variable speeds, with unpredict-
able timing. 

Consequently, the question arises on how to assess the maintenance 
support capability for an organization. To answer this question and, 
indeed, define the organization’s maintenance support capability, 
there is introduced a new organization’s maintenance support poten-
tial level assessment ratio (MSPo). It can be evaluated based on the 
following formula:

 
1

* ,            1, 2, , 
n

o i i
i

MSP P w and i n
=

= = …∑  (17)

where: oMSP  – organization’s maintenance support potential level; 
iP  – ith maintenance support potential; iw  – weight for ith mainte-

nance support potential; n – number of analyzed maintenance support 
potentials.
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As a result, in order to gain benefit from the maintenance support 
potential level assessment, maintenance managers should:

understand MSS and identify maintenance management priori-1. 
ties for the near, medium, and long term;
identify assets, human, and material resources, as well as de-2. 
fine the possible maintenance strategies to follow;
define possible responding strategies appropriate to disrup-3. 
tions occurring;
balance maintenance costs vs. risks for disruptions. 4. 

Implementation of such defined main steps for MSS identification 
and improvement needs a methodological approach use. Following 
this, the proposed approach adopted in this study consists of three 
main phases. The first step bases on qualitative analysis implementa-
tion. During this phase, the identification of the problem and defini-
tion of maintenance support potentials is performed. Moreover, the 
main parameters for maintenance support potentials assessment are 
identified. The second phase includes quantitative analysis perfor-
mance. The collection of experts’ opinions about the defined main-
tenance support potentials and their evaluation parameters is carried 
out at this stage. There are also defined weights for all maintenance 
support potentials to reflect a company’s maintenance management 
priorities. Due to the lack of possibility to use accurate statistical data, 
it was proposed in the described method to estimate both parameters 
by experts using the fuzzy logic concept. The analytical approach to 
determine these values is presented in the 4.2 Subsection. The last 
phase – an output phase provides the organization’s maintenance sup-
port potential level ratio assessment and reasoning on the level of 
MSPo obtained.

Additionally, at this stage, the reasoning process on the mainte-
nance recommendations proposition is performed. Figure 4 represents 
the graphical view of the proposed complete methodology followed. 

Fig. 4. Organization’s maintenance support potential level analysis procedure

4.	 Fuzzy-based	method	for	assessment	of	organization’s	
maintenance	support	potential	level	

Before companies can devise effective means of enhancing main-
tenance support capacity, managers must first understand the universe 
of maintenance potentials as well as the conditions that drive them. 
Then, after gaining specific knowledge about maintenance support 
potentials assessment, companies can proceed to select and tailor the 
most effective maintenance strategies. A detailed description of the 
main phases of the proposed assessment method is presented in the 
next subsections.  

4.1.	 Qualitative	analysis	of	Maintenance	Support	Potentials	
The first two steps of the analysis are used to identify the investi-

gated maintenance support potentials and their evaluation parameters. 
In the developed method, the MSPs are based on resilience potentials 
introduced by Erik Hollnagel [13] and presented in detail in Section 
3. According to [4], the MSP are usually analyzed following the six 
main evaluation areas. The characteristic of these areas is presented in 
Tables 1-4 for each MSP respectively. 

The presented tables contain a detailed specification of individual 
factors that should be considered when assessing MSP. Such a presen-
tation of these factors is useful for performing a preliminary analysis 
of the investigated organization - at the data collection stage. Howev-
er, at the stage of performing a detailed quantitative analysis, such an 
approach would generate a very high degree of model complication. 
Therefore, the authors propose to group the most critical evaluation 
factors of individual MSP into two main parameters – potential readi-

Table 1. Assessment of the Potential to respond – the main evaluation areas

P1 Procedure Result of the procedure

p11
Disruptive events (DE) iden-
tification List of the DEs

p12
Disruptive events (DE) rel-
evance Verified list of DEs

p13 Respond to DEs planning List of the responds to DEs

p14 Respond to DEs adequacy Verified list of the responds 
to DEs

p15

Respond parameters defining:
triggering and ending cri-• 
teria;
respond delay (activating • 
speed);
resources capability• 

Verified list of the responds 
parameters to DEs

p16 Readiness to respond Verification rules 

Table 2. Assessment of the Potential to monitor – the main evaluation areas

P2 Procedure Result of the procedure

p21
Performance indicators (PI) 
identification List of the PIs

p22
Performance indicators (PI) 
relevance Verified list of PIs

p23
Timeliness of PIs determina-
tion Time delay for individual PIs

p24
Measurement accuracy of PIs 
defining Sensitivity for individual PIs

p25
Measurement frequency of 
PIs defining

Rules for taking measure-
ments

p26
Measurement results plau-
sibility Rules for checking results
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ness level and process regency (Fig. 5). These parameters correspond 
to the defined above main areas of assessment. 

All the evaluation factors connected with time-frequency, timeli-
ness or forecasting perspective refer to the regency parameter. The 
factors that influence organization respond capacity, measurement ac-
curacy, learning process efficiency, or forecasting process effective-
ness are attributed to the readiness parameter.

Fig. 5. MSP assessment parameters included in the proposed methodology 

4.2.	 Quantitative	analysis	–	assessment	of	Maintenance	
Support	Potentials	

During this phase, the main steps are to: collect expert opinions, 
weights assess, and fuzzy model implementation. 

Step 1. Expert opinions collection:
First, the experts provide their opinions for the defined two MSP 

(Pi) assessment parameters. The experts’ opinions are collected using 

linguistic scales. The proper definition of linguistic variables is based 
on expert knowledge and depends on the industry type. However, the 
general description of the linguistic variables is proposed in Tables 
5 – 7.

Step 2. Assessment of weights for MSP:
Later, there is a necessity to assess MSP weights based on the ex-

perts’ knowledge. Let [ ]1 2  , , ,j nW w w w= …  be the vector for MSP 
weights. Based on the available literature, this vector may be evalu-
ated based on one of the three main approaches implementation. 

Firsts approach. The parameters weights are expressed precisely 
by real numbers (crisp data) when satisfying the following assump-
tion:

 
1

1
n

j
j

w
=

=∑  (18)

Second approach. A vector of linguistic values may also express 
the weights’ parameter. In this approach, there is defined the scale of 
linguistic terms. Thus, usually, there are used expressions to give the 
evaluation value of the chosen parameter by seven linguistic terms, 
from “Very big” to “Very small” concerning seven fuzzy scales (see, 
e.g. [51]). Following this, the larger weight is given to the parameter, 
the greater importance is given to that parameter of MSP evaluation. 

Third approach. The last method of weights parameters estima-
tion may be based on AHP method implementation. Due to the uncer-
tainty in implementing the MSP assessment process, the fuzzy APH 
method should be used to find fuzzy preference weights [36]. Saaty 
developed the AHP method in 1980 (according to [28]). Buckley’s 
fuzzy theory was incorporated into the AHP method in 1985 and pre-
sented in work [3]. The procedure for fuzzy AHP implementation into 
criteria weight evaluation is presented, e.g., in [28, 36]. According to 
their studies, the procedure bases on the two main steps:

to construct fuzzy pairwise comparison matrices based on deci-• 
sion-makers opinion,
to compute the fuzzy weights by normalization. • 

Selection of the appropriate approach for estimating the weighting 
factors will depend directly on the managers, their skills/expertise lev-
el, and the knowledge of possible evaluation tools. The most straight-
forward approach is based on the scoring method implementation 
but will produce a very subjective result depending on the evaluation 
team’s preferences. The application of the AHP method will allow 
balancing the results obtained by assigning weights according to the 
level of importance of each maintenance potential in relation to the 
others. In turn, the second approach can be used when the assessment 
of the importance of individual maintenance support potentials is car-
ried out by many experts from different departments of the company. 
This will unify the assessment in relation to the different levels of 
experience of the experts. 

Step 3. Fuzzification of risk parameters:
When the expert opinions are collected and weights assessed, the 

fuzzy set theory is used to model the MSP parameters and obtain their 
assessed value. The fuzzy set theory makes the comparison process 
more confident [50]. Therefore, the parameters of each MSP and the 
output variable – MSP (Pi) level are treated as intuitionistic triangular 
fuzzy numbers (FN). A triangular FN is presented by a triplet Az = (a, 
b, c), and its membership function is given by:
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Table 3. Assessment of the Potential to learn – the main evaluation areas

P3 Procedure Result of the procedure

p31 Selection criteria (SC) setting List of the SCs

p32
Learning process (LP) deter-

mining Learning process description

p33
Timing of learning process 

determination
Time delay for implementa-

tion

p34
Resources for learning proc-

ess defining
Providing adequate support 

for LP

p35
Responsibilities for LP estab-

lishing List of responsible persons 

p36 Effectiveness of LP checking Rules for checking results 
of LP

Table 4. Assessment of the Potential to anticipate – the main evaluation 
areas

P4 Procedure Result of the procedure

P41
Forecast models (FM) elabo-
ration List of the FMs

P42
Expertise kind and level 
establishing List of the requirements

P43
A time horizon of forecast 
determination Time delay for individual FMs

P44 Forecast accuracy defining Uncertainty for individual 
FMs

P45 Forecast frequency defining Rules for taking the forecast

P46
Forecast results plausibility 
evaluation Rules for checking results
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The FN parameters meaning is straightforward: a and c are the 
lower and upper bounds of fuzzy number Az, respectively, and b de-
notes the modal value of fuzzy number Az.  

If there were collected opinions from different experts, there is a 
necessity to aggregate them to obtain the Pi level. According to [9], 
the aggregation of exerts opinion can be performed using the arith-
metic mean aggregation operator. The mean aggregation operator, de-
fined on fuzzy triangular numbers (a1, b1, c1), (a2, b2, c2)… (am, bm, 
cm), delivers the result as (x, y, z) according to the formula:
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For the transparency of the presented method, the authors do not 
consider experts weighting. However, when there is a need to differ-
entiate the obtained opinions depending on an expert’s significance, 
the authors recommend introducing the experts’ normalized weights. 
Thus, the aggregated fuzzy number of the ith basic opinion may be 
estimated as [27]:
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m

zi zl p
l

M A and i n
=

= = …∑  (21)

where: Mzi represents aggregated fuzzy number of the ith parameter; 
Wl is an lth experts’ normalized weight; Azil is the fuzzy number of 
ith parameter given by lth expert judgment;          np is the number of 
parameters; m is the number of experts.

According to the expert’s trait, the examples of weighting scores 
are presented, e.g., in [27, 44]. Moreover, the survey of known meth-
ods for fuzzy opinions aggregation is given in, e.g. [15, 39]. 

Step 4. Fuzzy interference system:

Table 6. Readiness level description

Ranking category Description 

VERY HIGH (VH) Fully defined and verified all processes for implementing and maintaining a given MSP in an 
organization.

HIGH (H) Defined and verified procedures for MSP implementation, defined rules and principles for main-
tenance potential assessment without carried out a verification process.

MEDIUM (M) Defined and verified procedures for the implementation of the Potential, lack of clearly defined 
rules and principles of the potential measurement procedure.

LOW (L) Pre-defined procedures for implementing the Potential (identification of essential elements of the 
Potential, lack of MSP verification).

VERY LOW (VL) Lack of defined procedures for implementing and maintaining a given potential.

Table 5. Process regency parameter description 

Ranking category Description 

VERY HIGH (VH) Defined and verified standards for MSP time parameters, an assessment carried out on a regular and repeat-
able basis.

HIGH (H) Defined and verified standards for MSP time parameters, evaluation carried out irregularly.

MEDIUM (M) Pre-defined and verified standards for MSP time parameters.

LOW (L) Pre-defined standards for MSP time parameters, lack of verification processes implementation, processes 
are very unlikely to be evaluated in an organization.

VERY LOW (VL) No defined standards for time parameters for MSP; an assessment may occur but will probably never be 
carried out.

Table 7. Maintenance support potential level description

Ranking category Description 

EXCELLENT (E)
Achieving and maintaining a given maintenance support potential in the organization at a very 
high level - readiness level and time parameters fully defined and evaluated on a regular/repeat-
able basis.

VERY  SATISFACTORY (VS) The parameters of a given maintenance support potential in an organization are at a high level - 
fully defined and evaluated on an irregular basis.

SATISFACTORY (S)
Maintenance support potential parameters at a satisfactory level - potential implementation 
procedures defined and verified, no rules and principles defined for evaluation, pre-defined or no 
standards yet being set for potential time parameters.

ACCEPTABLE (A)
Maintenance support potential parameters at an acceptable level - potential implementation 
procedures pre-defined, still no rules and principles established for evaluation, no standards pro-
vided for potential time parameters, probability of their evaluation pre-defined at a deficient level.

UNACCEPTABLE (UA) Maintenance support potential parameters not defined, their evaluation nearly not possible.
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After carrying out experts’ opinions aggregation, the next steps of 
this phase are connected with Pi quantification. This process is based 
on a Mamdani fuzzy model use [24]. The Mamdani fuzzy interference 
mechanism is based on the compositional rule of inference proposed 
by Zadeh [50]. The Mamdani fuzzy model’s main components are 
Fuzzification, Knowledge base, Fuzzy Interference System, and De-
fuzzification [38]. A scheme of the Pi assessment process based on the 
Mamdani fuzzy model is shown in Figure 6.

Fig. 6. Stages of the use of fuzzy sets according to Mamdani fuzzy model

As it was mentioned, the fuzzification process is based on the use 
of TFN. A triangular FN converts the linguistic scales in the range of 
0-1 using its membership function. The knowledgebase consists of the 
rule base and membership functions of inputs. The rule base includes 
a number of IF-THEN rules used to capture the imprecise modes of 
reasoning [40]. 

The fuzzy interference system (FIS) is designed to map the fuzzy 
inputs and rule the outputs using a fuzzy set theory. Due to the Mam-
dani model use, the FIS has based on MIN and MAX operators im-
plementation. The MIN operator is used for combination and impli-
cation operations. The MAX operator is used to aggregate the fuzzy 
outputs. 

Finally, the defuzzification process is aimed at the conversion of 
the fuzzy output into crisp output. 

Step 5. Fuzzified output defuzzification:
A survey of the most commonly known defuzzification methods is 

presented, e.g., in [37]. There are many sources of uncertainty in eval-
uating MSP parameters, so the authors propose using the centroid of 
area defuzzification method for defuzzification process performance. 
Thus, the crisp output is estimated as [38]:

 Centroid of area z
z zdz
z dz

A

A
, * =

∫ ( ) ⋅
∫ ( )
µ
µ  (22)

where: z* – the crisp value for the z output (defuzzified output); 
µA z( )  – the aggregated output membership function; z – universe 
of discourse.

This crisp output value is later implemented in the Output phase for 
MSPo level estimation. 

4.3.	 Organization’s	maintenance	support	potential	level	as-
sessment	with	the	reasoning	process	

The organization’s maintenance support potential level is estimated 
based on the previous phases’ results in the last phase. According to 
the obtained MSPo level, maintenance-related decisions can be made 
accordingly. 

Based on the obtained level of estimated ratio, the decision-maker 
should firstly correctly interpret the obtained values. Table 8 describes 
the possible MSPo levels. The authors propose a 5-grade scale for 
MSPo ratio assessment. 

According to the obtained overall ratio level, the decision-maker 
may take appropriate actions. When the overall ratio level is not ac-
ceptable, managers should take the following actions: 

first, the definition of maintenance management policies and • 
procedures as a basis for MSP implementation,
introduction of disruptive events identification processes and • 
possible responding parameters definition; establishing the pos-

sible influence of adverse events occurrence on  
maintenance processes performed in an organi-
zation, 

maintenance measurement processes • 
definition with a selection of possible perfor-
mance indicators,

analysis of possible to be implemented • 
in organization forecast models, which provide 
the most efficient maintenance management 
process.

This means the manager must seek additional 
management actions for company maintenance 
support capability introduction and improve-

ment or increase prevention and preparedness (connected with, e.g., 
maintenance policy definition) without reducing profits. Success at 
this task requires a good understanding of organization’s maintenance 
support system, both broad and tailored to the manager’s own com-
pany. Moreover, it constitutes the initial step of MSS creation in an 
organization. 

For organizations where the overall ratio assumes values accepted 
by managers, decisions concerns maintenance recommendations. 
When the overall ratio is acceptable, the most common maintenance 
recommendations are the following maintenance policies defined by a 
producer. When the obtained level of an overall ratio is higher than the 
acceptable level, the organization maintenance capability is enough 
to introduce maintenance strategies that satisfy reliability or risk/
safety assumptions. The appropriate recommendations will depend on 
the type of organization, its physical assets, and industry sector and 
should be compatible with ISO 5500x standards indications.

Following this, the general structure for MSC in organization de-
velopment may be compatible with the one presented in Fig. 7. The 
most crucial improvement ways are indicated in every of the analyzed 
maintenance support potentials. 

Fig. 7. MSC in organization development – possible directions of company’s 
related tasks 

5.	 Application	of	the	proposed	approach	in	a	company	
from	the	automotive	sector

To illustrate the proposed fuzzy-based decision method’s imple-
mentation possibility, the authors analyzed a case company from the 
automotive sector. The investigated company is located in Poland in 
the Lower Silesia region and is a global manufacturer of compres-
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sors for automotive air conditioning. The company was launched in 
Poland in 2005. Each year, it produces about 3 million compressors 
delivered to European assembly plants of the biggest car manufac-
turers of world-famous brands such as Volkswagen, Volvo, or Ford. 
The analyzed production plant currently operates 26 production lines, 
including processes such as high-precision machining, grinding, elec-
tron welding, friction welding, and coating. 

The company’s primary goal is to respond to the customers’ de-
mand for appropriate technologies, products, and services. World’s 
success is based on the three strategic pillars: quality, cost and delivery 
on time, and continuous product development with constant care for 
the environment. The achievement of these policy goals is connected 
with conducted some priority actions in the company. One of them is 
connected with risk-based thinking and continuous improvement of 
an integrated management system. The main goals of the risk manage-
ment system adopted in the company is to ensure proper performance 
of its goals and tasks and create the company’s resilience system. Ad-
ditionally, the risk is defined as the effect of uncertainty on objectives. 
The currently implemented risk management system focuses on 13 
main areas (e.g., Business risk management, Legal risk management, 
Occupational risk management, Environmental risk management, Op-
erational (production/logistic) risk management, and Supply risk man-
agement). The adopted company’s approach to risk management is 
structured and is compatible with ISO 31000 standard [17]. Analyzes 
are carried out on an ongoing basis, and the results are continuously 
monitored. The introduced risk management approach is based on the 
simplified FMEA (Failure Mode and Effect Analysis) method. 

Following this, the authors analyze if the company, which is fo-
cused on risk management and safety issues, follows the main resil-
ience potentials according to the RBM concept. This gives the pos-
sibility to make a statement of the new resilience engineering-based 

approach implementation possibilities. The evaluation of the analyzed 
organization’s maintenance support capability level was conducted 
using the fuzzy rule-based risk assessment method presented in Sec-
tion 4. Moreover, the developed assessment method’s implementation 
process was carried out using the fuzzy logic toolbox of MATLAB 
version R2020a. The main implementation phases of the assessment 
method are presented below. 

First, the quantitative analysis was performed. The surveyed com-
pany’s experts gave their opinions. The obtained MSP parameters lin-
guistic scores are presented in Table 9.

Moreover, it was assumed that all MSPs have the same importance 
for organization maintenance support capacity level assessment. Fol-
lowing this, the weights of the parameters are expressed precisely by 
real numbers (crisp data), and all are equal to wi = 0.25 (according to 
Equation (18)).

Table 8. Organization’s maintenance support potential levels – description and ratio levels 

Ranking 
category   Description MSPo range

EXCELLENT 
(E)

Full development and implementation of maintenance support potentials in the organization; a system for collecting 
and using information (about adverse events as well as processes for responding to their occurrence) following the 
concept of a learning organization.  Integration of a maintenance management system with an enterprise management 
strategy. Parameters of maintenance support potentials in an organization evaluated regularly.

93-100

VERY SAT-
ISFACTORY 
(VS)

The parameters of a given maintenance support potential in an organization are fully defined and implemented, the 
monitoring of the level of maintenance support potentials is based on a defined system of operational indicators, the 
evaluation process is still carried out on an irregular basis; however, information on potential adverse events is col-
lected in a systematic manner.

75-92

SATISFAC-
TORY (S)

Maintenance support potential parameters at a satisfactory level - potential implementation procedures are defined 
and verified, there still are no rules and principles for potentials evaluation, a system for measuring maintenance sup-
port potentials is still not fully developed; standards for potential time parameters are not defined or just pre-defined.

54-74

ACCEPT-
ABLE (A)

Maintenance support potential parameters at an acceptable level - procedures for implementation of potential are pre-
defined; there are no rules and principles for evaluation of maintenance potentials, but possible undesirable events are 
preliminarily identified; there are no standards for time parameters of Potential, and a probability of their evaluation is 
estimated at a deficient level.

31-53

UNACCEPT-
ABLE (UA)

No activities are carried out to implement and evaluate maintenance support potentials in an organization; no efforts 
(or very little) are made to identify adverse events and their impact on maintenance processes, no management policies 
and procedures in the maintenance area.

0-30

Table 9. Parameters linguistic scores for all defined MSP based on experts’ 
opinions 

MSP Process regency level Readiness level 

P1 – Potential to respond VH H

P2 – Potential to monitor H H

P3 – Potential to learn M H

P4 – Potential to anticipate M M

Fig. 8. Membership functions of a) process regency, b) readiness level, and  
c) MSP (Pi) level



Eksploatacja i NiEzawodNosc – MaiNtENaNcE aNd REliability Vol. 23, No. 2, 2021304

importance). The discussion of obtained results is presented in the 
next section. 

6. Results and discussion 
The proposed case study gives the possibility to analyze how the 

developed fuzzy-based assessment method may be used to evaluate the 
maintenance support capability level in an organization. The proposed 
method allows the possibility to employ linguistically exert knowledge 
and engineering judgment to make a more realistic evaluation in the 
maintenance management capability area. The complete results of the 
proposed FIS for MSP assessment are presented in Figure 10.

Fig. 10. Surface view of the proposed fuzzy inference system (all rules are with 
weight = 1)

This 3D plot shows the resultant values of preliminarily estimated 
MSP parameters – readiness level and process regency. The readi-
ness level can be understood as an ability to maintain a system with 
the necessary resources, the possibility of reacting for occurred fail-
ure, and no reputational damage occurrence. The process regency 
corresponds to the regularity of performed monitoring and learning 
processes connected with maintenance management performance in 
an organization. The lowest, dark blue part of the plot represents the 
resultant low level of MSP resulting from low readiness levels or lack 
of regularity of process performance, allowing for disruptive events 
identification, processes monitoring, or forecasting.   

It should be mentioned that the uppermost corner, the yellow field, 
represents theoretically the highest score – the excellent level of main-
tenance support potential in an organization (10/10 on the probability 
scale), which would provide the highest maintenance capability in or-
ganization achievement. 

Following this, the plot provides a quantified basis for making 
managerial decisions regarding taking up active methods to improve 
the MSP level or observing its level to determine when such actions 
should be implemented. Therefore, a management plan can be pre-
pared accordingly so that preventive actions can be taken up for the 
riskiest/the most disruptive events. As a result, the safety of an organi-
zation may be improved.

According to the presented results for the analyzed production com-
pany, the obtained level of overall ratio in the organization is about 
70; hence, based on the description given in the Table 8, the obtained 
organization’s maintenance support potential level is satisfactory. 
The assessment coincides with the authors’ observations, wherein the 
company has developed a risk management system, but the results are 
not translated into decisions in the area of technical maintenance. 

The first MSP – Potential to respond has obtained the highest level 
during the evaluation process. This is mainly connected with a well-
developed risk management system that clearly identifies potential 
internal and external risks. In addition, respond parameters and re-
sponse plans have been defined.

The second maintenance support potential – Potential to monitor 
has also been highly rated. The analyzed company monitors risks/
opportunities in an ongoing manner and follows business continuity. 
Moreover, it has an extensive performance measurement system, es-
pecially in the area of production management. The primary measures 

In the next step, the proposed fuzzy model needs to be imple-
mented. Following this, the input parameters are to be fuzzified. The 
obtained linguistic scores given by the experts are converted to cor-
responding fuzzy set numbers. The Triangular and Trapezoidal FNs 
used in the presented case study to represent the linguistic scales of 
input and output parameters are shown in Figure 8.

Next, there is a necessity to determine IF-THEN rules. Based on 
the experts’ knowledge, there were proposed 25 rules – presented in 
Table 10 and one additional, which defines the situation when there is 
no potential identified (rule 26). According to this, for example, rule 1 
is defined as:

IF Process regency is Very Low and Readiness level is Very Low, 
THEN Pi level is Unacceptable.

Rule 26 is defined as:

If Process regency is Impossible and Readiness level is None, THEN 
Pi level is NO POTENTIAL  

With MATLAB software, there is possible to obtain the final MSP 
score from the constructed FIS. Figure 9 presents the adopted rules in 
the used MATLAB software for chosen Pi assessment. To obtain Pi’s 
final score from the constructed FIS, Equation (22) is used for the de-
fuzzification of the fuzzy set resulting from the Mamdani algorithm.

Fig. 9. Sample rule base for maintenance support potential P1 assessment 

Table 11 presents the obtained organization’s maintenance support 
potential level for the analyzed company. 

The results given in the Table 11 are obtained considering the as-
sumptions that all decision rules have the same weights (the same 

Table 10. MSP level decision matrix
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Table 11. Evaluated organization’s maintenance support potential level 

Pi Pi*wi

P1 – Potential to respond 91.36 22.84

P2 – Potential to monitor 75 18.75

P3 – Potential to learn 55 13.75

P4 – Potential to anticipate 55 13.75

MSPo 69.09
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organization’s maintenance support capability, the focus should be on 
eliminating possible hazards and preventing failures, and developing 
an organization’s potentials for resilient performance. Following this, 
the authors introduced a new concept on Resilience-Based Mainte-
nance, which is based on implementing the main resilience potentials 
given by Erik Hollnagel [13]. Its proper use in a company is based 
on the necessity of its performance investigation in such areas as cur-
rent state and knowledge about possible hazard events, the possibility 
of learning from the obtained experience, or the ability to anticipate 
unwanted events. Moreover, in this study, the authors proposed the 
organization’s maintenance support potential level assessment meth-
odology, which considers two evaluation parameters – readiness level 
and process regency.  The fuzzy logic structure allowed the experts to 
capture the experts’ opinions in linguistic terms for the defined two 
MSP parameters and evaluate the overall ratio level. 

The analyzed case study shows the possibilities of using a given 
method in the decision-making process. Hence, the selected case’s as-
sessment procedure allowed us to verify the complexity of the adopted 
procedure, the substantive scope of the developed assessment tool and 
allowed us to determine the intensity of implementation work.

Following the case study, we may state that the analyzed company 
is well prepared to respond to everyday hazards. The main problem 
is connected with developing such tools and skills that will give the 
possibility to predict the future.

At this stage of carried out research analyses, the authors may point 
out two main possible limitations of the proposed method. First, the 
method limitation may be connected with the managers’ correctness 
of performed assessment process. The managers (experts) may give 
incorrect answers during the internal audit performance to obtain 
higher ratings than the actual level of achieved maintenance manage-
ment capability in an organization. The second possible limitation 
is the possibility of omission of specific steps during the proposed 
assessment procedure performance. Following this, to obtain reli-
able results, it is necessary to follow the procedure and appropriately 
evaluate the actual level of the maintenance support potentials being 
assessed in the model.

The results presented in the article are preliminary studies that the 
authors will develop in their future research. Further analysis will fo-
cus on the business continuity concept implementation and physical 
asset management concept use to extend the proposed Resilience-
Based Maintenance approach.   

To conclude, the proposed methodology is to be used for organiza-
tion maintenance support capability level assessment and may be per-
formed by maintenance management and safety officers. Moreover, it 
gives preliminary information that can be useful for the development 
of maintenance strategies as well as the selection of the most hazard-
ous areas in the audited companies. Therefore, it provides essential 
information on the need to control disruptive events and implement 
safety improvements. Moreover, the proposed organization’s main-
tenance support potential level assessment method may be used in 
various industry sectors. 

allow for precise identification of disruptive events and their param-
eters/consequences (e.g., duration/removal from the system, costs, 
and delays). The frequency of PI’s defining and monitoring is also 
defined.

Despite implementation in the case company of systematic, peri-
odic analysis of current business performance and ways to address 
risks, the Potential to learn still needs to be improved. This company’s 
maintenance support potential still needs to be supplemented with, 
among others, possible resources for the learning process and its time 
parameters.

Moreover, according to the expert opinions, the case company’s 
Potential to anticipate is at the medium level. This is mainly due to 
its focusing on the current state of the operational performance level. 
There is a lack of solutions focused on predicting future developments 
on particular potential disruptions, constraints, and changing operat-
ing conditions. The leading implemented solutions assess the analy-
ses of the company’s current operational/strategical and tactical level 
made once a year (in the last month of the fiscal year). 

Following this, according to the obtained results, there is still the 
necessity to define processes that would predict potential future ad-
verse events with a significant impact on the implemented operational 
processes. There is a lack of solutions that would focus on predicting 
future development direction in relation to specific potential disrup-
tions, constraints, and changing operating conditions.

Consequently, the main recommendations for the analyzed com-
pany regarding its maintenance processes are as follows:

use the results obtained from risk management in the planning of • 
effective maintenance processes (maintenance strategies) to help 
achieve the required availability, reliability, and safety levels dic-
tated by the business, 
develop guidelines for the forecasting process, preventive proce-• 
dures, and maintenance management scenarios for identified dis-
ruptive events,
assess  strategy elements aimed at achieving the required avail-• 
ability, reliability, and safety levels dictated by the business (e.g. 
critical spare management, operational controls, and failure re-
sponse measures),
provide transparently and verifiably costing in the area of mainte-• 
nance management,
embrace and develop approaches that seek to continually improve • 
efficiency and effectiveness of company’s activities (e.g. con-
nected with learning objectives description, learning process rules 
definition),
be compliant with statutory and regulatory imperatives.• 

7. Conclusions 
Maintenance management is one of the most important issues 

nowadays. The appropriate maintenance decisions can achieve sig-
nificant financial benefits (reducing maintenance costs) and increas-
ing the company’s operational indicators. However, when defining an 
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Wind power has been widely used in the past decade because of its safety and cleanness. 
Double fed induction generator (DFIG), as one of the most popular wind turbine generators, 
suffers from degradation. Therefore, reliability assessment for this type of generator is of 
great significance. The DFIG can be characterized as a multi-state system (MSS) whose 
components have more than two states. However, due to the limited data and/or vague judg-
ments from experts, it is difficult to obtain the accurate values of the states and thus it inevi-
tably contains epistemic uncertainty. In this paper, the fuzzy universal generating function 
(FUGF) method is utilized to conduct the reliability assessment of the DFIG by describing 
the states using fuzzy numbers. First, the fuzzy states of the DFIG system’s components 
are defined and the entire system state is calculated based the system structure function. 
Second, all components’ states are determined as triangular fuzzy numbers (TFN) according 
to experts’ experiences. Finally, the reliability assessment of the DFIG based on the FUGF 
is conducted.

Highlights Abstract

The fuzzy states of the DFIG systems are pro-• 
vided.

All components’ states are given as triangular • 
fuzzy number based on experts’ experience.

The reliability assessment of the DFIG based on • 
the FUGF is performed.

Reliability assessment of wind turbine generators by fuzzy  
universal generating function 
Tudi Huang a, Tangfan Xiahou a, Yan-Feng Li a, Hua-Ming Qian a, Yu Liu a, Hong-Zhong Huang a,*
a Center for System Reliability and Safety, School of Mechanical and Electrical Engineering, University of Electronic Science and Technology of China 
Sichuan, 611731, P. R. China

Huang T, Xiahou T, Li Y-F, Qian H-M, Liu Y, Huang H-Z. Reliability assessment of wind turbine generators by fuzzy universal generating func-
tion. Eksploatacja i Niezawodnosc – Maintenance and Reliability 2021; 23 (2): 308–314, http://doi.org/10.17531/ein.2021.2.10.

Article citation info:

reliability assessment, double fed induction generator, multi-state system, fuzzy universal 
generating function.

Keywords

This is an open access article under the CC BY license 
(https://creativecommons.org/licenses/by/4.0/)

T. Huang - huangtudi@std.uestc.edu.cn, T. Xiahou xiahoutf@163.com, Y-F. Li - yanfengli@uestc.edu.cn,   
H-M quian - qianhuaming@std.uestc.edu.cn, Y. Liu - yuliu@uestc.edu.cn, H-Z Huang - hzhuang@uestc.edu.cn

Acronyms and Abbreviations
DFIG Double Fed Induction Generator 
MSS Multi-state System
UGF Universal Generating Function
FUGF Fuzzy Universal Generating Function
TFN Triangular Fuzzy Number
PMG Permanent Magnet Generator
PD Probability Distribution

1. Introduction
Energy is closely connected with our human beings. With the in-

creasing crisis on energy and environmental problems, wind energy 
has gained significant attention in recent years due to its safety and 
cleanness. Consequently, technologies related to wind energy devel-
oped fast in the past decade. With the increasing capacity of wind tur-
bine generators, wind turbine generator systems are becoming more 
and more compounded and complicated, especially for the megawatt-
scale wind turbine generator systems. For a large complex equipment 
such as wind turbine generator systems, much attention should be 

paid to their reliability assessment besides considering their capacity. 
In general, the designed life span of a wind turbine generator is 20 
years. Thus, it is very difficult to have an accurate reliability assess-
ment of the wind turbine.

Due to the external working environments and internal failure de-
pendence, the double fed induction generator (DFIG), as a typical 
type of wind turbines, inevitably deteriorates with the usage. Once 
the deterioration beyond the acceptable level, it is deemed as failure. 
The failure of the DFIG will not only cause energy loss but also cre-
ate damage to the entire wind farm. Therefore, reliability assessment 
for the DFIG is of great significance. In the literature, many works on 
reliability assessment of the DFIG have been reported. Carroll et al 
[1] studied the reliability of wind turbines with the DFIG and perma-
nent magnet generator (PMG) drive trains. Zhou et al. [34] conducted 
certain attempts on reliability and performance improvement of the 
DFIG. Note that most of the existing studies assumed the DFIG sys-
tem and its components as a binary-state system or components, i.e., 
the working state and the failure state. However, the DFIG is typically 
made up of five main components, i.e., blades, gearboxes, genera-
tors, converters and transformers. Blades and gearboxes are mechani-
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cal components whose performance rates (levels) degrade with wear. 
Consequently, there are several intermediate states corresponding to 
the development of the wear and tear. Furthermore, as electrical parts, 
generators, converters and transformers still have intermediate states 
because of the backup. These features indicate that the traditional bi-
nary reliability model cannot perfectly characterize the DFIG. 

A few works treated the DFIG as a multi-state system (MSS) and 
the reliability methods for MSS have been widely provided [18, 19, 
22, 23]. Eryilmaz [8] presented a reliability method for a MSS with 
three-state components and applied it into wind energy. Xiao et al. 
have applied MSS model to many practical problems, and achieve-
ments have been made. [31, 32, 33]. UGF are considered as an con-
venient method for reliability assessment of MSS. Levitin has done a 
lot of research about UGF [16]. Nevertheless, the uncertainty exists in 
reliability assessment and cannot be neglected. Due to the limited data 
and/or vague judgments from experts, obtaining the accuracy value of 
the performance rates (levels) and probabilities of MSSs are difficult 
and inevitably contains epistemic uncertainty. Fuzzy set theory can 
well address the problems caused by the epistemic uncertainty. Huang 
et al. [11, 12, 13] developed a suit of reliability evaluation algorithms 
based on the fuzzy set theory. Wu [27] developed a fuzzy Bayesian 
method and proposed a new method to create the fuzzy Bayes point 
estimator of reliability. Ding and Lisnianski [6] combined the fuzzy 
set theory with the UGF technique; then, the fuzzy UGF (FUGF) 
method was proposed. Liu and Huang [21] further justified the FUGF 
method and introduced the Markov chain to the FUGF method. Lis-
nianski et al. [20] proposed an MSS reliability analysis and optimi-
zation method based on FUGF. Li et al. [17] provided an improved 
FUGF method for reliability assessment of MSS under aleatory and 
epistemic uncertainties. Gao et al. [10] performed dynamic fuzzy re-
liability analysis for MSS based on UGF. Dong et al. [7] extended 
the FUGF method for reliability assessment of uncertain MSS. Gao 
and Zhang [9] proposed a novel reliability analysis method for fuzzy 
MSS considering correlation based on UGF. The fuzzy theory and 
reliability analysis of MSS system have also developed recently [15, 
24]. Jaiswal et al. [14] proposed Reliability analysis method for non-
repairable weighted k-out-of-n system based on belief UGF. Cui et al. 
[5] presented a reliability model for aircraft actuation system based on 
power transfer efficiency. Qin et al. [26] proposed a combined method 
for reliability analysis of MSS of minor-repairable components. Negi 
and Singh [25] provided the fuzzy reliability evaluation method of 
linear m-consecutive weighted-k-out-of-r-from-n: F systems. Chen et 
al. [2] performed the reliability analysis and optimization of equal 
load-sharing k-out-of-n phased-mission systems.

In this paper, we consider a typical type of wind turbine genera-
tor systems, i.e., the DFIG, and model the DFIG as an MSS. As the 
DFIG is a system with high reliability and few test/event data, tradi-
tional reliability assessment methods based on large amount of failure 
data with rigorous statistical models are incapable of handling such a 
challenge. Moreover, specifying the component states of the DFIG, 
such as the states of the blades and gearboxes, often relies on experts’ 
knowledge. Due to the vague judgements of experts, the determina-
tion of component states often contains epistemic uncertainty and it 
is suitable to be modelled as fuzzy numbers [21]. In this work, first, 
the fuzzy states of the DFIG systems are defined and the entire system 
state is calculated based on system structure function. Secondly, the 
performance rates and probabilities of all components’ states are de-
termined as triangular fuzzy number (TFN) based on experts’ experi-
ences. TFNs are chosen rather than other types of fuzzy numbers due 
to the easy concept and wide applications to reliability engineering. 
what’s more, if the imprecise component state probability elicited by 
experts is naturally modelled by the TNFs, the experts only have to 
decide the most possible values of component state probability and 
the uncertainty associated with this decision. For other types of fuzzy 
numbers, such as Trapezoidal fuzzy number, the experts have to de-
cide at least four values associated with the component state probabil-
ity. It, therefore, introduces additional challenges to the expert elicita-

tion process. Finally, the reliability assessment of the DFIG based on 
the FUGF is conducted. 

The remainder of this paper is organized as follows. Section 2 in-
troduces a brief overview of the turbine generators. The introduction 
on the MSS and the UGF are given in Section 3. Section 4 conducts 
the fuzzy reliability assessment for the DFIG system based on FUGF. 
Finally, a brief conclusion is given in Section 5.

2. Overview of Wind Turbine Generators

2.1. Background and Structure of Wind Turbine Generators
As a significant new energy, wind power plays an indispensable 

role in both industry and our daily lives. In China, for example, wind 
power increases quickly in recent years, and it is ranked the third in 
the country’s power equipment capacity. More information about Chi-
nese power equipment capacity [3, 4] is shown in Fig. 1.

The wind turbine generator is the vital device to convert wind en-
ergy into electric energy. According to the output capacity of wind tur-
bine generations, wind turbine generations can be divided into small, 
medium, large, and megawatt-scale. With the increase of the capacity, 
double fed wind induction generator (the DFIG) gradually becomes 
the mainstream of wind turbine generation market due to its good per-
formance and operation stability. As for DFIG, there are five main 
parts, i.e., the blade, the gearbox, the generator, the converter and the 
transformer. The structure of DFIG is shown in Fig. 2. The blade can 
rotate with the wind and then the torque forming. This is the first step 
that the wind power transforms into mechanical energy. The forming 
torque will be transmitted to the gearbox for acceleration. The output 
shaft of gearbox with high-speed rotating is connected with the gen-
erator and then the mechanical energy will be transmitted into electric 
energy. The converter of DFIG is used to excite the rotor of the DFIG. 
The amplitude, frequency, and phase of the output voltage at the sta-
tor side of the DFIG are the same as those of the grid. Without the 
converter, the generator cannot work normally [30].

Fig. 1. Power equipment capacity of China in 2018 and 2019

Fig. 2. The structure of DFIG

2.2. Reliability Modeling of a Wind Turbine Generator
According to the physical connections of the five components in 

DFIG, the reliability block diagram of a DFIG is shown in Fig. 3. In 
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the DFIG, two separate systems with a generator and converter con-
nected in series are used as redundancy. They are connected in series 
with the blade, the gearbox and the transformer.

Fig. 3. Reliability block diagram of the DFIG.

The components of a DFIG can be categorized into two types, 
i.e., the mechanical type and the electrical type. The former includes 
the blade and the gearbox whose failures are mainly caused by wear. 
Whereas, the latter includes the generator, the converter and the trans-
former, whose failures are mainly caused by the damage of IGBT 
modules. For the former type of components, the mechanical per-
formance will deteriorate into different levels with the development 
of wear and tear. When the performance reaches a certain threshold, 
components will be failure. For the latter type of components, the 
damage of IGBT modules can also make the degradation of perform-
ance due to the backup. Therefore, the system of the DFIG can be 
considered as an MSS whose components have multi-state as well. 
According to the experts’ experiences, the states of every component 
of the DFIG is defined and given in Table 1. As we can see from 
Table 1, there are 4 states of blade and gearbox, 3 states of generator, 
convertor and transformer. 

Based on the structure function of the entire system, there are to-
tally 482 states of the DFIG. Thus, it is difficult to accurately assess 
the system state parameters and an efficient method for reliability as-
sessment is strongly needed.

3. UGF-Based Reliability Assessment of MSS

3.1. Overview of MSS
For an MSS, it could have a finite number of performance rates 

(levels). For each component, they could have a finite number of 
performance rates (levels) as well. In order to conduct the reliability 
assessment of an MSS, the characteristics of its components should 
be determined first. Components can have different states with cor-
responding performance rates (levels). The performance rates (levels) 
of every states of any components can be represented as:

 g j j ji jkg g g
j j

= { }1, , , ,  , (1)

where ji  indicates th(1 )ji i k≤ ≤  state of component and 
jig is the 

performance rate (level) of j . Then the probabilities associated with 
different states of component j can be represented as:

 p j j ji jkp p p
j j

= { }1, , , ,   (2)

After determining the performance rates and corresponding prob-
abilities, the probability distribution (PD) of the system can be deter-
mined if the system structure function φ( )  is known. The probability 
of system state i  can be calculated as follows:
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The performance rate (level) of MSS for state i  is:

 g g gi i nin= φ( , , )11
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The PD of the MSS can be represented as:
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3.2. UGF Method
The UGF is an effective method to conduct the reliability assess-

ment of MSSs. Boolean model, stochastic process method, Monte 
Carlo simulation and UGF method are common method used for re-
liability analysis of MSS. In engineering practice, the UGF method 
can be applied to the system with complex structure and function, 
meanwhile, the calculation is small and the implementation is flex-
ible. Most importantly, reliability assessment via the UGF method can 
be done by decomposing the calculation of system UGF into a com-
bination of two component UGF. It, therefore, dramatically reduces 
the computational burden of system reliability assessment for com-
plex systems with many components. As the performance rates and 
PD of the MSS have been determined, the transformz −  of random 
variable 1g { , , , , }

j jj j ji jkg g g=   , 1p { , , , , }
j jj j ji jkp p p=    is 

defined as:
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Equation (6) represents the PD of the component j . This form is 
the UGF representation of multi-state component j . The output PD 
with transformz −  representation of the entire system can be repre-
sented as:
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where Ωφ  is a general composition operator. The UGF method is 
based on the general composition operator and individual universal 

transformz −  representations. Therefore, the PD of the MSS can be 
easily obtained through the PDs of each component if the structure 
function φ( )⋅  is known. The structure function φ( )⋅  is defined accord-
ing to the structure of the system. A system with different structures, 
such as series, parallel, series-parallel or bridge structures, will have 
different φ( )⋅ . The states of an MSS can be divided into two subsets 
depending on whether the state is acceptable by the system function. 
Whether a state is accepted or not depends on the system demand w . 
Suppose that the index :i i ir r g w= − , the state i is an acceptable state 

Table 1. States definition of DFIG.

Component State division

Blade perfect, mild wear, severe wear, failure (4 states)

Gearbox perfect, mild wear, severe wear, failure (4 states)

Generator perfect, middle, failure (3 states)

Converter perfect, middle, failure (3 states)

Transformer perfect, middle, failure (3 states)
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The result of 0.32 can be considered as the system availability cor-
responding to the demand 1w =0.5, and the reliability of the system 
can be assessed if the reliability demand is a set.

