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Bartosz Przysucha

Preface

Probability in Action vol. 4, like the previous parts of this series, is a collec-
tion of scientific papers on probabilistic and statistics issues used in mathematical,
economic, financial sciences etc. These papers were written by employees of the
Lublin University of Technology and their collaborators from other universities in
Poland and Ukraine. In this volume, in addition to presenting the research prob-
lems of the University of Technology scientists, we would also like to make an
attempt to describe a certain aspect of the scientific work of the creator of the
Probability in Action series, Professor Tadeusz Banek. The reason for this is not
only the plentifulness of Professor Banek’s scientific work, but also some round
jubilees that act like a kind of paper clip, and taking into account the quantity
and quality of the Professor’s work, rather like a binder. The first date is 1969
and a master’s degree at the Gdańsk University of Technology, Faculty of Ship
Technology and Institute of Fluid-Flow Machinery Polish Academy of Sciences,
entitled "Geometric optimization of the nozzle-iris system in turbine speed control
due to minimal static error". In 2019, 50 years will have passed since that date.
The second one is a doctorate in 1975 at the AGH University of Science and Tech-
nology, Faculty of Electrical Engineering, Institute of Automation. The title of the
thesis is "On the existence of almost-saddle points for continuous games in Ba-
nach spaces". In 2020, 45 years will have passed since that date. This date is also
the beginning of Professor Banek’s work at the Lublin University of Technology.
Professor Tadeusz Banek received the title of Professor of Technical Sciences in
2004.

Professor Tadeusz Banek was the Head of the Quantitative Methods in Man-
agement Department at the Faculty of Management of the Lublin University of
Technology in 2004–2016, and earlier in 1992–2002 he was the founder and the
Head of the Operational Research Department.

He is the author of two books in Polish (Risk Account, Estimation Disorders in
Monitoring Systems), and a co-author of several books in English on adaptive con-
trol, modelling and risk analysis and self-learning. He was repeatedly awarded by
the Rector of the Lublin University of Technology for his scientific achievements.
He is the author of almost 100 scientific publications. It would be impossible to
recall and present them here. Attempts to summarize at least a part of this work
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were undertaken by his two closest collaborators Prof. Wojciech Batko and Ed-
ward Kozłowski, PhD.

I personally owe Professor T. Banek inspiration in taking up scientific issues
related to acoustics and cooperation with Prof. Wojciech Batko (AGH University
of Science and Technology) which continues the cooperation – initiated by Prof.
W. Batko and Prof. T. Banek – between the Faculty of Management of the Lublin
University of Technology and the Department of Mechanics and Vibroacoustics of
the AGH University of Science and Technology.



Wojciech Batko

The outcome of scientific cooperation
with Professor Tadeusz Banek

1 Introduction

It is hard to disagree with the statement that scientific discussion is the driving
force for achievements and development in almost every field. The confrontation
of different views allows for a better understanding of the nature of identified prob-
lems, generating new research questions as well as quicker and better response to
new research challenges, and their implementation. Such a situation was an im-
pulse for our mutual contacts and long-term cooperation.

My first meetings and scientific discussions with Professor Tadeusz Banek be-
gan over twenty-five years ago and I hope that it will be continued bringing us
satisfaction and measurable achievements in science. The cooperation was ini-
tiated in 1992 after the Professor defended the habilitation dissertation entitled
it Optimal filtration and prediction of signals described by stochastic differential
equations (Banek (1990)) at my home Faculty of Mechanical Engineering and
Robotics at the AGH University of Science and Technology, and which disserta-
tion I had the privilege of being a reviewer. We have had long discussions on the
various conditions of the modelling process of dynamic behaviour of mechanical
systems, including their description with stochastic differential equations, which
allowed for a fuller understanding and limiting the field of mutual reservations.

Although none of us were completely satisfied, the meeting resulted in the
determination of future themes worth taking, and subsequent long-term coopera-
tion and mutual friendship. It has materialized itself in the implementation of two
centrally-funded research projects (Banek and Batko (1991–1993, 1994–1996)).

In this paper I will outline a fragment of issues developed within our long-
term cooperation documented by a series of joint publications (Banek and Batko
(1992a, 1992b, 1993a, 1993b, 1993c, 1994a, 1994b, 1994c, 1995, 1996a, 1996b,
1997a, 1997b, 1997c, 1997d), including a monograph (Banek and Batko (1997e)).
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2 Optimal filtration and prediction – new tools in
the construction of systems monitoring changes in
hydrodynamic bearing nodes as a result of cooperation
with Prof. Tadeusz Banek

2.1 Rotary machine monitoring systems

Vibration monitoring systems for their bearing nodes are an integral part of multi-
channel condition monitoring systems. One of the typical elements of such solu-
tions, widely used in industry, is a module for controlling the relative vibrations of
the shaft and movements of the shaft journals in a hydrodynamic plain bearing.

Schematic representation of their implementation in relation to systems moni-
toring the condition of the turbine set is illustrated in Fig. 1.

Figure 1. Schematic diagram of the turbine set vibration monitoring system

Their implementation is determined by continuous measurement of shaft jour-
nal displacement in the bearing, in two mutually perpendicular directions, carried
out with eddy current sensors (as illustrated in Figure 2).

The process of monitoring the change in the bearing node condition (Figure 3)
determine the reference of the measurement of the maximum radius of the journal
vibrations on its trajectory, or alternatively, the value of the higher peak-to-peak
amplitude of the vibration displacements from both controlled signals, collected
during the period associated with the shaft rotational frequency, to the appropriate
criterion values.
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Figure 2. Installation of measuring sensors on the monitored machine plain bearings

Figure 3. Vibration monitoring system for sliding bearing nodes

Exceeding the permissible change ranges by the monitored vibration wave-
forms, are associated with the possibility of stability loss of the equilibrium po-
sition and the emergence of self-excited vibrations with a large amplitude, which
may cause breakage of the oil bearing layer and destruction of the bearing.

The eddy current sensors used in these measurement modules are very sensi-
tive to ferromagnetic surface inhomogeneities of the monitored shaft, as well as
various types of damage, for example, rifts, scratches, deformations or residues
occurring on their surfaces. The mentioned impacts are referred to as electrical
and mechanical runout. Their presence leads to significant measurement distor-
tions. In order to minimize them, solutions are needed to filter out the interference
they generate.
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The proposed solution for filtration of monitored diagnostic signals (exam-
ined and tested at the IMP PAN in Gdańsk thanks to establishing cooperation with
Prof. J. Kiciński), was a solution based on the Kalman filtration algorithm de-
veloped jointly with Professor Tadeusz Banek. It naturally incorporates into the
idea of building a monitoring system associated with the dynamic model of a rotor
machine supported by 2 hydrodynamic bearing nodes and measurement equations
determined by the adopted measurement instrumentation present in the monitoring
system.

2.2 The algorithm of optimal filtration and prediction in the system
of monitoring the dynamics movement of the shaft journal in the
hydrodynamic plain bearing

The task of eliminating disturbances in the shaft journal vibrations monitoring
system in the hydrodynamic bearing can be considered through the prism of the
measurement system performing the observation of dynamical system behaviour:
journal – bearing shell – external restraints, being part of a dynamic system “rotor –
bearings – supports – foundation”. The probabilistic structure of such a description
is defined by disturbances related to disturbances in the measurement path, as well
as by the influence of factors omitted in the model description. Such an approach to
the considered task allows to focus attention on searching for the optimal filtration
and forecasting solution in Kalman’s perspective. In the solutions of this group,
it is assumed that the unobservable dynamic state of the considered diagnostic
process x t is described with accuracy to a certain Gaussian process. It is observable
with measuring noise through specific control variables y

t
mutually conjugated

with them.
In this approach, the problem of filtration and prediction is equivalent to find-

ing a solution in which the best medium square variable estimator x t is the condi-
tional expected value mt = E

[
x t |y t

]
.

An explicit and effective solution to this problem created by Kalman-Bucy
(see Anderson and Moor (1984)) – assuming that the distribution process

(
x t |y t

)
is normal – is based on the assumption that the considered processes are generated
by a stochastic system of differential equations:

dx t = (Ax t +Ut)dt +dv1t , x0 = x (1)

dy
t
= Hx tdt +dv2t , y

0
= 0

in which x t is an unobserved state vector of the monitored system, y
t

– a vector
of control observations, and Ut – a vector of forces acting on the system in the
presence of
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presence of v1t ,v2t – an independent pair of interfering Wiener processes. The
implementation of such a task requires the reference of the adopted mathematical
abstraction to the diagnostic model of the controlled process, providing a diagnos-
tic interpretation for the A, H and U matrices (i.e. structural connections between
particular parts of the adopted model) and interfering processes v1t ,v2t .

When assessing the usefulness of this mathematical solutions group, it should
be noted that they are characterized by a fully formalized approach. In a con-
sistent way, from one model base, it allows recognizing possible dynamic states
of diagnosed objects as well as the implementation of disturbance filtration tasks
overlapping the observation of controlled diagnostic signals and the prediction of
changes in their states.

In the realization of the proposed idea of interference suppression process in
systems monitoring journal vibrations in a hydrodynamic bearing, the simplified
linear model shown in Fig. 4 was used.

The model consists of an unbalanced rotor with elasticity c, massless, symmet-
rical with added mass m concentrated in the middle, supported on two identical
plain bearings where sliding bearing parameters are: viscosity L, diameter of the
shaft journal D, radial clearance ∆R and dynamic viscosity µ0 of the existing oil.

Figure 4. “Rotor-Bearing” system model
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In its formulation, the equations of the rotor’s centre of mass movement Ow

take the form of:

−mẍw1− c(xw1− x1)+2q1 = 0 (2)

−mẍw2− c(xw2− x2)+2q2 = 0

while the description of the shaft journal movement around a stable equilibrium
position (in the hydrodynamic bearing) is given by the following formulas:

2∆W1 + c(xw1− x1) = 0 (3)

2∆W2 + c(xw2− x2) = 0

where xw1, xw2 indicate the rotor centre movement coordinates, x, y – the journal
movement coordinates, q1, q2 – components of external load caused by unbalance,
∆W1, ∆W2 – components of the increase of the oil film dynamic reaction of slide
bearings are given by the following formulas:

∆W1 =W1− (W1)st = c11x1 + c12x2 +d11ẋ1 +d12ẋ2 (4)

∆W2 =W2− (W2)st = c21x1 + c22x2 +d21ẋ1 +d22ẋ2

determine by stiffness ci,k and damping di,k coefficients of the oil film.
Starting from the above vibration equations of the shaft journal in the plain

bearing (transformed into dimensionless variables specified by dimensionless time
τ = ωt, associated with angular speed of the rotor ω , [rad/s] and displacements of
the journal center related to the radial clearance∆R) the dynamics of the monitored
bearing node can be determined by the state vector

X =



X1
Ẋ1
Ẍ1
X2
Ẋ2
Ẍ2

 .

Assuming that modelling inaccuracies can be included in the disturbances de-
scription in the form of a Gaussian process Ξ overlapping with it, the following
equation is obtained:

Ẋ = AX +U +Ξ (5)

The A and U matrices appearing in its description take the form of:

A =



0 1 0 0 0 0
0 0 1 0 0 0

c∗11 Ω d∗11 c∗12 Ω d∗12
0 0 0 0 1 0
0 0 0 0 0 1

c∗21 Ω d∗21 c∗22 Ω d∗22

 ; U =



0
0

Q1
0
0

Q2

 . (6)
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The matrix coefficients c∗i j, d∗i j are related to the cik – stiffness and dik – damp-
ing coefficients of the oil film, through their reference to a dimensionless figure.
Parameter

Ω =− 1
µ

(
ω0

ω

)2

is a reference parameter adopted in the normalization transformation to dimension-
less time, specified as ω =

√
g/∆R and relative flexibility of the rotor µ = f/∆,

and Q1, Q2 are dimensionless (resulting from conducted standardization) compo-
nents of the rotational force induced by the imbalance radius. Assuming distur-
bances, the accuracy of the adopted journal motion model (5) for state variables:

X =



X1
Ẋ1
Ẍ1
X2
Ẋ2
Ẍ2


in the form of a specific Gaussian process Ξ and its observations (7) with Gaus-
sian measurement disturbances γ through selected components of the vector Y =
[X1,0,0,X2,0,0]:

Y = HX + γ (7)

we obtain the (5) and (7) equations. Their form is appropriate for the equations that
generate the form of the optimal Kalman filter-predictor. The Ξ, γ and H matrices
presented in the description are given by the following formulas:

Ξ = σ



0
0

white noise
0
0

white noise

 , H =

[
1 0 0 0 0 0
0 0 0 1 0 0

]
, ρ = σ

[
white noise
white noise

]
(8)

The searched Kalman filter equation for monitored diagnostic signals takes the
form of:

dX̂t = At X̂tdt +
R(t)HT

ρ2

[
dŶt −Ht X̂tdt

]
+U(t)dt (9)

where R(t) is the solution to the Riccati matrix equation

Ṙ(t) = σ
2I +AR+RAT −RHT 1

ρ2 HR (10)
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determining the estimation error:

R(t) = E
{[

X̂t −Xt
][

X̂t −Xt
]T |Γt

}
(11)

defined on the Γt set,{y1 = x1,y2 = x2} observation from the interval (0, t). They
determine the form of the algorithm for the module performing the process of
filtration disturbances of controlled shaft journal vibrations in the bearing node by
the monitoring system. Abandonment of the above formalization allows to solve
the problem of prediction changes in controlled variables. The equations defining
the predicator form x(τ, t) with fixed t and variable τ > 0, for τ > 0, t > 0 –
estimated with a medium-square error – is given by the equation:

∂X(τ, t)
∂ t

= AX(τ, t)+U(τ); X(τ, t) = X̂t (12)

The initial value specifying its estimator X(0, t) = X̂t at the moment t, it is given
by the output from the Kalman-Bucy filter, defined by equation (9).

