

APPLIED COMPUTER SCIENCE

The Journal is a peer-reviewed, international, multidisciplinary

journal covering a broad spectrum of topics of computer application

in production engineering, technology, management and economy.

The main purpose of Applied Computer Science is to publish

the results of cutting-edge research advancing the concepts, theories

and implementation of novel solutions in computer technology.

Papers presenting original research results related to applications

of computer technology in production engineering, management,

economy and technology are welcomed.

We welcome original papers written in English. The Journal also

publishes technical briefs, discussions of previously published papers,

book reviews, and editorials. Especially we welcome papers which

deals with the problem of computer applications in such areas as:

 manufacturing,

 engineering,

 technology,

 designing,

 organization,

 management,

 economics,

 innovations,

 competitiveness,

 quality and costs.

The Journal is published quarterly and is indexed in: BazTech,

Cabell's Directory, CNKI Scholar (China National Knowledge

Infrastucture), ERIH PLUS, Google Scholar, Index Copernicus,

J-Gate, Scopus, TEMA Technik und Management.

Letters to the Editor-in-Chief or Editorial Secretary are highly

encouraged.

CONTENTS

Ihor PYSMENNYI, Anatolii PETRENKO, Roman KYSLYI

GRAPH-BASED FOG COMPUTING NETWORK MODEL............... 5

Jack OLESEN, Carl-Emil Houmoller PEDERSEN, Markus Germann

KNUDSEN, Sandra TOFT, Vladimir NEDBAILO, Johan PRISAK,

Izabela Ewa NIELSEN, Subrata SAHA

JOINT EFFCET OF FORECASTING AND LOT-SIZING

METHOD ON COST MINIMIZATION OBJECTIVE

OF A MANUFACTURER: A CASE STUDY... 21

Marcin MACIEJEWSKI, Barbara MACIEJEWSKA, Robert

KARPIŃSKI, Przemysław KRAKOWSKI

ELECTROCARDIOGRAM GENERATION SOFTWARE FOR

TESTING OF PARAMETER EXTRACTION ALGORITHMS.......... 37

Denis RATOV

ARCHITECTURAL PARADIGM OF THE INTERACTIVE

INTERFACE MODULE IN THE CLOUD TECHNOLOGY

MODEL.. 48

Amina ALYAMANI, Oleh YASNIY

CLASSIFICATION OF EEG SIGNAL BY METHODS

OF MACHINE LEARNING.. 56

Olutayo BOYINBODE, Paul OLOTU, Kolawole AKINTOLA

DEVELOPMENT OF AN ONTOLOGY-BASED ADAPTIVE

PERSONALIZED E-LEARNING SYSTEM.. 64

Mohanad ABDULHAMID, Otieno ODONDI, Muaayed AL-RAWI

COMPUTER VISION BASED ON RASPBERRY PI SYSTEM........... 85

Damian GIEBAS, Rafał WOJSZCZYK

ORDER VIOLATION IN MULTITHREADED APPLICATIONS

AND ITS DETECTION IN STATIC CODE ANALYSIS

PROCESS.. 103

5

Applied Computer Science, vol. 16, no. 4, pp. 5–20

doi:10.23743/acs-2020-25

Submitted: 2020-11-29

Revised: 2020-12-07

Accepted: 2020-12-17

software-defined networks, fog computing, smart sensors, IoT

Ihor PYSMENNYI [0000-0001-7648-2593]*,

Anatolii PETRENKO [0000-0001-6712-7792]*,

Roman KYSLYI [0000-0002-8290-9917]*

GRAPH-BASED FOG COMPUTING

NETWORK MODEL

Abstract

IoT networks generate numerous amounts of data that is then transferred to

the cloud for processing. Transferring data cleansing and parts of calculations

towards these edge-level networks improves system’s, latency, energy

consumption, network bandwidth and computational resources utilization,

fault tolerance and thus operational costs. On the other hand, these fog

nodes are resource-constrained, have extremely distributed and heterogeneous

nature, lack horizontal scalability, and, thus, the vanilla SOA approach is
not applicable to them. Utilization of Software Defined Network (SDN) with

task distribution capabilities advocated in this paper addresses these issues.

Suggested framework may utilize various routing and data distribution

algorithms allowing to build flexible system most relevant for particular

use-case. Advocated architecture was evaluated in agent-based simulation

environment and proved its’ feasibility and performance gains compared to

conventional event-stream approach

1. INTRODUCTION

Introduction of high-bandwidth mobile networks, portable sensors and actuators,

energy-efficient microprocessors and communication protocols enabled wide
adoption of Internet of Things (IoT) – an adaptive network connecting real-world

things (including sensors which perceive the environment and actuators which

may actively interact with it) between each other and the internet. Being lightweight

* National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”,
Institute of Applied Systems Analysis, Department of System Design, 37, Peremohy ave., Kyiv,
Ukraine, ihor.pismennyy@gmail.com, tolja.petrenko@gmail.com, kvrware@gmail.com

http://acs.pollub.pl/pdf/v16n4/1.pdf
https://orcid.org/0000-0001-7648-2593
https://orcid.org/0000-0001-6712-7792
https://orcid.org/0000-0002-8290-9917

6

and portable the majority of these devices are resource-constrained in terms of
computing and networking power by definition meaning the need for intermediate

computing layer between them and the cloud (Rahmani, Liljeberg, Preden

& Jantsch, 2018).

Fig. 1. Edge computing

As discussed in academia, this intermediate layer may utilize 3 complimentary
approaches (Fig. 1):

1. Mist Computing. Computations are being performed on the extreme edge

of the network – smart sensors and actuators themselves. Only pre-processed
data is sent via network and IoT devices are not dependent on Internet

connection (Yogi, Sekhar & Kumar, 2017).

7

2. Fog Computing. Layer close to the perception layer with computing,
networking (aka gateway) and storage capabilities (Rahmani et al., 2018).

Spans from the data creation point to its storage location allowing

decentralized computing of gathered data. Any device with support of

required network technologies, storage and networking capabilities can be
utilized as fog a fog node (Joshi, n.d.). Can be considered as a superset

among the mist layer.

3. Edge computing. (Satyanarayanan, 2017) defines any computing and network
resource between data source and destination data centre (either cloud or

local) as edge computing node. Further in this article edge-computing will

be used as an umbrella term for all 3 levels.

Transferring part of data processing from cloud to edge level puts a lot of

resource-related constraints such as computing power restrictions, absence of

dynamic horizontal scalability and energy consumption limitations, but brings
following benefits:

1. Location-awareness. Edge computing systems are aware of context in which

computations are being performed
2. Latency reduction. Classical cloud-computing approach with aggregating

data on smart hub, batch or stream sending it to cloud for processing and

retrieving results back in synchronous or async manner introduces 2 pitfalls

critical to real-time applications: network latency and possible network failure.
Moving data processing to the edge can help to tackle these problems as

discussed below and already found usage in various systems including

3. Security. Any data transmission is subject to man in the middle attacks and
data protection requires energy-consuming encryption algorithms (Petrenko,

Kyslyi & Pysmennyi, 2018a).

4. Eliminating bandwidth restrictions. Some data, especially media, require
a high-bandwidth communication channel. By processing it on the edge

level we eliminate the need for this expensive transfer. For example, smart

doorbells which unlock the door using face identification tech may process

video stream locally instead of sending it to cloud.
5. Energy consumption reduction. Data transfer is significantly more

expensive in terms of energy consumption than basic processing. (Shi, Cao,

Zhang, Li & Xu, 2016) hence offloading cleansing, aggregation and
extraction operations to mist and fog layers may increase the time of

autonomous work of IoT device as discussed in chapter 4.

6. Cost reduction. Edge computing helps utilize maximum of available

resources resulting in improved cost-efficiency.

Modern edge computing use-cases and architectures are discussed in the next

chapter with novel graph-based edge network architecture and its evaluation
following.

8

2. LITERATURE REVIEW AND PROBLEM STATEMENT

Shifting distributed calculations paradigm from remote cloud to network edge

is a complex task and involves solving novel architectural problems which can be

grouped to resource constraints, communicational, privacy and security and fault
tolerance domains. Further in this chapter state-of-the-art findings in the field are

discussed.

(Ray, 2018) surveys and structures use-cases, technologies, and domains of

modern IoT applications. Authors emphasize on technical challenges of designing
service-oriented architecture of extremely heterogenous horizontally wide system,

its’ infrastructure and security requirements.

(Rahmani et al., 2018) provides a comprehensive high-level overview on most
edge computing aspects with and various use-cases. Authors analyse architectural

constraints, essential components, and management of fog-layer computational

infrastructure. Edge computing has used in most parts of modern infrastructure
from smart cities to medicine. In automotive cars already have sophisticated sets

of various sensor and data processing systems allowing semi-autonomous driving

(Hussain & Zeadally, 2019). Xiao & Zhu (2017) suggests using smart vehicles as

moving fog nodes allowing on-demand computational resource distribution and
expanding vehicle to vehicle (V2V) communications. These fog nodes may be

connected to city infrastructure such as smart traffic lights allowing more efficient

traffic distribution (Stojmenovic & Wen, 2014).
Chan, Estève, Escriba & Campo (2008) wraps a review of smart-home systems

including permanent patient monitoring capabilities usually built on smart sensor

networks. Gope & Hwang (2016) suggests Body Sensor Networks (BSN)

architecture for distributed edge-level computations with regard to user’s privacy.
Data acquired from these wearable networks can be processed by deep convolutional

neural networks on fog nodes for immediate anomaly detection (Petrenko, Kyslyi,

& Pysmennyi, 2018b).
In use-cases mentioned above, critical security concerns are raised as health

data is classified as sensitive (World Health Organization, 2010). In (Al Ameen,

Liu, & Kwak, 2012) authors analyse privacy and security issues and requirements
in regard to wireless sensor (WSN) and body area (WBAN) networks suggesting

measures to cope with them. (Diogenes, 2017) suggests utilization of generic

zoned approach with security boundaries for privacy preservation. Each of the

device zone, field gateway zone, cloud gateway zone, cloud services zone and
remote users’ zone operates on constrained scope of user’s data and has security

requirements most suitable to given context, sensitivity of data being processed

and persistence requirements. (Petrenko et al., 2018b) takes the idea further to
cloud level allowing secure multi-party computations between akin organizations

with help of hyperledger.

9

With big amount of open-source and proprietary communication solutions
development of edge network on heterogeneous hardware is restrained by the

absence of wide adopted standard open messaging protocol specification for

exchanging and processing structured data. In (Kharchenko & Beznosyk, 2018)

authors concentrate on building a unified data-flow format for various IoT devices
suggesting JSON-based format for data and processing description. This approach

enables proper distribution of computational resources and is essential for edge

level information processing systems.
With absence of permanent remote monitoring capabilities concept of self-

awareness become particularly important. According to (Rahmani et al., 2018)

self-aware system has following capabilities:

1. Understands its current context and evaluates it to the desired state of the
environment.

2. Understands its own state, monitors it to detect possible malfunctions and

deviations.
3. Input data-aware – tracks its changes over history, performs semantic

attribution and interpretation mapping properties to desirability scale.

(Lewis, Platzner, Rinner, Tørresen & Yao, 2016) introduces notion of collective

self-aware systems where there is no central ‘awareness’ node emphasizing

increased robustness and adaptability brought up by decentralized approach.

Classification of awareness levels is also defined in book mentioned above.
According to it, edge layer belongs to interaction-aware systems group as it

acquires meaningful data from stimuli acting upon it and interactions with other

systems, environment, and itself.
IEEE has recently adopted reference architecture for fog computing imple-

mentation for both hardware and software (IEEE Communications Society, 2018).

Each fog node is operated by software backplane layer orchestrating internal
(thing-to-fog) and external (fog-to-fog, fog-to-cloud) communications via service

discovery, state management and pub-sub mechanisms, additionally enforcing

authentication and system integrity.

Due to extremely distributed and heterogenous nature fog networks and absence
of dynamic horizontal scalability vanilla service-oriented software architecture

approach doesn’t work, thus some ideas may be refurbished. (Oma, Nakamura,

& Duolikun, 2019) advocates a fault-tolerant tree-based fog network model. Each
node calculates input from data obtained from one or more child nodes with

sensors being leaves. System has process-transfer capabilities for fault-recovery

and tree balancing to support dynamic network topology. This approach

disregards variety of computational power between different nodes and certain
elements of the system may become overloaded and create bottlenecks due to the

hierarchical topology. Another disadvantage is the need for each node to know its

downstream network and ancestors for the recovery mechanism effectively
meaning need to persist the whole network structure in each of its element.

10

In addition to security and storage overhead critical for lightweight edge
computing this approach requires frequent propagation of changes to the network

topology unacceptable for dynamic fog networks. In further research authors

suggested dynamic network-based fog computing (DNFC) model with auction

method used to determine set of source nodes by each target node. Authors suggest
broadcasting request to compute data from source node to possible fog computing

targets, if target has enough energy to process given block or its part, target sends

back acknowledgement, performs calculation and sends result upstream the
network. This approach has clear advantage in case if all nodes are directly

connected but does not support heterogeneous multi-layered smart sensor

networks and does not regard potential overflow of communicational capacity of

fog nodes.
In this paper we focus on development and evaluation of novel Graph-Based Fog

Computing Network Model (GBFCNM) aimed to cope with issues mentioned above.

3. THE AIM AND OBJECTIVES OF THE STUDY

The purpose of this research is to analyse edge computational systems’

architecture and propose a lightweight and flexible approach for distributing data

processing among fog nodes. Given approach should support following capabilities:
1. Fault-tolerance – fog nodes may accidentally become inactive due to

various reasons, for instance, low power supply, loss of communication

channel and environmental situation.

2. Malfunction detection – fog nodes should be able to detect faulty behaviour
of other node and have a recovery strategy for such cases.

3. Energy-efficiency – smart sensors are frequently designed wearable form-

factor and thus have limited power supply.

Anylogic simulation environment is used to evaluate suggested architecture.

4. SMART-SENSOR DATA STREAM PROCESSING ARCHITECTURE

Traditional approach for processing data stream, including IoT generated

values streams, is lambda-architecture (Fig. 2), which unifies real-time and historical
batch analyses within the single framework (Marz & Warren, 2015). Data streams

are ingested to message queue (or other data source) and then:

1. Processed via speed processing layer. Results are provided in real-time in

synchronous (via responses to published API calls) or asynchronous
manner (via exposing dedicated read API).

11

2. Batch-processing layer: raw data is being stored in Data Lake and then
processed and stored to some sort of data warehouse to be analysed by batch

jobs on schedule or on-demand.

Fig. 2. Processing smart sensor data in conventional lambda architecture

Introducing edge computing brings following modifications to given data flow

(Fig. 3):
1. Speed processing layer is moved from cloud to the network edge.

Processing results may also be transferred to cloud for persistence.

In addition to latency, load and security benefits this approach significantly
reduces operational costs eliminating need for always-on cloud operation

which allows using spot instances with dynamic pricing(“Spot Instances –

Amazon Elastic Compute Cloud,” n.d.) and less strict fault-tolerance
requirements which may result in abolishing infrastructure redundancy.

2. Data is transferred to cloud in pre-processed state eliminating the need for

data lake and significantly reducing batch processing layer’s load by

definition.

12

Fig. 3. Edge-optimized lambda architecture

Fog-layer is very heterogeneous as nodes may vary in terms of computational
power and connectivity, thus need for dynamic and fault-tolerant computing

model emerge. Proposed model is based on Software Defined Networking (SDN)

principle: data flows within the network are performed and configured via the use

of standardized application programming interfaces (API) (Kirkpatrick, 2013). By
definition, GBFCNM is aimed to effectively process generated data. For the sake

of simplicity let us assume processing time as the only effectiveness criteria and

divide components of edge network to 3 groups based on their capabilities:
1. Smart sensor/actuator:

 Emitting data and performing interactions with environment.

 Internal (inside fog network), may be not directly connected to internet.

 Low computational power as a trade-off for size and energy efficiency.

2. Fog node:

 Internal traffic.

 High computational power.

3. Gateway:

 Accepts and redirects internal traffic.

 Transmitting data to the cloud.

 May also have high computational power.

4. Cloud – external component, destination of data.

13

Most edge-node devices utilize wireless radio network protocols including
Bluetooth Low Energy, NFC, 6LoWPAN, Wi-Fi, ZigBee, and RFID, which have

limited connection range. Therefore, each node 𝑁𝑥 is assumed as connected to

node N (belonging to its group 𝐺𝑁) if the distance between them is smaller than

defined Δ:

𝑁𝑥 ∈ {𝐺𝑁}: 𝑑(𝑁, 𝑁𝑥) < Δ (1)

Proximity-based network partitioning is already adopted in various distributed

event-based systems. Approaches with assigned brokers and dynamic plane are

utilized (Castro-Jul et al., 2017). Fog network architecture suggested in this paper

is classified as Distributed Control WSN as no central routing decision points are
present and all nodes exchange information using dynamic data flow defined by

this information itself and available processing capabilities (Mostafaei & Menth,

2018).
Each node advertises a set of available resource for each capability. As nodes

are heterogeneous in terms of their capabilities it makes sense to have the

possibility to transfer tasks between them (given assumption will be evaluated in
following chapter), therefore fog node should also expose capabilities of its

connections. As all network communications require time, computational

resources, and energy, it is proposed to use penalty coefficient µ for each data

transfer. In addition, this would limit number of task split (mapping) operations.

So each fog node advertises following list of resources where 𝑁𝑖 is identifier of

resource owning node (𝑖 = 0 for current node, 𝑖 > 0 for each connected node),

𝐶𝑎𝑝𝑗 is capability category (e. g. “outbound traffic, kb/sec”) and 𝐾𝑖 is capacity of

specified category available (e. g. 256 kb/sec):

[{𝑁𝑖 , 𝐶𝑎𝑝𝑗, 𝛼 ∗ 𝐾𝑖}, …], 𝛼 = {
1, 𝑖 = 0
µ, 𝑖 ≠ 0

 (2)

With this scenario it is easy to see that that after some time, when each service

will send all advertisements (O(𝑛2) complexity where n is number of network
nodes) with each request all current network topology will be sent, which is

unfeasible in big multi-layered fog networks. To avoid this situation, it is proposed

that each node advertises resources with maximum relative depth D. Further in

this paper coefficient D=1 for the sake of simplicity (Fig. 4).

14

Fig. 4. Example fog network topology

Advertiser sends its’ capabilities data at fixed schedule. Task owner node

(source) receives set of capabilities from connected advertisers and selects target

from recent targets (resources no older than given threshold τ) using multi-
objective optimization methods (Fig. 6). Pareto efficiency with value weights

calculated dynamically for each request based on task distribution (calculation or

transfer) within it is used in this paper. If Pareto frontier consists of more than one

element – random option is chosen. Timeout threshold minimizes connection
attempts to no longer available nodes.

Suppose node 𝑁0 requires computations in set of categories 𝐶𝑎𝑝 (e. g.

processing, cloud transfer) and has set of available resources from itself 𝑅0. 𝑅0
𝐶𝑎𝑝

is set of available resources in required categories. To process the required data

𝑁0 received “offers” from nodes 𝑁𝑖 … 𝑁𝑗 with corresponding available resources

𝑅𝑖 … 𝑅𝑗 within τ time window. As 𝑁0 is also a fog node it also advertised its

capabilities, so 𝑅0 ∈ 𝑅𝑖..𝑗:

𝑊(𝑁) = (∑ ∑ 𝐾1..𝑛𝐶𝑎𝑝) − ∑ 𝐾0𝐶𝑎𝑝 , (3)

where 𝑁 is number of connections (may be unique for each node).

Once data is processed it is being delivered to closest node with cloud-sending

capabilities. Feasible path of distinct nodes towards the output node is called

admissible path and in conventional SDNs is performed via SDN controller
(Agarwal, Kodialam & Lakshman, 2013). As for networks are dynamic and

decentralized, this node is selected via eager path searching algorithm (Sedgewick

& Wayne, 2011). This approach requires trail of visited nodes’ unique identifiers
to be sent along with each request.

Due to the dynamic nature of edge-level networks their fragmentation is very

possible, different network parts may become isolated and unable to transmit data

further (Fig. 5).

15

Fig. 5. Network fragmentation in fog computing

To overcome such situation asynchronous acknowledgement downstream is
suggested (Fig. 6). Each node with storage capabilities should cache processed

data stream. Node may erase cache only once it received acknowledgement that

this data was processed upstream and after forwards it downstream. If this
acknowledgement was not received within given timeout retry mechanism should

be implemented.

Fig. 6. GBFCNM happy flow

16

5. GBFCNM PERFORMANCE EVALUATION

IoT consist of the wide variety of interconnected devices with different power

and capabilities. Testing and evaluating large-scale configurations of heterogeneous

adaptive networks is almost unfeasible with conventional approaches, therefore
utilization of multi-agent-based computing is suggested (Laghari & Niazi, 2016).

Each element of the system as well as the environment is modelled as an agent

with dedicated behavioural and communicational strategy and capabilities

creating system’s digital representation in simulated environment (Klügl &
Bazzan, 2012). Such approach allows us to evaluate behavioural strategies in

various scenarios, identify their potential pitfalls, and determine optimal policies

which will be implemented in end-product for different network configurations.
There a lot of simulation toolkits available among which AnyLogic demonstrates

significant usage growth dynamics and maintains vivid community (Dias, Vieira,

Pereira & Oliveira, 2016). It allows combining agent based, discrete event and
system dynamics simulations to single multi-method model. GBFCNM

architecture was evaluated in Anylogic agent-based simulation environment (Fig. 7).

Each actor (smart sensor, fog node, gateways and remote cloud) has dedicated set

of state charts, behaviours and parameters which may dynamically change over
time (“Multimethod Simulation Modeling for Business Applications – AnyLogic

Simulation Software,” n.d.). The goal of simulated system is to process and

transfer data streams from smart sensors to cloud via fog and gateway nodes. Each
node type has unique combination of capabilities as described above in system

architecture chapter.

In (Table 1) conventional IoT setup (computations being performed in cloud

only) with 4 smart sensors, 2 fog computing nodes acting as internal traffic routers
and single gateway is evaluated against same setup with edge-computing capabilities.

Each smart sensor emits 𝑁 packets per second, which may be processed and

forwarded by fog nodes reducing amount to be sent by 𝐹%. Processing rate of

such node is 𝐾 packets per second. Gateway is able to send to cloud 𝐿 packets per

second.

17

Fig. 7. Screenshot of simulated fog network consisting of smart sensors (1),
fog nodes (2), gateways (3) and remote cloud (4)

6. DISCUSSION

The downside of given approach is the need to advertise capability information

on connected nodes and append, which consumes network resources of the
system. Possible solution is to add threshold after which resource is considered

too weak and is no longer advertised. Developing strategies of route caching will

allow decreasing configuration sharing frequency.

In addition, utilization of generic frontier search algorithm for routing may
significantly increase message size in large distributed systems as path is sent

together with message. Introduction of dedicated control nodes forming indirectly

(via cross-sensor multi-hop communications) connected SDN controller may help
solving this issue and is a subject for further research (Mostafaei & Menth, 2018).

Possible loss of data if some subset of nodes become unavailable due to

dynamic nature of the fog network is tackled with its’ caching on intermediate
nodes. Fog network nodes have limited storage capabilities (for example, most

STM32 boards come with 32 KB to 1MB flash memory), therefore utilization of

data compression techniques is suggested. In (Pysmennyi, Kyslyi, & Petrenko,

2019) authors advocate using moving average on the oldest stored data windows,
so most up-to-date information will still have highest possible resolution:

𝐶𝑀𝐴𝑛 =
𝑥1+⋯+𝑥𝑛

𝑛
; 𝐶𝑀𝐴𝑛+1 =

𝑥𝑛+1+𝑛∗𝐶𝑀𝐴𝑛

𝑛+1
. (4)

18

Suggested approach also allows to tackle spikes of volume of generated data
if it exceeds network bandwidth.

Another issue of suggested algorithm is gradient load of computational

resources – the further they are from data emitting smart sensor the less they would

be loaded due to data transfer penalties. With generic fog network where sensors
are distributed evenly with fog nodes this will not pose a problem, but in case of

network with homogenous resource clusters this approach requires adjustments

which are subject for the further research.

7. CONCLUSIONS AND FUTURE WORK

As shown in this paper, SDN paradigm perfectly fits fog computing
networking tasks. Utilization of edge nodes for computations clearly showed

advantages in decreasing load of cloud system, improved resource utilization on

the edge level and enabled fast feedback to actuator nodes. Power, computational
and bandwidth constraints combined with narrow scope of capabilities

(specialization of nodes) introduce the need for flexible framework for distributed

processing and routing of data suggested in this paper.

