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Introduction

A purpose of statistical mechanics is to understand physical properties of macroscopic
systems based on laws governing the behavior of individual particles at the microscopic
scale ([8], p. 3, [49], p. 1). Classical physic’s microstate is an ensemble of positions
and momenta of individual particles forming the whole system, while the macrostate
is described by macroscopic quantities, like i.e. the energy which we focus on below
([49], p. 3). A model used for understanding macroscopic rules of thermal energy
transport is a system of oscillators arranged on an integer lattice with Hamiltonian
dynamics. It is necessary to emphasize the fact that the nonlinearity of such model
is the key element in this context. A way of mathematically capturing it is turning
to probabilistic methods and considering Hamiltonian dynamics of oscillators which
is linear (harmonic oscillators) but stochastically perturbed, so chaotic behavior owing
to nonlinearity in deterministic system is replaced by the perturbation. Such models
have been intensively examined in recent years, see i.e. [9, 10, 11, 12, 13, 14, 28, 35,
36, 38, 39]. In this elaboration we write about some results. Our aim is to get familiar,
at an elementary level, with some probabilistic tools of description and investigation
of such systems. We review some stochastic processes and related concepts, and
we get some insight into how they are used to describe physical processes involved.
To get a first sketch of mathematical model, we consider a set of oscillators indexed
by y ∈ Zd ([13], p. 188). We can visualize a lattice of points in space, having integer
coordinates, with oscillating particles arranged on them, so they form a crystalline
structure. Oscillator attached to a site y is at any given time t characterized by the pair
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(py, qy) of its momentum py = py(t) and position qy = qy(t). Position qy is measured
relative to the equilibrium position of the oscillator. We denote

p := {py} and q := {qy}.

Deterministic Hamiltonian of the system has the form

H(p, q) :=
∑
y∈Zd

ey,

where ey is total energy of oscillator at site y given by

ey :=
1

2
p2
y +W (qy) +

1

2

∑
|y−y′|=1

V (qy − qy′). (1)

Here V and W are potentials. Potential W, called pinning potential, is responsible
for the interaction between the oscillator and the system as a whole, while potential
V defines interaction between neighboring oscillators, and depends only upon their
relative position. Deterministic dynamics is governed by the system of equations q̇y = ∂pyH(p, q),

ṗy = −∂qyH(p, q).
(2)

If potentials are quadratic, then the system (2) is linear and we deal with harmonic
oscillators. In this case, energy transport in vibrating lattice is ballistic. Superdiffusive
or diffusive transport is a result of nonlinearity ([10] p. 1, [11] p. 68-69). Introduction
of a stochastic perturbation instead leads to nondeterministic models. System with
quadratic potential presented in i.e. [13] is weakly perturbed as follows q̇y = ∂pyH(p, q)

ṗy = −∂qyH(p, q) + ξ̇
(ε)
y [p].

(3)

The stochastic term ξ
(ε)
y [p], y ∈ Zd, is of order ε, where 0 < ε � 1. The perturbation

is defined in such way, that it preserves total energy of the chain.

This work consists of four chapters.
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– Chapter 1 contains a review of certain stochastic processes and related notions,
used in construction of described models. In particular, it touches on topics
of Lévy and Gaussian processes, compound Poisson process, Gaussian measures
and Gaussian fields, stochastic integration and differentiation.

– Chapter 2 presents one–dimensional model of stochastically perturbed harmonic
oscillators, together with a different scale perspectives on the energy distribution
and its evolution in time:

– microscopic: the wave function and the Wigner transform;

– hyperbolic scaling limit: solution of the linear phonon Boltzmann equation;

– superdiffusive and diffusive scaling limit: solution of the (fractional) heat
equation.

– Chapter 3 is devoted to the model with Gaussian noise introduced in [10, 11],
and outlines some theorems presented and used in proofs of asymptotics for this
model in source articles [13], [28] and [38].

– Chapter 4 describes model with Ornstein–Uhlenbeck perturbation introduced
in [39] and sketches some calculations used there in the proof of asymptotics.
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Chapter 1

Probabilistic tools – an overview

1.1 Fourier transform

Schwartz space of functions f : R→ C, denoted by S(R), is defined as the space of all
complex valued functions on R having derivatives of any order (infinitely differentiable)
and satisfying

‖f‖n,m := sup
x∈R

(
1 + x2

)n/2 m∑
i=0

∣∣f (i)(x)
∣∣ <∞ for all n,m ∈ N0.

Members of the Schwartz space are referred to as rapidly decreasing functions. Given
functions fn, n ∈ N and f belonging to S(R) we say that the sequence {fn : n ∈ N}
is convergent to f in S if it is convergent to f in all norms ‖ · ‖n,m.

The space of all complex–valued continuous linear functionals on S(R) is denoted
by S ′(R), wherein we say that a functional φ is continuous if φ(fn)→ φ(f) given that
fn → f in S. Members of S ′(R) are called tempered distributions. Every function
f ∈ S is identified with a distribution φf given by

φf (g) =

∫
R
f(x)g(x)dx, g ∈ S(R), (4)

11



12 CHAPTER 1. PROBABILISTIC TOOLS

so S(R) is embedded in S ′(R). Given φ ∈ S ′(R) we define n–th order derivative φ(n)

as the distribution satisfying

φ(n)(f) = (−1)nφ
(
f (n)

)
for all f ∈ S(R).

Given f ∈ S(R), the Fourier transform Ff of f is defined as a function f̂ on R

given by the following formula

f̂(p) = Ff(p) :=

∫
R

e−2πipxf(x)dx.

The inverse Fourier transform of f ∈ S(R) is defined as

f̃(x) = F−1f(x) :=

∫
R

e2πipxf(p)dp.

Theorem 1 ([26], p. 40 and p. 42). Let f ∈ S(R). Then

(i) Ff ∈ S(R), F−1f ∈ S(R) and both mappings F , F−1 are bijective on S(R),

(ii) F−1Ff = FF−1f = f ,

(iii) the Fourier transform of n–th order derivative f (n) is equal to (2πip)nf̂(p),

(iv) the Fourier transform of xnf(x) is equal to in (2π)−n f̂ (n)(p).

For any φ ∈ S ′(R) the Fourier transform Fφ is defined as a distribution φ̂ such that

φ̂(f) = φ(f̂ ) for every f ∈ S(R).

Analogously, the inverse Fourier transform F−1φ is defined as the distribution φ̃

satisfying
φ̃(f) = φ(f̃ ) for every f ∈ S(R).

For φf given by (4) we have φ̂f = φ
f̂

and φ̃f = φ
f̃
.
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Theorem 2 ([26], p. 47). Let φ ∈ S ′(R).

(i) Both mappings F and F−1 are bijective on S ′(R),

(ii) F−1Fφ = FF−1φ = φ,

(iii) the Fourier transform of n–th order derivative φ(n) of φ is equal to (2πip)nφ̂,

(iv) the Fourier transform of xnφ is equal to in (2π)−n φ̂(n).

For any pair f, g belonging to the Banach space L2(R) of square integrable functions
on R the following identity holds ([26], p. 51)∫

R
f(x)g∗(x)dx =

∫
R
f̂(p)ĝ∗(p)dp, (5)

here g∗ denotes the complex conjugate of g. In particular F is an isometry on L2∫
|f(x)|2dx =

∫
|f̂(p)|2dp.

Let us now introduce discrete Fourier transform of a sequence {f(z) : z ∈ Z}.
We denote by T the one–dimensional torus represented by interval [−1/2, 1/2] with
endpoints −1/2 and 1/2 identified. For a complex function z 7→ f(z) defined on
integers z and belonging to l2(Z) we define F : f 7→ f̂ by the formula

f̂(k) :=
∑
z∈Z

e−2πikzf(z), k ∈ T. (6)

The analogue of equality (5) reads∑
z∈Z

f(z)g∗(z) =

∫
T
f̂(k)ĝ∗(k)dk.

The inverse Fourier transform F−1 : u 7→ ũ, u ∈ L2(T), is defined as

ũ(z) :=

∫
T

e2πizku(k)dk.
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1.2 Gaussian random variables and random fields

We use the following definition of Gaussian random variable ([27], p. 3).

Definition 3 (Gaussian random variable). A real valued random variable X is called
Gaussian if it has the characteristic function φX(p) = EeipX , p ∈ R, of the form

φX(p) = eimp−
1
2
σ2p2 (7)

where m ∈ R and σ2 ≥ 0.

The parameter m is the mean value of X and σ2 is the variance. If m = 0 then
we say that X is centered or symmetric Gaussian. We note that this definition admits
σ2 = 0, so a function X with P[X = m] = 1 is also Gaussian. If σ2 > 0, then the law
of X with characteristic function (7) has the density function

pX(x) =
1√

2πσ2
exp

{
(x−m)2

2σ2

}
. (8)

Distribution with the density (8) is called Gaussian or normal and if it is the law of
random variable X then we write X ∼ N (m, σ2).

Definition 4 (Jointly Gaussian random variables). A finite collection X1, X2, . . . , Xn

of Gaussian random variables is called jointly Gaussian if for arbitrary real numbers
t1, t2, . . . , tn random variable

∑n
i=1 tiXi is Gaussian.

Assume that T is an arbitrary set. A real–valued function (t, s) 7→ R(t, s) on T×T
is called nonnegative definite, if for every n ∈ N, every n elements t1, . . . , tn of T and
every n real numbers c1, . . . , cn we have

n∑
i=1

n∑
j=1

R(ti, tj)cicj ≥ 0.
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Definition 5 (Gaussian random field). Given an arbitrary set T , a Gaussian random
field in T is a collection of random variables {X(t) : t ∈ T} on common probability
space, such that for every n ∈ N and t1, . . . , tn of T , the random variables

X(t1), . . . , X(tn)

are jointly Gaussian.

It follows that if {X(t) : t ∈ T} is a Gaussian random field then function R(t, s)

defined as

R(t, s) := E
(
X(t)− EX(t)

)(
X(s)− EX(s)

)
(9)

is nonnegative definite. On the other hand, for every nonnegative definite function
R(·, ·) on T and every R–valued function t 7→ m(t) there exists a Gaussian random
field on T such that (9) holds with EX(t) = m(t) (see [2], p. 5).

Definition 6 (Stationary field). Assume that T is an additive group. A Gaussian
random field on T is called stationary, if m = EX(t) does not depend on t ∈ T

and covariance R(t, s) depends only on the difference t − s, i.e. R(t, s) = R̃(t − s)
for some R̃ : T → R.

1.3 Gaussian measures on Banach spaces

Let us denote by H a real separable Hilbert space. We say that a bounded linear
operator Q on H is

– symmetric, if for every pair h1, h2 ∈ H we have 〈h1, Qh2〉 = 〈Qh1, h2〉;

– nonnegative, if for every h ∈ H we have 〈h,Qh〉 ≥ 0;

– positive, if for every h ∈ H , h 6= 0 we have 〈h,Qh〉 > 0.
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Nonnegative bounded linear operator Q on H is of trace class (see general definition
in [41] on p. 330), if for a complete orthonormal system {en : n ∈ N} in H

TrQ :=
∞∑
n=1

〈Qen, en〉 <∞.

TrQ is called the trace of Q and its value is independent of the choice of orthonormal
basis {en : n ∈ N} ([41], p. 333).

A probability measure µ defined on the family of Borel subsets B(H) of H with
a scalar product 〈·, ·〉 is called Gaussian, if for arbitrary element h ∈ H , the R–valued
random variable 〈·, h〉 on probability space (H,B(H), µ) is Gaussian. It follows that
in this case ([20], p. 53)

– there exist an element m ∈ H , such that∫
H
〈x, h〉µ(dx) = 〈m, h〉, h ∈ H, and

– there exists a symmetric, nonnegative and trace class operator Q on H such that∫
H
〈x, h1〉〈x, h2〉µ(dx)− 〈m, h1〉〈m, h2〉 = 〈Qh1, h2〉, h1, h2 ∈ H.

The element m is referred to as the mean of the measure µ and operator Q is called
covariance operator of µ. We write µ ∼ N (m, Q). The characteristic function of µ,
defined as µ̂(h) :=

∫
H exp{i〈x, h〉}µ(dx), h ∈ H , is

µ̂(h) = exp
{
i〈m, h〉 − 1

2
〈Qh, h〉

}
.

A random variableX with values inH is called Gaussian, if its distribution is Gaussian.

Proposition 7 ([20], p. 57). For arbitrary positive, symmetric trace class operator Q
on H , and arbitrary m ∈ H , there exists a Gaussian measure µ on H with mean m

and covariance Q.



1.3. GAUSSIAN MEASURES ON BANACH SPACES 17

Proof. (A sketch). There exists a complete orthonormal basis {fn : n ∈ N} in H
consisting of eigenvectors of Q ([41], p. 316). Denote eigenvalue of fn by λn, for
n ∈ N. By positivity of Q, eigenvalues are positive. We also have

TrQ =
∞∑
n=1

〈Qfn, fn〉 =
∞∑
n=1

λn <∞.

Let X(n), n ∈ N be a sequence of independent identically distributed real valued
Gaussian random variables, X1 ∼ N (0, 1), on probability space (Ω,F ,P). We define
H–valued random variables ξn, n ∈ N by

ξn :=

n∑
k=1

√
λkXkfk.

We have Eξn = 0, E‖ξn‖2 =
∑n

k=1 λk < Tr Q <∞, and for every h1, h2 ∈ H

E〈ξn, h1〉〈ξn, h2〉 =
n∑
k=1

〈Qh1, fk〉〈fk, h2〉.

The sequence of ξn is convergent in L2(Ω;H), and thus there exists a H–valued
random variable ξ such that

ξ =
∞∑
k=1

√
λkXkfk P– almost surely.

In particular, for every h ∈ H , 〈ξ, h〉 is L2(Ω; R)–limit of 〈ξn, h〉, so it is a Gaussian
mean zero random variable ([27], p. 4, Theorem 1.3). For h1, h2 ∈ H , the covariance
of 〈ξ, h1〉 and 〈ξ, h2〉 equals

E〈ξ, h1〉〈ξ, h2〉 =

∞∑
k=1

〈Qh1, fk〉〈fk, h2〉 = 〈Qh1, h2〉.

The measure µ is the law of random variable m + ξ.
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Assume that B is a real separable Banach space and H is a real separable Hilbert
space continuously and densely embedded inB, that is, there exists a linear continuous
and injective mapping ι : H → B such that the image ιH is dense in B. Denote by
B∗ the dual space of B, and by H∗ the dual space of H . For x ∈ B, φ ∈ B∗ we
denote 〈x, φ〉B := φ(x). Let ι∗ : B∗ → H∗ be the dual mapping of ι defined by the
relation

〈ιξ, φ〉B = 〈ξ, ι∗φ〉H , ξ ∈ H, φ ∈ B∗.

Let µ be a probability measure on the Borel sets of B such that for every φ ∈ B∗,
the random variable 〈·, φ〉B on probability space (B,B(B), µ) is Gaussian with mean
zero and variance ‖ι∗φ‖2H∗ , i.e.∫

B
exp{i〈x, φ〉B}µ(dx) = exp

{
− 1

2
‖ι∗φ‖2H∗

}
, φ ∈ B∗, (10)

here ‖·‖H∗ is the norm inH∗. Then the measure µ is by definition a Gaussian measure
on B and the triple (B,H, µ) is called abstract Wiener space. The Hilbert space H
is referred to as reproducing kernel Hilbert space for µ ([50], [53]).

1.4 Gaussian processes

We start this section with the Kolmogorov theorem about continuity and regularity
of paths of stochastic processes (see i.e. [20] on p. 73). It involves the notion
of a modification of stochastic process {X(t) : t ≥ 0}, which is, by definition, every
such process {X̃(t) : t ≥ 0} that

P[X(t) 6= X̃(t)] = 0, for all t ≥ 0.

Theorem 8 (Kolmogorov test). Let X = {X(t) : t ≥ 0} be a stochastic process with
values in a separable Banach space with norm ‖ · ‖. Assume that there exist constants
δ > 1, ε > 0 and M > 0 for which

E‖X(t)−X(s)‖δ ≤M |t− s|1+ε
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for every pair t, s ∈ [0, T ]. Then there exists a modification X̃ ofX on [0, T ] such that,
for arbitrary γ < ε/δ, the paths t → X̃(t) are almost surely Hölder continuous
with exponent γ. Precisely, for some positive constant C depending on γ almost surely
we have

‖X̃(t)− X̃(s)‖ ≤ C|t− s|γ , for all t, s ∈ [0, T ].

We say that a stochastic process {X(t) : t ≥ 0}

(i) has stationary increments if distributions of X(t+h)−X(h) and X(t)−X(0)

are the same for every h > 0;

(ii) has independent increments if the random variables

X(t1)−X(t0), X(t2)−X(t1), . . . , X(tn)−X(tn−1)

are independent for every t0 < t1 < · · · < tn.

Let {X(t) : t ≥ 0} be a stochastic process defined on a probability space (Ω,F ,P).
For every t ≥ 0 let Ft be a σ–field, Ft ⊆ F . The family {Ft : t ≥ 0} is called a
filtration if Fs ⊆ Ft whenever s < t. A stochastic process {X(t) : t ≥ 0} is adapted
to a filtration {Ft : t ≥ 0} if X(t) is Ft–measurable for every t. The natural filtration
of process {X(t)} consists of the σ–fields

Ft := σ{X(s) : s ≤ t}.

A stochastic process {X(t) : t ≥ 0} with values in a separable Hilbert space H is
called Gaussian, if for an arbitrary finite sequence of nonnegative numbers t1, . . . , tn,
the random variable (X(t1), . . . , X(tn)) in Hn is Gaussian ([20] p. 83).

Let a bounded linear operator Q on H be symmetric, positive and of trace class.
A process W = {W (t) : t ≥ 0} on H is called Q–Wiener process ([20], p. 86), if
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(i) W (0) = 0 and the paths t 7→W (t, ω) are continuous with probability 1,

(ii) W has independent increments, and

(iii) the law of W (t+ s)−W (s) is N (0, tQ) for every t, s ≥ 0.

A special case is Q–Wiener process in Rd, where Q = {qij}1≤i,j≤d is a positive
definite symmetric matrix. In yet more special case, when Q is d× d identity matrix,
then the Q–Wiener process in Rd is called a standard, d–dimensional Wiener process
or a standard, d–dimensional Brownian motion. For a standard Brownian motion
{w(t) : t ≥ 0} we have

E exp {i〈p, w(t)− w(s)〉} = exp

{
−1

2
(t− s) |p|2

}
, (11)

where 〈·, ·〉 is the standard scalar product in Rd and |p|2 = 〈p, p〉.

A stochastic process {X(t) : t ≥ 0} together with a filtration {Ft : t ≥ 0} is called
martingale if

(i) E[X(t)|Fs] = X(s) for every t > s ≥ 0, and

(ii) E|X(t)| <∞ for every t ≥ 0.

A Brownian motion {w(t)} together with its natural filtration is a martingale since

E[w(t)|Fs] = E[w(s)|Fs] + E[w(t)− w(s)|Fs] = w(s) + E[w(t)− w(s)] = w(s).

Let H and K be two separable Hilbert spaces over R. A bounded linear operator
on T : H → K is called Hilbert–Schmidt, if

∞∑
n=1

‖Ten‖2K <∞, (12)
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where {en : n ∈ N} is an orthonormal basis in H (see [20] Appendix C). It follows
that the adjoint operator T ∗ : K → H , given by 〈Th, k〉K = 〈h, T ∗k〉H , is also
Hilbert–Schmidt. Furthermore, the value of (12) is the same for every orthonormal
basis {en : n ∈ N}.

Let us consider a series ([20] p. 97)

W (t) =
∞∑
n=1

enwn(t), t ≥ 0, (13)

where {en} is an orthonormal basis ofH andwn(t), n ∈ N is a sequence of independent
standard Brownian motions in R defined on probability space (Ω,F ,P).

The series (13) does not converge in H , however if a separable Hilbert space H1 is
such that:

– H ⊂ H1,

– the mapping J : H → H1 given by Jh = h is Hilbert–Schmidt,

then the series is almost surely convergent in H1 and defines a Wiener process in H1.
Furthermore, for any h ∈ H we can define

h(W (t)) :=

∞∑
n=1

〈h, en〉H · wn(t), t ≥ 0. (14)

For m,n ∈ N, m > n we have

E
( m∑
k=n

〈h, ek〉wk(t)
)2

=
m∑
k=n

〈h, ek〉2 → 0 as m,n→∞,

so the series (14) is convergent in L2(Ω,F ,P), and hence almost surely. The limit is
Gaussian with mean zero and variance t‖h‖2H . It is easily established that the process
given by (14) is R–valued Gaussian and

Eh1(W (t))h2(W (s)) = (t ∧ s)〈h1, h2〉H , h1, h2 ∈ H. (15)
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More generally, let us assume that operator T is Hilbert–Schmidt operator from H

to a separable Hilbert space K over R, and define

TW (t) :=
∞∑
n=1

wn(t)Ten.