2.3 Summary

Our cooperation with the Jubilarian – concerning the above discussed the interfer-
ence elimination method in the process of monitoring shaft journal vibrations in
the bearing of the slide bearing, defined by Kalman filtration model – has shown
that the direction of our joint search for effective filtration tools and prediction of
monitored diagnostic signals based on the Kalman’s filtration and prediction the-
ory turned out to be appropriate and prospective. Hardware implementation on
signal processors, newly constructed monitoring systems has been found. It has
the advantage of optimality of monitored signals processing, with the possibility
of uncertainty estimation of realized processes. This solution is characterized by
strict connections of controlled diagnostic phenomena with physical mechanisms
of monitored diagnostic signals generation.

The outlined and tested solutions are an up-to-date guide for designers of mon-
itoring systems innovative constructions. It fully corresponds to the development
of modern technologies for prototyping intelligent monitoring systems based on
signal processors, which determines the place of their new implementations in the
new generation of monitoring systems.

3 Conclusion

In the article I outlined only certain research area which connected us with the Ju-
bilarian, inspired and motivated to work. It is a fragment of what we managed to
achieve together, cooperating in the analysis of various vibroacoustic issues mod-
elled with stochastic differential equations, in which area Professor Tadeusz Banek
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is an authority, and of the results of which we can be proud in the environment of
people dealing with technical diagnostics. It would not be possible without the
Jubilarian’s openness to cooperate in solving many of our problems, as well as
encouraging his colleagues to cooperate with our Department of Mechanics and
Vibroacoustics of the AGH University of Science and Technology.

I hope that we will be able to continue our cooperation. It is not a slogan, it is
a dream. Professor is close to the employees of the Department of Mechanics and
Vibroacoustics at the AGH University of Science and Technology and has a great
deal of sympathy.

This results not only from the scientific authority of the Jubilarian, but also
to the conviction that he is a friend of our department who follows the scientific
development of the Kraków scientific community, shares his knowledge and is
always helpful in our research work.
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niowego nadzoru stanu łożysk ślizgowych, Materiały XIV Ogólnopolskiej Konfer-
encji Naukowo-Dydaktycznej Teorii Maszyn i Mechanizmów, Gdańsk.
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Optimal control with a learning problem
of the stochastic linear system

Keywords: stochastic control, linear quadratic control, self-learning, conditional
entropy

Abstract

This paper presents the problem of optimal control of the stochastic system with
the possibility of enriching knowledge about the system’s parameters, where the con-
trol objective is to minimize the total costs associated with costs of control and cost
of learning. In this case a classical concept of adaptation was used, which is based on
tuning of controller by using the self-learning idea. Additionally the similarities and
differences of control for the stochastic systems with known and unknown parameter
related to scaling of transformation matrix was presented.

1 Introduction

The goal of any scientific discussion is not only to exchange views, remarks and
observations but also to put the right questions and research problems. The ex-
change of knowledge and experience is the base in the process of development of
scientific community, member organizations and society. A propensity to learn the
phenomena and dependencies which exist in the real world around us needs to put
the right research issues and to find answers to them.

My cooperation with Professor Tadeusz Banek began in 1996 when I was em-
ployed at the Lublin University of Technology at the Faculty of Management and
Fundamentals of Technology. At the beginning, the scope of scientific and re-
search work concerned the estimation of information cost about return rates of
financial instruments and possibility of purchase that information during the in-
vestment portfolio construction. The subject has been presented in Banek, Kowa-
lik and Kozłowski (1999) and Banek and Kozłowski (2003a, 2003b). Since 2003
research works were focused on the problem of determining adaptive control for

1Lublin University of Technology, Faculty of Management, Department of Quantitative Methods
in Management.
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stochastic systems and topics related to learning and self-learning of systems by
control (see e.g. Banek, Kozłowski (2006)). The main aim of the self-learning
process is enrich our knowledge about the operation and behaviour of the system
in different environments.

Definition 1 Stochastic adaptive control is a method of controlling systems with
unknown parameters or parameters that change over time, where these parameters
are identified (adjusted, tuned) by the controller.

The tasks of adaptive control theory focus on the analysis and mathematical
modelling of systems and development of controllers to realise given objectives,
see Zabczyk (1996). It turns out that not only system state is influenced on the
optimal control. The knowledge of system parameters and the information about
the length of time interval is necessary to optimally control the system (Banek,
Kozłowski (2014), Kozłowski (2011, 2018)). In addition, both the lack of knowl-
edge of the system parameters and the control horizon causes an additional costs
incurred during the control (see e.g. Kozłowski (2010, 2013)).

This paper is a continuation of outcomes obtained during our long-term coop-
eration with Professor Tadeusz Banek and presented in a series of works (Banek,
Kozłowski (2005, 2006, 2011, 2014)). The task presented in paper is an extension
of classical problem of linear quadratic control, where the negative effect related
to ignorance of system behaviour was additionally taken into account.

2 Problem formulation

Let (Ω,F ,P) be a complete probability space. On this space we define the se-
quence {wi}1≤i≤N of independent random vectors wi : Ω → Rm with a normal
distribution N(0̄, Im), where 0̄ ∈ Rm is the zero vector, while Im ∈ Rm×m is an
identity matrix. Let ξ : Ω→ R will be a random vector with a priori distribu-
tion N (m0,s0), while y0 : Ω → Rn – the initial state with P(dy0) distribution.
We assume that all the aforementioned objects are stochastically independent and
define non-decreasing families of σ−fields {Fi}0≤i≤N and

{
F ξ

i

}
0≤i≤N

, where

Fi = σ {y0}∨σ {ws : s = 1,2, ..., i}, F ξ

i = Fi∨σ {ξ} and we assume F = F ξ

N .
Below we consider the linear stochastic system is defined by the state equation

yi+1 = yi +ξ Bui +σwi+1, (1)

where i = 0, ...,N−1, yi ∈ Rn, B : Rn×Rl −→ Rn and σ ∈ Rn×m.
The vector ui ∈ Rl , 0 ≤ i ≤ N − 1 measurable with respect to σ -field Fi is

called a control action. This same object may be controlled in different environ-
ments. The random variable ξ represents a scale value of the control transition
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matrix. For the fixed horizon N we control the system (1) at decision moments
i = 0,1, ...,N − 1 and we undertake a sequence of control actions {ui}0≤i≤N−1,
which are referred as admissible control. The class of admissible controls is de-
noted by U .

Let R and Q be a positive defined matrices. For any u ∈ U the value uT Ru
represents the cost due to control u, the value (yN−a)T Q(yN−a) means the losses
that are associated with the lack of hitting the target a ∈ Rn at the moment N. In
the classical task the objective function is defined as the sum of costs associated
with the controls at the moments 0,1, ...,N−1 and costs due to lack of hitting the
target. Thus the objective function can be defined as

JN (u) = E

(
N−1

∑
i=0

uT
i Rui +(yN−a)T Q(yN−a)

)
. (2)

On the other hand process of learning about the parameters should be enabled
during the control. In real world the learning process can generate additional costs.
In many tasks the information about system parameters is measured by entropy or
Fisher information value (Banek, Kozłowski (2005, 2006, 2011)). Below the en-
tropy concept will be applied to measure our knowledge about unknown parameter
in system (1).

Remark 2 If the random variable X : Ω→R has a normal distribution N
(
µ,s2

)
,

then the entropy is equal
H (X) = ln

(√
2πes

)
. (3)

From (3) we can notice, when we possess more information about random vari-
able (the distribution is more concentrated and the realization may be precisely
predicted) then the entropy is smaller. Thus, additionally by minimizing entropy
of parameter ξ we can get more information about behavior of system (1).

The apriori distribution of the random variable ξ is normal N (m0,s0). Apply-
ing the Kalman-Bucy filter for discrete time stochastic process {yt}0≤t≤N (see e.g.
Liptser, Shiryaev (1978), Saridis (1995)) we obtain:

1. the best estimator (mean square sense) of random variable ξ at the moment j
is a conditional expected value with respect of σ -field F j;

2. the conditional distribution P
(
dξ
∣∣F j

)
is a normal distribution N (m j,s j),

where the conditional expected value of random variable ξ

m j = E
(
ξ
∣∣F j

)
and the conditional variance

s j = E
(
(ξ −m j)

2 ∣∣F j

)
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are expressed by formulas

m j =

m0 + s0
j−1
∑

i=0
uT

i BT
(
σσT

)−1
(yi+1− yi)

1+ s0
j−1
∑

i=0
uT

i BT (σσT )−1 Bui

(4)

and
s j =

s0

1+ s0
j−1
∑

i=0
uT

i BT (σσT )−1 Bui

. (5)

Remark 3 From (3) and (5) we have, that at the moment N (at the end of control
interval) the conditional entropy of random variable ξ is equal

H
(
ξ
∣∣F j

)
=

1
2

(
ln(2πe)+ ln(s0)− ln

(
1+ s0

j−1

∑
i=0

uT
i BT (

σσ
T )−1

Bui

))
. (6)

Remark 4 Form (6) we see, that if the matrices BT
(
σσT

)−1 B is positively de-
fined, then for any ui 6= col(0,0, ...,0)∈Rl , j = 0,1, ...,N−1 the entropy decreases
when the horizon of control N increases. Additionally, the entropy decreases when
the energy of control

wwu j
ww, j = 0,1, ...,N−1 (energy cost) is greater.

Let f : R→ R be a growing function, which represents a penalty associated with
the conditional entropy of random variable ξ . The value f (H (ξ |FN )) denotes
a possible cost related to our ignorance of the system’s behaviour (possible costs
in future when the system will be controlled). Therefore, during the system con-
trol, we incur the following costs: direct costs of control ∑

N−1
i=0 uT

i Rui, cost of not
hitting to target (yN−a)T Q(yN−a) and the cost related to insufficient learning of
parameters f (H (ξ |FN )). Below it has been assumed a penalty function as

f (x) = 1− e−2x.

From above, the penalty connected with ignorance of parameter ξ in system (1) is
equal

f (H (ξ |FN )) = 1− 1
2πs0

(
1+ s0

N−1

∑
i=0

uT
i BT (

σσ
T )−1

Bui

)
. (7)

In many cases we bear the additional cost which are related not only to control.
Sometimes during realization the aim, we acquire knowledge about the operation
of the system additionally, which may be used in the future. Therefore this raises
the question of how to control the system and also enrich our knowledge about it.
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Below we consider the relation between costs of system control (1) and learning
this system. For this purpose we modify the objective function. Let α ≥ 0, β ≥ 0,
γ ≥ 0 be a coefficients of control cost, cost related to our ignorance of the system’s
behaviour and cost associated with the lack of hitting the target respectively. Thus
the objective function can be presented as

JN
αβγ

(u) = E

(
α

N−1

∑
i=0

uT
i Rui +β (yN−a)T Q(yN−a)

)
+ γ f (H (ξ |FN )) . (8)

From (7) the total cost is equal

JN
αβγ

(u) = E

(
N−1

∑
i=0

uT
i Rαγui +β (yN−a)T Q(yN−a)

)
+

2πs0−1
2πs0

, (9)

where
Rαγ = αR− γ

2π
BT (

σσ
T )−1

B. (10)

The last component in equation (9) does not depend on the control. The matrix
Rαγ in (10) denotes a compromise between costs connected directly with control
and profits related to knowledge about system obtained during the control. The
problem of optimal control consists in minimising the total costs. To determine
the optimal control of system (1) we should solve the task

inf
u∈U

JN
αβγ

(u) , (11)

i.e. it is necessary to find admissible control u∗ =
(
u∗0, ...,u

∗
N−1
)

for which the
minimum is reached.