As shown in simulation above, given approach results in significant reduction
of bandwidth and computational load to cloud infrastructure and improves overall

system efficiency.

Possible areas of future research include but are not limited to:
1. Adaptive selection of most suitable mesh networking algorithm. Given

challenge implicitly requires enabling monitoring of low-powered

distributed system.
2. Introduction of SDN control plane to the system for improvement of

network efficiency.

3. Combining routing with processing task mapping for increasing load

distribution efficiency.
4. Faulty and malicious nodes detection. Evaluation of using AI-empowered

fog nodes for this purpose.

REFERENCES

Agarwal, S., Kodialam, M., & Lakshman, T. V. (2013). Traffic engineering in software defined networks.

2013 Proceedings IEEE INFOCOM, 2211–2219. https://doi.org/10.1109/INFCOM.2013.6567024
Al Ameen, M., Liu, J., & Kwak, K. (2012). Security and privacy issues in wireless sensor networks for

healthcare applications. Journal of Medical Systems, 36(1), 93–101.
https://doi.org/10.1007/s10916-010-9449-4

Castro-Jul, F., Conan, D., Chabridon, S., Díaz Redondo, R. P., Fernández Vilas, A., & Taconet, C.
(2017). Combining Fog Architectures and Distributed Event-Based Systems for Mobile
Sensor Location Certification. Lecture Notes in Computer Science, 10586, 27–33.
https://doi.org/10.1007/978-3-319-67585-5_3

19

Chan, M., Estève, D., Escriba, C., & Campo, E. (2008). A review of smart homes-Present state and
future challenges. Computer Methods and Programs in Biomedicine, 91(1), 55–81.
https://doi.org/10.1016/j.cmpb.2008.02.001

Dias, L. M. S., Vieira, A. A. C., Pereira, G. A. B., & Oliveira, J. A. (2016). Discrete simulation
software ranking — A top list of the worldwide most popular and used tools. 2016 Winter
Simulation Conference (WSC), 1060–1071. https://doi.org/10.1109/WSC.2016.7822165

Diogenes, Y. (2017). Internet Of Things Security Architecture. Retrieved December 31, 2018, from
Microsoft website: https://docs.microsoft.com/en-us/azure/iot-fundamentals/iot-security-
architecture

Gope, P., & Hwang, T. (2016). BSN-Care: A Secure IoT-Based Modern Healthcare System Using Body Sensor

Network. IEEE Sensors Journal, 16(5), 1368–1376. https://doi.org/10.1109/JSEN.2015.2502401
Hussain, R., & Zeadally, S. (2019). Autonomous Cars: Research Results, Issues, and Future

Challenges. IEEE Communications Surveys and Tutorials, 21(2), 1275–1313.
https://doi.org/10.1109/COMST.2018.2869360

IEEE Communications Society. (2018). IEEE Standard for Adoption of OpenFog Reference
Architecture for Fog Computing. In The Institute of Electrical and Electronics Engineers.
https://doi.org/10.1109/IEEESTD.2018.8423800

Joshi, N. (n.d.). Fog vs Edge vs Mist computing. Which one is the most suitable for your business?
Retrieved June 21, 2020, from https://www.allerin.com/blog/fog-vs-edge-vs-mist-
computing-which-one-is-the-most-suitable-for-your-business

Kharchenko, K., & Beznosyk, O. (2018). The input file format for IoT management systems based
on a data flow virtual machine. 2018 IEEE 9th International Conference on Dependable

Systems, Services and Technologies (DESSERT) (139–142). IEEE.
https://doi.org/10.1109/DESSERT.2018.8409115

Kirkpatrick, K. (2013). Software-defined networking. Communications of the ACM, 56(9), 16–19.
https://doi.org/10.1145/2500468.2500473

Klügl, F., & Bazzan, A. L. C. (2012). Agent-Based Modeling and Simulation. AI Magazine, 33(3),
29. https://doi.org/10.1609/aimag.v33i3.2425

Laghari, S., & Niazi, M. A. (2016). Modeling the Internet of Things, Self-Organizing and Other
Complex Adaptive Communication Networks: A Cognitive Agent-Based Computing

Approach. PLOS ONE, 11(1), e0146760. https://doi.org/10.1371/journal.pone.0146760
Lewis, P. R., Platzner, M., Rinner, B., Tørresen, J., & Yao, X. (2016). Self-aware Computing

Systems. In P. R. Lewis, M. Platzner, B. Rinner, J. Tørresen, & X. Yao (Eds.), Natural
Computing Series. https://doi.org/10.1007/978-3-319-39675-0

Marz, N., & Warren, J. (2015). Big Data: Principles and best practices of scalable realtime data
systems (1st ed.). Manning Publication.

Mostafaei, H., & Menth, M. (2018). Software-defined wireless sensor networks: A survey. Journal
of Network and Computer Applications, 119(June), 42–56.

https://doi.org/10.1016/j.jnca.2018.06.016
Multimethod Simulation Modeling for Business Applications – AnyLogic Simulation Software.

(n.d.). Retrieved October 5, 2020, from https://www.anylogic.com/resources/white-
papers/multimethod-simulation-modeling-for-business-applications/

Petrenko, A., Kyslyi, R., & Pysmennyi, I. (2018a). Designing security of personal data in distributed
health care platform. Technology Audit and …, 2(42). https://doi.org/10.15587/2312-
8372.2018.141299

Petrenko, A., Kyslyi, R., & Pysmennyi, I. (2018b). Detection of human respiration patterns using
deep convolution neural networks. Eastern-European Journal of Enterprise Technologies,

4(9(94)), 6–13. https://doi.org/10.15587/1729-4061.2018.139997
Pysmennyi, I., Kyslyi, R., & Petrenko, A. (2019). Edge computing in multi-scope service-oriented

mobile healthcare systems. System Research and Information Technologies, (1), 118–127.
https://doi.org/10.20535/SRIT.2308-8893.2019.1.09

20

Rahmani, A. M., Liljeberg, P., Preden, J.-S., & Jantsch, A. (2018). Fog Computing in the Internet
of Things. Springer. https://doi.org/10.1007/978-3-319-57639-8

Ray, P. P. (2018). A survey on Internet of Things architectures. Journal of King Saud University - Computer
and Information Sciences, 30(3), 291–319. https://doi.org/10.1016/j.jksuci.2016.10.003

Oma, R., Nakamura, S., & Duolikun, D. (2019). A fault-tolerant tree-based fog computing model.
International Journal of Web and Grid Services, 15(3), 219.

https://doi.org/10.1504/IJWGS.2019.10022420
Satyanarayanan, M. (2017). Edge Computing. Computer, 50(10), 36–38.

https://doi.org/10.1109/MC.2017.3641639

Sedgewick, R., & Wayne, K. (2011). Algorithms. In Foreign Affairs (4th ed.). Westford: Addison-

Wesley.
Shi, W., Cao, J., Zhang, Q., Li, Y., & Xu, L. (2016). Edge Computing: Vision and Challenges. IEEE

Internet of Things Journal, 3(5), 637–646. https://doi.org/10.1109/JIOT.2016.2579198
Spot Instances – Amazon Elastic Compute Cloud. (n.d.). Retrieved July 7, 2020, from

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-spot-instances.html
Stojmenovic, I., & Wen, S. (2014). The Fog Computing Paradigm: Scenarios and Security Issues.

2, 1–8. https://doi.org/10.15439/2014F503
World Health Organization. (2010). Telemedicine Opportunities and developments in Member

States. In World Health Organization (Vol. 2).
Xiao, Y., & Zhu, Ch. (2017). Vehicular fog computing: Vision and challenges. 2017 IEEE

International Conference on Pervasive Computing and Communications Workshops
(PerCom Workshops), 6–9. https://doi.org/10.1109/PERCOMW.2017.7917508

Yogi, M. K., Sekhar, K. C., & Kumar, G. V. (2017). Mist Computing: Principles, Trends and Future
Direction. International Journal of Computer Science and Engineering, 4(7), 19–21.
https://doi.org/10.14445/23488387/IJCSE-V4I7P104

21

Applied Computer Science, vol. 16, no. 4, pp. 21–36

doi:10.23743/acs-2020-26

Submitted: 2020-11-04

Revised: 2020-11-24

Accepted: 2020-12-02

Forecasting, ARIMA, Inventory management, Lot-sizing,

Economies-of-scale, Production planning, Heuristic

Jack OLESEN*, Carl-Emil Houmøller PEDERSEN*,

Markus Germann KNUDSEN*, Sandra TOFT*,

Vladimir NEDBAILO*, Johan PRISAK** ,

Izabela Ewa NIELSEN*, Subrata SAHA*

JOINT EFFECT OF FORECASTING

AND LOT-SIZING METHOD

ON COST MINIMIZATION OBJECTIVE

OF A MANUFACTURER: A CASE STUDY

Abstract

Forecasting and lot-sizing problems are key for a variety of products

manufactured in a plant of finite capacity. The plant manager needs to put
special emphasis on the way of selecting the right forecasting methods with

a higher level of accuracy and to conduct procurement planning based on

specific lot-sizing methods and associated rolling horizon. The study is con-

ducted using real case data form the Fibertex Personal Care, and has evalu-

ated the joint influence of forecasting procedures such as ARIMA, exponen-

tial smoothing methods; and deterministic lot-sizing methods such as the

Wagner-Whitin method, modified Silver-Meal heuristic to draw insights on

the effect of the appropriate method selection on minimization of operational

cost. The objective is to explore their joint effect on the cost minimization

goal. It is found that a proficient selection process has a considerable impact

on performance. The proposed method can help a manager to save substantial

operational costs.

*Aalborg University, Department of Materials and Production, , DK 9220, Aalborg East, Denmark,

subrata.scm@gmai.com, saha@m-tech.aau.dk
** Production Manager, Fibertex Personal Care Group, Aalborg, Denmark

http://acs.pollub.pl/pdf/v16n4/2.pdf

22

1. INTRODUCTION

In a pragmatic scenario, there exists a natural link between forecasting

accuracy and inventory replacement decision. If the demand for a product is at the

higher side compared to the expected, i.e. estimated through scientific forecasting
tool or educated guessing, a firm can face a stock-out, and when the estimated

demand is below the actual level, the firm needs to incur additional holding or

operational costs. On the other hand, if a firm makes orders frequently, the policy
can reduce holding costs at the expense of higher ordering costs but can face

stockout situations. This problem necessitates the integration of the use of robust

statistical forecasting methods and lot-sizing decisions. However, many

organizations still count on the judgmental adjustment based approach by stock-
keeping unit managers for both slow- and fast-moving products (Fildes, Goodwin,

Lawrence & Nikolopoulos, 2009). Moreover, researchers and practitioners

considered the issue of accurate demand forecasting and inventory lot-sizing
decision as two independent decision-making processes, and without the integra-

tion of these two-decision processes, it can lead to a suboptimal outcome for

a firm (Syntetos, Nikolopoulos & Boylan, 2010). Recently, a project for a Danish-
based company Fibertex Personal Care (FPC) was undertaken, which is owned by

the Danish conglomerate Schouw & Co. to explore the joint performance of

scientific forecasting methods and lot-sizing formulas for time-varying demand

(Pedersen et al., 2020).
A single-item, single-level, incapacitated economic lot-size problem with

constant cost parameters, time-varying demand rate, and discrete opportunities for

replenishment is assumed. Note that the dynamic lot-sizing models under a deter-
ministic environment address the problem of finding an optimal production or

replacement planning to minimize total cost that includes fixed setup and holding

cost over the time horizon (Silver & Meal, 1973; Van Den Heuvel & Wagelmans,
2005; Saha, Das & Basu, 2010; Grubbström & Tang, 2012; Eriksen & Nielsen,

2016; Moon, Yoo & Saha, 2016; Nilakantan, Li, Tang & Nielsen, 2017, Kian et

al., 2020; Ho & Ireland, 2012). A fixed order cost is incurred for each order and

holding costs incur for each unused unit stored in each period (Drexl & Kimms,
1997). Although there exist several lot sizing techniques, the Wagner-Whitin

(WW) method has been extensively preferred because it can provide optimal

outcomes (Heady & Zhu, 1994). When determining the most suitable forecasting
performance measures, the product characteristics and inventory management

should be taken into consideration, since the objectives of forecasting and

inventory control usually are inconsistent. Xi et al. (2012) also study the effect of

linkage between forecasting and inventory management, and found that the
traditional forecasting performance measures decrease in performance without

proper link.

23

Inventories are considered to be one of the key assets of an organization, the
size of inventory can be determined through different forecasting techniques

(Silver, Pyke & Thomas, 2016). Inaccurate forecasts turn out to be expensive for

organization operations, in terms of overstocking or stock-outs and lost sales,

while the desired service level is not being met (Kourentzes, Trapero & Barrow,
2020). Inventory planning mainly focuses on when to order and how much to

order, the lot sizes. Lot-size in the context of this study represents the purchased

in a single transaction, while inventory lot-sizing involves determining and
scheduling lot sizes, so demand is satisfied in each period of the planning horizon.

Optimization of inventory lot-sizing refers to minimizing the total inventory cost,

by having a trade-off between large production lots, resulting in low ordering

costs, and lot-for-lot ordering resulting in low holding costs. Andriolo et al.,
(2014) classify lot-sizing into three different models; deterministic, stochastic, and

fuzzy models. Several extensions of inventory lot-sizing exists, but it consists of

a fixed or variable order quantity together with the periodic or continuous
frequency of review. The underlying parameters include: finite or infinite horizon,

single or multiple items, deteriorating or not, zero or non-zero fixed or varying

lead time, capacitated or incapacitated, deterministic, time-varying or constant, or
stochastic demand, single- or multi-echelon, back-ordering or not, fixed or rolling

planning horizon, with or without quantity discounts and with constant or fuzzy

cost parameters.

Many manufacturing firms feel pressured to cut costs and improve profitability
because of increasing competition and globalization (Świć & Gola, 2013). In this

regards, business system analytic are designed to facilitate the flow of information

and decent planning. However, those systems if not managed carefully, can result
in conflict and degrade performance. Researchers pointed out that, a group of

organizations are still facing implementation issues; many others fear imple-

mentation because of the costs and the pros and cons of implementation (Patalas-
Maliszewska, 2012). The most common causes of business system analytic

failures are a combination of high software customization combination, poor

planning and commitment, relying on legacy systems, lack of clarity about

required changes etc. The objective is to explore answer to the following research
question: Does there any scope to reduce cost by improving inventory planning

and forecasting support systems? Therefore, daily usages data was collected for

the 14th month for one product from the FPC, namely Spunbond PP. Several
exponential smoothing methods and ARIMA was employed for forecasting

requirements. For a lot-sizing decision, the WW method, and its coherent

heuristics like Silver-Meal (SM) heuristic (Baker, 1989), modified Silver-Meal

(MSM) heuristic, and EOQ heuristic was used. It was found that the company is
struggling to achieve desirable outcome through their existing business analytic

framework. Compare to existing literature where, forecasting and procurement

planning are mainly considered as independent decisions; this study evaluates
their joint impact on system wide performance. Therefore, the insights can help

24

them to improve the decision making process. The difference between the problem
investigated in this study from those in the existing lot-sizing and forecasting

problem is that our focus on the issue of actual implementation in the presence of

opportunities to exploit information and scale economies. Our findings suggest

that the performance of lot-sizing algorithms appear with different magnitudes
and the outcomes leads to a desirable for a short forecast horizon, and which

suggest that planning for long period does not necessarily result in a good

planning.

2. METHODS

In this section, an overview of forecasting methodology and lot-sizing techniques

used in this study is described.

2.1. Forecasting methods

In this study, two classes of forecasting methods was used: (i) exponential
smoothing, and (ii) ARIMA model. Forecasting accuracy always key in decision-

making process (Bocewicz, Nielsen, Banaszak & Thibbotuwawa, 2018; Nielsen,

Jiang, Rytter & Chen, 2014) and the comparative study will help the production

managers to explore their impact.

2.1.1. Exponential-smoothing model used in this study

Exponential models used in the study are in of the form presented below:

 𝑦𝑡 = 𝑎𝑡 + 𝑏𝑡𝑡 + 𝑠(𝑡) + 휀𝑡 , (1)

where: 𝑎𝑡, 𝑏𝑡, and 𝑠(𝑡) represent the time-varying mean; time-varying slope; and

time-varying seasonal component, respectively. In addition, 𝐴𝑡 and 𝐵𝑡 represent

smoothed level that estimates 𝑎𝑡 and 𝑏𝑡, respectively. 𝑆𝑡−𝑗 , 𝑗 = 0,…, 𝑠 − 1

estimates of the 𝑠(𝑡). The last components 휀𝑡 represent the exogenous random

shocks. In addition, it is assumed that 𝛼, 𝛾, and 𝛿 represent level, trend, and

seasonal smoothing weight, respectively. Therefore, larger (small) weights ensure
higher (lower) influence to newer observation. Based on the above notation, the

methods used in this study is summarized in Table 1.

25

Tab. 1. Exponential forecasting methods used in this study

Method Model equation

Simple
𝑦𝑡 = 𝑎𝑡 + 휀𝑡

𝐴𝑡 = 𝛼𝑦𝑡 + (1 − 𝛼) 𝐴𝑡−1

Brown
𝑦𝑡 = 𝑎𝑡 + 𝑏𝑡𝑡 + 휀𝑡

𝐴𝑡 = 𝛼𝑦𝑡 + (1 − 𝛼) 𝐴𝑡−1

Holt
𝑦𝑡 = 𝑎𝑡 + 𝑏𝑡𝑡 + 휀𝑡

𝐴𝑡 = 𝛼𝑦𝑡 + (1 − 𝛼)(𝐴𝑡−1 + 𝐵𝑡−1)

𝐵𝑡 = 𝛾(𝐴𝑡 − 𝐴𝑡−1) + (1 − 𝛾)𝐵𝑡−1

Seasonal

𝑦𝑡 = 𝑎𝑡 + 𝑠(𝑡) + 휀𝑡

𝐴𝑡 = 𝛼(𝑦𝑡 − 𝑆𝑡−𝑠) + (1 − 𝛼)𝐴𝑡−1

𝑆𝑡 = 𝛿(𝑦𝑡 − 𝐴𝑡−𝑠) + (1 − 𝛿)𝑆𝑡−𝑠

Winter additive

𝑦𝑡 = 𝑎𝑡 + 𝑏𝑡𝑡 + 𝑠(𝑡) + 휀𝑡

𝐴𝑡 = 𝛼(𝑦𝑡 − 𝑆𝑡−𝑠) + (1 − 𝛼)(𝐴𝑡−1 + 𝐵𝑡−1)

𝐵𝑡 = 𝛾(𝐴𝑡 − 𝐴𝑡−1) + (1 − 𝛾)𝐵𝑡−1

𝑆𝑡 = 𝛿(𝑦𝑡 − 𝐴𝑡−𝑠) + (1 − 𝛿)𝑆𝑡−𝑠

2.1.2. ARIMA

Time series data frequently experienced both trend and seasonal patterns and

might be non-stationary in nature. Therefore, autoregressive integrated moving

average (ARIMA(p,d,q)) models are widely used for forecasting (Mills, 2019),

where p, q, and d are positive integer numbers, referring to the order of the
autoregressive, moving average, and integrated parts of the model, respectively.

In an ARIMA model, the future value of a variable is assumed a linear function

of several past observations plus random errors. The linear function is based upon
three parametric components: auto-regression (AR), integration (I), and moving

average (MA). If d = 0, then the model reduces to an ARMA (p,q) model. If p = q

= 0, then it simply converts to the Moving Average (q) model. In general, the
ARIMA (p,0,0) model is formulated as follows:

𝑦𝑡 = 𝑐 + 𝜑1𝑦𝑡−1 + ⋯ + 𝜑𝑝𝑦𝑡−𝑝 + 휀𝑡 , (2)

where 𝑦𝑡 and 휀𝑡 are the actual value and random error, assumed to be independently

and identically distributed with a mean of zero and a constant variance of 𝜎2; at

period 𝑡, respectively; 𝑐 is the intercept(constant); 𝜑𝑝 are a finite set of parameters,

determined by linear regression. Similarly, the MA (ARIMA (0,0,q)) model is

formulated as follows:

𝑦𝑡 = 𝑐1– 𝜃1휀𝑡−1 − ⋯ − 𝜃𝑞휀𝑡−𝑞 + 휀𝑡 , (3)

𝜑𝑝 is a finite set of parameters; and 𝑐1 is the mean of the series. For the detailed

discussion on ARIMA, one can see Box et al., (2011), Taneja et al., (2016).

26

 2.1.3. Performance measure for forecasting

In this study, three performance measures is used to evaluate accuracy of

forecast as follows:

 Mean absolute error (MAE) =
1

𝑛
∑ |𝑦𝑡 − 𝑓𝑡

𝑛
𝑡=1 |,

 Mean absolute percentage error (MAPE) =
1

𝑛
∑ |

𝑦𝑡−𝑓𝑡

𝑦𝑡

𝑛
𝑡=1 |,

 Root mean squared error (RMSE) = √
1

𝑛
∑ (𝑦𝑡 − 𝑓𝑡)2𝑛

𝑡=1 .

Note that 𝑓𝑡 represents the forecasted value. For an accurate forecast, the value
of MAE, MAPE, and RMSE should be as small as possible.

2.2. Lot-sizing method for time-varying demand

Lot-sizing decision under the time-varying demand is always a subject of

importance to planning a robust replenishment decision (De Bodt, Gelders & Van

Wassenhove, 1984). A comprehensive study was conducted of the relative
performance among WW method (Wagner & Whitin, 1958), EOQ heuristic, SM

and MSM heuristics (Silver & Miltenburg, 1984). The cost performance of each

method was compared against the WW method by evaluating the percentage
deviation from the minimum total cost to holding and ordering cost.

 The following assumptions are made to study the impact of the discrete lot-

sizing model for the purpose of simplicity:
1. Demand is discrete (weekly basis) and known from forecasting information

in advance. Therefore, any considerations of nervousness or stochastic

parameters are excluded. The requirements of each week must be available

at the beginning of that period.
2. Requisitions are instantaneous; that is lead time is negligible. Shortages are

not allowed.

3. The entire procured quantity is delivered at a time and benefits from joint
replenishment are ignored.

4. Costs involved are inventory carrying cost and ordering cost. It is assumed

that both units carrying cost per period and ordering cost are constant
throughout the considered aggregated planning horizon and independent on

the replacement quantity.

27

The following notation is used to describe lot-sizing methods:

 Tab. 2. Notations

N number of periods(weeks)

i number of weeks, i ∈ {1··· ,N}

T the number of periods for the planning

Di requirement at ith week (forecast)

H Holding cost

A Ordering cost

2.2.1. Economic order quaint (EOQ)

When the demand rate is approximately constant, a fixed EOQ model can be
applied. However, when demand is a time-varying rate, one can ignore the

variability by considering the average demand rate (𝐷 =
∑ 𝐷𝑖

𝑇
𝑖=1

𝑇
) to calculate EOQ,

and the EOQ is applied when a requisition is made. Furthermore, �̅� can be based

on an infrequent estimate of the average demand per period, and therefore, it is
not necessary to reevaluate at each replenishment decision. Therefore,

first, 𝐸𝑂𝑄 = √
2𝐴𝐷

𝐻
 was computed and then at the time of a replenishment, the

optimal EOQ is adjusted to exactly satisfy the requirements of a forthcoming

integer number of consecutive periods to reduce the inventory holding cost (Silver
et al., 2016).

2.2.2. Wagner-Whitin method

The classical WW method was developed to find an optimal ordering policy

for deterministic and time-varying demand. The following formulation can be

used to present the algorithm:

𝐶(𝑡) = 𝑚𝑖𝑛 {𝐴 + 𝐶(𝑡 − 1), min
1≤𝑖≤𝑡

{𝐴 + 𝐶(𝑡 − 1) + ∑ ∑ 𝐻ℎ𝐷𝑘
𝑡
𝑘=ℎ+1

𝑡−1
ℎ=𝑖 }} (4)

where 𝐶(0) = 0, 𝐶(1) = 𝐴, and 𝐶(𝑡) represents the minimum cost of ordering

and holding inventory for periods 1 to 𝑡. Note that a replenishment decision only

takes place when the inventory level is zero. There is an upper limit to how far

before a period 𝑡 would be included its requirements (𝐷𝑡) in a replenishment

quantity. Eventually, the carrying costs become so high that it is less expensive to

have a replenishment arrive at the start of period j than to include its requirements

in a replenishment from earlier periods.