4. FUGF Method for Reliability Assessment of the DFIG

4.1. FUGF
Fuzzy reliability theory is a combination of fuzzy mathematics and 

reliability theory. Conventional UGF technique is based on two fun-
damental assumptions. Firstly, the probabilities of each state of each 
component can be fully characterized by probability measures. Sec-
ondly, the performance rate of each component can be precisely deter-
mined. However, since the performance rates and probabilities cannot 
be obtained precisely in practical engineering, the FUGF technique 
is developed. Therefore, the values in UGF cannot be represented as 
crisp numbers and the values can be considered around a crisp num-
ber. In this situation, the fuzzy set and fuzzy number are proposed to 
describe such epistemic uncertainty. 

A fuzzy number is different from a crisp number because it is a sub-
set defined by its membership function. For example, X  is a fuzzy 
subset, and is defined by its membership function µX x U( ) → [ ]: ,0 1 . 
The values of µX x( )  are in the range of 0 to 1, and the value of 
µX x( )  indicates the probability that the fuzzy number can be ob-
tained as a specific value x . There are different kinds of fuzzy num-
bers with different kind of membership functions. In this paper, the 
TFN is considered. The membership function of a typical TFN param-
eterized by the triplet is defined as:
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And the function can be plotted as Fig. 5.

Fig. 5. Membership function of TFN

If fuzzy values exist in the UGF, it can be considered as FUGF. In 
this paper, both the performance rates and the probabilities are treated 
as fuzzy numbers. Furthermore, all the fuzzy numbers in this paper 
are considered as TFNs. 

For a fuzzy MSS with n  components, the component (1 )j j n≤ ≤  
can have jk  different states, the corresponding PD can be represented 
as ordered fuzzy sets  





g j = { }g g gj ji jkj j1, , , ,  and 

if and only if 0ir ≥ . The availability of an MSS is the probability the 
system staying in the subset of acceptable states:
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Herein, a subsystem of the DFIG is taken as an example to illus-
trate the UGF-based reliability assessment for MSSs.

converter

transformer

convertergenerator

generator

Fig. 4. Structure of the subsystem of DFIG

As shown in Fig. 4, there is a subsystem of DFIG with five com-
ponents. This subsystem can be treated as a flow transmission sys-
tem whose performance rate (level) is defined by their transmission 
capacity. Suppose that there are 3 states of generator (component 
1) and converter (component 2) and 2 states of the transformer 
(component 3). The performance rates (levels) of the states of gen-
erator are 11 12 131.7,  1.2,  0.5g g g= = = with the corresponding 
probabilities being 11 12 130.7,  0.2,  0.1p p p= = = , respectively. 
The performance rates (levels) of the states of the converter are 

21 22 230.8,  0.2,  0g g g= = =  and the corresponding probabilities 
are 21 22 230.4,  0.3,  0.3p p p= = = . The performance rates (levels) 
of the states of transformer are 31 321,  0g g= =  and the correspond-
ing probabilities 31 320.5,  0.5p p= = . The UGF for each component 
based on the PD is defined as:
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1 11 12 13

1 7 1 2 011 12 13 0 7 0 2 0 5( ) . . .. . .= ⋅ + ⋅ + ⋅ = ⋅ + ⋅ + ⋅ 55

2 21 22 23
0 8 0 221 22 23 0 4 0 3 0 3

,

( ) . . .. .u z p z p z p z z zg g g= ⋅ + ⋅ + ⋅ = ⋅ + ⋅ + ⋅ zz

u z p z p z z zg g

0

3 31 32
1 031 32 0 5 0 5

,

( ) . . .= ⋅ + ⋅ = ⋅ + ⋅

According to the structure as shown in Figure 4, the system struc-
ture function is expressed as:
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and the PD of the entire system can be obtained as:
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.

Therefore, the system availability is calculated as:
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p j = { }p p pj ji jkj j1, , , , , so the fuzzy performance rates (levels) 
and probabilities of each state are:
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where µ
p ji j

 and µ
g ji j

 are membership function of 
ji j

p  and 
ji j

g , 

jjiP  and 
jjiG  are collection of objects denoted by 

ji j
p  and 

ji j
g , 

respectively.

The operation of fuzzy number follows the extension principle, the 
performance of system state i  can be evaluated as:
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where µ µ µφ
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, and 
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   is the structure function of FMSS.

The probability of system state i  represented by fuzzy numbers 
can be calculated as:
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The PD of a FMSS can be calculated as:
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Since system demand is represented as a fuzzy number, the avail-
ability assessment for a fuzzy MSS is re-defined in this paper. If the 
performance rate (level) g  for the state i  is represented as a TFN 
parameterized by a triplet ( , , )a b c  and the system demand w  is rep-
resented as a TFN parametrized by a triplet ( , , )x y z , there would be 
different kinds of relationship between them.

If a x≥ , state i  is a reliable state. 

If x c≥ , state i  is a failure state.

If there is an overlapping between ( , , )a b c  and ( , , )x y z , 
rel| |iar  is defined to obtain the availability. The availability of a 

FMSS can be represented as:

 rel( ) | |
k

i i
I I

A w p ar
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= ⋅∑

  , (15)

where rel| |iar  is the relative cardinality of fuzzy set iar  and
ar ar ar ar r ar ARi i i i i i i = = ∈{ }, ( ) | ( ) ( ),µ µ µ . rel| |iar  can be obtained 
by the following equations:
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where rel| |iar  is the relative cardinality of fuzzy set iar , and 
AR r R ri i i= ∈ ≥{ }| 0 , ar ar ar ar r ar ARi i i i i i i = = ∈{ }, ( ) | ( ) ( ),µ µ µ .

4.2. Reliability Assessment of the DFIG by FUGF
From the state definitions of DFIG in Table 1, there are 4 states 

of the blade and the gearbox, and 3 states of the generator, the con-
verter and the transformer, respectively. The degradation forms of 
components are different, for instance, the blade will have a slower 
speed of rotation but the gearbox will have a lower speed of the output 
shaft during degradation. Due to limited reliability testing resources 
(e.g., time, budget, manpower), the amount of collected reliability-
related data from the components of the DFIG are extremely small. It, 
therefore, becomes difficult to estimate the precise values of the state 
probabilities of the DFIG and its components [28], [29]. Alternatively, 
imprecise information with respect to the DFIG and its components 
states, i.e., the performance rates (levels), and the corresponding state 
probabilities can be gathered from experts. In this work, the perfor-
mance rates (levels) of all components are treated as TFNs under the 
fuzzy set theory, as tabulated in Table 2. The data in Table 2 are col-
lected from real industry according to cooperation with wind turbine 
enterprises.

Based on the given values, the reliability assessment based on 
FUGF can be conducted as follows:
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According to Fig. 3, components 3 and 4 are connected in parallel. 
Therefore, the operator 
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 is applied between 1( )u z  and 2( )u z :
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The FUGF of the entire system can be obtained as follows:

    

   

Ω Ω Ω Ω ΩS    = φ φ φ φS P S S
u z u z u z u z u1 2 3 4 3( ), ( ), [ ( ( ), ( )), ( (zz u z u z p zi

i

gi), ( ))], ( )  4 5
1

432{ } = ⋅
=
∑ 



Since there are 432 states of the DFIG system, it is difficult to list 
all the states. Thus, the successful states are considered to conduct the 
availability assessment. Let SΩ  be the FUGF of the acceptable states 
with the system demand is (0.78,  0.85,  0.92) , then we have:

1 (0.8, 0.83, 0.85)
S (0.2350, 0.4623, 0.7143) +(0.0326, 0.0669, 0.1206)z zΩ = ⋅ ⋅

2 rel| | 1 / 7 0.1429ar = =

( ) (0.2350, 0.4623, 0.7143)+(0.0326, 0.0669, 0.1206) 0.1429
          =(0.2397, 0.4719, 0.7315)
A w = ∗



5. Conclusions
In this paper, the reliability assessment of the DFIG, a typical wind 

turbine generator, is conducted under the fuzzy set theory. The DFIG, 
which consists of a blade, a gearbox, a generator, a converter, and a 
transformer is treated as an MSS. The FUGF method is used to eval-
uate the reliability of the DFIG with fuzzy states and probabilities. 
Firstly, the reliability block diagram of DFIG is built according to 
the system structure function. Secondly, the component states are de-
fined. Specifically, there are four (perfect, mild wear, severe wear and 
failure) states for the blade, 4 states (perfect, mild wear, severe wear 
and failure) for the gearbox, 3 states (perfect, middle and failure) for 

the generator, 3 states (perfect, middle and failure) for the converter, 
and 3 states (perfect, middle and failure) for transformer. Finally, the 
FUGF method is used to calculate the fuzzy availability of the entire 
DFIG system based on the reliability block diagram, fuzzy states and 
the corresponding probabilities. The results show that given the sys-
tem demand (0.78,  0.85,  0.92) , the availability of the DFIG system is 
(0.2397, 0.4719, 0.7315) . If the system demand increases to a higher 
level, the availability of system will decrease and vice versa. Trian-
gular fuzzy number is a special category of trapezoidal fuzzy number, 
which is the most widely studied fuzzy number. Most fuzzy concepts 
and fuzzy information in real life, especially some fuzzy judgments 
of decision-makers or experts’ experience, can be expressed by trian-
gular fuzzy numbers. It is noteworthy that the proposed constrained 
optimization model for reliability assessment is not restricted to the 
TNF. It can be readily implemented to other types of fuzzy numbers 
because at any cut levels, we can find the interval of the component 
state probability of any type of fuzzy numbers. Therefore, the pro-
posed method is a generalized method for reliability assessment under 
fuzzy set theory. However, for reliability assessment of MSS, UGF 
method is convenient, but it is not equal to that UGF method is the 
most accurate one. In the future, we need to further compare the ac-
curacy of the results with other methods. This is the direction we will 
focus on in the future.
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Table 2. Performance rates and probabilities of each component of DFIG

Component (No.) State (No.) Performance rate Probability

Blade
(1)

Perfect (11) 1 (0.72, 0.76, 0.77)

mild wear (12) (0.7, 0.8, 0.85) (0.1, 0.11, 0.13)

severe wear (13) (0.45, 0.5, 0.6) (0.06, 0.08, 0.1)

Failure (14) 0 (0.03, 0.05, 0.06)

Gearbox
(2)

Perfect (21) 1 (0.71, 0.72, 0.75)

mild wear (22) (0.75, 0.78, 0.80) (0.20, 0.21, 0.23)

severe wear (23) (0.35, 0.4, 0.48) (0.03, 0.05, 0.08)

Failure (24) 0 (0.01, 0.02, 0.03)

Generator
(3)

Perfect (31) 1 (0.77, 0.83, 0.86)

Middle (32) 0.7 (0.12, 0.15, 0.2)

Failure (33) 0 (0.02, 0.06, 0.09)

Converter
(4)

Perfect (41) 1 (0.81, 0.87, 0.92)

Middle (42) 0.6 (0.04, 0.1, 0.12)

Failure (43) 0 (0.01, 0.03, 0.06)

Transformer
(5)

Perfect (51) 1 (0.76, 0.82, 0.84)

Middle (52) 0.55 (0.11, 0.13, 0.17)

Failure (53) 0 (0.03, 0.05, 0.08)
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Modernization of aged rolling stock is one of the possibilities to adapt it to the current 
requirements for better environmental friendliness and economy of railway transport. How-
ever, some vehicle upgrades lead to new failures that were not observed in the original 
vehicles. The cause is the so-called “hybrid design”, built on a combination of original and 
selected new components. The aim of the work was to improve the situation with frequent 
failures and unavailability that occur on the modernized locomotive where a new diesel 
engine and new electronic control system was installed. Within the work, a simplified meth-
odology for evaluating the outputs of diagnostic equipment was developped based on and 
applied to specific locomotive type and its diesel engine. The methodology resulted in a 
significant reduction of the time for assessing the condition of the vehicle’s diesel engine and 
more effective maintenance. The paper also presents other possibilities in the analysis of big 
data in the maintenance of rolling stock e.g. using fuzzy logic.
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1. Introduction 
The basic function/purpose of maintenance of railway vehicles is 

to keep them running safely and economically for expected life cycle. 
Therefore, fundamental is to do everything to avoid failures that could 
end with serious consequences, primarily derailment of a vehicle and 
train. European Union is aware of importance of good technical con-
dition of rail vehicles and the role of maintenance. So it adapted exten-
sive requirements and legislation in the area of rail safety. Conscience 
overview on legal requirements regarding railway transport safety in 
the European Union the practical solutions developed for railway op-
erators as a part of the implementation of maintenance management 
systems can be found in [42]. Methodology for building a strategy of 
maintenance focused on safety of railway vehicles using RAMS (Re-
liability, Availability, Maintainability, Safety) analysis is described in 
[45] where on the example of a diesel locomotive it was found that 
this analysis enables proper classification of hazards, quantification 
of the frequency of occurrence of hazards and the adoption of the ap-
propriate criteria for risk assessment of the created strategy. As stated 
also in [39], vehicle reliability is strongly linked to rail safety.

Maintenance plays an essential role in a system’s life cycle. At the 
system level, the maintenance influences the reliability and availabi-
lity of the system [7]. Achieving quality maintenance of any technical 
system, including railway technology, requires choosing the right ma-
intenance strategy. However, we must realize that more comprehen-
sive maintenance means higher life cycle costs, although this may 
not lead to a significant improvement in reliability. Measuring and 
assessing maintenance performance is critical to the competitiveness 
and future survival of any company providing production or services. 
As stated Mlynarski et al. the economic indicators of the operation 
process are one of the most important indicators of the use of vehicles 
in transport systems. This is because it is the operation management 
that largely determines the proper functioning of the entire business 
company [28].

2. Problematic of rail vehicle maintenance and mod-
ernization 

Macián considers maintenance to be one of the largest expenditures 
for the transport companies together with fuel (or energy) costs and 
drivers (personnel) [24], which is, however, the most important one 
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from the view of controllability, attending that fuel and labour costs 
are more externally driven (crude prices volatility, taxes, personnel 
policies and salaries, etc.) [23]. As in a free market, the optimal ma-
intenance strategy can not only guarantee the availability of railway 
system but also have the best economic benefits [43].

The maintenance dealing with safety critical components is in par-
ticular concerning the wheelsets and parts connected with running 
gear in general, such as bearings, suspension etc. In this area the dura-
bility and prevention of any failure is the most important task. There 
are numerous standard and verified methods used in technical con-
dition assessment and remaining utilization life prediction methods. 
With new diagnostics technology and computer support, extensive 
research is carried out. 

In [21] a general reliability study using both classical and Bayesian 
semi-parametric degradation approaches for reliability analysis are 
presented. It is illustrated how degradation data can be modelled and 
analyzed to determine reliability to support preventive maintenance 
strategy based on a data-driven framework. With the proposed clas-
sical approach, both accelerated life tests and design of experiments 
technology are used to determine how each critical factor affects the 
prediction of performance, in this study demonstrated on a locomotive 
wheel-set reliability, being a safety critical component. Other safety 
critical components requiring higher attention and monitoring are axle 
bearings. Authors in [35, 51] present the prognostics and health moni-
toring concept in rail vehicles, specifically focused in bearing health 
state and remaining useful life. This concept is rapidly growing field 
of research with the aim of improving the reliability and availability 
of railway systems switching from time-based to event-driven main-
tenance policies.

Assessment of the reliability based on statistical methods is so far 
mostly used. Practical example can be found in the study [16] where 
statistical methods of quality management were used to identify the 
most problematic types of diesel locomotive equipment and specific 
causes of failures. Similar approach to reliability of power equip-
ment on electric locomotives is described in [17], where failure oc-
currence and reliability analysis was done considering the negative 
impact of climatic factors on operation and technical condition of the 
rolling stock. 

Increasing demands on the economy and safety of operation of va-
rious devices lead to the prediction of remaining service life (RUL). 
Most researchers devoted to improve the accuracy of the prediction 
results, and have investigated many effective methods for RUL pre-
diction, including various neural networks (NN), support vector re-
gression (SVR), stochastic process, and other methods. Ramezani 
et al. give a comprehensive summary to various methods [37]. The 
researchers form NASA Ames Research Center suggests that the per-
fectly and precisely prediction of engineering systems behavior is not 
possible in practical engineering applications due to prognostics un-
certainty, and divided the sources of uncertainty into four categories: 
present state uncertainty, future uncertainty, modeling uncertainty and 
prediction method uncertainty [40].

In the literature, apart from the classical maintenance models [31], 
there are numerous maintenance models available on the required re-
liability level of an entire system [53], some of them based on the 
application of simulation methods [10, 29]. Some models include the 
possibility of partial maintenance [28], some others make use of addi-
tional inspection of object’s technical state when it can be performed 
while the system is in actual operation [6]. A detailed and comprehen-
sive classification of existing preventive renewal models is provided 
in [49]. In practical engineering, besides the randomness that can be 
modeled by probabilistic theory with probability distribution functi-
ons, epistemic uncertainty is another issue, caused by factors such 
as loss of information, limited knowledge, and inevitable man-made 
mistakes [15], which cannot be well explained by randomness and 
probabilistic models.

For the system maintenance and availability analysis, there are 
mathematical formulating and model-based analysis approaches. Gar-

mabaki et al. presented the Multi-Attribute Utility Theory (MAUT), 
which used multiple objective functions to evaluate the cost and re-
liability of the maintenance optimization [11]. A gamma deterioration 
process was proposed by Meier-Hirmer et al., and it was applied to 
analyze the track maintenance [25]. Furthermore, the Maintenan-
ce Engineering Department of French National Railway Company 
(SNCF) introduced a formal method to estimate the maintenance stra-
tegy [3, 43].

Availability studies for degrading systems have been carried out by 
numerous researchers, but these are mainly based on Markov model 
using constant failure and repair rates, which is unrealistic in actual 
operating conditions. Markov model is a stochastic model which is 
used to model randomly changing systems over time. The basic as-
sumption of a Markov Process is that the behavior of a system in each 
state is memory less which illustrates that the future evolution of the 
process depends only on the present state and not on the past sequence 
of traversed states prior to current state [19].

An interesting observation about relation between operation and 
maintenance is described in [46], where it is emphasized that main-
tenance strategy contributes higher efficiency of railway vehicles. 
One of new solutions that improve economy and thus effectiveness of 
maintenance is use of mobile maintenance points, as reported in [47]. 

The purpose of all the technical solutions in condition monitoring 
and reliability analysis after all is to create more effective maintenance 
system - maintenance planning and execution. Knowledge of distribu-
tions of times to failure is fundamental for maintenance planning [41]. 
The proposed methods for improved maintenance schedules and new 
algorithms for overhauls planning are defined in [20, 34]. 

From the investigation of the state-of-the-art approaches to the 
railway vehicle operation and maintenance, the principles of RAMS 
method [7, 45] was used to improve especially reliability, maintain-
ability and availability of the investigated locomotive type with “hy-
brid design” (old vehicle with modernised propulsion system) by 
simpler and faster analysis of data from the diagnostic system of the 
diesel engine through. For processing of diagnostic data, statistical 
methods for assessment of the diesel engine reliability were used, 
similar as in the [16]. Outcome of the solution should improve the 
locomotive operation economy.

The expected service life (durability) of traction rail vehicles is 
about 30 years, while the service life of individual components/sub-
systems is usually not the same. The body and chassis generally last 
longer [44, 50], but e.g. the diesel engine or control systems have 
a shorter service life. Developments in the field of technology are 
advancing rapidly, and thus the vehicles are becoming technically ob-
solete and economically and ecologically disadvantageous. The oper-
ating and maintenance costs of such vehicles increase with age. One 
possibility is to replace them with new vehicles, which is very costly. 
Another possibility is to modernize them, which is a more acceptable 
and economically viable option for a large number of rolling stock 
operators, in particular in Central and Eastern Europe. 

At present, apart from technological and economic factors, an en-
vironmental factor is gaining significance in restoring vehicle parts 
to fitness (regeneration) [26]. The use of regenerated parts reduces 
negative impact of production processes on the environment [9]. The 
positive effects are especially in saving energy and material that are 
not consumed for new products.

There are numerous examples of locomotive modernisation [22] 
or freight wagons [36]. One of them, ŽOS Vrútky, a Slovak company 
is active both in locomotives [12] and passenger wagons. Example of 
modernisation of  a  diesel  locomotive  is described in [4] where the 
proposed  solution,  an  electronic  rotations  and  power  governor  of  
diesel  engine, was  applied. By this solution a new optimal operation-
al characteristic were realized. Efficiency of the modernisation has 
been assessed and supported by an LCC (Life Cycle Cost) analysis.

Sometimes the companies modify only specific components of 
the locomotive drive [2]. Similarly, a small change in maintenance 
technology is often a way to improve the reliability of vehicles, for 
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example by adjusting the cleaning of the fuel system as mentioned 
in [14] or by maintaining the technical condition of the fuel system 
components [33]. For example, using powder details in various units 
of rolling stock proved to be more reliable, safe and economically 
profitable [27]. Usually, the benefits of modernization are in the 
improvement of economic and environmental parameters of rolling 
stock operation, for example by reducing a vehicle weight by using 
light materials [52].

In many European countries, including Slovakia, there are loco-
motives, which are obsolete and technically less suitable, are still in 
service on the railways. Therefore, the issues and tasks of moderniza-
tion of diesel locomotives are very important. The aim of moderniza-
tion is a positive change or affecting several important parameters of 
a locomotive at the same time. In the first place, these are operating 
parameters such as safety, reliability, energy efficiency, performance 
and much more. Another important factor of modernization are design 
improvements, which mainly result in less demanding maintenance, 
improvement of the overall care of the traction vehicle, simplification 
of operation, comfort and good ergonomic of a train driver and the 
like. Last but not least, the modernization also improves a number of 
environmental parameters of the vehicle [48], because modern con-
struction elements and equipment applied in a modernized vehicle 
give priority to the maximum elimination of negative effects on the 
environment in the vicinity of railway lines from the operation of die-
sel traction vehicles.

The advantage of built-in diagnostics [8] is the interconnection of 
a large number of components, which provides the basis for a solid 
overview of the technical condition of most components as well as 
their functionality. A certain disadvantage of electronic diagnostics 
is the rather large number of error codes and the subsequent hierar-
chy of faults at several levels, which in part complicates the accurate 
identification of a specific problem. Diagnostics applied in the lo-
comotive also facilitates the work of workers in repair/maintenance, 
in finding and identifying the specific cause of the failure. Another 
concrete application of diagnostic system used on diesel locomo-
tives can be found in [1], which is used for checking the technical 
condition of some systems on the diesel Diesel locomotive, namely 
the electronic system for measuring, controlling and monitoring the 
speed and consumption of fuel as well as for control and signalling 
system.

As can be seen from the literature research, various researches 
and scholars use a variety of approaches to design an appropriate 
maintenance methodology. Some approaches are more focused on 
pure theoretical solutions to the maintenance problem, other are 
more practical oriented. However, each industry is specific and uses 
its methods. Different specifics are in industrial production and oth-
ers has the transport sector. However, the suitability of the method 
used also affects the age, resp. date of manufacture of the technical 
equipment. In case of means of transport, e.g. in the automotive in-
dustry, where the requirements for operation efficiency and ecology 
change significantly every 5 years and the average age of cars in 
the EU is about 11 years, the development of maintenance meth-
odologies is also more intense than, for example, railway vehicles, 
where the lifetime counts for decades. This, of course, corresponds 
to equipment of maintenance facilities with appropriate mainte-
nance technology qualification of personnel. Due to the high invest-
ment in the purchase of new rolling stock, another specific feature 
of transport companies is that after the end of life of rolling stock 
they try to modernize vehicles, which leads to the creation of „hy-
brid“ designs, where a large part of the original, technically obsolete 
design is combined with a modern and economical propulsion unit, 
which is equipped with automatic control unit and fault evaluation. 
In such a case, it is necessary to choose an individual approach for 
the proposal of the maintenance methodology of the vehicle, taking 
into account all the factors mentioned. In our article we are dealing 
with such a “hybrid” case.

3. Subject of the study 
The subject of the study is the locomotive series 757 (Fig. 1), 

which represents the latest project of the locomotive manufacturer 
for the modernization of diesel locomotives used for expressed trains 
haulage. The modernization was carried out from the original locomo-
tive series 750 (T 478.0) or 754 (T 478.4), which were manufactured 
from the late sixties to the end of the seventies of the 20th century. The 
design change brought better operational and economic parameters as 
well as lower service costs [54].

The locomotive series 757 is a four-axle diesel-electric cabinet lo-
comotive with alternate-direct current power transmission, total mass 
of 75.4 t and maximum operating speed 100 km/h.  Its main utili-
sation is for medium heavy-duty rail track service on regional and 
state railway tracks with 1 435 mm gauge, in particular for passenger 
transport on non-electrified track of ŽSR (Slovak Railways). On the 
locomotive, an old diesel-electric generator unit was replaced by a 
new unit, composed of Caterpillar diesel engine, model 3512CHD 
with installed power of 1550 kW at 1800 rpm (188.5 rad/sec), trac-
tion alternator Siemens 1FW2 631-6 and auxiliary alternator Siemens 
1FW4 630-10. 

Fig. 1 Locomotive series 757[54]

The electric equipment includes an electronic control system 
MORIS RV07 [32]. The function of the modular control system 
MORIS RV07 is to control and monitor the parameters of components 
of diesel-electric locomotive with the purpose of simplifying the driv-
er’s control and reliability of operation. It controls the diesel engine 
Caterpillar as well as the alternators Siemens. The communication is 
executed with regulator through electric controllers and display unit 
of the control system PIXY with diagonal 10´´ on both control posts. 
The electronic system enables also the diagnosis of electronics, which 
creates a new information database on technical condition of the ve-
hicle and new information links for assessment of scope, extent and 
duration of corresponding maintenance task for a particular vehicle.

The modernisation of the locomotive brought improvements in en-
vironmental parameters of the locomotive (lower fuel consumption 
and emissions, lower noise emissions, higher power). However, more 
frequent failures of the sophisticated control system consisting of a 
larger number of control and management elements appeared.

The output data system is complex and difficult to use for a loco-
motive driver as well as maintenance workers. For this reason, a sim-
plification (user friendliness) of the output data system has been de-
veloped within our work to make it easier to identify and understand 
the data. By this, faster and clearer fault identification is achieved, 
which shortens maintenance time and increases the availability of lo-
comotive utilisation in operation. This brings a direct economic effect 
in reduced maintenance costs as well as higher dependability of rail 
transport. Data from diesel engine control system can be used also for 
statistical processing after longer time of diesel operation and reveal 
the faultiest parts of the diesel engine, thus contribute to reliability 
improvement.
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3. Data records processing and analysis
The technical condition of a vehicle is characterized by a relatively 

large set of parameters. In general, a parameter is a measurable quan-
tity that describes the technical, economic or operational properties of 
an object. The limit values of the parameters in the vehicle are usually 
a criterion for the satisfactory function of the object and exceeding 
them is a criterion for failure. Each object is characterized by parame-
ters that determine its qualitative indicators, either in terms of ensuring 
its basic characteristics and functional accuracy, or in terms of the ef-
fectiveness of its work, impact on the environment, etc. e.g. in the case 
of vehicles these can be speed, power, energy consumption, loading 
capacity, safety or mechanical and strength characteristics, kinematic 
and dynamic parameters of the vehicle or its components [5].

For determining the limit states and calculating the indicators of the 
so-called parametric reliability, it is important to thoroughly classify 
failures and determine for which failures it makes sense and whether 
limit states can be determined. To evaluate parametric reliability, the 
failures are divided according to the nature of the origin and course of 
processes leading to the fault. 

Fig. 2. Control system MORIS RV07 [32] 

The diagnostic system installed in the locomotive series 757 cre-
ates a large number of files in which it records operating parameters 
(physical and numerical). It creates in total 15 types of files. The cre-
ated files are stored in the internal memory in the MORIS RV07 con-
trol system (Fig. 2), in which it creates a loop of data files for 2 weeks 
period. After this time, the oldest files are automatically deleted and 
replaced with the newly created files. The memory capacity is 5 GB 
and the stored files for the mentioned 2 weeks have a size of approxi-
mately 2.5GB. Files are saved in .dbf and .log formats.

Within the work, a CAT file was selected from all 15 types of files, 
which contains the physical and operational quantities of the locomo-
tive‘s internal combustion engine and stores them in 17 subsystems. 
An example of a „CAT“ file generated by the diagnostics is shown in 
Fig. 3.

The „CAT“ file currently contains several quantities being recorded 
by the system. Specifically, these are the quantities that are summa-
rized in the Tab. 1. However, some of these values do not have suf-
ficient explanatory value for use in mathematical modelling or in real 
use. For this reason, we have made several changes in the „CAT“ file. 

In the new “CAT” file, fields have been deleted that have no or only 
insignificant value for assessing the condition of the diesel engine and 
some important were added.

The first change in the “CAT” file was the recalculation of diesel 
engine rotations (rpm), measured (OT-MER) and required (OT-ZEL), 
to their difference. The difference between these two values has better 
informative value for the correctness of the diesel engine operation. 

The second change was the addition of the value “VYF_ROZ”, 
which records the difference in exhaust gas temperatures on the left 
and right side of the diesel engine, as it is a ‘V’ type engine (the cyl-
inders in the form ‘V’ shape). This change will bring better condition 
monitoring of the group of cylinders on both sides of the diesel engine 
(temperature difference can signalize the variations in Air-fuel ratio, 
failure on injector, failure of valve, etc).

Another change concerned the recording of the lubricating oil pres-
sure. The pressure is currently sensed before and after the filter, but 
only one of the values is recorded. For this reason, it is not possible to 
objectively evaluate the instantaneous lubricating oil pressure in the 
lubrication system. By sensing the pressure before and after the filter 
and comparing them, we have full control over this system and we 
can evaluate its condition in a short time. Based on this, we added a 

recalculation of the oil pressure difference before 
and after the filter. This fact will give us the op-
portunity to monitor the correct operation of the 
oil pump, the condition of which will be evalu-
ated by the pressure sensor before the filter and 
at the same time the condition of the lubricating 
oil filter, the condition of which is monitored by 
the pressure difference before and after the fil-
ter. The situation is similar with fuel pressure. 
The fuel pressure is monitored before and after 
the filter, but only one of these values  is record-
ed in the „CAT“ file. By adding of the second 

value and at the same time their difference in to the new “CAT” file, 
we get complete control over the operation of the fuel pump and the 
condition of the fuel filter.

The changes were implemented in the form of adding new recorded 
parameters and modifying the already existing values.

Table 1. Quantities recorded by the diesel engine diagnostics in the “CAT” 
file

Used abbreviations Explanations

DATE Date of values recording 

TIME Time of values recording 

REŽIM Mode selected by the locomotive operator

OT_MER rpm measured

OT_ZEL rpm required

LOAD Instantaneous relative thrust

TV1 Coolant temperature 1st circuit

TV2 Coolant temperature 2nd circuit

VYF_P Exhaust gas temperature on the left

VYF_L Exhaust gas temperature on the right

TLAK_OLEJ Oil pressure

TLAK_PAL Fuel pressure

TLAK-TUR Turbocharger pressure

AKT-SPOTR Instantaneous consumption

MOTOHOD Hours

SPOTREBA Instantaneous fuel volume in the tank

POCET_ERR Number of error messages

Fig. 3. An example of a „CAT“ file generated by the diagnostics
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To evaluate the state (condition) of the diesel 
engine, it was necessary to define the limits (in-
tervals) of the values of the selected parameters. 
In Table 2 the principle of creation of limits are 
explained.

Some parameters contained five values in 
the interval, for some it was sufficient to ex-
press three values. All parameters from the new 
„CAT“ table and their intervals or differences 
between the two values were processed into 
Table 3.

Appropriate selection of intervals and values 
of differences from the real operation of loco-
motive series 757 were specially consulted with 
experts from the operation and maintenance de-
partments of locomotive depots.

The next step was to create the „CAT“ file 
itself in the „xlsx“ format, in which all the changes mentioned 
above are incorporated. The new „CAT“ file contains 10 000 
data for each recorded quantity, which in total is approximately 
90,000 values. The fault conditions were artificially changed 
beyond the intervals of Table 3. It is also important to mention 
that the fault-free values of the individual locomotive systems 
were selected from the locomotive diagnostics in a state where 
the locomotive had the driving mode selected, which is the most 
frequently used and most important in operation. Thus, the lo-
comotive was in motion under load and the engine rotations 
were higher than 1450 rpm (151.8 rad/sec). For other modes 
(e.g. idling and transient modes) it is necessary to specify other 

intervals of parameter values (e.g. turbocharger pressure is lower at 
idling and run-out mode than in driving mode and rotations above 
1450 rpm (151.8 rad/sec).

In Fig. 4, a part of the new „CAT“ file is shown. There are meas-
ured and recalculated values of the engine parameters, which are com-
pared with the defined intervals and values of the limit states of the 
parameters characterizing the failure.

The next step in preparing the data for evaluating the state of the 
diesel engine was to clearly define the faults using zeros and ones. If 
the parameter value fell outside the predefined interval, the param-
eter was assigned the number 0 (fault). If the parameter fell within 
the interval, it was assigned the number 1 (operation without failure). 
The overall condition of the locomotive was evaluated based on the 
condition of the individual locomotive systems (the column marked 
“LOKO” in the Fig. 5). If only one locomotive system acquires the 
value 0, then also in the column for the total locomotive state will be 
0. The value 1 for the total locomotive state will be only if all the loco-
motive systems acquire a value of 1 and thus only then the locomotive 
is operational (up-state).

 The original recording of the data did not provide the graphical 
output. A suitable tool for closer identification of the condition is a 
graphical representation of the course of the monitored values. The 
graphic visualisation simplifies the identification of incorrect values. 
As an example, the course of the engine rotations (rpm) is given, where 

the desired values are shown in red and the actually measured in 
green (Fig. 6). In the figure, an example of rotation stabilisation 
after their change is presented.

Table 2. Explanation of creation of limits (intervals)

<AA, BB, CC, DD, EE>

AA, EE - parameters indicating fault limit values

BB, DD - parameters indicating changes in the 
system leading to a fault

CC - parameters indicating that the monitored 
system is OK

Table 3 Parameter intervals and differences in the new „CAT“ file

Parameter Interval / Difference

OT_ROZ Difference max 50 rpm

TV1 <70 - 83 - 95 - 100 - 105>

TV2 <30 - 40 - 50>

VYF_P <100 - 400 - 550 - 650 - 702>

VYF_L <100 - 400 - 550 - 650 - 702>

VYF_ROZ Difference between P and L max 30 ° C

TLAK_OLEJ_ROZ Difference max 150 kPa

TLAK_PAL_ROZ Difference max 150 kPa

TLAK_TUR <150 - 210 - 250>

Fig. 4. Example of a modified set of measured data „CAT“

Fig. 5. Evaluation of the overall condition of the locomotive based on the individual systems condition

Fig. 6. Graphical representation of required and measured engine ro-
tations
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4. Improvement of the maintenance by new processing 
of data files – case example

Locomotive maintenance is often performed only on the basis of 
experience with its several years of operation. However, maintain-
ing and diagnosing a locomotive in this way is very time-consuming 
and costly. It often happens that the locomotive returns to the depot 
after the maintenance, because the same failure reappeared despite the 
deployment of new components. Upon further inspection of the loco-
motive, it is determined that the failure might be caused by another 
component, which will then be replaced/repaired. Maintenance car-
ried-out in this way is very inefficient in terms of time and finances.

Within the cooperation with the locomotive depot, which operates 
five locomotives series 757, an access to records of measurements of 
the operation of locomotives operated by the depot was provided. For 
the purposes of the work, the records on unplanned locomotive out-
ages were separated from the records on all maintenance.

Records on unplanned outages of a particular locomotive 757. 
016-1 (one of five in the depot) for the first four months of the year 
2020 were processed (Table 4). On average, three to five unplanned 
outages per month occurred on this locomotive. The downtime ranged 
from one hour to repairs lasting several days. Interestingly, in March, 
faults occurred for three consecutive days, with one fault occurring 
repeatedly (heating failure) and the repair of the other (low insulation 
state of the excitation circuit) taking three days. This represents a very 
long downtime of the vehicle.

Every hour of an unplanned outage of the locomotive brings a loss 
to ZSSK – Slovak raiways, as the locomotive does not fulfil the tasks 
for which it was purchased. The average time of an unplanned loco-
motive outage is 4 days per month which is 48 days per year. The cost 
of unplanned outages of the locomotive must also include the cost of 
the work of the people performing the repair and diagnostics of the 
locomotive. The hourly work costs ranges from 20 to 28 Euros.

The vehicle maintenance time is divided into several parts. Some 
of them can be influenced and shortened (analysis of diagnostic files), 
some cannot be influenced directly (delivery of spare parts, repair by 
an external company). The proposed methodology reduces the time 
required for analyses of the files and work with them. Until now, the 
analysis of diagnostic files has been performed using a large number 
of files that contain a considerable amount of data and are often con-
fusing. This fact affects and significantly extends the time needed to 
analyse the problem. 

In the new method, after downloading the files, they are analysed 
and in this step the methodology can significantly reduce time. Only 
one “.log” file is analysed, which contains data for only one, specifi-
cally determined hour, using a record of the time of failure. The data 
is clearly arranged, it is possible to quickly and easily create a graph 
of parameters. The main advantage is the immediate display of data 
indicating the error and the display of the generated and signalised 
fault. This results in a faster return of the locomotive to operation, thus 
eliminating losses caused by the locomotive‘s downtime in mainte-
nance. From experience in practical operation, the diagnostic process, 
which includes downloading files and analysing them, can currently 
take approximately 3 hours. Using the new method, this time can be 
reduced to an hour and a half, of which the analysis itself takes only 
half an hour.

5. Possibilities of further procedure in data analysis of 
large files in vehicle maintenance

When analysing and classifying data, e.g. from various electron-
ic systems for monitoring the technical condition of vehicles to the 
planning and performance of maintenance from a statistical point of 
view, fuzzy files and logic become a valuable tool for modelling and 
processing inaccurate data, or for creating flexible techniques for han-
dling accurate data. The so-called linguistic variables appear to be one 
of the promising ways of expressing values, described by quantitative 
or qualitative quantities. Qualitative quantities in many cases appear 
to be the result of the formalization of expert estimates. Each object 
or process is described by a group of indicators. 

The use of the fuzzy method is applied in various fields, for ex-
ample in the prediction of the reliability of structures, as mentioned 
in [13]. Prediction of structural performance is a complex problem 
because of the existence of randomness and fuzziness in engineering 
practice. In this area, reliability analyses have been performed using 
probabilistic methods. This work investigates reliability analysis of 
structure involving fuzziness and randomness. In particular, the safety 
state of the structure is defined by a fuzzy state variable, fuzzy random 
allowable interval, or fuzzy random generalized strength.

There are a number of methods for constructing a fuzzy set mem-
bership function based on expert estimates. Two groups of methods 
can be distinguished: direct and indirect. Direct methods assume that 
the expert immediately formulates rules according to which the value 
of the membership function characterizing the element is determined.

Table 4. An overview of faults occurred on the locomotive 757.016-1

Locomotive
Start of mainte-

nance
(date – time)

Finish of mainte-
nance

(date – time)
Fault description Duration 

(hour:min)

757.016-1 16.01.2020 - 10:00 16.01.2020 - 12:00 Low insulation state of traction motor (TM) 2:00

757.016-1 03.02.2020 - 12:11 07.02.2020 - 17:00 4th TM faulty 100:49

757.016-1 09.02.2020 - 11:11 09.02.2020 - 15:00 Combustion engine in performance signals high crankcase pressure 3:49

757.016-1 25.02.2020 - 15:00 27.02.2020 - 17:00 Low insulation state of TM 50:00

757.016-1 10.03.2020 - 09:00 10.03.2020 - 18:00 Low insulation state of 3th TM 9:00

757.016-1 15.03.2020 - 07:00 15.03.2020 - 11:00 Non-functional train heating 4:00

757.016-1 16.03.2020 - 13:00 16.03.2020 - 14:00 Non-functional train heating 1:00

757.016-1 17.03.2020 - 11:11 20.03.2020 - 12:00 Low isolation state of the TM excitation circuit. Critically low oil pressure 
at start. 72:49

757.016-1 26.03.2020 - 04:48 26.03.2020 - 09:35 The locomotive without power 4:47

757.016-1 26.03.2020 - 17:28 27.03.2020 - 08:20 Defective primary circuit cooling inverter 14:52

757.016-1 07.04.2020 - 16:45 08.04.2020 - 17:00 Insufficient power of train heating 24:15

757.016-1 11.04.2020 - 04:00 12.04.2020 - 12:00 Fault 88.04 - power supply for NOV sensors, source of traction current sen-
sor. The brake rod lock is missing on the 4th axis on the left. 32:00

757.016-1 23.04.2020 - 12:00 23.04.2020 - 17:00 Charging circuit 5:00
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Indirect methods for calculating the values of the membership func-
tion are used when there are no elementary measurable properties.

The decision-making process is the most important moment in the 
management of various objects or processes, to which can be assigned 
the process of planning and implementation of vehicle maintenance 
based on the collection of large amounts of data from electronic sys-
tems monitoring their actual technical condition during operation. An 
essential component of this process is the selection of a decision from 
a set of acceptable alternatives. In many cases, the analysis of input 
situations as well as the selection of the best decision is carried out by 
comparison with decisions that have been made in the past, e.g. estab-
lished maintenance system of the relevant vehicle. At the same time, 
it is necessary to minimize the costs of analysing input situations by 
determining the sequence of the most important indicators. The solu-
tion of the problem of recognizing the situation in decision-making 
is expressed in the form of analytical expressions or in the form of 
so-called Decision Tree.

The decision tree is created on the basis of a decision table describ-
ing N input situations (data and data on the technical condition of the 
vehicle, measuring and other samples). Each example is made up of 
the values of the input and output attributes, which for the mainte-
nance of the vehicle means preparation, and the process of managing 
and performing the maintenance itself.

Fig. 7 shows the sequence of steps and operations required to make 
a decision tree.

The fuzzy logic method is suitable for analysing data from the di-
agnostics of complex systems [38]. It can be used also for diagnostics 
of locomotive series 757 due to the ability to process large amounts 
of data generated by the vehicle control system. The compilation of 
a decision tree for a diesel-electric locomotive series 757 in order to 
identify data from the electronics of the locomotive control systems 
focused on the maintenance of this locomotive will be the aim of an-
other solution.

Fig. 7. Decision tree creation sequence scheme

6. Conclusions
Safety, reliability, maintainability and operability are nowadays 

highly monitored parameters of locomotives performing line serv-
ice on ŽSR lines. Quick maintenance is one of the most important 
indicators of the efficiency of locomotive operation. Therefore, any 
reduction in maintenance time is beneficial, as presented in the case of 
the locomotive series 757. Suggestions for improving the evaluation 
of the locomotive state based on diagnostics are beneficial for their 
practical use.

The specific changes are summarized in the following points:
creation of intervals (limits) for selected parameters of the inter-1) 
nal combustion engine of the locomotive series 757, on the basis 
of which the algorithmic calculation evaluates the occurrence of 
the ICE failure,

the developed methodology (method) can display the parameters 2) 
of the locomotive series 757 faster, easier and clearer and is able 
to immediately recognize the locomotive fault or faults based on 
the diagnostically created „.log” file,

the methodology enables the sorting of the monitored locomo-3) 
tive parameters and the display of selected parameters in a graph, 
which has an important benefit in practice in terms of the pos-
sibility of comparing two interdependent parameters of the lo-
comotive,

creating a diagnostic report has benefits and advantages in 4) 
terms of maintenance, namely in the area of better registration 
of interventions on the locomotive, control and registration of 
faults and the actual maintenance performances, maintenance 
rationalization and assessment of the results of the diagnostics 

itself,

based on long-term monitoring, the data can be more precisely 5) 
statistically evaluated with the purpose of identification of indi-
vidual failures and to define critical components of the propul-
sion unit.
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1.Introduction
Maintenance is a set of activities to assess and maintain the capa-

bilities of instruments or equipment. However, another task of main-
tenance is to restore machinery or equipment that has lost its func-
tion back to its previous state [37]. Maintenance and repair activities 
are of great importance for any industrial plant to achieve sustain-
able generation, because failures resulting from improper planning 
of maintenance lead to generation losses and costly maintenance and 
repair expenses with the halt of generation. In addition to maintenance 
costs, generation halts endanger supply security, rendering enterprises 
unable to compete in highly competitive markets. Moreover, poor 
management of the maintenance process can lead to businesses being 
eliminated from markets. Furthermore, maintenance is a costly proc-
ess in terms of time, labor requirement and material [43]. As mainte-

nance planning is important and costly, it is critical to determine opti-
mal maintenance strategies to be applied to the machine or equipment. 
This is because wrong maintenance strategies applied will generate 
major obstacles in achieving sustainable generation. For example, it 
not only increases the likelihood of equipment failure but also leads to 
high maintenance costs and reduced product quality [26]. Considering 
many factors such as cost, security of supply and product quality, it 
can be concluded that determining the maintenance strategies to be 
applied to the equipment is an indispensable first stage of an effective 
and feasible maintenance planning. This is because all maintenance 
and repair activities are performed according to the selected mainte-
nance strategies [52]. There are many maintenance strategies in the 
literature: reliability-based maintenance [64], condition-based mainte-
nance [2], risk-based maintenance [48], preventive maintenance [32], 
predictive maintenance [39], corrective maintenance [60], and lastly 

Countries need to develop sustainable energy policies based on the principles of environ-
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impact of sustainable energy supply on the global world, maintenance processes in power 
plants require high costs due to allocated time, materials and labor, and generation loss. 
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revision maintenance [44]. Among these strategies, four maintenance 
strategies are applied in HPP, where this study is implemented:

Corrective Maintenance Strategy: This maintenance strategy 
allows failure to occur before maintenance is performed. Corrective 
maintenance is a failure-based maintenance that is performed after a 
corrective or when an obvious probability of failure is detected. The 
purpose of this maintenance is to return the system to the state where 
it can perform its required function in the minimum possible time. A 
primitive type of maintenance, corrective maintenance does not take 
into account the losses caused by malfunctions and failures [60]. 