3 Optimal linear quadratic control relative to the cost
of learning

In this section it will be presented the solution of task (11). To determine the
optimal control for the system (1) the dynamic programming will be used. First we
define the Bellman functions (see e.g. Bellman (1961), Fleming, Rishel (1975)).
At the moment N the value of the Bellman function is equal

V N
N (yN) = β (yN−a)T Q(yN−a)+

2πs0−1
2πs0

, (12)

but at the moments i = 0,1,2, ...,N−1 it is defined as

V N
i (yi) = min

ui
uT

i Rαγui +E
(

V N
i+1 (yi+1)

∣∣Fi
)
. (13)
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From above the total cost of control with learning is equal

inf
u∈U

JN
αβγ

(u) =V N
0 (y0) . (14)

The theorem below presents the method of determining the optimal control.

Theorem 5 Let
{

Ψj+1 (ξ )
}

0≤ j≤N be a sequence of matrices, which satisfy the
equation

Ψj (ξ ) = E
(
Ψj+1 (ξ )

∣∣F j
)
−E

(
ξΨ

T
j+1 (ξ )

∣∣F j
)

B

×
(
Rαγ +BT E

(
ξ

2
Ψj+1 (ξ )

∣∣F j
)

B
)−1

BT E
(
ξΨj+1 (ξ )

∣∣F j
)

(15)

with initial condition ΨN (ξ ) = βQ. If the matrices Rαγ ∈ Rl×land Ψj (ξ ) ∈ Rn×n

are positively defined, then the solution of task (11) for stochastic system (1) is:

• optimal control u∗j at the times 0≤ j ≤ N−1 is equal

u∗j =−
(
Rαγ +BT E

(
ξ

2
Ψj+1 (ξ )

∣∣F j
)

B
)−1

BT E
(
ξΨj+1 (ξ )

∣∣F j
)
(y j−a) , (16)

• values of the Bellman function at times j = 0, ...,N−1 are calculated as

V N
j (y) = (y−a)T

Ψj (ξ )(y−a)+ϕ
N
j , (17)

where

ϕ
N
j = ϕ

N
j+1 + tr

(
σ

T E
(
Ψj+1 (ξ )

∣∣F j
)

σ
)

(18)

and ϕN
N = 2πs0−1

2πs0
.

Proof. At time N the Bellman function (12) may be presented in form (17), where
ΨN (ξ ) = βQ. Let us assume that the equation (17) is true for any
0 < j+1≤N and next we check the truthfulness of this formula for the moment j.
From (13) the value of Bellman function can be presented as

V N
j (y j) = inf

u j

{
uT

j Rαγu j +ϕ
N
j+1

+ E
(
(y j+1−a)T

Ψj+1 (ξ )(y j+1−a)
∣∣∣F j

)}
. (19)

and from the state equation (1) we have

V N
j (y j) = inf

u j

{
uT

j Rαγu j +ϕ
N
j+1

+ E
(
(y j +ξ Bu j +σw j+1−a)T

Ψj+1 (ξ )(y j−Bu j +σw j+1−a)
∣∣F j

)}
.
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Using the properties of conditional expectation value we obtain

V N
j (y j) = inf

u j

{
uT

j
(
Rαγ +BT E

(
ξ

2
Ψj+1 (ξ )

∣∣F j
)

B
)

u j +ϕ
N
j+1

+ tr
(
σ

T E
(
Ψj+1 (ξ )

∣∣F j
)

σ
)
+2uT

j BT E
(
ξΨj+1 (ξ )

∣∣F j
)
(y j−a)

+(y j−a)T E
(
Ψj+1 (ξ )

∣∣F j
)
(y j−a)

}
. (20)

Thus the optimal control at the moment j is equal

u∗j =−
(
Rαγ +BT E

(
ξ

2
Ψj+1 (ξ )

∣∣F j
)

B
)−1

BT E
(
ξΨj+1 (ξ )

∣∣F j
)
(y j−a) . (21)

Substituting the optimal control (21) into (20) that the value of the Bellman func-
tion V N

j (y j) at time 0≤ j ≤ N−1 can be presented as (17), where Ψj (ξ ) and ϕN
j

satisfy the equations (15) and (18) respectively.

Remark 6 For the system (1) with unknown parameter ξ the optimal control (16)
at time 0≤ j ≤ N−1 and the Bellman function V N

j (y j) given by (17) depend both
on current state y j and previous states y0, ...,y j−1.

Remark 7 At the moments 0≤ j ≤ N−2

E
(
Ψj+1 (ξ )

∣∣F j
)
6=Ψj+1

(
E
(
ξ
∣∣F j

))
.

Replacing Ψj+1 (ξ ) by Ψj+1
(
E
(
ξ
∣∣F j

))
in formula (16) we obtain the self-tuning

control, see e.g. Banek, Kozłowski (2005).

Remark 8 For the system (1) with known parameter ξ (we have no cost related
to ignorance of behaviour of system, thus γ = 0) the optimal control is equal

u∗j =−ξ
(
Rα +ξ

2BT
Ψj+1B

)−1
BT

Ψj+1 (y j−a) , (22)

where Rα = αR and matrices sequence
{

Ψj+1 (ξ )
}

0≤ j≤N satisfies the equation

Ψj = Ψj+1−ξ
2
Ψ

T
j+1B

(
Rα +ξ

2BT
Ψj+1B

)−1
BT

Ψj+1 (23)

with initial condition ΨN = βQ. The Bellman function value at times 0≤ j ≤ N is
equal

V N
j (y) = (y−a)T

Ψj (y−a)+ϕ
N
j , (24)

where ϕN
j = ϕN

j+1 + tr
(
σTΨj+1σ

)
and ϕN

N = 0.
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4 Conclusion

In this article the optimal control problem of discrete time stochastic linear system
for fixed horizon was presented. The objective function is a sum of costs related
to controls of system, heredity (costs due to lack of hitting the target) and learning
of unknown parameter. To solve the task the dynamic programming was used,
which is associated with classical concept of adaptation. This concept is based on
tuning the controller by using the self-learning idea. In addition, the similarities
and differences of control for the stochastic systems with known and unknown
parameter were presented.
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K., Józefczyk J., Świątek J., Exit, Warszawa, 94–101.

Bellman R., (1961), Adaptive Control Processes, Princeton.

Fleming W. H., Rishel R., (1975), Deterministic and Stochastic Optimal Control,
Springer-Verlag, Berlin.



Optimal control with a learning problem of the stochastic linear system 27

Kozłowski E., (2018), Optymalne sterowanie dyskretnymi systemami stochasty-
cznymi, Politechnika Lubelska, Lublin.

Kozłowski E., (2010), The linear quadratic stochastic optimal control problem
with random horizon at finite number of events independent of state system, Sys-
tems Science, vol. 36(3), 5–11.

Kozłowski E., (2013), Stabilization of linear system in random horizon via control,
Control and Cybernetics, vol. 42(2), 527–541.

Kozłowski E., (2011), Identification of linear system in random time, International
Journal of Computer and Information Technology, vol. 1(2), 103–108.

Liptser R.Sh., Shiryaev A.N., (1978), Statistics of Stochastic Processes, Springer-
Verlag, New York.

Saridis G.N., (1995), Stochastic Processes, Estimation and Control: the Entropy
Approach, John Wiley and Sons.

Zabczyk J., (1996), Chance and decision, Scuola Normale Superiore, Pisa.



a



Tadeusz Banek

Two algorithms for computing the spherical center
of n points

Keywords: optimal route, linear quadratic control, navigation, landmark

Abstract

We offer two approaches for computing the spherical center of n points. In first
we use geometrical properties of a sphere S2 and we find a simple algorithm giving
the approximate solution. In second we consider this problem as a typical linear
programming problem.

1 Introduction

We consider the following problem

Problem 1 Given points P1,...,Pn on a unit hemisphere S2 with a center in origin
of R3 we have to find a point Q on S2, such that the total distance

d (Q;P1, ...,Pn),
n

∑
i=1

ρ
l (Q,Pi)→min, (1)

where ρ (Q,Pi) is a spherical distance (angle) between points Q and Pi, and l > 0.

(1) may be viewed as a simplified model of many problems arising in practice.
In marine and aircraft transport operations for instance we are looking for a place
where a total (spherical) distance to given ports is minimal. This place is a good
candidate for a new central port which has to be build for ships or planes. This
model can be easily generalized. If, for instance, some ports are visited more
often then others and the resulting costs are higher then the total distance can be
generalized

d (Q;P1, ...,Pn),
n

∑
i=1

wiρ
l (Q,Pi) (2)

where wi > 0 are the weights taking into account the transportation cost per angle
multiplied by the visits frequency rate, etc. We propose two approaches which
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correspond to the power l = 2 and l = 1 respectively. First is inspired by geometric
observations and direct Second uses a linear programming procedure. We begin
with geometric constructions which allow to transfer this spherical problem into
a “flat” problem.

2 Geometric approach

2.1 From sphere to tangent plane

Let TQ be a tangent plane at fixed point Q ∈ S2. We define a mapping

S2 3 P 7−→ fQ (P) = Q+ρ
l (Q,P)

P−〈P,Q〉Q
‖P−〈P,Q〉Q‖

∈ TQ, (3)

which transfers points from S2 to TQ. It is easy to check that fQ (P) ∈ TQ, and
‖ fQ (P)−Q‖ = ρ l (Q,P), ρ (Q,P) = ](Q,P). By using this mapping we can
transfer all points Pi to TQ − a tangent plane at fixed, arbitrary chosen point Q∈ S2

getting

Ri = fQ (Pi) = Q+ρ
l (Q,Pi)

Pi−〈Pi,Q〉Q
‖Pi−〈Pi,Q〉Q‖

. (4)

Since Pi−〈Pi,Q〉Q lies on the plane spanned by Q and Pi, then Ri ∈TQ∩span(Q,Pi)
in the distance ρ l (Q,Pi) from Q. This construction can be easily visualized by tak-
ing a tangent plane at Pi and rolling it next to the tangent point at Q along geodetic
Pi a Q. The traveling curve of Pi is known as evolventa

2.2 From tangent plane to sphere

Together with fQ we shall need other mapping gQ − an inverse to fQ, defined by

B
(

Q,
[

π

2

]l
)
3 R 7−→ gQ (R)

where

gQ (R) =

cos‖R−Q‖− sin‖R−Q‖√
‖R‖2−1

Q+
sin‖R−Q‖√
‖R‖2−1

R ∈ S2, (5)

and where B(Q,r)= {TQ 3 P;‖P−Q‖< r,r > 0}, which transfers the points from
TQ to S2. It is easy to check that gQ (R) ∈ S2. By using this mapping we can
transfer points from TQ to S2 such that ](Q,gQ (R)) = ρ (Q,gQ (R)), ‖R−Q‖ =
ρ l (Q,gQ (R)). Similarly, this construction can be easily visualized by taking a tan-
gent plane at Q and rolling it next to the tangent point at gQ (R) along geodetic
Q a gQ (R). The point R will take the position gQ (R) as the result of this rotation
and evolventa is the traveling curve of R.
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2.3 Mean vectors

Given vectors P1,...,Pn in Rm, we set

P =
1
n

n

∑
i=1

Pi (6)

their mean value vector. It is well known that P solves the least squares problem,
i.e.,

n

∑
i=1

∥∥P−Pi
∥∥2 ≤

n

∑
i=1
‖P−Pi‖2 (7)

for any P ∈ Rm. Indeed, from

0 = ∇P

n

∑
i=1
‖P−Pi‖2 = 2

n

∑
i=1

[P−Pi] (8)

we conclude that the best P is P.

2.4 Optimality conditions for l=2

It is easy to see that for the problem (1) with l = 2, the condition
n

∑
i=1

ρ
l (Q?,Pi)

Pi−〈Pi,Q?〉Q?

‖Pi−〈Pi,Q?〉Q?‖
= 0 (9)

holds in the optimal point Q?.

2.5 The algorithm

Because is not likely to find a simple analytic formula which solves (1), we are
looking for a dynamic way of reaching the best point Q?.