28

2.2.3. Silver-Meal Heuristic and its modification

The SM heuristic was designed to obtain an easy and effective way to obtain

a replenishment strategy under deterministic time-varying demand (Silver and

Meal, 1973). As mentioned by the authors, the heuristic is myopic in nature and
the goal is to choose a replenishment quantity by minimizing costs per unit time

only to the end of the period covered by the replenishment under consideration.

Then, the basic idea is to select the lowest period of T by minimizing the following
function:

𝐶𝑇 =
𝐴+𝐻 ∑ (𝑡−1)𝐷𝑡

𝑇
𝑡=1

𝑇𝐻
, 𝑇 = 1,2,3, …, (5)

where 𝐶𝑇 represents the normalized costs per unit time. Once a value of 𝑇 is

obtained, one needs to move the origin to the end of the period 𝑇 and repeat the
procedure to select the next replenishment interval. To improve the performance

of the classical SM heuristic, several modifications are proposed by the researchers.

The performance of one such modifications proposed by Silver and Miltenburg
(1984) is used to eradicate the truncated horizon problem to some extent and

reduce high-cost penalties.

3. CASE STUDY

The project is conducted with the Fibertex Personal Care (FPC) company and

a subsidiary of Danish conglomerate Schouw & Co. FPC is one of the largest

producers of Spunmelt Nonwovens for the hygiene industry. A regular visit was

made to one of their production units at Aalborg, Denmark, to observe how the

products are made and acquire detail knowledge about their production procedure
(Pedersen et al., 2020). The company currently relies on their forecasting and lot-

sizing method for a procurement decision and the regional staff sometimes need

to take decision qualitatively, which can increase operational cost. Based on
advice from specialists working on the FPC, first, one of their commonly used raw

material procured from several suppliers is selected, so that it allowed us to provide

a critical focus to explore ways to reduce holding costs and eradicate the possibili-
ties of potential shortages by improving forecasting performance. The objective

is to verify how the robust forecasting and lot-sizing methods can help them to

eradicate the problem.

29

4. RESULT ANALYSIS AND DISCUSSION

First, an overview of daily usages of the raw material over the previous 58

weeks is presented. Note that the material is used every day (7 days) and the

corresponding sequence plot is presented in Figure 1.

Fig. 1. Sequence plot of daily usage for the raw material

Figure 1 demonstrates that the daily usage almost follows a steady pattern,
although the certain drop at week 52 is due to the Christmas Holiday. Based on

the actual data, a forecast for the upcoming 14 weeks was made and results are

presented below in Table 3.
Note that one cannot conclude about best forecasting methods, preference

measures such as RMSE and MAE are higher for ARIMA (2,0,2), but MAPE

remains high for ARIMA (0,2,2). Till we use results for ARIMA (2,0,2) for further

analysis of determining performance lot-sizing methods. Statistical forecasting
techniques have also advanced significantly; however, those have not been used

extensively at an operational level mainly due to their complexity (Syntetos,

Boylan & Disney, 2009). In our experience, simple exponential forecasting is
sometime outperformed by ARIMA, but which might not be practiced while

forecasting at the FPC. Next, an overview of lot-sizes based on the forecasted data

was computed and presented in Table 4.

30

Tab. 3. Performance of various forecasting methods

Forecast for weekly requirement of SPUNBOND PP

Method Simple Brown Holt Simple Seasonal

Stationary R2 0.210 0.680 0.687 0.593

RMSE 164391.734 169147.082 164748.279 162363.999

MAPE 23.578 24.080 23.246 22.473

MAE 124825.799 128026.114 125627.671 123059.797

Parameter
α = 0.210 α = 0.106

α = 0.298

γ = 0.00002

α = 0.276

δ = 0.095

Method ARIMA (1,1,1) ARIMA (1,1,0) ARIMA (0,1,1) ARIMA (1,0,1)

Stationary R2 0.247 0.075 0.189 0.221

RMSE 159651.828 177013.880 165675.733 160860.753

MAPE 22.065 20.597 23.35 22.476

MAE 122226.078 136575.496 125573.318 121335.635

Parameter

C = -4701.925

MA = 0.364

AR = 0.922

C = -5680.416

AR = -0.274

C = 1073.806

MA = 0.743

C = 907716.15

AR = 0.536

MA = 0.061

Method ARIMA (2,2,2) ARIMA (2,2,0) ARIMA (2,0,2) ARIMA (0,2,2)

Stationary R2 0.693 0.417 0.247 0.57

RMSE 163266.4 224298.004 158505.502 192574.644

MAPE 21.823 24.454 22.363 20.233

MAE 125013.8 173679.233 119659.383 151371.789

Parameter

C = -35627.50

AR Lag 1 = 0.233

AR Lag 2 = -0.164

MA Lag 1 = 1.73

MA Lag 2 = -0.73

C = -23150.01

AR Lag 1 = -0.769

AR Lag 2 = -0.407

C = 901727.61

AR Lag 1 = 1.011

AR Lag 2 = -0.070

MA Lag 1 = 0.571

MA Lag 2 = 0.206

C = -19943.330

MA Lag 1 = 0.877

MA Lag 2 = 0.112

Method ARIMA (2,0,0) ARIMA (0,2,0) ARIMA (0,0,2) Winter Additive

Stationary R2 0.22 0.01 0.211 0.593

RMSE 160874.79 292270.10 161919 162639.789

MAPE 22.46 29.13 22.83 22.447

MAE 121356.89 227842.62 122334.5 123234.070

Parameter

C = 907446.4 AR

Lag 1 = 0.481

AR Lag 2 = 0.019
C = -43233.86

C = 905563.110

MA Lag 1 = -0.478

MA Lag 2 = -0.172

α = 0.281

γ = 0.001

δ = 0.096

31

Tab. 4. Performance of different lot-sizing methods based on the forecasted data

Week
Requirement

(kg)
EOQ SM WH SMM

1 5444368.49 17298082.39 17298082.39 23438060.67 17298082.39

2 5832505.31

3 6021208.59

4 6139978.28 18616491.73 18616491.73 18616491.73

5 6214731.83 18767908.19

6 6261781.62

7 6291394.75 18923192.26 18923192.26 25252340.04

8 6310033.23 18960945.29

9 6321764.28

10 6329147.78 6329147.78 6329147.78

Total

cost

6137,18 6137,18 5850,75 5.867,4701

Note that lot-sizes are determined based on the aggregated weekly require-

ments. One can easily found that the company can minimize cost through the

appropriate selection of lot-sizing methods. According to the results, the
efficiency of the heuristics of the WW increased compared to others. To present

an overview of cost-saving, sensitivity analysis was conducted, and the results are

presented in Figures 2a and 2b.

(a) (b)

Fig. 2. Total cost comparison among lot-sizing methods EOQ, SM, MSM vs WW

(10weeks horizon) from (a) 50% reduction of holding cost to 200% increment

and (b) from 50% reduction of ordering cost to 200% increment

Figures 2a and 2b demonstrate that a company can save 0–16% cost through
an appropriate replenishment decision. However, as reported by Hopp and Spearman

(2011) no commercial MRP package actually uses WW algorithm. Therefore, this

remains another dimension of the challenge faced by production managers.

32

Finally, this study focuses on the impact of aggregated planning horizon
selection problem (Pedersen et al., 2020). Note that the factors contributing to the

actual lot-sizing calculation and selection of optimization schemes mainly rely on:

(1) the ratio between holding and ordering costs, and (2) demand pattern at the

end of the horizon. Due to the end-effect, which exists due to the conversion from
the T-period model horizon to the truncated n-period horizon, the second factor is

important to include when comparing inventory lot-sizing performance (Van Den

Heuvel & Wagelmans, 2005; Bach, Bocewicz, Banaszak & Muszyński, 2010).
The proportional penalty of truncation is dependent on cost parameter also, even

though the existence is a truism since some lot-sizing methods, e.g. SM Heuristic,

are designed to cope with the situation of having a demand pattern continuing

beyond the planning horizon. This means that “a replenishment is often scheduled
unnecessarily close to the end of the horizon" (Silver and Miltenburg, 1984).

As illustrated by above figures, the cost penalty of the inventory lot-sizing

methods depends on both the holding and ordering cost, since the outcome of one
would be the inverse function of the other; it is the ratio between the two costs

that is of importance.

Fig. 3. Effect of lot-sizing methods with an integrated planning horizon

The graphical representation of cost per week when the aggregated planning
horizons are considered as 4, 7, 10, and 13 weeks, respectively. Including all

variations in the sensitivity analysis, the average penalty for implementation of

the lot-sizing formula is nearly 17% , when only including the variations where

an effect of the truncated horizon was existent, the average penalty of the SM
heuristic was increased. It can be interpreted that the cost penalty in general

increases, and becomes more diversified, between the lot sizing methods, as the

ratio between ordering cost and holding cost increases when the holding cost
decreases. When there is a difference between the penalty of SM heuristic and the

33

MSM heuristic, it is due to the penalty of the truncated horizon, since the MSM
heuristic is performing optimally, underlining the importance of considering the

effect. This is consistent with the conclusions of Kazan et al. (2000).

5. CONCLUSIONS

Integrated forecasting and inventory management have received considerable
attention over several decades because of their implications for replenishment

decision-making at both the strategic level and operational level for organizations.

Although this pluralism is healthy from the perspective of knowledge advancement,

one of the key issues faced by production managers in practice is how to integrate
them? Moreover, the existing MRP or EPR system implementation is precisely

defining the lot-sizing policy. Due to its computational complexity, the effect of

the robust lot-sizing technique is ignored and a lot-for-lot policy is till practiced
(Grubbström, Bogataj & Bogataj, 2010). On the other hand, statistical-forecasting

techniques have also advanced significantly; however, they have not been used

extensively at an operational level primarily due to their complexity (Syntetos et
al., 2009). The dynamic lot-sizing problem behind our problem concerns related

to a production plan that minimize total holding and ordering cost. Results

demonstrates that the performance of EOQ or SM can deviate by 17% from the

minimum cost obtained from the WW method; thus it is clear that WW dominates
on both criteria.

Over the last few decades, the business environment of many industries has

experienced great changes due to the integration of various frameworks for
business analysis such as Collaborative Planning Forecasting and Replenishment

(CPFR), Supply Chain Operations Reference-model (SCOR). However, researchers

pointed out there are many hurdles both in-house and among the business partners
that prevent or slow down business systems integration (Patalas-Maliszewska

& Kłos, 2017; Alotaibi, 2016; Bocewicz, Nielsen & Banaszak, 2019). Indeed,

approximately 66-70% of ERP implementation projects failed to accomplish their

implementation objectives (Zabjek, Kovačič & Štemberger, 2009). In recent
empirical research, Ali & Miller, 2017 also found that one of the most problematic

and yet unresolved areas of ERP implementation is identifying and agreeing on

the industry-standard implementation model. Moreover, as argued by Kourentzes
et al. (2020), the inventory gains originate a more difficult optimization problem.

In the context of MRP, Li & Disney (2017) also found that MRP systems are not

always fully implemented, generate some consistency issues, and are unable to

generate accurate data. This study took the initiative in this direction, and reported
that although the company is tending towards the integration of modern business

analytic, but struggling to achieve desirable performances. This is because the

system they are trying to implement needs to be upgraded by introducing robust
lot-sizing methods and train their work forces to adopt the process.

34

 The investigation of performance of lot-sizing algorithms is always a classical
topic in the production planning (Gola, 2014). This study has several limitations

and can be extended in several directions. This study focused on a single-item

setting, and purchase cost remains constant, there is no uncertainty in demand,

and consequently the effect of safety stock. Therefore, an interesting area of future
study is to consider multi-item production planning under demand uncertainty.

Implementation of the presented framework for a rolling horizon would make the

proposed framework closer to planning in practice, while it would also change the
concerns of the truncated horizon effect, and its influence on the comparison

between lot-sizing methods.

REFERENCES

Ali, M., & Miller, L. (2017). ERP system implementation in large enterprises–a systematic

literature review. Journal of Enterprise Information Management, 30(4), 666–692.
https://doi.org/10.1108/JEIM-072014-0071

Alotaibi, Y. (2016). Business process modelling challenges and solutions: a literature review.
Journal of Intelligent Manufacturing, 27(4), 701–723. https://doi.org/10.1007/s10845-014-
0917-4

Andriolo, A., Battini, D., Grubbström, R. W., Persona, A., & Sgarbossa, F. (2014). A century of
evolution from Harris’s basic lot size model: Survey and research agenda. International
Journal of Production Economics, 155, 16-38. https://doi.org/10.1016/j.ijpe.2014.01.013

Bach, I., Bocewicz, G., Banaszak, Z. A., & Muszyński, W. (2010). Knowledge based and CP-driven
approach applied to multi product small-size production flow. Control and Cybernetics, 39,
69–95.

Baker, K. R. (1989). Lot-sizing procedures and a standard data set: a reconciliation of the literature.
Journal of Manufacturing and Operations Management, 2(3), 199–221.

Bocewicz, G., Nielsen, P., & Banaszak, Z. (2019). Declarative modeling of a milk-run vehicle
routing problem for split and merge supply streams scheduling. Advances in Intelligent
Systems and Computing, 853, 157–172. https://doi.org/10.1007/978-3-319-99996-8_15

Bocewicz, G., Nielsen, P., Banaszak, Z., & Thibbotuwawa, A. (2018). Routing and scheduling of
unmanned aerial vehicles subject to cyclic production flow constraints. In International
Symposium on Distributed Computing and Artificial Intelligence (pp. 75–86). Springer,
Cham. https://doi.org/10.1007/978-3-319-99608-0_9

Box, G. E., Jenkins, G. M., & Reinsel, G. C. (2011). Time series analysis: forecasting and control
(Vol. 734). John Wiley & Sons. https://doi.org/0.1111/jtsa.12194

De Bodt, M. A., Gelders, L. F., & Van Wassenhove, L. N. (1984). Lot sizing under dynamic demand
conditions: A review. Engineering Costs and Production Economics, 8(3), 165–187.

https://doi.org/10.1016/0167188X(84)90035-1
Drexl, A., & Kimms, A. (1997). Lot sizing and scheduling—survey and extensions. European Journal of

operational research, 99(2), 221–235. https://doi.org/10.1016/S0377-2217(97)00030-1
Eriksen, P. S., & Nielsen, P. (2016). Order quantity distributions: Estimating an adequate

aggregation horizon. Management and Production Engineering Review, 7(3), 9–48.
https://doi.org/10.1515/mper-2016-0024

Fildes, R., Goodwin, P., Lawrence, M., & Nikolopoulos, K. (2009). Effective forecasting and
judgmental adjustments: an empirical evaluation and strategies for improvement in
supplychain planning. International journal of forecasting, 25(1), 3–23.

https://doi.org/10.1016/j.ijforecast.2008.11.010

35

Gola A. (2014) Economic Aspects of Manufacturing Systems Design. Actual Problems of Economics,
156(6), 205–212.

Grubbström, R. W., & Tang, O. (2012). The space of solution alternatives in the optimal lotsizing
problem for general assembly systems applying MRP theory. International Journal of
Production Economics, 140(2), 765777. https://doi.org/10.1016/j.ijpe.2011.01.012

Grubbström, R. W., Bogataj, M., & Bogataj, L. (2010). Optimal lotsizing within MRP theory.

Annual Reviews in Control, 34(1), 89–100. https://doi.org/10.3182/20090603-3-RU-
2001.0562

Heady, R. B., & Zhu, Z. (1994). An improved implementation of the Wagner-Whitin Algorithm.
Production and Operations Management, 3(1), 55–63. https://doi.org/10.1111/j.1937-
5956.1994.tb00109.x

Ho, C. J., & Ireland, T. C. (2012). Mitigating forecast errors by lot-sizing rules in ERP-controlled
manufacturing systems. International Journal of Production Research, 50(11), 3080–3094.
https://doi.org/10.1080/00207543.2011.592156

Hopp, W. J., & Spearman, M. L. (2011). Factory physics. Waveland Press.

Kazan, O., Nagi, R., & Rump, C. M. (2000). New lot-sizing formulations for less nervous production
schedules. Computers & Operations Research, 27(13), 1325–1345.
https://doi.org/10.1016/S0305-0548(99)00076-3

Kian, R., Berk, E., Gürler, Ü., Rezazadeh, H., & Yazdani, B. (2020). The effect of economies-of-
scale on the performance of lot-sizing heuristics in rolling horizon basis. International
Journal of Production Research, 1–15. https://doi.org/10.1080/00207543.2020.1730464

Kourentzes, N., Trapero, J. R., & Barrow, D. K. (2020). Optimising forecasting models for inventory
planning. International Journal of Production Economics, 225, 107597.

https://doi.org/10.1016/j.ijpe.2019.107597
Li, Q., & Disney, S. M. (2017). Revisiting rescheduling: MRP nervousness and the bullwhip effect.

International Journal of Production Research, 55(7), 1992–2012.
https://doi.org/10.1016/j.ijpe.2019.107597

Mills, T. C. (2019). Applied Time Series Analysis: A Practical Guide to Modeling and Forecasting.
Academic Press.

Moon, I., Yoo, D. K., & Saha, S. (2016). The distribution-free newsboy problem with multiple
discounts and upgrades. Mathematical Problems in Engineering, 2017253.

https://doi.org/10.1155/2016/2017253
Nielsen, P., Jiang, L., Rytter, N. G. M., & Chen, G. (2014). An investigation of forecast horizon and

observation fit’s influence on an econometric rate forecast model in the liner shipping
industry. Maritime Policy & Management, 41(7), 667–682.
https://doi.org/10.1080/03088839.2014.960499

Nilakantan, J. M., Li, Z., Tang, Q., & Nielsen, P. (2017). MILP models and metaheuristic for
balancing and sequencing of mixed-model two-sided assembly lines. European Journal of
Industrial Engineering, 11(3), 353-379. https://doi.org/10.1504/EJIE.2017.084880

Patalas-Maliszewska, J. (2012). Assessing the Impact of Erp Implementation in the small
Enterprises. Foundations of management, 4(2), 51-62. https://doi.org/10.2478/fman-2013-
0010

Patalas-Maliszewska, J., & Kłos, S. (2017). A Study on Improving the Effectiveness of a Manufacturing
Company in the Context of Knowledge Management–Research Results. Foundations of
Management, 9(1), 149160. https://doi.org/10.1515/fman-2017-0012

Pedersen, C. H., Nedbailo, V., Knudsen, M. G., Olesen, J., & Toft, S. (2020). Analysis and
development of an operations system. P4 Semester Project, GBE4 gr. 16/2.016. Global
Business Engineering, Aalborg University.

Saha, S., Das, S., & Basu, M. (2010). Optimal pricing and production lot-sizing for seasonal products
over a finite horizon. International Journal of Mathematics in Operational Research, 2(5),
540–553. https://doi.org/10.1504/IJMOR.2010.03434

36

Silver, E. A., & Meal, H. C. (1973). A heuristic for selecting lot size quantities for the case of a
deterministic time-varying demand rate and discrete opportunities for replenishment.
Production and Inventory Management, 2, 64–74.

Silver, E. A., Pyke, D. F., & Thomas, D. J. (2016). Inventory and production management in supply
chains. CRC Press.

Silver, E., & Miltenburg, J. (1984). Two modifications of the SilverMeal lot sizing heuristic.

INFOR: Information Systems and Operational Research, 22(1), 56–69.
https://doi.org/10.1080/03155986.1984.11731912

Świć, A., & Gola, A. (2013). Economic Analysis of Casing Parts Production in a Flexible
Manufacturing System. Actual Problems of Economics, 141(3), 526–533.

Syntetos, A. A., Boylan, J. E., & Disney, S. M. (2009). Forecasting for inventory planning: a 50-
year review. Journal of the Operational Research Society, 60, 149–S160.
https://doi.org/10.1057/jors.2008.173

Syntetos, A. A., Nikolopoulos, K., & Boylan, J. E. (2010). Judging the judges through accuracy-
implication metrics: The case of inventory forecasting. International Journal of Forecasting,

26(1), 134-143. https://doi.org/10.1016/j.ijforecast.2009.05.016
Taneja, K., Ahmad, S., Ahmad, K., & Attri, S. D. (2016). Time series analysis of aerosol optical

depth over New Delhi using Box–Jenkins ARIMA modeling approach. Atmospheric
Pollution Research, 7(4), 585596. https://doi.org/10.1016/j.apr.2016.02.004

Van Den Heuvel, W., & Wagelmans, A. P. (2005). A comparison of methods for lot-sizing in a
rolling horizon environment. Operations Research Letters, 33(5), 486–496.
https://doi.org/10.1016/j.orl.2004.10.001

Wagner, H. M., & Whitin, T. M. (1958). Dynamic version of the economic lot size model.

Management science, 5(1), 89-96. https://doi.org/10.1287/mnsc.5.1.89
Xi, M. H., Wang, H. X., & Zhao, Q. H. (2012). Regression Based Integration of Demand Forecasting

and Inventory Decision. Advanced Materials Research, 433, 2954–2956.
https://doi.org/10.4028/www.scientific.net/AMR.433-440.2954

Zabjek, D., Kovačič, A., & Štemberger, M. I. (2009). The influence of business process management
and some other CSFs on successful ERP implementation. Business Process Management
Journal, 15(4), 588–608. https://doi.org/10.1108/14637150910975552

37

Applied Computer Science, vol. 16, no. 4, pp. 37–47

doi:10.23743/acs-2020-27

Submitted: 2020-11-28

Revised: 2020-12-04

Accepted: 2020-12-11

ECG, software, algorithm testing, heart

Marcin MACIEJEWSKI [0000-0001-9116-5481]*,

Barbara MACIEJEWSKA[0000-0001-6797-7519]** ,

Robert KARPIŃSKI[0000-0003-4063-8503]***,

Przemysław KRAKOWSKI [0000-0001-7137-7145]****

ELECTROCARDIOGRAM GENERATION

SOFTWARE FOR TESTING OF PARAMETER

EXTRACTION ALGORITHMS

Abstract
Fast and automated ECG diagnosis is of great benefit for treatment of cardi-

ovascular and other conditions. The algorithms used to extract parameters

need to be precise, robust and efficient. Appropriate training and testing

methods for such algorithms need to be implemented for optimal results.

This paper presents a software solution for computer ECG generation and

a simplified concept of testing process. All the parameters of the resulting

generated signal can be tweaked and set properly. Such software can also

be beneficial for training and educational use.

1. INTRODUCTION

Machine – supported diagnosis has been a hot topic ever since first computers

became available. This trend has become more noticeable with the advent of IoT

and interconnectivity (Rincón et al., 2009). It has become even more relevant now

due to the pandemic situation preventing patients from direct interaction with

* Lublin University of Technology, Faculty of Electrical Engineering and Computer Science,

Institute of Electronics and Information Technology, Nadbystrzycka 36, 20-618 Lublin,

Poland, m.maciejewski@pollub.pl
** Independent researcher, Lublin, Poland, barbarasmaciejewska@gmail.com
*** Lublin University of Technology, Faculty of Mechanical Engineering, Department of Machine
Design and Mechatronics, Nadbystrzycka 36, 20-618 Lublin, Poland, r.karpinski@pollub.pl
**** Medical University of Lublin, Chair and Department of Traumatology and Emergency
Medicine, Staszica 11, 20-081 Lublin, Poland, przemyslawkrakowski@umlub.pl

http://acs.pollub.pl/pdf/v16n4/3.pdf
https://orcid.org/0000-0001-9116-5481
https://orcid.org/0000-0001-6797-7519
https://orcid.org/0000-0003-4063-8503
https://orcid.org/0000-0001-7137-7145

38

medical staff. Introduction of widespread online diagnostics systems for various
medical conditions seems to be inevitable, and these will become a key element

in future healthcare systems (Surtel, Maciejewski & Maciejewska, 2013).

However, local patient monitoring systems are not without their own limitations.

Not all procedures are safe to be performed remotely by the patients or their family
due to its invasiveness. For safety reasons, it is recommended to use mostly non

– invasive devices to measure parameters potentially crucial to patient condition

assessment (Karpiński, Machrowska & Maciejewski, 2019; Machrowska,
Karpiński, Krakowski & Jonak, 2019; Maciejewski et al., 2014).

Electrocardiography, is one of the most commonly used method of patient

examination. The procedure is simple and non – invasive, as it uses surface

electrodes which need to be placed on the skin in certain points. The weak voltage
on the skin surface is amplified and can be viewed on a scope directly, or sampled

by and A/D converter. The signal is then processed to obtain valuable information

about circulatory system. Such information is vital both in routine assessment as
well as in acute, life-threatening conditions. ECG can be performed with the use

of simple, cheap and light devices at home, in the field or in smaller clinics,

or more advanced devices with additional functionality in hospitals and various
care centers.