Preventive (Periodical) Maintenance Strategy: It is carried out 
according to predetermined periods or foreseen criteria. It is done to 
prevent the deterioration of the functioning of a product or to reduce 
the possibility thereof [32]. This type of maintenance aims to in-
crease the reliability and availability of equipment by minimizing the 
number of failures and eliminating the need for unplanned corrective 
maintenance [61].

Predictive Maintenance Strategy: The goal of predictive main-
tenance is to reduce downtime and maintenance costs on the premise 
of zero failure generation by monitoring the operating status of the 
equipment and predicting when an equipment failure can occur [39]. 
Through prediction, it provides maintenance planning for future po-
tential failures before the failure occurs. Ideally, the maintenance pro-
gram is optimized to minimize maintenance costs and achieve zero 
failure generation [40]. 

Revision Maintenance Strategy: This is the maintenance strategy 
that involves the implementation of positive changes in the design, 
operation method, operating conditions, installation, scheduling and 
maintenance methods of the relevant machine/equipment in order to 
achieve the functions expected from the machine/equipment at the 
highest level [44].

As mentioned above, the most critical phase of maintenance man-
agement is maintenance planning. The first and indispensable stage of 
maintenance planning is the selection of the appropriate maintenance 
strategy. This selection problem is a very complex problem due to the 
fact that the system units have many and different functions, obtaining 
the data reflecting the system is difficult, and it contains many quan-
titative and qualitative criteria [42]. To solve this problem, research-
ers presented their solutions by using different methods in different 
application areas. With the recognition of the importance of mainte-
nance management, the interest in the problem of maintenance strat-
egy selection has increased in the literature in recent years. Increasing 
interest led researchers to compile and review published studies and 
as a result, two literature reviews on this subject were published in 
2015. One of these two reviews was written by Ding and Kamarud-
din [16]. In this review, researchers explained the problem of mainte-
nance strategy selection in detail and evaluated the studies in a broad 
perspective and classified them into three groups. The other review 
was conducted by Shafiee [52]. Unlike Ding and Kamaruddin’s study, 
Shafiee limited the studies on the basis of the methods used and evalu-
ated them from a different perspective. Because of the multi-criteria 
and multi-objective structure of the problem, multi-criteria decision 
making methods are among the most preferred methods. Shafiee [52] 
evaluated this situation in detail by examining the MCDM methods 
used for maintenance strategy selection. Among the multi-criteria 
decision making methods, the most commonly used methods for the 
maintenance strategy selection problem in the literature are AHP [25], 
ANP [34], TOPSIS [17], SAW [50], ELECTRE [58], and VIKOR [38]. 
Instead of finding a solution to the problem of selecting a maintenance 
strategy using only one multi-criteria decision making method, some 
researchers have solved the problem using a combination of multi-
criteria decision making methods. By using a combination of different 
decision making methods, these researchers have provided a different 
perspective to the problem of maintenance strategy selection. This has 
been of interest to researchers, and as a result, new studies have been 
published using the combination of AHP-TOPSIS [46], ANP-TOPSIS 
[47], ANP-ELECTRE [14], FAHP-VIKOR [28], AHP-PROMETHEE 

[19], FAHP-CODAS [45], ANP-DEMATEL [1], and AHP- COPRAS 
[22] to solve the maintenance strategy selection problem. The ana-
lytical level of the solution increased with the combined use of multi-
criteria decision making methods, but these methods were insufficient 
in systems where the problem size increased. At this point, research-
ers have solved the problem of maintenance strategy selection for 
multiple equipment by using GP, one of the multi-criteria decision 
making methods [4, 8, 24, 29]. At this stage, the maintenance strat-
egy selection problem has been replaced by MSO. GP method can 
also be integrated with multi-criteria decision making methods. For 
example, Bertolini and Bevilacqua [8] have determined the optimal 
maintenance strategy for centrifugal pumps in an oil refinery with the 
integration of AHP and GP methods. GP method has taken its place 
in the literature as a solution method for multi-objective MSO for 
multiple equipment. However, presence of more than one goal in GP 
method increases the complexity the problem and generates problems 
in obtaining the optimal result. In addition, more than one goal brings 
out the need for more data. Because of these disadvantages, research 
has shifted to IP as an alternative to GP method [51]. For example, 
Braglia et al. [9] used the failure mode effect analysis and IP methods 
to determine the costs of each strategy and which maintenance im-
plementation was applicable to each failure. In this study, IP method 
was used since a single-goal model aimed at minimizing generation 
downtime was established and an optimal solution was sought for a 
very complex MSO problem since the plant consisted of hundreds of 
equipment.

When the application areas of the MSO problem, are examined, 
there are studies in many sectors including transportation [25], auto-
motive [35], textiles  [55] and machining [62]. There are many studies 
in the energy sector in which this study is conducted [53]. Williams 
and Patelli [23] found the optimal maintenance strategy for the IEEE-
24 RTS equipment in a HPP with the Monte Carlo Simulation. Özcan 
et al. [44] performed a multi-objective MSO for 9 critical equipment 
in a HPP using AHP-TOPSIS and GP methods. In another study, Öz-
can et al. [42] calculated the criticality levels of the equipment in a 
HPP with AHP-TOPSIS methods. They proposed a model aimed at 
cost minimization by using these calculations in IP method. As a re-
sult, Özcan et al. [42] obtained optimal maintenance strategies for the 
seven electrical equipment groups. In the present study, a mathemati-
cal model was proposed to determine the maintenance strategies to be 
applied to all electrical equipment in a HPP MSO was performed for 
a total of 571 equipment. The model included the four maintenance 
strategies described in detail above. In the solution methodology, AHP 
and COPRAS –two multi-criteria decision making methods– were 
used for the calculation of some parameters. These parameters were 
then used in the IP model to obtain optimal maintenance strategies for 
571 equipment. Based on the results obtained, the contributions of the 
model to the literature are as follows:

MSO problem was solved within the system at a power plant for • 
the first time. For example, while only critical equipment has been 
identified in the power plant and solutions have been proposed 
for only these equipment in the literature [42, 44], a solution was 
obtained in this study for all electric equipment in the plant. In 
the proposed model, optimal maintenance strategies of 571 equip-
ment have been determined. With this study, a model yielding op-
timal results for such a large problem has been proposed for the 
first time in the literature within the context of MSO.
Since the problem is handled at the system level and the plant con-• 
sists of units, the problem includes identical equipment. However, 
since these equipment are located in different units, they have 
been subjected to different generation and maintenance processes. 
These generation and maintenance activities have generated wear 
differences between identical equipment. Due to failures caused 
by them, the resulting wear differences directly affect the main-
tenance strategy to be applied to identical equipment located in 
different units. In this study, the effect of wear was calculated by 
AHP which is one of the MCDM methods and reflected to the 
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model for the first time in the literature and real life consistency 
of the model was achieved.
In the literature, single-goal models, usually involving cost mini-• 
mization, or multi-goal models involving minimization of main-
tenance times, maintenance costs, downtime, etc., have been 
proposed in general. In this study, a model has been proposed 
to reflect the real life characteristics of the system by express-
ing many goals with a single goal -by minimizing the generation 
downtime of the system. In other words, the goal of minimizing 
generation stops generates a context including a set of objectives 
such as cost minimization, minimizing risk factors and reliability 
maximization.
The integration of AHP-COPRAS-IP methods has been used for • 
the MSO problem for the first time in the literature. In addition, 
the problem was removed from subjectivity by following a five 
step solution methodology. With the analytically obtained solution 
combination of decision problems within the scope of the study 
consisting of determination of equipment wear rates, determina-
tion of criticality levels of equipment for the plant and determina-
tion of the added value provided by each maintenance strategy 
to the plant, and optimal assignment of maintenance strategies to 
the equipment were achieved by taking into account the real life 
dynamics of the system.

In the second section of the study, the methods used and the reasons 
for using these methods are presented based on the advantages of the 
methods. In the third section, the application details of the study are 
presented, and in the fourth section and fifth section the results of the 
proposed model are evaluated and the study is completed by empha-
sizing the recommendations.

2. Methods
In this study, MSO problem of electrical equipment in a HPP is 

handled. First of all, the wear rate of nine units was calculated in 
order to reflect the differences of identical equipment to the model. 
Considering the multi-criteria structure of the problem, AHP method, 
which is frequently used in the literature and provides ease of use and 
flexibility in method integrations, was used for this calculation. In 
the second stage of the study, the added value of each maintenance 
strategy to the plant was calculated. At this stage, AHP method was 
used again because the multi-criteria nature and hierarchical structure 
of the problem. In the third stage of the problem, the criticality levels 
of the electrical equipment were determined. Although AHP-TOPSIS 
[44] integration is frequently used in the literature for this problem, 
AHP-COPRAS combination is used in this study. The equipment 
criticality levels need to be expressed over 100 in the mathematical 
model. Moreover, COPRAS method is more advantageous than TOP-
SIS method for the studies involving opposite criteria since the crite-
ria are divided into two as useful and useless criteria and the algorithm 
is operated according to this separation [41]. Finally, the dynamics of 
the system are reflected in the model by using the parameters formed 
as a result of these three stages in the IP model. Details of the methods 
are provided further down in this section.

2.1. AHP
AHP is a method developed by Saaty and 

frequently used in many types of decision-
making problems. This method gives the 
decision maker the opportunity to evaluate 
the criteria and alternatives in the decision-
making process by analytically prioritizing 
them [49]. AHP is a widely used method in 
which ideas of groups are shared and the tar-
gets and alternatives are analyzed in order to obtain the best results. 
AHP method has been used in many fields of application including 
construction sector [15], health sector [11, 54], transport sector [10] 
and energy [56]. Furthermore, it has been preferred as a solution algo-

rithm for many problems from efficiency assessment [56] to technol-
ogy selection [5], from site selection [18] to maintenance planning [7, 
13]. AHP method has been chosen as the solution method because it 
has the flexibility of integration with different methods such as reduc-
tion of subjectivity and linear programming and fuzzy logic [59]. 

Application steps of AHP are given below [49]:
Step 1: The purpose of the decision-maker is to include the criteria 

and alternatives that affect this purpose, and to determine the relation-

ships between them and to compose a hierarchical structure.
Step 2: It is carried out by experts by comparing all criteria and 

alternatives according to their degree of importance. At this stage, the 
significance scale, which is developed by Saaty and given in Table 1, 
is used. 

Step 3: Normalization process is done. This normalization is 
performed by dividing each value in each matrix by column totals  
(Eq. 1):
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Step 4: After normalization, the priority or weight vectors for the 
items compared in the hierarchy are calculated [Eq. 2]:
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Step 5: The consistency rate (CR) is calculated. CR is calculated by 
applying equations Eq. 3, Eq. 4, Eq. 5, Eq. 6 respectively:
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Table 2 is used to calculate Eq. 6. If CR less than 0.1 indicates that 
the application is consistent. Otherwise, the pairwise comparison ma-
trices are revised, and the steps are repeated.

Table 1. Saaty’s preference scale [49]

Importance 
Values Value Definitions

1 Equal importance of both factors

3 Factor 1 is more important than factor 2

5 Factor 1 is much more important than factor 2

7 Factor 1 has a very strong importance compared to factor 2

9 Factor 1 has an absolute superior importance to factor 2

2, 4, 6, 8 Intermediate values – when compromise is needed

Table 2. RI Values

n 1 2 3 4 5 6 8 9 10 11 12 13

RI 0 0 0,58 0,9 1,12 1,24 1,41 1,45 1,49 1,51 1,48 1,56
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Step 6: In the analysis phase of AHP scores, the highest value alter-
native is chosen as the best alternative.

2.2. COPRAS 
COPRAS, which is one of the MCDM methods, was developed in 

1996 [63]. COPRAS can be used for maximum and minimum criteria 
values   in multi-criteria evaluation. COPRAS method can be easily 
applied to problems involving complex criteria and numerous alterna-
tives. Thanks to these features, it has been applied in many different 
fields in the literature. COPRAS method successfully solved differ-
ent problems in different sectors from agriculture [3] to information 
sector, from investment evaluation [27] to supply chain management 
[12]. One of the most important features of COPRAS method is that it 
shows the degree of benefit of alternatives. It compares the evaluated 
alternatives with each other and expresses in percentage how good or 
bad the other alternatives are. In addition, it evaluates the criteria as 
useful and useless criteria and eliminates the need to make calcula-
tions on opposite criteria [63]. 

Application steps of COPRAS are given below [63]:
Step 1. The first step is to compose the decision matrix. Decision 

matrix (X) is formed as shown in Eq. 7. m is the number of alterna-
tives and n is the number of criteria:
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Step 2: In the second step, the decision matrix is normalized. Nor-
malization process is carried out with the help of Eq. 8:
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Step 3: The weighted normalized decision matrix is obtained by 
using the normalized decision matrix with the weight values of each 
evaluation criterion represented as wj. Normalized decision matrix 
expressed by D is formed with the help of Eq. 9:

 * *  1,2, , 1,2, , ij j ijD d w x i m j n= = = … = …  (9)

Step 4: The sum of the values of the useful criteria in the weighted 
normalized decision matrix is shown as Si+, for the useless criteria 
the sum is Si-. Eq. 10 and Eq. 11 are used respectively for Si+ and 
Si- calculations:
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Step 5. The relative importance value (Qi) is calculated using Eq. 
12 for each alternative. The alternative with the highest Qi value 
means the best alternative:
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Step 6: In this step, the highest relative priority value is determined 
with the help of Eq. 13:

 { } 1, 2, , max iQ max Q i m= = …  (13)

Step 7: In the last step, the performance index (Pi) for each alter-
native is calculated using Eq. 14. The alternative with a Pi of 100 is 
considered as the best alternative. The order in which the alternatives 
should be preferred is obtained by ordering the performance index in 
descending order:

  *1 00% 1,2, , i
i
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QP i m
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2.3. Integer Programming (IP)
IP is the solution method in which some or all of the problem vari-

ables take integer values. Gomory suggested that by making small 
changes with the intersecting planes in the simplex algorithm, integer 
results could be obtained, and this led to an important breakthrough in 
IP [30]. After Gomory’s study, different types of integer programming 
such as 0-1 and mixed IP came to the fore with various studies. The 
general form of the IP model is given below [57]:
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IP has taken its place in the literature with effective results for dif-
ferent kinds of problems in many areas such as transportation [31], 
health [6], industry [33], and energy [20, 21].

3. Case study
The MSO which is an indispensable first phase of maintenance 

planning for one of the large-scale HPP with a direct effect on Tur-
key’s energy supply security with its one fifth share in total generation 
is addressed in the study. Besides their share in energy generation, 
HPP are of great importance for environmentally friendly electricity 
generation since they are one of the renewable energy sources. More-
over, the most problematic phase in electricity generation is electric-
ity transmission. The problems experienced in this phase especially 
reduce the output of the plant. For this reason, in the present study, all 
electrical equipment in a HPP are handled within the system. Optimal 
maintenance strategies are obtained for 571 equipment in total. These 
equipment include current transformers, voltage transformers, break-
ers, disconnectors, main power transformers, drive motors, auxiliary 
transformers, excitation transformers, slipring and carbon brushes, 
relays, transformer expansion tanks, bushings, generator rotors and 
generator stators and subcomponents of these equipment groups. it 
is formed. The proposed mathematical model serves to identify opti-
mal maintenance strategies for 571 electrical equipment in the plant, 
increasing both efficiency and energy supply security. This study con-
sists of four basic stages. Firstly, the wear rate of nine units was cal-
culated by AHP method in order to reflect the differences of identical 
equipment to the model. In the second stage of the study, the added 
value provided by each maintenance strategy to the plant was obtained 
by AHP method. In the third stage, criticality levels of the equipment 
examined in the study were calculated for the plant. AHP-COPRAS 
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integration, which is a multi-criteria decision making method, was 
used for this calculation. Plant experts were consulted to collect data 
during the implementation steps of the AHP method, which was used 
in three stages. The data were obtained with the help of 8 power plant 
experts (industrial, electrical, electrical-electronic and mechanical en-
gineers) each of whom had 10 to 25 years of experience in operation 
and maintenance of HPP and by taking into account the real life op-
erating rules of the HPP. Finally, optimal maintenance strategies were 
obtained by using the parameters calculated in these three stages in 
the IP model. The implementation steps of the new model proposed in 
this study are summarized in Figure 1.

Fig. 1. Application steps

The power plant is composed of nine units. 
These units were commissioned at different times 
and different generation plans were implemented. 
This has caused wear differences between the 
units. One of the factors in determining the main-
tenance strategy is the wear rate of the equipment. 
This is because equipment with the same function 
and quality may require different maintenance 
practices as a result of different generation ac-
tivities. Different maintenance practices require 
different maintenance strategies. In other words, 
wear rates affect MSO. In today’s power plant operating conditions, 
it is not possible to calculate the wear rate of each equipment in HPP 
consisting of thousands of equipment, because of the difficulty in ob-
taining data and not being able to express completely different equip-
ment with common parameters. In this study, calculating the wear 
rates of each unit was proposed as a solution.

3.1. Calculating the Wear Rates of Units
HPP are massive infrastructure investments. Therefore, it may not 

be possible to put all units into generation at the same time. The power 
plant discussed in this study consists of nine units. These units were 
activated at different times and different generation plans were imple-
mented. This situation has caused differences in wear rate between the 
units. In fact, the model needs to be solved by taking into account the 
wear rate of each equipment. However, since the 
plant is composed of thousands of pieces of equip-
ment and it is not possible to collect data for each 
equipment with common parameters in today’s 
conditions, a MSO model that takes into account 
wear rates by calculating unit based wear rate is 
proposed for the first time in the literature. Three 
criteria were taken into account in the calculation 
of wear rate. These criteria are the date when the 
unit was commissioned, work time, and genera-
tion quantity. Wear rates for nine units were cal-
culated according to these criteria. Considering 
the multi-criteria structure of the problem, AHP, 
which is the most used MCDM method in the lit-
erature by providing ease of solution to complex 
problems, was chosen. Expert opinions were used 
in the method. First, the criteria weights were gen-
erated. The steps of the AHP method described in 

Section 2.1 were applied at this stage. In the solution phase, a hierarchi-
cal structure was composed first. The hierarchical structure composed 
is given in Figure 2.

After the hierarchical structure was composed, it was passed to the 
stage where the weights of each criterion were determined. First, pair-
wise comparison matrices were composed. The pairwise comparison 
matrix composed is given in Table 3.

For the calculation of criterion weights, the row averages of the val-
ues in the normalized decision matrix are taken. The weights formed 
after the process are given in Table 4.

As a result of the application, it is seen that the most important crite-
rion is when the unit was commissioned with a weight of 0.63. This was 
followed by working time with a weight of 0.26. Finally, the weight of 
generation quantity was calculated as 0.11. The CR was 0.03. 

Fig. 2. Hierarchical structure

Table 3. The pairwise comparison matrix of the criteria

 When the unit was 
commissioned Working time Generation 

quantity

When the unit was commissioned 1 3 5

Working time 0.333 1 3

Generation quantity 0.200 0.333 1

Table 4. Criteria weights

Criteria Weight

When the unit was commissioned 0.633

Working time 0.261

Generation quantity 0.106

Table 5. Weight vectors and CR values

When the unit was commis-
sioned Working time Generation quantity

Unit 
number

Weight 
vector CR Unit 

number
Weight 
vector CR Unit 

number
Weight 
vector CR

U0 0.019

0.079

U0 0.017

0.067

U0 0.019

0.028

U1 0.028 U1 0.030 U1 0.030

U2 0.028 U2 0.031 U2 0.047

U3 0.251 U3 0.222 U3 0.303

U4 0.056 U4 0.063 U4 0.047

U5 0.251 U5 0.117 U5 0.212

U6 0.056 U6 0.072 U6 0.077

U7 0.071 U7 0.117 U7 0.110

U8 0.242 U8 0.331 U8 0.156
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After the criterion weights were calculated, alternatives were eval-
uated for each criterion. Paired comparison matrices composed for 
each criterion are given in Appendix A. The results obtained when the 
steps given in Section 2.1 are applied in paired comparison matrices 
are given in Table 5.

The wear rates of the nine units were calculated using the criterion 
weights obtained. By taking the ratio of the largest of the weights 
obtained by AHP to 100 and the wear rates were updated and re-ex-
pressed over 100. The results are given in Table 6. When the results 
are examined, it is seen that Unit 3, Unit 5 and Unit 8 are more 
worn than other units.

The benefits of each maintenance strategy to the plant are 
different. These differences are one of the main factors affect-
ing the optimization of maintenance strategy. For this reason, 
in the second stage of the study, the added value provided to the 
plant by the four maintenance strategies discussed was meas-
ured.

3.2. Calculating the Added Value of Maintenance 
Strategies

The parameter that must be considered in problem solving 
for MSO is the added value of strategies provided to the whole sys-
tem. This is because maintenance strategies have positive and neg-
ative effects reflected in the system in which they are applied. For 
example, the reduction of failures and increase in productivity as a 
result of the implementation of the maintenance strategy is a positive 
effect, while the cost items for the implementation of the strategy are 
a negative effect. For this reason, it is necessary to calculate the added 
value provided by the strategies to the plant and determine the main-
tenance strategy according to these values. In the present study, four 
maintenance strategies have been evaluated by taking into consider-
ation the benefits, cost of maintenance process, duration and require-
ments for implementation of the strategy. This evaluation was made 
by AHP which is one of the multi-criteria decision making methods. 
The maintenance strategies implemented in the HPP detailed in Chap-
ter 1 are summarized below.

Correct ive  Maintenance Strategy : Repair and/or mainte-
nance activities carried out in the event that the machine/equipment is 
unable to perform the task expected of it, to ensure that the machine/
equipment is capable of operating in line with its design specifica-
tions [44].

Prevent ive  (Periodical)  Maintenance Strategy : Mainte-
nance activities carried out within a timetable for the machine/equip-
ment to operate uninterruptedly and in line with the expected design 
specifications.

Predict ive  Maintenance Strategy : Maintenance activities 
which include monitoring of machine/equipment during operation 
by using modern measurement and signal-processing methods and 
taking necessary measures according to measurement results before 
failure occurs [43].

Revis ion Maintenance Strategy : It is a maintenance strat-
egy which is done periodically (e.g. every 8000 hours or 5 years) to 
all critical equipment in the power plant units, which requires a long 
time (like 2 months) and in which the power plant unit downtime is 
mandatory [44]. 

The four maintenance strategies were evaluated under the criteria 
of benefit, cost, duration and requirements. First, a hierarchical struc-
ture was composed. The hierarchical structure composed is given in 
Figure 3.

Secondly, criteria weights were obtained by the AHP method. The 
pairwise comparison matrix of the criteria is given in Table 7.

Benchmark weights were found to be 0.579 for benefit, 0.233 for 
cost, 0.067 for duration, and 0.121 for requirements. When the crite-
ria weights are evaluated, it is seen that the most important criterion 
is benefit. In the next step of the algorithm, the benefit values of the 
maintenance strategies were calculated by using the criterion weights 
obtained.

After the criterion weights were determined, the alternatives for 
each criterion were compared. Paired comparison matrices and CR 
values made in terms of criteria are given in Table 8.

It is seen that revision maintenance strategy provides the greatest 
added value. Corrective maintenance strategy is the maintenance strat-
egy with the lowest added value. The results are given in Table 9.

Another factor affecting MSO is the criticality level of the equip-
ment with respect to the power plant. In other words, it is a quantita-
tive expression of the role of each equipment in electricity generation. 
In the third stage of the study, criticality levels of the equipment were 
calculated.

3.3. Calculating the Criticality Levels of the Equipment
The present study aims to assess and determine which maintenance 

strategies should be applied to 571 pieces of electrical equipment. In 
this problem, the maintenance strategy needs to be selected according 
to the equipment. Mathematical models should be used to obtain an 
optimal solution with a high analytical level not influenced by subjec-
tive judgments. In the mathematical model, qualitative data should be 
converted into quantitative data in order to reflect different aspects of 
the equipment. For this reason, the criticality levels of the equipment 

Table 6. Wear rates of units

Unit number AHP scores Wear rates

U0 0.018 7.205

U1 0.028 11.13

U2 0.031 12.061

U3 0.249 97.187

U4 0.057 22.077

U5 0.212 82.778

U6 0.062 24.289

U7 0.087 33.979

U8 0.256 100

Table 7. The pairwise comparison matrix of the criteria

 Benefit Cost Duration Requirements

Benefit 1 3 7 5

Cost 0.333 1 4 2

Duration 0.143 0.250 1 0.5

Requirements 0.200 0.500 2 1

Fig. 3. Hierarchical structure
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for the plant should be determined. At this stage, the criteria affect-
ing the criticality level were determined initially in accordance with 
the studies in the literature and expert opinions [42, 44]. Since the 
effect levels of these criteria are not equal, criterion weights should 
be determined. At this stage, weighting was performed with AHP, one 
of the multi-criteria decision making methods. The implementation 
steps given in Section 2.1 were carried out with the data obtained from 

the plant experts. The pairwise comparison matrix com-
posed by the experts is given in Table 10.

The CR value was 0.089. The criteria and their weights 
are given in Table 11.

After determining the criterion weights, the necessary 
data to calculate the criticality levels of the equipment 
were collected. Data for seven criteria were collected 
for 571 pieces of equipment, but because the size of the 
data set is large, only the data for some pieces of equip-

ment are given in Table 4. Using the data of 571 pieces of equipment, 
the criticality levels of the equipment were calculated by performing 
the COPRAS steps described in Section 2.2. Critical levels of some 
equipment are given in Table 12.

The aim of this study is to ensure that optimal maintenance strate-
gies are assigned to 571 electrical equipment. In the first three sec-
tions, the parameters required for this purpose were obtained. Once 

Table 8. The pairwise comparison matrix of the criteria and CR values

Criteria The pairwise comparison matrix of the criteria CR

Be
ne

fit

 Corrective Revision Predictive Preventive

0.03

Corrective 1 0.111 0.143 0.2

Revision 9 1 3 2

Predictive 7 0.33 1 0.5

Preventive 5 0.5 2 1

Co
st

 Corrective Revision Predictive Preventive

0.02

Corrective 1 0.2 0.125 0.143

Revision 5 1 0.25 0.333

Predictive 8 4 1 2

Preventive 7 3 0.5 1

D
ur

at
io

n 

 Corrective Revision Predictive Preventive

0.03

Corrective 1 0.167 0.125 0.143

Revision 6 1 0.333 0.333

Predictive 8 3 1 0.5

Preventive 7 3 2 1

Re
qu

ir
em

en
ts

 Corrective Revision Predictive Preventive

0.06

Corrective 1 0.167 0.111 0.333

Revision 6 1 0.25 4

Predictive 9 4 1 7

Preventive 3 0.25 0.143 1

Table 9. Maintenance strategy added values

Maintenance strategy Added values

Corrective 0.045

Revision 0.358

Predictive 0.325

Preventive 0.272

Table 10. The  pairwise comparison matrix of the criteria

 C1 C2 C3 C4 C5 C6 C7

C1 1 0.200 0.250 0.125 2 0.500 0.500

C2 5 1 4 0.333 9 5 7

C3 4 0.250 1 0.200 4 3 2

C4 8 3 5 1 9 5 7

C5 0.500 0.111 0.250 0.111 1 2 0.333

C6 2 0.200 0.333 0.200 0.500 1 2

C7 2 0.143 0.500 0.143 3 0.500 1

Table 11. Criteria weights

Criteria Code Weight values

System backup C1 0.042

Pre-maintenance conditions C2 0.271

Failure period C3 0.118

Possible results C4 0.406

Availability of measuring equip-
ment C5 0.042

Processing time C6 0.062

Fault detection C7 0.059
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these steps were completed, the optimal solution of the problem was 
obtained with mathematical modeling.

3.4. Maintenance Strategy Optimization (MSO)
In the last stage of the study, MSO was performed for 571 pieces 

of equipment. An IP model was established with the values   obtained 
in the first three stages. The objective of the mathematical model is 
to minimize generation downtime. In other words, the proposed new 
model aims to minimize generation downtime due to maintenance 
management in the plant as a result of optimal maintenance strategies 
to be implemented. Unlike multiple-goal models, this model optimiz-
es only one parameter, but it has more than one goal. This is because 
it serves the most basic purpose of the maintenance process. This is to 
fulfill the role of all equipment in the system for the purpose of sus-
tainable generation. Reducing generation downtime includes many 
goals such as minimizing costs, maximizing supply security, and risk 
minimization. For example, maximizing supply security depends on 
minimizing generation downtimes. Eliminating situations that may 
lead to generation downtimes will increase supply security. Or, mini-
mizing generation downtime will keep failure risks to a minimum. As 
a result, determining the most appropriate maintenance strategies as 
described in the first section has a direct impact on the goal of sustain-
able generation. When this effect is taken into consideration, since the 
aim of the model is minimization of generation stops, it includes other 
goals as well.

The notations and decision variables used in the model are de-
scribed below.

Notations:
i: Unit index (i=0,…,8)
j : Equipment index ( j=1,…,68)
k : Maintenance strategy index(1=revision, 2=preventive, 

3=predictive, 4=corrective)
Tijk : ith unit, jth equipment production downtime when kth 

maintenance strategy is applied
Dijk : ith unit, jth equipment kth maintenance strategy implemen-

tation time
Cijk: ith unit, jth equipment kth maintenance strategy implemen-

tation cost (sum of labor and material cost)
Tc: Budget allocated for maintenance 

Td: Maintenance time (hours)
CRij: ith unit to critical level of jth equipment
Yi: ith unit attrition rate

Wk: kth weight of maintenance strategy

Decision variables:
i= 0,…,m     j= 1,…,n   k= 1,…,l  

Model formulation:

 
m n

i 1j 1 1
  Min Z  *

l
ijk ijk

k
T X

= = =
= ∑∑∑  (1)

  
1 1 1

*      
m n l

ijk ijk
i j k

D X Td
= = =

≤∑∑∑  (2)

 
m n

i 1j 1 1
* Tc

l
ijk ijk

k
C X

= = =
≤∑∑∑  (3)

 
1

1  0, , 1 , ,    
l

ijk
k

X i m j n
=

≥ = … = …∑  (4)

If CRij ≥85

 
1

 0.85  0, , 1 , ,    
l

k ijk
k

W X i m j n
=

≥ = … = …∑  (5)

If CRij ≥ 70 V CRij  < 51

 
1

 0.70  0, , 1 , ,  
l

k ijk
k

W X i m j n
=

≥ = … = …∑  

 
1

0.85  0, , 1 , ,     
l

k ijk
k

W X i m j n
=

≤ = … = …∑  

(6)

If CRij ≥ 51 V CRij  < 70

Table 12. Equipment data and critical levels 

Equipment Name C1 C2 C3 C4 C5 C6 C7 Critical level

6.3 KV Breakers 4 6 3 7 3 4 3 85.784

A Busbar Disconnector L1 Phase 1 7 5 10 3 4 3 100.000

Main Power Transformer Phase L1 1 7 3 10 3 4 3 95.716

Separator Motors L3 Phase 1 7 5 10 3 4 3 100.000

B Busbar Disconnector L2 Phase 1 7 5 10 3 4 3 100.000

Unpressurized Oil Tank Cooling Pump Drive Motor 4 7 3 1 1 2 1 51.344

BCT 19 (6.3 MVA) Transformer 4 1 5 7 3 2 3 70.006

Generator Group Breaker 4 1 5 9 1 2 3 75.897

Generator Rotor 1 7 5 10 3 4 3 100.000

Generator Stator 1 7 5 10 3 4 3 100.000

Internal Need Transformer 1 6 3 10 3 4 3 92.254

������������� ����������	�������������������������������	�����	�������	������������ �������������� �����������������������������������������������������������������������������



Eksploatacja i NiEzawodNosc – MaiNtENaNcE aNd REliability Vol. 23, No. 2, 2021332

 
1

0.51  0, , 1 , ,   
l

k ijk
k

W X i m j n
=

≥ = … = …∑  

 
1

0.70  0, , 1 , ,   
l

k ijk
k

W X i m j n
=

≤ = … = …∑  (7)

 1 0  0, , 1 , ,    ijX i m j n= = … = …

Else if CRij < 51

 

1

2

3

4

0   0, , 1 , ,

 0   0, , 1 , ,  

0   0, , 1 , ,

1    0, , 1 , ,  

ij

ij

ij

ij

X i m j n

X i m j n

X i m j n

X i m j n

= = … = …

= = … = …

= = … = …

= = … = …

 (9)

İf Yi ≥  80 Ʌ CRij ≥ 70

 2 1  0, , 1 , ,  ijX i m j n= = … = …  (10)

Formulation of the mathematical model is given below. Eq. 1 rep-
resents the objective function of the model. It means minimization of 
generation downtime. Eq. 2 indicates that the actual maintenance pe-
riod should be less than or equal to the assigned maintenance period. 
Eq. 3 means that the total maintenance cost should be less than or equal 
to the total budget allocated for maintenance. Eq. 4 means that at least 
one maintenance strategy must be assigned to each equipment. Eq. 
5- Eq. 9 are the constraints that make the assignments by taking into 
account the criticality levels of the equipment. The sum of the added 
value obtained from the maintenance strategies to be implemented 
should be proportional to the criticality level of the equipment. The 
threshold values were determined according to the pre-maintenance 
conditions and possible results, which were determined as the two 
most important criteria in the calculation of the critical levels of the 
equipment described in Section 3.3. Eq. 10 stated that periodic main-
tenance should be performed if the wear rate of the unit i is greater 
than or equal to 80 and the criticality level of the equipment is greater 
than or equal to 70. This constraint is added for units with high wear 
because of the high possibility of equipment failure. The reason for 
limiting the level of criticality is because this maintenance cost must 
be borne for critical equipment.

4. Results and discussion
Maintenance is costly in terms of generation loss, time, labor and 

material requirements due to disruption of generation during the pro-
cess, and is difficult to manage due to the inherent limitations of these 
components. In this context, MSO problem which is the indispensable 
first step of maintenance planning was discussed in this study. A HPP 
with nine units was investigated. In the HPP, which consists of thou-
sands of equipment, electrical equipment was taken into consideration 
due to the major problems in the transmission of electricity. Optimal 
maintenance strategies were achieved for a total of 571 equipment. 
For these results, firstly the wear rate of nine units was calculated by 
AHP method in order to reveal the difference of wear between the 
units. Then, the benefit (added value) of the maintenance strategies 
to the plant was solved by AHP method. Afterwards, criticality levels 
of the studied equipment were solved by AHP-COPRAS integration. 
Three different parameters calculated were used in the 0-1 IP model. 
The objective of the mathematical model is minimization of genera-
tion stops. Minimizing generation downtime includes many goals 
such as minimizing costs, maximizing supply security, and minimiz-
ing risk. In this way, a single-goal model was used to reflect a multi-
goal structure and a feasible model proposal was obtained. The model, 
whose canonical form is given in Section 3.4, has 2284 decision vari-

ables and 14 constraint sets. The model was solved by using ILOG 
CPLEX Studio IDE version 12.8. Optimal results were obtained in 1 
second. As the number of equipment handled in this study was quite 
high, the results of all equipment could not be provided here. Several 
pieces of equipment with different wear rates and criticality levels 
were selected. The optimal maintenance strategies of these selected 
equipment are given in Table 13. All results of the model are given 
in Appendix B.

When the results of the mathematical model generated by IP meth-
od are evaluated, it is seen that if the criticality level of the equipment 
is greater than 85, all maintenance strategies except for corrective 
maintenance should be applied. This means that if the equipment is 
critical to the system, revision, periodic and predictive maintenance 
should be performed without waiting for equipment failure. This is 
because when these equipment fail; the unit shuts down and endan-
gers energy supply security. For equipment with a criticality level 
of 70 to 85, revision, predictive and corrective maintenance strate-
gies should be implemented. This is because this equipment does not 
cause generation downtime in case of failure, but generation resumes 
without backup. Operation without back-up (redundancy) poses the 
risk of generation downtime in case of any failure. In this case, major 
maintenance, which is revision maintenance, must be performed. In 
addition, equipment should be monitored continuously by predictive 
maintenance strategy. This monitoring will allow the equipment to be 
intervened before failure. In addition, if the equipment fails, corrective 
maintenance strategy should be applied. However, if the equipment is 
in one of the units with high wear rate, the probability of failure will 
be kept to a minimum by applying maintenance periodically instead 
of corrective maintenance. When equipment with a criticality level 
of 51 to 70 fails, the unit does not stop, but this may pose a problem 
in an emergency. For this reason, in order to prevent malfunctions, 
frequent periodical maintenance can be performed and monitoring the 
equipment regularly with predictive maintenance will be sufficient. 
Since equipment with a criticality level of less than 50 does not have 
any impact on the system –such as unit downtime or operation with-
out backup–, only maintenance strategy that should be implemented 
is corrective maintenance. There are many academic studies in the 
literature to reduce maintenance costs and equipment failures in pro-
duction facilities. Generally, a maintenance strategy that has to be im-
plemented has been determined using a MCDM method for a single 
piece of equipment [26]. However, most production facilities, such as 
the hydroelectric power plant under consideration, consist of multiple 
intertwined equipment or sub-systems. This structure of the facility 
caused the necessity of determining the maintenance strategy within 
the system for the maintenance strategies determined by analytical 
methods to be applicable in the real manufacturing facilities. With this 
requirement, models providing MSO for more than one equipment 
have been proposed in the literature. Among these models, Bertolini 
and Bevilacqua [8], which consider the most equipment in the litera-
ture, discussed 10 centrifugal pumps.  MSO for up to 14 equipment 
was performed for HPP [44]. In this study, a MSO was performed 
for all electrical equipment (571 equipment) in a hydroelectric power 
plant. Although the equipment features are the same, the wear and 
tear differences have occurred as a result of different maintenance and 
generation plans. Since these attrition differences are an important 
factor in determining the maintenance strategies to be applied, the 
attrition differences between the units are reflected in the proposed 
model. This approach has increased both the applicability of the opti-
mal results to the real system and a MSO has been made by consider-
ing the attrition rates for the first time in the literature.

5. Conclusion
The main purpose of maintenance activities is to maximize the ef-

ficiency and effectiveness of production and increase reliability. This 
goal makes maintenance not an auxiliary process for production, mak-
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ing it one of the basic processes for the production to reach a certain 
efficiency and efficiency target [36]. The indispensable and first step 
in managing this main process is MSO. In this context, in this study 
MSO problem is discussed in one of the large-scale HPP directly act-
ing the Turkey’s energy supply security. 

This study includes many combinations of methods to increase the 
applicability of the problem to a real plant and to increase the level 
of analytics. In this study consisting of four basic phases, the attrition 
rate of nine units was calculated by AHP method in order to reflect the 
differences of identical equipment from each other to the model in the 
first phase. In the second stage of the study, the added value provided 
by each maintenance strategy to the power plant was again obtained 
through the AHP method. In the third stage, the criticality levels of the 

equipment discussed in terms of power plants were calculated. In this 
calculation, AHP-COPRAS integration was used.  Finally, using the 
parameters calculated in these three stages in the IP model, optimal 
maintenance strategies were obtained for 571 equipment.

Although the proposed model deals with a HPP, various calcula-
tions have been made to reflect the dynamics of the system to the 
model. Although these calculations are made specific to the power 
plant under consideration, they can be adapted for other enterprises. 
Because in the model, the wear rate, the added value provided by 
the maintenance strategies to the system and the criticality levels of 
the equipment are calculated, and all these parameters are the factors 
that affect the selection of the maintenance strategy regardless of the 
system. However, the system under consideration should be analyzed 

Table 13. Optimal maintenance strategies of some equipment

Unit 
number Equipment name Criticality 

levels Revision Preventive Predictive Corrective

4 A busbar disconnector L3 phase 100 ✓ ✓ ✓

7 Separator motors L3 phase 100 ✓ ✓ ✓

5 B busbar disconnector L2 phase 100 ✓ ✓ ✓

1 Generator rotor 100 ✓ ✓ ✓

3 Generator stator 100 ✓ ✓ ✓

8 Main power transformer L1 phase 95.716 ✓ ✓ ✓

2 Warning transformer 95.716 ✓ ✓ ✓

5 Bearing Oil Pump Drives 92.62 ✓ ✓ ✓

1 Internal need transformer 92.254 ✓ ✓ ✓

8 Transformer bucholz relay 92.156 ✓ ✓ ✓

7 Transformer overcurrent relay 92.156 ✓ ✓ ✓

7 Transformer Expansion Tank 91.816 ✓ ✓ ✓

8 Transformer Expansion Tank 91.816 ✓ ✓ ✓

2 Slipring and carbon brushes 91.786 ✓ ✓ ✓

3 Slipring and carbon brushes 91.786 ✓ ✓ ✓

8 Transformer High Voltage Bushings 90.628 ✓ ✓ ✓

6 6.3 KV breakers 85.784 ✓ ✓ ✓

7 Servomotor pressure oil pumps drive motors 82.589 ✓ ✓ ✓

8 Servomotor pressure oil pumps drive motors 82.589 ✓ ✓ ✓

1 Speed governor pressure oil pumps drive motors 78.305 ✓ ✓ ✓

3 Speed governor pressure oil pumps drive motors 78.305 ✓ ✓ ✓

7 Speed regulator air compressors drive motors 78.305 ✓ ✓ ✓

8 Speed regulator air compressors drive motors 78.305 ✓ ✓ ✓

0 Pump 1-2A drive motor 77.275 ✓ ✓ ✓

0 Generator group breaker 75.897 ✓ ✓ ✓

0 Deep well pump-1 drive motor 70.265 ✓ ✓ ✓

0 BCT 19 (6.3 MVA) transformer 70.006 ✓ ✓ ✓

0 BCT 22 (6.3 MVA) transformer 70.006 ✓ ✓ ✓

0 High Pressure Air Compressor Drive Motors-a1 64.918 ✓ ✓

0 220 V DC accumulators 59.9 ✓ ✓

1 Cooler-1 fan-1 52.406 ✓ ✓

6 Generator rotor lifting high pressure oil pump drive motor 51.923 ✓ ✓

8 Generator rotor lifting high pressure oil pump drive motor 51.923 ✓ ✓

6 Unpressurized oil tank cooling pump drive motor 51.344 ✓ ✓

7 Leakage oil pump drive motor 35.069 ✓

8 Exhaust fan drive motor 31.155    ✓
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in detail in order to adapt the proposed model to different businesses. 
The proposed model is flexible in terms of adapting the specific con-
straints of the system to the model.

 Contrary to the literature, the power plant has been evaluated on a 
system basis and for the first time in the literature, an optimal solution 
of such a large problem has been proposed. In addition, due to the dif-
ferent attrition rates between units, a constraint was written according 

to the attrition rate and a solution for this situation was produced for 
the first time in the literature.