2.5.1 Step one

We begin with an arbitrary point Q0 ∈ S2. Let’s map the points Pi on TQ0 getting
the points R0

i as is described in (3), i.e.,

R0
i = fQ0 (Pi) = Q0 +ρ

l (Q0,Pi)
Pi−〈Pi,Q0〉Q0

‖Pi−〈Pi,Q0〉Q0‖
. (10)

2.5.2 Step two

Having the points R0
i ∈ TQ0 we compute their mean

R0 =
1
n

n

∑
i=1

R0
i . (11)

Since (11) is a convex combination, hence R0 ∈ TQ0 is the best point for the ’flat’
least total distance minimization problem.
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2.5.3 Step three

Let’s map the point R0 on the sphere S2 by using (5). We get

Q1 = gQ0

(
R0
)

where

gQ0

(
R0
)
=

cos
∥∥∥R0−Q0

∥∥∥− sin
∥∥∥R0−Q0

∥∥∥√∥∥∥R0
∥∥∥2
−1

Q0 +
sin
∥∥∥R0−Q0

∥∥∥√∥∥∥R0
∥∥∥2
−1

R0 (12)

as the first approximation of Q?.

2.5.4 Step four

Back to the step one, substituting Q1 in place Q0.

2.6 General

Generally, having Qk we compute

Rk
i = fQk (Pi) = Qk +ρ

l (Qk,Pi)
Pi−〈Pi,Qk〉Qk

‖Pi−〈Pi,Qk〉Qk‖
, (13)

Rk =
1
n

n

∑
i=1

Rk
i , (14)

Qk+1 = gQk

(
Rk
)

where

gQk

(
Rk
)
=

cos
∥∥∥Rk−Qk

∥∥∥− sin
∥∥∥Rk−Qk

∥∥∥√∥∥∥Rk
∥∥∥2
−1

Qk +
sin
∥∥∥Rk−Qk

∥∥∥√∥∥∥Rk
∥∥∥2
−1

Rk. (15)

2.7 Convergence

Define two mappings S2 3 Q 7−→ φ (Q) ∈Q⊥, S2×Q⊥ 3 (Q,W ) 7−→ ψ (Q,W ) ∈
S2, by the formulae

φ (Q) =
1
n

n

∑
i=1

ρ
l (Q,Pi)

Pi−〈Pi,Q〉Q
‖Pi−〈Pi,Q〉Q‖

, (16)

ψ (Q,W ) = Qcos‖W‖+ W
‖W‖

sin‖W‖ , (17)
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and where Q⊥ is the orthogonal complement in R3 of the line spanned by Q and
note, that (13)(14)(15) implies that the sequence Qk, k = 0,1,... described in the
Algorithm is generated by the equation

Qk+1 = ω (Qk) . (18)

where
ω (Q) = ψ (Q,φ (Q)) ,

is given explicitly by the formula

ω (Q) = Qcos

∥∥∥∥∥1
n

n

∑
i=1

ρ
l (Q,Pi)

Pi−〈Pi,Q〉Q
‖Pi−〈Pi,Q〉Q‖

∥∥∥∥∥ (19)

+
∑

n
i=1 ρ l (Q,Pi)

Pi−〈Pi,Q〉Q
‖Pi−〈Pi,Q〉Q‖∥∥∥∑

n
i=1 ρ l (Q,Pi)

Pi−〈Pi,Q〉Q
‖Pi−〈Pi,Q〉Q‖

∥∥∥ sin

∥∥∥∥∥1
n

n

∑
i=1

ρ
l (Q,Pi)

Pi−〈Pi,Q〉Q
‖Pi−〈Pi,Q〉Q‖

∥∥∥∥∥ .
To prove that Qk converges to Q?, such that

d (Q?;P1, ...,Pn)≤ d (Q;P1, ...,Pn) , Q ∈ S2,

it is enough to show that the mapping Q −→ ω (Q) in (18) is a contraction. In-
deed, by the famous Banach’s fixed point theorem the contraction of ω (·) implies
convergence of Qk to the point Q?, such that

Q? = ω (Q?) = ψ (Q?,φ (Q?)) , (20)

and from (16) and (17) we know that is possible only when the optimality condition
(9), φ (Q?) = 0, is satisfied. This implies that Q? = Q?. In consequence we have
the following useful

Conclusion 2 The algorithm can reach the optimal Q? with arbitrary small error.

Proof. It is easy to see that (19) is a contraction for all Q∈ S2, except for one point
Q = Q?. Any fixed approximation error ε = ‖Q−Q?‖ corresponds to a disc in S2

with a center Q? and radius ε . Outside the disc the constant of contraction bigger
than one by a positive number, hence the algorithm is convergent to some point of
the disc.
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3 Linear programming approach

In the particular case l = 1, we shall show how the problem (1) can be reduced to
the classical LP problem.

Let introduce some notations J = col(1, ...,1) ∈ Rn, ei = col(0, , ,0,1,0, ...0).
Let us denote by αi j the angle between Pi and Pj, by xi the angle between Q and
Pi, and x = col(x1, ...,xn). Note, that we always have〈

ei + e j,x
〉
= xi + x j ≥ αi j

for any i, j = 1, ...,n, i 6= j. Since for l = 1,

d (Q;P1, ...,Pn) = 〈J,x〉 (21)

thus the problem (1) can be described in the form

min
{
〈J,x〉 ;

〈
ei + e j,x

〉
≥ αi j,xi ≥ 0, for i, j = 1, ...,n, i 6= j

}
In order to express this problem in more familiar form of the linear programming
language, i.e., a triple; c,A,b, note that

c = x1 + ...+ xn

A =



1 1 0 0 0 0 0 0 0 0 0
. . . . . . . . . . .
1 0 0 0 0 0 0 0 0 0 1
0 1 1 0 0 0 0 0 0 0 0
. . . . . . . . . . .
0 1 0 0 0 0 0 0 0 0 1
. . . . . . . . . . .
. . . . . . . . . . .
0 0 0 0 0 0 0 0 0 1 1


,b =



α11
.

α1n

α23
.

α2n

.

.
αn−1,n


and the problem is

c = x1 + ...+ xn→min

under the conditions

Ax≥ b

x≥ 0.

Remark 3 It is worth nothing that the LP algorithm may be used in the case l = 2
as well. Indeed in this case

d (Q;P1, ...,Pn) = ‖x‖2
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thus the problem (1) can be described in the form

min
{
‖x‖2 ;

〈
ei + e j,x

〉
≥ αi j,xi ≥ 0, for i, j = 1, ...,n, i 6= j

}
(22)

what means that we are looking for the point of minimal norm in the set Ax ≥ b,
x≥ 0. However, this point appears to be solution of the following problem

min
{

min
{
〈y,x〉 ;

〈
ei + e j,x

〉
≥ αi j,xi ≥ 0, for i, j = 1, ...,n, i 6= j

}
;y ∈ Rn} ,

i.e., finding solutions x(y) of the LP problems corresponding to fixed y ∈ Rn, and
vary y over Rn next, we may find the solution of (22) by making the suitable selec-
tion among x(y).

Remark 4 For the problem (2) it is enough to modify the criterion (21) as follows.
Take

d (Q;P1, ...,Pn) = 〈w,x〉

instead of d (Q;P1, ...,Pn) = 〈J,x〉 and the problem (2) reads now: given w ∈ Rn,
find

min
{
〈w,x〉 ;

〈
ei + e j,x

〉
≥ αi j,xi ≥ 0, for i, j = 1, ...,n, i 6= j

}
.
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A practical approach to point processes

Keywords: Poisson point process, Cox process, point patterns, Wasserstein dis-
tance, Statistica, Mathematica, R, EasyFit

Abstract

The goal of this article is to provide the reader with practical tools for investigat-
ing point processes. These include: acceptance-rejection procedure, independence
hypothesis testing, point pattern analysis. To this end we use Statistica 13.2, Mathe-
matica, R, EasyFit and Microsoft Excel.

1 Introduction

In recent years, the theory of point processes has been successfully developed
(e.g. introducing Ripley’s K-function, etc) and applied in many disciplines, such
as forestry, zoology, geography or medicine, see Baddeley, Rubak and Turner
(2016), Daley and Vere-Jones (2003), Diggle (2015), Streit (2010) and references
therein. Additionally there is much more tools available now for point patterns
analyzing and statistical computing than in previous years. The R project (www.r-
project.org) is an example of such a tool. In this article we present various statis-
tical tests and techniques which may be used in frontline research in agricultural
or physical sciences. We focus our attention on Poisson process, Cox process,
independence and CSR testing.

2 Definition and simulation

Just a few definitions at the beginning. We assume throughout that (S,B(S)) is
a measurable space. In what follows, we may think that S is a subset of Rd . The
Lebesgue measure of A ∈B(Rd) is denoted here by |A|. A Borel measure on S is
a nonnegative measure that is finite on compact sets. A point process or a random
subset is a measurable mapping Π from some underlying probability space into the

1Lublin University of Technology, Faculty of Electrical Engineering and Computer Science, De-
partment of Mathematics.
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set of all countable subsets of S. For fixed A, the random variable N(A) := |Π∩A|
counts the points that “fall” into A. Let µ be a finite measure on S, i.e. µ(S)< ∞,
not necessarily a probability measure. A Poisson process on S with the mean
measure µ is a random countable subset Π of S such that the following conditions
hold

(i) for any A ∈B(S), N(A) has the Poisson distribution with parameter µ(A),
i.e.

P(N(A) = k) =
µk(A)

k!
e−µ(A), k = 0,1,2, . . .

(ii) for any n > 2 and any pairwise disjoint subsets A1, . . . ,An of S, the random
variables N(A1), . . . ,N(An) are independent.

Thus we have

E[N(A)] = D2[N(A)] = µ(A)
(
=
∫

A
λ (x)dx

)
, (1)

if µ is absolutely continuous with respect to the Lebesgue measure. We also have E[N(A)N(B)] = µ(A)µ(B)+µ(A∩B)

cov(N(A),N(B)) = µ(A∩B),
(2)

for any A,B ∈B(S), see Kingman (1993) or Daley and Vere-Jones (2003). The
function λ (x) in (1) is called the intensity of Π. If λ is constant then Π is termed as
homogeneous process. Otherwise it is referred to as nonhomogeneous. A sample
ξ of Π consists of two things: n is the number of points and x1, . . . ,xn are points of
S. We write ξ = (n,{x1, . . . ,xn}). Here is how we simulate a sample of a Poisson
process.

Suppose that µ(S) =
∫

S λ (x)dx > 0. Then

(i) We choose n≥ 0 by sampling the discrete Poisson random variable with pa-
rameter µ(S), that is P(N = n)= e−µ(S)µn(S)/n! If n= 0 then the realization
is (0, /0). If n > 0 then we perform (ii).

(ii) The points x1,x2, . . . ,xn are obtained as iid samples of a random variable X
with pdf given by

pX(x) =
λ (x)
µ(S)

, x ∈ S. (3)

The output is n and the vector (x1, . . . ,xn), however the order of elements is irrele-
vant here, so the realization is ξ = (n,{x1, . . . ,xn}). If S is a continuous subset of
Rd then the points {x1, . . . ,xn} are distinct with probability one.

Next we use an acceptance-rejection procedure to generate iid samples of (3).
Here we explain this procedure in detail.
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1. First, choose any bounded pdf g(x)> 0,x ∈ S, from which iid samples of S
can be generated by a known procedure. For example, it can be a uniform
distribution on S. The importance function is another term for g(x).

2. Calculate

M = max
x∈S

pX(x)
g(x)

and note that then pX(x)≤Mg(x), see Fig. 1.

3. Draw random n ∈ {0,1,2, . . .} from Poisson distribution with mean µ(S).

4. Draw random x with pdf g, compute t = pX(x)/Mg(x) and draw random
sample u, uniformly distributed on [0,1].

5. Accept x, if u≤ t. Reject x, if u> t. Why do we do so? For fixed x we choose
temporarily, name it, y-coordinate for x uniformly on (0,Mg(x)). This y is
just uMg(x), where u is from (4). Then we accept x if the point (x,y) lies
under the graph of pX , i.e. uMg(x)≤ pX(x) which is equivalent to u≤ t.

Stop when n points are accepted. Note that those “accepted” points (xi,yi) are
uniformly distributed in the area under the graph of pX , hence marginally x′is are
iid samples of pX , see again Fig 1.

We performed calculations for three different intensities, one realization per
intensity, see Fig. 2. Since discussed procedure is straightforward and if one needs
to simulate a sample of small size, Microsoft Excel is good for calculations. In
other cases we recommend the R packages. We will use the R software later in
this article.

Here are some details about intensities. Since λ1(x,y) = 2, then the number of
points in [−2,2]× [−2,2] has the distribution Poiss(32). The generator of random
numbers drawn 33 points in this case. Next, we have λ2(x,y) = 0.25e2x+y and

0.25
∫ 2

−2

∫ 2

−2
e2x+ydxdy≈ 49.48,

so we have 50 points in this sample (accepted from 1100 points). The last one,
λ3(x,y) is proportional to the normal distribution:

λ3(x,y) = 30e−2x2−4y2
, (x,y) ∈ [−2,2]× [−2,2].