We have

E
∥∥∥ m∑
k=n

wk(t)Tek

∥∥∥2

K
=

m∑
k=n

‖Tek‖2K → 0, m, n→∞,

so the series defining TW (t) is almost surely convergent in K. Furthermore (we omit
subscripts K, H in scalar products and norms for clarity)

E〈TW (t), TW (s)〉 = E
∑
n,m

wn(t)wm(s)〈Ten, T em〉2

= (t ∧ s)
∑
n

‖Ten‖2,

and for k1, k2 ∈ K

E〈TW (t), k1〉〈TW (s), k2〉 = E
∑
n,m

wn(t)wm(s)〈Ten, k1〉〈Tem, k2〉

= (t ∧ s)
∑
n

〈T ∗k1, en〉〈en, T ∗k2〉 = (t ∧ s)〈T ∗k1, T
∗k2〉.

Let us check that TW (t) has continuous paths in K. We appeal to Theorem 8. Given
that k1, k2 ∈ K, s < t we have

E〈TW (t)− TW (s), k1〉〈TW (t)− TW (s), k2〉 = (t− s)〈T ∗k1, T
∗k2〉.

Using ‖k‖2K =
∑

n〈k, gn〉2, where {gn : n ∈ N} is an orthonormal basis in K, we
calculate

E‖TW (t)− TW (s)‖4 =
∑
n,m

E〈TW (t)− TW (s), gn〉2〈TW (t)− TW (s), gm〉2.
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Now we bring up the fact that if X1, X2, . . . , Xn is a sequence of n centered jointly
Gaussian random variables, and n is an even number, then

E
n∏
k=1

Xk =
∑∏

m

EXimXjm ,

where the sum is over all partitions of the set {1, . . . , n} into disjoint pairs {im, jm}
([27] p. 11). Using this forula we get

E‖TW (t)−TW (s)‖4 =
∑
n

E〈TW (t)−TW (s), gn〉2
∑
m

E〈TW (t)−TW (s), gm〉2

+2
∑
n,m

(
E〈TW (t)− TW (s), gn〉〈TW (t)− TW (s), gm〉

)2
= (t−s)2

(∑
n

‖Tgn‖2
)2

+2(t−s)2
∑
n,m

〈Tgn, T gm〉2.

The last sum above satisfies
∑

n,m〈Tgn, T gm〉2 ≤
(∑

n ‖Tgn‖2
)2. In consequence

we obtain

E‖TW (t)− TW (s)‖4 ≤ 3
(∑

n

‖Tgn‖2
)2

(t− s)2,

and by the Kolmogorov test we get that the process {TW (t) : t ≥ 0} has a continuous
modification in K.

1.5 Infinitely divisible random variables

A function φ : Rd → C is called nonnegative definite if

n∑
i=1

n∑
j=1

φ(pi − pj)cic∗j ≥ 0

for every n ∈ N, c1, . . . , cn ∈ C and p1, . . . , pn ∈ R. The following classical
result comes from Bochner (see [20] on p. 49 for it’s generalized version concerning
probability measures on separable Hilbert spaces).
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Theorem 9 (Bochner). A complex–valued function φ on Rd is characteristic function
of a probability measure on Rd if and only if it is nonnegative definite, continuous and
satisfies φ(0) = 1.

We say that a sequence {Pn : n ∈ N} of probability measures on Rd is convergent

to a probability measure P weakly if lim
n→∞

∫
Rd
f dPn =

∫
Rd
f dP for every bounded

and continuous function f on Rd.

Theorem 10 (see [15], p. 46). Let Pn, n ∈ N, and P be probability measures
on Rd having characteristic functions φn, n ∈ N and φ respectively. Then the weak
convergence of Pn to P holds if and only if lim

n→∞
φn(p) = φ(p) for every p ∈ Rd.

The convolution f∗g of two integrable and continuous functions f, g on R is defined
as (f ∗ g)(x) =

∫
R f(y)g(x − y)dy, x ∈ R. The convolution µ1 ∗ µ2 of two Borel

probability measures µ1 and µ2 on R is a measure given by

(µ1 ∗ µ2)(A) :=

∫
R
µ1(A− x)µ2(dx), A ∈ B(R) (16)

where A − x = {y − x : y ∈ A}. We point out some properties of the convolution
of measures (see [3], p. 20).

(i) Convolution of probability measures is a probability measure as well.

(ii) Convolution as a binary operation in the set of all probability measures on R is
commutative and associative, with neutral element being Dirac δ measure,

δ(A) = 1A(0) =

1, 0 ∈ A,

0, 0 /∈ A.

(iii) If µ1 and µ2 have densities pµ1 and pµ2 , then µ1 ∗ µ2 has density pµ1∗µ2 being
convolution of the densities:

pµ1∗µ2(x) = (pµ1 ∗ pµ2)(x) =

∫
R
pµ1(y)pµ2(x− y)dy.
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(iv) If X1, X2 are independent random variables with probability laws µ1 and µ2,
then µ1 ∗ µ2 is the law of the sum X1 + X2. In particular, for every bounded
and measurable f∫

R

∫
R
f(x+ y)µ1(dx)µ2(dy) =

∫
R
f(x)µ1 ∗ µ2(dx).

By µ(∗n) we denote µ if n = 1 and µ ∗ µ(∗(n−1)) if n > 1.

A random variable X is called infinitely divisible if for every natural number n
there exist a collection X(1), . . . , X(n) of independent identically distributed random
variables such that

X and
n∑
k=1

X(k) have the same distribution.

It follows that X is infinitely divisible if and only if its law µX has the following
property: for every n ∈ N there exist a probability measure µn such that

µX = µ(∗n)
n .

A probability measure with this property is called an infinitely divisible probability
measure. If X , Y is a pair of independent random variables, then the characteristic
function φX+Y (·) of sum X + Y satisfies

φX+Y (p) = φX(p)φY (p), p ∈ R.

Hence characteristic function of infinitely divisible random variable X has n–th root
(φX(·))1/n for every n, being also a characteristic function of a random variable.
There is in fact equivalence, since every characteristic function with this property
corresponds to an infinitely divisible random variable ([3], p. 23-24). We also note that
a sum of two independent infinitely divisible random variables is infinitely divisible.

Every infinitely divisible random variable X is necessarily of the form

φX(·) = exp{ψ(·)},
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and hence is characterized by the exponent ψ(·), which is called the Lévy exponent
([3], p. 30). Let us look at some examples.

(i) A trivial example is a deterministic random variableX such that P[X = C] = 1,
where C is some real number. In this case have

φX(p) = exp{iCp}.

(ii) Poisson random variable, usually denoted by N , with parameter λ > 0, taking
values in the set of natural numbers including zero with probabilities

P[N = n] =
λn

n!
e−λ, n = 0, 1, 2 . . .

Its characteristic function is

φN (p) = exp{λ(eip − 1)}.

For every n ∈ N,N can be represented as sum of n independent Poisson random
variables with parameter λ/n:

φN (p) =

(
exp

{
λ

n
(eip − 1)

})n
.

(iii) Let X(n), n ∈ N be a sequence of independent identically distributed random
variables with common distribution π(·), and letN be a Poisson random variable
with parameter λ, independent of all X(n). The random variable

X =
N∑
k=1

X(k),

called compound Poisson, is infinitely divisible with characteristic function

φX(p) = exp
{
λ

∫
R
(eipy − 1)π(dy)

}
.

(iv) Gaussian random variable X with mean m ∈ R and variance σ2 > 0. We recall
its characteristic function

φX(p) = exp

{
imp− σ2p2

2

}
.
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1.6 Lévy processes

We say that a stochastic process {X(t) : t ≥ 0} is stochastically continuous, if for
every constant M > 0 and every s ≥ 0

lim
t→s

P[|X(t)−X(s)| > M ] = 0.

Definition 11 (Lévy process). A stochastic process {X(t) : t ≥ 0} is called Lévy if

(i) X(0) = 0 with probability 1,

(ii) X(·) has stationary and independent increments,

(iii) X(·) is stochastically continuous.

For a Lévy process, the condition of stochastic continuity is, by (ii), equivalent to
the condition that P[|X(t)| > M ]→ 0 as t→ 0+ ([3], p. 39).

LetX(·) be a Lévy process. Then for every t the random variableX(t) is infinitely
divisible. Indeed, for every n ∈ N we have

X(t) =

n∑
k=1

[
X
(
kt/n

)
−X

(
(k − 1)t/n

)]
,

and the increments under the summation sign are independent and identically distributed.

Theorem 12 ([3], p. 41). Let {X(t) : t ≥ 0} be a Rd–valued Lévy process. For every
t the characteristic function of X(t) has the form

φX(t)(p) = exp{t ψ(p)}, p ∈ Rd, (17)

where ψ(·) is the Lévy exponent of X(1).

Below we describe canonical examples of R–valued Lévy processes. We note that
every example has its d–dimensional counterpart (see [3], p. 43).
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– The trivial case is a deterministic motion X(t) = mt at constant velocity
m, started at zero. It has characteristic function given by (17) with the Lévy
exponent

ψ(p) = imp.

– The one–dimensional Brownian motion. It has, by definition, continuous paths,
variance EX(t)2 = σ2t with σ > 0 and mean m(t) = 0, t ≥ 0. The Lévy
exponent of the Brownian motion is

ψ(p) = −σ2p2/2.

If σ = 1, then the process is called standard (one–dimensional) Brownian
motion.

– By adding exponents of two previous examples we obtain a Lévy exponent

ψ(p) = imp− σ2p2/2

corresponding to the Brownian motion with drift. This is a path–continuous
Gaussian process. For every t > 0,X(t) is Gaussian with mean mt and variance
E(X(t)−mt)2 = σ2t.

– The Poisson process N(t) with intensity λ > 0, which is a Lévy process taking
values in N ∪ {0} with probabilities

P[N(t) = n] =
(λt)n

n!
e−λt.

It has characteristic function (17) with the Lévy exponent

ψ(p) = λ(eip − 1).

Paths of N(t) begin with value 0 and are constant on intervals between times
0 = t0 < t1 < t2 < . . . with jumps of size 1 at tn, n ∈ N. Hence
the consecutive values of N(·) are 0, 1, 2 etc. Moments tn, n ∈ N of jumps
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are random and the lengths τk := tk − tk−1 of intervals between them are
independent identically distributed exponential random variables with the density

pτk(t) =

 λe−λt t ≥ 0,

0 t < 0.
(18)

Number λt is the mean number of jumps up to time t, while λ−1 is the mean
length of time interval between consecutive jumps.

– The compound Poisson process ([3] p. 46) with Lévy exponent

ψ(p) = λ

∫
R\{0}

(eipy − 1)µ(dy), (19)

where µ is a probability measure on R\{0}. This is a purely jump process
defined as the random sum

X(t) =

N(t)∑
j=1

Y (j), (20)

where Y (j) are independent identically distributed random variables, taking
values in R\{0}, with the common law µ, and N(t) is a Poisson process with
intensity λ independent of all Y (j). Hence, at the time tj of the j–th jump
of N(t), X(t) has a jump of random size |Y (j)|. In the special case, when Y (1)

takes values in finite set {y1, . . . , yn}, the Lévy exponent takes the form

ψ(p) =
n∑
k=1

(eipyk − 1) · νk, (21)

with numbers νk such that N(t) has intensity λ =
∑n

k=1 νk and

P[Y (1) = yk] =
νk
λ
, k = 1, . . . , n.

In this case the process (20) can also be represented by the sum

X(t) =

n∑
k=1

ykN
(k)(t), (22)
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built of independent processesN (1)(·), . . . , N (n)(·) whereinN (k)(·) is a Poisson
process with intensity νk for each k. Indeed, each component (eipyk − 1) · νk of
(21) is the Lévy exponent of ykN (k)(t).

Now let us consider more general accumulation of Poisson processes, like infinite
countable counterpart of sum (22). There are three cases.

(i) Process with Lévy exponent of the form

ψ(p) =
∞∑
k=1

(eipyk − 1) · νk, (23)

where all yk are nonzero and νk are positive. If
∑∞

k=1 νk <∞ then this is again
a special case of (19). The corresponding Lévy process is defined by formula
(20) given that

– N(t) is Poisson with intensity λ =
∑∞

k=1 νk, independent of all Y (j),

– Y (j) are independent identically distributed with laws

P[Y (1) = yk] = νk/λ, k ∈ N.

We can also think of representation (22) with∞ instead of n:

X(t) =
∞∑
k=1

ykN
(k)(t). (24)

We sum up infinite number of independent Poisson processes N (k)(·) – and we
do not impose any conditions on the sizes of their jumps, but their intensities νk
converge to zero so fast that, with probability 1, on every finite time interval all
but finite number of processes N (k) are yet before their first jump. Hence the
sum is finite.
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(ii) If
∑∞

k=1 νk is infinite, then we do not have the representation (20) anymore:
neither random variables Y (j) nor Poisson process N(t) can be defined the way
we did in earlier cases. However, with further assumptions, the sum (24) can
still be finite on every bounded interval. We assume that for some ε > 0

the following conditions are satisfied

(a)
∑
|yk|≥ε

νk <∞ and (b)
∑
|yk|<ε

|yk| νk <∞. (25)

In (a) we add up intensities of all N (k)(t) such that jumps sizes |yk| are bigger
than some positive number. We assume summability of the intensities, so they
form process described in the point (1). Moments of jumps do not accumulate,
and thus the sizes of jumps can be of arbitrary size. For the remaining group
of Poisson processes, we do not assume a finite number of jumps on a finite
interval. However by (b) the series∑

|yk|<ε

(eipyk − 1) · νk

is still absolutely convergent, uniformly in p on every bounded interval:∑
|yk|<ε

|eipyk − 1| · νk ≤ |p|
∑
|yk|<ε

|yk|νk <∞,

and exp{tψ(p)}, withψ(p) defined by the series (23), is a characteristic function
of a random variable. On the other hand, looking at the sum of Poisson processes
itself, we see that

E
∣∣ ∑
|yk|<ε

ykN
(k)(t)

∣∣ ≤ t ∑
|yk|<ε

|yk|νk <∞.

We can first assume that all yk are positive, and we get that
∑
|yk|<ε ykN

(k)(t)

is finite with probability 1 by the monotone convergence and Tonelli’s theorem.
Then the finiteness of a series with both positive and negative yk easily follows.
We heuristically think that small jumps, even if there is infinite number of them
on a finite interval [0, t], still add up on that interval to a finite value.
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(iii) If
∑∞

k=1 νk is infinite and
∑
|yk|<ε |yk| · νk is infinite for every ε > 0 then –

under additional assumptions – we can add an extra drift terms compensating
growth of some of ykN (k)(t) to get Lévy process. This is possible if we assume
that

(a)
∑
|yk|≥ε

νk <∞ and (b)
∑
|yk|<ε

(yk)
2 νk <∞ (26)

for some ε > 0. Consider

ψ(p) =

∞∑
k=1

(
eipyk − 1− ipyk1(−ε,ε)(yk)

)
νk, (27)

here by 1A(·) we denote the indicator function of a setA. By (26) the series (27)
is absolutely convergent uniformly in p on bounded intervals and function ψ(·)
is a Lévy exponent corresponding to a Lévy process. We note that each distinct
term ip(−yk)νk in (27) corresponds to a deterministic process

C(k)(t) := −ykνk t

which compensates the growth of ykN (k)(t), as EykN (k)(t) = ykνk t. However,
in general, a sum of infinitely many of these terms must be kept under the
summation sign in (27) in order to make the series convergent.

Further generalization of Lévy process "built of" Poisson processes comes by replacing
measure given by weights νk on discrete set of possible jump sizes {yk : k ∈ N} with
a more general measure ν(dy) supported on R\{0} (see [3], p. xvii). The cases (ii),
(iii) above generalize to the following (with ε = 1).

(ii) The measure ν is not finite, but∫
R\{0}

(|y| ∧ 1) ν(dy) <∞, (28)

here a ∧ b = min{a, b}. In this case the function y → eipy − 1 is ν–integrable,
and there exists a Lévy process with the Lévy exponent

ψ(p) =

∫
R\{0}

(eipy − 1)ν(dy). (29)
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(iii)
∫

(−1,1)\{0}(|y| ∧ 1) ν(dy) =∞ but∫
R\{0}

(y2 ∧ 1) ν(dy) <∞.

In this case there exist a Lévy process with the Lévy exponent

ψ(p) =

∫
R\{0}

(
eipy − 1− ipy · 1(−1,1)(y)

)
ν(dy). (30)

Definition 13. A Borel measure on R\{0} satisfying∫
R\{0}

(y2 ∧ 1) ν(dy) <∞ (31)

is called Lévy measure.

It turns out that every Lévy process can be represented as a sum of the form

aX1(t) + bX2(t) + ct,

where a, b, c are some constants, X1(t) is a process with Lévy exponent (29) or
(30), and X2(t) is a Brownian motion. For details see chapter 2.4 in [3] about the
Lévy–Itô decomposition. The general formula for Lévy exponent is given by the
Lévy–Khintchine theorem (see i.e. [3], p. 28, [18] p. 194).

Theorem 14 (Lévy–Khintchine). Characteristic function of every infinitely divisible
random variable on R has the form exp{ψ(·)} with the exponent

ψ(p) = imp− 1

2
σ2p2 +

∫
R\{0}

(
eipy − 1− ipy · 1(−1,1)(y)

)
ν(dy), (32)

where m ∈ R, σ2 ≥ 0 and ν is a Lévy measure. On the other hand, every function of
this form is characteristic function of an infinitely divisible random variable.

Remark 15. If the Lévy measure ν is finite, or satisfies
∫

(−1,1)\{0} |y|ν(dy) < ∞,
then the exponent (32) can be presented as

ψ(p) = im̃p− 1

2
σ2p2 +

∫
R\{0}

(
eipy − 1

)
ν(dy),

where m̃ := m−
∫

(−1,1)\{0} y ν(dy).
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We end this section with the following theorem.

Theorem 16 ([3], p. 31). Every infinitely divisible probability measure is a weak limit
of compound Poisson measures.

Proof. ([3], p. 31). By Theorem 10 it is enough to show pointwise convergence of
characteristic functions. First, let us note that for nonzero complex number z we have

lim
n→∞

n(z1/n − 1) = log z, (33)

where log z is the principal value of complex logarithm of z. Now let X be infinitely
divisible random variable with distribution µ, and let p 7→ φX(p) be its characteristic
function. For every n ∈ N there exist a measure µn satisfying µ = (µn)(∗n), and
p 7→ (φX(p))1/n is the characteristic function of µn. We define

φ(n)(p) := exp
{
n
[(
φX(p)

)1/n − 1
]}

.

It follows by (33) that φ(n)(p) → φ(p) as n → ∞. Also, φ(n) is the characteristic
function of a compound Poisson, as

φ(n)(p) = exp

{
n

∫ (
eipy − 1

)
µn(dy)

}
.

1.7 Stable laws

An important subclass of Lévy processes are stable processes. They consist of stable
random variables. We recall that, by the classical central limit theorem, standard
Gaussian random variable X ∼ N (0, 1) is a limit, in distribution, of any sequence
of random variables Z(n), n ∈ N given by

Z(n) =
S(n) − nm

σ
√
n
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if only S(n) =
∑n

k=1 Y
(k) are partial sums of a sequence of independent identically

distributed random variables Y (n) with mean m and variance σ2. Stable random
variable generalizes this property of Gaussian.

Definition 17 ([3], p. 32). If a non–degenerate random variable X is the limit in
distribution of Z(n) of the form

Z(n) =
Y (1) + Y (2) + · · ·+ Y (n) −mn

σn

where Y (n), n ∈ N are i.i.d random variables and, for n ∈ N, mn ∈ R and σn > 0,
then X is called stable random variable.

The law of stable random variable is called stable law. By another equivalent
definition, a non–degenerate random variable X is said to have a stable law if, given
a sequence of independent identically distributed random variables X(n), n ∈ N with
the same distribution as X , for every n ∈ N there exist constants an > 0 and bn ∈ R

such that

anX + bn
d
= X(1) +X(2) + · · ·+X(n) (34)

(see [22], p. 169, [18], p. 199). Here by U
d
= V we understand that U and V

have the same distribution. It turns out that the only possible values of an in (34) are
an = n1/α for some 0 < α ≤ 2, and that α = 2 iff EX2 < ∞ ([22], p. 170). It also
holds that α ≥ 1 iff E|X| < ∞ ([3], p. 33). Number α is called index of stability.
Stable Lévy process with index α is called α–stable.