2. ECG BASICS

Heart is an organ composed of muscle tissue and is located to the left of the

sternum. It can be divided into left and right ventricle and left and right atrium.
These chambers are separated by valves. In healthy individuals an electric impulse

is generated in the sinoaortal node, than it travels to the atrioventricular node and

to two bundles of His. This conductive cycle causes atrial contractions, followed
by ventricle contraction and depolarization (Reisner, Clifford & Mark, 2006).

Blood is being pumped to the lungs and the rest of the body. The electrical change

can be visualized by a vector of electric potential that changes in time. It is

possible to measure the electrical activity of the heart using specialized low
voltage amplifiers. The resulting signal carries significant information that can be

used to diagnose various heart conditions. It can be divided into waves, segments,

intervals and complexes (Waechter, 2012).

39

Fig. 1. Wiggers diagram – the diagram shows the aortic, atrial and ventricular pressure

and the ventricular volume in relation to the ECG signal

The figure 1 (Xavax, 2016) presents changes in parameters during heart cycles.

During diastole aortic pressure decreases and blood flows into the ventricles.
When electrical activity forces the muscles to contract the ventricular pressure

increases and blood is pumped from the heart to the system.

Fig. 2. Blood flow(A) and electrical activity (B) of the heart

Figure 2 (Costa, 2016) presents the direction of blood flow and electrical

activity of the heart. Electrical pulse is generated in the sinoatrial node. The potential

wave then travels to the rest of the heart causing contraction of muscles.

40

Fig. 3. Electrode placement during three lead ECG according

to the Einthoven triangle (Burhan, 2011)

The figure above presents basic method for ECG electrode placement.

The electrodes can be placed on arms and left leg or on torso and abdomen.
Improper placement, inadequate skin preparation and damaged cabling are

frequent causes of errors during procedure. These errors can result in significant
artifacts or even make the signal unusable.

Fig. 4. Time parameters of the ECG signal commonly used for diagnosis

41

During ECG signal processing it is important to extract the following parame-
ters (Luthra, 2007):

 presence of P and T waves and QRS complex in the proper order

 position, duration and amplitude of P and T waves and QRS complex,

 duration of the PR and QT intervals,

 duration of the PR and ST segments,

 length of the heart cycle, commonly calculated as time before consecutive

QRS complexes,

 variability of the previously mentioned parameters.

Abnormalities in values of these parameters can be directly tied to various
conditions, like arrythmias, fluttering, branch blocks, abnormal heart positioning

etc. For example, changes can be caused by electrolytic imbalance, drugs, hyper-

and hypothermia, anxiety and overall nervous system condition.

3. ECG DIAGNOSIS AND CLASSIFICATION

Classical ECG diagnostics is based on expert knowledge and manual signal

analysis (Waechter, 2012). It is prone to human errors and the results are often

presented using descriptive language, like “slightly raised”, “delayed” etc., which
makes it difficult for later use the data in comparative study (Maciejewski, 2019).

Nowadays, it is a common practice to include computer aided diagnosis methods

into the decision process (Omiotek, 2017; Rehman, Mustafa & Israr, 2013). By basing
the decision on a large set of predetermined rules and cases in the database it is

possible to positively influence the overall process by helping or hinting the

specialist (Omiotek, Dzierżak & Uhlig, 2019).

Fig. 5. A simplified overview of the ECG diagnosis process

42

Computer aided ECG diagnosis is based on a set of steps. These include:

 data acquisition using a sensor or a bank of sensors,

 signal preprocessing including filtration and denoising,

 feature extraction using chosen algorithms,

 classification and comparison with available knowledge base,

 presenting diagnosis.

Each step is complex in it is own way (Boulakia, Cazeau, Fernández, Gerbeau

& Zemzemi, 2010). Various errors can be made during acquisition due to improper

electrode placement, electronical malfunctions and data recording (Barill & SlikkStat
Learning Inc., 2012). Filtration and denoising can be challenging when significant

biological or technical artifacts are present in the signal (Rehman, Mustafa & Israr,

2013). Due to these factors it is sometimes hard to extract features and perform
classification. These artifacts include signal drift, electrical activity of skeletal and

respiratory muscles, changes in voltage due to varying skin impedance, power line

interference, quantization noise etc (Bronzino, 2000; Clifford, Azuaje & Mcsharry,

2006). Filtration can be performed using, classical filters and FFT or wavelet
methods (Ławicki & Zhirnova, 2015). During this process certain frequencies like

50 or 60Hz, which correspond with power line interference, need to be filtered out

(Bronzino, 2000), although improper filter selection can lead to loss of sharp
inflections needed to adequately process the QRS complex.

Feature extraction is usually performed in steps (Zhou, Hou & Zuo, 2009).

Firstly, the position of the QRS complex is determined using various methods
(Bronzino, 2000; Pan & Tompkins, 1985). Afterwards, positions of P and T waves

are calculated. Lastly, durations and time intervals are estimated. Especially the

last step can be hard, as the waves often are lacking a significant detectable

inflection point in the beginning and end of the wave. After that it is necessary to
determine parameter variability between consecutive heart cycles. In some cases

when the condition presents itself randomly and it’s occurrence is separated by

long intervals of normal heart function it is necessary to perform long term
analysis. Various acute heart conditions result in significant electrical activity

variations, which in turn presents a real challenge for the designers of algorithms

for ECG processing. Errors in QRS position detection are the most meaningful, as
it is often used as a reference point in further analysis (Maciejewski & Dzida,

2017). Typical approaches use:

 filter banks,

 thresholding,

 polynomial estimation,

 frequency analysis,

 state machines,

 mixture of the above.

43

More sophisticated and complex software can combine several approaches or
determine the best approach for each individual case.

Fig. 6. Computer aided diagnosis process.

4. ECG GENERATION SOFTWARE

As previously shown, ECG analysis is a complex process. Multiple factors can

result in improper results. It is possible to access vast, free databases containing
ECG signals obtained from both healthy individuals and patients suffering from

various cardiacconditions. This data usually has been processed and analyzed by

a specialist, and is accompanied by diagnostic data. All mentioned above facts
account for simplicity of ECG processing algorithms designing and testing. This

process, however, can be improved.

Let’s consider a situation, when one has to determine robustness of a method
while processing a noisy signal. It is necessary to check the method’s performance

for multiple SNR(Signal to Noise Ratio). One has to perform these steps:

1. Choose a set of data as a basis for algorithm testing.

2. Extract ECG parameters and use them as reference points.
3. Apply noise to the signal.

4. Extract parameters and compare them with reference points.

5. Repeat until all values of SNR are tested.

44

A lot depends on the first two steps. It is not possible to compile a data set
spanning all probable cases with varying heart rate or amplitudes and lengths of

waves and QRS complex. Creating robust and accurate extraction algorithms

requires testing them in as many cases as possible. This is where ECG generation

software comes in.
The purpose of this type of application is generating ECG signals on demand

based on input parameters. In this example a Java application was created. The

software has the following functionalities:
1. Reading from an input file containing a set of parameters for further ECG

generation. These include amplitudes and lengths of waves and lengths of

pauses between them. Additionally, it is possible to include a randomness

factor for each parameter. It is possible to generate signals corresponding
to a chosen number of heart cycles.

2. Generating the signal based on the input file. The signal is constructed from

exponential functions and linear segments.
3. Generating a .csv file containing information about the values of parameters

for every heart cycle separately. It is necessary to save this information

when randomness factor was introduced. This is the main advantage of this
proposed approach.

Having access to information corresponding to each heart cycle means, that it

is possible to directly compare the results from the ECG processing algorithm
under test with actual values. Generating very long signals with multiple heart

cycles and introducing randomness results in large sets of input data. It is also

easy to automate robustness tests by introducing additional noise of chosen type
and amplitude.

Fig. 7. Testing parameter extraction methods using ECG generation software

45

Additionally, it is possible to prepare a set of input parameters for various heart
conditions like tachycardia, bradycardia etc. The tool is being used in the teaching

process of biomedical engineering students at Lublin Institute of Technology,

Poland.

Sample signals generated by the software are presented in the figures below,
with additional markers corresponding to input parameters.

Fig. 8. Input parameters used by the software – both amplitude parameters (A)

and time parameters (B) are used

5. FUTURE RESEARCH AND DEVELOPMENT

The software presented in this paper can be improved in many ways. Firstly,
introduction of a proper GUI with parameter input windows and on-line heart

cycle visualization will make it more intuitive to use by students and staff. Simpler

saving and loading of parameter files will be introduced. Furthermore, an inbuilt

database of various sets of parameters corresponding to heart conditions will be
designed and implemented. Afterwards, methods for introduction of noise and

artifacts will be included. Lastly, this software may become available to download

in Java version or Python after porting.

46

REFERENCES

Barill, T., & SlikkStat Learning Inc. (2012). The six second ECG: A practical guide to basic and 12

lead ECG interpretation. Palm Springs, Calif.: SkillStat Learning Inc.
Boulakia, M., Cazeau, S., Fernández, M. A., Gerbeau, J.-F., & Zemzemi, N. (2010). Mathematical

Modeling of Electrocardiograms: A Numerical Study. Annals of Biomedical Engineering,

38(3), 1071–1097. https://doi.org/10.1007/s10439-009-9873-0
Bronzino, J. D. (2000). The biomedical engineering handbook. Boca Raton, Fla.: CRC Press

in cooperation with IEEE Press.
Burhan, A. (2011). Einthoven triangle ECG. Retrieved 19 December 2020, from Medicalopedia website:

https://mk0medicalopediwjftu.kinstacdn.com/wp-content/uploads/2011/11/einthoven-triangle-
ecg.jpg

Clifford, G. D., Azuaje, F., & Mcsharry, P. (2006). ECG statistics, noise, artifacts, and missing data.
Advanced Methods and Tools for ECG Data Analysis, 6, 18.

Costa, C. M. (2016). Computational Modeling of Bioelectrical Activity of the Heart at Microscopic

and Macroscopic Size Scales (Doctoral dissertation). Karl-Franzens Universit ̈at Graz, Graz.
https://doi.org/10.13140/RG.2.2.26259.99365

Karpiński, R., Machrowska, A., & Maciejewski, M. (2019). Application of acoustic signal processing
methods in detecting differences between open and closed kinematic chain movement for the
knee joint. Applied Computer Science, 15(1), 36–48. https://doi.org/10.23743/acs-2019-03

Ławicki, T., & Zhirnova, O. (2015). Application of curvelet transform for denoising of CT images.
In Photonics Applications in Astronomy, Communications, Industry, and High-Energy
Physics Experiments 2015, (966226). International Society for Optics and Photonics.

https://doi.org/10.1117/12.2205483
Luthra, A. (2007). ECG made easy. New Delhi; Tunbridge Wells: Jaypee ; Anshan Ltd.
Machrowska, A., Karpiński, R., Krakowski, P., & Jonak, J. (2019). Diagnostic factors for opened

and closed kinematic chain of vibroarthrography signals. Applied Computer Science, 15(3),
34-44. http://doi.org/10.23743/acs-2019-19

Maciejewski, M. (2019). Information technology implementations and limitations in medical
research. Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska, 5(1),
66–72. https://doi.org/10.5604/20830157.1148052

Maciejewski, M., & Dzida, G. (2017). ECG parameter extraction and classification in noisy signals.
2017 Signal Processing: Algorithms, Architectures, Arrangements, and Applications (SPA)
(pp. 243–248). IEEE. https://doi.org/10.23919/SPA.2017.8166872

Maciejewski, M., Surtel, W., Wójcik, W., Masiak, J., Dzida, G., & Horoch, A. (2014). Telemedical
systems for home monitoring of patients with chronic conditions in rural environment. Ann
Agric Environ Med., 21(1), 167-73.

Omiotek, Z. (2017). Improvement of the classification quality in detection of Hashimoto’s disease
with a combined classifier approach. Proceedings of the Institution of Mechanical

Engineers, Part H: Journal of Engineering in Medicine, 231(8), 774–782.
Omiotek, Z., Dzierżak, R., & Uhlig, S. (2019). Fractal analysis of the computed tomography images

of vertebrae on the thoraco-lumbar region in diagnosing osteoporotic bone damage.
Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in
Medicine, 233(12), 1269–1281.

Pan, J., & Tompkins, W. J. (1985). A Real-Time QRS Detection Algorithm. IEEE Transactions on
Biomedical Engineering, BME-32(3), 230–236. https://doi.org/10.1109/TBME.1985.325532

Rehman, A., Mustafa, M., & Israr, I. (2013). Survey of wearable sensors with comparative study of
noise reduction ecg filters. International Journal of Computing and Network Technology,

221(1249), 1–21.
Reisner, A., Clifford, G., & Mark, R. (2006). The Physiological Basis of the Electrocardiogram.

47

Rincón, F. J., Gutiérrez, L., Jiménez, M., Díaz, V., Khaled, N., Atienza, D., … Micheli, G. D. (2009).
Implementation of an Automated ECG-based Diagnosis Algorithm for a Wireless Body
Sensor Plataform. Proceedings of the International Conference on Biomedical Electronics
and Devices (BIODEVICES 2009) (pp. 88–96). Porto, Springer.

Surtel, W., Maciejewski, M., & Maciejewska, B. (2013). Processing of simultaneous biomedical
signal data in circulatory system conditions diagnosis using mobile sensors during patient

activity. 2013 Signal Processing: Algorithms, Architectures, Arrangements, and Applications
(SPA) (pp. 163–167). IEEE.

Waechter, J. (2012). Introduction to ECG’s: Rhythm Analysis. Jason Waechter.
Xavax. (2016). A Wiggers diagram, showing the cardiac cycle events occuring in the left ventricle.

Wikimedia Commons: Wiggers Diagram.svg. Retrieved from
https://commons.wikimedia.org/w/index.php?curid=50317988

Zhou, H., Hou, K.-M., & Zuo, D. (2009). Real-Time Automatic ECG Diagnosis Method Dedicated
to Pervasive Cardiac Care. Wireless Sensor Network, 01(04), 276–283.
https://doi.org/10.4236/wsn.2009.14034

48

Applied Computer Science, vol. 16, no. 4, pp. 48–55

doi:10.23743/acs-2020-28

Submitted: 2020-10-17

Revised: 2020-12-02

Accepted: 2020-12-17

architectural paradigm, pattern, module, cloud technology

Denis RATOV [0000-0003-4326-3030]*

ARCHITECTURAL PARADIGM

OF THE INTERACTIVE INTERFACE MODULE

IN THE CLOUD TECHNOLOGY MODEL

Abstract

The article discusses an architectural template for building a module for

organizing the work of a multiuser windowed information web-system.

To solve this problem, JavaScript objects have been created: a window

manager object and a window interactive interface class, which allow a web

application to function when organizing cloud technologies. The software

implementation is considered and the results of the practical use of the

developed module are presented.

1. INTRODUCTION

Today, when developing information systems, cloud technologies are often

used for remote computing and data processing (Medvedev, 2013). Cloud

computing refers to the provision of computer resources and capacities to the
user in the form of Internet services. Cloud computing is a distributed data

processing process in which computer resources and network capacity are

provided to the user as an Internet service (Papadopoulos & Katsaros, 2011).

Cloud technology inherently implements the processes of creating cloud appli-
cations and organizes work with them, without the introduction of additional

software. Typically, for such applications, functionality is created in a web

browser environment. Such a software product is a client-server application with
a Web interface that provides the user with the ability to access data from any

* Volodymyr Dahl East Ukrainian University, Faculty of Information Technology and Electronics,
Department of Programming and Mathematics, Tsentralnyi Ave, 59A Severodonetsk, Luhansk
Oblast, Ukraine, 93400, denis831102@gmail.com

http://acs.pollub.pl/pdf/v16n4/4.pdf
http://orcid.org/0000-0003-4326-3030

49

active point, provided that they are connected to the Internet. Cloud data processing
or computing is not provided on the clients' personal computers, but on powerful

server computers. For effective interaction of the client with remote data without

completely reloading the current page, consider the user interface template,

which is put into the structure of a module that implements controls, input,
sending and receiving data in the form of windowed web forms with their

inherent functionality in the browser context.

By a web form we mean an independent fragment of the user interface with
its own logic of behavior, for the display of which the template objects of the

module being developed are used. One of the purposes of such a module is to

reuse it. This allows you to define the functionality of objects once and use them

in different contexts and information systems.
 When developing the module solves the following problem: you need a reliable

encapsulated namespace in which you can define the data and functionality of

objects. This makes it possible to make some of this data available and to limit
the functionality of others.

 Today there are web technologies, and libraries and frameworks developed

on their basis for creating web applications and user interfaces designed
for information systems to work in browsers. The processes of standardization of

HTML (HTML 4.01 Specification, n.d.), CSS (Cascading Style Sheets Level 2

Revision 1 (CSS 2.1) Specification, n.d.) and JavaScript (ECMAScript

Language Specification – ECMA-262 Edition 5.1, n.d.) languages allowed to
achieve not only a high degree of cross-platform user interfaces, but also a fairly

good degree of cross-browser compatibility, so the use of appropriate standards

when building Web applications has become the dominant approach.
 When developing modular information systems, standards alone are not

enough: design patterns, libraries of standard controls, support for presentation

logic (for example, Presenter in the MVP model (MVP architecture, n.d.)) and
much more are needed. The corresponding tools are still in their infancy.

Examples of free products are (MediaWiki, n.d.), Drupal (Drupal – Open Source

CMS, n.d.), WordPress. The inevitable payback for such systems is the binding

to server technologies, which limits their application in situations where the
server environment is fixed for the developer. When considering client libraries

that do not depend on server technologies, their specialization is visible: on manipu-

lating the DOM model (jQuery (jQuery, n.d.), Zepto.js (Zepto.js: the aerogel-
weight jQuery-compatible JavaScript library, n.d.)), styling pages and controls

(Bootstrap, n.d.; jQuery UI, n.d.; w2ui (w2ui: Home, n.d.)), building application

frameworks (AngularJS (AngularJS – Superheroic JavaScript MVW Framework,

n.d.), Backbone.js (Backbone.js, n.d.), Knockout (Knockout: Home, n.d.)).
 Despite the rich set among the existing tools, there are tasks that are relevant

in the development of information systems: the presence of a dispatcher of

interface models according to a given specification, data integrity control with
the possibility of multi-user access.

50

2. MODULE ARCHITECTURE

The module being developed consists of two relatively independent, interact-

ing with each other components, which are implemented as JavaScript objects:
a window manager object and a window interactive interface class. Let's use

JavaScript's mechanism for accessing objects using the new operator, which is

used to create objects using the function of our own constructor, thereby creating
an analogue of the class. Such a constructor stores an instance of the object in the

closure. This prevents changes to the object outside of the constructor function.

This uses an object creation template called a “module” and an isolated namespace

template (Stoyan Stefanov, 2011). In order to change not only the appearance of
the displayed form components, but also their behavior without modifying the

main objects of the module, a design principle called the template method was

applied during development (Gamma, Helm, Johnson & Vlissides, 2001). The
library code contains a method for setting callback functions where the developer

needs to supplement the standard data and event handling with his own actions.

The mechanism of the user interactive interface, in addition to the functions
of working with interface components, must meet the following requirements:

1. The web form object must have a method for sending an ajax request to

the server and be able to process server responses.

2. Web form object can be either a simple set of fields or contain
subsections, tabs or tables.

3. The appearance of web forms must be customizable.

4. There can be several web forms on the page that can interact with each other.

Fig. 1. Dispatcher object architecture

The developed window manager (ListWin) is a JavaScript object that:

1. Stores a collection of generated web forms with their components.

2. Provides a high-level API for manipulating web forms and data from
client controls.

3. Provides interaction of the web form with the DOM model of the web

document.
4. Performs preliminary visualization of running processes on forms.

5. Provides a drag and drop mechanism for controls.

51

The ListWin dispatcher implementation consists of its own constructor with
privat fields and public methods. Figure 1 shows the object architecture of the

dispatcher.

The JavaScript object of the windowed interactive interface is responsible for

the operation of the application, handling the events of the form component and
includes:

1. Methods for rendering and manipulating the web form: init(),

changeCaption(), changeVisible(), setWidth(), WaitLoad(), addObj().
2. Web form event trigger constructor: initializationEvent().

3. Constructor of event handlers for web form controls: addEvent().

Let's consider the implementation of the window interface object (Fig. 2).
The functions of an object are implemented as its public methods.

Fig. 2. Implementing the window interface object

Fig. 3. Module components interaction scheme

52

Using an object XHRClass the transport layer of interaction between the
client and the server is implemented, namely, loading data for web forms from

the server, saving data to the server, asynchronous AJAX requests to methods of

php objects on the server. All data transfer takes place in the background without

reloading the page (Crane & Pascarello, 2006). The JSON format is used to transfer
structured data between client and server.

The interaction scheme of the module components is shown in Fig. 3.

When constructing a separate application module based on the described
objects of the dispatcher and the interactive window interface, the basic principle

of creating objects can be a structural-hierarchical relationship. This approach

allows you to design individual interactive interfaces in the form of application

modules.
 At the level of interaction of web-forms with each other, structural approaches

are no longer effective enough, since only a small number of forms are in fixed

master-subordinate relationships. Therefore, at this level, a transition was made
to the network model of the organization (Fig. 3): forms win_1, win_2 are inde-

pendent acting objects that react to the events of their components using callback

functions assigned during construction by the ListWin dispatcher.

3. MODULE IMPLEMENTATION RESULTS

 Consider this model and an architectural template using the example of imple-

menting the module for creating certificates Modul_Sertifikat (Fig. 4). Using the
loadFormBaza() method, the object provides manipulations with the DOM model

of the web document. This uses the createNewForm() constructor of the ListWin

dispatcher and its addObj() method to add controls with event handlers.

Fig. 4. Certificate creation module

53

 After the form is generated, the refreshBaza() method is called (Fig. 5). In it,
an ajax request is sent to the server to the getSertifikat.php script, to the listFIO

method of the class, which prepares the necessary data and organizes logic for

the client side. The prepared information in the JSON object is delivered to the

client browser, where it is converted to control parameters using an anonymous
callback function. Form elements are accessed through the collObj collection of

form objects.

Fig. 5. Form data revision method

 In Fig. 6 shows the result of generating a certificate base form with filled data.

The JSON object received from the server was converted into form parameters:

into a two-level table with a client base and a list of certificates belonging to
individuals; to the assigned callback functions for the context menu events for

selecting clients and working with certificates; to general information about the

number of certificates for a given filter. When the client card editing item is
selected, a new form with AJAX loading of client data from the server is generated.

Fig. 6. Result of generating a certificate database form with filled data

54

To organize cloud computing and build an information system on the server
side, the following software was used:

1. Server operating system – FreeBSD version 11.2.

2. Apache web server.

3. Hypertext preprocessor PHP version 7.4.
4. Database management system – MySQL server version 5.7.31.

To work on the client side of the software modules of an information system

developed on the basis of JavaScript and Standard ECMA-262, any operating

system is required that supports a www navigator with a JavaScript interpreter.
 The practical implementation of the module model with the implementation

of the dispatcher and the interactive window interface is represented by the

installation in the form of the medical information system MedSystem being devel-

oped, in which the application modules are implemented in accordance with the
considered interaction mechanism (Fig. 7).

Fig. 7. Medical information system MedSystem

4. CONCLUSIONS

 The proposed module architecture template for the implementation of the

dispatcher and the functionality of the user window interface made it possible to

create the modules of the MedSystem medical information system. The modular
approach had a positive effect on the responsiveness of the user interface and the

ability to scale the functionality of the system itself when implementing cloud

technologies.

55

 The results of the use showed that the mechanism of modular creation of
a dispatcher and a windowed interactive interface of web-forms not only organi-

cally fits into existing technologies for building web applications, but also itself

has sufficient potential to become the core of cloud technologies for the develop-

ment of multi-user information systems and web services.

REFERENCES

AngularJS – Superheroic JavaScript MVW Framework. (n.d.). Retrieved October 15, 2020 from
http://angularjs.org

Backbone.js. (n.d.). Retrieved October 15, 2020 from http://backbonejs.org
Bootstrap. (n.d.). Retrieved October 15, 2020 from http://getbootstrap.com
Cascading Style Sheets Level 2 Revision 1 (CSS 2.1) Specification. (n.d.). Retrieved October 15,

2020 from https://www.w3.org/TR/CSS22/
Crane, D., & Pascarello, E. (2006). Ajax in action. Moscow: Ed. house "Williams".
Drupal – Open Source CMS. (n.d.). drupal.org. Retrieved October 15, 2020 from https://drupal.org

ECMAScript Language Specification – ECMA-262 Edition 5.1. (n.d.). Retrieved October 15, 2020
from http://www.ecma-international.org/ecma-262/5.1

Gamma, E., Helm, R., Johnson, R., & Vlissides, J. (2001). Techniques for Object-Oriented
Design. Design patterns. SPb.: Peter.