Since ∫ 2

−2

∫ 2

−2
λ3(x,y)dxdy≈ 33.3195,

then n was drawn according to Poiss(33.3195) and we obtained n = 35. Those 35
points in the picture were accepted from about 500 uniformly distributed points on
this square.
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a x1 x2 x3 x4 x5 x6 x7 x8 b

1
b−a

M
b−a

pX

a x3 x5 x7 b

pX

Figure 1. The acceptance-rejection procedure for S = [a,b] and g(x) = 1/(b−a). Accepted
points x3,x5,x7 are iid samples of pX
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-2 2

-2

2

-2 2

-2

2

-2 2

-2

2

Figure 2. Realizations of a Poisson process on the square [−2,2]× [−2,2] with various
intensity functions: λ1(x,y) = 2 (top), λ2(x,y) = 0.25e2x+y (middle), λ3(x,y) = 30e−2x2−4y2

(bottom)
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3 Nearest-neighbour distance and fitting distributions

It is well known that if Π is a Poisson process of constant rate λ on (0,+∞) and
the points of Π be written as 0 < X1 < X2 < .. . then Y1 = X1, Y2 = X2−X1, . . . are
independent and each has the density f (x) = λe−λx, for x > 0. In other words:
increments are independent and exponentially distributed. In this case realizations
are usually plotted as integer valued step-functions. Incidentally, the distribution
of Xn is that of gamma with parameters n,λ . An interested reader will find those
facts in any book devoted to stochastic processes, e.g. Wentzell (1980) or Daley
and Vere-Jones (2003).

As for higher dimensions, denote by X the distance of the point closest to the
origin of a Poisson process in Rd with constant rate λ . Then it satisfies P(X > r) =
exp(−λvd(r)), r > 0, where vd(r) = rdvd(1) is the volume of a sphere of radius r
in Rd , see e.g. Chapter 2 of Daley and Vere-Jones (2003). Hence, the density of
the distance of the nearest point is

f (r) = λvd(1)drd−1e−λvd(1)rd
, r > 0,

and d = 1,2, . . .. From this we have

E(X) = λvd(1)
∫

∞

0
rdrd−1e−λvd(1)rd

dr

=
1

d
√

vd(1)
d
√

λ

∫
∞

0
t

1
d e−tdt

=
Γ(1+ 1

d )
d
√

vd(1)
1

d
√

λ
, d = 1,2,3, . . .

Recall that

vd(1) = π
d
2 /Γ(

d
2
+1)

and

Γ(x) =
∫

∞

0
tx−1e−tdt,

where x > 0.
Sometimes one needs to investigate certain aspects of a point pattern (mean,

distance, etc) that require to fit a distribution to the collected data, see e.g. Long et
al. (2014). The next example is devoted to this problem. For a point process Π on
the line and a realization {x1, . . . ,xn} define

D =
x1 + x2 + . . .+ xn

n
, M = max(x1, . . . ,xn).
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Table 1. Pdf’s and expectations of nearest-neighbour distance for a homogeneous Poisson
process

dim, d P(X > r) density, f (r) E(X) =
∫

∞

0 r f (r)dr

1 (R+) e−rλ λe−rλ 1
λ

1 (R) e−2rλ 2λe−2rλ 1
2λ

2 (R2) e−πr2λ 2πrλe−πr2λ 1
2
√

λ

3 (R3) e−
4
3 πr3λ 4πr2λe−

4
3 πr3λ ≈ 0.554

3√
λ

4 (R4) e−
1
2 π2r4λ 2π2r3λe−

1
2 π2r4λ ≈ 0.608

4√
λ

Example 1 We simulated 30 independent realizations of a nonhomogeneous Pois-
son process on an interval [0,10] with intensity λ (x) = 10e−x, x ∈ [0,10]. His-
tograms of D and M are presented in Fig. 3. We obtained D = 0.9, sD = 0.3
and M = 2.41, sM = 1.28. Furthermore D ∈ [0.41,1.5] and M ∈ [0.84,6.21]. To
study D and M, we used a chi-squared and the Kolmogorov-Smirnov goodness of
fit tests. For D, the K-S test produced P-value 0.98 for the log-normal distribution
with parameters µ = 0.32, σ = 0.21 and γ =−0.52, see also Fig. 3. The density
of the log-normal distribution is given by

f (x) =
1

σ
√

2π(x− γ)
exp
(
− 1

2σ2 (ln(x− γ)−µ)2
)
,

x ∈ (γ,+∞).

Here µ ∈R, σ > 0 are continuous parameters and γ is a location parameter. If X is
a rv with this distribution then E(X) = γ +eµ+ 1

2 σ2
and var(X) = (eσ2−1)e2µ+σ2

.
Thus the mean with fitted parameters equals 0.8878 and variance 0,298.

As for M, the best fit with P-value 0.87 is for log-logistic distribution with
α = 3.28, β = 1.98 and γ = 0.14, see Fig. 3. The pdf of this distribution is

f (x) =
α

β

(
x− γ

β

)α−1(
1+

(x− γ)

β

α)−2

, x ∈ (γ,+∞),

where α > 0 (shape parameter), β > 0 (scale parameter) and the location pa-
rameter γ ∈ R. We performed this analysis using EasyFit Professional, version
5.6.
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0.5 1 1.5 2

0.1

0.16

0.4

f (D)

1 2 3 4 5 6 7

0.03

0.1

0.36

0.43

f (M)

Figure 3. Histograms and fitted distributions of D (average distance) and M (maximum) for
a Poisson process with intensity λ (x) = 10e−x, x ∈ [0,10]

4 Testing Independence with Statistica and Wolfram

In the next section we investigate complete spatial randomness of a point pattern
in a plane. It is worth to look at how we test for independence of random vectors
before that. To this end we consider a couple of examples.

This is the first one. Although simplified, a typical situation in many physical
phenomena looks like this one shown in Fig. 4. See e.g. Long et al. (2014) and
references therein.

Namely, a black ball is dropped into the central box containing 30 smaller
white balls as shown in Fig. 4. After the black ball hits the box, a number of
white balls is thrown out the central box and some white balls fall into the right
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box and some into the left one. Let X denote the number of white balls that are
contained in the right box and Y in the left box. We want to test whether X and
Y are statistically independent. We carried out 15 independent trials and here are
the outcomes: (4,3), (3,3), (4,2), (3,5), (2,4), (5,4), (3,6), (2,4), (4,5), (4,3), (3,4),
(4,4), (4,3), (5,3), (4,5). So we need to determine whether the vectors{

~x = (4,3,4,3,2,5,3,2,4,4,3,4,4,5,4),
~y = (3,3,2,5,4,4,6,4,5,3,4,4,3,3,5)

(4)

are statistically independent. Hence the null hypothesis H0: X and Y are statis-
tically independent. The alternative one is H1: X and Y are associated (i.e. not
independent). Note that in H1 the relationship between X and Y is not specified.

Figure 4. Here X denotes the number of balls in the right box, and Y in the left one. In this
particular case X = 3 and Y = 5. Tests support the null hypothesis, i.e. X ,Y are statistically
independent

The most widely used is the Pearson’s χ2 test. The test statistic is given by

χ
2 =

k

∑
i=1

r

∑
j=1

(ni j− n̂i j)
2

n̂i j
=

k

∑
i=1

r

∑
j=1

n̂2
i j

n̂i j
−n,

where ni j (n̂i j) is the true (expected) number of observations of type i and j, where
k is the number of types of observations of X and r the number of types of Y .
Here n is the total number of observations. Considered statistic has asymptotic
distribution χ2 with (r− 1)(k− 1) degrees of freedom (df). In our case, X and Y
are integer-valued random variables. For vectors (4) we have χ2 = 9.78, df=12,
with P-value 0.63. Since P-value is above 0.05, so there is not enough evidence to
reject H0 at that level, i.e. we support H0.

More accurate tests are also available. Usually these are based on measures of
association between rv’s. For example, it may be Blomqvist’s medial correlation
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coefficient for two vectors, Hoeffding’s independence test, etc. We carried out
these tests using Statistica 13.2 and WolframAlpha (available online), see Table 2
below.

Table 2. Statistic values for sample vectors (4) support the hypothesis that X and Y are statis-
tically independent

Statistica 13.2
Statistic P-value

Pearsons’s χ2 9.78 0.63
Cramer’s V 0.46

Kendall’s τ (b) -0.25
Kendall’s τ (c) -0.23

Spearman’s rank -0.31 0.24
Wolfram (Mathematica)

Statistic P-value
Blomqvist’s β -0.31 0.11

Goodman-Kruskal’s γ -0.34 0.34
Hoeffding’s D -0.04 0.83

Kendall’s τ -0.25 0.26
Spearman’s rank -0.31 0.24

Consider a second example. A random phenomenon produces a single point
P = (X ,Y ) inside the rectangle [−2,2]× [−1,1]. We generated 15 independent
realizations of this phenomenon, see Fig. 5, and the points are (coordinates are
given to 1 decimal place): (1.1, 0.6), (-1, 0.8), (-0.2, -0.1), (1.2, -0.6), (1.6, 1.7),
(0.2, 0.4), (-1.4, 0.5), (-1.8, -0.8), (1.5, 0.1), (1.7, -0.2), (0.6, 0.8), (-0.3, -0.6), (0,
0.3), (-0.6, 0.3), (0.7, 0). Again, we want to test if coordinates of P are independent.

Although given only to 1 decimal place (for obvious reasons), those are in fact
real-valued vectors:

~x = (1.1,−1,−0.2,1.2,1.6,0.2,−1.4,−1.8,
1.5,1.7,0.6,−0.3,0,−0.6,0.7),

~y = (0.6,0.8,−0.1,−0.6,0.7,0.4,0.5,−0.8,
0.1,−0.2,0.8,−0.6,0.3,0.3,0)

(5)

and before performing χ2 test directly, we need to create a contingency table for
~x,~y. Namely, we divide the given rectangle into smaller subsets (called quadrats)
and count the number of points in each quadrat, see Fig. 5. Then we carry out the
χ2 test based on the information contained in the contingency table. In our case~x,
~y are transformed to integer-valued vectors{

x′ = (1,2,2,3,3,3,3,4,4,4,1,2,2,4,4),
y′ = (1,1,1,1,1,1,1,1,1,1,2,2,2,2,2)
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where the meaning of those integers is this: we divided [−2,2] into 4 subintervals
and numbered them from 1 to 4. The same with y-coordinate: we divided [−1,1]
into [−1,0) (denoted by 1) and [0,1] (denoted by 2). For x′, y′ we have χ2 = 2.85
with P-value 0.41, meaning that we do not reject the null hypothesis.

-2 2

-1

1

-2 2

-1

1

1 2 4 3

1 2 0 2

Figure 5. Independent realizations of certain random phenomenon (top, there are 15 dots) and
quadrat counts (bottom)

And the last example. Namely, consider{
~x = (2,−1,3,3,4,−2,0,1,−1,5,−2,4,3,1,−1),
~y = (4,1,9,9,16,4,0,1,1,25,4,16,9,1,1).

(6)
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For integer-valued vectors (6) we have χ2 = 75, df=35, with P-value 0.0001,
so there is strong evidence against H0. Hence we support H1 which says that there
is a relationship between~x and~y. Obviously~y =~x2, see also Table 3 below.

Table 3. Statistic values for obviously dependent vectors (6), i.e. ~y =~x2

Statistica 13.2
Statistic P-value

Pearsons’s χ2 75.00 0.00

Cramer’s V 1

Kendall’a τ (b) 0.63

Kendall’a τ (c) 0.61

Spearman’s rank 0.75 0.00

Wolfram (Mathematica)

Statistic P-value

Blomqvist’s β 0.80 0.00

Goodman-Kruskal’s γ 0.65 0.00

Hoeffding’s D 0.29 0.00

Kendall’s τ 0.63 0.00

Spearman’s rank 0.75 0.00

5 Complete spatial randomness with R

The purpose of this section is to test whether a given point pattern on the plane has
a CSR property. We begin with definition.

We say that a point pattern has a complete spatial randomness (CSR) property
or is simply CSR if it is a homogeneous Poisson point process in the plane. Thus
if N(A) = |Π∩A|, where A ∈B(R2) with |A|< ∞, we have

(a) N(A) has a Poisson distribution with mean λ |A|,

(b) assuming that there are n points in A, their locations are iid and uniformly
distributed inside A,

(c) N(A),N(B) are independent for disjoint A and B.