It immediately follows from (34) that X is infinitely divisible. The following two
theorems characterize Lévy exponent of a stable random variable X .

Theorem 18 ([3] p. 33, [18] p. 200). Let X be a stable R–valued random variable.

– If index of stability α = 2, then X is a Gaussian random variable.
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– If α ∈ (0, 2) then the Lévy exponent of its characteristic function is

ψ(p) = imp+

∫
R\{0}

(
eipy − 1− ipy · 1(−1,1)(y)

)
ν(dy),

with some m ∈ R and the Lévy measure ν being of the form

ν(dy) =
c+

y1+α
1(0,∞)(y)dy +

c−
(−y)1+α

1(−∞,0)(y)dy,

where constants c+, c− are non-negative and at least one of them is positive.

Theorem 19 ([18] p. 204). Let X be a stable R–valued random variable with index
of stability α ∈ (0, 2).

– If α ∈ (0, 2)\{1}, then

ψ(p) = imp− σα|p|α
(

1 + iθ sgn(p) tan
π

2
α
)

with some m ∈ R, σ > 0 and θ ∈ [−1, 1].

– If α = 1, then

ψ(p) = imp− σ|p|
(

1 + iθ sgn(p)
2

π
log |p|

)
with m, σ and θ as in the previous case.

In the special case of symmetric stable random variable X with α ∈ (0, 2] we have

ψ(p) = −σα|p|α.

If X is stable with α < 2 then it’s tails decay polynomially, i.e. it holds ([3] p. 34)

lim
λ→∞

λαP[|X| > λ] = C > 0, (35)

so the tails are "heavier" than Gaussian (which decay exponentially).
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1.8 Markov processes and generators

A family of bounded linear operators {St : t ≥ 0} on a Banach space B is called
a semigroup, if

(i) StSs = St+s for all t, s ≥ 0, and

(ii) S0 = I (identity operator).

Denote norm of a Banach space B by ‖ · ‖B . A semigroup {St : t ≥ 0} is called
strongly continuous, if for every f ∈ B the function t 7→ Stf is continuous. If for all
t ≥ 0 and f ∈ B we have ‖Stf‖B ≤ ‖f‖B , then {St : t ≥ 0} is called a contraction
semigroup.

The infinitesimal generator of a strongly continuous semigroup {St : t ≥ 0} is
the linear operator A defined as the limit (in the norm ‖ · ‖B)

Af := lim
t→0+

1

t
(Stf − f) , (36)

with domain D(A) consisting of all f ∈ B for which the limit exists.

Lemma 20. The domain of infinitesimal generator of strongly continuous semigroup
on a Banach space B forms a dense subset in B.

Proof. (A sketch. For further details we refer to [21], Chapter 1.) It can be shown that
for every f ∈ B and ε > 0 the Bochner integral

∫ ε
0 Stfdt belongs to the domain of A.

Furthermore, ε−1
∫ ε

0 Stfdt has the limit f as ε→ 0+.

Let (E, d) be a metric space, i.e. a set E with a metric d on it. We denote the class
of all Borel sets in E by B(E). Assume that X = {X(t) : t ≥ 0} is E–valued
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and adapted to a filtration {Ft : t ≥ 0}. We say that X is a Markov process, if

P[X(t+ s) ∈ A|Ft] = P[X(t+ s) ∈ A|X(t)] (37)

for every Borel set A ⊆ E and for all t, s ≥ 0. The property (37) is called Markov
property of the process.

The law of X(0) is called an initial distribution or initial law of the process.

A function (t, x,A) 7→ p(t, x,A) : [0,∞)×E×B(E)→ [0, 1] is called a transition
probability function if

(i) p(t, x, ·) is, for every (t, x) ∈ [0,∞)× E, a probabilistic measure on B(E),

(ii) p(0, x, ·) = δx(·), which is Dirac measure at x, i.e. δx(A) = 1 iff x ∈ A,

(iii) p(·, ·, A) is measurable and bounded on [0,∞)× E for every A ∈ B(E),

(iv) the Chapman–Kolmogorov property holds: for arbitrary t, s ≥ 0, x ∈ E and
A ∈ B(E) we have

p(t+ s, x,A) =

∫
E
p(t, x, dy)p(s, y, A). (38)

Theorem 21 (see [21], s. 157). Assume that (E, d) is a separable and complete
metric space and p(t, x,A) is a transition probability function. Let π be a probabilistic
measure on the Borel sets B(E). Then there exists a Markov process

X = {X(t) : t ≥ 0},

whose finite dimensional distributions are given by

P[X(0) ∈ A0, X(t1) ∈ A1, . . . , X(tn) ∈ An] =∫
A0

· · ·
∫
An−1

p(tn − tn−1, yn−1, An)p(tn−1 − tn−2, yn−2, dyn−1)

· · · p(t1, y0, dy1)π(dy0),

where t1 < t2 < · · · < tn.
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If the initial probability measure of X is δx for some x ∈ E, then we say that X is
starting at x.

If a probability π satisfies

π(A) =

∫
E
p(t, y, A)π(dy), t > 0, A ∈ B(E),

then π is called an invariant or stationary distribution of X . A Markov process X
whose initial distribution is stationary is called stationary.

A discrete-time equivalent of the Markov process is called Markov chain. It is
defined as a sequence of E–valued random variables ξ1, ξ2 . . . such that for every set
A ∈ B(E) we have

P[ξn+1 ∈ A|ξ1, . . . , ξn] = P[ξn+1 ∈ A|ξn], n ∈ N.

Function (x,A) 7→ µ(x,A), measurable in x for every A ∈ B(E) and being a
probability measure onE for every x, is the transition probability function of a Markov
chain {ξn : n ∈ N} if

P[ξn+1 ∈ A|ξn] = µ(ξn, A), n ∈ N, A ∈ B(E).

An example of R–valued Markov chain is

ξn :=
n∑
i=1

Y (i),

where Y (n), n ∈ N is sequence of independent identically distributed R–valued random
variables.

We come back to continuous-time Markov processes. A transition probability
function p(t, x, dy) gives rise to a semigroup of operators {Pt : t ≥ 0}, on appropriate
Banach space of functions on E, by the formula

Ptf(x) =

∫
E
f(y)p(t, x, dy). (39)
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The semigroup property PtPs = Pt+s follows by the Chapman–Kolmogorov equation
(38). The semigroup given by (39) on the spaceB(E) of bounded measurable functions
is referred as Markov semigroup. It is

(i) positive, which means that f ≥ 0⇒ Ptf ≥ 0 for all f ∈ B(E), t ≥ 0,

(ii) conservative, which means that Pt1 = 1 for t ≥ 0,

(iii) a contraction semigroup, as it satisfies supx |Ptf(x)| ≤ supx |f(x)|, t ≥ 0.

A Markov process X with transition probability p(t, x, dy) is related to the semigroup
(39) by

E[f(X(t+ s))|Ft] = E[f(X(t+ s))|Xt] = Psf(X(t)). (40)

In particular

Ptf(x) = Exf(X(t)),

where Ex is the expected value for the process starting at point x.

We now turn our attention to the characterization of Lévy processes by infinitesimal
generators of their Markov semigroups. By C0(R) we denote the space of continuous
functions on R vanishing at infinity, i.e. satisfying lim|x|→∞ f(x) = 0, with the
supremum norm.

Theorem 22 ([31] p. 118 and 119). Let {X(t) : t ≥ 0} be a Lévy process with
the Lévy exponent

ψ(p) = imp− 1

2
σ2p2 +

∫
R\{0}

(
eipy − 1− ipy · 1(−1,1)(y)

)
ν(dy). (41)

Then the strongly continuous semigroup on C0(R) related to X by (40) satisfies

Ptf(x) =

∫
R
f(x+ y)µ(t, dy), f ∈ C0(R), (42)
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where µ(t, dy) is the infinitely divisible measure whose Lévy exponent is tψ(·). This
semigroup has the infinitesimal generator given for each function f in the Schwartz
space S(R) by the formula

Af(x) =mf ′(x) +
1

2
σ2f ′′(x) (43)

+

∫
R\{0}

(
f(x+ y)− f(x)− yf ′(x) · 1(−1,1)(y)

)
ν(dy).

We see that the transition probability function p(t, x, dy) of a Lévy process is
the translation of µ(t, dy) by x:

p(t, x,A) = µ(t, A− x). (44)

In particular, if µ(t) has a density η(t, y), then

Ptf(x) = [f ∗ η(t)](x) =

∫
R
f(y)ηt(x− y)dy.

We also note that the process Xx, defined as the Markov process starting at x with
transition probability (44), is given by

Xx(t) = x+X(t), t ≥ 0.

The translation-invariance property follows: the semigroup related to a Lévy process
satisfies

Ptf(x+ z) = Pt(σzf)(x),

where σzf(x) := f(x+ z) for every x, z. In probabilistic terms this means that

Ex+zf(X(t)) = Exf(z +X(t)).

The formula (43) for the generator of Lévy process extends to Rd–valued case
in a straightforward manner, see i.e. [3] on page 139. In particular, the generator of
d–dimensional standard Brownian motion is the Laplacian

Af(x) =
1

2
∆f(x) =

1

2

d∑
i=1

∂2f

∂x2
i

(x),



42 CHAPTER 1. PROBABILISTIC TOOLS

the generator of Brownian motion with covariance {aij}1≤i,j≤d and drift {mi}1≤i≤d
is given by the formula

Af(x) =
d∑
j=1

mi
∂f

∂xi
+

1

2

d∑
i=1

d∑
j=1

aij
∂2f

∂xi∂xj
(45)

and the generator of Poisson process with intensity λ and jump by vector v is

Af(x) = λ[f(x+ v)− f(x)].

At the end of this section we make one more note about general Markov process.
An initial distribution π is called reversible measure, if for all t ≥ 0

P (t, x, dy)π(dx) = P (t, y, dx)π(dy).

A Markov process {Xt : t ≥ 0} is called reversible if, for every T > 0, all finite
dimensional distributions of processes {Xt, t ∈ [0, T ]} and {XT−t, t ∈ [0, T ]} are
identical.

Lemma 23 (see [54], p. 107-108). A process with transition semigroup {Pt} is
reversible iff its initial distribution is reversible.

1.9 Some generalizations of Lévy processes

Compound Poisson process

Formula (43) in particular provides the generator of compound Poisson process with
a finite Lévy measure ν

Af(x) =

∫
R

(f(x+ y)− f(x)) ν(dy). (46)

We recall that the process generated by this operator has the representation

X(t) = ξN(t), where ξn =

n∑
j=1

Y (j), n = 1, 2, . . . (47)
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here random variables Y (j), j = 1, 2, . . . , are independent identically distributed
with common distribution ν(dy)/ν(R). The values of variables Y (1), Y (2), . . . are
successive jumps. The times of jumps are chosen by Poisson process N(t) with
intensity equal to ν(R), independent of all Y (j). A more general compound Poisson
process arises when we make the intensity vary depending on the actual position in
the state space. We will describe such process in a more general state space, namely
a metric space (E, d), which by assumption is separable and complete – such space is
called a Polish space. Generator (46) generalizes as follows

Af(x) =

∫
E

(f(y)− f(x))R(x, dy). (48)

We assume that for every x ∈ E R(x, ·) is a finite measure on B(E), and that
the function λ(x) := R(x,E) is bounded. Formula (46) indeed is a special case
with R(x,B) = ν(B − x). Now we rewrite (48) in the following form

Af(x) = λ(x)

∫
E

(f(y)− f(x)) η(x, dy),

where η(x, dy) = R(x, dy)/λ(x). Then a compound Poisson process {X(t) : t ≥ 0}
with the generator A is represented analogously to (47) as follows. Let {ζn : n ∈ N}
be the Markov chain on the state spaceE with transition probability η(x, dy), and with
the initial distribution (the distribution of ζ1) being equal to the distribution of X(0).
Further let

t(n) :=
n∑
i=1

τi
λ(ζi)

where τ1, τ2, . . . are independent exponential random variables with parameter λ = 1.
Then

X(t) = ζ
Ñ(t)

, where Ñ(t) := max{n : t(n) ≤ t}, (49)

see [21] p. 162.

Diffusions

By letting drift an covariance coefficients in (45) vary, in appropriately regular manner,
according to the position in space we obtain generators of path–continuous Markov
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processes called diffusions. Let us cite a theorem that gives sufficient conditions for
transition probability function to generate such process. ByBε(x) we denote open ball
with radius ε centered at x,

Bε(x) := {y ∈ Rd : |y − x| < ε} (50)

and by Bc
ε (x) we denote its complement.

Theorem 24 (see [56] on p. 252). Let functions mi(x) and aij(x), for i, j ∈ {1, . . . , d},
be continuous on Rd. Assyme that p(t, x, dy) is a transition probability function on Rd

such that for every ε > 0 uniformly in x we have

p (t, x,Bc
ε (x)) = o(t),∫

Bε(x)

(yi − xi)p(t, x, dy) = t ·mi(x) + o(t) and

∫
Bε(x)

(yi − xi)(yj − xj)p(t, x, dy) = t · aij(x) + o(t)

as t→ 0 for i, j ∈ {1, . . . , d}. Let

Ptf(x) :=

∫
Rd
f(y)p(t, x, dy)

for any bounded and continuous function f on Rd. Then the limit

Af := lim
t→0+

t−1(Ptf − f)

exists in supremum norm for every function f being, together with all its first and
second partial derivatives, bounded and continuous on Rd, and for such functions it
holds

Af(x) =

d∑
j=1

mi(x)
∂f

∂xi
(x) +

1

2

d∑
i=1

d∑
j=1

aij(x)
∂2f

∂xi∂xj
(x).
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1.10 Itô integral

Let us denote by I an interval, which may be of the form [0,∞) or [0, T ] for some
T > 0. A stochastic process {X(t) : t ∈ I} on (Ω,F ,P) is adapted to a filtration
{Ft : t ∈ I} if X(t) is Ft–measurable for every t. Process {X(t) : t ∈ I} is called
measurable if X(t, ω), as a function of (t, ω) ∈ I × Ω, is measurable with respect
to the σ–field B(I)⊗F , where B(I) denotes the Borel σ–field of interval I .

A basic concept in stochastic calculus is the Itô stochastic integral. A thorough
elaboration of the subject can be find i.e. in [29]. Below we survey the construction of
the Itô integral with respect to the one–dimensional Brownian motion

w = {w(t) : t ≥ 0}.

We assume that w is adapted to a filtration {Ft : t ≥ 0}, and w(t) − w(s) is
independent of Fs for every s < t.

Definition 25 (Simple process). Let T ∈ (0,∞). A process X = {X(t) : t ∈ [0, T ]}
on probability space (Ω,F ,P) with a filtration {Ft : t ≥ 0} is called simple if for
some n ∈ N it is of the form

X(t, ω) = X0(ω) · 1{0}(t) +

n−1∑
k=0

Xk(ω) · 1(tk,tk+1](t), (51)

(t, ω) ∈ [0, T ]× Ω, 0 = t0 < t1 < · · · < tn = T,

where for each k the random variable Xk is bounded and Ftk–measurable.

For a simple process (51) the stochastic integral over [0, T ] is defined by

I[0,T ](X) :=

n−1∑
k=0

Xk ·
(
w(tk+1)− w(tk)

)
, (52)

and the stochastic integral over [0, t], for any t ∈ (0, T ], is

I[0,t](X) := I[0,t]

(
X|[0,t]

)
, (53)
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wherein by X|[0,t] we denote the restriction of X to the interval [0, t] and the right
hand side is given by (52) with n replaced by ñ such that tñ−1 < t ≤ tñ, and with tñ
replaced by t. Here are some basic properties of (53).

Proposition 26. Let X be simple on [0, T ]. Then

(i) if X ≡ 1 on [0, T ]× Ω then I[0,t](X) = w(t) for t ∈ [0, T ],

(ii) {I[0,t](X) : t ∈ [0, T ]}, considered with the filtration {Ft : t ∈ [0, T ]}, is
a martingale,

(iii) if 0 < s ≤ t ≤ T then EI[0,t](X)I[0,s](X) = E
∫ s

0 |X(u)|2du.

For fixed T > 0 let LA
2 [0, T ] be the space of all measurable and adapted stochastic

processes X such that E
∫ T

0 |X(t)|2dt <∞. Surely simple processes on [0, T ] belong
to LA

2 [0, T ]. Furthermore, the following proposition holds ([40] p. 45).

Lemma 27. The space LA
2 [0, T ] is a closed subspace of L2([0, T ]×Ω) and for every

X in LA
2 [0, T ] there exists a sequence X(n), n ∈ N of simple processes on [0, T ] such

that

lim
n→∞

E
∫ T

0
|X(n)(t)−X(t)|2dt = 0. (54)

According to point (3) of Proposition 26, a simple process X on [0, T ] satisfies(
E
∫ T

0
(X(t))2dt

)1/2
=
(

E(I[0,T ](X))2
)1/2

. (55)

It follows that I[0,T ](·) is an isometry of the space of simple processes and the space

{I[0,T ](X) : X is simple on [0, T ]},

considered withL2–norms given respectively by the left and the right hand side of (55).
By Lemma 27 simple processes form dense subset in LA

2 [0, T ]. The stochastic integral
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on [0, T ] for generalX ∈ LA
2 [0, T ] is defined as extension of the isometry to the whole

of LA
2 [0, T ]:

Definition 28. Let X ∈ LA
2 [0, T ] and let X(n), n ∈ N be a sequence of simple

processes for which (54) holds. A stochastic integral ofX with respect to the Brownian
motion is defined as the following limit in L2(Ω):

I[0,T ](X) := lim
n→∞

I[0,T ](X
(n)).

We denote it by ∫ T

0
X(s)dw(s).

We stress here that I[0,T ](X) is, strictly speaking, an equivalence class in L2(Ω)

of random variables. In particular, any two representatives of the integral are almost
surely equal.

By LA
2 [0,∞) we denote the space of all such processes {X(t) : t ≥ 0} that for

every T > 0 the restriction {X(t) : t ∈ [0, T ]} is a member of LA
2 [0, T ].

Proposition 29 (see [29], p. 137-140). The stochastic integral has following properties:

(i) Let X(·), Y (·) ∈ LA
2 [0,∞), and α, β ∈ R. Then∫ t

0
(αX(s) + βY (s)) dw(s) = α

∫ t

0
X(s)dw(s) + β

∫ t

0
Y (s)dw(s).

(ii) Let X(·) ∈ LA
2 [0,∞). The process{∫ t

0
X(s)dw(s) : t ≥ 0

}
is a square integrable martingale with respect to the filtration {Ft : t ≥ 0}.

(iii) Let X(·), Y (·) ∈ LA
2 [0,∞). Then

E
∫ t

0
X(s)dw(s)

∫ t

0
Y (s)dw(s) =

∫ t

0
X(s)Y (s)ds.
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Remark 30. Consider a partition Π := {t0, t1, . . . , tn} of the interval [0, t] where
0 = t0 < · · · < tn = t. Let |Π| := max{t1− t0, . . . , tn− tn−1} and X(·) ∈ LA

2 [0, t].
Assuming that EX(t)X(s) is continuous function in t and s we have (see [40], p. 57)∫ t

0
X(s)dw(s) := lim

|Π|→0

n−1∑
k=0

X(tk) ·
(
w(tk+1)− w(tk)

)
,

here the limit is in L2(Ω). In the approximating sum on the right hand side the value
of X(tk) is multiplied by the increment of Brownian motion on interval (tk, tk+1].
Other approaches are possible leading to different integrals. The Stratonovich integral
is important in applications. It is defined as∫ t

0
X(s) ◦ dw(s) := lim

|Π|→0

n−1∑
k=0

1

2

(
X(tk) +X(tk+1)

)
·
(
w(tk+1)− w(tk)

)
.

A more general construction of Itô integral, which we do not present here, is made
for an adapted integrand X(t) satisfying the condition that

∫ T
0 (X(s))2ds is finite

almost surely, and does not necessarily belong to LA
2 [0, T ]. It can be found i.e. in

[29] on page 146 or in Chapter 5 of [40].

Let us now express the celebrated Itô formula providing the differentiation rule for
a process

{f(w(t)) : t ≥ 0}

given that function f(·) is sufficiently smooth ([29], p. 149). ByC2(Rd) we denote the
space of all functions which are continuous together with their first– and second–order
derivatives.