In the next stage of this study, mechanical equipment can be includ-
ed with electrical equipment and the problem size can be increased. 
This will make it more difficult to obtain an optimal solution, there-
fore, intuitive approaches can be developed.
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Appendix A 

Criteria The pairwise comparison matrix of the criteria

w
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ed

 U0 U1 U2 U3 U4 U5 U6 U7 U8

U0 1 0.333 0.333 0.111 0.2 0.111 0.2 0.111 0.2

U1 3 1 1 0.125 0.333 0.125 0.333 0.2 0.125

U2 3 1 1 0.125 0.333 0.125 0.333 0.333 0.125

U3 9 8 8 1 7 1 7 7 1

U4 5 3 3 0.14 1 0.143 1 1 0.143

U5 9 8 8 1 7 1 7 7 1

U6 5 3 3 0.14 1 0.14 1 1 0.143

U7 9 5 3 0.14 1 0.14 1 1 0.143

U8 5 8 8 1 7 1 7 7 1

w
or

ki
ng

 ti
m

e 

 U0 U1 U2 U3 U4 U5 U6 U7 U8

U0 1 0.333 0.333 0.125 0.2 0.167 0.2 0.167 0.111

U1 3 1 1 0.167 0.2 0.2 0.25 0.2 0.143

U2 3 1 1 0.167 0.333 0.2 0.25 0.2 0.143

U3 8 6 6 1 5 4 5 4 0.333

U4 5 5 3 0.2 1 0.25 0.5 0.25 0.167

U5 6 5 5 0.25 4 1 3 1 0.2

U6 5 4 4 0.2 2 0.333 1 0.333 0.167

U7 6 5 5 0.25 4 1 3 1 0.2

U8 9 7 7 3 6 5 6 5 1

ge
ne

ra
ti

on
 q

ua
nt

it
y 

 U0 U1 U2 U3 U4 U5 U6 U7 U8

U0 1 0.333 0.25 0.111 0.25 0.143 0.2 0.167 0.143

U1 3 1 0.5 0.143 0.5 0.167 0.2 0.167 0.143

U2 4 2 1 0.167 1 0.2 0.5 0.333 0.25

U3 9 7 6 1 6 2 5 4 3

U4 4 2 1 0.17 1 0.2 0.5 0.333 0.25

U5 7 6 5 0.5 5 1 4 3 2

U6 5 5 2 0.2 2 0.25 1 0.5 0.333

U7 6 6 3 0.25 3 0.33 2 1 0.5

U8 7 7 4 0.333 4 0.5 3 2 1
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1-19  ✓  ✓ 193-195 ✓ ✓ ✓  391    ✓

20-21 ✓ ✓ ✓  196-197  ✓ ✓  392 ✓ ✓ ✓  

22-27  ✓  ✓ 198    ✓ 393 ✓  ✓  
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28-49 ✓ ✓ ✓  199 ✓ ✓ ✓  394 ✓ ✓ ✓  

51    ✓ 200-217  ✓ ✓  395-396 ✓  ✓  

52 ✓ ✓ ✓  218-240 ✓ ✓ ✓  397-399 ✓ ✓ ✓  

53 ✓  ✓  242-253 ✓ ✓ ✓  400-401 ✓  ✓  

54 ✓ ✓ ✓  254 ✓  ✓  402    ✓

55-56 ✓  ✓  255    ✓ 403 ✓ ✓ ✓  

57-59 ✓ ✓ ✓  256 ✓ ✓ ✓  404-421 ✓  ✓  

60-61 ✓  ✓  257 ✓  ✓  422-444 ✓ ✓ ✓  

62    ✓ 258 ✓ ✓ ✓  445 ✓  ✓  

63 ✓ ✓ ✓  259-260 ✓  ✓  446-457 ✓ ✓ ✓  

64-81 ✓  ✓  261-263 ✓ ✓ ✓  458 ✓  ✓  

82-104 ✓ ✓ ✓  264-265 ✓  ✓  459    ✓

105 ✓  ✓  266    ✓ 460 ✓ ✓ ✓  

106-117 ✓ ✓ ✓  267 ✓ ✓ ✓  461 ✓  ✓  

118 ✓  ✓  268-285 ✓  ✓  462 ✓ ✓ ✓  

119    ✓ 286-308 ✓ ✓ ✓  463-464 ✓  ✓  

120 ✓ ✓ ✓  309  ✓ ✓  465-467 ✓ ✓ ✓  

121 ✓  ✓  310-321 ✓ ✓ ✓  468-469 ✓  ✓  

122 ✓ ✓ ✓  322  ✓ ✓  470    ✓

123-124 ✓  ✓  323    ✓ 471 ✓ ✓ ✓  

125-127 ✓ ✓ ✓  324 ✓ ✓ ✓  472-489 ✓  ✓  

128-129 ✓  ✓  325  ✓ ✓  490-526 ✓ ✓ ✓  

130    ✓ 326 ✓ ✓ ✓  527    ✓

131 ✓ ✓ ✓  327-328  ✓ ✓  528 ✓ ✓ ✓  

132-149 ✓  ✓  329-331 ✓ ✓ ✓  529  ✓ ✓  

150-172 ✓ ✓ ✓  332-333  ✓ ✓  530 ✓ ✓ ✓  

173  ✓ ✓  334    ✓ 531-532  ✓ ✓  

174-185 ✓ ✓ ✓  335 ✓ ✓ ✓  533-535 ✓ ✓ ✓  

186  ✓ ✓  336-353  ✓ ✓  536-537  ✓ ✓  

187    ✓ 354-376 ✓ ✓ ✓  538    ✓

188 ✓ ✓ ✓  377 ✓  ✓  539 ✓ ✓ ✓  

189  ✓ ✓  378-389 ✓ ✓ ✓  540-557  ✓ ✓  

190 ✓ ✓ ✓  390 ✓  ✓  558-571 ✓ ✓ ✓  

191-192  ✓ ✓            
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1. Introduction
A mine hoisting system connects underground excavating areas 

with surface technologies; it transports extracted material, mine work-
ers, machinery and equipment for exploitation. The main working el-
ement of mine hoisting machines is a steel wire rope, which can be 
wound on a drum or it can passed through a friction traction pulley. 
During any operation a drum hoisting system wind up one end of a 
hoist rope on the drum and a transport container via a   cage suspen-
sion gear is gripped at the other end of the hoist rope. The rope is 
usually wound on the drum in one layer, but in the case of deep shafts 
the rope can be wound on the drum in two layers. The drum mining 
machines are double-acting, then the drum is divided and two hoist  
ropes are wound on it in two layers - upper and lower. The second 
frequently used type of a mine hoisting equipment is a machine with 
a friction pulley. These machines work with a rope passing through 
a friction pulley KOEPPE system or friction hoist winch, where the 
transport vessel travels between two horizons [5, 7]. Mańka et al. 
specified work of mining shaft hoist, depending on the drive type: 
in drum drives (rope is working in the underlap or overlap arrange-
ment) or in drives with the frictional contact (KOEPPE system) [18]. 
Shirong investigated the friction coefficients between the steel wire 
rope and Polyvinylchloride (PVC) lining [20] and the hoisting fric-
tion conditions in a mine.  The measurement shown: the friction coef-

ficient decreases with increasing velocity or pressure and distribution 
of friction coefficients have a log-normal distribution [20]. Chang et 
al. studied wear and friction characteristics of the steel wire rope and 
the evolution of the tribological parameters at different friction stages 
[6]. Guo et al. based that force direction is deflected radially to the 
right. Force can be distributed into normal and friction force [11]. Ma 
and Lubrecht studied the local contact pressure between friction lin-
ing and steel wire rope. They developed first a 2-dimensional multi-
grid code based on the geometry of steel wire rope [17].  Guo et al.  in-
vestigated connection between friction transmission and longitudinal 
rope dynamics [12]. Zhang observed when steel wire rope is working 
around nylon pulleys; the bending fatigue life of steel wire ropes is 
twice longer than that of ropes working around steel pulleys [25]. In 
this article we describe and compare the linings of pulleys made of 
rubber and plastic. Standardized method [21] described in woks [1, 
10] were used in the lining hardness tests.    The utilization of the new 
lining material and development of the new lining construction lead 
to optimal repair maintenance [14], higher operation reliability and 
long life operation of the lining [15].  Material used for manufactur-
ing of the friction lining requires high wear resistance [8] and on the 
other hand high friction coefficient on the contact with steel ropes.  
Rubber and plastic materials used for the manufacturing of the fric-
tion linings bring specific material properties [2] proper for specific 
operation condition of the mining hoisting system and especially for 

Mine hoisting KOEPPE system or friction hoist winch work with traction pulley, the pul-
ley rim grooves are lined. Lining has to provide a higher friction coefficient between the 
rope and the traction pulley. The constructors of mine hoisting machines require from the 
manufacturers a guaranteed appropriate and stabile value of a friction coefficient at different 
pressures between a rope and a friction lining under different external conditions (drought, 
moisture, icing, etc.). The paper presents processed measurements performed on the six 
samples of the friction lining (G1-G6) made of rubber and the sample of the standard used 
friction lining (K25). The samples (G1-G6) differ in the chemical composition of the rubber. 
Due to the confidentiality of the material composition of the friction linings the hardness of 
the lining material as a discriminator was chosen. The measured values of the friction coef-
ficient of the rubber friction lining samples were compared with the values of the friction 
coefficient of the friction lining (K25) usually mounted on friction lining pulley.
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the friction lining pulley. The most important property of the friction 
lining is the stability of the friction coefficient under different weather 
conditions and the pressure between the rope and the groove of the 
pulley. Reliability and safety operation of the mining hoisting system 
depends on the optimization of above mentioned material properties 
and good friction properties of the chosen material [16].

2. Theory and calculation
The transmission of force from the drive friction traction pulley to 

the hoist rope is performed by means of friction between the rope and 
the groove of the rope pulley. 

The drive wheel groove is often lined with a material having a 
higher coefficient of friction than steel. This material called lining is 
inserted into the rim of the drive pulley (Fig. 1). The magnitudes of 
tensile forces and a circumferential force on a friction disc or a drum 
are described by the Euler’s equation. 

When F + dF > F (Fig. 1b) than the resultant horizontal force dFH 
is generated and if the rope is not to slide on the pulley than this force 
must be in equilibrium with the friction force dT, i.e. dFH = dT = dN.f. 
Under such a condition the circumferential driving force is transmit-
ted from the pulley to the rope without slippage according to the prin-
ciple of belt friction. The force equilibrium in the horizontal direction 
of the x-axis is applied due to the distribution of forces in a rectangu-
lar coordinate system:

 dF F dF d F d
H = +( ) −.cos .cosα α

2 2
, (1)

after the adjustment:

 dF F d dF d F d
H = + −.cos .cos .cosα α α

2 2 2
. (2)

It is possible to consider:  cos 1
2

dα
≈  for a differentially small 

angle then:

 HdF dF=  (3)

The force equilibrium in the vertical direction of the y-axis (Fig. 
1b) is given by the equality:

 dN F dF d F d
= +( ) +.sin .sinα α

2 2
, (4)

after adjustment:

 dN F d dF d F d
= + +.sin .sin .sinα α α

2 2 2
 (5)

Concerning the differentially small angle it can be speculated that: 

 sin d dα α
2 2

≈ , and    dF d.sin α
2

0=   then: 

 dN F d F d= =2
2

. . .α
α . (6)

Considering that: dFH = dT and dT = dN . f; with both dFH = dF and 
dN = F. dα,  than after the substitution:

 dF f F d= . . α  (7)

This differential equation is solved by the separation of the vari-
ables and subsequently by their integration within the defined limits 
of the integration variables. To be aware of the fact that the force F 
increases along the pulley circumference from the smallest value F2 to 
the largest value F1, which corresponds with an increase of the wrap 
angle on the pulley from 0 up  to the resulting angle α):

 dF
F

f d
F

F

2

1

0
∫ ∫= . α

α
, (8)

then:

 ln .F
F

f1

2
= α , (9)

and after delogarithmization a well-known Euler`s correlation arised 
(10):

Fig. 1. Schematic force diagrams on the friction pulley a) schematic diagram of friction power transmission between friction 
lining and rope b) schematic diagram of friction power transmission between friction lining and rope on the elemen-
tary segment of the friction pulley
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F
F

e f1

2
= .α  (10)

During the actual hoisting the rope does not reach the state of gross 
slip (11):

 F F e f
1 2= . .α  (11)

where: F1 - tensile force in the digressional rope branch [N],
F2 - tensile force in the back-word running rope branch [N],
α   - wrapping angle  [rad],
f    - friction coefficient  [-].

3. Material and methods

3.1.	 Methodology	for	testing	the	coefficient	of	friction
According to the equation (11) there must be no slippage between 

the rope and the groove of the pulley friction lining, therefore it is 
necessary to know and guarantee the friction coefficient size between 
the rope and the friction lining. The methodology of friction force 
measurement is based on the principle of the equilibrium of tensile 
force and friction force (Fig. 1b). The tensile force (equal to the fric-
tion force) was recorded by a tensile tear tester. A measuring jig with 
lining samples together with a pressure force sensor was clamped in 
the tearing machine (Fig. 2a). According to this method  the  rope 
was inserted between two pieces of the same friction lining (Fig. 2a).
The magnitude of the pressure force depends on the projection of the 
area of the pressed surface between the lining and the rope and on the 
required pressure (Fig. 2c).

The motion between the rope and the friction lining was caused by 
the pull of the testing machine. One of the jaws pulled the rope and 
the other one pulled the jig with the measured friction lining. To pre-
vent the jig from sagging the jig arm is attached to the case by a ball 
joint. The case contains friction linings surrounding the rope from two 
sides. The rope axis passes through the imaginary axis of the jaws of 
the tearing machine and the box.

The force at which the motion between the rope and the friction lin-
ing took place was subtracted from the scale of the tearing machine. 
The starting force was considered to be the value valid for the coef-
ficient of friction at rest (static coefficient of friction) and the force 
when moving was valid for the coefficient of friction in motion (dy-
namic coefficient of friction).

The test was performed on the non-lubricated rope and on the lu-
bricated rope. The lubrication of the rope was performed in accord-
ance with the Standard DIN 21258, i.e. the lubricant was applied to 
the rope and allowed to act at 20 °C for 16 hours. The test procedure 
was identical for both ropes. Due to the presence of water in mining 
environment the friction force between the lubricated rope and the 
friction lining groove was measured, while water was added to the 
contact area.

In the frame of the experiments the measurements were performed 
in order to determine the friction coefficient value for individual mix-
tures of the material used for the friction lining production. The fric-

tion lining samples used for the tests consisted of six types of rubber 
compounds (Fig. 3) and the K25 lining originally mounted on the 
traction pulley.

The measurements were performed under the following condi-
tions:

- friction lining and non-lubricated rope,
- friction lining and lubricated rope,
- friction lining, lubricated rope and water.

The values of the friction coefficient were measured at pressures:  
1.5 MPa; 1.75 MPa; 2.0 MPa; 2.3 MPa between the rope and the fric-
tion linings.

For the calculation of the friction coefficient is valid (Fig. 2):

 T F=  (13)

where: T – friction force  [N],
F – tensile force  recorded by  the  tear  machine  [N].

The equation for sliding friction is:

 .T f N=  (14)

b)a)

c)

Fig. 3. Tested samples of the friction lining

Fig. 2. The friction coefficient measurements, a) the measuring jig schema, b) 
the measuring jig schema with determination of N and T forces (right). 
c) the tension simulation model - friction lining and non-lubricated 
rope
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where: N –  normal force of pressure  [N],
f – coefficient of sliding friction  [-].

From the equilibrium of the forces according to the Fig. 2b fol-
lows:

 1 2T T T= +  (15)

where: T1 – friction  force from the lining No. 1 [N],
T2 – friction force from the lining No. 2 [N].

If the equation (14) applies then:

 1 1.T f N=                             (16)

 2 2.T f N=                            (17)

where: N1 – force  of the pressure on the friction lining No. 
1 [N],

 N2 – force of the pressure on the friction lining No. 
2 [N].

The forces balance shown in the Fig. 2b:

 1 2N N N= =                           (18)

After the substitution of the equations (16) and (17) in the 
equation (15) applies:

 1 2. .T f N f N= +  (19)

After the adjustment:

 1 2.( )T f N N= +  (20)

If the equation (18) rates, then the equation (20) is:

 .( )T f N N= +  (21)

The equation (22) for calculation of the friction coefficient is the 
result of the adjustment of the equation (21) and the use of the equa-
tion (13):

 
2
Ff
N

=  (22)

3.2. The methodology of hardness testing
The tested rubber friction lining samples were divided following 

the hardness of the material. The hardness testing methodology is de-
termined by the Standard STN EN ISO 868 and it specifies the meth-
od for determining the hardness of plastics and ebonite by indentation 
at which the depth of penetration of the tip is measured.

The Shore method is empirical; it is set for   control purposes most-
ly. The hardness is inversely proportional to the tip intrusion. The tip 
intrusion depends on the modulus of elasticity and the visco - elastic 
properties of the tested material. The tip (made of hardened steel rod) 

has the shape of a beveled cone with an apex angle of 35° ± 0.25°, Ø 
0.79 ± 0.03 mm [20].

The samples hardness was measured on five different places: the 
distance (Fig.4a) from the sample’s edge min. 9 mm, the distance be-
tween punctures min. 6 mm (Fig. 4b) [1, 9].

4. Results

4.1. Measurement of the samples hardness
Hardness was chosen as a representative material property of the 

tested friction lining samples. The measured results (values   for 5 
punctures and average values   of Shore hardness of rubber samples) 
are shown in the Table 1.

The maximum average value of the Shore hardness A / 15: 95.4 
was measured out on the sample G1; the sample G5 showed the mini-
mum average value of A / 15: 78.5.

The IRHD hardness measurements were also performed on the sam-
ples. The course of values of the hardness shows the Table 2. Both hard-
ness measurements issue that the sample G5 has the softest material.

4.2.	 Measurement	of	the	friction	coefficient	
The Fig. 5. shows the course of the friction coefficient measure-

ment. The measuring jig was inserted between the jaws of the shred-
der.  The rope sample was attached to one jaw and a lined fixture was 
attached to the other jaw. The defined pressure between the rope and 
the lining was developed by the pressure screw and then the moment, 
when it comes to the shift between the rope and the friction lining, 
was monitored.

Table 1. Measured values of the Shore hardness of rubber samples G1 - G6 and sample K25 

puncture/sample K25 G1 G2 G3 G4 G5 G6

1 87,1 96,6 91,1 90,4 83 77 89,8

2 87,7 95,1 90,6 91,1 83 76,9 91,5

3 86,7 94,6 91,6 91,4 82,1 79,9 91,7

4 87,2 95,8 90,3 91,2 85,8 79,9 90,9

5 85,8 95 90,3 87,6 86,9 78,7 92,2

average 86,9 95,4 90,8 90,3 84,2 78,5 91,2

Table 2. Measured the IRHD hardness values of the rubber samples

sample K25 G1 G2 G3 G4 G5   G6

IRHD 99,1 98,3 96,2 98,4 98,3 95,1 97,3

Fig. 4. Minimum distances in millimeters for the placemen of the punctures 
[1] A) distance of the punctures from the edge of the sample, B) dis-
tance between the punctures Fig. 5. The shredder and the measuring jig with the rope



Eksploatacja i NiEzawodNosc – MaiNtENaNcE aNd REliability Vol. 23, No. 2, 2021342

Fig. 6. a-i show the graphical dependences and the courses of the 
average values magnitude   of the friction coefficients  (from four 
measurements) depending on the magnitude of the pressure exerted 
between the rope and the friction lining, the condition of the ropes 
(non-lubricated, lubricated) and the presence of water.

5. Discussion
The rate of the perpendicular and parallel acting forces on the con-

tact between two sliding bodies is defined as a friction coefficient 
[4]. Blau defined six categories of the testing devices for measuring 

of the friction coefficient in the laboratory condition [4]. Laboratory 
tests used for characterisation of the friction coefficient were made by 
many authors. They presented results of the basic friction tests made 
by gravitation based devices, direct linear force measurement devices 
or oscillation decrement devices. The test equipment used for above 
mentioned measurements can be defined as a tension wrap device ac-
cording [4]. The measurement jig (Fig. 2) used for determination of 
the friction coefficient provide laboratory tests in the conditions close 
to real. Creep characteristics and dynamic friction transmission be-
tween friction lining and steel wire ropes were in situ investigated by 
Wang et al [23]. Wang et al. focused on correlation between effective 

Fig. 6. The graphic dependences of the friction coefficient on the pressure magnitude between the lining and the rope;  a– sample G1; b– sample G2;  
c– sample G3; d– sample G4; e– sample G5; f– sample G6; g–  sample K25

a)

c)

e)

b)

d)

f)
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load, speed acceleration and deceleration to active slip angle, creep 
amplitude and creep velocity in process of vertical mining transport 
[23]. Dynamic contact characteristics between friction lining and steel 
wire rope were investigated by Wang et al. [22]. Wang et al. demon-
strated effect of hoisting parameters on wear process of the lining and 
possibility of the gross slip [22]. Results presented in publications 
[22, 23] are focused on global effect of the hoisting process. Argatov 
and Chai studied effect of a variable friction coefficient on the fretting 
wear in conditions of gross sliding [3]. Argatov and Chai designed 
an asymptotic model for the progress of the contact area between the 
contacting surfaces [3]. The Figures 6 a-i  are presented the measure-
ments of the contact characteristics between the steel wire rope and 
the linings; friction coefficient of various rubber lining materials in 
various contact pressure is determined as well. Friction coefficients 
on the contact between the rubber block and smooth steel surface 
were investigated by Yamaguchi et al [24]. They focused on the effect 
of height and orientation of the rubber block on the friction coefficient 
[24]. Sliding friction characteristics of the water lubricated rubbers 
studied Ido et al. [13]. They focused on the surface topography of 
the rubber blocks and its effect on wet sliding friction characteristics 
[13]. Friction behaviour between glass plate and rubber was investi-
gated by Nishi et al [19]. Rheological properties and effect of friction 
greases on friction between steel wire rope and fiction lining studied 
Feng at al. [9]. Feng et al. focused on the temperature and friction 
coefficient changes in the friction process and rheological properties 
of the friction-enhancing grease [9]. The results of the measurement 
manifest that regardless of the weather conditions (Fig. 6h and 6i) the 
friction lining samples made of rubber (G1-G6) have a higher friction 
coefficient than the sample K25. The samples comparison in terms 

of pressure between the rope and the friction lining indicates that the 
K25 friction coefficient does not change its value depending upon 
pressure (Fig. 6g). The course of the measured values of the friction 
coefficient of the friction lining K25 is much parallel to the pressure 
axis (Fig. 6g). The higher measured values of the friction coefficient 
for the friction linings G1 - G6 are evident pursuant to the comparison 
of all individual friction linings measurements (Fig. 6h and 6i). The 
significant changes in the values of the friction coefficient are visible, 
which in the case of friction linings G1 - G6 decreases considerably 
with increasing pressure (Fig. 6h, i). The decreasing course is identi-
cal with both ropes - non-lubricated and lubricated. From the samples 
G1 - G6 only the sample G5 has the course of the dependence of 
the friction coefficient on pressure similar to the sample K25, but the 
reached values of the friction coefficient are doubled.

The hardness values of  the samples G4 and G5 are very simi-
lar  to each other according to the  Shore’s hardness measurement 
method; the samples G4 and  G5 are closest to the hardness  value of 
the  comparison sample K25 (Fig. 7).The sample G5 was chosen to be 
compared with the sample K25  due to the same trend of the course of 
the  friction coefficient (Fig. 8, 9). Table 3 introduces directives and 
heading angles of the compared samples.

The trend lines overlayed by the values of the friction coefficient of 
the sample K25 with the non-lubricated and the lubricated rope are al-
most parallel to the x-axis (Fig. 8, 9). The sample made of K25 hardly 
changes the value of the friction coefficient depending on the value 
of the pressure between the friction lining and the rope. Likewise, the 
lines overlayed by the values of the friction coefficient of the sample 
G5 with the non-lubricated and the lubricated rope have the analogi-
cal course with the x-axis as well as the trend. The heading angles are 

Fig. 6. [continued] g–  sample K25; h – non lubricated: G1 - G6 and K 25; i– lubricated + water: G1 - G6 and K25

g)

i)

h)
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slightly larger than the angles of the sample K25, but they decrease 
with increasing pressure value (Fig. 8, 9).

6. Conclusion
The measured results of the friction coefficient show that all the 

rubber samples (G1 – G6) of the friction lining have a higher value of 
the friction coefficient than the friction lining K25. This applies to the 
entire pressure range between the rope and the friction lining, which is 
designated by the manufacturer of the towing equipment.

The trend of the values of the friction coefficient of the lining K25 
is almost parallel to the axis of pressure (Fig. 6h and i, Fig. 8, 9). This 
means that the value of the friction coefficient changes very little with 
increasing pressure between the rope and the friction lining.

The friction lining G5 has a similar trend of the friction coefficient 
as the friction lining K25 (Fig. 8, 9). The rubber lining G5 shows 
a larger decrease of the friction coefficient value depending on the 
pressure than the lining K25. The values of the coefficient factor are 
significantly higher than the K25 has reached   in the whole pressure 
range.

In terms of hardness the sample G4 is the closest one to the hard-
ness values of the lining K25. Comparing it with the sample G5 (the 
lowest hardness of all rubber samples) the values of the friction coef-
ficient of the sample G4 decrease significantly faster than it is with 
the sample G5 (Fig. 7).
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Table 3. Directives and heading angles  α of the friction coefficient lines 
(Fig. 8 and 9)

Test condition
Sample K 25 Sample G5

Directive Angle α Directive Angle α

non-lubricated rope -0.0054 -0°18” -0.0557 -3°11“

lubricated rope + water 0.0114 +0°39“ -0.1064 -6°4“

Fig. 7. Trends of the friction coefficient of  the samples G4, G5 non-lubricated 
and lubricated + water

Fig. 8. Trends of the friction coefficient of the unlubricated samples G5 and 
K25

Fig. 9. Trends of the friction coefficient of the samples G5 and K25 lubricated 
+water
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1. Introduction
Nowadays, in order to obtain the required damping values and the 

desired vibration response of car bodies, and the controlled response 
on its unsprung mass, double-acting hydraulic shock absorbers are 
usually implemented in unison with suspension spring elements. 
These shock absorbers are characterized by their different, two-way 
resistive forces during their compression stroke and their expansion 
stroke (the approach and distancing of the wheel to the body, respec-
tively). The magnitude of these resistance forces depends on the pa-
rameters of the throttling valves used to decrease the flow of liquid 
between the chambers in the damper. The shock absorber functions 
via the conversion of the mechanical energy, generated by the transfer 
of liquid through the throttling valves, into the thermal energy. 

Due to being a fundamental component for the comfort and safety 
of vehicle users, hydraulic shock absorbers are expected to meet high 
design, technical and operational requirements. These can be sum-
marized as follows: 

stability of the damping characteristic curves over the assumed  –
service life (or mileage),
high operational efficiency under expected use conditions, –
as long a shock length as possible, –
low sensitivity to environmental factors (e.g., temperature, hu- –
midity),
high mechanical strength and shock resistance, –

high durability, low weight and compact dimensions. –

The correct functioning of shock absorbers is of particular impor-
tance for truck and off-road special-purpose vehicles. This is due to 
these vehicles travelling on poor quality or unpaved roads (where pits, 
thresholds, bumps and other irregularities appear), in various climatic 
and meteorological conditions, for a significant part of their service 
life. Under these conditions, the shock absorbers are then subjected 
to intense and complex loads with large displacement amplitudes and 
velocities. This intensive service life accelerates the wear of the shock 
absorbers components, and in turn, decreases their performance. As 
a result, the deterioration of the chassis and the vehicle steering are 
greatly expedited, in turn, affecting both the user comfort and safety.

Malfunctions of the shock absorber can be caused by, among other 
things, the following reasons: failure of the seals; too low level of 
the working fluid; valve leaks and vibrations; wear of the working 
elements; improper fastening (due to the loosening of the fixing ele-
ments); wear or loss of the rubber sleeve properties. From the de-
velopment of these impairments, it is then possible to notice a pro-
gressive increase in the operating temperature of the shock absorber, 
significantly exceeding any recommended operating temperatures.

These permissible operating temperature ranges are specified by 
the shock absorber manufacturers. In most cases, they are in the range 
of −40 to 130°C [3], although for special applications (e.g., off-road 
vehicles) the maximum permissible temperature can reach up to 

This paper presents the results of bench-tests and calculations assessing the influence of 
temperature on the performance of a two-pipe hydraulic shock absorber. The shock absorber 
prepared for the tests was cooled with dry ice to a temperature corresponding to that associ-
ated with the average winter conditions in a temperate climate. The temperature range of the 
shock absorber during testing was ensured via equipping it with a thermocouple and moni-
toring it with a thermal imaging camera. During testing, the shock absorber was subjected to 
kinematic forces of a selected frequency with two different, fixed displacement amplitudes. 
The results of the tests showed a direct correlation between the decrease of component 
resistance at lower temperatures. The rate of change in resistance was higher at lower tem-
peratures. It was also found that the energy dissipated in one shock cycle decreased linearly 
with an increasing temperature. Finally, a method for determining the ideal use temperature 
of the shock absorber for the assumed operating conditions was also presented.

Highlights Abstract

Shock absorber performance-temperature charac-• 
teristic curves were determined.

A method for determining the continuous use • 
damper for ambient temperatures was proposed.

Measurements over a wide temperature range • 
showed profound changes in the damping factor. 

Energy dissipated during one cycle decreased lin-• 
early with the increase of the temperature.

The influence of temperature on the damping characteristic of hydraulic 
shock absorbers
Zdzisław Hryciów a, Piotr Rybak a, Roman Gieleta a

a Mechanical Engineering Faculty, Military University of Technology, Kaliskiego 2, 00-908 Warsaw, Poland

Hryciów Z, Rybak P, Gieleta R. The influence of temperature on the damping characteristic of hydraulic shock absorbers. Eksploatacja i 
Niezawodnosc – Maintenance and Reliability 2021; 23 (2): 346–351, http://doi.org/10.17531/ein.2021.2.14.

Article citation info:

hydraulic shock absorber, performance, damping factor, temperature, dissipation energy.

Keywords

This is an open access article under the CC BY license 
(https://creativecommons.org/licenses/by/4.0/)

Z. Hryciów - zdzislaw.hryciow@wat.edu.pl, P. Rybak - piotr.rybak@wat.edu.pl, R. Gieleta - roman.gieleta@wat.edu.pl



Eksploatacja i NiEzawodNosc – MaiNtENaNcE aNd REliability Vol. 23, No. 2, 2021 347

180°C. This value is related to, among other characteristics, the type 
of seals used and their resistance to high temperatures. Temperature 
also affects the viscosity of the oil, and thus affects the damping char-
acteristic curve of the shock absorber (i.e. the force-temperature rela-
tionship of the component). Reducing the viscosity of the oil when the 
temperature of the shock absorbers increases, as well as the pressure 
inside its chambers, in extreme cases can lead to the oil leakage. As a 
result, this causes the deterioration of the shock absorber’s operation, 
or even irreversible damage. In conventional shock absorber designs, 
mineral oils are used as the working fluid. Whereas, in heavy-duty 
shock absorbers, synthetic oils are used, which are characterized by 
their greater resistance and decreased temperature-related viscosity 
changes. The viscosity of the oil used must not be too high, since this 
leads to problems at low operating temperatures (generating excessive 
force values that can lead to damage of the shock absorber). On the 
other hand, too low a viscosity increases the foaming tendency of the 
oil, reducing the damping forces and the lubricating properties. The 
typical dynamic viscosity of the mineral oils is around 40 MPa·s at 
15°C [3].

In order to better identify the response of shock absorbers over 
time, a number of scientific publications have been focused on bench-
tests and numerical calculations for the shock absorbers. These stud-
ies referred to the determination of the damping characteristic curves, 
the effect of the damping values on the vehicle dynamics [4, 19], and 
issues related to their mathematical modelling. In [16], for example, 
the authors presented a method for modelling a shock absorber (in 
particular, for its valves), and then confirmed their results based on 
the experimental results.

In previous scientific research, shock absorber tests results could 
be found that take into account temperature [5, 10, 14, 18] and their 
impact on the driving comfort of the user [13]. Studies of the shock 
absorbers filled with numerous types of fluids were also presented in 
[12], where the authors presented their heating characteristics during 
operation with a constant amplitude and frequency. This type of test 
determined the amount of heat exchanged between the shock absorber 
and the environment, and can be considered important for preventing 
the shock absorbers from overheating and the unfavorable changing 
of the damping characteristic curves. In [6] an attempt was made to 
assess the technical condition of vehicle-mounted shock absorbers 
based on their temperature changes during the vehicle movement. The 
temperature effect on the damping performance of the shock absorber, 
by implementing the Eusam method, was presented in [8]. The tests 
were carried out for two temperatures (−5°C and 20°C) and five dif-
ferent types of cars. The tests performed showed a decrease in the 
effectiveness of the shock absorbers in the range 5 to 25% at warmer 
temperatures. Changes in performance due to temperature changes 
were also analyzed for aircraft shock absorbers. Where, in [15], the 
authors presented the results of their experimental studies conducted 
at temperatures of −25°C, 0°C, 25°C and 50°C. Measurements of 
the shock absorber’s damping characteristic curves were performed, 
as well as viscosity tests for hydraulic aviation oil. In this study, for 
positive temperatures (Celsius), a close to linear characteristic curve 
was observed for the viscosity decrease with temperature. At negative 
temperatures, the viscosity increased rapidly. As a result, the damping 
factor of the shock absorber was directly affected. These tests were 
also supplemented by calculations based on the CFD method.

The influence of the temperature on the basic characteristic curves 
was also evaluated for shock absorbers with variable damping char-
acteristic curves. In [7], the influence of the temperature on the char-
acteristic curves of a magnetorheological fluid shock absorber was 
described. In addition to the working fluid itself, the temperature in-
fluence on the resistance of the coils used in the control track were 
also studied, which was found to affect the resistance values of the 
shock absorber. Similar considerations were presented in [11], where 
a temperature range of 25 - 70°C was studied. Furthermore, examples 
of analytical studies were found in [1, 2, 10]. In [2], the authors pre-
sented a thermodynamic model of the shock absorber. This was used 

to simulate the change in the temperature of the shock absorber during 
its operation (for different movement speeds), until the vehicle’s con-
tinuous use temperature was reached. Thus, determining the thermal 
energy dissipation capabilities of the shock absorber, where these re-
sults were also compared with experimental results. In another study 
[1], a mathematical model of the shock absorber and the heat flow 
between its elements was explored. This approach made it possible 
to determine the values of the damping forces, as well as the thermal 
effects caused by the changes in the geometry of the shock absorber 
and the properties of its components. Based on these calculations, it 
was determined that the highest temperature during the operation de-
pends on the working fluid and the elements in direct contact with it, 
in particular the seals of the component. 

In most of the literature found, results were presented for the shock 
absorbers at temperatures above 20°C; due to typical vehicle operat-
ing conditions. However, no results could be found in the literature for 
lower testing temperatures, such as the working temperature range, as 
declared by the manufacturers. Therefore, the main aim of the present 
study was to determine the influence of the working temperature 
range on the hydraulic shock absorber and its damping characteristic 
curves and energy dissipation capabilities. In addition, the possibility 
of heat dissipation to the environment was also explored. 

2. Methodology
For the determination of the influence of the working temperature 

range on the hydraulic shock absorbers, a hydraulic shock absorber 
designed for installation in the rear suspension of a Renault D280 
truck (with a custom bodywork) was tested. For this study, a tele-
scopic Monroe E532080 shock absorber was used for the suspension 
of the vehicle.

The vehicle’s shock absorber tests were carried out on the Instron 
8802 electromechanical apparatus, which enables both static and dy-
namic tests. During the tests, the forces applied were controlled via 
the displacement signal.

The test program, as explained in further detail below, included the 
determination of the force-displacement characteristic curves of the 
rear shock absorber (without a rubber bushing and without a metal-
rubber bushing) for different force frequencies at the fixed shock ab-
sorber strokes and for the different shock absorber strokes at a fixed 
force frequency. Ten load loops were recorded for all tests to deter-
mine the basic characteristic curves of the shock absorber, measuring 
both stroke and force frequency. In the case of testing the influence of 
the temperature on the damping characteristic curves of the shock ab-
sorber, the force and displacement were measured continuously from 
the initial temperature until the temperature value stabilized (or until it 
reached the maximum permissible value of 100°C). During the tests, 
the temperature of the shock absorber’s surface (in its central part) 
was recorded using a J-type thermocouple. Thermal images were also 
taken using a FLIR model 6000 camera every 30 seconds. A view of 
the stand with the mounted shock absorber was shown in Fig. 1.

3. Results

3.1. Basic characteristic curves of the shock absorber
In the first stage of the experimental testing, the damping charac-

teristic curves of the shock absorber were determined at a constant 
ambient temperature of 26°C. During these tests, the amplitude of 
the displacement was changed from 20 to 100 mm, while maintain-
ing a constant frequency of 0.1 Hz. For each variant, the force value 
and shock absorber’s piston displacement were recorded accordingly. 
Fig. 2 summarizes the force-displacement and damping characteris-
tics of the shock absorber. When the shock absorber was stretched, its 
resistance was around 10 to 15 times greater than during compression. 
The characteristic curves provided show the limit force values of the 
pressure valve (from around 4.7 kN). This corresponded to a relative 
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piston speed of around 30 mm/s. For higher piston speeds, the force 
changed relative to the speed changes, and were smaller than in the 
initial force range. For the range of low speeds, the damping factor 
was 167 kNs/m, while at high speeds it was around 13 times lower 
reaching 12.9 kNs/m.

3.2. Analysis of the heating process
An important issue for identifying the energy dissipation ability 

of the shock absorber was to study its heating and cooling processes. 
For this purpose, tests from the initial temperature to the operating 
temperature (state temps) were carried out for a fixed value of a dis-
placement amplitude of 100 mm and a frequency of movement of 
0.1 Hz. This temperature was measured on the outer surface of the 
shock absorber cylinder, thus being lower than the temperature of the 
oil inside the shock absorber. In addition, thermographic photographs 
were taken at fixed intervals (every 30 seconds). Fig. 3 shows the se-

lected temperature distributions characterizing 
the process of heating the walls of the shock ab-
sorber. From this figure, it could be concluded 
that the cylinder heats up stronger in its upper 
part. The temperature difference between the 
upper and middle parts was around 5.1°C at the 
end of the measurements, and between the up-
per and lower parts as much as 16.3°C. Greater 
heating of the upper part was associated with, 
among other factors, the friction of the piston 
rod during its movement relative to the damper 
seal.

Fig. 4 displays the temperature changes 
found in the upper, middle and lower parts of 
the shock absorber (at points P1, P2 and P3 – 
Fig. 3, respectively). At the final stage of test-
ing, the temperature on the surface of the shock 
absorber stabilized itself. Its increments were 
small and did not change by more than 0.1°C 
after an additional 60 s of the shock absorber’s 
operation. Therefore, at this point, the study was 
terminated. The ability of the shock absorber to 
dissipate heat was characterized by, among oth-

ers aspects, its geometry, the types of materials used or paint coatings 
applied. This process was described by the shock absorber cooling 
curve. In order to determine the shock absorber’s cooling curve, the 
temperature changes of the heated shock absorber were measured af-
ter placing the subject in an environment with a constant temperature. 
The resulting curve was consistent with the examples found in the 
literature [14], and it should be emphasized that it depends on, among 
other things, the type of shock absorber and the prevailing environ-
mental conditions (e.g., air temperature and humidity or relative air 
vlocity).

The change in temperature T(t) was described by the equation (1), 
expressing Newton’s law of cooling [17]:

 dT
dt

k T Tp ot= − ⋅ −( )  (1)

where:
Tot – ambient temperature [°C],
Tp – initial temperature [°C],
t  – time [s],
k  – decay constant [1/s].

Integration of equation (1) and rearrangement of terms leads to the 
expression in the form (2): 

 T t T T T k tot p ot( ) = + −( ) ⋅ − ⋅( )exp  (2)

Based on the approximation of the cooling results by function (2), 
the value of the decay constant k was determined to be around 0.034 
s-1. The constant k can be described by the following relation (3):

 k S
m c

=
⋅
⋅

λ  (3)

where:
λ – heat transfer coefficient [W/(m2·K)],
S – heat exchange area [m2],
m – mass [kg],
c – specific heat (J/(kg·K)).

Fig. 1. The testing stand

Fig. 2. Force-displacement and force-velocity characteristics of the shock ab-
sorber

b)

a)
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Assuming the above-mentioned coefficients remain constant with 
respect to the temperature, it is possible (using Fourier’s law for fixed 
heat flow conditions) to estimate the value of the continuous use tem-
perature for other ambient temperatures. For this purpose, one should 
use the working conditions of the external force (energy dissipated in 
the shock absorber during one cycle) with the energy transferred to 
the external environment (4):

 ( )c
ot

c

EQ S T T
t

λ= = ⋅ ⋅ −  (4)

where:

Q  – heat flux [W],
Ec – energy dissipated during one cycle [J],
tc  – duration of one operating cycle [s],

Transforming (4) yields relation (5):

 S E
t T T

constc

c ot
⋅ =

⋅ −( )
=λ           (5)

For example, at an ambient temperature 
of 26°C, the tested shock absorber reached a 
continuous use temperature (in the middle part 
– point P2) of 83.71°C, dissipating an energy 
of 972 J during one cycle (lasting 10 s). If the 
amount of energy dissipated varies with tem-
perature according to the dependence Ec(T) = 
−2.15·T+1152 (fig. 7) at ambient temperature 
Tot2, thus, the continuous use temperature T2 is 
(6):

T S t T
S t

c ot

c
2

2 2

2

1152
2 15

=
⋅ ⋅ ⋅ +

⋅ ⋅ +
λ

λ .
 (6)

At Tot2 = −10°C, after working with the same amplitude and fre-
quency, the continuous use temperature of the shock absorber would 
reach T2 = 51.8 ° C (dissipating an energy of 1040 J in one cycle). The 
presented method enables the evaluation of how appropriate the se-
lected shock absorber for a specific car is for operation in the desired 
climatic conditions. According to literature, the increase in operating 
temperature in relation to the ambient temperature should not exceed 
40-70°C [3].

3.3.	 Temperature	influence	on	the	damping	characteristic	
curves

Given the final aim of the study was to determine the characteristic 
curves of the shock absorber at different operating temperatures. The 
tests previously described were carried out for two further displace-
ment amplitudes of the shock absorber piston, while maintaining a 
constant frequency value of 0.1 Hz. The low value of the movement 
frequency permitted the minimization of the temperature difference 
between the oil and the walls of the shock absorber. In addition, the 
high speeds applied to the shock absorber lead to the generation of 
significant forces, exceeding the limit of opening the pressure limiting 
valve. Thus, causing a disturbance in the observation of the effect of 
temperature on the damping factor values. To reduce the heat exchange 
with the environment, the shock absorber cylinder was covered with 
a 20 mm thick layer of an insulating foam. This protected the cylinder 
walls against the intense heat exchange with the surroundings of the 
cooled shock absorber and against the heat transfer through the heated 
shock absorber. The insulation accelerated the heating process and 
enabled higher continuous use temperatures to be reached. For an am-
plitude of 50 mm, the tests were carried out in the temperature range 
from −40°C to 53°C (the established temperature value for the assert-
ed conditions), and for 100 mm from −8°C to 100°C. Analyzing the 
results for the determination of the characteristic curves of the shock 
absorber at the different operating temperatures, it could be concluded 
that larger force differences in the shock absorber occur for smaller 
displacements (speeds), as seen in Fig. 5. For an amplitude of 100 mm 
the operation (i.e. opening) of the pressure limiting valve (and thus the 
force values) was observed for all temperatures. This was evidenced 
by the flattening of the upper part of the characteristic curves.

Fig. 6 provides a summary of the damping characteristics obtained 
in the temperature range from −40°C to 100°C. As previously men-
tioned, due to the rapid build-up of forces at −40°C and −20°C, the 
tests were carried out only for a displacement amplitude of 50 mm. 
Basing on these characteristics, the values of the damping factor were 
determined when the shock absorber was stretched in the low-speed 
range (before the pressure valve was opened).The results were sum-
marized in Table 1. In addition, it shows the percentage changes in the 

Fig. 3. Selected temperature distributions on the walls of the shock absorber

a)

b)

Fig. 4. Temperature changes on the surface of the shock absorber (left – heat-
ing, right – cooling)
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value of the damping coefficient in relation to the value obtained at a 
temperature of 20°C.

For the obtained changes in the damping force, as a function of 
temperature, the value of the dissipated energy was calculated for 
each full operating cycle as determined from the dependence (7):

 cE Fdx= ∫ ,  (7)

For the initial part of the obtained characteristics curves, the cur-
vature is well pronounced, as presented in Fig. 7. This was related to 
the time it took to transfer heat from the oil to the outer surface of the 
cylinder. After a short time, the heat transfer process was stopped. As 
a result, there was an almost linear decrease in the energy dissipated 
in one operating cycle with the increasing temperature. 

For a force amplitude of 100 mm, the test was terminated when the 
temperature reached 100°C. For a force amplitude of 50 mm, only a 
temperature of 53°C was obtained. At this temperature, the amount 
of energy supplied to the system through the work of the external 
force evened the energy released to the environment. In addition, it 
could be stated that the rate of change in the amount of energy dis-
sipated as a function of the temperature did not depend significantly 
on the displacement amplitude of the shock absorber piston. In both 
variants, a similar value was obtained (−2.15 J/°C for 100 mm and  
−2.12 J/°C for 50 mm). It also did not depend on the insulation used. 
For a shock absorber without insulation and covered with a layer of 
foam, a similar decrease in dissipated energy was observed with an 
increase in temperature.