We generated 40 points in the rectangle (or window) W := [−10,10]× [−5,5].
These are (again, coordinates are given with accuracy of one decimal place): (1.1,2),
(8.3,3.1), (5,2.8), (2.2,3), (4,4.5), (9,1.5), (0.4,4.9), (6,4), (7.1,2.6), (8.7,0.4), (3.5,
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3.9), (9.5,2), (-2,4), (-6.5,1), (-8,0.5), (-3.1,2), (-1,4.5), (-4,2.5), (-0.3,4.8), (-2.5,-
3.7), (-6.1,-4.2), (-0.1,-3.7), (-7,-0.4), (-5.6,-2.8), (-9.7,-1.5), (-3.5,-2.1), (-0.8,-3),
(0,-3.3), (1,-4.2), (2.7,-2), (4.1,-0.3), (5,-1.7), (5.4,0.5), (6.1,-1.1), (6.9,-4.2), (7.8,-
3.5), (8.5,-0.1), (9,-2), (9.2,-4.5), (9.6,2.6). The main package used here in this
analysis is spatstat of R. We have at least three tests at our disposal:

(1) χ2 test;

(2) Kolmogorov-Smirnov test of CSR;

(3) Ripley’s K-function;

The first one, χ2 test is based on quadrat counts. Namely, as in section 4 we divide
the window W into quadrats A1, . . . ,Am and count the numbers n1, . . . ,nm of points
in each quadrat. If the null hypothesis is true, the ni are realizations of independent
Poisson random variables with expected values λ |Ai|, where λ is the unknown
intensity. We perform this test by quadrat.test(P,nx=4,ny=2), where P is our
point patter, i.e. the set of 40 points in W . The result is χ2 = 4.4, df = 7 and
P-value = 0.5346, see also Fig. 6. This supports the null hypothesis that the point
pattern is CSR.

It is also possible to conduct a one-sided test, and to compute the P-value using
Monte Carlo simulation instead of the χ2 approximation.
By typing

> quadrat.test(P, 8, alternative="regular", method="MonteCarlo")

we get the results

Conditional Monte Carlo test of CSR using quadrat counts

Pearson X2 statistic data: P

X2 = 59.2, p-value = 0.386

alternative hypothesis: regular

Quadrats: 8 by 8 grid of tiles

Another test of CSR is the Kolmogorov-Smirnov test in which one compares the
observed and expected distributions of the values of certain function f (x,y). First,
we specify a real-valued function f (x,y) defined in the window of a point pat-
tern. Then, we calculate this function at each of the data points and compare this
empirical distribution of values of f with the predicted distribution of values of
f under CSR, using the classical Kolmogorov-Smirnov test. For example, taking
f (x,y) = x we get

> cdf.test(P, "x", test="ks")

Spatial Kolmogorov-Smirnov test of CSR in two

dimensions data: covariate x evaluated at points
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of P and transformed to uniform distribution

under CSR

D = 0.1725, p-value = 0.1643

alternative hypothesis: two-sided

Figure 6. Illustration of a χ2 test of CSR based on quadrat counts: point pattern (top), quadrat
counts (bottom). Plots were prepared in R

If f (x,y) = y, we have D = 0.097018 and p-value = 0.811. This shows, see
Fig. 7, that the given point pattern is more uniformly distributed in the y-coordinate
direction than in the x-coordinate. Overall, no substantial evidence against H0
(P is CSR).
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Now a few words about the K-function. This is another tool of spatial statistics
used for analyzing correlation in point patterns. First observe that a homogeneous
Poisson process defined on Rd is stationary. It means that for each n = 1,2, . . .
and any subsets A1, . . . ,An from B(Rd) of finite measure, the joint distributions of
vectors

(N(A1), . . . ,N(An)) and (N(A1 + x), . . . ,N(An + x))

are the same for any x ∈ Rd . Recall that N(A) = |Π∩A|. The Ripley’s K-function
for a stationary point process Π is defined by

K(r) =
1
λ
E [|Π∩B(u,r)\{u}|u ∈Π|] ,

where B(u,r) is a ball of radius r centered at u. Note that for a homogeneous
Poisson process, the fact that u ∈Π does not affect the other points of the process,
so that X\{u} is conditionally a Poisson process. Since the expected number of
points in B(u,r) equals λπr2 (in R2), the K-function in this case is

K(r) = πr2, r > 0

and does not depend on λ . The K-function is nondecreasing for r > 0 and con-
verges to 0 as r→ ∞, see e.g. Daley and Vere-Jones (2003). The Ripley’s func-
tion is useful in studying stationary isotropic processes because it then provides
a succinct summary of the second-order properties of the process. However the
K-function does not completely characterize the point process. For example there
exist point processes whose K-functions are equal to πr2 and the processes are not
Poisson processes and so there is dependence between the points, see e.g. Badde-
ley, Rubak and Turner (2016). Below is the description of a command Kest(P)

for calculation and plotting of the Ripley’s function for a point pattern P:

> u <- Kest(P)

> u

Function value object (class fv) for the function r -> K(r)

Entries:

id label description

-- ----- -----------

r r distance argument r

theo Kpois(r) theoretical Poisson K(r)

border Kbord(r) border-corrected estimate of K(r)

trans Ktrans(r) translation-corrected estimate

of K(r)

iso Kiso(r) Ripley isotropic correction estimate of K(r)

--------------------------------------
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Figure 7. The K-S tests show that considered point pattern is more uniformly distributed in
the y-direction than in the x-direction
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Figure 8. Estimation of the Ripley’s K-function in R for the point pattern shown in Fig. 6

6 Cox processes

Before formal definition: if Π is a Poisson point process with intensity function
λ (x) and we randomize λ , then we get a Cox process, so to speak. Sometimes
a Cox process is also called a doubly stochastic Poisson process, but not that often.
This is because it has two “sources” of randomness: one is from intensity and the
second from a Poisson process. We give the formal definition, see e.g. Grandell
(1976) or Kingman (1993) for details. Assume that (S,B(S)) is a state space and
let µ be a random nonatomic measure on B(S). A random countable subset Π of
S is said to be a Cox process associated with µ if the conditional distribution of Π

given µ is that of Poisson with measure µ . As in (1) it is often assumed that µ is
given by a pdf, however due to randomness denoted usually by Λ. Thus

µ(A) =
∫

A
Λ(x)dx ⇔

(
µ(A;ω) =

∫
A

Λ(x;ω)dx
)

and we omit ω (also in N(A;ω), etc). It should be noted that Λ(x) is in fact a real-
valued random process defined on S. If A1, . . . ,An are pairwise disjoint, then by
definition

P [N(A1) = k1, . . . ,N(An) = kn|µ] =
n

∏
i=1

µki(Ai)

(ki)!
e−µ(Ai),
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where ki = 0,1,2 . . ., for i = 1, . . . ,n. From this we obtain

P(N(A1) = k1, . . . ,N(An) = kn) = E

[
n

∏
i=1

µki(Ai)

(ki)!
e−µ(Ai)

]
(7)

and, in particular, the distribution of N(A) has the form

P(N(A) = k) = E
[

µk(A)
k!

e−µ(A)
]
, k = 0,1,2, . . . (8)

Incidentally, a Cox process has not the independence property due to (7) and the
distribution of N(A) is not that of Poisson by (8). Furthermore, see e.g. Grandell
(1976) or by direct computation, we have

E[N(A)] = E[µ(A)] =
∫

AE[Λ(x)]dx,

var[N(A)] = E[N(A)]+var[µ(A)],

cov(N(A),N(B)) = E[µ(A∩B)]+ cov(µ(A),µ(B)),

(9)

for bounded A,B ∈B(Rd). From (9) we have var[N(A)]≥ E[N(A)].
We will investigate here, when the distribution of N(A) is close to a discrete

uniform. Recall that if a,b are integers and a< b then the probability mass function
of a discrete uniform distribution is given by f (x) = 1/(b−a+1), for x = a,a+
1, . . . ,b. Notation for this is U {a,b}. We have

E(X) =
a+b

2
, var(X) =

(b−a+1)2−1
12

.

Example 2 Given p ∈ (0,1), consider X with the binomial distribution

P(X = k|p) =
(

n
k

)
pk(1− p)n−k, k = 0,1, . . . ,n, (10)

denoted by B(n, p). Suppose that p is random with values in {p1, . . . , pm} and
probabilities

P(p = pi) =
1
m
, i = 1,2, . . . ,m.

For fixed p the most probable value k0 of X fulfills the inequality (n+ 1)p− 1 ≤
k0 ≤ (n+1)p. Thus if (n+1)p is not an integer then k0 = [(n+1)p]. From (10)
we obtain the distribution of X. Namely

P(X = k) =
1
m

(
n
k

) m

∑
i=1

pk
i (1− pi)

n−k, k = 0,1, . . . ,n. (11)

Hence E(X) = 1
m ∑

m
i=1 npi. In Fig. 9 we present three distributions, each for n = 10

and different sets of p′is. In the first case p1 = 0.2, p2 = 0.8. In the second case
p1 = 0.2, p2 = 0.5, p3 = 0.8 and in the third one p1 = 0.2, p2 = 0.4, p3 = 0.6,
p4 = 0.8.�
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Example 3 Suppose that Λ = {λ1, . . . ,λ9} consists of 9 positive numbers. First
we choose λi, i = 1, . . . ,9, with probability given in the uncaptioned table below.
For fixed λi we may simulate a realization of a Poisson process on S = [−30,−10]
with mean measure µi(A) = λi|A|. That is the way we construct a realization of
a Cox process on S.

λi 0.05 0.25 0.5 0.75 1
pi 0.055 0.118 0.118 0.118 0.118
λi 1.25 1.5 1.75 2
pi 0.118 0.118 0.118 0.118

For A⊂ [−30,−10], the distribution of N(A) is given by

P(N(A) = k) =
9

∑
i=1

pie−λi|A| (λi|A|)k

k!
, k = 0,1,2, . . . (12)

Hence EN(A) = |A|∑9
i=1 piλi ≈ 1.06 · |A|. In particular EN(S)≈ 21.30, EN2(S) =

623.44 and var[N(S)] ≈ 169,75. Furthermore P(N(S) > 40) ≈ 0.078. We put
those data in the uncaptioned 3-row table below.

N(S) U {0,40} N(B) U {0,20}
mean 21.30 20 10.65 10
var 169.75 140 47.72 36.66

Example 4 Suppose that A ∈B(Rd) and a random measure µ has the form

µ(A;ω) = X(ω)|A|, |A|< ∞,

where X ≥ 0 is a random variable. By (8) we have

P(N(A) = k) = E
[

Xk|A|k

k!
e−X |A|

]
=
|A|k

k!
E
[
Xke−X |A|

]
=
|A|k

k!

∫
∞

0
xke−|A|x f (x)dx, k = 0,1,2, . . .

where f (x) is a pdf of X. If f (x) = e−x, x≥ 0, then for k ≥ 1 we have∫
∞

0
xke−(|A|+1)xdx =

1
(|A|+1)k+1

∫
∞

0
tke−tdt =

k!
(|A|+1)k+1 ,

by the fact that E(Xk) = k!, k ≥ 1. Finally

P(N(A) = k) =
1

|A|+1

(
|A|
|A|+1

)k

, k = 0,1,2, . . .

meaning that N(A) has geometric distribution.
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Figure 9. Distributions of X given by (11) for three sets of p′is. In each case n = 10. The last
one (right) is “close” to U {0,10}
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Figure 10. Distributions of N(A) given by (12) for A = [−30,−10] and [−20,−10]

7 Appendix: Wasserstein distance and time

Inspired by the book by Julian Barbour, The End of Time, see Barbour (1999), we
present here the author’s own remark about physical time. This opinion is based on
intuition derived from dealing with stochastic processes and is stated from a ma-
thematical point of view, i.e. no notions about energy, momentum, mass, etc.

Recall that by a point process we understand (up to technical stuff) a collection
of plates with black dots like this one in Fig. 11, where dots represent points in
a phase space. This is just a random element in mathematical nomenclature. There
is no “time” given there a priori. In a sense, it is a “static process”. However
when we think of an “ordinary” stochastic process, it is usually a family of random
variables (or random elements) Xt indexed by t ∈ [a,b]. And this is the place where
t is called “time” because an interval [a,b] is linearly ordered set and we can say
that t1 is before t2 if t1 < t2. Hence we have the past F≤t , the present F=t and the
future F≥t . On the other hand, this Xt can be treated as a random element in the
following sense: X(ω) = fω(t), where t ∈ [a,b]. In other words: ω is mapped into
a function, usually a continuous one, but jumps are also possible, see again Fig. 11.
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In this situation t as “time” appears only in a configuration space. Thus “time” is
a kind of measure of “change”. But what is “change”? Roughly speaking, it is any
difference between two configurations in a phase space. Hence, as it is suggested
in Barbour (1991), we can define “time” or “duration” for a point process by

time, duration := a distance between

configurations in a phase space

because a phase space has usually “nice” properties, e.g. it may be equipped with
a metric. How can we do that? And here is the author’s suggestion: we can use the
Wasserstein distance.