Lemma 31 (Itô’s Lemma). Let f ∈ C2(R) with f ′ bounded. Then almost surely

f
(
w(t)

)
= f

(
w(0)

)
+

∫ t

0
f ′
(
w(s)

)
dw(s) +

1

2

∫ t

0
f ′′
(
w(s)

)
ds. (56)
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Differential form of the Itô formula reads

df
(
w(t)

)
= f ′

(
w(s)

)
dw(s) +

1

2
f ′′
(
w(s)

)
ds. (57)

Remark 32 ([30], p. 101). The Stratonovich integral obeys the rules of classical
calculus

f
(
w(t)

)
= f

(
w(0)

)
+

∫ t

0
f ′
(
w(s)

)
◦ dw(s).

Below we state the multidimensional version of Itô formula (see i.e. [29], p. 153).
It involves the notion of a stochastic integral with respect to a Brownian motion W (t)

with general variance E(W (t))2 = at, a > 0 (no drift). For a simple process X(t) of
the form (51) the integral is defined by

IW[0,T ](X) :=
n−1∑
k=0

Xk ·
(
W (tk+1)−W (tk)

)
.

We have

E(IW[0,T ](X))2 = aE
∫ T

0
(X(t))2dt,

and if X̃ = {X̃(t) : t ∈ [0, T ]} is a limit in LA
2 [0, T ] of a sequence of simple processes

X(n), then
∫ T

0 X̃(t)dW (t) is defined as the limit of IW[0,T ](X
(n)) in L2(Ω).

Lemma 33 (Itô’s lemma). Let W (t) = (W1(t), . . . ,Wd(t)) be a d–dimensional
Wiener process with covariance matrix {aij}1≤i,j≤d, and let f(t, x) : [0,∞)×Rd → R

be a continuous function having all derivatives
∂f

∂t
,
∂f

∂xi
,
∂2f

∂xi∂xj
continuous with

∂f

∂xi
bounded. Then, for every t ≥ 0, P almost surely it holds

f(t,W (t)) = f(0,W (0)) +

∫ t

0

∂

∂t
f(s,W (s))ds

+

d∑
i=1

∫ t

0

∂

∂xi
f(s,W (s))dWi(s) (58)

+
1

2

d∑
i=1

d∑
j=1

aij

∫ t

0

∂2

∂xi∂xj
f(s,W (s))ds.
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Remark 34. Assumptions on boundedness of the first-order derivatives of f in lemmas
31 and 33 are imposed only to ensure that stochastic integrals are given by definition
28. With a more general construction of Itô integral, which we do not present here, it
suffices to assume that f belongs to C2(R), resp. C2(Rd).

1.11 Stochastic differential equations

Let {w(t) : t ≥ 0},w(t) = (w1(t), . . . , wd(t)) be a standard d–dimensional Brownian
motion adapted to a filtration {Ft : t ≥ 0}, such that w(t) − w(s) is independent of
Fs for t > s. Furthermore let

x 7→ σ(x) = {σij(x)} 1≤i≤m,1≤j≤d

be a function of variable x ∈ Rm with values in space of m× d matrices, and let

x 7→ b(x) = {bi(x)}1≤i≤m

be Rm–valued function of x ∈ Rm. We formulate a stochastic differential equation
with initial condition ξ (see Chapter 12 in [56])

dX(t) = b(X(t))dt+ σ(X(t))dw(t), (59)

X(0) = ξ,

which rewritten in coordinates reads

dXi(t) = bi(X(t))dt+
d∑
j=1

σij(X(t))dwj(t),

Xi(0) = ξi,

for i = 1, . . . ,m. Solution of (59) is defined as a random process {X(t) : t ≥ 0}
adapted to filtration {Ft : t ≥ 0} and satisfying

Xi(t) = ξi +

∫ t

0
bi(X(t))dt+

d∑
j=1

∫ t

0
σij(X(t))dwj(t) (60)
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for t ≥ 0 and i = 1, . . . ,m. The following theorem holds, see [56] p. 286, [46] p. 66,
[55] p. 124.

Theorem 35. Assume that functions σi,j(·) and bi(·) are Lipschitz on Rm, i.e.

|bi(x)− bi(y)| ≤ D‖x− y‖, and

|σij(x)− σij(y)| ≤ D‖x− y‖

for some constant D and every x, y ∈ Rm. Let ξ be a square integrable random
variable independent of the Brownian motion and let F̃t be σ–field generated by ξ
together with Ft for every t ≥ 0. Then there exists a solution of (59) adapted to
filtration {F̃t : t ≥ 0}, which has almost surely continuous realizations and is bounded
in norm of L2(Ω) on every finite interval [0, T ]. Furthermore, if X(·) and X ′(·) are
two solutions, then P[X(t) = X ′(t)] = 1 for every t ≥ 0.

Remark 36. In terms of Stratonovich differential equation (59) takes the following
form ([30], p. 159)

dXi(t) = [bi(X(t))− ci(X(t))]dt+
d∑
j=1

σij(X(t)) ◦ dwj(t),

i = 1, . . . ,m, with correction term given by the formula

ci(x) =
1

2

m∑
j=1

d∑
k=1

σjk(x)
∂σik
∂xj

(x). (61)

Let us outline a result about existence of solution to a stochastic differential equation
in Hilbert space. First we note that given a pair of separable Hilbert spaces H and K,
the space

L2(H,K) := {T : T is a Hilbert–Schmidt operator from H into K}
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with scalar product

〈T1, T2〉 :=
∞∑
n=1

〈T1en, T2en〉K ,

where {en} is any orthonormal basis in H , is a separable Hilbert space ([20], p. 418).
Further, if {fn : n ∈ N} is an orthonormal basis in H and wn(t), n ∈ N is a sequence
of independent R–valued standard Brownian motions then the series

W (t) =

∞∑
n=1

fnwn(t), t ≥ 0, (62)

defines a cylindrical Wiener process. We assume that W (t) is adapted to a filtration
{Ft : t ≥ 0} and that W (t + s) − W (t) is independent of Ft for every t and s.
L2(H,K)–valued stochastic process Φ = {Φ(t) : t ∈ [0, T ]} is called simple if it
satisfies

Φ(t, ω) = Φ0(ω) · 1{0}(t) +

n−1∑
k=0

Φk(ω) · 1(tk,tk+1](t),

where 0 = t0 < t1 < · · · < tn = T , Φ0, . . . ,Φn−1 are L2(H,K) valued random
variables taking only finite number of values and Φk is Ftk–measurable for each k.

The stochastic integral of Φ over an interval [0, T ] with respect to W (t) is defined
by the formula ∫ T

0
Φ(s)dW (s) :=

n−1∑
k=0

Φk

(
W (tk+1)−W (tk)

)
. (63)

Note that by the above formula the integral is also defined over interval [0, t] for every
t ∈ [0, T ]. We define norms ‖Φ‖t, t ∈ [0, T ] by

‖Φ‖2t :=

∫ t

0

∑
n∈N

‖Φ(s)fn‖2K ds,

and we have the isometry

‖Φ‖2t = E
(∫ T

0
Φ(s) dW (s)

)2
,
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which serves for the definition of stochastic integral with respect to W (t), t ∈ [0, T ]

of general L2(H,K)–valued stochastic processes being limits of simple processes in
norm ‖ · ‖T . Now let us look at the following equation dX(t) = [AX(t) + F (X(t))]dt+G(X(t))dW (t),

X(0) = X0

(64)

where operator A with domain in H is an infinitesimal generator of a semigroup
{S(t) : t ≥ 0}, F : H → H is a measurable mapping, G(x) is a Hilbert–Schmidt
operator on H for every x ∈ H , and G(·) as L2(H) := L2(H,H)–valued mapping is
measurable on H . Assume that the following Lipschitz conditions hold:

(i) ‖F (x)− F (y)‖H + ‖G(x)−G(y)‖L2 ≤ C‖x− y‖H , x, y ∈ H,

(ii) ‖F (x)‖2H + ‖G(x)‖2L2
≤ C(1 + ‖x‖2H), x ∈ H,

for some C > 0, here ‖G‖L2 =
(∑∞

n=1 ‖Gen‖2H
)1/2 is the norm in L2(H). Let X0

be F0–measurable H–valued random variable. Without entering here the details such
as additional assumptions imposed on the filtration (see [20] on p. 75) and definition
of a mild solution of stochastic differential equation (see the definition on page 182
of [20]), we note that Theorem 7.4 in [20], p. 186, establishes existence and uniqueness
of process X(t), t ∈ [0, T ] solving (in a sense of mild solution) equation (64) given
that (i) and (ii) hold. This solution satisfies∫ T

0
‖X(s)‖2Hds <∞ almost surely,

and has a continuous modification. For further details and more general statement we
refer to [20].

Remark 37 (Diffusions as solutions of SDE). Under the assumption that σij(·) and
bi(·) are Lipschitz continuous, by Theorem 35 we have a path–continuous solution of
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(59) with initial condition X(0) = x for arbitrary x ∈ Rd. Let us denote this solution
by Xx = {Xx(t) : t ≥ 0}. It follows that this is a Markov process with infinitesimal
generator given by the formula

Af(x) =
m∑
j=1

bi(x)
∂f

∂xi
(x) +

1

2

m∑
i,j=1

aij(x)
∂2f

∂xi∂xj
(x)

for every continuous f with compact support and continuous partial derivatives of first
and second order (see Theorem 4 on p. 298 in [56]). Coefficients aij are

aij(·) =

d∑
k=1

σik(·)σjk(·),

i.e. the matrix a = {aij} is equal to σσT .

1.12 Ornstein–Uhlenbeck process

The one–dimensional Ornstein–Uhlenbeck process (OU) is given as the solution of

dξ(t) = γ (m− ξ(t))dt+ σ
√

2γ dw(t),

where γ and σ are positive numbers, and m ∈ R. This is a Gaussian, Markov process
having a stationary measure. Note that the drift term γ (m − ξ(t)) is proportional,
with the opposite sign, to the deviation of the value ξ(t) from m, so the process drifts
towards the position m. The mean value of ξ(t) approaches m as t → ∞. This is
called mean–reverting property. In particular, stationary distribution of OU process
has mean m. From now on we assume that m = 0 and consider

dξ(t) = −γ ξ(t)dt+ σ
√

2γ dw(t), (65)

with initial condition ξ(0) = ξ0 satisfying Eξ2
0 < ∞. The solution of (65) is given in

explicit form ([29], p. 358)

ξ(t) = e−γtξ0 + σ
√

2γ

∫ t

0
e−γ(t−s)dw(s).
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The mean Eξ(t) is equal to e−γtEξ0, and the variance of ξ(t) is

Var(ξ(t)) = σ2 +
(
Var(ξ0)− σ2

)
e−2γt. (66)

In particular, the stationary measure π is Gaussian with mean 0 and variance σ2.
In the stationary case, i.e. if ξ0 ∼ N (0, σ2), the process has covariance

Eξ(t)ξ(s) = σ2 e−γ|t−s|.

There is an explicit formula for the transition probability function of OU defined by
the equation (65). It reads (see i.e. [50], p. 21)

p(t, x,A) =

∫
1A
(

e−γt x+
√

1− e−2γt y
)
π(dy), (67)

here the integral is over R.

Let us now focus on OU process in a much more general state space. Namely, let
us consider a separable Banach space B and a centered Gaussian measure π on B(B)

with reproducing kernel Hilbert space H embedded in B, so the triple (B,H, π) is
an abstract Wiener space (as introduced in Section 1.3 on page 18). The formula
(67) still defines a transition probability function if we let x, y ∈ B and A ∈ B(B).
We will show that the Chapman–Kolmogorov property holds. To this end, for brevity
we denote et := e−γt and ht :=

√
1− e−2γt. By µt let us denote the following

push–forward measure under mapping x 7→ J√tx :=
√
t x of π:

µt(A) := π{x :
√
t x ∈ A}, A ∈ B(B).

Then µts is the push–forward measure of µs under J√t:

µts(A) := µs{x :
√
t x ∈ A}, A ∈ B(B). (68)

Let us denote the covariance operator of π byQ. It follows that µt is centered Gaussian
with covariance operator tQ. We can represent the transition function p(t, x,A) as
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follows:

p(t, x,A) =

∫
B

1A (etx+ hty)π(dy) =

∫
B

1A−etx (hty)π(dy)

=

∫
B

1A−etx (y)µh2t (dy) = µh2t (A− etx) ,

here A− z := {y − z : y ∈ A}. We note that µt+s = µt ∗ µs, and we calculate∫
B
p(t, y, A)p(s, x, dy) =

∫
B
µh2t (A− ety)µh2s (dy − esx) (69)

=

∫
B
µh2t (A− ety − et+sx)µh2s (dy)

=

∫
B
µh2t (A− et+sx− y)µe2th2s (dy)

=

∫
B

1 (A− et+sx)µh2t ∗ µe2th2s (dy) ,

= µh2t+s (A− et+sx) = p(t+ s, x,A).

The Chapman–Kolmogorov property holds. The Markov process in B with transition
probability p(·, ·, ·) is called Ornstein–Uhlenbeck process. Distribution π is stationary
for the process as ∫

B
p(t, x,A)π(dx) =

∫
B
µh2t (A− etx)π(dx) (70)

=

∫
B
µh2t (A− x)µe2t (dx)

= µh2t+e2t (A) = π(A).

Let us generalize Ornstein–Uhlenbeck process in yet another way. To this end we
need some preliminaries. For N ∈ N we define sets

ZN = {−N + 1,−N + 2, . . . , N − 1, N}

and
TN := ZN/2N =

{ m

2N
: m ∈ ZN

}
.
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We denote by T an interval [−1/2, 1/2] with the topology of one–dimensional torus,
i.e. with the endpoints −1/2 and 1/2 identified. On T we define continuous functions
γ(·) and σ(·) such that

σ(k) ≥ 0, σ(k) = σ(−k), k ∈ T,
∫

T
1{l:σ(l)=0}(k)dk = 0, (71)

and γ(·) has the same properties, however with one stronger condition that γ(k) > 0

for all k. Given a finite sequence x = {xz : z ∈ ZN}, for an arbitrary continuous
non-negative and even function F on T let JNF x = {(JNF x)z : z ∈ Z} be defined as

(JNF x)z :=
∑
y∈ZN

xy
∑
k∈TN

e2πik(z−y) F (k)
2N , z ∈ Z.

This is a 2N–periodic sequence in variable z, and it is real valued given that F is even.
Let u ∈ l1(Z). The discrete Fourier transform û, see the definition in section (1.1),
is a continuous function on torus T. Let JN∗F u = {(JN∗F u)z : z ∈ Z} be defined
as follows:

(JN∗F u)z :=


∑
k∈TN

e2πikz û(k)F (k)
2N , z ∈ ZN ,

0 z ∈ Z\ZN ,

We have

(JNF x, u) =
∑
z∈Z

uz
∑
y∈ZN

xy
∑
k∈TN

e2πik(z−y) F (k)
2N ,

where (x, u) =
∑

z∈Z xzuz . By substituting −k for k we get

(JNF x, u) = (x, JN∗F u). (72)

Further let
〈u, v〉F,N :=

∑
k∈TN

û(k)v̂(−k)F (k)
2N , u, v ∈ l2(Z). (73)

Given a sequence X = {Xz : z ∈ Z} of independent identically distributed Gaussian
random variables with X0 ∼ N (0, 1) we define

ξNσ,z := (JN√σX)z =
∑
y∈ZN

Xy

∑
k∈TN

e2πik(z−y)
√
σ(k)

2N . (74)
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It follows that
ξNσ := {ξNσ,z : z ∈ Z}

is a 2N–periodic sequence of Gaussian random variables. For u ∈ l1(Z) we have

(ξNσ , u) =
∑
z∈ZN

Xz(J
N∗√
σu)z,

so
E(ξNσ , u)(ξNσ , v) =

∑
y∈ZN

(JN∗√σu)y(J
N∗√
σv)y =

= 〈u, v〉σ,N .

The characteristic function of (ξNσ , u) is

Eei(ξ
N
σ ,u) = e−

1
2
‖u‖2σ,N , u ∈ l1(Z),

where
‖u‖2σ,N := 〈u, u〉σ,N .

We will pass to the limit as N → ∞. To this end we embed the space of all bounded
sequences indexed by Z in an appropriate Hilbert space in which such limit exists.
For a fixed sequence of positive numbers λ = {λz : z ∈ Z} such that∑

z∈Z

λz <∞

we define a Hilbert space Hλ as

Hλ :=
{

(xz)z∈Z :
∑
z∈Z

λzx
2
z <∞

}
with the inner product

〈x, x′〉λ :=
∑
z∈Z

λzxzx
′
z,

and norm ‖x‖2λ = 〈x, x〉λ. The dual of of Hλ is Hλ′ , where λ′ := {(λz)−1 : z ∈ Z}.
We note that Hλ′ ⊂ l1(Z). Let us denote the distribution of ξNσ on Hλ by µNσ . Further,
let continuous functions σ1(·), σ2(·) on T satisfy conditions (71). It holds

µNσ1 ∗ µ
N
σ2 = µNσ1+σ2 and
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µNσ1σ2(A) = µNσ1
(
x : JN√σ2x ∈ A

)
, A ∈ B(Hλ).

Calculations analogous to (69) and (70) show that function

pN (t, x,A) =

∫
1A
(
JNet x+ JNhty

)
µNσ (dy), (75)

where
et(k) := e−γ(k)t, ht(k) :=

√
1− e−2γ(k)t,

has the Chapman–Kolmogorov property, and that the measure µNσ is invariant for pN .
A Markov process {ξNσ (t) : t ≥ 0} with transition probability function pN and initial
distribution µNσ is stationary Gaussian with mean EξNσ (t) = 0 and with covariance

E(ξNσ (t), u)(ξNσ (s), v) =
1

2N

∑
k∈TN

e−γ(k)|t−s|û(k)v̂(−k)σ(k), (76)

for u, v ∈ Hλ′ . In particular

EξNσ,y(t)ξ
N
σ,z(s) =

1

2N

∑
k∈TN

e−γ(k)|t−s|e−2πik(y−z)σ(k),

so the random field {ξNσ,y(t) : t ≥ 0, y ∈ Z} is space and time stationary.

Now let us approach the limit. We say that the sequence of probability measures
{µN : N ∈ N} defined on a Borel σ–field of a topological space (S, T ) is weakly
convergent to µ if

lim
N→∞

∫
S
f(x)µN (dx) =

∫
S
f(x)µ(dx)

for every function f : S → R which is bounded and continuous on (S, T ). We denote
by µ̂ the characteristic function of a measure µ defined on Borel sets of Hλ:

µ̂(u) :=

∫
Hλ

ei(x,u)µ(dx), u ∈ Hλ′ .

Lemma 38. As N → ∞, the sequence of measures {µNσ : N ∈ N} is weakly
convergent to a probability measure µσ on B(Hλ) having characteristic function

µ̂σ(u) = e−
1
2
‖u‖2σ where ‖u‖2σ =

∫
T
|û(k)|2σ(k)dk.
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Proof. According to the Lemma 2.1 on page 153 and Theorem 2.2 on page 154 in [47]
we only need to check that the following conditions hold:

(i) lim
N→∞

µ̂Nσ (u) = µ̂σ(u) for all u ∈ Hλ′ ;

(ii) lim
n→∞

sup
N∈N

∫
Hλ

∑
|z|≥n

〈x, fz〉2λ µNσ (dx) = 0, where fz := δz/
√
λz , z ∈ Z, and

(δz)y =

 1, z = y,

0, z 6= y.

We note that the vectors fz , z ∈ Z form a complete orthonormal system in Hλ.

The condition (ii) establishes conditional compactness of {µNσ : N ∈ N}, while (i)
ensures that every limit point must be µσ. First we show (i). We have

u ∈ Hλ′ ⊂ l1(Z),

so û is continuous on T and ‖û‖2σ,N converges to the integral
∫
|û(k)|2σ(k)dk = ‖u‖2σ.

Now let us show the relative compactness of {µNF : N ∈ N}. We estimate∫
Hλ

〈x, fz〉2λ µNσ (dx) = E(ξNσ ,
√
λzδz)

2 = λz‖δz‖2σ,N

= λz
∑
k∈TN

σ(k)

2N
≤ ‖σ‖∞λz,

so ∫
Hλ

∑
|z|≥n

〈x, fz〉2λ µNσ (dx) ≤ ‖σ‖∞
∑
|z|≥n

λz,

and (ii) follows.

Let
R(u, v) :=

∫
T
û(k)v̂(−k)σ(k)dk, u, v ∈ Hλ′ .
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Function
(
u, v
)
7→ R(u, v) is positive definite on Hλ′ ×Hλ′ . We consider a Gaussian

random field {ξσ(u) : u ∈ Hλ′} with mean zero and covariance

Eξσ(u)ξσ(v) = R(u, v).