HTML 4.01 Specification. (n.d.). Retrieved October 15, 2020 from https://www.w3.org/TR/html401
jQuery. (n.d.). Retrieved October 15, 2020 from http://jquery.com
jQuery UI. (n.d.). Retrieved October 15, 2020 from http://jqueryui.com
Knockout: Home. (n.d.). Retrieved October 15, 2020 from http://knockoutjs.com

MediaWiki. (n.d.). Retrieved October 15, 2020 from http://www.mediawiki.org/wiki/MediaWiki
Medvedev, A. (2013). Cloud technologies: development trends, examples of execution. Modern

automation technologies, 2, 6–9.
MVP architecture. (n.d.). Retrieved October 15, 2020 from http://www.gwtproject.org/articles/mvp-

architecture.html
Papadopoulos, A., & Katsaros, D. (2011). Distributed Indexing of Multidimensional Data for

Cloud Computing Environments. Third IEEE Intl Conf. on Cloud Computing Technology
and Science (pp. 407–414). IEEE.

Stefanov, S. (2011). Javascript. Patterns. St. Petersburg: publishing house Symbol-Plus.
w2ui: Home (n.d.) JavaScript UI. Retrieved October 15, 2020 from http://w2ui.com/web
Zepto.js: the aerogel-weight jQuery-compatible JavaScript library. (n.d.). Retrieved October 15,

2020 from http://zeptojs.com

56

Applied Computer Science, vol. 16, no. 4, pp. 56–63

doi:10.23743/acs-2020-29

Submitted: 2020-11-23

Revised: 2020-11-30

Accepted: 2020-12-17

machine learning, EEG signal, classification,
data balancing, feature extraction

Amina ALYAMANI [0000-0002-0286-7105]*,

Oleh YASNIY [0000-0002-9820-9093]**

CLASSIFICATION OF EEG SIGNAL

BY METHODS OF MACHINE LEARNING

Abstract

Electroencephalogram (EEG) signal of two healthy subjects that was available

from literature, was studied using the methods of machine learning, namely,

decision trees (DT), multilayer perceptron (MLP), K-nearest neighbours

(kNN), and support vector machines (SVM). Since the data were imbalanced,

the appropriate balancing was performed by Kmeans clustering algorithm.

The original and balanced data were classified by means of the mentioned

above 4 methods. It was found, that SVM showed the best result for the both
datasets in terms of accuracy. MLP and kNN produce the comparable results

which are almost the same. DT accuracies are the lowest for the given

dataset, with 83.82% for the original data and 61.48% for the balanced data.

1. INTRODUCTION

Hypnotic therapy is a method of psychotherapy that helps to heal a large

number of disorders, including stress, depression, anxiety, pain (Provençal et al.,

2018; Wood & Bioy, 2008), and eliminating the unwanted memories in patient

mind (Terhune et al. 2017). Hypnosis can also enhance thought suppression by
minimizing the effect of cognitive load (Bryant & Sindicich, 2007). The influence

of hypnosis on the human being can be assessed by registering brain signals.

The widely used technique for recording brain signal is electroencephalogram
(EEG) (Sanei & Chambers, 2007). EEG signal is a miniature amount of electrical

flow in a human brain that holds and controls the entire body (Haykin 2009).

* Omar Al-Mukhtar University, Faculty of Engineering, Department of Computer Science,
West Shiha, Dernah, Libya, amina.alyamani@yahoo.com
** Ternopil Ivan Pul’uj National Technical University, Faculty of Computer Information Systems
and Software Engineering, Department of Mathematical Methods in Engineering, Ruska 56,
46001, Ternopil, Ukraine, oleh.yasniy@gmail.com

http://acs.pollub.pl/pdf/v16n4/5.pdf
https://orcid.org/0000-0002-0286-7105
https://orcid.org/0000-0002-9820-9093

57

EEG signal can be employed to diagnose Alzheimer disease (Podgorelec, 2012),
to predict epileptic seizure (Satapathy, Jagadev & Dehuri, 2017), to detect mental

disorders (Dvey-Aharon et al., 2015; Thilakvathi et al., 2017). The approaches of

machine learning give the possibility to analyze the EEG signal and draw

appropriate conclusions based on the results of performed analysis. In particular,
various classification methods can help to diagnose the mentioned above diseases.

In paper (Parvinnia et al., 2014), EEG signals were classified using adaptive

weighted distance nearest neighbor algorithm. In the study (Amin et al., 2017),
the pattern recognition approach was employed to classify the EEG signals. Often

EEG signals contain artifacts which should be found and treated respectively.

Paper (Lawhern et al., 2012) gives the methods to detect and classify the subject-

generated artifacts in EEG signals using auto-regressive models. Results, obtained
in the mentioned above study, indicate reliable classification among several

different artifact conditions across subjects.

However, despite the numerous application of machine learning approaches to
the EEG signals, there still remains a wide range of potential activity and many

interesting problems to be solved by means of computer and respective algorithms.

The present study utilizes the dataset obtained in the frames of Horizon 2020
program, which is available at (Real & Kübler, 2014). EEG signals of two healthy

subjects were recorded (S01: right-handed male; S02: right handed female) (Real

& Kübler, 2014). The subject sat in a comfortable chair. Stimuli were presented

in two conditions. In an active condition, the subject was told to listen to a tone stream,
and that he/she should count the occurrence of the odd (low) tones. In a passive

condition, the subject was told to listen to a series of tones and that he/she would

just have to listen to the tones. After the first recording ("PRE"), the subject
listened to an Erickson-type hypnotic induction, where the subject imagined being

on a ship in dense fog, making hearing and seeing difficult. Then, the EEG

experiment was repeated (datasets "POST"). Finally, the subject listened to
instructions designed to take back a hypnotic state (Real & Kübler, 2014).

2. METHODOLOGY

2.1. Dataset preparation

The dataset S01 No5 consists of four EEG data matrices, Xs, where the

columns of each X show outputs of 31 recording electrodes and rows of each X
contain recorded data in every 0.001953125 second (or 0.002 for simplification)

from each electrode. Since the sampling rate is 512 Hz, the sampling period is

around 0.002 second. Also, the duration of each stimuli is 50 ms, which means
that every data-point is a 25 by 31 submatrix (each stimulus is 50 ms and by

dividing it to the sample period 2ms on gets the number 25).

58

The dataset provides the time period when each stimulus is presented. This
time period is available in the vector ‘trial’. The class label of each stimuli is

available in the vector ‘y’. So, it is possible to find each data-point along with its

label. For example, the first stimuli starts at time period 19898 ms, so to find the

EEG response of this stimuli one needs to extract the submatrix of X, i.e. the row
number 19898÷2 of matrix X to row number (19898÷2 + 25) of matrix X.

Also, the label of this data-point is provided in the first entry of vector ‘y’ in

data cell number 1 of the S01 file. This label is ‘2’ which means that this stimulus
is from class ‘frequent’. There are two classes of data: ‘odd’ and ‘frequent’. The

‘odd’ class is represented with label ‘1’.

There was written the code to perform the mentioned-above procedure in order

to prepare the dataset. This code reads all datasets S01 and S02 and concatenates
them according to the described procedure.

After the data preparation step was performed and for the better understanding

of the samples of dataset, 9 samples of the dataset were visualized from both male
and female data. Fig. 1 shows the visualized results. In each subplot, it is possible

to see one sample of stimuli along with its label on the top. Each sample consists

of 31 stimuli which have been drawn with different colors. The horizontal and
vertical axes show time period and amplitude of the stimuli; respectively. As it is

possible to see, the amplitude value of each stimulus changes with time and this

change is significant. Another important point is that it can be observed from the

figure that there are some distinct patterns in the behaviors of stimuli. For the male
data, i.e. S01.mat, the stimuli of the ‘odd’ class somehow shows a descending

behavior during the time while the stimuli of the other class show an ascending

and then descending behavior in their shapes. Similarly, it is possible to note some
distinctive patterns in the female data, i.e. S02.mat.

59

Fig. 1. A graphical view of the stimuli samples of dataset no. 5 along with their labels

2.2. Feature extraction

Features extraction is a common way to extract meaningful features from the

EEG data (Li et al., 2015; Sun et al., 2019). In this way, an Autoencoder was used
to find a new representation of the data in a lower dimensional space. Autoencoder

is an unsupervised method of machine learning that provides a new representation

of data in a lower dimensional space (Hinton & Salakhutdinov, 2006). In other

words, an autoencoder is a type of artificial neural network used to learn efficient
data encoding in an unsupervised manner. The aim of the Autoencoder is to learn

a representation for a set of data, typically for dimensionality reduction. Along

with the reduction side, a reconstructing side is learnt, where the autoencoder tries
to generate the representation as close as possible to its original input from the

reduced encoding.

60

The following model is used for the autoencoder network. The input size was
25·31, which is equal to 775. Hidden layer size is 64. Output layer size was 25·31,

that is the same as input size.

2.3. Balancing the data

Another difficulty of the data is that it is an imbalanced data. In other words,

the ratio of its classes is highly different that comes from the fact that the

‘frequent’ class has much more data than the ‘odd’ class. Originally, there are
more than 3000 data points for the ‘frequent’ class and 480 data points for the

‘odd’ class of data, i.e. 3000 >> 480.

In this experiment, two scenarios were employed. In the first scenario, the
original data were used. In the second scenario, there was an attempt to turn data

into a balanced data. Both scenarios were implemented and the results were

presented:

1. For the first scenario the data were not changed and all of the samples were
kept.

2. In the second scenario, an under-sampling technique was employed to turn

the data into a balanced one. To accomplish that, Kmeans clustering
algorithm (MacQueen, 1967) was applied over the data points of the

‘frequent’ class. The number of clusters was set to 1000, and Kmeans

algorithm was started. After the learning, the centers of clusters were treated

as the new data points for the ‘frequent’ class of data. The number 1000
was determined empirically.

After that step, 1000 data points were obtained for the ‘frequent’ class of data

and 480 data points were for the ‘odd’ class of data. Although the dataset is not
exactly balanced, nevertheless, this ratio of classes samples is more balanced than

the original one.

2.4. MLP structure

The multilayer perceptron (MLP) neural network was employed which uses

the gradient decent back-propagation for tuning the parameters of the network

(Haykin, 2009). The MLP topology is the following.
Input size, that is the number of nodes in input layer was 64, number of hidden

layers was 1, number of neurons in each hidden layer was 32, number of neurons

in output layer was 1.

3. RESULTS

To verify the models, 10-fold cross validation method was performed. In this

way, the data were split into ten parts and each time one part was taken as the test
data and the rest was treated as training data.

61

The classification was performed by four methods: support vector machines
(SVM) (Cortes & Vapnik, 1995), Decision Trees (Quinlan, 1986), K-nearest

neighbors (Altman, 1992) and MLP (Haykin, 2009). Table 1 presents the results

in terms of accuracies along with the standard deviations. According to the results

shown in Table 1, it can be seen that SVM performs better in both datasets and
provide higher accuracies with accuracy 87.47% for the original data and 66.95%

for the balanced data. Also, MLP and kNN produce the comparable results which

are almost the same. DT accuracies are the lowest for the given dataset, with
83.82% for the original data and 61.48% for the balanced data.

Tab. 1. Comparison of different methods in terms of accuracies

Dataset SVM kNN (k = 8) DT MLP

Original data 87.47 ± 1.51 87.108 ± 1.56 83.82 ± 1.58 87.03 ± 1.77

Balanced data 66.95 ± 1.89 64.05 ± 4.03 61.48 ± 3.24 65.74 ± 2.06

MLP DT

kNN SVM

Fig. 2. Confusion matrices over the balanced data (Fold #1)

Fig. 3 presents the confusion matrices over the original dataset, i.e. the
imbalanced version of dataset.

62

MLP DT

kNN SVM

Fig. 3. Confusion matrices results over the original data (Fold #1)

The confusion matrices obtained over the original data have better values due

to the imbalanced data. However, the balancing makes the accuracy of classifica-

tion less as compared with the original data, though allows to change the ratio of

classes samples, so the data are more balanced than the original one.

4. CONCLUSIONS

EEG signal of two healthy subjects was studied using the methods of machine
learning, namely, decision trees (DT), multilayer perceptron (MLP), K-nearest

neighbours (kNN), and support vector machines (SVM). Since the data were

imbalanced, the appropriate balancing was performed by Kmeans clustering
algorithm. The original and balanced dataset was classified by means of the

mentioned above 4 methods. The obtained classification results were compared.

It was found, that SVM showed the best result for the both datasets in terms of
accuracy. This method gave 87.47% accuracy for the original data and 66.95%

accuracy for the balanced data. MLP and kNN produce the comparable results

which are almost the same. DT accuracies are the lowest for the given dataset,

with 83.82% for the original data and 61.48% for the balanced data. The respective
confusion matrices were also built.

63

In general, the methods of machine learning allow classifying the EEG signals
and obtaining rather accurate results.

REFERENCES

Altman, N. S. (1992). An introduction to kernel and nearest-neighbor nonparametric regression. The

American Statistician, 46(3), 175–185.
Amin, H. U., Mumtaz, W., Subhani, A. R., Saad, M. N. M., & Malik, A. S. (2017). Classification of

EEG Signals Based on Pattern Recognition Approach. Frontiers in Computational
Neuroscience, 11(103), 1–12.

Bryant, R. A., & Sindicich, N. (2007). Hypnosis and Thought Suppression – More Data: A Brief
Communication. International Journal of Clinical and Experimental Hypnosis, 56(1), 37–46.

Cortes, C., & Vapnik, V. N. (1995). Support-vector networks. Machine Learning, 20(3), 273–297.
Dvey-Aharon, Z., Fogelson, N., Peled, A, & Intrator, N. (2015). Schizophrenia Detection and

Classification by Advanced Analysis of EEG Recordings Using a Single Electrode
Approach. PLoS ONE, 10(4), 1–12.

Haykin, S. (Ed.). (2009). Neural Networks and Learning Machines (3rd Edition). New Jersey,
Prentice Hall.

Hinton, G. E., & Salakhutdinov, R. R. (2006). Reducing the dimensionality of data with neural
networks. Science, 313(5786), 504–507.

Lawhern, V., Hairston, W. D., McDowell, K., Westerfield, M., & Robbins, K. (2012). Detection and
classification of subject-generated artifacts in EEG signals using autoregressive models.
Journal of Neuroscience Methods, 208(2), 181–189.

Li, J., Struzik, Z., Zhang, L., & Cichocki, A. (2015). Feature learning from incomplete EEG with
denoising autoencoder. Neurocomputing, 165, 23–31.

MacQueen, J. B. (1967). Some Methods for classification and Analysis of Multivariate Observations.
Proceedings of 5th Berkeley Symposium on Mathematical Statistics and Probability – Volume 1:
Statistics, 281–297.

Parvinnia, E., Sabeti, M., Zolghadri Jahromi, M., & Boostani, R. (2014). Classification of EEG

Signals using Adaptive Weighted Distance Nearest Neighbor Algorithm. Journal of King
Saud University – Computer and Information Sciences, 26(1), 1–6.

Podgorelec, V. (2012). Analyzing EEG signals with machine learning for diagnosing Alzheimer’s
disease. Elektronika i Elektrotechnika, 18(8), 61–64.

Provençal, S. C., Bond, S., Rizkallah, E., & El-Baalbaki, G. (2018). Hypnosis for burn wound care
pain and anxiety: A systematic review and meta-analysis. Burns, 44(8), 1870–1881.

Quinlan, J. R. (1986). Induction of decision trees. Machine Learning, 1, 81–106.
Real, R. G. L., & Kübler, A. (2014). Auditory oddball paradigm during hypnosis. Institute of

Psychology, University of Würzburg.
Sanei, S., & Chambers, J. A. (Eds.). (2007). EEG Signal processing. Great Britain, Chippenham,

John Wiley & Sons.
Satapathy, S. K., Jagadev, A. K., & Dehuri, S. (2017). Weighted majority voting based ensemble of

classifiers using different machine learning techniques for classification of EEG signal to
detect epileptic seizure. Informatica, 41(1), 99–110.

Sun, L., Jin, B., Yang, B., Tong, J., Liu, C., & Xiong, H. (2019). Unsupervised EEG Feature
Extraction Based on Echo State Network. Information Sciences, 475, 1–17.

Terhune, D. B., Cleeremans, A., Raz, A., & Lynn, S. J. (2017). Hypnosis and top-down regulation
of consciousness. Neuroscience and Biobehavioral Reviews, 81(A), 59–74.

Thilakvathi, B., Shenbaga, Devi, S., Bhanu, K., & Malaippan, M. (2017). EEG signal complexity analysis
for schizophrenia during rest and mental activity. Biomedical Research, 28(1): 1–9.

Wood, C., & Bioy, A. (2008). Hypnosis and Pain in Children. Journal of Pain and Symptom
Management, 35(4), 437–446.

64

Applied Computer Science, vol. 16, no. 4, pp. 64–84

doi:10.23743/acs-2020-30

Submitted: 2020-09-16

Revised: 2020-09-22

Accepted: 2020-10-05

 Felder-Silverman Learning Style Model, Item response theory,

Ontology, Learning ability, Difficulty level

Olutayo BOYINBODE [0000-0002-6789-258X]*, Paul OLOTU*,

Kolawole AKINTOLA*

DEVELOPMENT OF AN ONTOLOGY-BASED

ADAPTIVE PERSONALIZED E-LEARNING

SYSTEM

Abstract
E-learning has fast become an active field of research with a lot of investments

towards web-based delivery of personalized learning contents to learners. Some

issues of e-learning arise from the heterogeneity and interoperability of learning
content adapting to learner's styles and preferences. This has brought about the

development of an ontology-based personalized learning system to solve this

problem. This research developed an ontology-based personalized e-learning

system that presents suitable learning contents to learners based on their

learning style, preferences, background knowledge, and personal profile.

1. INTRODUCTION

Learning is enormously affected by the improvement of Information and
Communication Technologies and informed computerized media. E-learning enables

access to the training of individuals who think that it's hard to be physically present in

the customary study of hall-based learning (Boyinbode & Akintade, 2015; Uhomoibhi,

2006). Personalization is said to exist where training programs are customized to in-
dividual learners, based on an analysis of the learners’ objectives, current status of

* The Federal University of Technology, School of Computing, Department of Information
Technology, FUTA Rd, Akure, Nigeria, okboyinbode@futa.edu.ng, pkootu@futa.edu.ng,
kgakintola@futa.edu.ng

http://acs.pollub.pl/pdf/v16n4/6.pdf
https://orcid.org/0000-0002-6789-258X

65

skills/knowledge, learning style preferences, as well as constant monitoring of
progress. Online learning material can be compiled to meet personal needs, capitalizing

on re-usable learning objects (Boyinbode & Bagula, 2012).

Some educational issues are taken care of normally through the presentation of

a personalized adaptive e-learning system (Adewale, 2006). This system encourages
students to learn effectively based on their style of learning and enhance improvement

in the performance of the learners. The adaptability of the E-learning platform encourages

students to learn with their most preferred method of learning and finish their courses
effectively (Adewale, 2006).

2. REVIEW OF RELATED WORK

Kurilovas et al. (2016) developed a personalized learning system based on students’

learning styles and application of intelligent technologies, where learners have different
features and characteristics such as prior knowledge, intellectual level, interests,

goals, cognitive traits (working memory capacity, inductive reasoning ability, and

associative learning skills), there came a need for learning behavioral type (according
to his/her self-regulation level) and finally learning styles.

The system was designed to perform a systematic review of learning personalization;

identify a student with certain learning style, according to felder and silver man learning
style model (FSLSM) and finally create a model of personalized intelligent learning

system based on students' learning styles, cognitive traits, and other personal charac-

teristics and needs. FSLSM is recognized to be the most suitable for STEM (Science,

Technology, Engineering, and Mathematics) and e-learning. Dedicated psychological
questionnaire – Sloman and Felder’s Index of Learning Styles is used to explore

students’ learning styles according to FSLSM. The research does not include the

creation of pedagogically sound vocabularies of the learning components.
Funda and Aynur (2009) analyzed relations between online learning and learning

styles; researchers have investigated that presentation of learning content and learning

tools are based on learning styles in the online learning, environments are a factor
which impacts the academic achievements of the learner. In the other research

approach, researchers have used learning styles as a supportive factor to design the

online learning environments for personalized online learning. The hybrid of these

research approaches was adopted which suggested that improving the academic
achievements of the learners can be achieved by considering the motivation of the

learner, demographics factors, teaching strategies, and teaching methods.

66

Latha and Kirubakaran (2013) presented a Personalized Learning Path Delivery in
Web-based Educational Systems using a Graph Theory-based Approach. The absence

of a teacher or trainer becomes a bottleneck inappropriately delivering contents to the

learner. Developing a system with a novel way of recommending a personalized

learning path to a user became important; a graph theory-based approach in web-based
learning systems was adopted to make the learning process effective.

Agbonifo and Obolo (2018) developed a Genetic Algorithm-based Curriculum

Sequencing Model for Personalised E-Learning System, in which the difficulty level
and the relationship degree that exists between various course concepts were recorded

to affect the learning ability and the overall performance of the learner. The research

focused on enabling the learner to identify the difficulty level of each course concept

or curriculum and the relationship degree that exist between them to provide optimal
personalized learning pattern to the learner to improve their performance.

Yarandi et al., (2013) proposed an adaptive e-learning approach based on semantic

web technology; it is becoming increasingly difficult to ignore adaptation in the field
of e-learning systems. Many researchers are adopting semantic web technologies to

find new ways for designing adaptive learning systems based on describing knowledge

using ontological models; this motivated the development of a personalized adaptive
e-learning approach based on semantic (ontology) web technology.

3. METHODOLOGY

Ontology is characterized as a representation of a phenomenon's dynamic model

on the world using conceptualization, which helps with distinguishing the allotment
of area ideas, using formal definitions regarding adages and the ideas' semantic

connections (Chi, 2009). Information portrayal utilizing ontologies encourages

sorting out the metadata of complex data assets.
These metadata give syntactic and semantic data about data assets which are

encoded as examples in the cosmology. Differential Equations are characterized as

ideas or classes. W3C Web Ontology Language (OWL) is a Semantic Web language
designed to represent rich and complex knowledge about things, groups of things, and

relations between things. The OWL file obtained from the protégé tool is used to

extract the concepts or classes that are represented in a specific domain through the

domain ontology. These concepts are saved in a vector denoted as C = [𝑐1, 𝑐2, 𝑐3…, 𝑐𝑚]
to determine similarities with the XHTML files produced from HTML files. The

algorithm used for the extraction of OWL concepts is given:

67

Algorithm:
Ontology concept extraction

Input: OWL Ontology Document

Output: Vector of Ontology Concepts (C)

BEGIN
1. Declare Vector (C), OWL Ontology Document, Xpath;

2. Define XPATH to get the Ontology concepts from the input OWL Ontology

Document
3. Pass ontology concepts and store into (C)

4. Return Vector of Ontology Concepts (C)

END

3.1. System Architecture

The ontology-based adaptive personalized e-learning system proposed consists of
the following major components as shown in Figure 1.

3.1.1. User Interface

This gives a versatile and easy to use interface for communication with learners.

The interface connects user features to the user model ontology, and enables sending

the adaptive content from the Adaptive Engine to the user. The user interface
additionally sends back the user's reactions to the adaptive engine. For a start-up user,

there is an enrollment cycle, where the general and instructive attributes of the user

are taken and recorded into the ontological based user model.

68

Fig. 1. The Architecture of the System

3.1.2. Personalized Adaptive Engine

This signifies the powerhouse of the e-learning structure which is responsible for
presenting personalized learning content anchoring on the material available in the

learner’s model. The engine merges up instruction objects to produce particular and

structured learning content for a particular learner. It obtains facts about learners and

learning objects with associated mediators. The engine is also an evaluation element
to re-evaluate the stage of knowledge and ability of learners.

This section will subject learners to regular tests and evaluates their performance

in the selected topic and also learner’s ability based on the item response theory.
The user model is updated on the note of the evaluated information acquired from the

result of the assessments, which will redefine the profile of the user.

3.1.3. User Profile Mediator

The Mediator is liable for the management of any form of requests, for opening

and modernizing the user model repository.