We formulate this precisely. Suppose that (S,d) is a Polish metric space and
p ∈ [1,+∞). Let µ and ν be probability measures on S. The Wasserstein distance
of order p between µ and ν is defined as follows

Wp(µ,ν) :=
(

inf
γ∈Γ(µ,ν)

∫
S×S

(d(x,y))pdγ(x,y)
)1/p

,

ω ω f (t)

Figure 11. A sample “path” of a point process Π is a countable subset of S. For a stochastic
process X , a “path” or a “trajectory” is usually a continuous function

where Γ(µ,ν) denotes the set of all couplings of µ and ν , i.e. all probability mea-
sures on S× S with marginals µ and ν . For more about the Wasserstein distance
and its properties see e.g. Villani (2008). For example, if S =Rd , p = 1 and d(x,y)
is the usual Euclidean distance then

W1(µ,ν) = inf
γ∈Γ(µ,ν)

∫
S×S
||x− y||dγ(x,y).

Now we are ready to define the distance between configurations of a point process.
If Π is a random subset of S and Π(ω) = {x1, . . . ,xk}, Π(ω ′) = {x′1, . . . ,x′l} we
define

dist(Π(ω),Π(ω ′)) :=W1(µ,µ
′),

where µ = (δx1 + . . .+ δxk)/k and µ ′ = (δx′1
+ . . .+ δx′l

)/l. In general, one may
take µ = ∑

k
i=1 piδxi and µ ′ = ∑

l
i=1 p′iδx′i for discrete probability distributions

P = (p1, . . . , pk), P′ = (p′1, . . . , p′l).
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Example 5 Take S = R, configurations {0,2}, {1,5} and

µ = pδ0 +(1− p)δ2, ν = qδ1 +(1−q)δ5

where p,q ∈ [0,1]. The general coupling of µ , ν has the form

γa(µ,ν) = aδ(0,1)+(p−a)δ(0,5)+(q−a)δ(2,1)
+(1− p−q−a)δ(2,5),

where a ∈ [0,min(p,q)]. Then

W1(µ,ν) = inf
a

∫
R2
|x− y|dγa(x,y)

= inf
a∈[0,min(p,q)]

(−2a+2p−2q+3)

=−2min(p,q)+2p−2q+3.

If p = q = 1
2 then W1(µ,ν) = 2. For p = 1, q = 0 we get W1(µ,ν) = 5 and so on.
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Przemysław Kowalik1

A chance-constrained blending problem with amounts of
components available in fixed-size portions

Keywords: blending problem, linear programming, uncertainty, stochatic param-
eters, chance constrained programming, nonlinear programming, mixed integer
programming.

Abstract

Linear programming (LP) is a technique used in blending optimization problems
since the very beginnings of operational research. However, if not all assumptions
necessary to create a valid LP model are satisfied, other techniques must be used in-
cluding nonlinear programming, stochastic programming or mixed integer linear pro-
gramming. This paper considers a case of blending optimization in which uncertainty
of some parameters occur as well as components of the blend ae available in fixed-
size portions (i.e. in discontinuous amounts what results in occurrence of a piecewise-
constant cost function). This case can be modelled as a problem of stochastic, more
precisely chance-constrained mixed-integer programming problem. It was shown
that under an additional assumption of normality of distribution of nondeterministic
parameters the problem can be converted to an equivalent mixed-integer nonlinear
programming problem or approximated by an (easier to solve) mixed-integer linear
programming problem.

1 Introduction

Classical blending optimization models are an important class of linear program-
ming (LP) models. They date back to the very beginnings of the domain of science
known as operational or operations research (Stigler (1945), Charnes, Cooper and
Mellon (1952)). The most popular models are formulated to determine the cheap-
est blend of available multi-ingredient components (multi-ingredient raw materi-
als). The blend must satisfy certain requirements on amounts of the ingredients.
These requirements may be expressed either in absolute units (mass, volume) or in
relative units (usually as percentages). LP blending models can be applied in agri-
culture to optimal feeding the livestock (a diet problem) and usage of fertilizers as

1Lublin University of Technology, Faculty of Management, Department of Quantitative Methods
in Management.
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well as in production planning in many industries (petroleum, chemical, food pro-
cessing, metallurgy). Modelling blending optimization problems as LP problems
has proved its advantages in numerous cases but also showed its limitations. Cre-
ating an accurate mathematical model of a “fragment” of the real world requires
satisfying some assumptions related with that model. In case of LP models there
are four assumptions:

• additivity and proportionality (together called linearity) between variables
describing amounts of the modelled objects and parameters of the model;

• divisibility of variables (they can attain any real value);

• certainty of parameters (they are fixed numbers, not random variables).

Linearity in blending models can be violated by nonlinear relationships between
amounts of components and their total price and/or by some physical or chemical
processes occurring during the blending.

Lack of divisibility may be caused by lack of availability of some components
in any arbitrary amounts but in fixed-size portions only. This fact results in pos-
sible extra cost of purchasing the components since the amount of the component
needed may not be a exact multiple of the size of the portion of a component.

Certainty of parameters may not occur if unit prices of the components vary
randomly and/or amounts of ingredients in the components are not fixed.

The key result of this paper is creating a blending model which takes into
account both lack of divisibility caused by availability of components in fixed-
size portions only and uncertainty of contents of ingredients in the components
included in the blend.

2 A stochastic extension of the deterministic model

A stochastic extension of a deterministic blending model presented below is based
on the one proposed in Sakallı and Birgören (2009) and Sakallı, Baykoç and
Birgören (2011) for a specific application in metallurgy (brass production). The
stochastic model in Sakallı, Baykoç and Birgören (2011) is formulated generally
enough, however, to be applicable in any blending optimization. Assumptions and
notations are shown below.

There are n types of components (raw materials) and m types of ingredients
included in them. Classical blending models assume that percentages of the in-
gredients are deterministic. However, in some real world applications of blending
models the above assumption may not be satisfied. Among components, some of
them may have not constant but stochastic (random) percentages of the ingredients.
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Let as assume that q components (indexed 1,2, . . .,q) have deterministic percent-
ages of the ingredients whereas n− q components (indexed q+ 1,q+ 2, . . .,m)
have stochastic percentages of the ingredients.

Unless specified otherwise, indexes take the following values

i = 1,2, . . .,m, j = 1,2, . . .,n.

Let us denote

• c j – unit cost of the component j (measured in currency units per weight
unit e.g. per kilogram);

• aij, j = 1,2, . . .q – percentage of the ingredient i in the component j (deter-
ministic);

• Aij, j = q+1,q+2, . . ., j – percentage of the ingredient i in the component
j (stochastic - a random variable);

• bi – lower limit on the percentage of the ingredient i in the blend;

• di – upper limit on the percentage of the ingredient i in the blend;

• v j – yield coefficient for the component j (v j∈(0,1]);

• wi – yield coefficient for the ingredient i (wi∈(0,1]);

• M j – maximal allowed amount of the component j (optional);

• N j – minimal allowed amount of the component j (usually 0);

• D – required quantity of blend to be produced.

Decision variables are the following

• x j – amounts of components to be included in the blend (measured in weight
units e.g. kilograms).

The optimization model under consideration is the following

n

∑
j=1

c jx j→min (1)

subject to
q

∑
j=1

wiv jaijx j +
n

∑
j=q+1

wiv jAijx j≤biD (2)
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q

∑
j=1

wiv jaijx j +
n

∑
j=q+1

wiv jAijx j≥diD (3)

n

∑
j=1

x j = D (4)

x j≤M j (5)

x j≥N j (6)

where in (2) and (3) i = 1,2, . . .,m and in (5) and (6) j = 1,2, . . .,n. The objective
function (1) denotes the total cost of the components.

Groups of constraints (2) and (3) enforce the lower and upper limits on the per-
centages of ingredients of the blend, respectively. Some ingredient-related lower
or upper limits on the percentages of ingredients may not be specified explicitly.
In that case lower limits can be considered as 0 (or 0%) and upper limits as 1 (or
100%) as the content of any ingredient cannot be beyond those bounds. Those
constraints are the part of the model which makes it different from any version of
a deterministic model since parameters Aij are stochastic.

Constraint (4) ensures producing required quantity of the blend.
Groups of constraints (5) and (6) are used to limit amounts of the components

used. Upper limits on amounts of the components used may result from limited
availability of components (stock volume). Both lower and upper limits may be
caused by technological reasons. If lower limits on amounts of the components
are not specified as positive numbers, then they must be set to zero (no negative
amounts of components allowed). If upper limits on amounts of the components
are not specified, they just can be omitted because there are no “natural upper lim-
its” as zeroes are for lower limits. Yield coefficients (v j for components, wi for
ingredients) are numbers from the interval [0,1] which represent how much of
each component and ingredient is retained during the blending process. Numbers
1− v j and 1−wi then obviously represent fractions of components and ingre-
dients lost during the process of blending. Those losses (e.g. partial evaporation)
result from technological reasons (in fact, from physical and chemical features of
the process of blending). If losses can be neglected, that the yield coefficients are
equal to 1 and do not occur in the model explicitly. A detailed discussion on these
coefficients can be found in Kim and Lewis (1987).

The model presented above “moves” the mathematical representation of opti-
mization of blending from being a linear programming problem to become a chance-
constrained programming problem. Chance-constrained programming was first
introduced in Charnes and Cooper (1959) and Miller and Wagner (1965). Its main
feature consists in the stochastic form of at least some constraints. More precisely,
the probability of complying with constraints for feasibility at the confidence level
α is taken into account (see Li, Arellano-Garcia and Wozny (2008)).
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A practical way of solving problems formulated as chance-constrained pro-
gramming model consists in converting those models an into equivalent determin-
istic ones (see Taha (1997)). This conversion can be performed relatively easy
under the assumption of a normal distribution of the stochastic parameters in the
constraints. Let us consider the following stochastic constraint

P

{
n

∑
j=1

a jx j≤b

}
≥1−α. (7)

Such a formulation means that the constraint is realized with a minimum proba-
bility of 1−α . Let all a j be normally distributed and independent stochastic
parameters a j N(µ j,σ

2
j ). Let Φ denote the cumulative distribution function of

N(0,1) and Φ−1 its inverse function. Let K1−α = Φ−1(1−α). Then (7) can be
converted to the following deterministic constraint

Φ

b−∑
n
j=1 µ jx j√

∑
n
j=1 σ2

j x2
j

≥Φ(K1−α)

which is, because of monotonocity of Φ, equivalent to the following inequality

n

∑
j=1

µ jx j +K1−α ·
√

n

∑
j=1

σ2
j x2

j≤b (8)

Obviously, a stochastic constraint with the “≥b” inequality is converted into a de-
terministic constraint analogical to (8), but with inequality “≥b” and the coefficient
−K1−α .

When applying (8) to the original stochastic blending problem, it is necessary
to assume that all Aij have independent normal distributions N(µij,σ

2
ij). Then

the groups of constraints (2) and (3) can be expressed in equivalent, deterministic
forms (9) and (10), respectively

q

∑
j=1

wiv jaijx j +
n

∑
j=q+1

wiv jµijx j−K1−α ·
√

n

∑
j=q+1

w2
i v2

jσ
2
ij x

2
j≥biD (9)

q

∑
j=1

wiv jaijx j +
n

∑
j=q+1

wiv jµijx j +K1−α ·
√

n

∑
j=q+1

w2
i v2

jσ
2
ij x

2
j≤diD (10)

where i = 1,2, . . .,m.
For some ingredients, either lower or upper limit on percentage of a ingredient

may not exist. More precisely, the limits are not expressed explicitly, but is was
stated before, no lower limit specified stands implicitly for bi = 0 (or 0%) and no
upper limit specified stands implicitly for di = 1 (or 100%). In case when both
lower and upper limits are stated explicitly (and obviously neither of them is the
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extreme one, i.e. bi > 0 and di < 1), some corrections must be made. If both lower
and upper limits on percentage of a ingredient exist, the chances of attaining by
the random variables values greater or lower than the mean parameter are equal.
Therefore 1−α must be assigned to both the upper and lower limits with equal
probabilities. Below a formulation of the problem in a more compact form than
that originally created in Sakallı, Baykoç and Birgören (2011) is presented.