Such a random field may be constructed as the Gaussian random field of variables

ξσ(u) := (·, u), u ∈ Hλ∗

on probability space (Hλ,B(Hλ), µσ) with measure µσ established by Lemma 38.
In particular, the sequence of random variables {ξσ(δz) : z ∈ Z} is represented by
the identity mapping x 7→ x, x ∈ Hλ on probability space (Hλ,B(Hλ), µσ), since
x = {xz : z ∈ Z} has coordinates xz = (x, δz). We denote ξσ,z := ξσ(δz) and
ξσ := {ξσ,z : z ∈ Z}, so ξσ is a Hλ–valued random variable and we can identify
ξσ(u) with (ξσ, u) for u ∈ Hλ′ . Now let us consider a function

R̃
(
(y, t), (z, s)

)
:=

∫
T

e−2πik(y−z)e−γ(k)|t−s|σ(k)dk, y, z ∈ Z, t, s ≥ 0.

This function is positive definite on T × T , where T := {(z, t) : z ∈ Z, t ≥ 0}.
Indeed, R̃ is the limit, as N → ∞, of (76) with u = δy and v = δz , which in turn is
positive definite as a covariance of a Gaussian field. Now let us define a space–time
stationary Gaussian random field {ξσ,z(t) : z ∈ Z, t ≥ 0} with mean zero and with
covariance

Eξσ,y(t)ξσ,z(s) = R
(
(y, t), (z, s)

)
.

As we have already established, for fixed t we have that ξσ(t) := {ξσ,z(t) : z ∈ Z} is
a Hλ–valued random variable with distribution µσ. It follows that {ξσ(t) : t ≥ 0} is
a stationary Gaussian Hλ–valued stochastic process.

Remark 39. We do not have transition probabilities for {ξσ(t) : t ≥ 0}. We have
constructed it only as a stationary Gaussian random field.
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1.13 Gaussian Hilbert space and stochastic integral
– an example

By definition, a Gaussian Hilbert space on a probability space (Ω,F ,P) is a closed
subspace of the Hilbert space L2(Ω,F ,P) consisting of centered Gaussian random
variables (see [27], p. 4).

Remark 40. Every sequence of Gaussian random variables convergent in L2 has limit
being Gaussian random variable. It follows that the closure in L2–norm of arbitrary
linear space consisting of Gaussian random variables on (Ω,F ,P) is a Gaussian Hilbert
space ([27], p. 4).

Definition 41 ([27], p. 9). Assume that (E,A, π) is a measure space, that is, A is
a σ–algebra of subsets of E and π is a measure on A. A Gaussian stochastic integral
on (E,A, π) is a linear isometry of L2(E,A, π) into a Gaussian Hilbert space.

Let us consider Gaussian field ξσ = {ξσ,z : z ∈ Z} from the previous section – with
values in Hλ and with covariance E(ξσ, u)(ξσ, v) =

∫
T û(k)v̂(−k)σ(k)dk. The law

of ξσ is denoted by µσ. The collection

H1 := {(·, u) : u ∈ Hλ′}

is a linear space of Gaussian random variables on (Hλ,B(Hλ), µσ). We denote by
L2(σ) the Hilbert space of functions on torus T with finite norm

‖f‖L2(σ) =

(∫
T
|g(k)|2σ(k)dk

)1/2

.

Let
G := {û : u ∈ Hλ′}.

We consider G with the norm ‖ · ‖L2(σ) andH1 with the norm of L2(Hλ,B(Hλ), µσ).
The mapping I : G 7→ H1, Iû = (·, u) is an isometry. L2(σ)–closure G of G is
a Hilbert subspace consisting of all such g ∈ L2(σ) that

g(−k) = g∗(k), k ∈ T.
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Note that with ez(k) := e−2πikz , for z ∈ Z and k ∈ T

I
( n∑
j=1

ajezj

)
=

n∑
j=1

ajξσ,zj (77)

for arbitrary n ∈ N, arbitrary real numbers a1, . . . , an and integers z1, . . . , zn. We will
construct a stochastic spectral measure (see [27], p. 112) corresponding to the random
field {ξσ,z : z ∈ Z}. To this end we extend the isometry to the whole space L2(σ)

(we will denote the extension also by I) in the following way. We admit complex
coefficients aj in (77), and we take limits, in L2–norm, of trigonometric polynomials
of the form

∑n
j=1 ajezj , and define the isometric image of such limit as the limit of

the corresponding linear combinations of Gaussians on the right hand side of (77).
Since trigonometric polynomials with complex coefficients form a dense set in L2(σ),
the isometry is then defined on the whole of L2(σ). We allow complex coefficients aj ,
hence we deal with complex Gaussian random variables on the right hand side of (77).
By definition, a complex random variable ζ is Gaussian, if Reζ and Imζ are jointly
Gaussian ([27], p. 12). The isometric image I

(
L2(σ)

)
is a Hilbert space consisting of

complex Gaussian random variables. We have EIg(Ih)∗ = 〈f, g〉L2(σ).

If A ∈ B(T), then I1A has variance σ(A) := 〈1A,1A〉L2(σ) =
∫
A σ(k)dk.

We define random function µ̂σ on B(T) by

µ̂σ(A) := I1A.

If sets A1, . . . , An are disjoint then

µ̂σ (A1 ∪ · · · ∪An) =
n∑
i=1

µ̂σ(Ai).

Now consider a simple function

g(k) =

n∑
i=1

ai 1Ai(k),
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where A1, . . . , An are disjoint. For such function we have

Ig =

n∑
i=1

aiI1Ai =

n∑
i=1

ai µ̂σ(Ai),

and if a sequence of simple functions gn is convergent to some g0 ∈ G in L2(σ), then
Ign converges to Ig0 in a sense that the real (resp. imaginary) part of Ign converges
to the real (imaginary) part of Ig in L2(Hλ,B(Hλ), µσ). For g ∈ L2(σ), we call Ig
a stochastic integral of g with respect to the spectral measure µ̂σ and we denote this
integral by ∫

T
g(k) µ̂σ(dk).

We write formally that µ̂σ(dk) = ξ̂σ(dk) =
∑
z∈Z

ξσ,ze
−2πikz dk.

Consider now the following families of random variables

Pn :=
{
f
(
(·, u1), . . . , (·, um)

)
: u1, . . . , um ∈ Hλ′ ,

and f is a polynomial of degree at most n.
}

A Gaussian random variable X has all moments E|X|p, p ∈ N finite, and by using
the Cauchy–Schwarz inequality we conclude that Pn are linear subspaces of L2(µσ).
Denote by Pn the closure of Pn in L2(µσ), and let

H :n: := Pn ∩ P
⊥
n−1, n ≥ 1.

Also let H :0: := P0, which is the space of constant functions. Here, for a subspace
E ⊂ L2(µσ), E⊥ stands for the orthogonal complement of E in L2(µσ). In particular,
H :1: = H1. It follows that H :n:, n ≥ 0 is a sequence of orthogonal, closed subspaces
of L2(µσ) of functions measurable with respect to σ–fieldF generated by all Gaussian
random variables inH1, and Pn is equal to the direct sum

Pn = H :0: ⊕ · · · ⊕H :n:.
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The spaceL2(Hλ,F , µσ) has the following Wiener chaos decomposition (see Theorem
2.6 in [27])

L2(Hλ,F , µσ) =
∞⊕
n=0

H :n:,

which means that X ∈ L2(Hλ,F , µσ) can be represented as

X =
∞∑
n=1

PnX, where Pn is the orthogonal projection onto H :n: for each n.

There is a Markov semigroup {P (t) : t ≥ 0} on L2(Hλ,F , µσ) related to the
Ornstein–Uhlenbeck process ξσ(t), constructed with use of chaos decomposition. For
a general information about the Ornstein–Uhlenbeck semigroup on a Gaussian Hilbert
space we refer to Chapter 4 of [27]. This semigroup preserves closed subspaces H :n:.
In particular, for any constant C ∈ H :0: it is defined as P (t)C = C. On elements
of H :1: = H1 the semigroup acts as follows. For u ∈ Hλ let us denote by Xû

the Gaussian Xû(·) := (·, u), and let us extend this notation to every element of H1,
so Xg = Ig, g ∈ G. Then

P (t)Xg = XS(t)g, S(t)g(k) := e−γ(k)tg(k).

Let us denote the generator of P (t) by Q. It holds

QXg = XQg, where Qg(k) = −γ(k)g(k).

This may be concluded by noting that Q is the generator of S(t) on G, using linearity
aXg + bXh = Xag+bh and isometry. We note that the generator Q is, by assumptions
on γ, bounded on G

Eµσ(XQg)
2 =

∫
T
|γ(k)g(k)|2σ(k) dk ≤ (min

k
γ(k))2‖g‖2σ,

and hence it is defined on whole of G. On H :n:, n ≥ 2, P (t) is defined as follows.
Given X1, . . . Xn ∈ H :1:, we take Pn

∏n
k=1Xk ∈ H :n: and we set

P (t) Pn

n∏
k=1

Xk := Pn

n∏
k=1

P (t)Xk.
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Such operator extends in a unique way to a bounded linear operator on H :n: (we refer
to [27], Theorem 4.5). Eventually, for arbitrary X in L2(Hλ,F , µσ)

P (t)X :=

∞∑
n=0

P (t)PnX.



Chapter 2

Model of energy transport at
different scales

2.1 Stochastic dynamics at the microscale

We consider a chain of harmonic oscillators indexed by y ∈ Z described in [10, 11, 13].
We recall that energy of oscillator at y is given by

ey :=
1

2
p2
y +W (qy) +

1

2

∑
|y−y′|=1

V (qy − qy′),

and here

W (qy) +
1

2

∑
|y−y′|=1

V (qy − qy′)

is the potential energy. If potentials W (·) and V (·) are quadratic, and interactions
between oscillators is not restricted to the nearest neighbors, then the sum over all
y ∈ Z of potential energies generalizes to the form

b(0)
∑
y∈Z

q2
y +

∑
y,z∈Z

b(z)(qy − qy+z)
2, (78)
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where z 7→ b(z) ∈ R is a nonnegative, even function on Z. With

α(y) :=

 b(0) + 2
∑
|z|>0 b(z) if y = 0,

−2b(y) if y 6= 0

the Hamiltonian rewrites as

H(p, q) =
1

2

∑
y∈Z

p2
y +

1

2

∑
y,y′∈Z

α(y − y′)qyqy′ . (79)

The discrete Fourier transform α̂(k) of potential α = {α(y) : y ∈ Z} is real and even.
We have α(0) ≥

∣∣∑
|z|>0 α(z)

∣∣, and it follows that α̂ is also nonnegative. A function

ω(k) :=
√
α̂(k), k ∈ T,

is called dispersion relation of the chain. Note that α̂(0) is equal to∑
y∈Z

α(y) = b(0) + 2
∑
|z|≥1

b(z)− 2
∑
|y|≥1

b(y) = b(0),

so the pinning potential W is present if and only if ω(0) > 0.

The stochastic dynamics (3) turns into the following wave equation dqy(t) = py(t)dt

dpy(t) = −(α ∗ q(t))ydt+ dξ
(ε)
y [p](t),

(80)

where (α ∗ q)y is the discrete convolution

(α ∗ q)y =
∑
z∈Z

α(z)qy−z.

2.2 The wave function and the Wigner transform

We refer to the following definition of the wave function ψ = {ψy : y ∈ Z} of the
chain:

ψy := (ω̃ ∗ q)y + ipy, y ∈ Z. (81)
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Here ω̃ is the inverse Fourier transform of the dispersion relation ω. In sightly different
definition in [13], the right hand side of (81) is multiplied by number 2−1/2. In terms
of wave numbers k the wave function is represented as the Fourier transform of (81)

ψ̂(k) = ω(k)q̂(k) + ip̂(k), k ∈ T.

In the regime of appropriate time and space scalings, scaled 1
2 |ψy|

2 approximates
the energy ey of the oscillator at position y, and 1

2 |ψ̂(k)|2 is interpreted as density
of energy carried by the component of vibration of the lattice with the wave number k.

In the purely deterministic harmonic system the dynamics of the wave function in
the domain of k would be

d

dt
ψ̂(t, k) = i ω(k)ψ̂(t, k). (82)

For ψ0 := {ψ0,y : y ∈ Z}, a solution of (82) with initial condition ψ̂(0, k) := ψ̂0(k)

is given by the formula
ψ̂(t, k) = eiω(k)tψ̂0(k).

For a moment let us fix k ∈ T and consider

ψ0,y := e−2πiky, y ∈ Z.

This function surely does not belong to l2(Z). Its Fourier transform is Dirac measure
on torus given by ψ̂0(dk′) = δ(k + k′)dk′ and

ψy(t) =

∫
T

eiω(k)t+2πik′yδ(k + k′)dk′ = e−2πik
(
y−ω(k)

2πk
t
)
, y ∈ Z,

so the wave ψ0 with the wave number k travels at a constant velocity v = ω(k)/(2πk)

([24], p. 47). Let us now consider the following initial condition

ψ0,y :=

∫
T
e−2πiky ψ̂0(k)dk, y ∈ Z,

where ψ̂0 ∈ L2(T). This time the solution is given by

ψy(t) =

∫
T
e−2πik

(
y−ω(k)

2πk
t
)
ψ̂0(k)dk, y ∈ Z
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(we recall that ω(·) is even). A derivation of the group velocity of a wave packet can
be found in [24] on page 47. For a function ψ̂0(·) which has a narrow peak at some
k0 ∈ T, and is negligible outside a small vicinity of k0, by expanding ω into Taylor
series at k0 and ignoring powers of k bigger than 1 we get

|ψy(t)| ∼
∣∣∣ ∫

T
e−ik

(
2πy−ω′(k0)·t

)
ψ̂0(k) dk

∣∣∣.
Roughly speaking, the modulus |ψy(t)| travels at velocity ω′(·)/(2π) through the body.

Remark 42. Note that for the solution of (82) with initial condition ψ̂(0, ·) in L2(T),∫
T |ψ(t, k)|2dk does not change in time t. It follows that it is so in perturbed system,

as the perturbation is postulated to preserve total energy of the oscillators. However
in the deterministic case we can additionally say that |ψ(t, k)|2 is preserved for each
fixed k, and in perturbed system this is not true.

Remark 43. Looking at the above deterministic equation we observe the following
fact. As we scale the time variable by setting

ψ̂(ε)(t, k) := ψ̂(t/ε, k),

we get equation
d

dt
ψ̂(ε)(t, k) =

i

ε
ω(k)ψ̂(t, k),

which has the formal solution

ψ̂(ε)(t, k) = eiω(k)t/εψ̂(ε)(0, k).

This solution becomes fast oscillating as ε→ 0.

The object of main importance that stores information about energy distribution in
the chain is the Wigner transform of the wave function. The dynamics is stochastic, and
the averaged Wigner transform is considered, which is formally given by the formula

W (t, x, k) :=
1

2
E

∫
R

e2πipx ψ̂
(
t, k +

p

2

)
ψ̂∗
(
t, k − p

2

)
dp. (83)
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Here ψ̂∗ is the complex conjugation of ψ̂, and te mean value E is taken with respect
to the initial measure and realization of the stochastic perturbation. The following
relation holds ∫

R
W (t, x, k)dx =

1

2
E|ψ̂(t, k)|2. (84)

On the other hand, if we denote by ψε,y (y ∈ Z), and by Wε(t, x, k), the wave function
and the Wigner transform of appropriately scaled model with scaling parameter ε,
converging to a macroscopic dynamics as ε → 0, then

∫
TWε(t, x, k)dk, x ∈ R

asymptotically describes the energy distribution given by 1
2E|ψε,x|

2 concentrated on
atoms x ∈ Z (embedded in R).

The evolution of the Wigner transform is examined along with the anti–Wigner
transform, which is formally defined as

Y (x, k) :=
1

2
E

∫
R

e2πipx ψ̂
(
−k +

p

2

)
ψ̂
(
k +

p

2

)
dp, (85)

because W (t, x, k) alone does not satisfy closed equation of evolution in time (unless
the dynamics is harmonic).

Remark 44. Let us again come back to the unperturbed chain, and see the evolution
equation for the Wigner transform in this case. The space and time scaled

Ŵε(t, p, k) := Ŵ (t/ε, εp, k)

obeys

d

dt
Ŵε(t, p, k) =

i

ε

[
ω
(
t, k +

εp

2

)
− ω

(
t, k − εp

2

)]
Ŵε(t, p, k),

and the factor ε−1, generating fast oscillation of the wave function, gets absorbed by
the derivative of ω in the large scale.

2.3 Scaling limits: phonon Boltzmann equation

The evolution equations for the Wigner transform of perturbed system will be presented
in chapters 3 and 4 for specific perturbations. In the regime of hyperbolic scaling
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t → t/ε, x → x/ε, ε � 1, the limit u of averaged Wigner transform of perturbed
systems satisfies the linear phonon Boltzmann equation, which in one dimensional
case has the form

∂tū(t, x, k) +
ω′(k)

2π
∂xū(t, x, k) = Lū(t, x, k). (86)

Here ω(·) is the dispersion relation and scattering operator L acting on variable k has
the form

Lf(k) =

∫
T
R(k, k′)

[
f(k′)− f(k)

]
dk′

with scattering kernel R(k, k′). Operator L generates a compound Poisson process
on T. Assume for a moment that there is no scattering operator in (86), so we have
the following transport equation

∂tū(t, x, k) +
ω′(k)

2π
∂xū(t, x, k) = 0. (87)

Such equation emerges from deterministic dynamics of harmonic oscillators. Solution
of (87) with initial condition ū(0, x, k) = ū0(x, k) is formally given by

ū(t, x, k) = ū0

(
x− t ω′(k)/(2π), k

)
.

We deal with a transport at constant velocity ω′(k)/2π in spatial variable x, and wave
number k is only a parameter here.

Now let us come back to the phonon Boltzmann equation (86). The scattering
operator L appears as the result of the stochastic perturbation, and specific form of the
kernel R(k, k′) depends on the type of it. L is the generator of compound Poisson
process on the state space T, such as described in section 1.9. If we denote by Kt(k)

the state, at moment t, of the process that started at k (i.e. such that K0(k) = k), then
solution of (86) is represented by the following formula ([28], p. 2278):

ū(t, x, k) = Eū0

(
x− 1

2π

∫ t

0
ω′(Ks(k))ds,Kt(k)

)
.
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A quasiparticle, being at t = 0 in initial state with wavenumber k, changes its states as
a result of random collisions, finding itself in a state with wavenumber Kt(k) at time
t > 0. Hence the velocity at time t is given by ω′(Kt(k))/2π and

Xt(x) := x+
1

2π

∫ t

0
ω′(Ks(k))ds

is spatial position coordinate at t, given that the initial position was x. The Boltzmann
equation (86) describes evolution of the density of Markov process (Xt,Kt) in the state
space R× T ([13], p. 178, [9], p. 224).

2.4 Scaling limits: classical and fractional heat equation

Solution u(t, x) of the classical heat equation

∂tu(t, x) = c∆u(t, x). (88)

is interpreted as a temperature at time t at point with spatial coordinate x ([57], p. 5).
Fourier’s law satisfied by solution u states that ([19], p. 13)

q = −k ∇u

where q is the rate of flow of heat energy through unit area per unit time, or heat
flux, and positive proportionality coefficient k is called conductivity. Operator∇ is the
gradient in spatial variable x. In one spatial dimension the heat equation becomes

∂tu(t, x) = c ∂2
xu(t, x). (89)

Positive constant c is called thermal diffusivity ([19], p. 15). Solution of the equation
with appropriate initial condition u(0, x) = u0(x), assuming no boundary conditions,
is given by the convolution

u(t, x) =

∫
R
u0(y) pt(x− y)dy (90)
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with pt(x) = (4πct)−1/2 exp{−x2/(4ct)}. In terms of its probabilistic interpretation

u(t, x) = Eu0(x+ w(t)) (91)

where w(·) is the Brownian motion with variance E(w(t))2 = 2ct. The Fourier
transform û(t, p) of u(t, x) satisfies equation

∂tû(t, p) = −4cπ2p2û(t, p).

It is given by the formula

û(t, p) = û0(p) e−tψ(2πp), (92)

here ψ(p) = cp2 is the Lévy exponent of Brownian motion. Factor 2π in the argument
2πp appears because of the definition of Fourier transform we use here. If we put in
(92) Lévy exponent ψ̃(p) = c|p|α of symmetric α–stable distribution, 0 < α < 2,
then we get the Fourier transform of solution of fractional diffusion equation

∂tu(t, x) = −c
(
− ∂2

x

)α/2
u(t, x). (93)

Here
(
− ∂2

x

)α/2 is fractional Laplacian: by definition,
(
− ∂2

x

)α/2
u(x) is the inverse

Fourier transform of (2π|p|)α û(p). Solution is given by (91) with w(·) replaced by
symmetric α–stable process.