69

3.1.4. Content Mediator

 The Content Mediator is in control of examining the repository and retrieving

diverse kinds of instruction objects depending on the diverse instructional role. This

mediator also conforms the retrieved Instruction objects into Lessons and marks
lessons spontaneously.

The construction comprises two repositories namely Instruction Objects and user

profiles. The Instruction Object repository comprises of all learning contents and their
metadata based on the content model ontology.

3.1.5. User Profile Repository

This is where the user profile and activities are stored. It houses all users' actions

on his/her interfaces.

3.1.6. Domain Model

The domain model is a semantic ontology which is determined by the course

creator and structures a coherent scientific classification for the information area.
It indicates the subject order of learning objects. The domain ontology contains classes

and properties, that portray subjects of an area and educational relationship, between

proposed titles or topics. In this system, General Studies Course (GNS) is used for the

system.

3.1.7. User Model

The system designs an ontological user model that design the user profile.

It includes all the properties of the user(learner). The learner's properties are arranged

in two groups including user identification information and learning profiles. User
identification information such as names, date of birth, sex, passwords, and emails are

kept in the personal information class through data properties which are attached to

this class. Other classes and properties of this ontology are designed to characterize

the learner's learning profiles such as preferences, learning performance, learning
abilities, and learning styles.

The individual learner will also be attached to a set of performance-related data

that is presented in performance class via has performance property. Learning
performance which contains prior knowledge and gained knowledge can be obtained

as a result of technical examination which is taken by individual learners. Ability class

will represent the abilities of learners, which are calculated according to item response

70

theory during the learning process. The learning styles of individual learners are
recorded in the learning style class based on the Felder-Silverman Learning Style

Model (Brusilovsky et al., 2005). This model defines four dimensions namely active-

reflective, visual-verbal, sensing-intuitive, and sequential-global for a particular

learner. The learning style class presents these dimensions through the learning
category class. The learning style of each learner is determined through the result of

a questionnaire based on the Felder and Silverman’s learning style model.

The learning ability of the learner is calculated using item response theory
according to Chen and Chung (2008), which also confirms, that the difficulty level of

the recommended content is extremely relevant to learners' abilities. Additionally, the

wrong content can result in learner's intellectual confusion in learning practice. In the

first step, the learner's ability initiates at a moderate level. In different levels of
learning, tests are taken from individual learners regularly and their response is analyzed

according to the Item Response Theory (Baker, 2001), which will dynamically estimate

and update learners' abilities. In the next level, the right content is recommended based
on the updated abilities.

Item response theory is a model-based method designed to choose the most

suitable items for learners based on accurate relationships between abilities and item
responses. Item response theory is built on the postulation that the likelihood of a

correct response to an item is a mathematical function of personalized and itemized

variables. The element variable is considered as the item difficulty, item discrimina-

tion, and the effect of random guessing. (Baker, 2001).

 𝑃𝑖(𝜙) = 𝑐𝑖 + (1 + 𝑐𝑖)
1

1+exp(−𝑎𝑖(ϕ−𝑏𝑖))
. (1)

𝑃𝑖(𝜙) is the probability that an examinee with ability 𝜙 can respond correctly to the

item 𝑖. The three-parameter logic function is adapted where:

𝑏𝑖 is the difficulty parameter of item 𝑖,
𝑎𝑖 is the discrimination degree of item 𝑖,
𝑐𝑖 is the guessing degree of item 𝑖,
𝜙 is the ability level of the learner.

In this methodology, the item parameters are kept in the Item class of content

ontology through some data properties such as the difficulty, discriminations,

guessing, etc.
To evaluation, the ability of a learner, the answers of the learner for all items of an

exam are distinctly scored. This means that the learner has 1 for a unique answer scored

correctly and 0 for the answer gotten wrongly. Hence, there is a response pattern of

the form (𝑈1, 𝑈2, 𝑈3 ... 𝑈𝑗 ... 𝑈𝑛) known as test response vector, where 𝑈𝑗 = 1

71

is known for a correct answer gotten by the learner for the 𝑗𝑡ℎ item in the exam.

On the contrary, 𝑈𝑗 = 0 signifies a wrong answer gotten by the learner for the 𝑗𝑡ℎ item

in the exam (Hambleton, Swaminathan & Rogers, 1991). Bock derived the quadrature

form to estimate the learner’s ability (Baker, 1992):

 𝜙 =
∑ 𝜙𝐿(𝑢1,𝑢2,….,𝑢𝑛|𝜙)𝐴(𝜙𝑘)

𝑞
𝑘

∑ 𝐿(𝑢1,𝑢2,….,𝑢𝑛|𝜙)𝐴(𝜙𝑘)
𝑞
𝑘

, (2)

where 𝜙 is the estimation of the ability of the learner, 𝐿(𝑢1, 𝑢2 , … . , 𝑢𝑛|𝜙) is the value

of likelihood function and 𝐴(𝜙) represents the quadrature weight at a level below the

learner’s ability.

 𝐿(𝜙|𝑢1, 𝑢2 , … . , 𝑢𝑛) = ∏ 𝑃(𝜙)𝑢1𝑛
𝑖=1 𝑄(𝜙)(1−𝑢), (3)

where 𝑃𝑖(𝜙) represents the chances that the learner answers correctly to the 𝑖𝑡ℎ item

at a level below his ability level 𝜙, 𝑄𝑖(𝜙) = 1 − 𝑃𝑖(𝜙) signifies the likelihood that

the learner answered inaccurately to the 𝑖𝑡ℎ item at a level below the ability level,

, 𝑢𝑖 = 1 if the result of the 𝑖𝑡ℎ item is correct and , 𝑢𝑖 = 0 if the response of 𝑖𝑡ℎ item

is inappropriate (Chen & Chung, 2008). To calculate the difficulty level of the course

items, Crocker, and Algina (1986) was adapted:

 𝑃𝑖 =
𝐴𝑖

𝑁𝑖
, (4)

where 𝑃𝑖 is the difficulty index of item 𝑖, 𝐴𝑖 is the number of the correct answer to

item 𝑖, and 𝑁𝑖 is the number of correct answers plus the number of the incorrect

answers to item 𝑖.
The difficulty of an item is understood as the proportion of persons who answer a

test item correctly, the higher this proportion the lower the difficulty level and vice

versa. The discrimination level of the items;

𝑎𝑖 = 𝐷𝑖 =
𝐺𝐻 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑎𝑛𝑠𝑤𝑒𝑟 – 𝐺𝐿 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑎𝑛𝑠𝑤𝑒𝑟

0.5∗𝑁𝑙𝑎𝑟𝑔𝑒 𝑔𝑟𝑜𝑢𝑝
, (5)

where 𝐷𝑖 the discrimination index of item 𝑖. 𝐺𝐻 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑎𝑛𝑠𝑤𝑒𝑟 is the number of the

correct answer to item 𝑖 among those with the highest test score. 𝐺𝐿 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑎𝑛𝑠𝑤𝑒𝑟

is the number of the correct answer to items 𝑖 among those with the lowest test score.

72

The discrimination level of an item is normal if it’s approaching one, hence the item
is acceptable, else if the discrimination level of an item is approaching zero, the item

is poor and unacceptable.

The guessing degree is calculated by adding up the number of points earned by all

learners on an item and divides it by the total number of learner (Abu-Sayf, 1979):

 𝐺 =
𝑃𝑡𝑜𝑡𝑎𝑙

𝐿𝑡𝑜𝑡𝑎𝑙
, (6)

where 𝐺 is the guessing degree, 𝑃𝑡𝑜𝑡𝑎𝑙 is the total number of points by the learner and

𝐿𝑡𝑜𝑡𝑎𝑙 is the total number of the learner.

Guessing is discouraged utilizing instructions given on the test and by scoring the

test in such a way as to penalize those who guess incorrectly by the use of formula
scoring (correction for guessing). Though the procedure has been a source of

controversy for many years (Hamzeh, 2005):

 𝑆 = 𝑅 =
𝑊

𝐴−1
, (7)

where 𝑆 represents the corrected score, 𝑅 represents the number of right answers,

𝑊 represents the number of wrong answers, 𝐴 represents the number of alternatives
per item.

Item Response Theory is used in the high-tech adaptive test to define the best items

for learners based on their distinct abilities. Currently, the Computerized Adaptive

Testing (CAT) concept has been successfully used in many real applications such as
GMAT, GRE, and for the TOEFL.

4. IMPLEMENTATION AND RESULTS

This section defines the implementation of a personalized adaptive e-learning
system. The system interface is displayed upon the successful launch of the page.

4.1. Registration Page

The registration page allows new learners to register using the registration form

before login in, it's done using the “sign up menu” (Figure 3).

73

4.2. Home Page

Displays the first page the user comes in contact with when he/she successfully

logs into the system, it is the page, where the user signs up and logs in. This is to

ensure that only registered and valid users are allowed to perform certain tasks in the
portal. A learner can also register and login to the portal to check the delivered content

suitable for them based on their learning style (Figure 4).

4.3. FSLSM Learning Style Detector Page

This contains a catalog of questions, each first-time user answers to detect their

learning style to enhance the right delivery of content (Figure 5).

4.4. The Dashboard Page

This page contains an overview of the list of departments, and courses present in

the system.

4.5. Examination and Test Score Page

This page is the interface for examination concerning the course taking and also

helps in displaying the examination scores of the user (Figure 6).

Fig. 2. System Home Page

74

Users access the system by registering into the system in other to generate the
username and password for the user to login with into the system.

Fig. 3. Register page

Fig. 4. Showing the Login page for the system

75

Fig. 5. Showing the record of the learning styles

For a new user, it is mandatory to run a survey which will help the system to

capture the learning style of such user, and for an existing user, the learning style has

been captured and saved and the user can easily continue with the saved learning style

and also has the option of retaking the survey to confirm his or her learning style
(Figure 5).In the dashboard of the system, different functions are displayed and the

user can easily navigate through the system to enroll (Figure 6).

The user browses courses to check the courses available for enrollment. At the
enrolling stage, the user is expected to enroll for a ‘beginner’ as the proficiency level,

because the courses are designed ontologically such that the beginner has courses

arranged for that category base on the difficulty level of those courses, which after
successful completion of the beginner level, an examination that will show the eligibility

of the user to move to the next level, which is the intermediate level is delivered to

the user (Figure 7 and 8). Also, there is provision for new users that claim to be at the

intermediate or expert level to take an examination of the previous level to determine
his/her fitness for that level. A brief examination summarizing the knowledge of the

beginner level is given for the intermediate level.

A concise examination for intermediate level is delivered, for the expert level. The
eligibility of the user for the level will be determined; if the user failed the exami-

nation, he/she cannot proceed to the next level. The system will communicate to the

user that he/she is not qualified for the level claimed, please go for the beginner level

(Figure 9).

76

Fig. 6. Showing the Dashboard for the system

Fig. 7. Showing the Learning Categories

77

Fig.8. Showing the Eligibility Test Page

Also, if the user is not eligible for the proficiency level he or she claims, it will be

revealed in the performance of the user in the eligibility test. The user has just two

times, to attempt the eligibility test after which if the user failed, the system will
recommend the user to start from the beginner level of the course (Figure 9).

Fig. 9. Course Enrolment

78

Fig.10. Showing Personalized Content for the Learner

Different types of contents will be delivered to the user based on the learning style
of the user. On the successful registration of the user for the beginner level, the system

delivers contents to the user based on the learning style, proficiency level, and the

profile of the user stored in the user profile repository (Figure 10).

Fig. 11. Page Showing the Examination for the Beginner Level

79

The user is expected to view or download the various types of contents delivered
to the user, after which the user is expected to take examination based on the content

delivered (Figure 11).

The performance of the user in the examination taken, is the determinant of the

eligibility of the user to move to the next level in the course. The course is slated for
three-level, the beginner, the intermediate, and the expert level, such that the

performance of the user at each level will show the eligibility of the user for the next

level. The performance of the user reflects, the score of the user and the learning
ability of the user (Figure 12).

Fig. 12. Showing A Learner Score and Learning Ability Qualified for The Next Level

In Figure 12, the exam score is 50 percent and the learning ability of this user is
0.68 of 1, the system also communicates the eligibility of the user for the next level,

but if the performance of the user score is not up to 50% for the next level (Figure 13);

then the user cannot proceed to next level (Figure 14).

80

Fig.13. Showing Examination Score and the Learning Ability

On the attempt to move to the next level, the system will display that the user is

not eligible and will be taken back to the page, where the same level examination will

be re-taken (Figure 14).

Fig. 14. Showing the System Result

81

5. EVALUATION

The course used for the case study is General Studies Course (GNS 101), an English

course offered by all 100 level students of the Federal University of Technology,

Akure, Nigeria. The system was designed for three categories of learners which
include, the beginner, the intermediate, and the expert learners.

The learning contents were structures using ontology covering different categories.

For the beginner category the contents include: I) Adjectives, II) Adverbs, III) Common
Mistakes, IV) Comprehension, V) Direct and indirect Speeches while for the Inter-

mediate Learner category of the general studies the contents include: I) Joining Phrase

and Sentence II) Lexis And Structure, III) Noun And Pronouns, IV) Oral Forms,

V) Prepositions and Contents for the Expert learners Category include: I) Punctu-
ations Marks and their Uses, II) Spellings, III) Synonyms And Antonyms, IV) Verbs

and Tenses, V) Word Combination.

The system was tested with twenty users, willing to respond to the conventional
method of learning, so as to be able to carry out the comparative analysis of both

methods. The mean performance value of the system was determined by obtaining the

summation of the percentage score of all the users at each level divided by the number
of users at each level (Table 1 and Figure 15).

Tab. 1. Showing comparison between the personalized system

 and the conventional system

S/N PROFICIENCY LEVEL

MEAN

PERFORMANCE

VALUE

 Beginner

1 Conventional method 52

2 Personalized adaptive 68.45

 Intermediate

3 Conventional method 51

4 Personalized adaptive 64.9

 Expert

5 Conventional method 51.1

6 Personalized adaptive 67.6

82

Fig. 15. Mean Performance Value

The system was evaluated with questionnaire filled by the twenty users of the

system. The analysis is shown in Table 2 and Figure 16.

Tab. 2. Analysis Table

S/N REMARKS SATISFACTORY GOOD FAIR POOR

1 System user-friendliness 10 6 4 0

2 System accuracy 11 7 2 0

3 System efficiency 9 6 3 2

4 System usability 18 1 1 0

5 System effectiveness 9 7 2 2

83

Fig. 16. Overall Performance of the System

Figure 16 shows the result of the evaluation in terms of user-friendliness, accuracy,

efficiency, and the effectiveness of the system respectively. The result shows that the
system is satisfactory as the majority of the users chose satisfactory as their remarks.

6. CONCLUSION

The personalization and adaptability of a system have been a technique, that has

benefited the e-learning environment. However, in most existing personalized

adaptive systems, learning contents are not tailored to the learners based on their
learning styles. An ontology-based personalized adaptive e-learning system has been

developed to offer a variety of personalized learning contents suitable to learners

according to their learning styles. This will enhance their learning rate as it increases
their learning abilities.

The system allows learners to take a learning style detector test to capture the

learner's learning style but in the conventional e-learning system; the learning styles
are not captured. The system delivered contents to the learner based on their learning

style captured and go through a g-test to capture the learning ability of learners on

a particular course. The examination was conducted for each learner within a space

of time to determine the performance of the learner and to track the improvement in
the learner's learning ability. The personalized adaptive e-learning system was tested

using a General Study Course (GNS) as the learning materials with 20 users.

84

The results from the two methods were compared and the personalized adaptive
system has a higher mean performance value at every level than the conventional

methods, indicating that the system is more efficient and most preferred to the conven-

tional method. Furthermore, the system was evaluated by 20 users in terms of System

user-friendliness, System accuracy, System efficiency, System usability, System
effectiveness. It was observed that a higher percentage of the users’ remarks fall

between satisfactory and good, which shows that the system was acceptable to them.

REFERENCES

Abu-Sayf, F.K. (1979). The Scoring of Multiple-choice Tests: A Closer Look. Educational Technology,
19(6), 5–15.

Adewale, O.S. (2006). University Digital libraries: an initiative for teaching, research, and service.
Adeyemo Publishing House.

Agbonifo, O., & Obolo, O. (2018). Genetic Algorithm-based Curriculum Sequencing Model for Personalized
E-Learning System. I.J. Modern Education and Computer Science, 5, 27–35.

Baker, F. (2001). The Basics of Item Response Theory. University of Maryland, College Park, MD: ERIC
Clearinghouse on Assessment and Evaluation.

Baker, F.B. (1992). Item Response Theory: Parameter estimation techniques. Marcel Dekker.
Beulah, C., Latha, C.B., & Kirubakaran, E. (2013). Personalized Learning Path Delivery in Web based

Educational Systems using a Graph Theory based Approach. Computer Science, 55428839.
Boyinbode, O., & Akintade, F. (2015). A Cloud Based Mobile Learning Interface. Lecture Notes in

Engineering and Computer Science: Proceedings of The World Congress on Engineering and
Computer Science (pp. 353–356). San Francisco, USA.

Boyinbode, O., & Bagula, A. (2012). An Interactive Mobile Learning System for Enhancing Learning in
Higher Education. Proceedings of the IADIS International Mobile Learning Conference Berlin
(pp. 331–334). Germany.

Brusilovsky, P. (2001). Adaptive hypermedia. User Modeling, and User–Adapted Interaction, 11, 87-110.
Chen, C.M., & Chung, C.J. (2008). Personalized mobile English vocabulary learning system based on

item response theory and learning memory cycle. Computers & Education, 51(2), 624–647.
Chi,Y. (2009). Ontology-based Curriculum Content Sequencing System with Semantic Rules. Expert

Systems with Applications, 36(4), 7838–7847. https://doi.org/10.1016/j.eswa.2008.11.048
Crocker, L., & Algina, J. (1986). Introduction to classical and modern test theory. Holt, Rinehart, and Winston.

Dag, F., & Gecer, A. (2009). Relations between online learning and learning styles. Procedia Social and
Behavioral Sciences, 1, 862–871.

Hambleton, R.K., Swaminathan, H., & Rogers, H.J. (1991). Fundamentals of Item Response Theory.
Sage Publications.

Hamzeh, M. (2005). Using Distractors in Correcting for Guessing in Multiple-Choice Tests. Educational
Sciences, 32(1), 192–197.

Kurilovas, E., Zilinskiene, I., & Dagiene, V. (2016). Recommending Suitable Learning Paths According to
Learners’ Preferences: Experimental Research Results. Computers in Human Behavior, 51, 945–951.

Uhomoibhi, J.O. (2006). Implementing e-learning in Northern Ireland: prospects and challenges.
Campus-Wide Information Systems, 23(1), 4–14.

Yarandi, M., Jahankhani, H., & Tawil., A. (2013). A Personalized Adaptive e-learning approach based
on semantic web technology. Computer Science, 6257403.

85

Applied Computer Science, vol. 16, no. 4, pp. 85–102

doi:10.23743/acs-2020-31

Submitted: 2020-10-25

Revised: 2020-12-21

Accepted: 2020-12-28

Computer vision; Raspberry Pi system

Mohanad ABDULHAMID*, Otieno ODONDI**,

Muaayed AL-RAWI***

COMPUTER VISION BASED ON

RASPBERRY PI SYSTEM

Abstract
The paper focused on designing and developing a Raspberry Pi based system

employing a camera which is able to detect and count objects within a target

area. Python was the programming language of choice for this work. This

is because it is a very powerful language, and it is compatible with the Pi.

Besides, it lends itself to rapid application development and there are online

communities that program Raspberry Pi computer using Python. The results

show that the implemented system was able to detect different kinds of

objects in a given image. The number of objects were also generated displayed
by the system. Also the results show an average efficiency of 90.206 % was

determined. The system is therefore seen to be highly reliable.

1. INTRODUCTION

Object counting is an important image processing technique that is applicable

in many industrial applications. Some examples of these applications include:
counting the number of products passing a conveyor belt, counting the number of

cars passing through a given road at a given time, or counting the number of a par-

ticular species in a wildlife park.

Cameras have become a standard hardware and a required feature in many
mobile devices. These developments have moved computer vision from a niche

tool to an increasingly common tool for very many applications such as facial

recognition programs, gaming interfaces, industrial automation, biometrics,
medical image analysis, and planetary exploration.

* Al-Hikma University, Karada Kharidge, Baghdad, Iraq, moh1hamid@yahoo.com
** University of Nairobi, P.O.Box 30197, GPO, Nairobi, Kenya,
researcher12018@yahoo.com
*** AL-Mustansiryia University, Baghdad, Iraq, muaayed@yahoo.com

http://acs.pollub.pl/pdf/v16n4/7.pdf

86

Raspberry Pi is one such mobile device that comes with a built in camera slot.
There are a number of applications that can be achieved through the Pi camera.

Hobbyist use it to develop gaming programs and robotic applications. They direct

a robot using a given set of image instructions such as, turn left, or right, or stop.

Computer vision is the automated extraction of information from images. Such
information includes: 3D models, object detection and recognition, grouping and

searching information, image warping, de-noising among others. Intelligent

Transportation Society of America (ITSA) defines computer vision as the process
of using an image sensor to capture images, then using a computer processor to

analyze these images to extract information of interest.

Computer vision is used in a wide variety of real-world applications such as

Optical Character Recognition (OCR) to read handwritten postal codes, rapid
machine parts inspection in production plants for quality assurance, using stereo

vision with specialized illumination to measure tolerances on aircraft wings or

auto body parts, and looking defects in steel castings using X-ray vision.
Computer vision is also used in object recognition for automated check points in

retail, automotive safety by detecting unexpected obstacles such as pedestrians on

the street, under conditions where active vision techniques such as radar do not
work, and in medical imaging.

Raspberry Pi is defined as a low cost, credit-card sized computer that plugs

into a computer monitor or TV, and uses a standard keyboard and mouse. It is

presented as a little device that enables people to experience computing and learn
programming languages such as Scratch and Python. Essentially, it can perform

anything that one would expect a desktop computer or laptop to perform. Some

works which use Raspberry Pi in computer vision are found in literatures (Islam,
Azad, Alam & Hassan, 2014; Jana & Borkar, 2017; Nikam, Doddamani,

Deshpande & Manjramkar, 2017; Odondi, 2016; Sandin, 2017; Senthilkumar,

Gopalakrishnan & Sathish Kumar, 2014).

2. DESIGN PROCEDURE

2.1. Hardware Requirements

This work is accomplished using the following hardware components: Raspberry
Pi, Pi camera, and power supply.

2.1.1. Raspberry Pi and SD card

The design of this work uses PI (Model B+). In order to efficiently execute the
work, Raspbian Jessie OS was installed in a 16GB Secure Digital (SD) card.

As opposed to Raspbian Jessie Lite OS and Whizzy OS, Raspbian Jessie gives

87

a Graphical User Interface(GUI) experience. Therefore, it was not imperative to
use Putty to access the Raspberry Pi remotely. With Remote Desktop Protocol

(xRDP) installed in the Pi, one can connect to the Raspberry Pi remotely using the

Windows Remote Desktop Connection application. It was developed by Raspberry

Pi foundation in UK to be used for the advancement of computer science
education. The second version of the Raspberry Pi is used here.

2.1.2. Raspberry Pi Camera

The Raspberry Pi camera board plugs directly into the Camera Serial Interface

(CSI) connector on the Raspberry Pi. The Raspberry Pi camera module attaches
to Raspberry Pi by way of a 15 pin Ribbon cable to the dedicated 15-pin Mobile

Industry Processor Interface (MIPI) CSI which was designed especially for inter-

facing to cameras. It is able to deliver a clear 5 megapixel resolution image or

1080p High-definition (HD) video recording at 30 frames/sec.

2.1.3. Power Supply

The power supply on Raspberry Pi is quite simple. It powers through a Micro

Universal Serial Bus (USB) connection which is capable of supplying at least
700 mA at 5 V.

2.2. Ethernet Cable

There are various ways of accessing the Raspberry Pi. It is not possible to work
on the Raspberry Pi on its own as it does not have either a monitor or a keyboard.

It is therefore important to have an Audio-visual/High-Definition Multimedia

Interface (AV/HDMI) display and a keyboard. However, it can also be accessed
remotely by connecting it to a laptop or a desktop using an Ethernet cable. The later

method was adopted for its convenience.

2.3. Software Used

The software used to successfully realize the objectives of the work include:

Python, Open source Computer Vision software (OpenCV), Microsoft Office

Visio and Word, Raspbian Jessie OS and Remote Desktop Connection application
in Microsoft Windows 8.1 which granted remote access to Pi.

2.4. Modeling

The overall design is visualized at hardware level by block diagram of Fig. 1

while the flowchart of Fig. 2 gives the steps used in implementing the system.