4. Conclusions
This paper presents the results for laboratory bench-tests and cal-

culations for determining the influence of temperature on the per-
formance-based characteristic curves of a two-pipe hydraulic shock 
absorber installed on the rear suspension of a truck. Based on the re-
sults obtained, it was possible to conclude that the shock absorber’s 
temperature had a significant influence on the damping factor values. 

This effect was particularly evi-
dent as the temperature decreased. 
Compared to the value obtained 
at 20°C, at 100°C the value of the 
damping coefficient decreased by 
around 25%, while at −40 ° C its 
value increased by around 280%.

Larger changes in the damping 
forces, due to temperature chang-
es, were observed for smaller dis-
placements of the shock absorber 
piston (lower movement speeds). 

For higher speeds, a pressure limiting valve was used.
Over a wide range of temperatures, the amount of energy dissi-

pated during one cycle changed almost linearly with temperature. For 

a)

b)

Fig. 5. Influence of the temperature on the force-displacement characteris-
tics of the shock absorber (left – amplitude 50 mm, right – amplitude  
100 mm)

Fig. 6. Temperature influence on the damping characteristic curves of the 
shock absorber

Fig. 7. Energy dissipated in one cycle

Table 1. The changes of the damping coefficient in relation to a temperature

Temperature [°C]

−40 −20 0 20 40 60 80 100

Damping coefficient c 
[kNs/m] 613.6 290.1 190.5 162.9 149.9 139.5 130.6 121.8

Relative difference δc20°C 
[%] 276.6% 78.1% 16.9% 0.0% −8.0% −14.4% −19.8% − 25.3%
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the tested shock absorber, the specified rate of change was around  
−2.1 J/°C.

At low temperatures the relative motion of the elements of the 
shock absorber rapidly generated large resistance forces even at low 
speeds; with their value being limited by the pressure valve. High 

damping forces reduced the susceptibility of the suspension, increased 
the dynamic loads acting on the body and increased the likelihood of 
wheels tearing off the ground while driving. 

References
1.  Alonso M, Comas Á. Thermal model of a twin-tube cavitating shock absorber. Proceedings of the Institution of Mechanical Engineers, Part 

D: Journal of Automobile Engineering 2008; 222 (11): 1955-1964, https://doi.org/10.1243/09544070JAUTO829.
2.  Cao J, Xie F, Ding E, Zhang X, Qian P, He K. Temperature Characteristics of the Valve-controlled Shock Absorber. IEEE 8th International 

Conference on Fluid Power and Mechatronics (FPM) 2019; 666-670, https://doi.org/10.1109/FPM45753.2019.9035857.
3.  Dixon J C. The Shock Absorber Handbook, Second Edition, John Wiley & Sons 2007, ISBN: 978-0-470-51020-9.
4.  Dukalski P, Będkowski B, Parczewski K, Wnęk H, Urbaś A, Augustynek K. Dynamics of the vehicle rear suspension system with electric 

motors mounted in wheels. Eksploatacja i Niezawodnosc - Maintenance and Reliability 2019; 21 (1): 125-136, https://doi.org/10.17531/
ein.2019.1.14.

5.  Harkishandas R J, Gajjar S R, Patel A K. Experimental Analysis And Heat Transfer Study Of Damping Fluid In Shock Absorber Operation. 
International Journal of Engineering Development and Research (IJEDR) 2014; 2 (3): 2939-2947, http://www.ijedr.org/papers/IJEDR1403009.
pdf.

6.  Howard C, Sergiienko N Y, Gallasch G. Monitoring the age of vehicle shock absorbers. International Conference on Science and Innovation 
for Land Power 2018 (ICSILP 2018): 1-5.

7.  Jastrzębski Ł, Sapiński B, Kozieł A. Automotive MR Shock Absorber Behaviour Considering Temperature Changes: Experimental Testing 
and Analysis. Acta Mechanica et Automatica 2020; 14 (1): 22-28, https://doi.org/10.2478/ama-2020-0004.

8.  Jurecki R S. The influence of temperature on the damping value of shock absorbers determined by the Eusama method. Scientific Journals 
of the Maritime University of Szczecin 2019; 60 (132): 34-40.

9.  Kubo P, Paiva C, Ferreira A, Larocca A. Influence of shock absorber condition on pavement fatigue using relative damage concept. Journal 
of Traffic and Transportation Engineering 2015; 2 (6): 406-413, https://doi.org/10.1016/j.jtte.2015.10.001.

10.  Liang L, Liang T, Yunqing Z, Jie Z. Twin Tube Shock Absorber Thermo-Mechanical Coupling Simulation. Advanced Materials Research 
2012; 566: 669-675, https://doi.org/10.4028/www.scientific.net/AMR.566.669.

11.  McKee M, Gordaninejad F, Wang X. Effects of temperature on performance of compressible magnetorheological fluid suspension systems. 
Journal of Intelligent Material Systems and Structures 2018; 29(1): 41-51, https://doi.org/10.1177/1045389X17705203.

12.  Patel D R, Rathod P P, Sorathiya A S. Heat Transfer Study of Damping Fluid and Improvement of Air-Gap in Shock Absorber Operation. 
International Journal Of Engineering Research & Technology (IJERT) 2012; 1 (3): 1-7.

13.  Pavlov N. Influence of shock absorber temperature on vehicle ride comfort and road holding. MATEC Web of Conferences 2017; 133: 1-6, 
https://doi.org/10.1051/matecconf/201713302006.

14.  Pracny V, Meywerk M, Lion A. Full vehicle simulation using thermomechanically coupled hybrid neural network shock absorber model. 
Vehicle System Dynamics 2008; 46 (3): 229-238, https://doi.org/10.1080/00423110701271864.

15.  Shu N, Gu H, Liu H. Analysis of temperature effect on damping characteristics of landing gear shock absorber. International Conference on 
Aviation Safety and Information Technology (ICASIT 2020), 2020, https://doi.org/10.1145/3434581.3434593.

16.  Skačkauskas P, Žuraulis V, Vadluga V, Nagurnas S. Development and verification of a shock absorber and its shim valve model based on 
the force method principles. Eksploatacja i Niezawodnosc - Maintenance and Reliability 2017; 19 (1): 126-133, https://doi.org/10.17531/
ein.2017.1.18.

17.  Sobieski W. Termodynamika w eksperymentach, Uniwersytet Warmińsko-Mazurski 2015 Olsztyn.
18.  Xie F, Cao J, Ding E, Wan K, Yu X, Ke J, Gao K. Temperature rise characteristics of the valve-controlled adjustable damping shock absorber. 

Mechanics & Industry 2020; 21 (111): 1-11, https://doi.org/10.1051/meca/2019084.
19.  Yu B, Wang Z, Wang G, Zhao J, Zhou L, Zhao J. Investigation of the Suspension Design and Ride Comfort of an Electric Mini Off-Road 

Vehicle. Advances in Mechanical Engineering 2019; 11(1): 1-10, https://doi.org/10.1177/1687814018823351.
20.  Yu Y, Zhao L, Zhou C, Yang L. Modelling and simulation of twin-tube hydraulic shock absorber thermodynamic characteristics and sensitivity 

analysis of its influencing factors. International Journal of Modeling, Simulation, and Scientific Computing 2018; 11 (2): 2050012-1 - 
2050012-20, https://doi.org/10.1142/S1793962320500129.



Eksploatacja i NiEzawodNosc – MaiNtENaNcE aNd REliability Vol. 23, No. 2, 2021352

(*) Corresponding author.
E-mail addresses:

Eksploatacja i Niezawodnosc – Maintenance and Reliability
Volume 23 (2021), Issue 2

journal homepage: http://www.ein.org.pl

Indexed by:

1. Introduction
An internal combustion engine is currently the most widely used 

source of power for road transport. Given more and more demand-
ing requirements for the emission of harmful exhaust components, 
engineers are striving to improve the combustion process in order to 
ensure the lowest possible emissivity and the highest possible thermal 
efficiency [28]. The fuel injection process and its control play a very 
important role in this respect [1, 5, 11].

Currently, compression ignition engines predominantly use com-
mon rail fuel injection. The design of such system makes it possible 
to minimize inaccuracies of fuel injection resulting from inertia of 
the injection system components, which is typical of systems based 
on injection pumps. Fuel pressure in the end part of the common rail 
system, i.e. the area between injectors and a high-pressure pump, is 
maintained at the same level, which allows for maintaining the same 
operating conditions for all engine cylinders. Since fuel is injected 
in several doses, it is possible to obtain the desired fuel distribution 
in the cylinder, which allows for the control of the combustion proc-
ess and thus reduced emission of toxic exhaust gas components and 
lower pressure rise rate [22, 27]. However, this requires high preci-
sion of fuel metering and maintenance of constant fuel delivery rate 
characteristics during operation. The combustion process is particu-
larly sensitive to fuel injection process and pilot injection quantity [9], 

therefore the metering of small fuel quantities in the ballistic regime 
for injector needles requires high precision.

Common rail fuel injection systems are often associated with vari-
ous types of operational malfunctions. These predominantly result 
from damage of the injection system components, i.e. a high-pressure 
fuel pump or – more frequently – injectors. Injector damage is usu-
ally caused by poor quality of fuel [30, 31, 33] or cavitation erosion 
related to rapid flow of fuel through the injector [2, 13, 14, 32]. Poor 
fuel quality usually leads to accelerated accumulation of deposits; it 
can also accelerate erosive wear if fuel contains fractions with low 
vapour pressure.

Birgel et al. [3] reviewed the literature on the mechanisms of de-
posit formation and their effect on injector characteristics. Research 
has shown that fuel flow rate across the injector decreases linearly 
during operation, resulting in a corresponding reduction in engine 
power. Following 30 hours of engine operation at full load, the fuel 
delivery rate was reduced by about 3.5%. The literature review shows 
that many studies focus on the influence of biocomponents on de-
posit formation [15, 17]. In general, biofuels induce the formation 
of hard polymers inside the injectors and of carbon deposits around 
the injector holes. Hofmann et al. [7] investigated the effect of worn 
injectors on changes in control system signal characteristics, namely 
the needle lift and the fuel pressure in the feed line. It was found that 
a worn injector – its mileage unknown – had the needle lift reduced 

The objective of this study was to determine changes in fuel delivery rate by common rail 
system injectors during their simulated operation on a test stand. Four Bosch injectors used, 
among others, in Fiat 1.3 Multijet engines were tested. The injectors were operated on a 
test rig at room temperature for 500 hours (more than 72 million work cycles). During the 
test, pressure and injection frequency were changed. Changes in the operating parameters 
were estimated based on obtained injection characteristics and effective flow area deter-
mined thereby. The observed changes in fuel delivery rate were compared with results of 
the surface analysis of control valves and nozzle needles. Despite the stated lack of wear, 
significant changes in the dynamics of injector operation were observed, particularly at short 
injection times. Small pilot injections cannot be corrected by the fuel injection control sys-
tem because they do not affect the changes in torque; however, they do affect the combustion 
process. This creates conditions for increased emission of toxic exhaust components.
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by about 20% compared to a new injector. A similar trend was ob-
served with respect to the fuel delivery rate. The reduced needle lift 
and fuel flow rate were attributed to the formation of hard deposits. 
However, the authors observed that the reduced needle lift during op-
eration is to some extent compensated for by cavitation wear of the 
injector holes.

Apart from deposit formation and cavitation erosion, the problem 
of tribological wear of injector components is often discussed in the 
literature too, especially in terms of alternative fuels. However, it 
should be emphasized that the available studies mainly concern older 
generation injection systems operating at pressures being an order of 
magnitude lower than those in common rail systems. Obtained re-
sults are not unequivocal, predominantly due to the limited time of the 
studies. Although visible changes in the surface profile are observed, 
they are not regarded as having direct impact on operating parameters 
of the fuel injection system components [25]. With good lubrication, 
geometrical changes in the interacting injection system components 
are negligible. The study conducted by Niewczas et al. [20] showed 
that after the durability test of 60 million  cycles, the plunger diameter 
in the injection pump increased by about 4 µm.

Schuckert et al. [29] investigated the relationship between injector 
aging and fuel delivery rate. The results showed that reduced cross 
section of the injector holes due to deposit formation does not neces-
sarily lead to reduced fuel delivery rate at short injection times. Hy-
draulic phenomena cause the injection time to be longer at the same 
energizing time, thus compensating for the lower fuel flow rate. Payri 
et al. [24] quantified the closing hydraulic delay of a piezoelectric in-
jector. The aged injector was characterized by an increased fuel flow 
rate than the new injector for the same energizing time.

Optical analyses of fuel spray conducted by Hofmann et al. [7] 
showed that the reduced injector hole make the fuel spray narrower 
and increase its range, while the larger diameter holes have the op-
posite effect. Pielecha et al. [26] conducted a comparative analysis 
of fuel spray characteristics for new and aged injectors. Following a 
mileage of 80,000 km, the worn injectors were characterized by 30% 
reduced cone angles. A slight increase in the spray range was observed 
too. The above changes in fuel spray geometry indicate reduction in 
the cross section of the holes during operation.

Recently, Payri et al. [23] investigated the effects of injector aging 
on multiple injection strategies. The injector was subjected to wear 
on a test rig under controlled conditions. The researchers quantified 
the observed changes in the fuel flow rate in the injector, attributing 
them to reduced hole diameters. Similarly to Schuckert et al. [29], 
they found that increased injection timing is significant and that mul-
tiple injection leads to continuous fuel flow, as in the case with single 
injection.

Research has also shown that even new injectors differ significantly 
with respect to their flow characteristics. Ferrari et al. [4] determined 
the characteristics of fuel injection rate depending on the injection 
timing for different pressures in the fuel rail. Results obtained for the 
tested injectors showed that at short energizing times typical of pilot 
injection, the spread of injected fuel quantity is greater than the mean 
value. Changes in the injection characteristics and injection rate have 
a direct impact on the combustion process in the cylinder. The pilot 
injection quantity is of particular importance [8], and small fuel quan-
tities are particularly exposed to variability resulting from wear and 
geometrical changes of the injectors.

Hofmann et al. [6] proposed an algorithm for injection strategy 
correction to compensate for changes resulting from injector aging. 
A simplified model of injection and combustion was sufficient to se-
lect optimal injection strategies. Importantly, the study found that a 
mere change of the injection time is not sufficient to compensate for 
changes in its characteristics, due to the fact that apart from the fuel 
flow coefficient, the spray characteristics and dynamic parameters are 
changed too. Nevertheless, in the study, only changes in the cross sec-
tion of the holes were considered to be an indicator of wear.

The literature review shows that, on the one hand, detailed data are 
available about tribological processes and the relationship between 
technical condition and injection characteristics; on the other hand, 
however, the actual changes in fuel delivery rate characteristics are 
unknown. These gaps in knowledge result from the fact that the as-
sessment of changes in the operating characteristics of injectors re-
quires long-term studies under controlled conditions. In real operat-
ing conditions, simultaneously occurring processes, such as abrasive 
wear and internal deposits formation or cavitation wear of injector 
holes and carbon deposits formation, can compensate each other.

The objective of this study was to determine changes in injection 
characteristics of the analysed injectors following a high-intensity 
500-hour laboratory durability test, amounting to a mileage of ap-
prox. 70,000 km. As a result, it was possible to determine the extent of 
changes in the injector characteristics during the run-in period. Tests 
were conducted at room temperature, which reduced, among others, 
the formation of internal deposits. In effect, it was possible to isolate 
the effects related only to tribological wear. The changes in injection 
rate characteristics were compared with changes in the surface texture 
of key elements of the injectors.

2. Simplified description of fuel injection process 
In common rail systems, fuel quantity metering is adjusted by 

changing injector valve opening time. Theoretically, fuel flow through 
an open valve is steady and results from the fuel nozzle cross section 
and fluid velocity:

 m A vth f th= ρ 0 , (1)

where ρf is the fuel density, A0 is the total cross-sectional area of   the 
injector nozzle openings, and vth is the theoretical flow velocity of 
fuel across the injector tip. The flow velocity is derived from the Ber-
noulli equation:

 v p
th

f
=

2∆
ρ

, (2)

where Δp is the difference between the pressure of injected fuel and 
the pressure across the area into which fuel is injected. However, the 
actual flow rate is corrected by the flow coefficient μ, defined as the 
ratio of actual to theoretical mass flow:

 µ =




m
mth

. (3)

Based on Equations (1) and (2) and taking into account the coef-
ficient μ, the actual mass flow rate can be expressed as:

 m A pf= µ ρ0 2 ∆  . (4)

For convenience, the actual fuel spray cross section can be pre-
sented as the product of the geometric cross section of the valve and 
the flow coefficient. Additionally, by introducing the injector open-
ing time tr, based on the measured fuel volume V corresponding to 
one fuel injection, the actual cross section of the fuel spray can be 
calculated as:

 µ

ρ

A V
ptr

0
2

=
∆

. (5)
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However, the actual injector valve opening time in Equation (5) is 
not the same as the theoretical energizing time of the solenoid injector. 
The delay in injector opening results from a curve of inductor cur-
rent increase, mechanical resistance, hydraulic resistance and inertia 
of both the fluid and the injector mechanical components. The delay 
occurs at injector closing too, due to the above reasons. It is worth 
noting that the delay values are so large that at short energizing times, 
the physical injection begins after the end of electric pulse [16]. As-
suming that the delays are independent of the injected fuel quantity, 
the total difference Δt between the energizing time ET and the actual 
injection time tr can be determined by analysing injection rate char-
acteristic (Fig. 1). The intersection of the linear regression line with 
the abscissa indicates the time at which the theoretical injection rate 
is equal to zero. This time is the difference between the valve opening 
delay and the valve closing delay. Therefore, knowing the injection 
rate characteristics for a specific type and pressure of fuel and so-
lenoid timing parameters, the actual injection time can be estimated 
based on the following dependence:

  rt ET t= − ∆ . (6)

Fig. 1. Injector dead time determined based on injection characteristics 

3. Research methods
Bosch high-pressure electromagnetic fuel injectors applied in com-

mon rail fuel injection systems were used in the study. Four injectors 
of the same type (0445110183) were tested. Laboratory tests were car-
ried out on a test rig for testing fuel injection pumps and fuel injectors, 
STPiW-3, manufactured by Autoelektronika Kędzia (Fig. 2).

The injectors were operated for 500 hours, which amounted to 
about 72.18 million work cycles. To simulate operation of the injec-
tors under conditions reflecting the real ones, the injection pressure 
and injection frequency were changed during the test. Detailed infor-
mation about the experimental parameters is given in Table 1.

The fuel used in this study was Ekodiesel Ultra diesel oil produced 
by PKN ORLEN (Poland), the standard properties of which are given 
in Table 2. To ensure the same properties of the fuel, its temperature 
was stabilized at 40 ± 2°C.

Before and after the performance test, volumetric injection rate 
characteristics were determined. Conditions applied in the test are 
listed in Table 3. They were selected in such a way as to cover most 
operating conditions occurring in real conditions, i.e. low, medium 
and high injection pressures, as well as short and extended injection 
timing. The longest injection times of 1.5 and 2 ms were selected for 
the test due to the fact that they ensure a long period of stable mass 
flow rate, thanks to which it is possible to accurately determine the 
flow coefficient for the injector. All combinations of the variables 
were tested, yielding a total of 100 measurement points. The meas-
urements were repeated five times, and based on obtained results, the 
average injection rates were calculated for every measurement point.

After the durability test, the injectors were tested on a specialized 
test bench EPS 945 from BOSCH, which is used for testing and is-
suing correction codes in accordance with the procedure specified by 
the manufacturer. Obtained changes in the injection rate were evalu-
ated in terms of statistical significance. The evaluation was performed 
using Statistica 13.0. Since statistical features of the obtained results 
(distribution and variance in individual tests) precluded the use of 
parametric tests, the Wilcoxon signed-rank test was used instead. The 
level of statistical significance was set at α = 0.1, which corresponds 
to the values used in technical sciences [12].

After that, the injectors were disassembled and topographically 
examined using the Alicona InfiniteFocus5G optical device for sur-
face roughness and texture measurements. Surface roughness was 

measured in two stages. First, a 3D model was created using the 
InfiniteFocus technology. Next, a surface profile was extracted 
from the 3D model, and – on the basis of this profile – roughness 
parameters were calculated in compliance with ISO standards. 
In this way, it was possible to identify changes in the surface 
of key elements of the injectors, i.e. control valves and injector 
needles.

4. Results and discussion
In accordance with the assumptions of the experiment, chang-

es in injector operation were evaluated predominantly based on 
the changes in their injection rate. Fig. 3 shows the characteris-
tics of injection rate for selected parameters of their operation 
from the values given in Table 3.

An analysis of the above injection rate characteristics dem-
onstrates that in almost every case, regardless of the injection 
pressure, the injection rate decreases during the test. A decrease 
in slope of the injection rate characteristics curve in relation to 

the horizontal axis of the graph, in accordance with the scheme shown 
in Fig. 1, indicates changes in the effective cross-sectional area of the 
injector, as illustrated by the characteristics shown in Fig. 4.

An analysis of the behaviour pattern of the effective cross-sectional 
area of   the injector demonstrates that this parameter undergoes signif-
icant changes in the entire range of measurement points. Statistically 
significant changes can be observed for the average value of the ef-
fective cross-sectional area of   the injector. According to the statistical 
test results, the value   of p is 0.086 for Injector I, while for Injectors 

Table 1. Parameters of performance tests 

Work 
time (h)

Total work 
time (h)

Injection 
pressure

prail (MPa)

Injection 
frequency 

(Hz)

Share in the 
test * (%)

120 120 100 25 15

30 150 120 35 5

150 300 120 40 30

130 430 120 50 33

70 500 140 50 17
* share in the test denotes the percentage number of injections made under given 

operating conditions to the overall number of injections made by the injector dur-
ing the test.

Fig. 2. STPiW-3 test rig for testing fuel injection pumps and fuel injectors
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II, III and IV p <0.001. Regarding Injector III, the average value of 
the coefficient has increased, while in other cases its average value 
decreased. This has a direct impact on the operation of the injectors, 
because injection rate control is based on injection timing control with 

the assumed pressure values and the injection rate obtained thereby. 
If the injection process itself is changed, it leads to deterioration of 
the internal combustion engine operation, regardless of whether the 
obtained flow rate is higher or lower than the reference value. This 
may cause changes in the achieved engine operating parameters, as 
well as lead to increased emission of toxic exhaust gas components, 
predominantly nitrogen oxides and solid particles [19, 21]

In addition, following the performance test, the injectors were test-
ed on the BOSCH EPS 945 test stand. The test has shown that Injector 

IV neither meets the assumed requirements, nor 
it is not possible to correct its injection char-
acteristics and thus requires mechanical inter-
vention. As for the other injectors, despite sig-
nificant changes in their injection rates (Fig. 3), 
particularly at short injection times, they meet 
the manufacturer’s standards and can therefore 
be qualified as operational.

An attempt was also made to establish a re-
lationship between the changes in the injector 
operating characteristics and the surface con-
dition of the interacting injection system com-
ponents. The literature review shows that the 
injection rate can be affected not only by the 
holes but also by wear of the surfaces of the in-
jection system components responsible for the 
fuel injection process, i.e. the conical surface of 
the control valve interacting with the valve ball 
and the surface of the injector needle interact-
ing with the injector tip body [2, 10, 18]. After 
the performance test, these components were 
subjected to surface texture examination. Sur-
face examination results obtained for the control 
valves are shown in Fig. 5 and for the injector 
needles in Fig. 6.

An analysis of the images in Figures 5 and 6 
showing the surface texture of the fuel injector 
control components demonstrates that no sur-

face degradation took place during the performance test, which means 
that no component has been damaged or lost its operational ability. 
Evaluation of this type is usually made by microscopic examination 
aimed at identifying visible surface defects. The images of the sur-

Table 2. Standard physical and chemical properties of the fuel used in the study, according to the  data provided by the manu-
facturer

Property Unit
 Specifications

TestLower 
limit

Upper 
limit

Cetane number - 51.0 - PN-EN ISO 5165

Cetane index - 46.0 - PN-EN ISO 4264

Density at 15  oC kg/m3 820.0 845.0 PN-EN ISO 12185 
PN-EN ISO 3675

Flash point  oC 56.0 - PN-EN ISO 2719

Carbon residue (on 10% distillation residue)  %(m/m) - 0.30  PN-EN ISO 10370

Ash residue  %(m/m) - 0.010  PN-EN ISO 6245

Water content
 mg/kg - 200

 PN-EN ISO 12937
 % (m/m) - 0.020

Oxidation stability
 g/m3 - 25  PN-ISO 12205

 h  20.0   -  PN-EN 15751

 Lubricity, corrected wear scar diameter  
(wsd 1.4) at 60 °C  mm  -  460  PN-EN ISO 12156-1

Viscosity at 40 °C  mm2/s  2.000 4.000  PN-EN ISO 3104

Table 3. Injector parameters used for determination of injection charac-
teristics 

Parameter Tested values

Injection pressure, prail 
(MPa) 30; 40; 50; 70; 80; 90; 100; 120; 150; 170

Nominal injection time,  
ET (ms) 0.2; 0.3, 0.4; 0.6; 0.8; 1.0; 1.3; 1.5; 1.8; 2.0

Fig. 3 Injection rate characteristics of the tested electromagnetic injectors
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faces of both control valves and injector needles show 
no visible damage.

An analysis of the surface texture of the control 
valves was performed in the area of interaction with the 
valve ball, and obtained results are given in Table 4. An 
analysis of the Abbott-Firestone curve for the examined 
surface does not indicate significant degradation of the 
surface. No increase in the parameters Vvc (core void 
volume) and Vvv (valley void volume) is observed with 
respect to the valve that was not subjected to perform-
ance tests. Similarly, the behaviour pattern of the Sv 
parameter (the maximum pit height) does not indicate 
any damage.

A comparison of the flow characteristics and sur-
face condition of the interacting components reveals 
that wear processes are not the main cause of changes 
in the fuel delivery rate. Given the moderate tempera-
ture during the tests, the effect of polymeric deposits 
can be excluded, too. This is evidenced by insignifi-
cant changes in the flow coefficient in the range of 
long injection times. On the other hand, considerable 
changes in the flow parameters can be observed in the 
range of short injection times. This means that in the 
initial stage of operation, the friction of the interacting 
components changes to a large extent, which affects 
the dynamics of the pilot valve and injector needle. 
As a result, small pilot injection quantities can vary 
greatly during operation and be different for different 
cylinders.

It should be emphasized that such changes in injec-
tion characteristics may be undetected and thus non-
compensated for by adaptive algorithms, as the injected 
fuel quantities are small and do not significantly change 
the torque. On the other hand, changing the pilot injec-
tion significantly affects exhaust emissions. Unfortu-
nately, the observed changes in fuel injection charac-
teristics are quite incidental. The injectors tend to both 
increase and decrease small fuel quantities. The rela-
tionship between fuel pressure and injection rate char-

acteristics is also ambiguous. This proves that the injector operation 
dynamics depends on many factors. Given the multidirectional nature 
of the observed changes, it is not possible to develop an injector wear 
model that could be used to modify the injection strategy.

Fig. 4. Characteristics of the μA0 coefficients μ and A0 of effective cross-sectional area of the injec-
tor

Fig. 5 Images showing the surface texture of control valves 

Fig. 6. Images showing the conical surface of nozzle needles
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5. Conclusions
In this study, a 500-hour performance test of electromagnetic fuel 

injectors for a compression-ignition engine was performed. The test 
was carried out on a test stand by simulating real operating conditions. 
It was conducted at room temperature to minimize the formation of 
deposits inside the injectors. Before and after the durability test, injec-
tion rate characteristics were determined. Additionally, the changes 
in the surface texture of the cooperating pairs were evaluated. Based 
on the results obtained in this study, the following conclusions can be 
drawn:

In all tested injectors, statistically significant changes were  –
observed with respect to the effective cross-sectional area of 
the flow coefficient. However, the direction of these changes 
differed. For three of the tested injectors, the effective cross-
section decreased, but it increased for one of them.
The examination of the surface of the injector needles and con- –
trol valves did not reveal any visible damage that could affect 
the injection process. In addition to that, no significant changes 
in the texture of their working surfaces were detected.

Despite the stated lack of wear, the dynamics of injector opera- –
tion changed to a significant extent. Specifically, there occurred 
changes in the effective cross-sectional area of flow at short 
injection times when the valve opening and closing delays play 
a decisive role, because a stable flow state is not achieved. 
To compensate for the changes in injector operation dynamics,  –
which are important in metering pilot injections, it is necessary 
to obtain information about every fuel quantity in multi-stage 
injection. This information can be indirectly obtained by indi-
vidual measurements of fuel pressure in each of the injectors.

Source of funding
The project/research was financed in the framework of the project 
Lublin University of Technology-Regional Excellence Initiative, 
funded by the Polish Ministry of Science and Higher Education 

(contract no. 030/RID/2018/19).

Table 4. Surface texture parameters of the control valves subjected to performance testing

Parameter New valve Valve of Injector I Valve of Injector II Valve of Injector III Valve of Injector IV

Vvc (ml/m2) 0.486 0.354 0.386 0.244 0.291

Vvv (ml/m2) 0.055 0.040 0.043 0.042 0.0291

Sv (μm) 2.32 1.98 2.04 2.03 2.02
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1. Introduction
A modern aircraft’s turbofan engine is a complex mechanical sys-

tem with numerous components that need to be properly maintained 
to continue its safe and profitable operation. As the components dete-
riorate they need to be replaced or repaired which drive the engine off 
wing for often time consuming overhaul [8] and creates a cost burden 
requiring proper engine fleet management to continue the aircraft op-
eration [18].

Aircraft engine components condition is assessed on recurring in-
spections and compared to the limits provided by the engine manufac-
turer which constitute the Instructions for Continued Airworthiness 
approved and controlled by the regulatory agency in a form of an 
engine manual [16]. The engine manual limits proposed by the engine 
manufacturer are based upon understanding of the physics behind the 
particular wear out scheme and the condition progression until the 
part cannot be operated any longer and has to be replaced.

With the complexities of loads that parts are exposed to a variety 
of competing failure modes occuring at different stages of part’s age 
and progresing at different rates comes with significant impact of en-

The article proposes an approach based on deep and machine learning models to predict a 
component failure as an enhancement of condition based maintenance scheme of a turbofan 
engine and reviews currently used prognostics approaches in the aviation industry. Com-
ponent degradation scale representing its life consumption is proposed and such collected 
condition data are combined with engines sensors and environmental data. With use of data 
manipulation techniques, a framework for models training is created and models' hyperpa-
rameters obtained through Bayesian optimization. Models predict the continuous variable 
representing condition based on the input. Best performed model is identified by detemining 
its score on the holdout set. Deep learning models achieved 0.71 MSE score (ensemble 
meta-model of neural networks) and outperformed significantly machine learning models 
with their best score at 1.75. The deep learning models shown their feasibility to predict the 
component condition within less than 1 unit of the error in the rank scale.
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vironmental factors like volcanic activity [12] and air contaminants 
presence like dust aerosols as seen in a test [6] and in operation [26].   

Additionally, an ease of performing a visual on-wing inspection 
of the hardware depends on its location in the engine and capability 
of the inspecting crew and its equipement. Thus with all the factors 
combined the actual confirmation of the part condition is not always 
feasible.

It is common that engine components wear occurs at different 
rates and single components compete in being limiting for the engine 
useful life. Hence a prediction of the current state of the wear of the 
components becomes a crucial task in the fleet management. With the 
development of health monitoring systems and on board diagnostics 
technologies deployment, a significant amount of data has become 
available for engineers to analyze which enables enhancement of clas-
sical condition based maintenance [29]. 

In the light of the latest research based in the field of predicting 
components life this paper proposes a data-driven approach for an 
aviation turbofan engine.
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2. Failure prediction methods overview

2.1 Prognostics approaches
There exist numerous examples of attempts to predict the compo-

nent failure of a part or the entire system depending on the problem at 
hand, design phase and data available. 

 In the concept design phase where numerical models are avail-
able Ning Baojun et al. proposed a method to incorporate boundary 
condition uncertainity into the FEA of a turbofan engine combustor to 
obtain a stochastic life predition [4]. Another approach is presented by 
Echarda et al. [10] where a SARFAN’s aviation engine blade support 
is analyzed with a variation of geometry, material properties and load 
variation to computionally capture the life prediction and its probabil-
ity. These models can be very accurate and deliver useful information 
about the type design, however a good understanding of the failure 
mode is necessary.

With available failure data one can apply different predictive meth-
ods. In their article Yang et al. explore potential for matching the 
failure times of an aeronautical equipment components to probability 
distributions to the outcome of finding that the normal distribution 
to best reflects the actual life distribution [38]. Whereas some cases 
show promise of normal distribution use, the others like the subject 
studied in the other paper by Yang et al. indicate 3 parameter Weibull 
to best represent failure probability of airborne equipment [37]. These 
modelling approach enables the engineer to make predictions of the 
part failure based on the sample of fielded hardware and employing 
statistical methods in place of finite element computations with a 
challenge of collecting sufficient amount of well comprehended data. 

The other researches focus on the engine health monitoring and 
fault diagnostics, where engine sensors are used to look for a signal of 
a deteriorating engine health or a faulty component. Turbofan engine 
health degradation and prognostics of the remaining useful life (RUL) 
was deployed by Zaidan et al.  [41] with a use of a Bayesian Network 
Regression. Xiu et al. present an aviation turbofan engine fault diag-
nosis scheme based on deep belief network (DBN) [36]. The neural 
network composed of mulitple layers forming restricted Botlzmann 
machines (RBM) succesfully modeled engine systems and engine 
sensory data have been fed into the model and corresponding engine 
fault state have been predicted. 

Another deep learning model is researched in a paper by Sina 
Tayarani-Bathaie et al. and revealed that dynamic neural networks 
based on multi-layer perceptron (MLP) networks demonstrated prom-
ising performance in prediction of a turbofan engine fault [31]. Also, 
Heimnes in [14] reports a satisfactory results in RUL prediction with 
a MLP classifier.

In [19] the researchers are introducing useful classifications of the 
AI-based methodologies used in the aerospace industry for systems 
health management; (1) knowledge-based, (2) probabilistic and (3) 
data-driven with authors pointing out towards the growing interest  
paid by the scientific community to the deep learning methods. Sikor-
ska et al. [30]  report successes in the field of prognostics and predic-
tion of RUL by artificial neural networks (ANN) and making them 
a separate category of RUL prediction models noting their ability to 
handle noisy data. Pawełczyk et al [25] have recently reported a suc-
cesful use of  machine learning methods to predict the condition of 
high pressure compressor in a stationary gas turbine.

A different take on asset failure prediction is presented in the works 
of Yoon et al. where deep generative models in semi-supervised learn-
ing scheme have been implemented to predict estimated time to failure 
and show that data-driven approaches are alternatives to the physics-
driven modelling [40]. In the presented study for the sparse labelled 
turbofan data the variational autoencoders have delivered great results 
over the gated recurrent units (GRU) and long short-term memory 
(LSTM) network architectures. 

Among other network architectures deep convolutional neural net-
works (CNN) have been demonstrated by Babu et al. [3] to be feasible 

in predicting a capture a non-linear relationship between RUL and 
sensor data.

Having in mind the mentioned researches in the field of prognos-
tics, the deep learning methods deliver promising results replacing 
physics based models provided sufficient understanding of the matter 
is reached as authors demonstrated in number of publications [23].

2.2. Target variable in researches
An important role in prognostics and health management plays a 

systems health index (HI) as it reflects the system condition and its 
potential to perform its function throughout the system useful life. 
The index is widely used concept across researches based in various 
industries ranging from electronics equipment, through heavy ma-
chinery to the aviation industry.

A paper published by Amir et al. has researched a condition-based 
health index concept where overall health index was calculated based 
on the individual indicators [1] and used a 10-grade scale differentiat-
ing a system condition from good to bad and enabling to categorize 
the particular system units. In power transformer application a health 
index ranging from 0 to 1 have been presented by Lata et al. [2] and 
incorporated a various input relevant to that particular system to es-
tablish the resulting index value.

In the case of turbofan engine, a health index based on engine sen-
sor flight by flight data were used to establish and predict a high-
pressure compressor deterioration [33,34].

Another interesting way to develop a health index out of turbofan 
engine sensor readings have been proposed in [5] where a step by step 
aggregation of the normalized feature values was proposed. In such 
arrangement a growing health index would cumulate over time of op-
eration and judgements about RUL can be made.

Based on the solid fundaments established by the research com-
munity the subject of this paper uses a condition-based health index 
with 10 grade scale.

3. Problem description
Turbofan engine components are inspected reccurently at least as 

often as recommended by the engine manufacturer thus providing a 
valueable condition data. The considered component operates on the 
condition based maintenance scheme. The participating engines have 
been monitored for a period from third quarter of 2014 to first quarter 
of 2020 to obtain one of the hot gas path component data. 

The obvious challenge is in the formulation of the life prediction 
problem. The intent is to determine, based on available information, 
at what stage of degradation the given component is. A very efficient 
technique to determine a moment when a given system would fail is 
RUL estimation. As the authors of the [11] presented, RUL can be de-
termined by use of a degradation characteristic of an aviation engine 
as input variable to obtain a survival function that later can be used to 
predict moment of a probable failure. A degradation characteristic is 
specific to the system and may depend on the physics of a considered 
wear out mechanism. For a gas turbine it could be an exhaust gas tem-
perature [14] or a compressor recoup pressure [25], both being related 
to the system wear out and continuous trend of either could be a signa-
ture that can be used to judge incoming expiration of useful life. 

However, in the researched system, the component wear out, de-
spite progressing with time, is not picked up by engine sensors and 
thus a trend as such cannot be the degradation characteristic. Also, 
there exist no spike in any of the sensor readings when the component 
reaches the condition at which it is desirable to be removed to avoid 
further costly engine damage and potential impact to the customers 
operation schedule. Therefore an anomaly detection methods are not 
available in this case. 

Regardless of its lack of visibility in the engine system sensors, the 
component life is limiting to the entire system. To adress this problem, 
the authors propose to use component condition data and the engine 
operation data preceding the inspection at which the condition rank 
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was collected. Then, by the means of data science; conducting data 
cleaning, feature engineering and feature selection train the models to 
predict the condition. The expectation behind such an approach is that 
there might be non-obvious or hard to quantify differences between 
the engines so that the component in one engine fails at different time 
that the other. The difference could be operational: frequently fully 
loaded aircraft, high altitute of an airports used, short climb path, en-
vironmental: air aerosols and dusts present, high temperatures at the 
airport or manufacturing related; tolerances stacking up results in dif-
ferent loads that the component is exposed to. It is expected that, since 
a turbofan engine is a closed system, these differences can be deter-
mined by sensors not directly related to the considered component and 
those that cannot be otherwise used as a degradation characteristic. 
Such differences accumulated over the operation time could be reson-
sible for the condition rank progression at different rate and modern 
models are anticipated to fit to them.

 Due to the data amount, complexity and high non-linearity neural 
networks are main focus of the research, however machine learning 
models are used for comparison basis. Once models are developed, it 
would be possible to use them to monitor the remaining fleet and plan 
maintenance provided the sensor data would be provided as an input 
to the models.

Fig. 1. The number of engines per rank collected during the monitoring pro-
gram and used as the dataset for this research

Over 150 engines have participated in the monitoring program, 
running at five different thrust ratings, belonging to 40 different air-
lines and more importantly operating on different routes across the 
globe. The engines have been exposed to take-offs and landings in dif-
ferent environmental conditions, altitudes, aircraft loads and runway 
lenghts, however sharing the same part design. The part condition at 
the exposure time counted in flight cycles have been recorded. Simi-
larly to authors of [1] a 10-grade scale have been selected to assign 
meaningful health index, a condtion rank, to the parts based on their 
actual condition as shown in Table 1. The condition ranks are estab-
lished based on the inspection limits provided by the engine manu-

facturer and supported by conclusions from conducting a root cause 
analysis of this failure mode. In this specific problem, the inspection 
limits placed in the engine maintenance documentiation have been 
not sufficient to capture the early progression of the wear and a scale 
based purely on inspection findings would be highly non-linear. Be-
tween the point at which the part exhibits no wear and the point at 
which first inspection limits for reccuring inspection apply there exist 
a relatively long period of preceeding damage accumulation that gives 
away certain symptoms. Upon completed root cause analyses, metal-
lurgical surveys of the components at different damage stages, expert 
knowledge and numerical simulations the ranks 1-6 have been intro-
duced which improves proportionality of the used scale and makes it 
more linear. During this procedure limits have been established that 
enable to assign the rank to inspected hardware. Although, the main-
tenance documentation enables safe and profitable engine operation, 
it had to be expanded to be create a proportional scale that can be used 
in this research to formulate a regression framework. The inspection 
data have been revisited to assign proper value of the rank per the 
extended scale as presented in the Table 1. Introduction of new limits 
that would cause maintenance actions should be carefuly considered 
as more operation stoppages would be created, driving the aircraft 
maintenance cost up and are potentially unnecessary. At this stage, au-
thors of this research are trying to study if a model build on such data 
can deliver results that could be a starting point to reduce the airline 
maintenance burden by making the findigs at inspection predictable. 
Nevertheless, as Figure 1 summarizes, the majority of engines labeled 
are cases requiring replacement and there is a potential class imbal-
ance for a pure classification oriented problem.

As the engine hardware inspection to establish its condition is a 
recurrent process that needs to be accomodated into the airline main-
tenance schedule, it puts a time pressure burden with a potential con-
sequence of unplanned delays and it would be beneficial in that re-
gard to obtain a model that could rank the engines prior to obtaining 
inspection data.

From the perspective of the fleet management such prognostics 
would enable to plan ahead of time for the replacement hardware de-
livery and point out to the engines in the fleet needing it first. These 
are the challenges that authors of this article are trying to adress. 

4. Approach

4.1. Dataset creation
Engines are equipped with a number of sensors collecting flight 

data. Each engine module from front to aft monitors essential opera-
tion paramters; pressure, temperature, variable vanes position setting, 
shafts rotational speeds and fuel flow injected just to name a few. 
On the top of that, there exist thermodynamics models deployed, 
validated through testing campaigns, that utilize these readings and 

Table 1. 10-grade scale used to assign the health index to the part condition

Rank Condition Service limits applicable Maintenance action

9 Not accetable for further operation Exceeded Engine removal & part replacement 

8 Conditionally acceptable for a short duration Allow for operation for short interval Increased recurrent inspection frequency 
on wing

7 Conditionally acceptable for a long duration Allow for operation for long interval Recurrent inspection on wing

6

Wear progression – subsequent expansion of 
the affected area on the component Observed condition is permitted or no spe-

cific limits applicable

Monitoring of the progression on scheduled 
overhauls when part is exposed 

5

4

3

2

1 Visible wear initiation 

0 No wear confirmed visually No action – no wear 
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deliver predictions of other useful parameters 
that are not acquired directly. Additionally, 
environmental data for arrivals and departure 
airports are collected with information about 
ambient temperature, pressure, elevation above 
sealevel and air aerosols and added to the da-
tabase. A Python programming language with 
Keras [17], Tensorflow [34], Sci-kit learn [28] 
and pandas [24] libraries are used for data han-
dling and modelling.

Overall the parameters relevant to the en-
gines for which condition-based ranks were 
established are retrieved from the database and 
arranged in such a way that every rank at given 
inspection is preceded by a number of timesteps 
and the parameters set for each timestep. The 
strategy to create the dataset is depicted in the 
Figure 2.

Fig. 2. Dataset creation strategy

In the raw data cleaning process, the parameters having non-nu-
merical values and those not having sufficient coverage over engine 
operation period are removed. The threshold for lack of coverage is 
set to be less than 5% of data missing.

Remaining parameters are screened for outlying values, those iden-
tified typically come from erroneous sensor readings or faulty data 
processing and get removed from the set. In an iterative process, all 
datapoints with standardized score of that parameter, exceeding ± 6σ 
values are highly suspiscious of being outlying values. Having found 
such values an investigation has been opened to learn if a sensor mal-
functioned, data have been lost or distorted in the migration process 
or some unexpected event have, in fact, occurred. Upon concluding 
the investigation, the values were either replaced or removed from 
the dataset.

The engine’s parameters missing values are located and are han-
dled by finding the median value for that particular parameter for the 
considered engine, then they are filled by that median value. An im-
portant consideration is that due to specifics of the aircraft’s engine 
system, each value of parameter should be considered in the missing 
data management, firstly looking at the data from that engine over 
time and secondly, if data are too scarce, from the perspective of the 
sister engine. This minimizes introduction of additional error due to 
the unknown operational differences.

4.2. Aggregation and feature selection 
To shape the dataset into a problem that can be tackled by machine 

learning methods the time series data from the sensors are represented 
by their time independent distributions with the idea depicted in the 
Figure 3. The values defining the distributions; median, max, 75th per-
centile value and 95th value are chosen as the new features for the 
modelling. The selected distribution characteristics come from ex-
perimentation with the dataset.