As shown in [28], under appropriate scaling, solution of the Boltzmann equation
(86) converges to u(t, x) which satisfies the fractional heat equation (93) . Solution
u(t, ·) is interpreted as the heat distribution along the body at time t. It is shown in
[38] that solutions of (93) and (89), under proper scalings, are limits of microscopic
model (80).



Chapter 3

Model with Brownian noise

The sources of results reported in this chapter are [13], [28] and [38].

3.1 The perturbation

Let us describe one dimensional system of harmonic oscillators with a weak stochastic
noise introduced in [10, 11]. The dynamics are given by dqy(t) = py(t)dt

dpy(t) = −(α ∗ q(t))ydt+ dζ
(ε)
y [p](t),

(94)

where

dζ(ε)
y [p](t) :=

√
ε
∑

z=−1,0,1

(Yy+zpy) ◦ dwy+z(t), (95)

ε � 1. Here {wy(t) : t ≥ 0}, y ∈ Z, are independent standard Brownian motions on
probability space (Ω,F ,P). Stochastic differential on the right hand side is understood
in Stratonovich sense, and operators Yy, y ∈ Z are given by

Yy := (py − py+1)∂py−1 + (py+1 − py−1)∂py + (py−1 − py)∂py+1 .
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Component ζ(ε)
y is responsible for a random exchange of momenta between three

adjacent oscillators located at y − 1, y, y + 1. Note that

Yy(p
2
y−1 + p2

y + p2
y+1) = Yy(py−1 + py + py+1) = 0,

so the vector field {Yy} is tangent to any circle given by equations p2
y−1 + p2

y + p2
y+1 = c1,

py−1 + py + py+1 = c2,
(96)

of constant energy c1 and momentum c2 of three adjacent oscillators. In consequence
the total energy is preserved by the perturbation. The sum on the right hand side of (95)
expands as follows∑

z=−1,0,1

(Yy+zpy) ◦ dwy+z(t) = (py−2 − py−1) ◦ dwy−1(t)

+ (py+1 − py−1) ◦ dwy(t)

+ (py+1 − py+2) ◦ dwy+1(t).

The dynamics of (p, q) have the following Itô form
dqy(t) = py(t)dt

dpy(t) =
[
−(α ∗ q(t))y −

ε

2
(β ∗ p(t))y

]
dt

+
√
ε
∑

j=−1,0,1

(Yy+jpy(t))dwy+j(t), y ∈ Z.

(97)

where β = {βy : y ∈ Z} is given by

βy :=


6, y = 0,

−2, |y| = 1,

−1, |y| = 2,

0, |y| > 2.

It is shown in [13] that the Wigner transform of the system under space and time
scaling t → t/ε, x → x/ε converges as ε → 0 to solution of phonon Boltzmann



3.2. CONVERGENCE THEOREM 77

equation (86). Further investigation of this model in [28] shows that the limit obtained
in [13] under superdiffusive scaling t → t/ε, x → x/ε3/2, ε → 0 satisfies the
fractional heat equation in the case that no pinning potential is present in the dynamics
(94).

3.2 Convergence theorem

Asymptotics shown in [13] and [28] combined together indicate that Wigner transform
of microscopic model (94) satisfies at some macroscopic scale fractional heat equation,
if no pinning potential is present. On the other hand, if there is pinning potential, then
classical heat equation is satisfied. The time–scaled wave function of the microscopic
system is defined as

ψ̂(ε)(t, k) := ψ̂(ε−1t, k) = ω(k)q̂(ε−1t, k) + ip̂(ε−1t, k).

Initial condition for the dynamics is random. Namely, we have a family of probability
measures µε, ε ∈ (0, 1] on initial states of the system (at time t = 0). It is assumed
in [13] that in the unpinned case

lim
R→0

lim sup
ε→0

ε

∫
|k|<R

〈|ψ̂0(k)|2〉ε dk = 0,

so that there is no concentration of energy at wave number k = 0 ([13], p. 177). Here
the mean value with respect to the initial measure µε is denoted by 〈 · 〉ε. Analogous
condition in [38], concerning scaling under which asymptotics of the microscopic
dynamics resembles superdiffusive (or diffusive) heat transfer on the large scale, states
that for some numbers a, γ > 0

Ka,γ := lim sup
ε→0

ε1+γ

∫
T
〈|ψ̂0(k)|2〉ε

dk

|k|2a
< +∞, (98)

so the number a controls concentration of energy at k = 0. Number γ makes additional
scaling factor. In [13], scaled Wigner transforms Wε are defined by averaging, with
respect to introduced probability measures, the following (random) Wigner transform

ε

2

∫
R

e2πipx ψ̂
(
t, k +

εp

2

)
ψ̂∗
(
t, k − εp

2

)
dp.
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In [38], scaled and averaged Wigner and anti–Wigner transforms are defined by

Wε,γ(t, x, k) =
ε1+γ

2
Eε

∫
R

e2πipx ψ̂

(
t, k +

ε1+γp

2

)
ψ̂∗
(
t, k − ε1+γp

2

)
dp,

Yε,γ(t, x, k) =
ε1+γ

2
Eε

∫
R

e2πipx ψ̂

(
t,−k +

ε1+γp

2

)
ψ̂

(
t, k +

ε1+γp

2

)
dp,

wherein the mean value Eε is taken with respect to the product measure µε ⊗ P.

Assuming either lack or presence of a pinning potential, limit ofWε,γ(t) is solution
W (t, x) of either fractional heat equation

∂tW (t, x) = − ĉ

(2π)3/2
(−∂2

x)3/4W (t, x), (99)

or classical heat equation

∂tW (t, x) =
ĉ

(2π)2
∂2
xW (t, x). (100)

Positive coefficients denoted by ĉ in the limiting equations are specific for each of
the both cases and depend on the potential. It is assumed in [38] that the initial
condition for either limiting equation (99) or (100) is W (0, x) = W0(x), where

W0(x) =

∫
T
W0(x, k)dk,

and W0(x, k) belongs to the Schwartz space S(R× T), or is the limit, in norm ‖ · ‖a,b
defined by

‖J‖a,b := sup
p

(1 + p2)b/2
∫

T

|J(p, k)|
|k|2a

dk, (101)

of functions belonging to S(R × T). The potential α = {α(y) : y ∈ Z} in (97)
is assumed to satisfy the following conditions

C1) α(y), y ∈ Z are real numbers such that for some positive constants C, d we
have |α(y)| ≤ Ce−d|y|, y ∈ Z,
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C2) α̂(k) is real, α̂(k) > 0 for k 6= 0 and if α̂(0) = 0 then α̂′′(0) > 0,

see [13] on p. 2, and [38] on p. 6. Let us state the results. Theorem 2.1 in [38] says
the following.

Theorem 45 ([38], p. 5). Assume that potential α satisfies conditions C1) and C2)
stated above.

(i) Let α̂(0) = 0 (so there is no pinning potential), and let (98) be satisfied for some
a ∈ (0, 1] and γ ∈ (0, 2a/3). Furthermore, let the initial Wigner transform
Wε,γ(0) converges, as ε→ 0, to some distribution W̃0 with finite norm (101) in
the following sense: for every J̃ ∈ S

lim
ε→0+

〈Wε,γ(0), J̃〉 =

∫
R×T

W̃0(x, k)J̃∗(x, k)dxdk. (102)

Then for every J̃ ∈ S and t > 0

lim
ε→0+

〈
Wε,γ

(
t

ε3γ/2

)
, J̃

〉
=

∫
R×T

W (t, x)J̃∗(x, k)dxdk

where W (t, x) satisfies fractional heat equation (99) with the initial condition

W (0, x) :=

∫
T
W̃0(x, k)dk, (103)

and specific coefficient ĉ > 0 depending on α̂′′(0).

(ii) Assume that α̂(0) > 0 (i.e. the pinning potential is present) and, with some
γ ∈ (0, 1/2) and a ∈ (0, 1], (98) is satisfied. Let Wε,γ(0) be convergent to some
distribution W̃0 with finite norm (101) in the sense of (102). Then for every
J̃ ∈ S and t > 0

lim
ε→0+

〈
Wε,γ

(
t

ε2γ

)
, J̃

〉
=

∫
R×T

W (t, x)J̃∗(x, k)dxdk,

whereW (t, x) is solution of heat equation (100) with initial condition (103) and
specific coefficient ĉ > 0 depending on the potential.
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3.3 Equation for the Wigner transform

Let us take a look at the evolution equations of the wave function and the Wigner
transform ([38], section 2.5). Denote ey(k) := e−2πiky. The stochastic differential
in the Itô equation for ψ̂(ε) is derived from the dynamics on lattice. Based on (97),
equations for the dynamics of Fourier transforms p̂, q̂ are

dq̂(t, k) = p̂(t, k)dt

dp̂(t, k) = −
(
α̂(k)q̂(t, k) +

ε

2
β̂(k)p̂(t, k)

)
dt

+
√
ε

∫
T
r(k, k′) p̂(t, k − k′) dŵ(t, k′).

(104)

Functions β̂(k) and r(k, k′) in the formulas above are given by

β̂(k) :=8 sin2(πk)
[
1 + 2 cos2(πk)

]
, k ∈ T,

and

r(k, k′) := sin(2πk) + sin[2π(k − k′)] + sin[2π(k′ − 2k)] (105)

=4 sin(πk) sin[π(k − k′)] sin
[
(2k − k′)π

]
, k, k′ ∈ T.

Stochastic measure ŵ(·) is formally given by

dŵ(t, k′) =
∑
z∈Z

e−2πik′ywy(t)dk
′.

The wave function ψ̂ satisfies

dψ̂(t, k) = ω(k)p̂(t, k)dt− i α̂(k)q̂(t, k)− iε

2
β̂(k)p̂(t, k)dt

+
√
ε

∫
T
r(k, k′) p̂(t, k − k′)dŵ(t, k′).

Since ω(·) is even and p, q are real, we have

ψ̂∗(−k) = ω(k)q̂(k)− ip̂(k)
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and

p̂(k) = − i
2

(
ψ̂(k)− ψ̂∗(−k)

)
.

Hence, with initial condition ψ̂0 ∈ L2(T), the evolution equation for ψ̂ reads

dψ̂(ε)(t) = Aε[ψ̂
(ε)(t)]dt+

∑
y∈Z

Q[ψ̂(ε)(t)](ey)dwy(t), (106)

ψ̂(ε)(0) = ψ̂0,

where mapping Aε : L2(T)→ L2(T) is defined by the formula

Aε[φ](k) := − i
ε
ω(k)φ(k)− β̂(k)

4
(φ(k)− φ∗(−k)) , (107)

and, for any φ ∈ L2(T), Q[φ] : L2(T)→ L2(T) is operator defined by

Q[φ](g)(k) := i

∫
T
r(k, k′)

(
φ(k − k′)− φ∗(k′ − k)

)
g(k′)dk′.

There exists unique solution of (106) with values in L2(T; C) (compare with equation
(64)), and the conservation law holds fo the solution:

‖ψ̂(ε)(t)‖L2(T) = const. (108)

for t ≥ 0, P–almost surely.

Regarding Wigner and anti–Wigner transform, let

Ŵε(t, p, k) :=
〈(
ψ̂(ε)

)∗ (
t, k − εp

2

)
ψ̂(ε)

(
t, k +

εp

2

)〉
ε

and

Ŷε(t, p, k) :=
〈
ψ̂(ε)

(
t,−k +

εp

2

)
ψ̂(ε)

(
t, k +

εp

2

)〉
ε
.

For J ∈ S(R× T) let

‖J‖A := sup
p∈R

∫
T
|J(p, k)| dk.
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It follows by the Hölder’s inequality that∫
T
|Ŵε(t, p, k)| dk ≤

∫
T

∣∣ψ̂(ε) (t, k)
∣∣2dk,

and conservation law (108) together with assumption (98) implies that

E‖Ŵε(t)‖A <∞. Similarly, E‖Ŷε(t)‖A <∞.

Also more general norms are used in [38]:

‖J‖Aa := sup
p

(1 + p2)−a/2
∫

T
|J(p, k)|dk,

‖J‖A′a :=

∫
R
(1 + p2)a/2 sup

k
|J(p, k)|dp.

If we denote byAa andA′a a Banach spaces defined as closures of S(R×T) in norms
‖·‖Aa , ‖·‖A′a respectively, then elements ofA′a can be considered as elements of dual
of Aa.

Stochastic evolution equation for Ŵε(t) reads

dŴε(t, p, k) =

{〈
(Aε[ψ̂

(ε)])∗
(
t, k − εp

2

)
ψ̂(ε)

(
t, k +

εp

2

)〉
ε

(109)

+
〈

(ψ̂(ε))∗
(
t, k − εp

2

)
Aε[ψ̂

(ε)]
(
t, k +

εp

2

)〉
ε

+
∑
j∈Z

〈
(Q[ψ̂(ε)](ej))

∗
(
t, k − εp

2

)
Q[ψ̂(ε)](ej)

(
t, k +

εp

2

)〉
ε

 dt

+ dM(ε)
t (p, k),

here {M(ε)
t , t ≥ 0} with {Ft, t ≥ 0} is a local martingale (see [20], p. 96)

M(ε)
t (p, k) :=

∑
j∈Z

∫ t

0

〈
(Q[ψ̂(ε)(s)](ej)

∗
(
k − εp

2

)
ψ̂(ε)

(
s, k +

εp

2

)〉
ε
dwj(s)

+
∑
j∈Z

∫ t

0

〈
(ψ̂(ε))∗

(
s, k − εp

2

)
Q[ψ̂(ε)(s)](ej)

(
k +

εp

2

)〉
ε
dwj(s).
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Denote W ε(t) := EŴε(t) and Y ε(t) := EŶε(t). Application of the mean value with
respect to the Brownian motions on the left and right side in (109) reveals that W ε

satisfies the following equation

〈∂tW ε(t), J〉 = 〈W ε(t), (iB + L) J〉+ 〈Rε(t), J〉, ∀J ∈ S, (110)

where B, L andRε(t) are defined as follows. Operator B is given by

Bf(p, k) := pω′(k)f(p, k), f ∈ S.

Bounded linear operator L acts on f ∈ S according to the formula

Lf(p, k) :=2

∫
T
R(k, k′)[f(p, k′)− f(p, k)]dk′, f ∈ S.

Here, with r(·, ·) given by (105),

R(k, k′) :=
1

2

[
r2(k, k − k′) + r2(k, k + k′)

]
=8 sin2(πk) sin2(πk′)

{
sin2

[
π(k + k′)

]
+ sin2

[
π(k − k′)

]}
.

Kernel R(k, k′) emerges as the limit of

Rε(p, k, k
′) :=

1

2

[
ρ(k, k + k′, εp) + ρ(k, k − k′, εp)

]
, (111)

where
ρ(k, k′, p) := r

(
k − p

2
, k′
)
r
(
k +

p

2
, k′
)
.

Rε(t) in (110) collects components that are negligible as ε→ 0 (see [38] p. 9).

3.4 About the proof

In what follows we present some ideas of the proof given in [38]. We denote by J̃(x, k)

the inverse Fourier transform in the variable p of function J(p, k) ∈ S(R × T). Let
W (t) satisfy Boltzmann equation (86). Further, let U(t) be the Fourier transform in
variable x of W (t), so that the following relation holds〈

U(t), J
〉

=
〈
W (t), J̃

〉
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for all t ≥ 0 and J ∈ S. The equation for U(t) obtained by applying the Fourier
transform in x on the both sides of (86) is

∂tU(t)− iBU(t) = LU(t). (112)

The solution of (112) with initial condition U(0) = U0 ∈ S is defined as a continuous
function t→ U(t) with values in function spaceA, for every J ∈ S(R×T) satisfying

〈U(t), J〉 − 〈U0, J〉 =

∫ t

0
〈U(s), (iB + L) J〉 ds. (113)

The probabilistic representation of the solution is used. If we denote byKt(k) the state,
at moment t, of the process that started at k, then the solution is represented by the
following Feynman–Kac formula

U(t, p, k) = E

[
exp

{
−ip

∫ t

0
ω′(Ks(k))ds

}
U0(p,Kt(k))

]
. (114)

Since the process Kt is reversible, the following holds∫
R×T

E

[
exp

{
−ip

∫ t

0
ω′(Ks(k))ds

}
U0(p,Kt(k))J∗(p,K0(k))

]
dpdk

=

∫
R×T

E

[
exp

{
−ip

∫ t

0
ω′(Kt−s(k))ds

}
U0(p,K0(k))J∗(p,Kt(k))

]
dpdk

=

∫
R×T

U0(p, k) E

[
exp

{
ip

∫ t

0
ω′(Ks(k))ds

}
J(p,Kt(k))

]∗
dpdk.

Hence we have 〈
e(iB+L)t U0, J

〉
=
〈
U(t), J

〉
=
〈
U0, J(t)

〉
, (115)

where

J(t, p, k) := E exp

{
ip

∫ t

0
ω′(Ks(k))ds

}
J(p,Kt(k)). (116)



3.4. ABOUT THE PROOF 85

Further, comparing (110) and (112) we see that the following Duhamel formula holds
for W ε(t)

〈W ε(t), J〉 = 〈W ε(0), J(t)〉+

∫ t

0
〈Rε(s), J(t− s)〉ds. (117)

Denote byW0(p, k) the Fourier transform in x of W̃0(x, k) appearing in Theorem (45),
and let W 0(p) :=

∫
TW0(p, k)dk. Let also J(p) :=

∫
T J(p, k)dk. The following

estimate is one of steps in the proof of part (i) of Theorem (45) (see [38] on p. 11)∣∣∣∣∫
R×T

[
ε1+γ

2
W ε

(
t

ε3γ/2
, pεγ , k

)
−W 0(p)e−ĉ|p|

3/2t

]
J∗(p, k)dpdk

∣∣∣∣ (118)

≤
∣∣∣∣∫

R×T

[
ε1+γ

2
W ε (0, pεγ , k)−W0 (p, k)

]
e−ĉ|p|

3/2tJ
∗

(p) dpdk

∣∣∣∣ (119)

+Rs(ε, t, J,W0,Ka,γ),

with specified component Rs. Such estimate is obtained for any fixed a ∈ (0, 1] and
γ ∈ (0, 2a/3). For any t0 > 0, Rs depends only on ε > 0, t ≥ t0, Ka,γ given by
(98), and some norms of test function J and of W0. It vanishes as ε→ 0. The integral
in line (119) also vanishes by assumption. As a result, (118) converges to zero. Now
note that〈

Wε,γ

(
t

ε3γ/2

)
, J̃

〉
=
ε1+γ

2

∫
R×T

W ε

(
t

ε3γ/2
, pεγ , k

)
J∗(p, k)dpdk,

and that Fourier transform of the solution of fractional heat equation (99) with initial
condition

W (0, x) =

∫
R

e2πipxW 0(p)dp (120)

is given by the formula

W (t, p) := e−ĉ|p|
3/2tW 0 (p) .
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Regarding part (ii) of Theorem (45), similar estimate is obtained, and it gives analogous
conclusions. We have ([38], p. 13)∣∣∣∣∫

R×T

[
ε1+γ

2
W ε

(
t

ε2γ
, pεγ , k

)
−W 0(p)e−ĉp

2t

]
J∗(p, k)dpdk

∣∣∣∣ (121)

≤
∣∣∣∣∫

R×T

[
ε1+γ

2
W ε (0, pεγ , k)−W0 (p, k)

]
e−ĉp

2tJ̄∗ (p) dpdk

∣∣∣∣
+Rd(ε, t, J,W0,Ka,γ).

As in (118), Rd is established for t ≥ t0 > 0. Here a ∈ (0, 1] and γ ∈ (0, 1/2)

are fixed. Under the square bracket in (121) we see difference of two components.
One is the Fourier transform in x of the Wigner transform Wε,γ , appropriately scaled
in time, and the other is Fourier transform of the solution of heat equation (89) with
initial condition (120).