88

2.4.1. Block Diagram

The integration of different hardware components is as shown by the block

diagram of Fig. 1. The figure shows the integration of various hardware components.

Fig. 1. Block diagram showing the integration of the hardware

The Pi camera was inserted into the CSI slot provided on the Pi, an Ethernet

cable is connected to the Ethernet ports of both Pi and the laptop to access Pi

remotely. The micro USB 5 V 700 mA was used to power Raspberry Pi.

2.4.2. Methodology

There are several ways in which this task could be achieved. However, design

settled on the solution shown in the flowchart of Fig. 2 below. The critical steps
in the design were as outlined.

89

Fig. 2. Flow chart of the algorithm

2.4.2.1. Image Acquisition

This step involves image capture using the Pi camera mounted on the Raspberry

Pi computer and saving it to Pi root directory. There are several ways of capturing
an image using a Pi camera for example the command “raspistill -o

my_image.jpg” captures and saves a Joint Photographic Experts Group (JPEG)

image as my_image to the root directory of the Raspberry Pi.

2.4.2.2. Image Processing

The first step in image processing is to import the necessary OpenCV libraries

(numpy and cv2) before load the image off disk using cv2.imready (“image.jpg”)

function. This function reads the image that was captured so that it can be

processed. The next step is grayscale conversion. This is achieved using the
cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) where cv2.COLOR_BGR2GRAY

is the flag which converts a BGR image to a GRAY image.

90

It is necessary to blur the grayscale image slightly to reduce high frequency
(Gaussian) noise and increase the efficiency of the algorithm. This was realised

using cv2.GaussianBlur(gray, (3, 3), 0). The function takes four arguments.

The first is the image, the second shown in the bracket are the height and the width

of the standard deviation. Finally, we also need to specify sigmaX and sigmaY.
If only sigmaX is specied, sigmaY is assumed to be the same as sigmaX. In this

case, sigmaX was zero which implied that the two sigmas were calculated from

the kernel. There are other functions in openCV that can also be used to blur an
image such as averaging (cv2.blur()), median blurring (cv2.medianBlur()) and

bilateral filtering (cv2.bilateralFilter()) but Gaussian blurring was used because it

is highly effective in removing Gaussian noise from the image.

The next step is to detect the edges of objects in the image. Canny edge
detection algorithm was used because it is widely accepted as the optimal detection

algorithm. The openCV function cv2.Canny(gray, 10, 250) was used with 10 and

250 as the minimum and maximum values respectively.
In many cases, some outlines of the objects in the images are not “clean” and

complete. There are usually gaps in between the outlines that must be closed if

objects were to be successfully detected. To solve this, a “closing” operation was
applied to close the gaps between the white pixels in the image. Two morphologi-

cal transformation functions: cv2.getStructuringElement(), and cv2.morphologyEx()

were used. cv2.morphologyEx() takes three inputs. The first one is the image while

second is the morphological function, for example, cv2.MORPH_OPEN, or
cv2.MORPH_GRADIENT, or cv2.MORPH_CLOSE, etc. depending on what we

want to achieve. In this case cv2.MORPH_CLOSE is the argument passed since

there is need to close the small holes inside the foreground objects, or small black
points on the object. Lastly, the third input is by default kernel. On the other hand

getStructuringElement() takes two arguments – the first one is dependent on the

shape of kernel required, e.g. a rectangle or a cross, while the second argument
specifies the matrix e.g. (7,7) for a 7×7 matrix.

The next step was to detect contours or outlines of the objects in the image.

A contour is simply a curve joining all the continuous points (along the boundary),

having same colour or intensity. cv2.findContours() function is used. It takes three
inputs: the first one is the image, the second one is the contour retrieval mode and

the third is one is the contour approximation method. The argument

cv2.CHAIN_APPROX_SIMPLE is preferred to cv2.CHAIN_APPROX_NONE
since the latter saves all the points of the contour while the former only save the

end points of the contour thus saves on memory space. For a rectangle, only four

points are saved.

To check if a contour is of the required object or not, it is necessary to loop
over each of the contours one by one. The functions cv2.arcLength(c, True), where

the first argument is the contour, while the second argument specifies whether the

shape is a closed contour (if passed True) or just a curve, and cv2.approxPolyDP
(c, 0.02 * peri, True) were used. The first argument passed is the counter and the

91

next is epsilon which is usually a percentage of the arc length (‘arcLength’).
The third argument is as in the case of arcLength() function. Finally, the processed

image is displayed on the screen using the drawContours() function.

2.4.3. Assumptions

The code assumed that a circle is a polygon with more than several edges. Any

circular object in any image was therefore processed and displayed as an object

with more than four edges.

3. RESULTS

3.1. Single Object

3.1.1. Rectangular Object

Figs. 3 to 7 show the steps involved in detecting and counting rectangular
object. Fig. 3 shows the raw image captured while Fug.4 shows the same image

in gray scale.

Fig. 3. Rectangular image

Fig. 4. Grayscale Image of Fig. 3

Fig. 5 shows the result of canny edge detection while Fig. 6 is the result of
closing operation. While a clear cut difference between them may not be easily

detected by the human eye, a keen look at the vertex of Fig. 6 (pointed to by an

arrow) shows that a tiny gap at the same corner of Fig. 5 was closed. Latter results
will clearly show this. Finally, Fig. 7 shows the output image displayed after image

processing.

92

Fig. 5. Result of edge detection

Fig. 6. Closed form of Fig. 3

Fig. 6. Output of Fig. 3

In addition to the output, the code also retuned of the number of objects

detected on the terminal upon successful completion. In this case, the following

result was generated by the system:

There isn't any triangular object in the image.
There is 1 rectangular object in the image.

There isn't any object with more than four edges in the image.

I am glad to let you know that there is 1 object in this image.

3.1.2.Triangular Object

Similar observations were made as in the case of the one triangular object.
Fig. 8 shows the test image while Fig. 9 is the blurred grayscale image of Fig. 8.

The feedback from the terminal specifies that only one triangular object has been

identified. Again there is a small gap as shown in Fig. 10 which is closed before

the contour is drawn. Fig. 11 is the result of closing operation while Fig. 12 shows
the output image displayed after image processing.

93

Fig. 8. Triangular object

Fig. 9. Grayscale image of Fig. 8

Fig. 10. Edged image

Fig. 11. Closed image

Fig. 12. System generated output

The system generated the following feedback when the code was executed to

analyze Fig. 8 The result shows that only one triangular object was detected.

There is 1 triangular object in the image.

There isn't any rectangular object in the image.

There isn't any object with more than four edges in the image.
I am glad to let you know that there is 1 object in this image.

94

3.2. Multiple Objects

3.2.1. Human Vision versus Computer Vision

The test data of Fig. 13 was used to evaluate the performance of the code when

there are different kinds of objects. While there are six rectangular shaped objects

by human, the code only identified four of them. Other objects were accurately
identified.

An interesting observation is noted here. Since the objects were cut without

a ruler and by using a scissor i.e. freehand, the code was able to detect an extra

vertex, which a human eye would not have detected at the bottom right corner of
the image. This object is therefore identified as a polygon as shown in Fig. 17.

The high level of efficiency is attributed to the fact that computer vision is based

on evaluation at pixel level while the human vision is usually based on pre-
recorded information. It is also necessary to note that the code classifies coins as

polygons with more than four edges. This is because any circular shaped object

seen as a polygon.

The object pointed to by the arrow in Fig. 13 was not detected by the code.
The only parameter that stands out for this object is its small size relative to the

other “human perceived rectangles”. This is a typical error that would make

human vision preferred to computer vision.
Fig. 14 shows the result obtained when Fig. 13 was converted to a grayscale

image and blurring it. Fig. 15 is the result of Canny edge detection algorithm, while

Fig. 16 is the result of closing and clearly shows the need for performing closing
to an image before determining the type of the image. After edge detection, the

twenty shillings coin (the coin on the extreme left of the test image – Fig. 13) is

seen to have some gaps within its contours which without performing the closing

operation could have been considered as objects within the coin.
The following result was generated by the system when the command python

countdiffobjects.py was run in the terminal to process Fig. 13.

There are 2 triangular objects in the image.
There are 4 rectangular objects in the image.
There are 6 objects with more than four edges in the image.

I am glad to let you know that there are 12 objects in this image.

95

Fig. 13. Image with several objects

Fig. 14. Gray scale image

Fig. 15. Result of edge detection on Fig. 13

Fig. 16. Result of ‘Closing’ operation

Fig. 17. Output of Fig. 13

3.2.2. Optimal Performance

The success of the code depended on the inter-object spacing and the distance
from the object to the camera lens (focus). The code was found to be most reliable

with a better trade-off between inter-object spacing and focus. Besides, the

intensity of the background color affected the performance of the code. Using the
specimen of Fig. 18, which was captured when the distance between the objects

was optimal and with a better focus, the best result was realized.

96

Fig. 18 is the object under test while Fig. 19 is its grayscale image. Fig. 20 and
Fig. 21 are the edged and closed images respectively. It was observed that all objects

were successfully detected because of the sharp contrast in the color of objects

and that of the background.

When the image of Fig. 18 was processed, the output image of Fig. 22 was
displayed. All the objects were detected and counted. The rectangular and triangular

objects were each five while objects with more than four edges were seven.

In total therefore, seventeen objects were identified.

Fig. 18. Light colored objects in a black

background

Fig. 19. Gray image of Fig. 18

Fig. 20. Edged image of Fig. 18

Fig. 21. Closed image of Fig. 18

Fig. 22. Output of Fig. 18

97

The system generated the following results when Fig. 18 was processed:

There are 5 triangular objects in the image.

There are 5 rectangular objects in the image.

There are 7 objects with more than four edges in the image.
I am glad to let you know that there are 17 objects in this image.

The distance from the object to the camera is crucial in the performance of this
code. As above figures show, the rectangular object at the bottom of those figures

is ultimately detected as one object but when a close-up of the same image is

taken, the words and the circular drawing within the same object are detected too.

3.3. Effect of Background Color and Inter-object Spacing on the System

The accuracy of the code was seen to reduce considerably when the objects

were close to each other. This section illustrates how inter-object spacing and

color intensity of the background in relation to that of the object affected the
reliability of the code.

Fig. 23 was used to illustrate the two phenomena. It was observed that the

spacing of the object, especially when there is no sharp contrast between background

color and the color of object, two or more objects were identified as one.
When the image is converted to grayscale, the two pentagons pointed to by the

red arrow in Fig. 23, were seen to be of almost the same intensity as the

background (see Fig. 24). Their outline were therefore not detected as shown in
Fig. 25 and Fig. 26. Equally, objects that are close to one another were also

detected as one object as shown in Fig. 27. Since the rectangular object and the

triangular object adjacent to it (pointed to by the blue arrow in Fig. 23) are very
close to each other, their outlines were jointly detected as a single object (see

Fig. 27). This is attributed to the fact that the color intensity of the images and

background are almost the same in addition to them being close to each other.

The image was taken when the Pi camera was very closer to the object than the
previous one. As such, the texture of the background affected the accuracy of the

system as shown by the detection of non-object edges as shown in Fig. 25. Two

triangles on the extreme left side, and the left-most rectangular object (Fig. 23)
were therefore detected as one object as shown in Fig. 27.

The following result was obtained from the system when Fig. 23 was analyzed.

There are 2 triangular objects in the image.
There are 2 rectangular objects in the image.

There are 6 objects with more than four edges in the image.

I am glad to let you know that there are 10 objects in this image.

98

The result shows that only 10 objects were detected. In reality there were 17
objects as identified by human eye in the same image. The result shows the

limitations of the system.

Fig. 23. Image with objects close to one

another

Fig. 24. Grayscale image of Fig. 23

Fig. 25. Edged image of Fig. 23

Fig. 26. Closed image of Fig. 23

Fig. 27. Output of Fig. 23

3.4. Effect of Shadow on Code

The objects with shadow in the image could not be detected especially if there

was no sharp contrast in color intensity with respect with the background. When

the image of Fig. 28 was analyzed to detect rectangular shaped objects, errors
were noted. This further showed other limitations of the code.

99

The rectangular box object had a shadow as shown in both Fig. 28 and Fig. 29
with a blue arrow. When Canny edge detector algorithm was applied, the edge

with shadow was not detected. Besides, the eraser and the coin were not detected

due to the effects of the background color. Fig. 30 and Fig. 31 show the edged

image and closed image of Fig. 28 respectively.
As shown on the output generated by the system (Fig. 32), only one rectangular

object is detected.

Fig. 28. Image with shadow

Fig. 29. Grayscale image of Fig. 28

Fig. 30. Edged image of Fig. 28

Fig. 31. Closed image of Fig. 28

Fig. 32. Output of Fig. 23

100

3.5. Effect of Close-up Image on Code

The closing operation works perfectly as long as the gaps between the objects

are small. When the gaps exceeds a threshold, the code identifies even the wittings

on the objects. The following result was generated by the system when the code

was executed for the image of Fig. 33. Fig. 34 shows the output image generated
by the system.

There isn't any triangular object in the image.
There is 1 rectangular object in the image.

There are 32 objects with more than four edges in the image.

I am glad to let you know that there are 33 objects in this image.

By the human eye, this is a serious error since only one rectangular object was

examined.

Fig. 33. Close-up image

Fig. 34. Output when a close-up is taken

4. ANALYSIS

The functionality of the system is dependent on a number of factors which include:

the background color in relation to the color of the object in the mage, the proximity

of the camera to the object and by extension the texture of the background, the
inter-object distance as well as the shadow as of the objects as was shown by the

test results.

The test results for five objects – as listed in table 1 – were analyzed to determine
the efficiency of the code.

101

Tab. 1. Efficiency analysis

 Figure Number of Objects Objects Detected by Pi Camera Efficiency

 3 1 1 100%

 8 1 1 100%

 13 13 12 92.31%

 18 17 17 100%

 23 17 10 58.72%

 Total Efficiency: 451.03

 Average Efficiency: 90.206

From the table 1, the worst case scenario was experienced when Fig. 23 was
analyzed. In this case, only 10 out of 17 objects were identified. The figures do not

tell the whole story as revealed in Fig. 27 where it is clearly shown that only wrong

objects were detected. This is because most objects were close to each other, the

camera was closer to the object than other images that were analyzed and inten-
sities of the background color and the objects were similar.

5. CONCLUSION

The work in this paper demonstrated the potential of the Raspberry Pi based

system using Python as the programming language. The system was designed

employing a camera which is able to detect and count objects within a target area.

Different tests cases analyzed revealing the performance of the system. The
reliability of the system was found out to depend on: number of objects within an

image, the background color in relation to the color of the object, distance between

objects, shadow of objects, and distance from the lens of the camera to the
specimen (focus). The system was also able to differentiate between objects in an

image based on their shapes. Rectangular objects, triangular objects and objects

with more than four edges were easily detected. However, circular objects could
not be detected as such partly because the camera was tilted at an angle and to a

larger extent due to the assumptions outlined in the design section. The contours

of circular detected as several edges with many vertices.

102

REFERENCES

Islam, M. M., Azad, M. S. U., Alam, M. A., & Hassan, A. (2014). Raspberry Pi and image processing

based Electronic Voting Machine (EVM). International Journal of Scientific and
Engineering Research, 5(1), 1506–1510.

Jana, S., & Borkar, S. (2017). Autonomous object detection and tracking using Raspberry Pi.
International Journal of Engineering Science and Computing, 7(7), 14151–14155.

Nikam, A., Doddamani, A., Deshpande, D., & Manjramkar, S. (2017). Raspberry Pi Based obstacle
avoiding robot. International Research Journal of Engineering and Technology, 4(2), 917–919.

Odondi, O. (2016). Computer Vision through the Raspberry-PI: Counting Objects (graduation

project). University of Nairobi, Kenya.
Sandin, V. (2017). Object detection and analysis using computer vision (graduation project).

Chalmers University of Technology, Sweden.
Senthilkumar, G., Gopalakrishnan, K., & Sathish Kumar, V. (2014). Embedded image capturing

system using Raspberry Pi system. International Journal of Emerging Trends and Technology
in Computer Science, 3(2), 213–215.

103

Applied Computer Science, vol. 16, no. 4, pp. 103–117

doi:10.23743/acs-2020-32

Submitted: 2020-11-30

Revised: 2020-12-07

Accepted: 2020-12-14

order violation, conflicts of resources, static analysis of the code

Damian GIEBAS*, Rafał WOJSZCZYK [0000-0003-4305-7253]*

ORDER VIOLATION IN MULTITHREADED

APPLICATIONS AND ITS DETECTION

IN STATIC CODE ANALYSIS PROCESS

Abstract

The subject presented in the paper concerns resource conflicts, which are

the cause of order violation in multithreaded applications. The work focuses

on developing conditions that can be implemented as a tool for allowing to

detect these conflicts in the process of static code analysis. The research is

based on known errors reported to developers of large applications such as

Mozilla Firefox browser and MySQL relational database system. These errors

could have been avoided by appropriate monitoring of the source code.

1. INTRODUCTION

The authors of some works concerning multithreading stress the need for
diagnostic, monitoring or code optimization tools for developers, which will

facilitate the so-called debugging process (Lu, Park, Seo & Zhou, 2008; Savage,

Burrows, Nelson, Sobalvarro & Anderson, 1997). The basis for detecting such

phenomena as race condition, deadlock, atomicity violation and order violation is
the knowledge of resource conflicts which result in the mentioned phenomena.

The conditions developed on the basis of resource conflicts research allow to carry

out the process of static analysis of the source code to detect them (Giebas
& Wojszczyk, 2020b; Lu et al., 2008; Park, Vuduc & Harrold, 2010). Phenomena

such as race condition and deadlock are very well researched, and the literature

contains many well documented methods allowing to locate the conflicts causing

them (Bishop & Dilger, 1996; Cai, Wu & Chan, 2014; Giebas & Wojszczyk,
2018; Jin, Song, Zhang, Lu & Liblit, 2011; Netzer & Miller, 1992). Conflicts of

* Faculty of Electronics and Computer Science, Koszalin University of Technology,
Śniadeckich 2,75-453 Koszalin, Poland, rafal.wojszczyk@tu.koszalin.pl

http://acs.pollub.pl/pdf/v16n4/8.pdf
https://orcid.org/0000-0003-4305-7253

104

resources resulting in the phenomenon of atomicity violation are more complex
than those concerning the previously mentioned phenomena, but there are also

further successes in this field (Chew & Lie, 2010; Jin et al., 2011). The knowledge

of resource conflicts causing a given phenomenon makes it possible to develop

conditions allowing to analyse the code structure in order to detect them (Giebas
& Wojszczyk, 2018, 2020a, 2020b, 2020c).

It turns out, however, that the atomicity violation, order violation and other

undesirable phenomena can only occur in specific environments or on specific hard-
ware configurations, as mentioned by Mozilla Firefox developers (Lu et al., 2008).

Today, the multitude of combinations of settings, environments, and hardware

configurations is so vast that it is impossible to perform enough tests in a real time

to determine that the selected application is free of resource conflicts causing even
one of the undesirable phenomena. As a result, applications are tested only on the

most popular hardware platforms in environments based on the most popular

operating systems. However, this process also has a number of disadvantages.
Research conducted in 2017 showed that both developers and testers were usually

unable to give the correct sequence of threads (Abbaspour Asadollah, Sundmark,

Eldh & Hansson, 2017), i.e. knowledge of the scenario predicted by the architect
or programmer implementing the indicated functionality is sometimes insignifi-

cant among other team members. In addition, the analysis of bug reports showed

that the highest number of errors related to the phenomenon of order violation was

classified in the Minor group, i.e. the fourth group on a scale from 1 to 5, where 5
are the least significant errors and 1 are the most significant ones. Therefore, the

awareness of the threats posed by the phenomenon of order violation seems to be

very low, which directly influences the amount of time spent on examining the
causes of this phenomenon.

Data on the time needed to repair various types of errors were also analysed.

The analysis shows that the repair of errors related to multithreading was 82 days
on average, while the repair of errors not related to multithreading takes 66 days

on average (Abbaspour Asadollah et al., 2017). This combined with the fact that

very often the first modification of the code does not fix the error (Lu et al., 2008),

it can be concluded that the average time spent by developers on fixing multi-
threaded errors is too short.

This work focuses on developing a condition for detecting resource conflicts

that cause order violation. The element necessary for locating the searched
conflicts turned out to be the sequential relations developed within the work (Giebas

& Wojszczyk, 2020b).

A new definition of the phenomenon of order violation was developed as well.

The own contribution should also include a review of actual errors in the open-
source software and their analysis in order to develop conditions for locating

resource conflicts causing the phenomenon of order violation. After the conditions

have been developed, it is possible to implement the method as a computer
program, used to code optimization.

105

The section after the introduction is a review of the state of knowledge in the
field of multithreaded applications and the phenomenon of order violation.

Section no. 4 describes research on known and well documented disorderly errors

from Mozilla Firefox and MySQL relational database system, which is used in many

software and scientific research (Abdulhamid & Kinyua, 2020). Section 5 formu-
lates the problem and section 6 presents a sufficient condition. Section 7 discusses,

among other things, the assumptions and limitations of the method developed.

The discussion also includes the topic of checking whether the claim is true not
only for the examples in section 4, but also for the order violation occurring in

applications written in languages other than C language. It is worth noting that the

C language is still very popular, and thanks to good optimization it is used in well-

known single-board computers, e.g. Raspberry Pi (Cygan, Borowik & Borowik,
2018). Section 8 contains a leading example, where it is checked whether a simple

example written in C is true. In the last section includes a summary of this work.

2. THE CURRENT KNOWLEDGE

An order violation is caused by reversing the order of access to two (or more)

memory areas (i.e. A should always be invoked before B, but the order is not main-

tained during execution) (Lu et al., 2008). Thus, the application may be free of race

condition, deadlock and atomicity violations, and yet its operation may be affected
by irregularities.

This phenomenon has been classified to the group of phenomena of race

character, as well as race condition and atomicity violation (Chen, Jiang, Xu, Ma
& Lu, 2018; Torres, Marr, Gonzalez & Mössenböck, 2018; Lu et al., 2008). The

character of the race should be understood as including time as one of the most

important variables.
An example of such an application can be found in the order_violation_examples

repository on the GitHub portal* in the order_violation.c file. Running this code

several times may bring incorrect output in the console. This example is very

simple, but it shows the essence of the problem. In order to eliminate the phenome-
non of atomicity violation, 5 strategies have been proposed in the literature

(Lu et al., 2008): control instructions, changing the order of operations, changing

the source code structure, changing the position of operations assuming and
releasing locks, and other solutions that do not fit into any of the previous groups.

The order violation in this example can be removed in two ways. In the first

one, the whole loop should be placed in the critical section in function t1f. The

second solution is to run the second thread after the first thread has finished

* https://github.com/PKPhdDG/order_violation_examples

106

working, which will ensure that the operation is launched in the right order. This
example illustrates how complicated is the phenomenon of order violation.

The literature says that in one version of the Apache server code, the time

needed to restore a order violation took 22 hours of uninterrupted server operation

with an eight-core processor (Park et al., 2009). However, rarely does a single
restoration of the phenomenon allow to understand and eliminate it. This example

shows how much tools are needed to search for phenomena in real time.

One of solution is to use a different type of memory (Andrew, Mcpherson,
Nagarajan, Sarkar & Cintra, 2015). The research shows that even the use of software

transactional memory (STM) provided by Convoider software is not able to protect

against the phenomenon (Yu, Zuo & Xiong, 2019). The authors of Convoider

estimate that the use of transactional memories will allow to avoid order violation
with a probability equal to 0.5%.

The phenomenon of order violation is also mentioned in the research on

a testing technique called fuzzing. The ConFuzz tool, developed for the analysis
of multithreaded applications, has been classified as a static code analysis tool

(Vinesh & Sethumadhavan, 2020), because it reduces the application code to bitcode

using the llvm compiler tools. The bitcode is then analysed. The results of the work
do not contain any information about the location of conflicts causing the order

violation, but the innovative approach may prove to be effective.

In the presented literature, it was not possible to find any clues or conditions

allowing to locate resource conflicts causing order violation phenomena.