The environmental aerosols data are instead represented by the 
sum of its departure and arrival values per the flight and accumulated 
over the total number of flights that engine has completed. 

As the engine is a thermodynamic system, a high degree of colin-
earity is expected between some of its parameters collected during 
its operation. To adress this issue, a collinerality check is performed 
within the groups of parameters as shown in the Figure 4. Redundant 
parameters are identified in this manner that are excluded later from 
feature creation process.

Fig. 4. Correlation matrix

As a final step of feature selection the dataset composed of over 
500 features obtained by cleaning and aggregation undergoes a proc-
ess in which statistically insignificant features are omitted. For that 
purpose the Boruta algorithm is employed [21]. This procedure limits 
the number of features to 62 which are later used for developing the 
best performing model.

Fig. 3. Feature creation on the example of a single input parameter
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4.3. Data transformations
Upon completion of  data cleaning and aggregation, the x set is in a 

form of dataframe of the 62 features by the number of the rows repre-
senting the number of the engines and the y are the engine ranks. For 
the sake of simplicity and having in mind limited number of engines 
the problem is transformed into a regression problem, where rank is 
a continuous value from 0 to 9. Additionally, continuous rank is ex-
pected to better align with business expectations towards the continu-
ity of the damage progression.

As a next step, the dataset is randomly split into train and validation 
dataset. The validation dataset is treated as a hold out set and is used 
eventually to score the models performance against each other. Then, 
the features are standardized and transformed with Python scikit-learn 
package StandardScaler and PowerTransformer functions, with the 
care taken to fitting the functions on the train set, tranforming it and 
then transforming the validation set, while repeating the procedure 
feature by feature. The scaling performed by the function follows the 
equation (1), where x is the value to be scaled:

 z x= −( )µ σ/  (1)

µ being a mean value, s is a standard deviation and z is the scaled 
value. 

Additionally, the power transform utilizes the Yeo-Johnson fam-
ily of equations without the restriction to the values of the variable 
to be transformed as shown in the equation (2). The input data dis-
tribution vary and a transformation to make the distributions more 
normal is performed. Due to negative values of certain parameters, a 
simple Box-Cox transformation limited to non-negative values is not 
feasible. Thus, in the Yeo-Johnson, the λ  parameter, representing the 
transformation parameter,  is determined individually for each input 
feature. In the equation (2), the formulas for λ  values at 0 and 2 en-
sure continuity of the transformation function ψ λ, y( )  for the entire 
range y  values. The equations for 0y ≥  are in fact an equivalent 
of Box-Cox generalized transformations, whereas the formulas for 

0y <  enable transformation of negative y  values [39]:
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4.4. Validation strategy
With the dataset split into train and validation sets, having com-

pleted the data cleaning and transformations, a validation strategy for 
model training, optimization and selection is required.

Hence the train dataset is further used to develop the model, that 
is to tweak the model and find the best performing hyperparameters 
on the set. The train set is then often further split into train and test, 
both complementary subsets of the train set, depending on the need of 
the specific model. A 7 fold cross-validation (CV) process is used as 
graphicaly depicted in the Figure 4.1. 

As the data become randomly split into k subsets, repeating train-
ing over the folds occurs. The model is trained on CV train subset 
for given set of hyperparameters and scored on CV test subset. In the 
effect, an average test score from k folds is obtained as shown in the 
formula (3):

 
1

   
k

i

i

test scoreCV Test score
k=

= ∑  (3)

This strategy enables to select the model that performs the best 
on the train set and has the best average performance while being 
exposed to the variation present in the train set due to the shuffles 
made by CV.

The aforementioned validation set is intended to be a hold out set 
and not used in the model tweaks so that a data leak is avoided and 
a fair and compenent comparison between the different model pos-
sible and to select the one performing best over the specific data. 
Thus all the comparison scores in this paper are calculated over the 
validation set  via means of multiple further splits into train and test 
sets with each of the 7 folds of cross-valdation (CV) procedure.  

4.4. Hyperparameter optimization strategy
The hyperparameters search is conducted by the means of the 

Bayesian optimization (BO) [32] where the parameters resulting in 
the maximum average test score from CV are found. In the Bayesian 
optimization the objective function ( )f x  over a dataset  is optimized 
using the benefits of the Bayes’ Theorem.

This allows the selection of the most plausible objective function 
given the prior assumptions regarding the function and hence improve 
on the performance of the optimization procedure in terms of com-
putational times [7]. In other words, simplifying and applying to the 
problem at hand, posterior probability of a model M given the evi-
dence (data) E is proportional to the likelihood of E given M multi-
plied by the prior probability of M (4):

 ( ) ( ) ( )| |P M E P E M P M∝  (4)

Instead of Python scikit-learn and its RandomGridSearch provid-
ing the grid search through the hyperparameters,the bayesopt package 
is employed and its implementation of bayesian optimization argu-
ment used for every model parameters selection.

4.5. Cost function
As a evaluation score a mean squared error (MSE) is calculated 

as in the equation (5), its used for parameters search in BO and as a 
mean to compare in between the models. What is more, for the benefit 
of interpretation ease a 2  R score is calculated however is not used in 
computations apart from the models comparison:

 ( )2
1

ˆ1 n
i i

i
MSE y y

n =
= −∑  (5)

In the equations (5) and (6) iy  is the ground truth value, also called 
a target and ˆiy  a model prediction:

Fig. 4.1. 7 fold cross-validation procedure used in the test
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5. Models overview
This section describes the models that have been considered for 

this dataset.

5.1. Linear regression
For the sake of establishing a baseline model for the rank predic-

tion capabilities a linear model is used. The Ridge model is used from 
Python package as it incorporates a L2-regularization, called Ridge 
regression, that helps the model to avoid the overfitting. With the con-
siderate number of features compared to the number of datapoints, the 
ridge regularization introduces a penalty to the minimization objective 
by adding the magnitude of sum of square of regression coefficients 
multiplied by α factor as in the formula (7) where objective is the error 
to be minimized by the objective function optimization:

 Loss function y x
i
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5.2. Random Forest and Extremely Randomized Trees
A regressor based on the ensemble of tree predictors is selected for 

evaluation in the presented problem. The tree predictors are grown 
over randomly selected inputs and their combinations, offer robust-
ness to outliers and data noise while being fast and additionally due 
to Law of Large Number they are less prone to overfitting. A random 
subset of candidate features from the set is used to look for discrima-
tive thresholds via splitting into internal nodes and leafs (external 
nodes). As the subset is random, the tree shape and the thresholds de-
termining the split cause difference between the estimators which pre-
dictions are then averaged out. This becomes a strength of the model 
as some prediction errors can cancel out. The idea is represented in 
equation (8):

 ( ) ( )
1

ˆ 1 B
rf b

b
f T

B =
= ∑x x  (8)

where B is the number of predictors, T is a tree.

Each of n_estimators trees is grown using max_features that is 
used by the algorithm and with tree depth controlled by max_depth. 
Additionally, minimum samples at internal nodes are controlled by 
min_sample_split and at leafs by min_samples_leaf. 

The ExtraTreesRegressor are a variation of the random forest ap-
proach that introduces additional randomness as the thresholds at each 
node are drawn at random and best of them are then used as a splitting 
rule. Apart from that similar parameters to random forest are defined. 

5.3. Support Vector Machines
A non-linear support vector machines regressor with radial basis 

function kernel is also considered. The support vector machines can 
be effective in the case where number of features is large compared to 
the number of samples with the limitation of being memory consum-
ing. From a high-level standpoint and to describe it, a linear example 
is used. Let the ( )g x  be a predictor function. If the data is organized 
in the manner represented in (9) where x are input variables vector 
and the y is the target:

 ( ) ( ) ( )1 1 2 2, , , , , ,l ly y y…x x x  (9)

the linear predictor function is shown as in (10).

 ( ) 0,g x b= +w x  (10)

where ,w x  is dot product of the model weights and the input vari-
ables vectors and 0b  an intercept. Transforming this into an optimiza-
tion problem it takes a form of:
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In the equations (11) ε represents an error, meaning the weights 
vector w that results in the solutions lower than error are found. As 
stated in [35] it is often desirable to have some errors greater than ε 
and hence the formula is rewritten with introduction of slack variables
δ j  and δ j

*  taking the form of these equations (12):
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Upon optimization the first term of the equation is solved just like 
in (11.1) ensuring weights take low values whereas the second term 

C
j

l
j j

=
∑ +( )

1
δ δ * , where l represents the number of observations in the 

dataset, is known as regularization term and ensures that the optimiza-
tion problem is feasible. Thus, parameter C offers a trade-off between 
the model complexity and the error values. Both parameters ε and C 
are hyperparameters subject to optimization. 

5.4. XGBoost
A tree gradient boosting regression model is also researched for 

feasibility of use on the dataset at hand. This machine learning model 
has gained popularity due to its performance, speed and scalability. 
Authors of [9] deliver a very clear description of the algorithm.

The general idea of the model is represented by formula (13), in 
a dataset ( ),n nyx  composed of n observations and m features in a 
input vector nx  a tree ensemble model uses K additive functions to 
predict the target ˆiy :

 ( )( )
1

3ˆ  1
K

i k i
k

y f
=

= ∑ x  (13)

Each tree objective function as shown in (14) contains a loss func-
tion term which measures the difference between the prediction iy  
and the target ˆiy  and added regularization term Ω  that penalizes the 
model complexity:

 ( ) ( )( ) 14ˆ,i i k
i k

Objective loss y y f= + Ω∑ ∑  (14)



Eksploatacja i NiEzawodNosc – MaiNtENaNcE aNd REliability Vol. 23, No. 2, 2021 365

Loss if a differentiable function that measures the difference be-
tween the prediction and the target. 

Parameters selected for hyperparameter optimization are as in Ta-
ble 2.

5.5. Neural networks – multilayer perceptrons (MLP)
Deep neural network is selected as the last type of the model. A 

multiple hidden layer network, where the input layer takes inputs 
from the dataset features and then feeds it forwards to a single output 
neuron predicting the target is built in Python tensorflow using keras 
framework. 

Let the number of neurons in the layer be m, n the number of sam-
ples and k represent the index of the layer. On the very basic level, in 
the fully connected each neuron in the hidden layer obtains signals 
vector kx  of m values that represent the input, it gets adjusted by 
weights assigned to every connection kw  and a bias kb  and then is 
summed as in equation (15) to create a single output value of the layer 

kv . Then an activation function ϕ  is applied on the kv  to obtain the 
layer output ky :

 ( )15k k kv b= ⋅ + kw x   (15)
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 y vk k= ( )ϕ  (17)

Then the output becomes input for the next layer neurons and the 
process repeats until eventually output of the model for a single sam-
ple is obtained ˆky . Eventually, the error in the prediction is calcu-
lated via loss function by comparison of ky  to the target. Upon the 
error calculation the back propagation occurs and the error is back 

propagated via implemented algorithm to adjust all the 
network weights based on their contribution to the out-
put error.

In the training process the samples are propagated 
multiple times until the weights are adjusted so that the 
loss is minimized. The input data is organized in sam-
ples and then into smaller batches, which are passed 
through the model multiple times. In one epoch the 
model has been exposed to all samples in the training 
set and during one iteration the model has adjusted 
weights to minimize error one batch. In the approach of 
this research the batch size is set to 1, meaning a model 
trains on a single randomly selected sample to adjust 
the weights. 

Dropout layers are employed to help prevent the 
model overfitting, the dropout value is the percentage 
of neurons in the layer that are randomly excluded from 
weight adjustment process and do not partake in the out-
put calculation, it is known to contribute to the model 
robustness. The dropout undergoes hyperparameter op-
timization. Moreover, a L2 regularization (Ridge) in the 
first dense layer is turned on, contributing to the objec-
tive function with its α value also determined via the 
optimization process.

As the problem is presented as a regression an acti-
vation function is selected to be Parametric Rectified 
Linear Unit (PReLU). In one of the landmark papers, 
Kaiming He and others recognized the downfalls of 
the typically used ReLUok activation function and pro-
posed the alternative which is improvement over Leaky 
ReLU and demonstrating improvement in image clas-
sification error neural network [13]. Thus, the used acti-

vation function is as in formula (18):

 ϕ
α
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v if v
v otherwisei
i i

i i
( ) =
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0
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It is worth noting that the PReLU behaves like ReLU for posi-
tive values of input and the return certain parametric linear output for 
negative values.

As explained in the chapter 4.3 the train set is used for the model 
training and optimization leaving the validation set acting as a holdout 
set. The train set is split in advance into the train and test subsets at 
random using StratifiedShuffleSplit function.

The process repeats k times as the folds of cross-validation enforce 
model to train and test on a different batch while test set size is main-
tained. To achieve the perfect balance for this particular dataset, the 
train to test split ratio is kept as one of the hyperparameters.

Lastly, learning rate is selected as a hyperparameter, meaning the 
rate at which the weights are adjusted. Importance of this parameter 
is undoubted as too low values cause inefficient training and too high 
may cause the model not to converge at all.

Model training, being in the essence finding such model weights, 
biases and activations, also called parameters that yield the least er-
ror, is possible thanks to a gradient descent algorithm [27]. Let J (θ )

  be an objective function to be minimized and θ Rθ ∈  be the model 
parameters, by performing the gradient descent, that is updating the 
parameters in the opposite direction of the gradient of the objective 
function ∇ ( )θ θJ  thus following the slope of towards a local min-
imum. A learning rate η, selected as model hyperparameter in this 
study, determines the size of the step towards the expected minimum. 
A popular implementation of this idea, shown in (19), is a stochas-
tic gradient descent (SGD), which enables to calculate the objective 
function on one sample, instead of all in the batch, that significantly 
expedites the walk towards the minimum:

Table 2. Models’ hyperparameters overview

Python package Model 
name Hyperparameters optimized

Linear model Sklearn.linear_model Ridge alpha

Random Forest Sklearn.ensemble
Random 
Forrest 
Regressor

max_features•	
max_depth•	
min_sample_split•	
min_samples_leaf•	
n_estimators•	

Extremely Ran-
domized Trees Sklearn.ensemble

Extra 
Trees 
Regressor

same as in Random Forest

SupportVector 
Machines Sklearn.svm SVR epsilon, C

XGboost Xgboost XGB 
Regressor

max_depth•	
learning rate•	
colsample_bylevel•	
subsample•	
n_estimators•	

ANN MLP Keras/Tensorflow Multilayer 
Perceptron

n_layers•	
n_units per layer•	
dropout rate•	
learning rate•	
test set size•	
regularization•	

MLP ensemble Keras/Tensorflow MLP en-
semble same as in ANN MLP
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 θ θ θt t= − ⋅∇−1 η J(θ) (19)

Too high value can make the optimization process unstable and 
prevent the model to converge, too low value can make training proc-
ess ineffective. There exist numerous optimizers that attempt to im-
prove on it, introducing concepts of momentum to pass over local 
minima and preventing overshoot due to the overpowering momen-
tum (Nesterov Accelerated Gradient). To better deal with data spar-
sity an adaptive learning rate algorithm was introduced, Adagrad, that 
preferentially adjusts learning rates for each parameter and to coun-
teract its downfalls manifesting as monotonically decreasing learning 
rate Adadelta was proposed. Neural networks trained in the research 
utilized Adaptive Moment Estimation [20], ADAM, that computes 
adaptive learning rates for each parameter like aforementioned adap-
tive algorithms but proposing features similar to the concept of mo-
mentum. Let the g= θ∇ J (θt ) be the gradient and ε be a small term 
preventing division by zero in the formula (20):

 θ θt t
t

tm= −
+−1

η
εν̂

ˆ  (20)

 1
ˆ

1
t

t t
mm

β
=

−   (21)

 2
ˆ  

1
t

t t
vv
β

=
−  (22)

 m g mt t t= −( ) ⋅ + −1 1 1 1β β  (23)

 v g vt t t= −( ) ⋅ + −1 2
2

2 1β β  (24)

where the tm  is a first momentum (23) and the tv  is the second mo-
mentum (24) and the β1,  β2  are decay terms. 

5.6. Ensemble
Models collected in an ensemble composed of few best scored neu-

ral networks have been explored. In the process of hyperparameter 
optimization of neural networks, three models with various scores 
have been obtained. Similar to the concept of the random forest, an 
ensemble of neural nets can offer an improvement in the overall score 
as some of the individual model errors can potentially cancel out. 

In the study preceding this paper, an ensemble has been created 
through training meta-model of a similar architecture as single neural 
network. The meta-model undergoes exactly the same procedure of 
cross-validated Bayesian hyperparameter optimization with the ex-
ception of using the stacked output of the single models as its input 
and in the prediction is scored with the means of the loss function. 

6. Results
Presented results represent the models that have been subjected to 

hyperparameter optimization described in previous chapters. Both 
scores 2R  and MSE are shown for ease of interpretation, however 
the MSE is selectedfor this regression problem and is used draw 
conclusions. 

The mean squared error score penalizes large errors; as a predic-
tion differs from the true value, the penalty score exhibits quadratic 
growth. Thus, if used as a loss fucntion in an optimization problem, 
penalizing large error helps to find model paratmeters that result in 
minimizing them. 

The validation score is calculated over the validation holdout set 
and the train score represents how model fitted the train set. 

As shown in the Figure 5, the best performing model for the speci-
fied problem and the data available, has been a neural network meta-
model ensemble, achieving MSE score of 0.71, that brought 17.4% 
error decrease from a single best neural network model with a scored 
at 0.86. 

Fig. 5. Results comparison – models’ scores. Train and validation series 
represent model performance on the train and validation sets respec-
tively

The support vector machine regressor model obtained 1.76, that 
outperformed extremely randomized trees models with a score of 1.88 
by a 6.4%. Griadient boosted tree regressor obtained a score of  2.07, 
random forest model scored 2.71 and ridge regression 2.84. 

The difference in error between the score of simple linear model 
(ridge regression) to the neural net ensemble corresponds to 75% of 
the linear model score, which justifies the effort invested into deep 
learning models exploration. 

As shown in the Figure 10 even for the best model, there exist out-
lying residual value in the validation set, which model does not pre-
dict well (model underpredicts a 5 distress rank to be little over 3) and 
increases MSE score. Futhermore, a RMSE score is also calculated to 
conclude about the model applicability to the problem at hand.

In addition to the overall models’ performance, it has been observed 
that all researched models have obtained inconsistent score over the 
ranks as depicted in RMSE score plot in Figure 6. Due to scarcity of 
rank 3 data points, they have not been selected for the validation set 
via a random selection train_test_split scikit-learn function. Hence 
the error values for rank 3 are not available and models ability to pre-
dict rank in this range remains not quantified explicitly.

The highest RMSE have been produced by SVR (4.01) and linear 
model (3.66) for rank 1. The lowest RMSE values have been achieved 
by SVR (0.07) and MLP ensemble model (0.10) while predicting rank 
0. As demonstrated in the RMSE distribution plotted in Figure 6, the 
most common value is between 1.0 and 1.5. 

All studied models have obtained the lowest error while making 
predictions for rank 7 with similar values scored as quantified by a 
standard deviation of 0.19 of RMSE. Conversely, the greatest incon-
sistency have been noted for rank 1; MLP-based models scored low 
error, yet other models have been producing a high error, which con-
tributed to a standard deviation of 1.10 of RMSE for this rank.

The ensemble and single neural network models have a better per-
formance for target variable in range from 0-4 (RMSE in range from 
0.10 to 1.10) and 7-9 (RMSE 0.29 to 0.78), than in predicting ranks 
5-6 (RMSE 1.47 to 2.92). Errors achieved by the MLP based models 
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in this range are the greatest among the considered models followed 
by XGBoost that have obtained 2.14 RMSE over rank 5 and SVR with 
1.61 RMSE over rank 6.

As a general trend and omitting the exceptionally low errors de-
scribed earlier, the machine learning models have had higher RMSE 
values for ranks 0-4 (1.01 to 4.01), then error decreases for ranks 5-6 
(0.07 to 1.61), becomes the low for all for rank 7 (0.56 to 0.94) and 
then slightly increases for ranks 8-9 (0.90 - 1.88). This error general 
trend is different than for earlier discussed MLP-based models.

Some exceptions to this trend have occurred; XGBoost demon-
strated greater RMSE value for ranks 4-5 (2.14 – 2.42) than for ranks 
1-2 (0.94 – 1.62), whereas other machine learning models RMSE were 
in a range of 0.07 – 1.61.

Fig. 6. RMSE score per rank (lower value = less error)

In the tree ensemble based models group; random forest and ex-
tremely randomized trees, the latter have, in general, predicted with 
lower RMSE values and offered an improvement in minimum and 
maximum values. The minimum and maximum values have improved 
from 0.64 and 2.85 to 0.07 and 2.38, respectively. 

Fig. 7. Distribution of RMSE errors calculated per rank for every model using 
validation set

Gradient boosted trees model, XGBoost, has surpassed the ETR 
and random forest models by achieving lower RMSE value for ranks 

1-2 (XGBoost: 0.94 – 1.62, tree ensemble models: 1.94 – 2.75), how-
ever predicted with greater error for ranks 4-5 (XGBoost: 2.14 – 2.42, 
tree ensemble models: 0.07 – 1.78) and offered some improvement 
for ranks 8-9 (XGBoost: 1.05 – 1.20, tree ensemble models: 1.21 – 
1.59).

SVR RMSE values have been low for rank 0 (0.07) and rank 9 
(0.9) and comparable to those of MLP ensemble model errors (rank 
0: 0.1, rank 9: 0.57). Unfortunately, its prediction error inconsistency 
through other ranks have been relatively high (RMSE 0.6 – 4.01).

Based on the plot in Figure 6 the MLP-based models can make a 
prediction of low and high ranks with the least error.

The described trends do not correlate with the distribution of the 
ranks in the training set, training set distribution is similar to that of 
the entire dataset shown in Figure 7. The data points with rank 9 are 
most frequent, ranks 8 and 7 occur more rarely and the other ranks 
data is rather limited. Either of the earlier described trends can be 
explicitly explained by the distribution of the target variable in the 
training set.

As the MLP ensemble model predicts with the least error, it is se-
lected as a reference point and the differences in RMSE of the others 
models to the ensemble are calculated and summarized in the plot 
in Figure 8. The negative difference values, coloured by the shades 
of red are cases where models have performance debit to the MLP 
ensemble and conversely, positive values and shades of green show 
where other models predicted with lower error.

The single MLP model have had a RMSE greatest differences for 
rank 0 (-0.98) and rank 4 (-0.22). MLP ensemble greatly improved er-
ror in predicting rank 0. Otherwise, the differences in majority of ranks 
are between -0.22 and 0.22 values and can be considered similar. An 
exception to this observation is a rank 2 where single MLP predicted 
with lower error and the differences was 0.45. Although, there have 
been ranks where single MLP outperformed the meta-model, the op-
posite situation has been as frequent and due to the lower overall pre-
diction error, the ensemble model has shown a better performance.

The ensemble meta-model has brought improvement in prediction 
error it is lower and upper ranges of the target variable. The other 
models have had, in general, up to -3.10 difference for ranks 0-4 and 
up to -1.40 difference for ranks 8-9. The models have been within 
-0.42 to 0.22 in difference to the ensemble for rank 7, with SVR hav-
ing the least difference (-0.05) and random forest having the greatest 

Fig. 8. Difference in error with respect to MLP ensemble model
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difference (-0.42). As can be observed, these models outperformed the 
ensemble in predicting ranks 5-6 with difference up to 2.72 (ETR).

Residual values calculated as a difference between the true and 
predicted values have been calculated for each model over the train 
and validation sets and demonstrated for selected models in Figure 9. 
Non-linear models representing different algorithms families have 
been chosen: ETR, SVR, XGBoost and MLP.

SVR and XGBoost models have overfitted to the train set, as all 
prediction values line up closely with their corresponding true values 
with little residual error, while the validation set residuals are signifi-
cantly greater. In this particular application, MLP and ETR seem to be 
less prone to this behaviour and greater train set residuals are visible.

Studied models have also been predicting different outlying values, 
however due to the noise in the residual values have been hard to 
interpret. The following observations regarding outlying values have 
been noted:

Fig. 9. Residuals plots for selected models

ETR predictions have the most consistent absolute residual values • 
in the group considered and there are no clear outlying values in 
the prediction.

SVR model predicted two outlying values (overpredicted rank 1 • 
and 2).
XGBoost model residuals are noisy with perhaps one outlying • 
value (overpredicted rank 0).
MLP predicted one outlying value (underpredicted rank 5).• 
SVR, XGBoost and MLP do not predict the same outlying values.• 

Furthermore, a tendency in over and underprediction have been 
analysed; XGBoost tends to overpredict the lower ranks and under-
predict higher ranks. Similar, however less pronounced, trend is ex-
hibited by ETR. The bull’s eye prediction of SVR for rank 0 seems to 
be an exception and if treated as an outlier, its prediction residual error 
trend would become similar.

The MLP model is the least noisy in the considered group and does 
not show a residual error trend exhibited by the other models. What 
is more, the meta-model ensemble residuals depicted in Figure 10 
are similar to the single MLP in lack of the residuals trend and also 
predict the same outlying value. This explains why ensemble model 
shares similar performance for rank 5 and demonstrates the ensemble 
model have not improved the capability to predict this value. 

7. Conclusions
Based on results one can observe that certain models have per-

formed better than the others over the given dataset. The promising 
results presented in the paper align with the recent conclusions of the 
research community regarding deep learning models applications. 

The specifics of the problem have shown that a simple linear mod-
el, although useful to certain degree, can be surpassed in performance 
by more complex architectures. What is more, the superiority of the 
ensemble model over single neural net model is further confirmed and 
found in the referenced literatures researchers insights. Additionaly, 
the neural nets outperformed tree based models and support vector 
machines. As illustrated in the results, all models have a tendency to 
overfit to the train set, despite the counter measures taken, however 
boosted trees, extremely random trees and support vector machines 
have gravitated towards overfitting more than the others. It might be 
noted, that the models that have had the lowest difference between 
train score and validation score are deep learning models. In the ef-
fect, their highest validation scores on this dataset could be attributed 
to their ability to generlize the best and learn without overfitting to 
the training set. 

The best model residuals demonstrate fairly consistent error in con-
tinously predicting conditions ranks across the scale and hence it is 
concluded that it could be satisfactory used for the problem at hand. 
Translating the MSE 0.71 to RMSE returns value of 0.84, which, from 
the forecast perspective, enables to predict ranks with error lower 
than one condition rank in the scale. Such perspective places the deep 
learning models considered in this paper as an adequate candidates for 
the business use, however leaves a room for improvement for future 
studies for the research community.

The obtained results demonstrate that a neural network model build 
on the gathered data can predict the rank with average error less than 
one unit of the rank scale. Although certain models error has not been 
consistent over the enitre rank scale, a potential business application 
could benefit by a prediction by few models, keeping in mind their 
different performance in different rank scale ranges. As a conclusion 
it may be underlined, that proper data collection and ranking the col-
lected inspection data is a relatively long processes, that is greatly ex-
pedited by using established inspection procedures and their findings. 

An important challenge has become a selection of a proper rank 
scale, which should ensure proportionality to formulate a valid regres-
sion framework. In the specific example, the existing data based on 
the engine service limits had to be expanded by introduciton of ranks 
that represented early wear stages and would normally be omitted per 
the existing inspection requirements as being acceptable to operate 
with. Additional ranks required revisiting the collected inspection data 
and proper re-assignment based on the established scale. The devel-
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opment of the scale required a study of the failure mode, conducting 
destructive tests, application of material knowledge and involvment 
of industry experts and wihtout this preceding step further research 
would not be possible.

In the data collection process, a strong bias towards having the ma-
jority of data points composed of worn out parts or parts near the end 
of its useful life have been observed. This is due to the fact, that in the 
aviation industry, the airlines tend to maximize the time that aircraft is 
in operation and stopagges due to the inspections and repairs are ad-
ditional financial burden. Therefore components near its service limits 
or requiring recurrent inspections of increased frequency are removed 
earlier. This data is most widely accesible and shared with the engine 
manufacturer, which explains the bias in the dataset. On the other 
hand, due to some unexpected events, i.e. foreign object damage to 
the engine, the component becomes exposed before the wear process 
is initiated and the dataset has more data points of this stage than few 
of the subsequent ranks. The least available data are from the early 
progression stage of the wear from initiation point to the moment of 
first service limits apply. This is explained by the fact, that such data 
is considered acceptable per the inspectors and typically not captured 
in the inspection process as it presents hardware condition that will 
continue to operate for a significant time between the wear out. This 
mindset is a challenge for implementation of a data collection process 
that enables building a high fidelity prediction model, where a model 
should be trained with a balanced dataset to predict over the entire 
range of the target variable with an acceptably low error. With such 
limitation, ranking scale selection process may become a trade off 
between having sufficiently many grades to capture the physics and 
number of data points per each rank for the model to be able to fit to it. 
As a conclusion from this research, implementation of a data collec-
tion scheme expanding the scope of the current inspection data would 
enable further development of such models. However, it should be 
noted, that a potential data collection processes to keep the models up 
to date can be done without the modification of the inspection limits 
and done post inspection by the engine manufacturer. This approach 
would help to reduce the maintenance cost by providing a way to 
monitor fleet’s health and manage the maintenance without creating 
additional opeartion stoppages.

Using the model, a prediction for every turbofan engine condition 
in the fleet can be obtained easily and updating the prediction regu-
larly with the new input data can provide useful information about 
the progression of the wear and change in the fleet’s health. Infor-
mation about the rank could enable to schedule maintenance and set 
expectations regarding the condition once engine is visually inspected 
on-wing. The information available ahead of time can enable a pri-
oritization of engine repairs and ordering replacement hardware. Pre-
sented study demonstrates that use of such data can deliver a valuable 

solution  to the industry with relatively low investment of time and 
resources using the latest developments in deep and machine learning. 
In the nearest perspective, models might not be feasible to replace the 
on-wings inspection, but can reduce an inspection burden by mak-
ing its outcomes more manageable and predictable. Safety has always 
been a number one factor in the aviation industry and the most likely 
application of such models is expected in the fleet health monitoring 
and maintenance management rather than direct replacement of well 
established inspection processes.

Fig. 10. Ensemble meta-model residuals

8. Next steps
Authors of the article recognize the promising results obtained 

by the scientific community using recurring neural networks archi-
tectures in similarly stated problems, the demonstrated performance 
of deep Bayesian networks and the advantages of combining the ef-
ficiency of semi-supervised learning variational autoencoders with 
deep Bayesian network models on sparsely labelled data typically 
encountered in the aviation industry, thus wish to try these methods to 
further research this particular problem.
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1. Introduction
Computer numerical control (CNC) milling machines, which sta-

ble and efficient operation can produce huge economic value, are the 
most widely used automatic production equipment in modern manu-
facturing industry. The milling tool is the most critical and vulnerable 
part in the milling process, its wear state affect directly the surface 
quality of the machined parts and the normal operation of the machine 
tool [20, 21, 37]. Therefore, it is particularly important to develop an 
accurate tool condition monitoring (TCM) method.

The above-discussed issue has been addressed in the past few years 
by developing two general types of TCM methods, direct TCM meth-
od and indirect TCM method. The direct TCM method is often seldom 
adopted because it is greatly affected by the machining environment, 
such as light, cutting chips, and cutting fluid [49]. In contrast, the 
indirect TCM method employs certain artificial intelligence (AI) clas-
sifier to predict the wear state through collecting sensor signals as-
sociated with the tool wear state [33], such as cutting force [15, 50], 
vibration [6], acoustic emission (AE) [44], and motor current [47], 
sound [19, 46] signals. Recently, with the development of artificial 
intelligence (AI) algorithms, more and more scholars have applied AI 
algorithms in TCM, including support vector machine (SVM) [6,18], 

random forest (RF) [24, 32, 41], decision tree (DT) [3, 26], artificial 
neural network (ANN) [1, 9, 12, 22, 23, 28, 34]. However, while these 
AI methods have yielded encouraging achievements in TCM applica-
tions, achieving good wear state prediction performance using these 
methods relies heavily on large datasets of monitoring signals that are 
associated with all possible tool wear conditions for model training 
[14, 45], which is costly and time-consuming for machining processes 
under different cutting conditions. Although SVMs are suitable for 
model training with small datasets, they are invalid for sample miss-
ing as samples associated with some tool wear conditions are often 
missing due to the complex conditions encountered in the machining 
process.

Therefore, a low-cost and easy-to-implement method is needed 
to solve the problem of sample missing and sample insufficiency. In 
recent years, the numerical simulation technology was promoted by 
the improvement of computer technology, more and more researchers 
have begun to pay attention to this technology [16, 27, 40, 43]. For 
example, Xiang et al. [42] proposed a personalized diagnosis meth-
od of shaft based on numerical simulation, combined with wavelet 
packet transform (WPT) and SVM model to realize the diagnosis of 
different shaft faults. Gao et al. [7] solved the problem of missing 
and insufficient samples of bearing faults by combining finite element 
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simulation (FEM) and Generative adversarial networks (GANs), and 
provided complete training samples for AI models.

The metal cutting process can be understood as a process in which 
the tool and the workpiece move and collide with each other. The ac-
tual machining process can be simulated by establishing models and 
mathematical expressions. At present, there are a lot of commercial 
software (such as Deform, AdvantEdge, Abaqus.) in the market that 
encapsulate the above process in the software to bring convenience to 
users. The rich functions of these softwares provide the potentials to 
simulate physical signal corresponding to tool wear state, which can 
overcome the problem of sample missing and insufficient. Therefore, 
a novel tool wear condition monitoring 
method based on numerical simulation is 
proposed in this paper, and the remainder 
of this paper is organized as follows. Sec-
tion 2 introduces the basic working prin-
ciples of the proposed method, including 
numerical simulation based on Johnson-
Cook (J-C) constitutive model, parameter 
optimization of the J-C model, and the framework of the proposed 
method. Experimental investigations with end milling TCM are giv-
en in Section 3. Section 4 analyzes the performance of the proposed 
method. Finally, conclusions are given in Section 5.

2. Proposed method

2.1. Numerical simulation based on J-C model
The essence of the cutting process is that the workpiece material 

from elastic deformation to the material yield point under the action 
of external forces, which causes the plastic deformation of workpiece 
and finally to the process of fracture. In this process, the tool con-
tact and rub against with the workpiece surface and chips to produce 
wear, cutting force and heat will also be generated between the tool 
and workpiece. In cutting simulation, material constitutive models are 
employed to describe this complex process, and the J-C model is often 
used because it can describe the behavior of high temperature, high 
strain, and high strain rate in the cutting process. The formula of the 
J-C model is as follows [36]:
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where A (MPa) is the initial yield stress, B (MPa) is the strain hard-
ening coefficient, ε is the the plastic strain, n is the stain hardening 
exponent, C is the strain rate sensitivity coefficient, ε’ and ε0’ are the 
plastic strain rate (s−1) and reference plastic strain rate (s−1), respec-
tively, T is the deformation temperature of the workpiece (°C), T0 
is room temperature (20°C), Tmelt is the melting temperature of the 
material (°C), and m is the temperature softening exponent [13]. the 
three individual terms separately enclosed within parentheses on the 
right side of formula (1), respectively, represent the strain strengthen-
ing effect of the material, the relationship between σ and the natural 
logarithm of the relative strain rate, and the exponential relationship 
between σ and temperature. 

Because of the rich material library and the specialized cutting 
module in software DEFORM, it has attracted the attention of many 
researchers to the software. Shao et al. [35] adopted DEFORM to 
study the thermodynamic constitutive equation of Ti-6Al-4V and pre-
dicted the tool wear depth. Klocke et al. [17] utilized DEFORM to in-
verse the constitutive equations and damage criteria of AISI 1045 and 
Inconel 718, and verified the effectiveness of the method by compar-
ing simulation results with experimental results. Thus, the software 
DEFORM is used in this paper to simulate the end milling process and 
obtain the missing wear samples.

2.2. Parameter optimization
The benchmark value of five parameters, A, B, n, C, m, in the J-C 

model with certain workpiece material can be obtained from split 
Hopkinson pressure bar (SHPB) tests and static tensile tests [2,30]. 
For example, the benchmark value of the five parameters are shown 
in Table 1 when the workpiece material is AISI 1045. However, these 
values of model parameters may not conform the practical cutting 
process because of different cutting environment and other various 
factors, so it is necessary to optimize these model parameters [4]. 
Considering the cost and time of experiments, orthogonal experiment 
is adopted to select the best parameter combination.

For the metrics, Kullback-Leibler (KL) [5,8] divergence and co-
sine similarity are used as the evaluation indexes of the orthogonal 
experiment. The KL divergence measures the difference in probability 
distribution of two groups of signal, and the closer the value of KL is 
to 0, the more similar the two groups of signal are. The formula of KL 
divergence is as follows [5]:
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where p(X) and q(Y) represent the probability density of two groups 
of signal, respectively. The cosine similarity evaluates the similarity 
of two groups of signal through calculating their cosine value, and the 
calculation formula is as follows:
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The closer the value of cos(θ) is to 1, the more similar the two 
groups of signal are. In actual engineering, it is generally considered 
that cos(θ) > 0.6 meets the requirements [29].

2.3. Framework of the proposed method
In this paper, a new TCM method based on numerical simulation 

is proposed to compensate missing samples and expand sample size. 
The framework of the proposed method is show in Figure 1, and the 
three steps of the proposed TCM are outlined in detail as follows.

Step 1: Conduct a limited number of milling TCM experi-
ments to obtain measured cutting force signal samples, and 
obtain the best parameter combination of the J-C model un-
der normal wear state of tool .

First, cutting force signal data is obtained in the milling experi-
ments under several selected tool wear conditions by means of a 
three-component dynamometer. Second, the numerical model based 
on the J-C model is built in DEFORM, and the best parameter combi-
nation is selected by the orthogonal experiment with the comparative 
analysis of the simulation signal and the experimental signal under 
the normal tool condition, in which the criteria is minimize KL diver-
gence satisfying the cos(θ) > 0.6. 

Step2: Simulate missing sample and obtain complete wear 
training samples. 

Table 1. Material parameters in J-C model of workpiece material AISI 1045

A (MPa) B (MPa) C n m Troom (°C ) Tmelt (°C )

Value 553.1 600.8 0.0134 0.23 1 20 1460
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Table 2. Feature parameters and the calculation formulas

Domain Feature parameter Formula Remarks

Time domain

Average 1
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Missing tool wear categories can be defined from the experimen-
tal results, that is, these categories not occurred in experiments are 
missing tool wear categories. These missing tool wear categories can 
be simulated based on the optimal numerical model above, and the 
corresponding cutting force signal could be obtained. After supple-

menting missing samples, several feature parameters (shown in Table 
2) of time, frequency, and time- frequency domains (wavelet energy 
coefficient) for each sample are extracted to form a feature parameter 
set [7, 25, 37, 48]. Here, the time-frequency domain parameter was 
obtained using the three-layer wavelet packet transform (WPT) with 
the Daubechies 2 (db2) wavelet basis function.

Step 3: Identify tool wear condition through AI classif iers.

The training set consists of simulated samples and measured sam-
ples, and inputs to train certain AI model. The trained AI model can be 
employed to identify unknown wear condition of tools.

3. Experimental investigations

3.1. Description of experiments
The experimental setup for the end milling TCM experiments un-

der various operating conditions is illustrated in Figure 2. The experi-
mental platform was built on a DMTG VDL850A vertical machining 
center as shown in Figure 2(a). The tools used in the experiments were 
uncoated three-flute tungsten steel end milling cutters (Φ 10 mm), and 
the workpiece material was AISI 1045 steel with dimensions of 300 
mm × 100 mm × 80 mm. A three-component dynamometer (Kistler 
9139AA) was mounted between the workpiece and the machine table 
to measure the cutting forces in the form of charges (shown in Figure 
2(b)). The cutting force signal (Axial force, radial force and tangential 
force) was collected by a charge amplifier (Kistler 5073 A4) and a data 
acquisition instrument (Kistler 5697 A1) with a sampling frequency 
of 12 kHz (shown in Figure 2(c)). As shown in Figure 2(d), the flute 
wear of each cutting tool was measured after each machining stage 
using a GP-300C optical microscope, which represented individual 
milling stages. It is noteworthy that we found the influence of the length 
of rake face wear (KB) on the surface roughness of the workpiece after 

Fig. 1. Framework of the proposed TCM method

Fig. 2. Experimental end milling TCM setup [25]: a) vertical machining center, b) end milling experimental platform, c) data acquisition instrument,  
d) tool microscope

a) b)

c) d)
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milling was greater than that of flank wear (VB) and the depth of rake 
face wear (KT) [47]. Therefore, KB was employed as the tool wear 
criterion in the experiments, and the tool wear value after each cutting 
stage was defined as the maximum KB value of the three teeth. Figure 3 
illustrates the progression of tool wear after finishing a single workpiece 
surface 1, 5, and 10 times (i.e., 1, 5, and 10 milling stages).

The experimental measurements employed eight operational con-
ditions comprising random combinations of three operational pa-
rameters: spindle speed, depth of cut, and feed rate. The operational 
parameters employed in the experiments are listed in Table 3. Each 
case began with a new tool under the eight operational conditions and 
ran 10 milling stages, and the largest tool wear value obtained after 
completing those milling stages in all eight conditions was 2.054 mm. 
Therefore, the milling tool wear condition was divided into 7 catego-
ries according to tool wear intervals of 0.3 mm, and the numbers of 
samples observed for all conditions in all categories are listed in Ta-
ble 4. It can be found in Table 4 that samples indicative of individual 

tool wear categories were not always available under all cutting con-
ditions. These represent missing samples.

3.2. Numerical simulation of end milling process
First, simulation modeling was carried out according to the dimen-

sions of workpiece and milling tool in the experiment, then the models 
are imported into DEFORM for processing. Second, the general pre-
processing module of DEFORM was selected in the main interface, 
and the unit standard was set as SI. The workpiece was set as a plastic 
body and the material was set as AISI 1045. The tool was set as a 
rigid body and the material was set as tungsten carbide steel. The me-
chanical characteristics of these materials were imported from the rich 
material library in DEFORM. Then, the J-C model was selected for 
the workpiece material model, and the benchmark parameters of J-C 
model are shown in Table 1. The number of meshes for the workpiece 

and tool were 40,000 
and 10,000, respectively. 
Considering the efficien-
cy of remeshing during 
calculation to reduce the 
time of the entire milling 
simulation calculation, 
the mesh type in the mod-
el was set to a tetrahedral 
mesh. And the mesh size 
could be set to 1/3 of feed 
rate per spindle speed 
[31,39], thus according 
to Table 3 the mesh size 
could be calculated to 
0.053 mm (400/2500/3 
= 0.053mm). Reasonable 
simulation speed and ac-

curacy was ensured by applying local refinement to the machined 
surface, and the refinement ratio was 0.01. After inspection, the maxi-
mum mesh size of the workpiece and the tool is less than 1/5 of the 
feed. Figure 4(a), (b) and (c) show the milling tool model, meshing 
refinement, and simulation running in DEFORM, respectively.  

For boundary conditions, the bottom of the workpiece was fixed in 
the three directions (X, Y, and Z), the entire surface of the workpiece 
and tool were selected for heat exchange with the environment, the 
three operational parameters (spindle speed, depth of cut, and feed 
rate) of cutting processing were set in according to actual conditions 
in Table 3. The number of simulation steps was set 24000, and the 
sampling interval was 8.33 × 10-5 s and the sampling time was 1 s. In 
modeling the tool/workpiece contact, the friction coefficient between 
the tool and the workpiece was 0.6 [10], and the thermal conductivity 
was 45 W·m-1·C-1 [11]. Finally, after simulation, the cutting force data 
was exported and saved in the post-processing.

Table 3. Experimental cutting parameters

Case Spindle Speed 
(rpm)

Depth of Cut 
(mm)

Feed Rate  
(mm/min)

1 2300 0.4 400

2 2300 0.6 500

3 2400 0.4 450

4 2400 0.5 500

5 2500 0.5 400

6 2500 0.6 450

7 2300 0.4 500

8 2300 0.6 400

Table 4. Tool wear classifications of the eight milling tools

             Category
    Case

1-st
[0, 0.3)

2-nd
[0.3, 0.6)

3-rd
[0.6, 0.9)

4-th
[0.9, 1.2)

5-th
[1.2, 1.5)

6-th
[1.5, 1.8)

7-th
≥1.8

Sample 
number

1 — 2 2 2 — 2 2 10

2 1 1 1 3 1 3 — 10

3 — 2 1 3 1 2 1 10

4 — 2 2 2 1 3 — 10

5 1 2 2 3 2 — — 10

6 — 2 2 2 1 1 2 10

7 2 2 3 1 2 — — 10

8 1 1 2 1 1 4 — 10

Fig. 3. Tool images indicative of different length of rake face wear (KB) values [46]: a) first milling stage, b) fifth milling stage, c) tenth milling stage

b) c)a)



Eksploatacja i NiEzawodNosc – MaiNtENaNcE aNd REliability Vol. 23, No. 2, 2021376

3.3. Parameter optimization by orthogonal experiments
In this section,three levels of each parameter in Table 1 were set 

as 80%, 100% and 120% of the benchmark value (shown in Table 
5), and an orthogonal table of five factors and three levels (L18 (53)) 
was employed to conduct the orthogonal experiments, as shown in Ta-
ble 6. The operational parameters (speed, depth of cut, and feed rate) 

used in the orthogonal experiment were 2500 rpm, 0.6 mm, and 450 
mm/min, respectively. Therefore, the experimental data of the same 
parameters were selected to calculate the KL divergence and cosine 
similarity, and the comparison data is taken one second (12,000 data 
points) after the milling tool completely entered the workpiece. The 
KL divergence and cosine similarity results of the 18 cutting tests are 
shown in Table 6.