The scattering phenomenon described by equation (86), which manifests itself
at the intermediate scale, appears in the proofs of both estimates sketched above.
In the proof of (118), the difference (in square brackets) between Wigner transform and
fractional heat distribution on the left hand side is divided into sum of two components:

(i) One component involves W ε(t) and scaled solution of the Boltzmann equation.
It reads

ε1+γ

2
W ε

(
t

ε3γ/2
, pεγ , k

)
− U ε

(
t

ε3γ/2
, pεγ , k

)
, (122)

where

U ε(t, p, k) = E

[
exp

{
−ip

∫ t

0
ω′(Ks(k))ds

}
W0(ε−γp,Kt(k))

]
(123)

is the Feynman–Kac formula for solution of the Boltzmann equation (112) with
initial condition U ε(0, p, k) = W0(ε−γp, k).
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(ii) The other component is

U ε

(
t

ε3γ/2
, pεγ , k

)
−W 0(p)e−ĉ|p|

3/2t. (124)

Likewise, in proof of (121) the difference between Wigner transform and classical heat
distribution is divided into sum of two components:

ε1+γ

2
W ε

(
t

ε2γ
, pεγ , k

)
− U ε

(
t

ε2γ
, pεγ , k

)
(125)

where U ε(t, p, k) is, as before, given by (123), and

U ε

(
t

ε2γ
, pεγ , k

)
−W 0(p)e−ĉp

2t. (126)

3.5 Additive functionals on Markov chains

Convergence of solution of Boltzmann equation (86) to fractional heat distribution
u(t, x) satisfying (93) is obtained in [28] as an application of formulated and proven
there noncentral limit theorem for scaled additive functionals on a Markov chain (see
Theorem 3.1 in there). The limit of functionals on Markov chain is a Lévy stable
process related to u(t, x). The Markov chain is the skeleton chain of time–continuous
Markov jump process Kt seen in formula (114), i.e. the sequence of successive states
visited by Kt.

Here is a description. Let us define sequence τn, n = 0, 1, 2 . . . of independent,
identically distributed exponential random variables with Eτ0 = 1 and let

R(k) :=

∫
T
R(k, k′)dk′, k ∈ T,

where R(·, ·) is scattering kernel in generator L of Kt given by the formula

Lf(·) =

∫
T
R(·, k′)

[
f(k′)− f(·)

]
dk′.
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Further, let {ξn, n ≥ 0} be a Markov chain independent of τn, n ≥ 0 with transition
probability P (k, dk′) = R−1(k)R(k, k′)dk′. We have

R(k) = 2 sin2(πk) [2 + cos(2πk)] , (127)

and in particular min
k∈T

R−1(k) > 0. Define a sequence of random moments

tn :=

n−1∑
k=0

τk
R(ξk)

, n ≥ 1.

Given that K0 and ξ0 have the same distribution, variable tn for each n can be seen as
the moment of n–th jump of process Kt. We define random variable nt as the number
of jumps of Kt up to the time t:

nt := max{n : tn ≤ t}.

The Markov process Kt is given by

Kt = ξnt , t ≥ 0,

see [21] p. 162-163. Hence
∫ t

0 ω
′(Ks)ds in the formula (114) can be expressed as

∫ t

0
ω′(Ks)ds =

[nt]−1∑
k=0

τk ω
′(ξk)

R(ξk)
+ ω′(ξnt)[t− tnt ]. (128)

The sum on the right hand side has random number of components. Let π(dk) be
invariant measure for Kt. Sum of averaged number of components τk R−1(ξk)ω

′(ξk)

is defined as
[Tt]∑
k=0

τkR
−1(ξk)ω

′(ξk). (129)

where T :=
∫

TR
−1(k)π(dk). Denote by Rε(t) the difference between scaled (128)

and (129), namely

Rε(t) = εγ
∫ t/εβγ

0
ω′(Ks)ds− εγ

[Tt/εβγ ]∑
k=0

τk ω
′(ξk)

R(ξk)
, (130)
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where β = 3/2 or β = 2 depending on lack or presence of the pinning potential.
The first step in approaching W 0(p)e−ĉ|p|

βt by

U ε,γ(t, p, k) = E

exp

−ipεγ
t/εβγ∫
0

ω′(Ks(k))ds

W0(p,Kt/εβγ (k))

 (131)

is to show that Rε(t) vanishes as ε → 0. By doing this, see section 6 in [28], additive
functional on Markov process Kt is replaced with additive functional (129) on the
Markov chain {ξn : n ≥ 0}.

Further convergence of additive functional on Markov chain is an instance of general
case formulated and proven in [28]. A Markov chain X = {Xn, n ≥ 0} in a Polish
metric space (E, d) is considered. Let π be invariant probability measure for X .
For a number β ∈ (1, 2] and a function Ψ : E → R satisfying

∫
Ψdπ = 0, for

any N ∈ N the following process of scaled partial sums is defined:

Z
(N)
t :=

1

N1/β

[Nt]∑
n=0

Ψ(ξn), t ≥ 0. (132)

Under a set of additional assumptions limit theorems hold for (132). In particular:

– if α ∈ (1, 2), and for some numbers c+
∗ ,c−∗ ≥ 0 such that c+

∗ + c−∗ > 0 we have

lim
λ→∞

λαπ(Ψ ≥ λ) = c+
∗ and lim

λ→∞
λαπ(Ψ ≤ −λ) = c−∗ , (133)

then, under some additional assumptions (for details we refer to Theorem 2.7
in [28] and Theorem 5.5 in [38]), Z(N)

t given by formula (132) with β = α

converges to α–stable process as N → ∞ . The process in the limit has Lévy
exponent

ψ(p) =

∫
R

(eipλ − 1− ipλ)ν(dλ),

with Lévy measure

ν(dλ) =
α c∗+
λ1+α

1(0,∞)(λ)dλ+
α c∗−

(−λ)1+α
1(−∞,0)(λ)dλ.
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– if Ψ ∈ L2(E, π) and some additional conditions are satisfied, see Theorem 5.8
in [38], (132) with β = 2 is convergent to Brownian motion as N →∞.

These results are applied to Markov chain Xn = (ξn, τn) with values in T× R+ and

Ψ(k, τ) = τR−1(k)ω′(k). (134)

The Markov chain {ξn : n = 0, 1 . . . } has invariant probability measure

π(dk) = θR(k)dk, where θ :=
(∫

T
R(k)dk

)−1

so the chain {(ξn, τn) : n = 0, 1, . . . } has invariant measure π̃(dk, dτ) on T × R+

given by
π̃(dk, dτ) = e−τθR(k) dk dτ.

In the unpinned case the dispersion is acoustic with ω(k) ∼ k and ω′(k) ∼ 1 for
positive k � 1. On the other hand R(k) ∼ k2 as k � 1, see (127). It follows that
π(ω′R−1 ≥ λ) ∼ λ−3/2 as λ → ∞. Furthermore the tails of Ψ(k, τ) given by (134)
under π̃ are of the same order as the tails of R−1(k)ω′(k) under π, so

π̃ (Ψ ≥ λ) ∼ λ−3/2 as λ→∞.

Similarly π̃ (Ψ ≤ −λ) ∼ λ−3/2 as λ → ∞, and hence the superdiffusion limit with
α = 3/2.

In the pinned case ω′(k) ∼ k, ([38] p. 33), and π(|ω′R−1| ≥ λ) ∼ λ−3. It follows
that ω′R−1 belongs to L2(π) on T.



Chapter 4

Model with Ornstein–Uhlenbeck
perturbation

In this chapter we write about results obtained in [39]. Stochastic perturbation of
the chain considered there is Markovian with space and time correlations.

4.1 The model and its hyperbolic scaling limit

System (2) takes the form
dqy(t)

dt
= py(t)

dpy(t)

dt
= −(α ∗ q(t))y +

√
ε
∑

k=−1,0,1

(Yy+kpy(t)) ξy+k(t), y ∈ Z,
(135)

where ξy(t), y ∈ Z are Gaussian with covariance

Eξy(t)ξz(s) =

∫
T

e−2πik(y−z)e−γ(k)|t−s|σ(k)dk.

Continuous (together with their first and second order derivatives) functions γ(·), σ(·)
are real, even, σ is nonnegative and γ is strictly positive. Equations (135) differ

91
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from (97) only in replacement of stochastic (Stratonovich) differentials of Brownian
motions wy(t) with differentials of ξy(t)dt. Vector field {Yy} is the same

Yy := (py − py+1)∂py−1 + (py+1 − py−1)∂py + (py−1 − py)∂py+1

and total energy is preserved under the perturbation. It is assumed that initial vectors
p and q belong to l2(Z) and are random with law µε satisfying

K := sup
ε∈(0,1]

ε〈H(p, q)〉µε < +∞, (136)

here 〈 · 〉µε is the mean value with respect to µε and H(p, q) is the Hamiltonian (79).
The result obtained in [39] states that under hyperbolic scaling t → t/ε, x → x/ε

the energy transport in the chain satisfies linear phonon Boltzmann equation

∂tū(t, x, k) +
ω′(k)

2π
∂xū(t, x, k) =

∫
T
R(k, k′)

[
ū(t, x, k′)− ū(t, x, k)

]
dk′.

The scattering kernel R(k, k′) is more complex than in the case with Brownian noise.
We recall that in that case it was

R(k, k′) =
1

2
R+(k, k′) +

1

2
R−(k, k′)

with
R±(k, k′) := 16 sin2(πk) sin2(πk′) sin2(π(k ∓ k′)), k, k′ ∈ T.

This time it depends on parameters γ(·) and σ(·) of the Ornstein–Uhlenbeck perturbation
and it is also dependent – in contrast to dynamics with Brownian noise – on the dispersion
relation ω(·). It is given by the formula

R(k, k′) :=
2σ(k + k′)γ(k + k′)R+(k, k′)

γ2(k + k′) +
[
ω(k′) + ω(k)

]2 +
2σ(k − k′)γ(k − k′)R−(k, k′)

γ2(k − k′) +
[
ω(k′)− ω(k)

]2 .
Let us outline the derivation of the Wigner transform and its dynamics for this

model. First we write a more direct form of stochastic part of (135). We have

Yy−1py = py−2 − py−1, Yypy = py+1 − py−1, Yy+1py = py+1 − py+2
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hence ∑
k=−1,0,1

Yy+kpy(t) ξy+k(t) =
∑
|z|≤2

py+z(t) ζy,z(t),

where ζy,0(t) = 0 and

ζy,−2(t) := ξy−1(t), ζy,2(t) := −ξy+1(t),

ζy,−1(t) := −ξy(t)− ξy−1(t), ζy,1(t) := ξy(t) + ξy+1(t).

The wave function is defined as earlier. According to dynamics (135) it satisfies
the following system of equations

dψ
(ε)
y (t)

dt
=− i

ε

(
ω̃ ∗ ψ(ε)(t)

)
y

(137)

+
1

2
√
ε

∑
|z|≤2

(
ψ

(ε)
y+z(t)− (ψ(ε))∗y+z(t)

)
ζ(ε)
y,z(t)

where ζ(ε)
y,z(t) := ζy,z(t/ε).We apply the Fourier transform to both sides of the equation

and we get

dψ̂(ε)(t, k)

dt
= − i

ε
ω(k)ψ̂(ε)(t, k)

+
i√
ε

∫
T
r(k, k′)

(
ψ̂(ε)(t, k − k′)− ψ̂(ε)(t, k′ − k)∗

)
ξ̂(ε)

(
t, dk′

)
.

The kernel r(k, k′) is the same as in the case of Brownian noise: with e−2πikz denoted
by ez(k) we have∑
y∈Z

e−2πiky
∑
l=−2,2

py+lζy,l = e1(k)
[
(e1p̂) ∗ ξ̂

]
(k)− e−1(k)

[
(e−1p̂) ∗ ξ̂

]
(k)

= 2i

∫
T

sin
(
2π(k′ − 2k)

)
p̂(k − k′)ξ̂(k′)dk′,
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∑
y∈Z

e−2πiky
∑
l=−1,1

py+lζy,l =
[(

(e−1 − e1)p̂
)
∗ ξ̂
]
(k) + (e−1 − e1)

[
p̂ ∗ ξ̂

]
(k)

= 2i

∫
T

[
sin
(
2π(k − k′)

)
+ sin

(
2πk

)]
p̂(k − k′)ξ̂(k′)dk′,

and we get

r(k, k′) = sin
(
2π(k′ − 2k)

)
+ sin

(
2π(k − k′)

)
+ sin

(
2πk

)
= 4 sin(πk) sin

(
π(k − k′)

)
sin
(
π(2k − k′)

)
.

4.2 Evolution of the Wigner transform

Wigner transform and anti–Wigner transform for (135) are defined as

Wε(t, x, k) =

∫
R

e2πipx Ŵε(t, p, k) dp and Yε(t, x, k) =

∫
R

e2πipx Ŷε(t, p, k) dp,

where

Ŵε(t, p, k) :=
ε

2

〈(
ψ̂(ε)

)∗ (
t, k − εp

2

)
ψ̂(ε)

(
t, k +

εp

2

)〉
µε
,

Ŷε(t, p, k) :=
ε

2

〈
ψ̂(ε)

(
t,−k +

εp

2

)
ψ̂(ε)

(
t, k +

εp

2

)〉
µε

for (p, k) ∈ R×T and t ≥ 0. Energy conservation and the assumption (136) on initial
condition imply that almost surely

sup
t,ε
‖Ŵε(t)‖A ≤ K and sup

t,ε
‖Ŷε(t)‖A ≤ K, (138)

we recall that norm ‖ · ‖A is defined by

‖J‖A := sup
p∈R

∫
T
|J(p, k)|dk.

Ŵε and Ŷε can be represented as the series

Ŵε(t, p, k) =
∑
y,y′∈Z

Wε
y,y′(t, k)e−πiεp(y+y′)
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and
Ŷε(t, p, k) =

∑
y,y′∈Z

Yεy,y′(t, k)e−πiεp(y+y′),

where
Wε
y,y′(t, k) :=

ε

2

〈
ψ(ε)
y (t)ψ

(ε)
y′ (t)∗

〉
µε

e2πik(y′−y),

Yεy,y′(t, k) :=
ε

2

〈
ψ(ε)
y (t)ψ

(ε)
y′ (t)

〉
µε

e2πik(y′−y),

for y, y′ ∈ Z, k ∈ T. Since the system of equations for the pair Wε(t), Yε(t) is not
closed, the following distribution is also introduced

Yε,−y,y′(t, k) := Yεy,y′(t,−k)∗.

Evolution equations for Wε an Yε are derived as follows. By (137) and Leibniz
formula for differentiation:

∂t

〈
ψ(ε)
y (t)

(
ψ

(ε)
y′
)∗

(t)
〉
µε

=

=
〈 i
ε
ψ(ε)
y (t)

(
ω̃ ∗ ψ(ε)

y′
)∗

(t)− i

ε

(
ψ

(ε)
y′
)∗

(t) ω̃ ∗ ψ(ε)
y (t)

+
1

2
√
ε

∑
|z|≤2

ζ(ε)
y,z(t)

(
ψ

(ε)
y+z(t)−

(
ψ(ε)

)∗
y+z

(t)
) (
ψ

(ε)
y′
)∗

(t) (139)

+
1

2
√
ε

∑
|z|≤2

ζ
(ε)
y′,z(t)

((
ψ(ε)

)∗
y′+z

(t)− ψ(ε)
y′+z(t)

)
ψ(ε)
y (t)

〉
µε
.

For appropriate sequences J = {Jy,y′(·) : y, y′ ∈ Z} of functions Jy,y′(k) on T we
define pairing ofWε with J by

〈Wε, J〉 =
∑
y,y′∈Z

∫
T
Wε
y,y′(k)J∗y,y′(k) dk. (140)

Let G(·, ·) be a function belonging to the Schwartz space S(R × T), and let a test
function Gε = {Gε,y,y′(·) : y, y′ ∈ Z} be of the form

Gε,y,y′(k) := G(ε(y + y′)/2, k), y, y′ ∈ R, k ∈ T. (141)
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Putting Gε into (140) we get

〈Wε, Gε〉 =
ε

2

〈 ∑
y,y′∈Z

∫
T
ψ(ε)
y (t)ψ

(ε)
y′ (t)∗e2πik(y′−y)G∗(ε(y + y′)/2, k) dk

〉
µε

and the series averaged with respect to µε on the right hand side rewrites as∑
y,y′∈Z

∫
T
ψ(ε)
y (t)e−2πiky

[
ψ

(ε)
y′ (t)e−2πiky′

]∗ ∫
R

e−πiεp(y+y′)Ĝ∗(p, k) dpdk

=

∫
R

∫
T
ψ(ε)

(
t, k +

εp

2

) [
ψ(ε)

(
t, k − εp

2

)]∗
Ĝ∗(p, k) dkdp,

so
〈Wε, G〉 = 〈Wε, Gε〉, (142)

where
〈Wε, G〉 =

∫
R

∫
T
Wε(x, k)G∗(x, k) dkdx.

Let us present evolution equation for 〈Wε, J〉. We will denote stochastic integral∫
T f(k)ξ̂(t, dk) by Iξ(t)f . We also denote

r
(+)
y,y′(k, k

′) := r
(
k, k′

)
e2πik′y′ , r

(−)
y,y′(k, k

′) := r
(
k, k′

)
e2πik′y. (143)

Given that d
dt〈W

ε(t), J〉 = 〈∂tWε(t), J〉, the following equation is derived from (139)

d

dt
〈Wε(t), J〉 =− 1

ε
〈Wε(t),DJ〉+

1√
ε

〈
Wε(t), iK(o)

ξ(ε)(t)
J
〉

(144)

− 1√
ε

〈
Yε, iK(+)

ξ(ε)(t)
J
〉
− 1√

ε

〈
Yε,−, iK(−)

ξ(ε)(t)
J
〉
.

Here for any J ∈ S

DJy,y′(k) := i
∑
z,z′

Jz,z′(k)

∫
T2

e2πip(z−y)e2πip′(z′−y′)δω(p, p′, k)dpdp′,

where δω(p, p′, k) := [ω(k + p′)− ω(k − p)],

K(−)
ξ Jy,y′(k) :=

∑
z,z′

Jz,z′(k)

∫
T2

e2πip(z−y)e2πip′(z′−y′)Iξr
(−)
y,y′(−k + p)dpdp′,

K(+)
ξ Jy,y′(k) :=

∑
z,z′

Jz,z′(k)

∫
T2

e2πip(z−y)e2πip′(z′−y′)Iξr
(+)
y,y′(k + p′)dpdp′,
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and
K(o) := K(−) +K(+).

K(+) and K(−) are stochastic as they depend on realization of ξ(ε) by

Iξr
(+)
y,y′(k) :=

∫
T
r

(+)
y,y′
(
k, k′

)
ξ̂(dk′), Iξr

(−)
y,y′(k) :=

∫
T
r

(−)
y,y′
(
k, k′

)
ξ̂(dk′), (145)

where ξ = {ξz : z ∈ Z} is random, having the stationary measure of ξ(ε) as the law.
Equation for Yε is as follows

d

dt
〈Yε(t), J〉 =

1

ε

〈
Yε, iΘJ

〉
+

1√
ε

〈
Yε(t), iK(o)

ξ(ε)(t)
J
〉

− 1√
ε

〈
Wε(t), iK(+)

ξ(ε)(t)
Je

〉
.

Here

ΘJy,y′(k) :=
∑
z,z′

Jz,z′(k)

∫
T2

e2πip(z−y)e2πip′(z′−y′)θω(p, p′, k)dpdp′,

with θω(p, p′, k) := [ω(k + p′) + ω(k − p)], and

(Je)y,y′(k) := Jy,y′(k) + Jy′,y(−k).

If we replace the test function J in the above equations for Wε and Yε by Gε of the
form (141), and use relation (142), we obtain equations for Wε and Yε which are as
follows. Equation for Wε(t) reads

d

dt
〈Wε(t), G〉 =− 〈Wε(t),DεGε〉+

1√
ε

〈
Wε(t), iK(o)

ξ(ε)(t)
Gε
〉

(146)

− 1√
ε

〈
Yε, iK(+)

ξ(ε)(t)
Gε
〉
− 1√

ε

〈
Yε,−, iK(−)

ξ(ε)(t)
Gε
〉
,

where DεG := 1
εDG, and we have

DεGε,y,y′(k) =
i

ε

∑
z

G(εz/2, k)

∫
T

e2πip(z−y−y′)δω(k, p)dp,

K(−)
ξ Gε,y,y′(k) =

∑
z

G(εz/2, k)

∫
T

e2πip(z−y−y′)Iξr
(−)
y,y′(−k + p)dp,

K(+)
ξ Gε,y,y′(k) =

∑
z

G(εz/2, k)

∫
T

e2πip(z−y−y′)Iξr
(+)
y,y′(k + p)dp,
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where δω(k, p) := [ω(k + p)− ω(k − p)]. Evolution of Yε(t) is given by

d

dt
〈Yε(t), G〉 =

1

ε

〈
Yε, iΘGε

〉
+

1√
ε

〈
Yε(t), iK(o)

ξ(ε)(t)
Gε
〉

− 1√
ε

〈
Wε(t), iK(+)

ξ(ε)(t)
Gε,e

〉
,

where (Gε,e)y,y′(k) := G(ε(y + y′)/2, k) +G(ε(y + y′)/2,−k). We have

ΘGε,y,y′(k) =
∑
z

G(εz/2, k)

∫
T

e2πip(z−y−y′)θω(k, p)dp,

here θω(k, p) := [ω(k + p) + ω(k − p)].