3. MODEL

In the following sections, Mozilla Firefox and MySQL source code fragments

are also presented in graphical form, according to the source code model repre-

sentation of a multithreaded application, which is as follows (Giebas & Wojszczyk,
2020b):

 𝐶𝑃 = (𝑇𝑃,𝑈𝑃, 𝑅𝑃,𝑂𝑃,𝑄𝑃, 𝐹𝑃, 𝐵𝑃) (1)

where: P – the program index,

𝑇𝑃 = {𝑡𝑖 |𝑖 = 0...𝛼}, (𝛼 ∈ N) – a set of all threads of 𝑡𝑖 application CP, where

𝑡0 is the main thread, |𝑇𝑃 | > 1,

𝑈𝑃 = (𝑢𝑏 |𝑏 = 1...𝛽), (𝛽 ∈ N+) – is the sequence of sets of 𝑢𝑏, which are

subsets of 𝑇𝑃 containing threads working in the same period of time in the

program CP, whereas |𝑈𝑃 | > 2, 𝑢1 = {𝑡0} and 𝑢𝛽 = {𝑡0},

𝑅𝑃 = {𝑟𝑐 |𝑐 = 1...𝛾}, 𝑟𝑐 = {𝑣1,𝑣2, ...,𝑣𝜂}, (𝛾,𝜂 ∈ N+) – a collection of shared

application resources CP, and the following elements are sets of variable
names referring to a single resource,

107

𝑂𝑃 = {𝑜𝑖,𝑗 |𝑖 = 1...𝛿, 𝑗 = 1...𝜖}, (𝛿,𝜖, ∈ N+) – is a set of all application

operations of CP, which at a certain level of abstraction are atomic
operations, i.e. they cannot be divided into smaller operations; an operation

is understood as an instruction or function defined in the programming

language; an index i and indicates the number of the thread in which the

operation is executed, and an index j is an order number of operations

working within the same thread,

𝑄𝑃 = {𝑞𝑠 |𝑠 = 1...𝜅}, 𝑞𝑠 = (𝑤𝑠,𝑥𝑠), (𝜅, ∈ N+) – a set of all mutexes available

in the program, defined as a pair variable, mutex type, where the type is
understood as one of the set values (PMN, PME, PMR, PMD), where

values correspond to the lock types in the library pthread,

𝐹𝑃 = {𝑓𝑛|𝑛 = 1...𝜄} and 𝐹 ⊆ (𝑂𝑃 × 𝑂𝑃) ∪ (𝑂𝑃 × 𝑅𝑃) ∪ (𝑅𝑃 × 𝑂𝑃) ∪ (𝑂𝑃 × 𝑄𝑃)
∪ (𝑄𝑃 × 𝑂𝑃), (𝜄 ∈ N+) – a set of edges including:

1. Transition edges – defining the order of operations. These edges

are pairs 𝑓𝑛 = (𝑜𝑖,𝑗,𝑜𝑖,𝑘), where the elements describe two

consecutive operations 𝑜𝑖,𝑗 ∈ 𝑂𝑃,
2. Usage edges – indicating resources that change during the

operation. These edges are pairs 𝑓𝑛 = (𝑜𝑖,𝑗,𝑟𝑐), in which one element

is operation 𝑜𝑖,𝑗 ∈ 𝑂𝑃, and the other is resource 𝑟𝑐 ∈ 𝑅𝑃,
3. Dependency edges – indicating operations depending on the current

value of one of the resources. These edges are pairs 𝑓𝑛 = (𝑟𝑐,𝑜𝑖,𝑗),

where the first element is the resource 𝑟𝑐 ∈ 𝑅𝑃, and the second is the

operation 𝑜𝑖,𝑗 ∈ 𝑂𝑃,

4. Locking edges – indicating the operation applying the selected lock.

These edges are pair 𝑓𝑛 = (𝑞𝑠,𝑜𝑖,𝑗), in which one element is the lock,

and the other is the locking operation.

5. Unlocking edge – indicating the operation releasing the selected

lock. These edges are pairs 𝑓𝑛 = (𝑜𝑖,𝑗,𝑞𝑠), in which one element is

the unlocking operation, and the other is the released lock.

𝐵𝑃 = (𝐵𝑃
𝐹𝑊𝐷 , 𝐵𝑃

𝐵𝑊𝐷 , 𝐵𝑃
𝑆𝑌𝑀) – set sequence:

𝐵𝑃
𝐹𝑊𝐷 – set of pairs of forward-relationship operations: 𝐵𝑃

𝐹𝑊𝐷 =

{(𝑜𝑖,𝑗,𝑜𝑎,𝑏);𝑜𝑖,𝑗,𝑜𝑎,𝑏 ∈𝑂𝑃 }; the first operation from the pair forces the second

operation, while the second operation does not force the first. In the

further part of the work it will be marked with the symbol 𝑜𝑖,𝑗 → 𝑜𝑎,𝑏,

𝐵𝑃
𝐵𝑊𝐷 – a set of pairs of backward operations: 𝐵𝑃

𝐵𝑊𝐷 = {(𝑜𝑖,𝑗,𝑜𝑎,𝑏);𝑜𝑖,𝑗,𝑜𝑎,𝑏

∈ 𝑂𝑃 }; the occurrence of the first operation from the pair does not force

the second operation, while the occurrence of the second operation
requires the first operation. In the further part of the work it will be marked

with the symbol 𝑜𝑖,𝑗 ← 𝑜𝑎,𝑏,

𝐵𝑃
𝑆𝑌𝑀 – a set of pairs of symmetric relationship operations: 𝐵𝑃

𝑆𝑌𝑀 =

{(𝑜𝑖,𝑗,𝑜𝑎,𝑏);𝑜𝑖,𝑗,𝑜𝑎,𝑏 ∈ 𝑂𝑃 }; the occurrence of the first operation from the pair

108

forces the second one and conversely, the occurrence of the second
operation from the pair requires the first one to occur. In the further part

of this work it will be marked with the symbol 𝑜𝑖,𝑗 ↔ 𝑜𝑎,𝑏.

An extension was introduced to the model consisting in changing the definition
of a symmetrical relation. All symmetrical relations are a set of pairs of operations,

because both operations must be performed in a given order, however, these

operations can occur in two different threads. As a result, a two-element set
consisting of operations of two different threads does not have information which

of the operations should logically be performed first.

4. STUDIES ON THE ORDER VIOLATION

The review of the literature on the phenomenon of order violation did not bring
the expected results in the form of conditions that the source code must meet in

order for a resource conflict resulting in order violation to occur. The development

of such conditions has already made it possible to locate the phenomena of race
condition, deadlock and atomicity violation (Giebas & Wojszczyk, 2020a, 2020b,

2020c). The resource conflicts causing the order violation phenomenon should

also have a number of common characteristics, which will enable locating them.

In order to find these characteristics, it is necessary to analyse several fragments
of the source code, the activation of which results in the phenomenon of order

violation. Therefore, based on the literature, Mozilla Firefox and MySQL source

code fragments will be reviewed, in which the resource conflicts bringing order
violation will be analysed. All of these code fragments have been discussed in a

paper (Lu et al., 2008), which generally discusses multithreaded application errors.

The file figure_2_mozilla_firefox.c, which is located in the

order_violation_examples repository, contains an extract from Mozilla Firefox,
the execution of which will result in the order violation. The application allows

for this to happen when a thread using the mMain function will be run first and

perform a dereference operation on the mThread resource, resulting in an
unexpected termination of the application as a result of the order violation.

109

Fig. 1. File code figure_2_mozilla_firefox.c. as a graph

Thus, it will be true to say that there is a backward relationship (Giebas
& Wojszczyk, 2020b) between the dereferencing operation and the initialization

operation. This example shows that in Firefox application there are backward

relationships between two operations of two different threads, and the reversed
order of these operations with shared resource results in the phenomenon of order

violation.

Another file from the order_violation_examples repository named

figure_4_mozilla_firefox.c similarly to the previous one contains a piece of Mozilla
Firefox browser code. The comment in the code shows that the second thread

(and thus the DoneWaiting function) is launched at the end of the PBReadAsync

function. As a result, one of the operations of the first thread is the reason for
starting the second thread, with both operations changing the content of the

io_pending resource in the same interval.

Fig. 2. File code figure_4_mozilla_firefox.c as a graph

110

From the description of the function contained in the article (Lu et al., 2008)
it follows that first the resource should store the TRUE value and then FALSE.

Therefore, it can be concluded that both value assignment operations are bound

by a symmetric relation (Giebas & Wojszczyk, 2020b). The conflict has been

resolved by moving the operation of assigning TRUE value to the resource
io_pending over PBReadAsync operation. In the context of the proposed source

code model of multithreaded applications, the repair was made by moving the

operation to the previous time frame, so that it is certain that the TRUE value
assignment operation will always be performed before the FALSE value assignment

operation. Thus, as in the previous case, the resource conflict causing the order

violation was the reversed order of execution of a pair of operations on a shared

resource.

Fig. 3. Graph of the source code from the file figure_4_mozilla_firefox.c after taking into

account modifications eliminating the resource conflict

Fig. 4. Source code from the file figure_5_mozilla_firefox.c as a graph

111

The next piece of Mozilla Firefox browser code is in the file
figure_5_mozilla_firefox.c of the aforementioned repository. In this case, it is the

second thread operation that must be performed first. Every time

js_DestroyContext is called, operations are performed on the shared atoms

resource. The last time this function is executed by the first thread, the
js_UnpinPinnedAtom function is performed, which executes the operation of

freeing resources of the atoms variable. The result of this operation is unexpected

termination of the browser operation, because in the second thread the
js_MarkAtom function is called, whose parameter is the atoms variable with the

value nullptr. This example is very similar to the previous two. The phenomenon

of order violation occurs when the order of operations on the shared resource is

reversed, which is the atoms variable. In this situation calling the
js_UnpinPinnedAtom function cannot precede the js_MarkAtom function, so there

is a backward relationship between them. The last piece of code comes from the

MySQL database system and is in the figure_7_mysql.c file. In the first thread,
the dynamicId variable is initialized, which is a shared resource. The handle for

this resource is stored in the dynamicId variable of the m_state component of the

node structural variable. Thus, if the second thread is run faster than the first
thread, the uninitialized variable will be attempted to dereferencing, which in this

case will lead to indefinite application behavior. As in the first example from

Mozilla Firefox, there is a backward relationship between the two operations.

The operations are performed in reverse order, with the result that a dereference
is performed on an indicator variable for which memory has not been allocated,

resulting in the order violation phenomenon.

The analysis of four resource conflicts resulting in the order violation, coming
from large applications such as undoubtedly Mozilla Firefox browser and MySQL

database system, has led to the following conclusions. The pairs of operations to

which the definition of a violation of order refers should, according to the
programmer’s assumptions, be performed in the order specified by a certain

algorithm. It is from the algorithm that a logical order is derived, on the basis of

which one of the three types of relations that may occur between the operations

(Giebas & Wojszczyk, 2020b) is determined. The algorithm assumes that these
operations will be performed in a specific order, so the relation connecting the two

operations is a sequence relation and performing the operations contrary to this

order results in a violation of the order.

112

Fig. 5. Source code from the file figure_7_mysql.c as a graph

According to the current knowledge about resource conflicts causing the order

violation phenomenon, the definition of this phenomenon is:
Definition 1. An order violation is a phenomenon where, between two operations

of two different threads (or groups of operations), there is a sequential relationship

whose reversal causes the algorithm to malfunction and an undefined state of the

shared resources that have been used by the algorithm.

5. PROBLEM FORMULATING

The source code of the multithread application P is given, written in C using

the pthread library. In this application there are sequential relations between

operations of two threads and at least one pair of operations connected with the
sequential relation is executed in the same time interval. This application is also

free of race condition, deadlock and atomicity violation.

Therefore, is it possible to locate conflicts causing the phenomenon of order

violation?

6. SUFFICIENT CONDITION

The source code model for multithreaded applications presented in section 3

will be used to develop a sufficient condition. Based on the examples presented in

section 4, the statement of order violation is as follows:
Theorem 1. Let P be a multithreaded application free of race condition, deadlock

and atomicity violation. So let 𝐵𝑃 = (𝐵𝑃
𝐹𝑊𝐷 , 𝐵𝑃

𝐵𝑊𝐷 , 𝐵𝑃
𝑆𝑌𝑀) will be a set of pairs

of operations which are in sequential relationship with each other, and 𝐵𝑃
𝜉

⊆ 𝐵𝑃
𝜉

𝑖,𝑗

will be a subset containing such pairs of operations (𝑜𝑖,𝛼,𝑜𝑗,𝛽), the first of which is

done in a thread 𝑡𝑖 and the second in the thread 𝑡𝑗.

113

If {𝑡𝑖,𝑡𝑗 } ⊆ 𝑢𝑏 then there will be a violation of order in the implementation of

the operation (𝑜𝑖,𝛼,𝑜𝑗,𝛽).
Proof. Proof is a direct consequence of the definition of a violation of order.

If the threads {𝑡𝑖,𝑡𝑗 } are performed in a common interval of time, i.e. {𝑡𝑖,𝑡𝑗 } ⊆ 𝑢𝑏

it is therefore acceptable to implement the concurrent operation (𝑜𝑖,𝛼,𝑜𝑗,𝛽). This
means at the same time that any order of execution of the operation is possible,

i.e.: 𝑜𝑖,𝛼 →𝑜𝑗,𝛽, 𝑜𝑖,𝛼 ← 𝑜𝑗,𝛽, 𝑜𝑖,𝛼 ↔𝑜𝑗,𝛽. It is therefore permissible to violate the set

order of operations (𝑜𝑖,𝛼,𝑜𝑗,𝛽).

7. DISCUSSION

The definition of order violation from section no. 2 did not give any premises

as to how to search for resource conflicts causing the discussed phenomenon in

the source code of the application. Only the analysis of fragments of applications

containing resource conflicts causing the phenomenon of order violation, taking
into account the relations described in the paper (Giebas & Wojszczyk, 2020b),

allowed for redefinition of the phenomenon and development of conditions

allowing for detection of these conflicts, using the source code model of multi-
threaded applications.

It can be stated with certainty that the detection of conflicts causing the

phenomenon of order violation will be excessive, similarly as it is the case with
the detection of conflicts causing race condition and atomicity violations (Giebas

& Wojszczyk, 2020a, 2020b). In other words, the results will include the so-called

false-positive error. It can also be stated that, despite the redundancy, it will be

possible to ignore some conflicts with poorly defined relationships between the
two operations.

It is also worthwhile to verify in the future the no. 1 definition based on source

code of applications other than Mozilla Firefox and MySQL, and in which there
is also a violation. The applications under study do not necessarily have to be

written in C language. As soon as the application code manages to determine

whether functions (or methods for languages supporting only object-oriented
paradigm) are in one of the three developed relationships (Giebas & Wojszczyk,

2020b), and any shared resource is involved in the whole process, an attempt can

be made to confirm this definition.

The statement of order violation from section 6 allows to locate the violation
in all four cases described in section 4. In each of the described examples this

phenomenon occurs because the structure allows to perform the operation

contrary to the programmer’s assumptions. According to the source code model
of multithreaded applications, for two operations to be performed in a given order,

the operations must belong to one thread. In a situation where both operations are

in different threads, the order of execution can be forced only by placing

114

operations in two different intervals. This type of solution has been used to
eliminate the conflict causing atomicity violation in the second of the discussed

examples in section no. 4. The graph presenting this solution can be found in

figure no. 3.

8. LEADING EXAMPLE

Half of the examples described in sec. 4 concern the execution of an action on

a resource before any memory resources are allocated to that resource. A common

mistake in applications written in C by inexperienced programmers is to use

indicator variables without checking the state of such variable first. In
multithreaded applications it is additionally necessary to synchronize threads, so

that the thread using indicator variable does not cause application failure. Such

synchronization does not occur in OV1 application code located in
motivation_example.c file in order_violation_examples repository. The first

thread of this application is responsible for allocating space on the heap and

returning the indicator to the indicator variable, and the second thread is
responsible for copying to the address indicated by this indicator variable. The

result of incorrect order of execution of the operation is unexpected termination

of the application.

A common practice in writing multithreaded applications is to allocate
memory in a different thread than other operations performed on it. In the t2f

function of the leading example, just checking if the indicator variable does not

indicate the NULL value and taking action only if this value is correct and it does
not solve the problem. The programmer should ensure that the memcpy function

receives an indicator to the allocated memory. This problem can be solved in

several ways. The first way belongs to the group of naive solutions, i.e. the thread
waits for the indicator to change its state by cyclic checking it in a loop, which

can lead to waiting indefinitely. The second naive solution seems to be to sleep

the thread for a given time by using the sleep function. In practice, this solution is

worse than the previous one, because the time operation of the first thread is
unknown, so the waiting time can be either overestimated or underestimated, and

whether this value is overestimated or underestimated is strongly dependent on

the hardware configuration on which the application will run. The only correct
solution to this type of problem is to move the memory allocation operation with

the thread to the previous time interval, as Mozilla developers have done by fixing

one of the errors in Firefox.

The source code of the leading example in the model is as follows:

𝑇OV1 = (𝑡0, t1, t2)
𝑈OV1 = ({𝑡0}, {t1, t2}, {𝑡0})
𝑅OV1 = {(𝑠𝑡𝑟𝑖𝑛𝑔)}

115

𝑂OV1 = {o0,1, o0,2, o0,3, o0,4, o0,5, o0,6, o1,1, o1,2, o1,3, o1,4, o2,1, o2,2, o2,3, o2,4, o2,5, o2,6}
𝑄OV1 = {(𝑛, 𝑃𝑀𝐷)}
𝐹OV1 = {(o0,1, o0,2), (o0,2, o0,3), (o0,3, o0,4), (o0,4, o0,5), (o0,5, o0,6), (q1, o1,1), (o1,1, o1,2),
(o1,2, r1), (o1,2, o1,3), (o1,3, q1), (o1,3, o1,4), (o2,1, o2,2), (o2,2, o2,3), (q1, o2,3), (o2,3, o2,4),
(o2,4, r1), (o2,4, o2,5), (o2,5, q1), (o2,4, o2,6)}
BOV1

SYM = {(o1,2, o0,5)}

BOV1
BWD = {(o1,2, o2,4)}

Therefore, in order to locate the order violation phenomenon in the OV1

application, we must follow the theorem in section 6. Which means that the OV1

application includes a pair of operations (o1,2, o2,4), which is connected by
a backward relationship and these operations belong to two different threads

performed in the same time interval u2. Both operations use a shared resource

which is a string indicator variable. This means that the theorem is fulfilled, so
there is a resource conflict in the application, which consists in reversing the order

relationship resulting in the phenomenon of order violation.

9. SUMMARY

Based on actual errors and the current state of knowledge, a criterion has been
developed in this work that can be implemented as an algorithm to locate resource

conflicts in the process of static code analysis. However, the developed criterion

is imprecise and may not include all real cases. On the other hand, the results

obtained may be redundant, i.e. they may contain the so-called false-positive
error. To a large extent, the location of resource conflicts that cause order

violation is influenced by the correct definition of relations that may occur

between operations.
Despite the disadvantages of static code analysis. it is worth to develop it,

because its biggest advantage is speed. This process should not take more time

than the process of compiling the program, which makes it very attractive
compared to the 22 hours mentioned in the literature (Park et al., 2009). As

a result, it can be used as one of the functionalities of the IDE (e.g. real-time

monitoring), because in a very short period of time the programmer will receive

information about, for example, the phenomenon of order violation.
As mentioned in section 7, in order to reduce the amount of false-positive

error, further research should be conducted into the relationships between

operations. Another branch of research that can be conducted is the use of the
criterion developed in this work, allowing to locate the phenomenon of the

violation of order, together with the source code model of multithreaded

applications to develop a method based on artificial neural networks.

116

REFERENCES

Abbaspour Asadollah, S., Sundmark, D., Eldh, S., & Hansson, H. (2017). Concurrency bugs in open
source software: a case study. Journal of Internet Services and Applications, 8, 4.
https://doi.org/10.1186/s13174-017-0055-2

Abdulhamid, M., & Kinyua, N. (2020). Software for recognition of car number plate. Applied

Computer Science, 16(1), 73–84. https://doi.org/10.23743/acs-2020-06
Andrew, J., Mcpherson, A. J., Nagarajan, V., Sarkar, S., & Cintra, M. (2015). Fence Placement for

Legacy Data-Race-Free Programs via Synchronization Read Detection. ACM Trans. Archit.
Code Optim., 12(4), 46. https://doi.org/10.1145/2835179

Bishop, M., & Dilger, M. (1996). Checking for Race Conditions in File Accesses. Computing
Systems, 9(2), 131–152.

Cai, Y., Wu, S., & Chan, W. K. (2014). ConLock: a constraint-based approach to dynamic checking on
deadlocks in multithreaded programs. In Proceedings of the 36th International Conference on
Software Engineering ICSE 2014 (pp. 491–502). https://doi.org/10.1145/2568225.2568312

Chen, D., Jiang, Y., Xu, C., Ma, C., & Lu, J. (2018). Testing multithreaded programs via thread
speed control. In Proceedings of the 2018 26th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software Engineering
(ESEC/FSE 2018) (pp. 15–25). https://doi.org/10.1145/3236024.3236077

Chew, L., & Lie, D. (2010). Kivati: fast detection and prevention of atomicity violations. In Proceed-
ings of the 5th European conference on Computer systems (EuroSys '10) (pp. 307–320).
Association for Computing Machinery. https://doi.org/10.1145/1755913.1755945

Cygan, S., Borowik, B., & Borowik, B. (2018). Street lights intelligent system, based on the Internet of

Things koncept. Applied Computer Science, 14(1), 5–15. https://doi.org/10.23743/acs-2018-01
Giebas, D., & Wojszczyk, R. (2018). Graphical representations of multithreaded applications.

Applied Computer Science, 14(2), 20–37. https://doi.org/10.23743/acs-2018-10
Giebas, D., & Wojszczyk, R. (2020a). Multithreaded Application Model. Advances in Intelligent

Systems and Computing, 1004, 93–103. https://doi.org/10.1007/978-3-030-23946-6_11
Giebas, D., & Wojszczyk, R. (2020b). Atomicity Violation in Multithreaded Applications and Its

Detection in Static Code Analysis Process. Applied Sciences, 10(22), 8005.
https://doi.org/10.3390/app10228005

Giebas, D., & Wojszczyk, R. (2020c). Deadlocks Detection in Multithreaded Applications Based on
Source Code Analysis. Applied Sciences, 10(2), 532. https://doi.org/10.3390/app10020532

Jin, G., Song, L., Zhang, W., Lu, S., & Liblit, B. (2011). Automated atomicity-violation fixing. In
Proceedings of the 32nd ACM SIGPLAN Conference on Programming Language Design
and Implementation (PLDI '11) (pp. 389–400). https://doi.org/10.1145/1993498.1993544

Lu, S., Park, S., Seo, E., & Zhou, Y. (2008). Learning from mistakes: a comprehensive study on real
world concurrency bug characteristics. In Proceedings of the 13th international conference
on Architectural support for programming languages and operating systems (ASPLOS XIII)

(pp. 329–339). https://doi.org/10.1145/1346281.1346323
Netzer, R., & Miller, B. P. (1992). What are race conditions? Some issues and formalizations. ACM

Letters on Programming Languages and Systems (LOPLAS), 1(1), 74–88.
https://doi.org/10.1145/130616.130623

Park, S., Vuduc, R. W., & Harrold, M. J. (2010). Falcon: fault localization in concurrent programs.
In Proceedings of the 32nd ACM/IEEE International Conference on Software Engineering
- Volume 1 (pp. 245–254). https://doi.org/10.1145/1806799.1806838

Park, S., Zhou, Y., Xiong, W., Yin, Z., Kaushik, R., Lee, K. H., & Lu, S. (2009). PRES: probabilistic
replay with execution sketching on multiprocessors. In Proceedings of the ACM SIGOPS

22nd symposium on Operating systems principles (SOSP '09) (pp. 177–192).
https://doi.org/10.1145/1629575.1629593

117

Savage, S., Burrows, M., Nelson, G., Sobalvarro, P., & Anderson, T. (1997). Eraser: a dynamic data
race detector for multithreaded programs. ACM Trans. Comput. Syst., 15(4), 391–411.
https://doi.org/10.1145/265924.265927

Torres, L. C., Marr, S., Gonzalez, B. E., & Mössenböck, H. (2018). A Study of Concurrency Bugs
and Advanced Development Support for Actor-based Programs. Lecture Notes in Computer
Science, 10789, 155-185. https://doi.org/10.1007/978-3-030-00302-9

Vinesh, N., Sethumadhavan, M. (2020). ConFuzz—A Concurrency Fuzzer. Advances in Intelligent
Systems and Computing, 1045, 667-691. https://doi.org/10.1007/978-981-15-0029-9_53

Yu, Z., Zuo, Y., & Xiong, W. C. (2019). Concurrency Bug Avoiding Based on Optimized Software
Transactional Memory. Scientific Programming, 2019, 9404323.
https://doi.org/10.1155/2019/9404323.