The KL divergence and cosine similarity results of each orthogonal 
experiment case were presented in Table 6, in which the values of KL 
divergence and cosine similarity are the average of three directions 
(X, Y and Z). By main effect analysis, the best parameter combination 
is A(2) B(1) n(2) m(2) C(2), as shown in Table 6, the corresponding 
average KL divergence is 2.6035, which is smaller than the other com-

Table 6. Orthogonal experiments of the J-C model parameters

No. A B n m C Average KL Average Cos(θ)

1 1 1 1 1 1 2.9240 0.6991

2 1 2 2 2 2 2.8078 0.7233

3 1 3 3 3 3 3.0946 0.6942

4 2 1 1 2 2 2.6832 0.7299

5 2 2 2 3 3 2.9804 0.7236

6 2 3 3 1 1 3.0403 0.7211

7 3 1 2 1 3 2.8987 0.6954

8 3 2 3 2 1 2.8236 0.7013

9 3 3 1 3 2 3.1400 0.7136

10 1 1 3 3 2 3.1034 0.7165

11 1 2 1 1 3 3.0441 0.6957

12 1 3 2 2 1 3.0547 0.7229

13 2 1 3 1 1 2.8985 0.7366

14 2 2 1 2 2 2.9507 0.7101

15 2 3 2 3 3 2.8640 0.7099

16 3 1 2 2 3 2.9140 0.6970

17 3 2 3 3 1 2.8981 0.6996

18 3 3 1 1 2 2.9098 0.6942

Average KL of the 1-st level 3.0048 2.9036 2.9420 2.9526 2.9399 —— ——

Average KL of the 2-nd level 2.9029 2.9175 2.9199 2.8723 2.9325 —— ——

Average KL of the 3-rd level 2.9307 3.0172 2.9764 3.0134 2.9660 —— ——

Benchmark 2 2 2 2 2 2.7516 0.7196

The optimal 2 1 2 2 2 2.6035 0.7389

Table 5. Factor level table

Level A B n m C

1 442.48 480.64 0.184 0.8 0.01072

2 553.1 600.8 0.23 1.0 0.0134

3 663.72 720.96 0.276 1.2 0.01608

Fig. 4. Simulation of end milling process: a) milling tool model, b) meshing and refinement, c) simulation running

b)

c)

a)



Eksploatacja i NiEzawodNosc – MaiNtENaNcE aNd REliability Vol. 23, No. 2, 2021 377

binations, and the average cosine similarity values (= 0.7389) greater 
than 0.6. The simulated and measured time series data corresponding 
to the best parameter combination under normal tool condition are 
presented in Figure 5 in the X, Y, and Z directions. It can be seen that 
the simulated signals differ slightly from the measured signals.

Fig. 5. The time-domain comparison between measured and simulation sig-
nals

4. Result analysis

4.1.	 Simulation	signal	verification
The validity of the simulated samples were tested by comparing 1.0 

s (i.e., 12,000 sampling points) of the simulated and measured cutting 
force signals obtained for operational condition 6 under different tool 
wear categories. Figures 6-8 show the time series data and the cor-
responding frequency spectra of the simulated and measured signal 
in the X, Y, and Z directions under the 2-nd, 4-th and 10-th tool wear 
categories. It can be seen that, under these tool wear categories, the 
simulated signals differ slightly from the measured signals in terms 
of the amplitudes of the peaks in the frequency domain, while the 
frequency peak positions agree well.

Fig. 6. Comparison of the simulated and measured cutting force signals under 
the 2-nd tool wear category

 4.2. Sample augmentation
As shown in Figure 6, different tool wear states were simulated 

based on the optimal numerical simulation model according to the 
tool wear lengths and wear shapes obtained during the experiments, 
and the linear interpolation method was applied to achieve KB val-
ues less than the threshold for missing categories according to the 
observed tool wear value trends. Three examples of wear categories 

added based on the FEM model are presented in Fig. 6 for operational 
condition 6.

According to Table 4, the 1-st and 7-th wear categories were gener-
ally missing under the operational conditions considered. Therefore, 
we consider missing samples only for the 7-th category here owing to 
article length limitations. Cases 2, 4, 5, 7, and 8 were employed as the 
training dataset because all of these are missing the 7-th wear catego-
ry, and the remaining three cases 1, 3, and 6, which contain the 7-th 
category but not the 1-st category, were employed as the testing data-
set. Then, 12,000 data points (1 s) were selected for the simulated and 
measured samples of each category, which are evenly divided into 20 
groups. The optimal numerical simulation model model is employed 
to simulate the testing cases (Cases 1, 3, and 6) to increase the number 
of samples in the training dataset. Each simulated case contains 12 dif-
ferent tool KB samples involving all wear categories, and the sample 
sizes of the measured and simulated training sets were 900 (45×20) 
and 560 (28×20) not including the 1-st category, respectively. Accord-
ingly, we employed three separate datasets to train the AI classifiers, 
which included the measurement dataset composed of only measured 
samples, the simulation dataset composed of only simulated samples, 
and the measurement + simulation dataset composed of measured and 
simulated samples, with a total of 1460 (900+560) samples.

4.3.	 Classification	result	and	analysis
These feature parameters listed in Table 2 were calculated for the 

individual samples in the training and testing datasets, and employed 
as the input parameters for training and testing classifiers. Four com-
mon algorithms, SVM, RF, DT, and a generalized regression neural 
network (GRNN), were adopted to verify the generalized ability of 
the proposed method. Here, the SVM classifier selects the radial basis 
kernel function, and the penalty factor and kernel function radius are 
set to 3 and 1, respectively. The RF classifier was executed with the 
Randomforest-matlab open source toolbox developed by Abhishek 
Jaiantilal (https://github.com/ajaiantilal/ randomforest-matlab), and 
the number of decision trees was set to 500. The DT classifier was 
used the toolbox function ClassificationTree.fit in MATLAB R2016, 
and the parameters of ‘name’ and ‘value’ were selected as ‘model’ and 

Fig. 7. Comparison of the simulated and measured cutting force signals under 
the 4-th tool wear category

Fig. 8. Comparison of the simulated and measured cutting force signals under 
the 10-th tool wear category



Eksploatacja i NiEzawodNosc – MaiNtENaNcE aNd REliability Vol. 23, No. 2, 2021378

‘graph’, respectively. The value of SPREAD in the GRNN classifier 
was set to 0.1. 

Table 7 shows the classification accuracies of four classifiers with 
the testing dataset. It can be found from Table 7, that the average clas-
sification accuracy obtained by the classifiers based on the simula-

tion dataset is greater than that based on the measurement dataset by 
11.42%, although the sample size of the simulation datset is less than 
that of the measurement dataset. There are two reasons for this result, 
one is the simulation dataset makes up missing categories not occurred 
in experiments, the other is the cutting conditions corresponding to 
the simulation dataset are consistent with that to the testing dataset. In 
addition, the average classification accuracy obtained by the classifi-
ers based on the measurement + simulation dataset is greater than that 
based on the measurement dataset by 22.83%, and the classification 
accuracies obtained by the SVM, RF, and DT classifiers based on the 
measurement + simulation dataset are above 90%. Therefore, it can be 

considered that the proposed TCM method can improves significantly 
the classification accuracies of many classifiers.

The classification accuracy of each wear category obtained using 
the four classifiers trained using the three different training datasets 
are presented in Figures 10-13, respectively. We note from the figures 

Fig. 9. Artificially added wear categories obtained from the FEM model: a) second category, b) fourth category, c) seventh category

Fig. 10. Classification accuracy of each wear category using the SVM with 
three training datasets

Fig. 12. Classification accuracy of each wear category using the DT with 
three training datasets

Fig. 11. Classification accuracy of each wear category using the RF with 
three training datasets

Fig. 13. Classification accuracy of each wear category using the GRNN with 
three training datasets.

Table 7. Classification Accuracy of four classifiers with different samples

Training set Measure-
ment Simulation Measurement + Simu-

lation

SVM 68.67% 85.67% 91.33%

RF 73.50% 90.17% 93.83%

DT 70.00% 56.67% 90.00%

GRNN 54.67% 80.00% 83.00%

Average accuracy 66.71% 78.13% 89.54%

b) c)a)
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that the classification accuracy of the four classifiers trained with the 
measurement dataset is not high for most of the wear categories. In 
contrast, the classification accuracy of the four classifiers trained with 
the simulation dataset and the measurement + simulation dataset are 
generally much greater (except for wear category 3 in RF and wear 
category 4 in GRNN, which are lower).

5. Conclusion
This paper proposed a feasible TCM method for obtaining vari-

ous samples of tool wear condition by numerical simulation based on 
J-C model to overcome the problem of sample missing and sample 
insufficiency in real experiments. First, a numerical model based on 
Johnson-Cook model is established, and the model parameters are op-
timized through orthogonal experiment technology with the practical 
experiments, in which the Kullback- Leibler divergence and cosine 
similarity are used as the evaluation indexes. Second, samples under 
various tool wear categories are obtained by the optimized numerical 

model above to provide missing samples not present in the practical 
experiments and expand sample size. The effectiveness of the pro-
posed method is verified by its application in end milling TCM experi-
ments. The results indicate the classification accuracies of four classi-
fiers (SVM, RF, DT, and GRNN) can be improved significantly by the 
proposed TCM method, and we believe that the proposed method has 
similar effects on other AI classifiers. In addition, although this study 
is about tool wear condition monitoring approach for end milling, the 
proposed method is also applicable to other machining process.
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List of basic symbols
B – bush width (m); CR = 0.5(D – DJ) – radial clearance (m); D = 2R 
– diameter (m); e – eccentricity (m); h – oil film height (m); F – load 
(N); hmin – minimum oil clearance height (m); nJ – journal rotational 
speed (rpm); p – pressure in oil film (N/m2); T – temperature (°C); x = 
φ·R – Cartesian system coordinate (m); y – Cartesian system coordi-
nate (m); z – Cartesian system coordinate (m); β – journal center (OJ) 
and bush center (O) attitude line angle; ε=e/ CR – relative eccentricity; 
ωJ – Journal rotational speed (rad/s). Indexes: B – solid bush; J – jour-
nal, ZC – fresh oil feeding from the bearing face side; ZK – feeding 
with fresh oil from a lubrication pocket.

1. Introduction 
Plain bearings are commonly used in various types of machine so-

lutions or in transmission systems. Increasingly higher requirements 
for bearing systems, such as high durability, operation at high rota-
tional speeds, increasing greater thermal loads, increasing load capac-
ity, and lowering the vibration level, require an in-depth analysis of 
their properties. Currently, research are conducted both of a theoreti-
cal basis - mathematical models simulating real working conditions, 
and experimental ones [13, 17].

One of the example are results of tests of dynamic properties of 
the rotor bearing system presented in [4, 6, 16, 26]. Computational 
simulations showed that for the new bearing concept load capacity, 
temperature in the oil film and fluid-induced instability conditions are 

dependent on the rotational speed directions. For positive rotational 
speed of the bearing (shaft and bearing surfaces rotate in the same 
directions) the average velocity of the oil film (thus, the load capacity) 
was increasing and viscous shear of the film (reducing oil tempera-
ture) was decreasing. For opposite directions of the bearing rotational 
speed the average velocity of the oil film was decreasing (avoiding 
fluid-induced instability) [15].

The instability of hydrodynamic bearings can be diagnosed by us-
ing Teager-Kaiser energy operator. The experimental tests were con-
ducted for two cases of rotor unbalance: G6.3 in accordance in ISO 
1940-1 [28] standard and twice greater as allowed in the ISO 1940-1 
standard. In the results analyses the energy operator, measured ro-
tor displacement and acceleration of bearing were presented in [3]. 
By using new analytical method for calculating the nonlinear float-
ing ring bearings oil film the unbalance effect influencing the rotor 
response was presented in [20]. The engine excitation effects shown 
that the rotor response has a distinct difference at lower and higher 
speeds as well.

The angular misalignment effects on bearing performance is a very 
important issue. The manufacturing tolerances, installation error and 
elastic deflection of the rotors are the misalignment potential causes. 
The numerical investigation of pad tilt motion and the spherical pivot 
of tilt, pitch and yaw motions was presented in [10, 19]. The increas-
ing misalignment led to the stiffened bearing and decreased minimum 
film thickness (increased lubricant peak temperature) [19]. The effect 
of the axial movement of journal on the maximum film pressure, load 
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capacity and over-turning moment and friction power loss is relatively 
weak for the small eccentricity and for the smaller the rotational speed 
is greater [10].

The problems associated with environmental protection can be 
solved with the lubrication by water. The results of research on new 
design solutions for this type of bearings are presented in [7]. As a 
result of the research, it was noticed that the turbulent flow in relation 
to the laminar flow increases the load bearing capacity. On the other 
hand, an increase of the water temperature in the bearing reduces the 
load capacity [7]. The influences of misalignment on the lubrication 
performances and lubrication regimes transition of water lubricated 
bearing was presented in [23]. With the increase of the misaligned 
angle the maximum pressure and shear stress increased, the minimum 
film thickness decreased and the eight dynamic coefficients increased. 
The micro interface lubrication regime influence on the streamline, 
pressure, eddy viscosity and kinetic energy distribution in the micro 
cavities were discussed in [24].

The transverse self-aligning hydrodynamic bearings operating in 
the turbine drive systems at high speeds have good hydrodynamic 
working stability. The influence of the oil film pressure and tem-
perature distributions on the pads deformation was presented. Tests 
were conducted for static equilibrium position of the journal [5, 18]. 
The bearing load capacity related to each pressure distribution can be 
calculated by researching the dimensionless lubricant film thickness 
in the circumference direction. The lubricant film thickness reflects 
directly the bearing topology structure can be expressed by harmonic 
functions [25].

The results of the research on increasing the bearing capacity, re-
ducing the coefficient of friction and wear with the use of nanofluids 
are presented in [1, 16]. The use of TiO2 nanoparticles in a nanofluid 
for different oils (DTE 26, DTE 25, DTE 24) and different rotational 
speeds was investigated. Increasing the rotational speed from 500 
rpm to 1500 rpm caused that the dissipation power and temperature 
increased around 600% and 800%, respectively [1]. The use of tung-
sten disulfide nanoparticles (IF-WS2 NPs) in nanofluid increased the 
bearing load carrying capacity about 18% [16]. Increased load carry-
ing capacity, significantly reduced peak pressures, more oven oil film 
pressure distribution and thicker oil film in the loaded zone compared 
to a white metal bearing can be obtained also by using PTFE layer as 
a bearing liner [9].

The adiabatic or diathermic theoretical models, which taking into 
account the influence of temperature on the oil viscosity, as shown by 
the research results, significantly make the temperature distribution in 
the oil film more accuracy to the results of experimental research [8, 
14]. Concerning the ability to predict friction power losses in journal 
bearings, the research results indicate that the considerably simpler 
elastohydrodynamic approach appears to be sufficient to reliably and 
accurately predict these losses for full film lubrication and to investi-
gate the occurrence of metal-metal contact [2, 21].

In many mechanical application the floating ring bearings are 
used instead the plain bearings [12]. But theoretical models are much 
more complex for that bearings. To analyze mechanical and thermal 
performances the thermohydrodynamic model can be used [11]. The 
floating ring bearings system is inherently nonlinear. If it is lightly 
loaded or operated at high speeds, it is prone to the fluid-induced in-
stability. Several approaches for the linearization of the forces acting 
in floating ring bearings were proposed and analyzed in [6].

In industrial practice, the radial plain bearings can be feed with 
fresh oil from a lubrication pocket located in the non-working part 
of the oil film or from the face side of the bearing. In the literature 
and in standards [27, 13], methods for calculating the bearings op-
erating parameters feed with fresh oil from a lubrication pocket are 
presented. But there are no such methods for the oil feed from the face 
side of the bearing. The experimental results of thermal phenomena 
accompanying operation of a water-lubricated stern tube bearing with 
axial grooves (lubricant feed from face side) were discussed in [22]. 
It should be noted here, that face side oil feed is a common method 

used for example in the bearing of crankshafts, engine timing gear, 
and turbochargers. 

The basis of mathematical models of this type of bearings are the 
equations of the pressure distribution in the oil and temperature dis-
tribution in the lubricating gaps, and the equation of the oil clearance 
geometry. The above equations are supplemented with the equation of 
the mathematical model of the oil lubricating the bearing. The pres-
sure and temperature distribution equations are differential equations 
that are solved for boundary conditions reflecting the actual operating 
conditions of the bearing [1, 14]. The boundary conditions are related 
to the oil feed form.

The conducted analysis of the state of knowledge has shown that 
the issues concerning, among others: operation and construction of 
slide bearings are the subject of many scientific studies. However, it 
should be noted that in the available literature, no studies have been 
found concerning plain bearings feed with oil from face side. Moreo-
ver, the available literature does not present any mathematical models 
to describe the lubrication of bearings with such a supply. Therefore, 
it was considered justified to build a mathematical model for these 
bearings to describe the properties of the oil film, which will be based 
on models intended for bearings supplied with oil from the lubricat-
ing pocket. The mathematical model was the hydrodynamic lubrica-
tion model, taking into account the influence of temperature on the 
oil viscosity. The static characteristic of plain bearings were devel-
oped for a better presentation of the bearing working condition. These 
characteristic allow for the given journal position relative to the solid 
bushing (ε) and type of the oil η(T) to determine the maximum pres-
sure (pmax), the maximum temperature (Tmax), and the oil clearance 
minimum height (hmin). 

Another issue, that has been considered in this manuscript, and 
which significantly affects on the bearing operation conditions, was 
the type of the oil oil viscosity used to feed the bearing. The ISO 
oil viscosity classification according to ISO 3448:1992 [29] was used 
for the tests. The obtained results allow to determine, if the oil used 
for plain bearing lubrication, was chosen appropriate. The maximum 
oil film temperature as a criterion for proper operation condition was 
used. The test results were presented in the form of graphs. Other 
parameters influencing the lubricating properties will be taken into 
account in further research.

2. Materials and models

2.1. Equations of mathematical model for a bearing fed from 
lubrication pocket

The structure, geometry, and oil flows in a bearing fed with oil 
from a lubrication pocket is presented in Figure 1. For the purpose of 
involved calculations, the method recommended in the standard [27] 
was used. 

Similarly, the structure, geometry, and oil flows in a bearing fed 
from the face side are shown in Figure 2. The calculation model em-
ployed for this oil supply type was verified by means of experimental 
studies [13, 14].

2.2. The mathematical model constitutes a system of equa-
tions describing:

pressure distribution in oil clearance:•	
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Equation (1) was obtained after transformation of the equation of mo-
mentum conservation for oil particles and the equation of flow con-
tinuity [27].

oil clearance shape:•	
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Equation (2) was obtained by assuming the reference system as in 
Figure 1 or Figure 2 [27].

emperature distribution in oil clearance in case when the heat •	
from bearing is carried away by flowing oil:
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The equation describing the temperature distribution was derived 
from the energy balance equation.

properties of oil lubricating the bearing:•	

η η η ηT ea T T b T T( ) = ⋅ ⋅ −( )+ ⋅ −
0

0 0
2( ) , ρ T const( ) = , ( )pc T const= (4)

For the sake of the present considerations it is assumed that the oil 
is a Newtonian fluid [27].

In case of the bearing fed from lubrication pocket, the system of 
mutually adjoint equations (1–4) was solved for boundary conditions 
applicable to the pressure field and the temperature field. The condi-
tions are represented in Figure 3.

Fig. 3. Boundary conditions for pressure and temperature field in the model 
of bearing fed with oil from a lubrication pocket. Lines ended with ar-
rows indicate directions of oil flow in the bearing

In case of the bearing fed with oil from its face side, the system of 
Equations (1–4) was solved for boundary conditions applicable to the 
pressure field. The conditions are presented in Figure 4.

Fig. 4. The pressure field boundary conditions for a bearing fed with oil from 
the face side. Lines ended with arrows indicate directions of oil flow in 
the bearing

On the other hand, boundary conditions for the temperature field 
are depicted in Figure 5, where:

 β
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Fig. 5. The temperature field boundary conditions for a model of bearing fed 
with oil from the face side

The result of solving the problem of thermo-hydrodynamic equilib-
rium of the journal relative to the solid bush are the following quanti-
ties: p z T z h z F FLφ φ φ, , , , , ,( ) ( ) ( ) =

Fig. 1. The geometry, oil flow directions, and oil pressure distribution in a 
plain journal bearing fed with fresh oil from lubrication pocket

Fig. 2. The geometry, oil flow directions in case of feeding with fresh oil from 
the bearing face side
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3. Results

3.1. A comparative study on operating parameters of bear-
ings fed with oil from a lubrication pocket and from the 
face side 

For the present study, two oils have been selected with properties 
summarized in Table 1. The calculations were carried out for a bear-
ing fed with oil either from lubrication pocket or from the bearing face 
side. As a preset quantity, position of the journal relative to the solid 
bush (ε) was assumed. Results of the research in the form of static 
characteristics as functions depending on the oil type are presented in 
graphical form in Figure 6.

The relative eccentricity (Figure 6, Tables 2 and 3) determining 
position of the journal relative to the solid bush (ε) has an effect on 
fulfillment of criteria of current operation, namely: p(φ,z) ≤ pallow, 
T(φ,z) ≤ Tallow, hmin ≤ hallow.

With increasing value of ε (Figure 6), value of the maximum pres-
sure in oil film (pmax) increases accordingly. Adopting the allowable 
value of surface pressures for the bush material pallow =15 MPa, val-
ues allowable for the relative eccentricity εp

allow for the lubrication 
pocket oil feeding method are lower than those in the case of oil being 
fed from the bearing face side (Figure 6, Table 2). 

It follows from analysis of the course of the maximum temperature 
function (Figure 6) that with increasing value of ε, the maximum tem-
perature initially decreases, and for ε ≥ 0.5 it starts to increase. The 
function Tmax = Tmax(ε) for both of the two feeding methods reaches 
its minimum for the value εTmax

min ≈ 0.45. Adopting Tallow = 95°C 
as the allowable oil temperature, allowable values of the relative ec-
centricity εT

allow , the corresponding oil film bearing capacity values 
(FLallow = Fallow), and maximum pressures with the feeding method 
taken into account the values which are presented in Table 3. For an 
oil with η0 = 0.5264 Pa·s, values of the maximum temperature (Tmax > 
Tallow = 95°C) are exceeded in the whole examined range.

With increasing value of ε, the minimum oil clearance height de-
creases. For the discussed calculation example, the condition of fluid 
friction is met in the whole range of considered relative eccentricity 
values (hmin ≤ hallow =15 μm).

3.2. The effect of oil VG grade and oil feeding method on 
operating conditions of the bearing 

In order to determine the effect of oil grade, oils of the follow-
ing viscosity grades were examined: VG32, VG46, VG68, VG100, 
VG150. Results of tests allowing to establish the effect of oil grade 
and the oil feeding method are presented in graphical form as plots of 
the function Tmax = Tmax(VG, ε, FL, oil feeding method). For the as-

sumed preset values, the function takes the form shown in Figure 7.
For the purpose of the study, two different values of the relative 

eccentricity ε were adopted, namely 0.45 and 0.7.
By analyzing the course of the function Tmax = Tmax(ε, Tallow, FL, 

VG) and taking into account the fresh oil feeding method (Figure 7), 
a significant effect of oil VG grade and feeding method can be noted 
on bearing operation parameters such as the oil film bearing capacity 
or the maximum oil temperature. 

4. Summary 
Characteristics were developed allowing to determine conditions 

for correct operation of a bearing with oil VG grade taken into ac-
count. The effect of the oil viscosity, the oil clearance geometry, and 
the oil film pressure and temperature was demonstrated for two oil 
feeding methods. 

By analyzing the research results presented in Table 3 it was 
found that for the same geometrical parameters, the face-fed bear-
ings have higher bearing capacity. For the discussed structural de-
sign solution, the relative bearing capacity increase was found to be 
dFLallow = 18%. 

Table 3. Operating parameters of the bearing 

Oil feeding method
Tallow = 95°C

η0 = 0.1084 Pa·s η0 = 0.5264 Pa·s

Oil feeding from the bear-
ing face side

εT
allow = 0.71

Fallow = 23.5 kN
pmax = 8.0 MPa

Tmax > Tallow

Oil feeding from a lubrica-
tion pocket

εT
allow = 0.64

Fallow = 19.0 kN
pmax = 7.0 MPa

Tmax > Tallow

Table 1. Preset quantities 

Preset parameters

1. Journal nominal diameter DJ = 131.925 mm

2. Solid bush nominal diameter D = 132.109 mm

3. Journal-floating bush relative clearance ψ = 1.39‰

4. Relative width B/D = 0.5

5. Relative eccentricity ε = 〈0.2–0.85〉

6. Journal rotational speed ωJ= 500 s–1, n1= 4774.65 rpm

7. Oil viscosity η0
(1) = 0.1084 Pa·s, aη(1) = –55291·10–6, bη(1) = 239·10–6

η0
(2) = 0.5264 Pa·s, aη(2) = –75000·10–6, bη(2) = 349·10–6

8. Oil density ρ0 = 900 kg/m3

9. Oil specific heat cp0 = 2000 J/kg·°C

10. Bearing feeding oil and environment temperature Tz = 50°C, T0 = 20°C

11. Bearing feeding oil pressure pz = 0.1 MPa

Table 2. Bearing operating parameters

Oil feeding method
pallow=15 [MPa]

η0=0.1084 [Pa⋅s] η0=0.5264 [Pa⋅s]

Oil feeding from the 
bearing face side

εp
allow=0.81 

Tmax=111[°C]
εp

allow=0.75 
Tmax=124[°C]

Oil feeding from a lubri-
cation pocket

εp
allow=0.75 

Tmax=117[°C]
εp

allow=0.71 
Tmax=130[°C]
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Based on research results presented in Figure 7 it can be claimed 
that for the eccentricity value ε = 0.7, bearings fed from a lubrication 
pocket can be operated with oils of the grade VGmax = 40, whereas 
oils with VGmax = 53 can be used when fed from the bearing face side. 
For ε = 0.45, the limiting grade values are VGmax = 122 and VGmax = 
100, respectively. 

The presented results represent the outcome of the first stage of a 
wider research project. In the next step, the effect of tolerance of oil 
operating properties on the bearing node operating parameters and 
dynamical properties of the bearings will be examined. The param-
eters influencing the lubricating properties will be also researched in 
the future.

Fig. 7. The effect of oil grade on the maximum temperature in bearing. Symbols: ZC — fresh oil feeding from the 
bearing face side; ZK — feeding with fresh oil from a lubrication pocket

Fig. 6. Static characteristics of a plain journal bearing depending on the oil feeding method: 1 — η0 = 0.1084 Pa·s, 
feeding from the bearing face side; 2 — η0 = 0.1084 Pa·s, feeding from a lubrication pocket; 3 — η0 = 0.5264 
Pa·s, feeding from the bearing face side; 4 — η0 = 0.5264 Pa·s, feeding from lubrication pocket
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1. Introduction 
Many of modern engineering systems operate in highly demanding 

environments. During long-term continuous operation under extreme 
conditions, operation performance inevitably deteriorates over time 
[1]. When reaching a critical degradation degree, underperformed 
components or subsystems might fail and risk the system safety [7]. 
Well-timed maintenance is a core desire in all engineering systems.

Maintenance strategies can be categorized into two types: preven-
tive maintenance and corrective maintenance [8]. Preventive main-
tenance schedules proactive maintenance activities routinely; while 
corrective maintenance is an unscheduled strategy that attempts to re-
store the system after failures [4]. For those systems that have exces-
sive demands on safety and reliability, preventive maintenance is the 
main stream. Traditional preventive maintenance is based on the serv-
ing time and the probability distribution of trouble-free operation time 
span of the system. So, it is also termed as time-based maintenance 
(TBM). Its conservation is obvious. On one hand, taking intensive 
preventive maintenance results in excessive maintenance; and on the 
other hand, preventive maintenance with fixed time span can’t avoid 
unexpected faults or the faults with insufficient prior knowledge [10]. 
To improve cost-effectiveness ratio of preventive maintenance, con-
dition based maintenance (CBM) that takes into account the actual 

operating conditions of the system over time, has been proposed and 
received considerable attentions from academia to industry over the 
last decade [19].

In the existing CBM strategies, degrading system condition is often 
described by stochastic modeling, such as a Markov chain with multi-
ple discrete states [13, 14, 15, 16] or a stochastic process model with a 
continuous degradation state [5, 6, 22]. These stochastic-model-based 
CBM strategies either require that the transition probabilities of sys-
tem states are known in advance or can be learned from the historical 
reliability data, or require that there exists a stochastic process charac-
terizing the system degradation mechanism. However, in practice, it is 
difficult or even impossible to obtain the accurate probability distribu-
tions of all possible transitions of system states and the accurate deg-
radation mechanism of a complex engineering system with affordable 
cost. To avoid these tough problems of the existing stochastic-model-
based CBM strategies, in recent years, machine learning based meth-
ods that can be independent of the system degradation mechanism 
are applied to the field of prognostics and health management (PHM) 
[18]. In this emerging field, a trend of maintenance technology is to 
make maintenance decision based on multivariate condition monitor-
ing and failure prognostics [2]. For example, a new deep neural net-
work structure called long short-term memory (LSTM) network was 
used to discover the underlying time series patterns for predicting the 

Maintenance is fundamental to ensure the safety, reliability and availability of engineering 
systems, and predictive maintenance is the leading one in maintenance technology. This 
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propriate maintenance decisions for repairable complex engineering systems. The proposed 
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ules to achieve accurate failure prognostics. For maintenance decision-making, the perfect 
time for taking maintenance activities is determined by evaluating the maintenance cost on-
line that has taken into account of the failure prognostic results of performance degradation. 
The feasibility and effectiveness of the proposed strategy is confirmed using the NASA data 
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maintenance.
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system remaining useful life (RUL) [21]. In paper [3], the authors 
adopted a restricted Boltzmann machine to pre-train the abstract fea-
tures for LSTM input. Moreover, a two-dimensional grid LSTM is 
designed to improve the prediction accuracy of fuel cell performance 
degradation [9].

The above machine learning based research only focuses on life 
prediction, and does not consider the maintenance decision-making 
issues. Recently, a novel dynamic predictive maintenance (PdM) 
framework using LSTM network for failure prognostics has been de-
veloped [12]. The authors have discussed in detail the advantages of 
PdM over other maintenance strategies, and a complete framework 
from data-driven prognostics to maintenance decisions has been giv-
en. In our past work, an effective data-driven degradation prognostic 
technique has been developed with good verification results for the 
aero-engine system [20]. The work of this paper is a follow-up of 
[12] and [20], and the main contribution is to develop a data-driven 
PdM maintenance strategy to make long-term, reliable maintenance 
decisions for engineering systems. In detail, we design a module of 
degradation feature selection. It can enable the failure prognostics and 
maintenance decision-making to have lower computing load, faster 
convergence speed and better robustness in presence of uncertainties. 
More accurate failure prognostics can be realized via the multivariate 
LSTM network whose inputs are the selected degradation features. 
The prognostic model can provide the future degradation trend online 
for failure prognosis. For maintenance decision-making, the perfect 
time for taking maintenance activities can be determined by evaluat-
ing the maintenance cost online based on the failure prognostic results 
of performance degradation. Correspondingly, long-term, reliable 
maintenance decisions can be realized, which is crucial for planning 
maintenance, inventory and production activities in advance.

The remainder of this paper is organized as follows. In Section 2, 
an enhanced data-driven PdM strategy is presented, including imple-
mentation details and performance evaluation, under the framework 
of [12]. In Section 3, the feasibility and effectiveness of the proposed 
PdM strategy will be confirmed using the NASA data set of aero-en-
gines. Conclusions and future works will be discussed in Section 4.

2. An enhanced data-driven PdM strategy

2.1. Key idea
A novel data-driven dynamic PdM framework has been proposed 

in [12], which has provided a complete process from data-driven 
prognostics to maintenance decisions. The entire process, as shown 
in Fig. 1, functionally includes three parts: LSTM modeling, online 
failure prognosis and maintenance decisions.

The LSTM step includes training of an LSTM classifier and using 
the LSTM classifier to determine the degradation label of online me-
asurements. It deals with the multivariate raw data directly and all 
data are used as the inputs of LSTM model. This may cause extensive 
computing load, low convergence speed, low robustness of the LSTM 
modeling, and ultimately reduce the accuracy of failure prognosis. 
Also, the LSTM network only provides the probabilities of system 
failure at the current moment. This limits the decision-making to be 
instantaneous. Instantaneous decision-making of system only answers 
whether or not the system need maintenance activities at the current 
moment. It cannot give the exact time when the system must take pre-
ventive maintenance activities. Apparently, in practice, a long-term, 
reliable decision-making is more valuable for industrial organizers to 
plan maintenance, inventory and production activities in advance.

To overcome the above issues, this paper proposes an enhanced 
dynamic PdM strategy that can enable to achieve future failure pro-
gnosis and long-term, reliable maintenance decision-making. The 
main steps are shown in Fig. 2. Compared with the original PdM fra-
mework in Fig. 1, 

in data preprocessing step, the multivariate raw data are firstly (1) 
preprocessed to extract the features that can reflect the degra-
dation trends;
in LSTM modeling step, an extra LSTM regression model is (2) 
introduced for predicting the future degradation trends of sys-
tem;
in the decision-making step, the predicted failure probabili-(3) 
ties at different moments in future are used to make long-term 

Fig. 1. The dynamic PdM framework [12]

Fig. 2. Enhanced dynamic PdM framework
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maintenance decisions, e.g., to decide when the system needs 
taking maintenance activities and ordering the spare parts.

Fig. 3 illustrates the difference between the dynamic instantaneous 
and long-term decision-making processes. At the current moment, the 
instantaneous decision-making answers whether or not the system 
need maintenance activities, while the long-term decision-making gi-
ves the exact time when the system must take preventive maintenance 
activities. Obviously, the long-term decision-making has a broader 
vision. As the operation time of the system increases, the sensors will 
obtain more condition monitoring data, making the decision-making 
results more accurate.

2.2. Degradation feature selection and improved failure 
prognosis via LSTM

In practice, the sensor measurements are often contaminated with 
noises. Noises may conceal the tenuous degradation trend. So data 
de-noising should be conducted in the data pre-processing phase. To 
do so, the simple but effective moving average method is employed 
to extract the system degradation trends [20]. This process is briefly 
described as follows. Firstly, all available historical condition monito-
ring data can be arranged into a three-dimensional data ( )X I J K× × , 
where I  denotes the number of samples, J  denotes the number of 
measuring variables and K  denotes the operation cycle. The k th 
value of the j th variate in the i th sample is denoted as ( )ijx k . Thus, 
the degradation values using moving average are given by:

 x k x h nij ijh k n
k( ) ( ) /= = − +∑ 1  with , 1, , ik n n K= +   (1)

where n  is the size of moving window. Then, the Z-score normaliza-
tion is used to handle the different ranges of sensor measurements. 
Normalized sensor measurements are given by:

 


x k x kij ij( ) ( ( ) ) /= − µ δ  (2)

whereμ μ and δ denotes the mean and standard deviation of these 
degradation values, respectively, and are given by:

 µ = =∑ x k Kijk
K

i
i ( ) /1  (3)

 δ µ= − −=∑ ( ( ) ) / ( )x k Kij ik
Ki 2

1 1  (4)

In addition, eliminating usefulness data is necessary before LSTM 
network modeling since it can generally improve the performances of 
modeling, failure prognosis and decision making. Therefore, a modu-
le of degradation feature selection is included in the proposed main-
tenance strategy. In this paper, the correlation and trend indicators are 
adopted for degradation feature selection due to their effectiveness. 
The correlation and trend indicators are given by:

 ρij x kk
K

i id K K
ij

i= − −=∑1 6 2
1

3
 ( ) / ( )  (5)

 T Ij ij iji
I= ⋅ > + ⋅ =( )=∑ 1 0 0 5 01 δ ρ δ ρ( ) . ( ) /  (6)

where ( )ijx kd   denotes the difference between ranks for each ( )ijx k  
and k , and δ ( )x  is the direct function, i.e., δ ( )x =1  when x  is true 
and δ ( )x = 0  otherwise. According to the two indicators, the crucial 
features can be selected by the criterion, ρij jT or≥ ==0 5 0 1. &&  
[20].

Algorithm 1 Degradation prognostic model based on LSTM net-
work

Input: ( )X I F K× ×


Output: A well-trained multivariate LSTM network
Process:

1: for 1,2, ,i I=   do

2: for 1,2, ,j F=   do

3: . (1: 1)ij inet input x K= −

;

4: . (2 : )ij inet output x K= 
;

5: end for
6: end for
7: # LSTM network training

8: LSTM ← train (net.input, net.output, solver.adam, regulariza-
tion.dropout);

9: return well-trained network parameters.

Fig. 3. Dynamic instantaneous and long-term decision-making processes



Eksploatacja i NiEzawodNosc – MaiNtENaNcE aNd REliability Vol. 23, No. 2, 2021390

Next, to obtain the failure probabilities at different moments in fu-
ture, a multivariate LSTM regressor for degradation trend prediction 
is first trained with historical data (see Algorithm 1). It is noted that, 
the multivariate LSTM network can exploit the nature of the evolving 
degradation trend [23], and in Algorithm 1, ( )X I F K× ×



 denotes 
the pre-processed data with F  important features. Fig. 4 shows a 
schematic diagram of the degradation trend prediction. For the online 
condition monitoring data (duration: 1-t), they will be pre-processed 
in the same way, and then fed into the well-trained multivariate LSTM 
regressor. The regressor can predict the degradation trends of system 
in future. 

Fig. 4. Schematic diagram of degradation trend prediction

Similar to [12], a multivariate LSTM classier for failure probabil-
ity estimation is trained with historical data (see Algorithm 2). It is 
noted that, in Algorithm 2, ( 1 )R I K× ×  denotes the RUL data, and 
the RUL value of k th cycle of the i th sample is denoted as 1( )ir k . 
The degradation data will be labeled by two classes: Deg1 and Deg2. 
Deg1 represents the case where the system RUL time is greater than or 
equal to the time window w0, i.e., 0RUL w≥ . Deg2 means 0RUL w<
. The two labels can be regarded as two degradation states with diffe-
rent degrees, like allowable degradation and intolerable degradation. 

Algorithm 2 Failure prognostic model based on LSTM network

Input: ( )X I F K× ×


 and ( 1 )R I K× ×

Output: A well-trained multivariate LSTM network
Process:

1: for 1,2, ,i I=   do

2: for 1,2, ,j F=   do

3: for 1,2, ik K=   do
4: # Data labeling

5: 1 1( ) 1 ( ( ) )i ir k r k Tδ← ⋅ ≥ ∆ ;

6: 1 1( ) 2 ( ( ) )i ir k r k Tδ← ⋅ < ∆ ;
7: end for

8: . (1: )ij inet input x K=  ;

9: 1. (1: )i inet output r K= ;
10: end for
11: end for

12: LSTM ← train (net.input, net.output, solver.adam, regulariza-
tion.dropout);

13: return well-trained network parameters.

In practice, due to technical and logistical constraints, maintenance 
activities cannot be carried out at anytime and anywhere. As an illus-

tration, the maintenance activities for train or aircraft engines cannot 
be realized during their journeys. Maintenance activities can be per-
formed only at the inspection moment. It is assumed that the inspec-
tion interval T∆  between two successive inspections is constant. If 
the RUL of the system at some inspection moment h in the future 
is less than T∆ , it means the system has failed at the next moment 
h T+ ∆ . Hence, the time window is equal to inspection interval, i.e., 

0w T= ∆ .
The predicted degradation trends are ultimately fed into the well-

trained LSTM classier, and thus the failure probabilities at different 
moments in future are obtained.

2.3. Improved maintenance decision-making method
The following long-term maintenance strategy attempts to answer 

the exact points in the future to take maintenance activities and to 
order spare parts. The optimal maintenance moment can be determi-
ned by choosing the solution with the lower cost from the expected- 
preventive-maintenance (PM) cost and the no-PM cost based on the 
predicted failure probabilities.

The expected-PM cost is defined as follows. At a future moment h
( , 2 ,h t T t T= + ∆ + ∆  ), all the costs associated with the preventive 
maintenance actions such as replacing the worn parts with new ones, 
system cleaning and adjustment, and the inventory cost of spare parts, 
are summed up to be the expected-PM cost, which can be denoted as 
Cp. An important assumption to note here is, the system after taking 
the PM actions can be restored to be “as good as new” state, or in 
other words, perfect maintenance is considered in this paper. 

If no PM actions are taken at the moment h , there will be no PM 
cost from the current moment t to the future moment h, but there exi-
sts the failure risk of the running system between h  and h T+ ∆ . 
In this case, one must consider the no-PM cost, which includes the 
corrective maintenance cost cC  with unexpected failures and the 
out-of-stock cost osC  in the case of unavailable spare parts. Thus, 
the expected cost with the decision of no-PM action is defined as 
( ) ( )c os hC C P RUL T+ ⋅ < ∆ , where ( )hP RUL T< ∆  denotes the 
probability of the unexpected failures between the inspection period 
[ , )h h T+ ∆ .

Fig. 5 shows the decision process based on the above-mentioned 
maintenance costs. If the expected-PM cost is lower than or equal to 
the no-PM cost, PM activities should be taken. Otherwise, no mainte-
nance activity is required in the inspection period [ , )h h T+ ∆ , i.e.:

 ( ) ( )p c os hC C C P RUL T≤ + ⋅ < ∆ . (7)

Thus, the optimal maintenance moment maintenancet∗  can be obta-
ined as:

t h C C C P RUL T
h t T t T

p c os hmaintenance
∗

= + +
= ≤ + ⋅ <{ }inf : ( ) ( )

, ,∆ ∆
∆

2 

(8)

Ordering of spare parts should be implemented before the main-
tenance activities. If the longest advanced ordering time is L , the 
optimal ordering moment ordert∗  can be given by:

 order maintenancet t L∗ ∗= − . (9)

2.4. Implementation and performance evaluation
With the historical condition monitoring data and the real-time 

condition monitoring data of the system, the optimal preventive ma-
intenance and ordering moments are obtained online according to the 
following procedures:
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Obtain crucial degradation features according to the correla-(1) 
tion and trend criteria;
Obtain future degradation trends by feeding the crucial degra-(2) 
dation features into the network in Algorithm 1;
Obtain failure probabilities at different moments in future by (3) 
feeding the predicted degradation trends into the network in 
Algorithm 2;
Calculate the expected-PM cost and no-PM cost according to (4) 
Eq. (7);
Obtain optimal maintenance time (5) maintenancet∗  and optimal or-
dering moment ordert∗  according to Eq. (8) and Eq. (9). 

To evaluate the maintenance strategy, maintenance cost rate (MCR) 
[12] is considered. It is defined as the ratio between the total mainte-
nance cost and the total life cycle duration. The strategy with lower 
MCR is considered to have better performance. It is worth noting that, 
there two possible scenarios in real-world maintenance activities. 

If the scheduled preventive maintenance moment is ahead of the 
actual failure moment of the system, the preventive maintenance acti-
vities will be performed. In this case, the available spare parts can ar-
rive in time thanks to the scheduled order moment. Correspondingly, 
the MCR with no system failure (denoted by pMCR ) is given by:

 
p

p
maintenance

C
MCR

t∗
=  (10)

Contrarily, if the system is failed before the scheduled preventive 
maintenance moment, the corrective maintenance has to be taken. In 
this case, there is no available spare parts, and the corrective mainte-
nance cost cC  and the out-of-stock cost osC  with unavailable spare 
parts have to be paid. Thus, the MCR with system failure (denoted by 

cMCR ) is given by:

 
[ ]/

c os
p

F

C CMCR
T T T+

+
=

∆ ⋅ ∆
 (11)

where FT  denotes the actual failure moment of the system, and [ ]x + 
means taking a smallest integer more than or equal to a real number x.