4.3 About the proof: perturbed test function method

Calculations we present here are purely formal. They are correct in appropriate regime
and for details we refer to the source [39]. Our purpose is to sketch the idea of the proof
and see how the scattering in the limit emerges from the randomness at the microscopic
scale. In particular we omit the description of functional spaces in which all the formal
operations we cite are true in a strict sense.

Without OU perturbation there would be no random operators K(+), K(−), K(o)

in (146). These operators give rise to a jump process on T. On the other hand,
the deterministic term 〈Wε(t),DεG

ε〉, should produce the operator ω′(k)∂x in the
Boltzmann equation. We expand

〈Wε(t),DεGε〉 = − i
2

〈 ∑
z,y,y′∈Z

∫
T
ψ(ε)
y (t)ψ

(ε)
y′ (t)∗e2πik(y′−y)G∗(εz/2, k)×

×
∫

T
e2πip(y+y′−z)[ω(k + p)− ω(k − p)]dpdk

〉
µε
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and change variables p→ −εp/2 so we get that the right hand side is equal to

i

∫ 1/(2ε)

−1/(2ε)

∫
T

ε

2

〈
ψ̂(ε)

(
t, k +

εp

2

)
ψ̂(ε)

(
t, k − εp

2

)〉
µε
×

ε

2

∑
z∈Z

G∗(εz/2, k)eπiεpz
1

ε

[
ω
(
k +

εp

2

)
− ω

(
k − εp

2

)]
dpdk.

As ε→ 0,
ε

2

∑
z∈ZG

∗(εz/2, k)eπiεpz approaches Ĝ∗(p, k). It follows that

〈Wε(t),DεGε〉 = i

∫ 1/(2ε)

−1/(2ε)

∫
T
δεω(k, p)Ŵε(t, p, k)Ĝ∗(p, k)dpdk +O(t, ε),

where

δεω(k, p) :=
1

ε

[
ω
(
k +

εp

2

)
− ω

(
k − εp

2

)]
and O(t, ε) converges to zero uniformly in t on any finite interval [0, T ].

Calculations related to random operators are much more sophisticated. The proof
in [39] uses perturbed test function method. A random test function is introduced,
which depends on the perturbation ξ(t). As the closed evolution equation is formulated
for the triple (Wε,Yε,Yε,−), also the triple of perturbed test functions is defined,
(Ḡε0, Ḡ

ε
+, Ḡ

ε
−), with the following structure

Ḡε0(ξ) = Ḡε +
√
ε Ḡ1,ε

0 (ξ) + ε Ḡ2,ε
0 (ξ), (147)

Ḡε+(ξ) =
√
ε Ḡ1,ε

+ (ξ) + ε Ḡ2,ε
+ (ξ) and Ḡε−(ξ) =

√
ε Ḡ1,ε
− (ξ) + ε Ḡ2,ε

− (ξ),

where Ḡε is deterministic and the remaining components depend on realization of ξ(t).
They are specified in a way that they cancel out some components in the equations.

Denote by Q the infinitesimal generator of the OU process {ξ(t)} on L2(µσ).
It acts on the stochastic integral Iu =

∫
T u(k) ξ̂(dk), u ∈ L2(σ), as follows

QIu = −Iγu = −
∫

T
γ(k)u(k) ξ̂(dk).



100 CHAPTER 4. ORNSTEIN–UHLENBECK PERTURBATION

The differentiation of the following process{〈
Wε(t), G

(
ξ(ε)(t)

)〉
: t ≥ 0

}
, (148)

for an adequate test function G depending on ξ(t), obeys formal rules of product
differentiation. Pseudogenerator of process (148) (with appropriate function G), is
denoted by L. We abbreviate Gε(t) := Gε(ξ(t)) and using (144) we get formulas

L〈Wε(t), Ḡε0(t)〉 =− 1

ε
〈Wε(t),DḠε0(t)〉+

1√
ε

〈
Wε(t), iK(o)

ξ(ε)(t)
Ḡε0(t)

〉
(149)

− 1√
ε

〈
Yε(t), iK(+)

ξ(ε)(t)
Ḡε0(t)

〉
− 1√

ε

〈
Yε,−(t), iK(−)

ξ(ε)(t)
Ḡε0(t)

〉
+

1

ε

〈
Wε(t),QḠε0(t)

〉
.

Similarly

L〈Yε(t), Ḡε+(t)〉 =
1

ε

〈
Yε(t), iΘḠε+(t)

〉
+

1√
ε

〈
Yε(t), iK(o)

ξ(ε)(t)
Ḡε+(t)

〉
− 1√

ε

〈
Wε(t), iK(+)

ξ(ε)(t)
Ḡε+,e(t)

〉
+

1

ε

〈
Yε(t),QḠε+(t)

〉
.

We note that (145) are Gaussian random variables with mean zero on probability space
(Hλ,B(Hλ), µσ). Hence, for deterministic J ,K(·)

ξ J have mean value zero with respect
to the measure µσ. For J = J(ξ), being itself a random variable on (Hλ,B(Hλ), µσ),
generalized operators K̃(+), K̃(−), K̃(o) are defined by

K̃J := KJ −KJ, where KJ :=

∫
Hλ

KJ dµσ, (150)

so
∫
Hλ
K̃J dµσ = 0. By expanding test functions according to (147), the sum

L〈Wε(t), Ḡε0(t)〉+ L〈Yε(t), Ḡε+(t)〉+ L〈Y−ε (t), Ḡε−(t)〉
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expands into a long formula. Using abbreviations we present it as〈
Wε(t),Gε

〉
+
〈
Yε(t),Gε

+

〉
+
〈
Yε,−(t),Gε

−
〉

(151)

+
1√
ε

〈
Wε(t),Gε

1(t)
〉

+
1√
ε

〈
Yε(t),Gε

1,+(t)
〉

+
1√
ε

〈
Yε,−(t),Gε

1,−(t)
〉

+
〈
Wε(t),Gε

2(t)
〉

+
〈
Yε(t),Gε

2,+(t)
〉

+
〈
Yε,−(t),Gε

2,−(t)
〉

+
√
ε
〈
Wε(t),Gε

3(t)
〉

+
√
ε
〈
Yε(t),Gε

3,+(t)
〉

+
√
ε
〈
Yε,−(t),Gε

3,−(t)
〉
,

and we will gradually explain what we have denoted by Gε,Gε
+ etc. except of Gε

3(t),
Gε

3,−(t), Gε
3,+(t) in the last line which, as shown in [39], vanishes as ε → 0. In the

second line of (151) we have

Gε
1(t) := −iK(o)

ξ(ε)(t)
Ḡε(t) + (Q−D)Ḡ1,ε

0 (t),

Gε
1,+(t) := iK(+)

ξ(ε)(t)
Ḡε(t) + (Q + iΘ)Ḡ1,ε

+ (t),

Gε
1,−(t) := iK(−)

ξ(ε)(t)
Ḡε(t) + (Q− iΘ)Ḡ1,ε

− (t).

We did not yet specifiedG1,ε
0 (t), G1,ε

+ (t), G1,ε
− (t) and we do this now. They are defined

as solutions of the following equations

(Q−D)Ḡ1,ε
0 (t) = −iK(o)

ξ(ε)(t)
Ḡε(t), (152)

(Q + iΘ)Ḡ1,ε
+ (t) = iK(+)

ξ(ε)(t)
Ḡε(t),

(Q− iΘ)Ḡ1,ε
− (t) = iK(−)

ξ(ε)(t)
Ḡε(t),

so that the second line in (151) vanishes µσ–almost surely. Let us derive a formula for
Ḡ1,ε

0 . For a function f(p, p′, k) on T3 we denote

F[f ]Jy,y′(k) :=
∑
z,z′

Jz,z′(k)

∫
T2

e2πip(z−y)e2πip′(z′−y′)f(p, p′, k)dpdp′, (153)
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so we have DJy,y′(k) = F[iδω]Jy,y′(k), ΘJy,y′(k) = F[θω]Jy,y′(k) etc. We can also
write

i
(
K(o)
ξ Ḡε

)
y,y′

= F
[
iIξr(o)

y,y

]
Ḡεy,y, (154)

where
r(o)
y,y(p, p

′, k, k′) := r
(+)
y,y′(k + p′, k′) + r

(−)
y,y′(−k + p, k′), (155)

and the stochastic integral Iξ is performed with respect to the variable k′. Assume
that, for some functions f+(k, k′, p, p′) and f−(k, k′, p, p′), Ḡ1,ε

0 is given by(
Ḡ1,ε

0 (ξ)
)
y,y′

= iF
[
Iξf+r

(+)
y,y′

]
Ḡεy,y + iF

[
Iξf−r

(−)
y,y′

]
Ḡεy,y, (156)

where r(+), r(−) depend on variables p, p′, k, k′ as on the right hand side of (155).
Then, according to the left hand side of (152), we have

Q
(
Ḡ1,ε

0 (ξ)
)
y,y′

(k) = −F
[
iIξγf+r

(+)
y,y′

]
Ḡεy,y(k)− F

[
iIξγf−r

(−)
y,y′

]
Ḡεy,y(k), (157)

where γf stands for the function γ(k′)f(p, p′, k, k′). On the other hand

D
(
Ḡ1,ε

0 (ξ)
)
y,y′

(k) = DF
[
iIξf+r

(+)
y,y′

]
Ḡεy,y(k) + DF

[
iIξf−r

(−)
y,y′

]
Ḡεy,y(k)

and we expand

DF
[
iIξf+r

(+)
y,y′

]
Ḡεy,y(k) =∑

z,z′

F
[
iIξf+r

(+)
z,z′

]
Ḡεz,z′(k)

∫
T2

e2πip(z−y)e2πip′(z′−y′)iδω(p, p′, k)dpdp′.

Further expanding shows that this expression is equal to∑
z,z′

∑
w,w′

Gεw,w′(k)

∫
T2

e2πiq(w−z)e2πiq′(w′−z′)iIξf+r
(+)
z,z′(q, q

′, k)dqdq′

×
∫

T2

e2πip(z−y)e2πip′(z′−y′)iδω(p, p′, k)dpdp′, (158)

wherein

Iξf+r
(+)
z,z′(q, q

′, k) =

∫
T
f+(q, q′, k, k′)r

(
k + q′, k′

)
e2πik′z′ ξ̂(dk′).
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After changing the order of integration and grouping together factors depending on z, z′,
Dirac measures on T appear under the integrals in (158)

δ(p− q) =
∑
z

e2πi(p−q)z, δ(p′ + k′ − q′) =
∑
z′

e2πi(p′+k′−q′)z′ ,

so (158) reduces to

i
∑
w,w′

Gεw,w′(k)

∫
T3

e2πi(pw+p′w′) f+(p, p′ + k′, k, k′)r(k + p′ + k′, k′)e2πik′w′ ξ̂(dk′)

× e−2πi(py+p′y′)iδω(p, p′, k)dpdp′.

Eventually we get

DF
[
iIξf+r

(+)
y,y′

]
Ḡεy,y(k) = i

∑
w,w′

Gεw,w′(k)

∫
T2

e2πip(w−y)e2πip′(w′−y′)

×
∫

T
iδω(p, p′ − k′, k)f+(p, p′, k, k′)r(k + p′, k′)e2πik′y′ ξ̂(dk′)dpdp′.

Similarly we obtain

DF
[
iIξf−r

(−)
y,y′

]
Ḡεy,y(k) = i

∑
w,w′

Gεw,w′(k)

∫
T2

e2πip(w−y)e2πip′(w′−y′)

×
∫

T
iδω(p− k′, p′, k)f−(p, p′, k, k′)r(−k + p′, k′)e2πik′y ξ̂(dk′)dpdp′,

Recalling also (154) and (157) we get that Ḡ1,ε
0 is given by (156) with

f+ :=
[
γ(k′) + i

(
ω(k − k′ + p′)− ω(k − p)

)]−1
,

f− :=
[
γ(k′) + i

(
ω(k + p′)− ω(k + k′ − p)

)]−1
.

Formulas for Ḡ1,ε
+ and Ḡ1,ε

− are(
Ḡ1,ε

+ (ξ)
)
y,y′

= −iF
[
Iξg+r

(+)
y,y′

]
Ḡεy,y,

(
Ḡ1,ε
− (ξ)

)
y,y′

= −iF
[
Iξg−r

(−)
y,y′

]
Ḡεy,y,
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where

g+ :=
[
γ(k′)− i

(
ω(k − k′ + p′) + ω(k − p)

)]−1
,

g− :=
[
γ(k′) + i

(
ω(k + p′) + ω(k + k′ − p)

)]−1
.

By Gε
2(t),Gε

2,+(t),Gε
2,−(t) in the third line of (151) we denote

Gε
2(t) := iK̃(o)

ξ(ε)(t)
Ḡ1,ε

0 (t)− iK̃(+)

ξ(ε)(t)
Ḡ1,ε

+,e(t)− iK̃
(−)

ξ(ε)(t)
Ḡ1,ε
−,e(t) + (Q−D)Ḡ2,ε

0 (t),

Gε
2,+(t) := iK̃(o)

ξ(ε)(t)
Ḡ1,ε

+ (t)− iK̃(+)

ξ(ε)(t)
Ḡ1,ε

0 (t) + (Q + iΘ)Ḡ2,ε
+ (t), (159)

Gε
2,−(t) := iK̃(o)

ξ(ε)(t)
Ḡ1,ε
− (t)− iK̃(−)

ξ(ε)(t)
Ḡ1,ε

0 (t) + (Q− iΘ)Ḡ2,ε
− (t).

Ḡ2,ε
0 (t), Ḡ2,ε

+ (t), Ḡ2,ε
− (t) are defined as random fields such that

Gε
2(t) = Gε

2(t) = Gε
2(t) = 0

µσ–almost surely. The solutions are given by (153) with kernels f (which depend also
on variables y and y′) being double stochastic integrals. We do not write down lengthy
formulas for the solutions, we only note that they do not contribute to the limiting
scattering operator. They appear in the last line of (151) which vanishes. Now let us
display components abbreviated by Gε,Gε

+,G
ε
− in the first line of (151). They are

Gε = (L(o)
ε −Dε)Ḡ

ε,

Gε
+ = L(+)

ε Ḡε, Gε
− = L(−)

ε Ḡε,

where

L(o)
ε Ḡε =

∫
Hλ

(
iK(o)

ξ Ḡ1,ε
0 (ξ)− iK(+)

ξ Ḡ1,ε
+,e(ξ)− iK

(−)
ξ Ḡ1,ε

−,e(ξ)
)
µσ(dξ), (160)

L(+)
ε Ḡε =

∫
Hλ

(
iK(o)

ξ Ḡ1,ε
+ (ξ)− iK(+)

ξ Ḡ1,ε
0 (ξ)

)
µσ(dξ),

and
L(−)
ε Ḡε =

∫
Hλ

(
iK(o)

ξ Ḡ1,ε
− (ξ)− iK(−)

ξ Ḡ1,ε
0 (ξ)

)
µσ(dξ).
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Deriving more explicit formulas forL(·)
ε demands some straightforward although lengthy

calculations. Let us take a look at[
iK(o)

ξ Ḡ1,ε
0 (ξ)

]
y,y′

(k) = F
[
iIξr

(o)
y,y′

] (
Ḡ1,ε

0 (ξ)
)
y,y′

(k)

= F
[
iIξr

(o)
y,y′

] (
iF
[
Iξf+r

(+)
y,y′

]
+ iF

[
Iξf−r

(−)
y,y′

] )
Ḡεy,y

= −
∑

ι,ι′∈{+,−}

F
[
Iξr

(ι)
y,y′

]
F
[
Iξfι′r

(ι′)
y,y′

]
Ḡεy,y. (161)

We expand

F
[
Iξr

(+)
y,y′

]
F
[
Iξf+r

(+)
y,y′

]
Ḡεy,y′(k) =

∑
z,z′

F
[
Iξf+ r

(+)
z,z′

]
Ḡεz,z′(k)

∫
T2

e2πip(z−y)e2πip′(z′−y′)Iξr
(+)
y,y′(k + p′)dpdp′ =

=
∑
w,w′

Ḡεw,w′(k)

∫
T2

e2πipwe2πip′w′
∫

T
f+(p, p′ + l, k, l)r(k + p′ + l, l)e2πilw′ ξ̂(dl)

× e−2πipye−2πip′y′
∫

T
r(k + p′, k′)e2πik′y′ ξ̂(dk′)dpdp′.

We integrate this with respect to the measure µσ, and since∫
ξ̂(dk)ξ̂(dk′)µσ(dξ) = δ(k + k′)σ(k)dk,

we obtain∫
F
[
Iξr

(+)
y,y′

]
F
[
Iξf+r

(+)
y,y′

]
Ḡεy,y′(k)µσ(dξ) =

∑
w,w′

Ḡεw,w′(k)

∫
T2

e2πip(w−y)e2πip′(w′−y′)×

∫
T

[r(k + p′, k − k′)]2σ(k − k′)
γ(k − k′) + i

(
ω(k′ + p′)− ω(k − p)

) dk′dpdp′.
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We have also used here symmetries of functions involved, in particular the property
that r(k + l, l) = r(k,−l) for all k, l ∈ T, and some change of variables. Now by
inserting test function Gε,w,w(k) := G(ε(w + w′)/2, k), G(·, ·) ∈ S(R× T), into the
above formula, we get

L̃1Gε,y,y′(k) := −
∫

F
[
Iξr

(+)
y,y′

]
F
[
Iξf+r

(+)
y,y′

]
Gε,y,y′(k)µσ(dξ) =

∑
z

G(εz/2, k)

∫
T
e2πip(z−y−y′)

∫
T
R̃(p, k, k′)dk′dp,

where

R̃(p, k, k′) :=
−[r(k + p, k − k′)]2σ(k − k′)

γ(k − k′) + i
(
ω(k′ + p)− ω(k − p)

) .
Pairing L̃1Gε withWε expands as follows

〈Wε, L̃1Gε〉 =

=
∑
y,y′

∫
T
Wε
y,y′(k)

∑
z

G∗(εz/2, k)

∫
T
e2πip(y+y′−z)

∫
T
R̃∗(p, k, k′) dk′dp dk

=
ε

2

〈 ∑
z,y,y′∈Z

∫
T
ψ(ε)
y (t)

[
ψ

(ε)
y′ (t)

]∗
e2πik(y′−y)G∗(εz/2, k)×

×
∫

T
e2πip(y+y′−z)

∫
T
R̃∗(p, k, k′)dk′dp dk

〉
µε

=

∫ 1/(2ε)

−1/(2ε)

∫
T

ε

2

〈
ψ̂(ε)

(
t, k +

εp

2

)
ψ̂(ε)

(
t, k − εp

2

)〉
µε
×

ε

2

∑
z∈Z

G∗(εz/2, k)eπiεpz
∫

T
R̃∗(−εp, k, k′)dk′dp dk.

In the limit, the product of function G(p, k) and the factor
∫

T R̃(0, k, k′) dk′ is one
of the building components of scattering operator – generator of compound Poisson
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process on T. Another component of (161) expands as follows

F
[
Iξr

(−)
y,y′

]
F
[
Iξf−r

(−)
y,y′

]
Ḡεy,y′(k) =

=
∑
w,w′

Ḡεw,w′(k)

∫
T2

e2πipwe2πip′w′
∫

T
f−(p+ l, p′, k, l)r(−k + p+ l, l)e2πilw ξ̂(dl)

× e−2πipye−2πip′y′
∫

T
r(−k + p, k′)e2πik′y ξ̂(dk′)dpdp′.

After integrating and inserting Gε we obtain

L̃2Gε,y,y′(k) := −
∫

F
[
Iξr

(−)
y,y′

]
F
[
Iξf−r

(−)
y,y′

]
Gε,y,y′(k)µσ(dξ) =

∑
z

G(εz/2, k)

∫
T
e2πip(z−y−y′)

∫
T
R̃∗(p, k, k′) dk′dp.

We have

R̃(0, k, k′) + R̃∗(0, k, k′) =
−2r2(k, k − k′)γ(k − k′)σ(k − k′)
γ2(k − k′) +

(
ω(k′)− ω(k)

)2
which is a part of the kernel of scattering generator. The remaining components of
(160) give rise to remaining parts of the operator.
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