3. Case study

3.1. Data description
To verify the feasibility and effectiveness of the proposed main-

tenance strategy, the Turbofan Engine Degradation Simulation Data 
Set [11] provided by NASA Ames Prognostics Data Repository is 
referred. The data set is generated by C-MAPSS tool that simulates 
the degradation process of the main components of turbofan engines, 
e.g., fan, low-pressure compressor (LPC), high-pressure compressor 
(HPC), high pressure turbine (HPT) and low pressure turbine (LPT). 
Twenty-one sensors are installed inside the engine for monitoring the 
conditions of the engine. The first nine sets of data are obtained by 
direct measurement of sensors #1~#9, while the remaining data are 
gained by soft measurement of sensors #10~#21 [17].

In the experiment, the available data set “FD001” 
that describes the gradual degradation process of HPC 
under a constant work condition is selected to show 
the use of the proposed maintenance strategy. The 
data set contains the “train_FD001.txt” composed of 
100 complete run-to-failure data (100 21 )X K× ×
(127 362)K≤ ≤ , the “test_FD001.txt” composed of 
100 incomplete run-to-failure data (100 21 )X' K'× ×
(31 303)K'≤ ≤  and the “RUL_FD001.txt” providing 
the actual RUL information.

3.2.	 Offline	modeling
Fig. 6. shows the parts of results of degradation feature selection. 

For sensor #1 (see Fig. 6(a)), its correlation indicator in each engine 
training sample is always 0, which means that the monitoring variable 
remains constant during the engine operation phase. Obviously, such 
monitoring variable has no effect on the system failure prognosis and 
should be eliminated. For sensor #4 (see Fig. 6(b)), its correlation 
indicator in each training sample is always greater than 0.5. This me-
ans that such monitoring variable has been positively correlated with 
operating time (flight cycle). In addition, its trend indicator value is 1, 
indicating that it has a monotonous upward trend. Thus, the sensor #4 
are retained. Regarding the sensors # 9 and 13 (see Fig. 6(c) and (see 
Fig. 6(d))), they are also not proper degradation features since their 
correlation indicators are not still positive or negative. Finally, only 
seven sensors are selected, i.e., the sensors #4, #7, #11, #12, #15, #20 
and #21. After some experiments, the value 20 is taken as the moving 
window size due to the best performance on test data set. Then, the 
data are normalized using the Z-score method (see Eq. (2)) so that 
they have the same means and variances.

With reduced degradation feature data, the next step is to train de-
gradation prognostic model and failure prognostic model using LSTM 
neworks. Notably, the degradation prognostic model is used to obtain 
the evolving degradation trends, while the failure prognostic model is 
used to obtain the failure probabilities at different moments in future 
based on the predicted degradation trends. In the LSTM network, the 
number of iterations is set to 50, the dropout rate is set to 0.2, the 
number of 1st LSTM units is set to 100 and the number of 2nd LSTM 
units is set to 50 [12]. Using Algorithm 1, the degradation prognostic 
model is built. Fig. 7 shows the offline degradation trend prediction 
results for training Engines #1, #2 and #3. It can be seen that regar-
dless of Engines #1, #2 or #3, the offline predicted degradation trend 
values are very close to the actual degradation trend values. The of-
fline training root-mean-square errors (RMSEs) of three engines are 
0.50, 0.43 and 0.47, respectively, which indicates that the degradation 
prognostic model has been well built. 

Given the inspection interval 10T∆ = , the failure prognostic mo-
del can be built based on Algorithm 2. Fig. 8 shows the offline fa-
ilure probability estimation results for training Engines #1, #2 and 
#3. The abscissa represents the operation cycle of the engine, while 
the ordinate “1” and “2” represent two categories: Deg1 and Deg2, 
respectively. 

For the training Engine #1, the predicted cycles of label “2” are 1-185 
cycles whose corresponding probabilities satisfy ( 10) 0.5P RUL < <
, while the actual cycles are 1-183 cycles. With regard to the training 
Engine #2 and #3, the predicted cycles of label “2” are 1-277 and 
1-173 cycles, while the actual cycles are 1-278 and 1-170 cycles, re-
spectively. These results shows that the failure prognostic model has 
been well built.

3.3. Online maintenance scheduling
As an example, the testing Engine #1 is used to illustrate the on-

line prognostics. The online prognostics contain the online degrada-
tion trend prediction and online failure probability estimation. Fig. 9 
shows the online trend prediction results for testing Engine #1. The 
condition monitoring data collected up to present are 31 cycles for the 

Fig. 5. Decision process based on the maintenance cost
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testing Engine #1. It can be seen that the conditions of the engine are 
gradually deteriorating over time.

Next, these predicted trend values are fed into the well-trained fa-
ilure prognostic model. Fig. 10 shows the online failure probability 
estimation results for testing Engine #1. It can be seen that as the ope-
ration cycle of the engine increases, the failure probability increases. 
When the operation cycle exceeds the Cycle 133, the failure probabi-
lities are stable with a high value (0.8278). Note that the moment that 
the first predicted failure probability crosses 0.5 is Cycle 128, indica-
ting that the RUL of the engine will only survive for 10 days. Thus, 
the estimated end of life (EOL) of testing Engine #1 is Cycle 138, 
while the actual EOL is Cycle 143 according to the “RUL_FD001.
txt”. This indicates the failure prognostic is accurate.

Suppose that the preventive maintenance cost 100pC = , the cor-
rective maintenance cost 500cC =  and the out-of-stock cost 10osC =  

Fig. 6. Parts of results of degradation feature selection: a) Sensor #1, b) Sensor #4, c) Sensor #9, d) Sensor #13

a)

c)

b)

d)

Fig. 7. Offline degradation trend prediction results for training Engines #1, 
#2 and #3

Fig. 9. Online trend prediction results for testing Engine #1

Fig. 8. Offline failure probability estimation results for training Engines #1, 
#2 and #3
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of the aero-engine. According to Eq. (7), the expected-PM cost and 
no-PM cost can be calculated, as shown in Table 1. 

Table 1. Results of the Expected-PM costs and no-PM costs

Operating cycle Failure probability PM-cost No-PM cost

31 0 100 0

32 0 100 0

  



122 0 100 0

123 0.0018 100 0.9180

124 0.0046 100 2.3460

125 0.0128 100 6.5280

126 0.0363 100 18.5130

127 0.0916 100 46.7160

128 0.1801 100 91.8510

129 0.2812 100 143.4120

Before the 129th cycle, the expected-PM cost is higher than the 
no-PM cost, while in the 129th cycle, the expected-PM cost is lower 
than the expected no-PM cost. Hence, theoretically, the optimal ma-
intenance moment is the 129th cycle. However, in practice, the main-
tenance activities can be carried out only at the inspection moments, 
so the real maintenance activities will be taken at the 120th cycle. If 
the logistic service department can provide the lead time of 20 cycles 
in ordering the spare parts, the optimal order moment will be 100th 
cycle. 

3.4. Comparative results and discussion
In this section, the proposed maintenance strategy is compared 

with the three benchmark maintenance strategies [12]: original dy-
namic PdM strategy, classical periodic maintenance (PeM) strategy 
and ideal predicted maintenance (IPM) strategy. It is noted that, the 
original dynamic PdM strategy focuses on the instantaneous decision-
making, while the PeM and IPM strategies can handle the long-term 
decision-making problem. 

Firstly, the original dynamic PdM strategy is compared with the 
enhanced one. Table 2 lists the decision-making results of the original 
PdM and enhanced PdM. As for the PdM strategy presented in [12], 
the decision-making results are that no maintenance and no ordering 
of spare parts are carried out in Cycle 31 (current cycle). Obviously, 
this strategy provides an instant decision. Regarding the enhanced 
PdM strategy (the method of this paper), the scheduled maintenance 
time is Cycle 100 and the ordering time of spare parts is Cycle 120. 

As far as the failure time of Cycle 143 is concerned, the planned ma-
intenance time and ordering time of spare parts is reasonable. It is sel-
f-evident that, the enhanced PdM strategy gives the exact time when 
the system must take preventive maintenance activities, which helps 
to plan inventory and production activities in advance.

Fig. 11. Maintenance cost rates of three maintenance strategies for testing 
Engines #1-20

Secondly, the PeM strategy and the IPM strategy are compared 
with the proposed strategy. Considering that the PeM and IPM stra-
tegies are also aimed at the long-term decision-making, we uses the 
maintenance cost rate (MCR) presented in Section 2.4 to illustrate the 
superiority of the proposed strategy. The testing Engines #1-20 are 
taken as an example. Fig. 11 shows the MCRs of three maintenance 
strategies for testing Engines #1-20. From the 20 engine instances, 
the performance of the proposed maintenance strategy is highligh-
ted. Specifically, compared with the PeM strategy, the MCRs of the 
proposed maintenance strategy are lower in most engine instances. 
This can be explained by the fact that, to ensure the engine safety, 
the PeM strategy is relatively conservative, resulting in excessive 
maintenances and poor economic efficiency. As for the IPM strategy, 
perfect prediction information is only an ideal hypothesis that cannot 
be attained in practice. From the figure, the MCRs of the proposed 
maintenance strategy are close to that of IPM strategy with perfect 
predictions. More specifically, the average MCRs of the three mainte-
nance strategies are respectively calculated as follows: 1.9513 for the 
PeM strategy, 1.1515 for the enhanced PdM strategy, and 0.5270 for 
the IPM strategy. These results show that the proposed enhanced PdM 
strategy works well, allowing significantly reducing the maintenance 
cost rate.

4. Conclusions
As an important input of maintenance activities, the precision of 

failure prognosis directly affects the effectiveness of maintenance 
strategy formulation. Therefore, from the perspective of engineering 
applications, the data based failure prognosis needs to be considered 

Table 2. Decision-making results via the original PdM and the enhanced 
PdM

Maintenance 
strategy

Maintenance decisions

Order Maintenance

Original PdM 
strategy

Do not order spare parts 
in Cycle 31 (current 

cycle)

Do not maintenance 
in Cycle 31 (current 

cycle)

Enhanced PdM 
strategy

Go to order spare parts 
in Cycle 100 ( 143FT = )

Go to maintenance 
in Cycle 120 ( 143FT = )

Fig. 10. Online failure probability estimation results for testing Engine #1
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jointly with maintenance decision-making to ensure the system safety 
and reliability. In this work, an enhanced data-driven predictive main-
tenance strategy has been developed. It provides a complete solution 
from failure prognosis to maintenance decision-making. The propo-
sed strategy can obtain effective features reflecting the degradation 
trends. Also, it can achieve accurate failure prognostics and provide 
the failure probabilities at different moments in future. In particular, 
the proposed strategy solves the instantaneous decision-making pro-
blem and gives the exact time when the system must take preventive 
maintenance activities. 

The verification results using NASA data repository reveal the fe-
asibility and effectiveness of the proposed maintenance strategy. The 
performance of the proposed strategy is highlighted when compared 

with the decision-making results of the emerging dynamic predictive 
maintenance, the classical periodic maintenance and the ideal predic-
ted maintenance. However, one limitation of the proposed strategy is, 
only the perfect maintenance is considered. Further work will focus 
on the investigation of imperfect maintenance with different levels. 
Also, the ambition is to develop flexible maintenance strategies by 
estimating the residence time of different health states.
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1. Introduction
Machine learning classification matrix is used to evaluate the 

degradation states of bearing over time due to variation in operating 
parameters and environmental conditions such as load, speed, high 
temperature, etc. Data driven machine learning model permits retriev-
ing useful information from rotor bearing system using smart moni-
toring, multi-feature fusion, health condition indicator and advanced 
diagnostic and prognostic algorithms. Bearing condition monitoring 
is important for Industry 4.0 to reduce the economic loss and unsched-
uled downtime of mechanical systems caused by unexpected failures 
of bearing. Industry 4.0 is a paradigm shift in the modernization of 
industry propelled by the ever-growing computational capabilities, 
technological improvement, accuracy of prediction and recent ad-
vances in data driven model.

Diagnostics study the fault detection, fault isolation and fault iden-
tification in monitored mechanical machinery whereas prognostics 
deals with the prediction of fault before it occur. The fault detection is 
to observe the wrong functioning of machinery, where the fault isola-
tion is to identify the components where fault takes place in complex 
system. 

The fault identification is to indicate the nature of fault whereas the 
prediction of fault is to determine the evolution of fault in machinery 
before it reaches a critical stage. It has been observed that with the 

advancement of software technology, artificial intelligence methods 
are replacing the traditional diagnostics and prognostics systems to 
enhance the performance of health monitoring.

This paper has reviewed the publications from the science and en-
gineering journals on bearing diagnostic and prognostic in the past 
20 years. The published articles were retrieved mainly from Google 
Scholar using the search terms “bearing diagnostics and prognostics’’ 
and “bearing condition monitoring’’ and filtered by year, access, cita-
tions and relevancy. It is observed that there is an increasing trend in 
number of publications in this area of research after 2014. There are 
also some highly cited review papers from researchers at universi-
ties and industry experts in the past. A brief review of some of key 
papers is provided in chronological order. In the past few decades, 
development in diagnostics and prognostic of industrial systems had 
been reviewed. The multiple sensor and data fusion techniques used 
in condition based maintenance decision making [19]. Design meth-
odology had been explored for converting data into prognostic infor-
mation of rotary machinery system [28]. Prognostic techniques for 
non-stationary and non-linear rotating systems had been studied. The 
challenges in implementing prognostics technique in industrial sys-
tem was discussed [23].

In recent years, some researchers started research in the domain of 
machine learning algorithm for diagnostic and prognostic. A review 
on spectral kurtosis theories namely; spectral kurtosis, kurtogram, and 
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protrugram applicable for fault identification in bearing had been pre-
sented [52].Various aspects from data acquisition to remaining useful 
life prediction (RUL) in the field of machinery prognostic had been 
discussed. Authors divided the machinery prognostic program into 
various stages namely; data acquisition, development of health indica-
tor, division of health stages [29].Generalized gamma distribution was 
used for the prediction of corrective maintenance of fleet vehicle [5]. 
Deep learning applications for system health management had demon-
strated the benefits of deep learning for fault diagnosis and prognosis 
is [24]. Bearing diagnostics approaches were compared to consider the 
impulse behavior of vibration signal. The first approach was consid-
ered preprocessing the probabilistic component of the vibration signal 
by employing the minimum entropy de-convolution approach and the 
spectral kurtosis method. The second approach was considered the 
modeling of cyclo-stationarity based on spectral coherence and spec-
tral frequency [1].  A comprehensive survey on recent development 
in vibration data fusion and application of deep learning tools in ma-
chinery prognosis and discussed the identification of research trend, 
unexplored challenges were provided[10].This paper gives a compre-
hensive review on bearing diagnostics and prognostics.

Hence, authors attempted to summarize a review for targeted jour-
nals published from 2000-2019. The literature search has been done 
among the electronic database i.e. Science Direct, IEEE explorer and 
Scopus.  The published journals had been explored in the search en-
gine with the following words: diagnosis, prognosis and condition 
monitoring, degradation model. 

The main contributions of this paper are as following:
The paper reviews the different health condition indicators •	
used in the prior state of art for degradation assessment of 
bearing.
The paper also reviews the diagnostic and prognostic mod-•	
els for the remaining useful life estimation of the bearing.
The paper also discusses the case study of classification •	
model to improve the accuracy of degradation 
assessment.

The remaining paper is organized as follows. In sec-
tion 2, data acquisition and health condition indicator is 
explored for degradation assessment of bearing. Section 
3 discusses the diagnostic models. Section 4 focuses on 
prognostic models for RUL prediction. Section 5 discusses 
the case study of classification model. Finally, Section 6 
concludes the research challenge and provides directions 
for future research trends in the area of diagnostics and 
prognostics.

2. Data acquisition
Data acquisition is a procedure of acquiring and storing 

useful data from different sensors mounted on the machinery.  Ac-
celerometer sensor is installed to acquire monitoring data which re-
flects the degradation stages of bearing. Industry 4.0 has started using 
advanced sensor to capture monitored data for accurate maintenance 
decisions. Following obstacles i.e. interferences from operating con-
ditions, noise, cost, time, service period and unexpected failure are 
main factors for decrease in the quality of the data.  Data sources will 
be helpful to researchers to develop data driven diagnostic & prog-
nostic models.

2.1. Experimental data 
Experimental prognostic data set is acquired from accelerated deg-

radation test. This paper has selected bearing prognostic datasets from 
the repository of NASA, Franche-Comte Electronics Thermal Science 
and Optics-Sciences and Technologies (FEMTO) and Case Western 
Reserve University (CWRU) bearing dataset.

Intelligent Maintenance system (IMS) bearing dataset: Bearing 
degradation data was generated by the center for intelligent mainte-

nance system, university of Cincinnati with support from Rexnord 
corp. (www.imscenter.net). Four (Rexnord ZA-2115 double row) 
bearings were used in the experiment. All bearings used in the experi-
ment are lubricated. Two accelerometers (PCB353B33 High sensi-
tivity quartz ICP) are installed on the bearing housing to collect the 
horizontal and vertical vibration signals generated from the bearing 
respectively. Three run-to-failure tests are conducted to generate three 
data sets in different time periods. The test 2 consists of 984 files gen-
erated by recording data at every 10 minute with the help of NI DAQ 
card 6062E. The experiment is stopped when a significant amount of 
metal debris is found on the magnetic plug of the tested bearing. In 
this paper, test 2 data is utilized for the analysis of bearing degrada-
tion condition. 

FEMTO bearing dataset: This dataset had been provided by FEM-
TO and was shared in the IEEE international conference (www.fem-
to-st.fr/f/d/IEEEPHM2012- Challenge-Details.pdf). The data is col-
lected from 17 run-to-failure data of rolling element bearing captured 
from accelerated degradation test in few hours. An accelerometer and 
a thermocouple were employed to acquire the vibration signals and 
the temperatures respectively. The healthy bearing was allowed to 
degrade naturally without introducing a fault. During experimenta-
tion, the frequency resolution and time length of each sample were 
maintained at 10 Hz and 0.1 s respectively. The bearing useful life is 
estimated at a threshold when vibration signal exceeds 20g.

Case Western Reserve University (CWRU): This data set had been 
provided publicly from a CWRU.  In this data set, electro-discharge 
machining was used to create an artificial fault in deep groove roll-
er bearing with fault depth of 0.1778 mm, 0.3556 mm, and 0.5334 
mm. They acquired vibration data at a sampling frequency 12 kHz 
and each data sample containing 2048 points. This data set has been 
used in fault identification, signal processing and machine learning 
for bearing fault detection. The properties of experiments form two 
historical data sources are provided in Table 1.

The data source, parameter properties of the bearing has been pro-
vided to facilitate researchers for the development of degradation 
model of the bearing from experimental data.

2.2. Health condition indicator
Health condition indicator give information about the state of the 

machinery by analyzing the information contained in signal. This in-
dicator is expected to quantify the degradation of machinery. A suit-
able health condition indicator is to follow the degradation trend for 
precise prediction results. This section provides the detailed infor-
mation on the development of health condition indicator used in the 
evaluation of bearing performance. 

Commonly, a health condition indicator is developed physically 
and virtual to serve as a quantitative description of bearing health con-
dition. Confidence value was used to identify the current degradation 
state through self- organizing map[17]. Health assessment indicator 
had been developed based on negative log likelihood probability that 
measures bearing performance degradation[59].  Probability of degra-
dation was discussed as health indicator[38]. Probability of different 

Table 1. Properties- Experimental data 

Data Bearing Rotor diam-
eter Load Speed Sampling 

frequency Reference

IMS Rexnord 
ZA-2115 0.331 inches 6000 lb 2000 RPM    20 kHz   www.im-

scenter.net    

CWRU 6205-2RS 0.007 inches 0-3 hp 1797r/
min 12kHz

http://cseg-
roups.case.

edu
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degradation states were calculated through Hidden Markov modeling. 
Dimensionless health indicator was presented to assess current health 
condition of the bearing [50]. They calculated mathematically upper 
and lower bound of the dimensionless health indicator by using non-
central chi-square distribution. Condition monitoring index based 
on self-organizing map was developed to detect incipient bearing 
faults quickly [29].Virtual health index was introduced based on lo-
cally weighted linear regression method [30]. Statistical methodology 
based on maximum likelihood ratio was presented to design condition 
indicators [6]. These condition indicators had shown high potential to 
describe different phases of bearing degradation process. Dimension-
less health indicator was developed through linear rectification tech-
nique [2]. They defined the indicator as the ratio of root mean square 
of the vibration acceleration signal at current time to the root mean 
square of the vibration acceleration signal for the baseline condition. 
New health condition indicator was developed based on combination 
of bathtub curve, multi scale convolutional neural network and in-
verse hyperbolic tangent function [55]. Three degradation indicators 
were proposed i.e. average spectral radius, the maximum eigen value 
and number of random points in inner ring by random matrix sin-
gle ring machine learning. A data source matrix had been constructed 
from roller bearing full life failure experimental data through normal-
izing, singular value decomposition [37]. Health state was evaluated 
with moving average cross-correlation coefficient power spectral 
density of signal [56]. A new health index had been proposed on mov-
ing average cross-correlation of energy distribution of a signal in the 
frequency domain. It can also distinguished different health state by 
determining failure threshold for each case. Table 2 summarizes the 
health condition indicator (s) used in the published journals such as 
Mechanical system and signal processing, Journal of sound and vibra-
tion, Maintenance and reliability, Computer and Industrial engineer-
ing, Reliability Engineering and system safety, Microelectronics reli-
ability and Digital Signal Processing A Review Journal.

This section focuses on the data acquisition and health condition 
indicators of the bearing vibration data. Then, different health condi-
tion indicators are described. This study will be helpful for research-
ers in the bearing diagnostic and prognostics.   

3. Diagnostic model
Diagnostic model is vital to diagnose faults in machineries quickly 

and precisely. The model learns from the selected features obtained 
from the health condition of machinery. These models can be catego-
rized in two class i.e. classification and regression based.  There is 

a paradigm shift in research trends from traditional diagnostics ap-
proach to machine learning based diagnostics approach. This section 
investigates recent classification and regression based diagnostic 
models used in the health condition monitoring of machinery.

3.1.	 Classification	and	Regression	model
The classification model gives an output in term of categorical 

variable using class labeled input data obtained from the fault feature 
extracted from machinery. Regression approach is used to explain the 
relationship between one continuous dependent variable and multiple 
independent variables. Regression model gives an output in terms of 
numeric variable. Model parameters are iteratively updated through 
optimization algorithm and classes are equally distributed to avoid 
bias and generalization capability. There are various intelligent clas-
sification model i.e. artificial neural network, support vector machine, 
fuzzy sets theory; fuzzy set theory based expert system used in the 
diagnosis of the bearing health condition. Artificial neural network on 
vibration signal data was used for bearing fault diagnosis[20].They 
trained the model to classify seven different bearing classes and clas-
sifier produce the high accuracy diagnosis of real bearing defects. Ar-
tificial neural network was discussed for fault diagnosis of rolling ele-
ment bearing [21]. They trained the model through back propagation 
algorithm with a subset of experimental data obtained from machine 
condition. An approach based on dimensional exponent integrated 
with a surrogate data testing was suggested for bearing condition di-
agnosis [22].

Novel rough support vector data description method was designed 
for bearing performance degradation assessment based on one-class 
classifier [23]. They removed the problems like sensitive to outliers, 
over-fitting and invariability of model parameters with time. Orbit 
pattern recognition algorithm using the deep learning proposed for 
rotating machinery diagnostic [24]. They classified the fault modes 
of rotating machinery through orbit images.  Improved support ma-
chine was developed for fault diagnosis based on multi classification 
of the condition [25]. They proposed an improved voting scheme in 
one-against-one support vector machine to improve the classification 
accuracy. Dynamic time warping in machine learning algorithm was 
proposed to bearing fault classification for mechanical fault detec-
tion [26]. They compared the accuracy with the traditional machine 
learning algorithm. Support matrix machine was developed for roller 
bearing condition monitoring using matrix as input. However, data 
was distinguished effectively by two parallel hyper planes and result 
showed that support matrix machine had better recognition perform-
ance as compare to support vector machine [27]. Multi-step support 

Table 2. Health Condition Indicator

Health Indicator  Technique  Reference

Confidence Value Self organising map [17]

Health assessment  Indication  
Gaussian mixture model  based
negative log likelihood  probability

[59]

Probability Hidden Markov modeling [38]

Generalized dimensionless     bearing health 
indicator upper and lower bounds  non-central chi-square distribution [53]

Monitoring Index Self organising map [29]

Virtual Health Index
Current Tracking metric

Locally weighted linear  regression method [30]

Maximum likelihood ratio Statistical methodology [6]

Dimensionless health indicator Linear rectification [16]

Predication bandwidth Multi scale convolutional neural network [17]

Average spectral radius, the maximum eigen 
value, number of random point  Random matrix single ring machine learning [18]

Moving average cross-correlation coefficient 
power spectral density Measure the similarity of power spectral density of signal with adjacent signal [19]
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vector regression was proposed method for fault diagnosis in the rota-
tory machinery [28]. 

3.2. Hybrid model
Hybrid model combined the advantages of different diagnos-

tic models through their integration. This category contains limited 
number of publications. Bearing process degradation was studied us-
ing the principal component analysis and optimized least square sup-
port vector machine[29]. Original features were merged and new fea-
tures were produced with the help of multi-features fusion technique, 
principal component analysis. Fault diagnosis had been analyzed by 
combining locality preserving projection and Gaussian mixture mod-
els [30].They developed negative log likelihood probability to quan-
tify the bearing performance gradation using the Gaussian mixture 
model.  Multi-feature fusion diagnosis approach was proposed based 
on the combination of Kernel principal component analysis, autore-
gressive model and particle swarm optimized support vector machine 
[31]. They identified the fault location with recognition rate, generali-
zation capability in small training samples and degree of performance 
degradation of roller bearing.

 Fault diagnosis of rolling element bearing was developed based on 
linear discriminant analysis and pattern recognition [32]. Two-dimen-
sional visualization and classification accuracy of bearing data were 
showed to identifying different fault categories effectively. Weight 
sparse model was presented for bearing fault diagnosis [61]. The co-
efficient sequence of fault information i.e. sparse and kurtosis of the 
envelope spectrum were combined to develop weight sparse model. 
Two model gradient descent and Bayesian were combined to develop 
a hybrid algorithm. Vibration resonance method was developed on 
bearing fault diagnosis [13]. The experimental and simulated vibra-
tion signals were analyzed on bearing fault diagnosis. Fuzzy C-mean 
and optimized K-nearest neighbor method was combined to make ac-
curate judgment of bearing fault [12]. The basic features were clas-
sified using small amount of fault data. Fault diagnosis of bearing 
was analyzed two dimensional with the help of linear discriminate 
analysis and pattern recognition [62]. 

Hybrid algorithm of SOM and PCA was developed to extract the 
bearing fault category [27].  The proposed algorithm had isolated the 
characteristic frequency of bearing fault from residue of data. Table 3 
summarizes the different diagnostic models developed in the litera-
ture.

This section discusses the diagnostic models used in the bearing 
diagnosis. Review of the diagnostic models will help to researchers to 
solve industrial applications.

4. Prognostic model
The prognostic model is used to forecast the remaining useful life 

(RUL) of machinery before the machinery reach the failure stage 
based on the health condition information. The RUL of any system is 
defined as the time duration from present time to the functional failure 
of machine. Dynamic models were developed for the development 
of reliable prognostic algorithm [34].  Dynamic models were used to 
predict the changes in dynamic behavior reflecting the fault type and 
severity. Prognostic models are classified in to three broad category 
i.e. statistical data driven prognostic model, hybrid model and ma-
chine learning method.

4.1. Statistical data driven model
Statistical data driven prognostic model is based on empirical 

knowledge to estimate the remaining useful life of machinery. Sta-
tistical model is useful to study the uncertainties in the degradation 
process of machinery and its influence on the prediction of remaining 
useful life.  Present work discusses the recent developments in the 
various traditional statistical prognostic models like Gaussian Hid-
den Markov, Gaussian process model, Wiener process model, inverse 
Gaussian process model and dynamic regression model. Statistically 
data driven approaches were reviewed for RUL estimation [45].  The 
pros and cons of the recent model developments and classification of 
RUL estimation model were discussed.  Mixture of Gaussians Hid-
den Markov model was used for prognostics of bearing [48]. They 
generated the complex emission probability density function from the 
wavelet packet coefficients feature extracted from the raw vibration 

Table 3. Diagnostic models

Category Model Major contributions Reference

Classification &
Regression

Artificial neural network Back propagation algorithm [44]

Computational scheme Surrogate data testing [18]

Rough support vector data One-class classifier [65]

Deep learning Orbit pattern recognition [21]

Improved support machine Multi classification [36]

Machine learning algorithm Dynamic time warping [47]

Support matrix machine
Distinguish the data with two 
Parallel hyper-planes

[41]

Multi-step support Update feature vector [58]

Hybrid

Principal component analysis & Least square sup-
port vector machine Multi-feature fusion technique [11]

Locality preserving projection & Gaussian mixture Negative log likelihood [8]

Kernel principal component analysis, autoregres-
sive & support vector machine Fault location with recognition rate [62]

Weight sparse Combined the sparse and kurtosis of the envelope spectrum [61]

Vibration Resonance Resonance of main and auxiliary signal [13]

Fuzzy C-means and K-nearest neighbor Using relatively amount of data [12]

SOM and PCA Frequency analysis of residues produced by hybrid algorithm [27]

Linear discriminant analysis & Pattern recognition Two dimensional visualization [62]
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signal. The parameters of model were estimated which best fit the 
degradation phenomenon. Switching Kalman filter approach was used 
for the prognostic of roller bearing [43]. This approach uses multiple 
dynamical models each describing a different degradation process. 

 Likelihood distribution obtained in the Gaussian process follow-
ing Bayes’ rule was used to estimate the RUL of bearing [7]. Inverse 
Gaussian process model with random effect was discussed to esti-
mate the RUL of bearing [40]. Degradation model parameters were 
updated by Bayesian method which can capture the real condition of 
the system. Statistical model was developed for different stages of 
bearing degradation signal [51]. They considered the drift coefficient 
at current time in the likelihood function. Monte Carlo simulation was 
used to develop an RUL prediction approach [54] . Multiple change 
point wiener process model was developed as a degradation model. 
Recursively updated dynamic regression model was used to estimate 
the RUL of bearing [2]. They demonstrated experimentally that excel-
lent prognostic performance of dynamic regression model due to its 
ability to determine time to start prediction and dynamic calibration 
of model. 

4.2 Hybrid model 
Hybrid prognostic model is an attempt to integrate the advantages 

of different prognostic models. There is limited literature available 
under this category. Principal component analysis and optimized 
least squares support vector machine based approach was proposed 
for bearing degradation prediction [11]. The original features were 
merged by principal component analysis and optimized the model pa-
rameters by particle swarm optimization. Remaining useful life pre-
diction methodology that utilizes mechanistic modeling of vibration 
and self-training of parameter adaptation was suggested [31]. Prog-
nostic approach utilizing fuzzy adaptive resonance theory map, neural 
network and Weibull distribution was proposed for RUL prediction 
[3]. The learned nonlinear time series and seven classes were defined 
for bearing degradation.

Hybrid prognostic model was developed for health monitoring 
using bond graph framework [22]. Variance adaption scheme with a 
statistical model was proposed for system parameter. The effective 
prediction of the RUL was produced with in confidence bounds. Grey 
Markov model was used to predict the RUL of roller bearing [35]. The 
fractal spectrum parameters were used to generate degradation trend 
and predict the RUL with higher prediction accuracy. Hybrid model of 
principal component analysis and internet of things with multi sensor 
was used to predict the bearing life [15]. Multi-dimensional feature 
predication algorithm had described the life information of rolling 
bearing from various angles as compare to single time domain feature 
predication. Hybrid model of support vector machine and degradation 
tracking model was presented to improve the accuracy of RUL [57]. 
Features were dimensionless and prognostic works solve the problem 
of time to start prediction and random fluctuation of measurement. 

4.3. Machine Learning model
Machine learning prognostic models study the degradation trend 

of machinery using machine learning techniques i.e. artificial neural 
network, support vector machine, web semantic tool, long short-term 
memory and recurrent neural network. This paper considers only the 
recent research development in the field of machine learning tech-
niques. Innovative prognostic model based on health state probability 
estimation was presented [25]. Health state probability was estimated 
by support vector machine for RUL prediction. Deep learning ap-
proach was discussed to predict the RUL of bearing based on deep 
auto encoder and deep neural networks [42]. They presented deep 
auto encoder joints features compression to retain effective informa-
tion without increasing the scale. Recurrent neural network based on 
encoder-decoder framework with attention mechanism was proposed 
to predict automatic health indicator which were designed with the 
RUL values [9]. Features were extracted from five band-pass energy 
values of frequency spectrum. Proposed method was achieved lowest 
average percent error and highest average score as compare to tradi-
tional method. Accurate RUL prediction was depending on the use of 
long time-dependent information from the long-time sequence data 
effectively. Long short-term memory recurrent neural network was 
used to predict the RUL of bearing [60].  Degradation states were 
identified by giving input into long short-term memory recurrent 
network. Bearing performance degradation was studied using long 
short-term memory with multi-resolution singular value decomposi-
tion (MRSVD). The decomposition of vibration signal with MRSVD 
and reconstruction help to accurately identify the fault point in vibra-
tion signal [14]. New data driven transfer learning RUL prediction 
approach was proposed to solve the distribution discrepancy problem 
[64]. The fault occurrence time was detected by hidden Markov mod-
el. The domain discrepancy metrices and domain classifier were used 
to acquire domain invariant features through domain adaption module 
and condition recognition. New approach was presented to predict 
the RUL of industrial roller bearing based on state recognition and 
similarity analysis [16]. Life proportional adjustment function was 
constructed with the help of comprehensive similarity analysis be-
tween historical bearing data and monitoring bearing data. Life model 
was constructed by defining state matrix of different operation states 
of roller bearing. Result showed that proposed approach had better 
prediction accuracy and generalization as compare to hidden Markov 
model and grey model. Predicated fatigue life of radial cylindrical 
roller bearing subjected to radial and axial load was discussed [59]. 
Remaining useful life prediction was made via the combined use of 
support vector machine as a classification tool and autoregressive in-
tegrated moving average based identification. An expert tool was used 
for real time monitoring to prevent the potential failure of machines 
[26]. A novel model combines the importance of machine criticality 
assessment criteria with interaction between them was proposed [20]. 
Remaining useful life of a ball bearing was predicated using classi-
fication and regression techniques. Machine learning principles was 

Table 4. Pros and cons of prognostic model

Type of Prognos-
tic model Pros Cons References

Statistical data 
driven model Dynamic calibration of model to adopt to evolving trend

Need for extremely large amount of data in nu-
merous operating conditions
Generalization capabilities are undefined

[45] [39] [7][40]
[49][54][2] [45]

Hybrid model
Identify the nonlinear relationship
 between the variables

Unable to learn from clustering integration  [48][15][57][49]
[50][51]

Machine Learning 
model

Solve the problem of gradient disappearance
Construction of sample pair with advanced algorithm
Consider the time cumulative effect of historical infor-
mation on future information from a structural per-
spective. 

Unable to learn long-time timing information
[42][9][25][60][14]

[64][58]
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used to develop an algorithm to recognize underlying mapping func-
tion [46]. Table 4 summarizes the pros and cons of prognostic model. 
Table 5 summarizes the main features of prognostic models.

This section discusses the different prognostic models used in the 
bearing prognostics. The pros and cons of prognostic models are also 
discussed. 

5. Case Study
Roller bearings have been degraded from normal condition to fail-

ure condition with the duration of time due to harsh industrial working 
conditions. However, rolling bearings have a low ability to withstand 
impact, so their service life is uncertain. This paper explores multi-
stage categorization of bearing degradation. Table 6 summarizes the 
stages for bearing degradation criteria. Bearing degradation is catego-
rized in one of the following three stages. The degradation states of 
bearing over time is shown in Fig.1.

Stage I : Healthy stage• 
Stage II : Degradation stage• 
Stage III : Critical stage• 

5.1. Methodology
The health data used for bearing degradation assessment is the 

bearing vibration signal. Firstly, statistical features are extracted from 
the vibration signal data and features are selected from the values of 
correlation coefficient. Secondly collect the samples and divide the 
samples into the training samples and testing samples. Then the test-
ing data used for input into a classification model for bearing degra-

Table 5. Prognostic Models 

Category of Prog-
nostic model Comments Reference

Statistical data 
driven

Statistical data driven approach used for classification of degradation state [45]

Switching Kalman filter approach employed to identify unstable degradation state [43]

Gaussian process applied to estimate posterior distribution of the bearing relative time•	
Probability density function was calculated for posterior distribution using Bayes rule•	
Gaussian process model used to evaluate likelihood •	

[7]

Inverse Gaussian  model was employed with random effect to characterize the degradation •	
process of the system
Parameters were updated by Bayesian method•	

[40]

Statistical model  was used to find analytical expression for posterior drift distribution [49]

Monte Carlo simulation algorithm considered for  multiple change-point •	
Wiener process employed to construct degradation model•	
Bayesian approach applied for parameters estimation•	
Exact recursive model was used for updation•	

[54]

Dynamic regression model used to forecast start time•	
Predication were made using alarm bound technique•	
Predicating future health indicator values by recursive updation•	
Remaining useful life estimation using time steps to fail threshold•	

[2][45]

Hybrid model

Mixture of Gaussians Hidden Markov models were used for better implementation and inter-
pretability [48]

Hybrid model include internet of things with multi sensors was used for PCA [15]

Hybrid degradation tracking model (support vector machine and hybrid degradationtracking 
model) [57]

Machine Learning

Deep learning use of subset based deep auto encoder•	
Feature compression•	 [42]

Novel deep learning use recurrent neural network based on
Encoder-decoder framework with attention mechanism

[9]

Health state probability estimation using support vector machine•	
Prognostic model parameters were updated using historical knowledge•	 [25]

Long short memory Recurrent neural network proposed for automatic detection and to iden-
tify fault occurrence [60]

Long short memory network with multi-resolution singular value decomposition technique 
used to detect accurate fault in vibration signals [14]

Training and testing data distribution discrepancy problem was solved by  Transfer Learning  
based on multiple layer perceptron [64]

State recognition and similarity analysis used clustering algorithm and threshold correction  to 
solve the problem of prediction accuracy and generalization [16]

Fig. 1. Degradation states of bearing over time
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dation assessment. The flow chart of the bearing classification model 
proposed is shown in Fig. 2.

5.2. Experimental data
The bearing degradation data was generated by the center for intel-

ligent maintenance system (IMS), university of Cincinnati with sup-
port from Rexnord corp. The used data set in this paper is downloaded 
from prognostics center of excellence through prognostic data reposi-
tory. The bearing used in the experiment is Rexnord ZA-2115 double 
row bearing to support a rotating shaft. The bearing test rig and ac-
celerometer sensor placement are shown in Fig. 3.

The bearing test rig was designed to generate run-to-failure data 
from Feb.12, 2004 to Feb.19, 2004. Four bearings are used in this 
experiment. The rotating speed of the shaft is kept constant at 2000 
rpm with the help of alternative current motor coupled to the shaft 
via rubber belts. The radial load of 6000 lb is applied onto the bear-
ings by a spring mechanism. All bearings used in the experiment are 
lubricated. Two accelerometers (PCB353B33 High sensitivity quartz 
ICP) are installed on the bearing housing to collect the horizontal and 
vertical vibration signals generated from the bearing respectively. The 
data sampling frequency is 20 kHz. Three run-to-failure tests are con-
ducted to generate three data sets in different time periods. The test 2 
consists of 984 files that are 1-s vibration signal snapshots recorded 
at every 10 minute with the help of NI DAQ card 6062E. Each file 
stored of 20480 points with the sampling frequency set at 20 kHz. 
The failure in the bearing had occurred when the bearing cross the 
designed life time of the bearing which is more than 100 million revo-
lutions. The experiment is stopped when a significant amount of metal 
debris is found on the magnetic plug of the tested bearing. In this 

paper, test 2 data are used to the time domain feature to monitor 
the bearing degradation condition.  

5.3.		Classification	model
Classification based models have been used to develop a re-

lationship between independent variables (i.e. features vectors) 
and dependent variables (i.e. response in term of predefined 
stages identified by labels). In this paper, we have feed the input 

feature vectors values (Predicators) and response corresponding with 
the bearing degradation system stages into classification learner tool 
in Matlab to obtain predicated label for future time period. The in-
put feature vectors values are extracted from preprocessed time series 
of bearing vibration signals relevant to the degradation stages of the 
bearing. We have categorized the degradation of the bearing into three 
classes such as healthy stage, degradation stage and critical stage. 
This paper has considered 15 predicators such as kurtosis, peak, crest 
factor, standard deviation, variance, rms, mean, mode, median, range 
of values, mean and median absolute deviation, peak amplitude to 
rms ratio, interquartile range, root sum of square level and maximum 
to minimum difference.  Three response classes are used to predict 
an output categorical variable using labeled input data. Predicators 
are independent to each other. In supervised machine learning meth-
odology, the classification labels have been assigned to the feature 
vector values to which training instances belong.  In this paper, we 
have found the accuracy of models in different classification algo-
rithms. Table 7 shows the accuracy results of different classification 
algorithms.

This section discusses the different classification models used for 
bearing health analysis. The accuracy of different classification algo-
rithms are also discussed to study the degradation stages in bearing.

5.4. Bearing degradation failure
In the case study, the bearing degradation failure is discussed with 

machine learning classification matrix. Vertical axis and horizontal 
axis denote the actual and predicted label respectively. Elements in 
the main diagonal are the classification accuracies and others are the 
classification errors. Bearing degradations are divided into four cat-
egories i.e. healthy, degradation, critical and catastrophic. For each 
conditions, there are 1-second snapshots, each of which consists of 

Fig. 3. Bearing Test rig [3]

Fig. 2. Flowchart of proposed methodology

Table 6. Stage for bearing degradation criteria

Stage Criteria: Severity of impact in the bearing degradation

Catastrophic Any impact which could potentially cause the loss of primary system functions resulting in significant damage to the mechanical 
system and cause the loss of life

Critical Any impact which could potentially cause the loss of primary system functions resulting in significant damage to the mechanical 
system and negligible loss to life

Degradation Any impact which degrades system performance functions without appreciable damage to either mechanical system or life

Healthy Any event which could not cause degradation of system performance function(s) resulting in negligible damage to mechanical 
system

Table 7. Comparison results on the testing accuracy

Classifier  Accuracy (%)

Decision tree 96.1 %

Linear discriminant analysis 92.9 %

SVM (Cubic SVM) 96.5 %

SVM (Medium Gaussian SVM) 96.2 %

Nearest neighbor classifiers (Weighted KNN) 93.5%

Ensemble classifiers (Bagged tree) 96.5 %
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20,480 points. Each samples has 2000 data points. Totally, there are 
1400 samples for the four health conditions. Random 50 % samples 
are for training and the remaining samples are for testing.

Graph theoretic model was considered the system structure explic-
itly and applied to model functions using matrix approach to examine 
the cause and effect. Result showed the reliability enhancement using 
step-by-step methodology [32]. Structural graph model for reliability 
at various hierarchical levels was developed by converting reliability 
graph into equivalent matrix [33]. System model was developed in-
corporating four states of degradation for each component [39].

6. Technical challenge
It has been observed that despite the positive outcomes from the 

existing state of art, there are many current research challenges need 
to be addressed. More research should be conducted on incorporation 
of uncertainty in diagnostic and prognostic model. The key idea of 
data acquisition is to transfer the knowledge gained from experimen-
tal data to improve the accuracy of predication model used in industry. 
It is emphasized to develop information fusion from multi-dimension 
data. The research problems pertinent in this field are design of health 
condition indicator and real time model to study the real time degra-
dation of bearing. The big data provides research challenges to build 
robust diagnostic and prognostic model from machine learning tech-
nology. Further, research is required for dimensionless health indica-
tor which is more sensitive to an incipient bearing defect. There is a 

paradigm shift in research direction from constant operating condi-
tions to variable operating conditions. Thus, it is important to analyze 
uncertainties caused by time varying operation conditions. To address 
this change, future researchers need to redefine the failure threshold 
limit, health state division, degradation model and quantification of 
uncertainty according to the variable load, speed, etc. Research is 
needed to determine failure threshold limit for virtual dimensionless 
health indicator. This section discusses the unexplored technical chal-
lenges existing in the bearing health monitoring to match with vari-
able operating condition and advanced machine learning algorithm.

7. Conclusions 
In this paper, the prior state of art in the field of diagnosis and 

prognosis of bearing with emphasis on machine learning based tech-
niques has been summarized. The review is focused on data acqui-
sition, health condition indicator, diagnostic models and prognostic 
models. The advantage and disadvantage of models, algorithms are 
presented in this study. A case study is discussed based on machine 
learning classification matrix to improve the accuracy of degradation 
assessment. The future research challenges are moving from tradition 
algorithm to advanced machine learning algorithm to build accurate 
and robust prediction model. Further, there is a need to develop vir-
tual dimensionless health indicator, failure threshold limit which can 
match the degradation trend of the bearing.
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