Let K1−α/2 = Φ−1(1−α/2). Then the corrected versions of (9) and (10),
respectively, are the following

q
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n

∑
j=q+1

wiv jµijx j−K1−α/2·
√

n

∑
j=q+1

w2
i v2

jσ
2
ij x

2
j≥biD (11)
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wiv jµijx j +K1−α/2·
√
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jσ
2
ij x

2
j≤diD (12)

for such i for which bi > 0 and di < 1.
More precisely, if one limit on percentage (either lower or upper) is defined

explicitly for a given ingredient i, then the corresponding constraint must be used
the standard deviation term multiplied by the coefficient equal to either −K1−α

or K1−α , respectively. If both specification limits are given, however, then the
coefficients −K1−α/2 and K1−α/2 are used instead. In order to formulate the
entire model in the compact form, the exact values of the coefficients which are
multiplied by the standard deviation terms will be defined conditionally for all
combinations of bi and di. The following notations will be used

• Kα,bi – coefficient to be used in the constraint for the lower limit of ingredi-
ent i;

• Kα,di – coefficient to be used in the constraint for the upper limit of ingredi-
ent i.

"Conditional definitions" of Kα,bi and Kα,di are the following

Kα,bi =


0 bi = 0, di < 1

−K1−α/2 bi > 0, di < 1
−K1−α bi > 0, di = 1

(13)

Kα,di =


K1−α bi = 0, di < 1

K1−α/2 bi > 0, di < 1
0 bi > 0, di = 1

where i = 1,2, . . .,m.
Obviously, the combination bi = 0 and di = 1 is not considered because the

content of each ingredient cannot take the value beyond the [0,1] interval. In this
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case, a pair of constraints with such lower and upper limits on ingredients, respec-
tively, is satisfied by all x j satisfying (4), (5) and (6) so the constraints do not affect
the feasible set, and, obviously, an optimal solution.

Finally, the stochastic model defined in (1) to (6) at the confidence level α

and the additional assumption that all Aij have independent normal distributions
N(µij,σ

2
ij) can be expressed as the following nonlinear programming model

n

∑
j=1

c jx j→min (14)

subject to

q
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n

∑
j=q+1

wiv jµijx j +Kα,bi ·
√

n

∑
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2
ij x

2
j≥biD (15)

q

∑
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n

∑
j=q+1

wiv jµijx j +Kα,di ·
√

n

∑
j=q+1

w2
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jσ
2
ij x

2
j≤diD (16)

n

∑
j=1

x j = D (17)

x j≤M j (18)

x j≥N j (19)

where in (15) and (16) i = 1,2, . . .,m and in (18) and (19) j = 1,2, . . .,n.
The meaning of the objective function (14) as well as of the constraints (17),

(18) and (19) is identical to the meaning of (1), (4), (5) and (6), respectively. Con-
straints (15) and (16) are the replacements for (2) and (3) with either (9) and (10)
or (11) and (12) (depending on values of bi and di), respectively. They reflect
uncertainty of contents of ingredients in some components.

Nonlinear terms in (15) and (16) make the problem hard to solve. Since the lin-
ear programming optimization software is widely available and, what is even more
important, it guarantees obtaining (within built-in computational accuracy) an op-
timal solution, it would be worth considering to perform some kind of linearization
of the model. Obviously, since a linearized formulation is not an equivalent but just
an approximate one, it can result in a solution which is possibly not optimal (in the
sense of the initial problem).

How linearization can be done? The first, “rough” approach consists just in
ignoring nonlinear terms and treating expected values of percentages µij as deter-
ministic values (simply disregarding uncertainty). A more sophisticated approach
does not neglect the risk of deviation of the real percentages of ingredients from
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average values. It consists in replacing nonlinear variance-related terms with lin-
ear ones. Linear terms used to estimation are chosen in such way that the feasible
set of the linearized problem is a subset of the primary problem.

The linear approximation approach presented below is based on Agpak and
Gokcen (2007). As the main idea it uses the following inequality√

n

∑
j=1

w2
i v2

jσ
2
ij x

2
j≤

n

∑
j=1

wiv jσijx j. (20)

which is true if variables x j are all nonnegative (what is the case of blending mod-
els) Replacing the nonlinear parameter with a bigger value than its actual value
reduces the feasible solution space. Therefore we may obtain an approximate so-
lution rather than optimal.

Again, as in case of the conversion of the initial stochastic model to the de-
terministic nonlinear one it is necessary to distinguish cases: the lower limit on
percentage of an ingredient is not defined explicitly (it is 0%), the upper limit on
percentage of an ingredient is not defined explicitly (it is 100%), or both limits are
defined explicitly (they are both between 0% and 100%). Previously defined coef-
ficient values Kα,bi and Kα,di will also be used in linearization of the nonlinear
model.

The linearized model is very similar to the model described in (14) to (19). The
only difference is that groups of constraints (15) and (16) are replaced, by adapting
inequality (20), with linear ones (21) and (22).

q

∑
j=1

wiv jaijx j +
n

∑
j=q+1

wiv jµijx j +Kα,bi ·
n

∑
j=q+1

wiv jσijx j≥bi (21)

q

∑
j=1

wiv jaijx j +
n

∑
j=q+1

wiv jµijx j +Kα,di ·
n

∑
j=q+1

wiv jσijx j≤di (22)

Linear constraints (21) and (22) can be expressed in simpler notation

q

∑
j=1

wiv jaijx j +
n

∑
j=q+1

wiv j(µij +Kα,biσij)x j (23)

q

∑
j=1

wiv jaijx j +
n

∑
j=q+1

wiv j(µij +Kα,diσij)x j (24)

The entire linearized model is now formulated as

n

∑
j=1

c jx j→min (25)
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subject to

q

∑
j=1

wiv jaijx j +
n

∑
j=q+1

wiv j(µij +Kα,biσij)x j (26)

q

∑
j=1

wiv jaijx j +
n

∑
j=q+1

wiv j(µij +Kα,diσij)x j (27)

n

∑
j=1

x j = D (28)

x j≤M j (29)

x j≥N j (30)

where in (26) and (27) i = 1,2, . . .,m and in (29) and (30) j = 1,2, . . .,n.
The objective function (14) as well as of the constraints (28), (29) and (30)

are identical to (1), (4), (5) and (6) or (14), (17), (18) and (19), respectively. Con-
straints (26) and (27) are the replacement for (15) and (16), respectively. They
reflect uncertainty of contents of ingredients in some components.

The above model is a linear programming problem which can be solved by
using widely available LP optimization software.

3 A deterministic blending model with fixed-size portions
of components

The assumption of linearity in blending models means from a practical point of
view that costs of purchasing and – not explicitly mentioned processing the com-
ponents are strictly proportional to amounts of the components used for blending.
Whereas such an assumption at a first glance seems to be legitimate, it does not
need to. First reason for the lack of proportionality between amounts of the compo-
nents and their costs is connected with pricing policy of suppliers of components.
Purchasing large amounts of components may result in some discounts in unit
prices. However, unit prices of components may also increase e.g. in case when
the capacities of some suppliers are attained and alternative suppliers offer com-
ponents at higher unit prices. Pricing policy is not the only reason of nonlinearity
of the total cost of a blend. Other reasons for nonlinearity can be connected with
start-up costs (resulting from minimal cost of purchase or minimal usage of a com-
ponent) and availability of components in fixed-size portions only (see Chachuat
(2009), Rardin(1998)).

Availability of components in portions can be modelled in two variants. The
first one assumes full usage of portions of components. Its formulation is rela-
tively simple but it restricts applications to those in which target amount of the
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blend is not defined (mainly diet optimization problems) (Lee (2016), Patil and
Kasturi (2016)). Another variant “allows” for using any fraction of the portion of
a component. In this case it is possible to create models in which target amount of
the blend is explicitly defined. Probably, on the the earliest blending model dealing
with availability of components in portions is Westerberg, Bjorklund and Hultman
(1977). However it is restricted to the case when one portion only can be used.

Some extensions of blending models to use many portions of components can
be found in Kowalik (2013, 2018a, 2018b) and Kowalik (2018a, 2018b) will be
used as a starting point for further considerations.

There are n types of components (raw materials) and m types of ingredients
included in them. Each component is available (in sale) in fixed-size portions only
but it can be used in any amounts. In order to simplify the notation reasons, the
model considers components available in fixed-size portions only whereas obvi-
ously blends can be produced of components available both in fixed-size portions
and in arbitrary amounts. If the same component is available in portions of various
sizes then each size of a portion defines a new “virtual” component. It is because
portions of the same component but of different sizes have the same chemical
composition but different unit prices.
Indexes take the following values

i = 1,2, . . .,m, j = 1,2, . . .,n.

Let us denote

• c j – unit cost of the component j (measured in currency units per weight
unit e.g. per kilogram);

• aij – percentage of the ingredient i in the component j;

• bi – lower limit on the percentage of the ingredient i in the blend;

• di – upper limit on the percentage of the ingredient i in the blend;

• v j – yield coefficient for the component j ( v j∈(0,1]);

• wi – yield coefficient for the ingredient i ( w j∈(0,1]);

• Wj – size of a portion of the component j (measured in weight units e.g.
kilograms; can be considered just as net weight of the portion);

• M j – maximal allowed amount of the component j (optional);

• N j – minimal allowed amount of the component j;

• G j – maximal number of available portions of components – stock size
(optional);

• D – required quantity of the blend to be produced.
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Decision variables:

• x j – amounts of components to be used in the blend (measured in weight
units e.g. kilograms);

• y j – numbers of portions of components to be used in the blend (measured
in weight units e.g. kilograms).

The optimization model under consideration is the following

n

∑
j=1

c jy j→min (31)

subject to

n

∑
j=1

wiv jaijx j≤biD (32)

n

∑
j=1

wiv jaijx j≥diD (33)

n

∑
j=1

x j = D (34)

x j≤Wjy j (35)

x j≤M j (36)

x j≥N j (37)

y j≤G j (38)

y j− integer (39)

where in (32) and (33) i = 1,2, . . .,m and in (35), (36), (37) and (38) j = 1,2, . . .,n.
Classical blending models based on linear programming are based on (usu-

ally) implicit, yet rather obvious assumption “amounts of components purchased
= amounts of components used”. This means that the same variables x j stand for
“amounts of components purchased” in the objective function and for “amounts of
components used” in the ingredient-related constraints and in the constraint forcing
the required amount of the blend. Even if losses of some components or ingredi-
ents occur in volumes proportional to their amounts, yield coefficients can reflect
this fact without losing the linearity of the model. The key difference between and
models in which components are available in fixed-size portions is invalidity of the
abovementioned assumption. Amounts of used components grow proportionally
to D – required quantity of the blend but its total cost does not since it is necessary
to buy components in portions of fixed size and fixed price per portion. That is why
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it is necessary to introduce a set of new integer variables y j which denote num-
bers of portions of components purchased. Meanwhile variables xi are interpreted
as “amounts of components used” only. The dependence between the amount of
each component used and the cost of that component purchased in portion is then
a piecewise constant function. An example of the chart of such a function is shown
in Fig.1.

Figure 1. An example of the chart of a piecewise constant function

The objective function (31) denotes the total cost of the components expressed
as the total cost of portions in which they are available. Groups of constraints (32)
(33), (34), (36) and (37) are analogical to (2), (3), (4), (5) and (6), respectively.
Inequalities (35) ensure that the amounts of components used are limited by mul-
tiples of the sizes of their portions i.e. by amounts which must be purchased and
paid for. Inequalities (38) forces number of purchased portions of components
will not excee that the numbers of available portions of components (stock size).
Upper limits on amounts of the components (36) now can result from technolog-
ical reasons only. Limited availability of components (stock size) is represented
by (38).
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4 A stochastic (chance-constrained) blending model with
fixed-size portions of components

The model considered in this chapter is a “fusion” of the ones mentioned in two
previous chapters i.e. it takes into account both uncertainty of content of ingredi-
ents and availability of components in fixed-size portions. Components available
in arbitrary amounts will not be considered for simplicity of the formulation.

There are n types of components (raw materials) and m types of ingredients
included in them. Each component is available (in sale) in fixed-size portions
only but it can be used in any amounts. Among components, q of them (indexed
1,2, . . .,q) have deterministic percentages of the ingredients and n−q components
(indexed q+1,q+2, . . .,n) have stochastic percentages of the ingredients. Unless
specified otherwise, indexes take the following values

i = 1,2, . . .,m, j = 1,2, . . .,n.

Let us denote

• c j – unit cost of the component j (measured in currency units per weight
unit e.g. per kilogram);

• aij, j = 1,2, . . .q – percentage of the ingredient i in the component j (deter-
ministic);

• Aij, j = q+1,q+2, . . .,n – percentage of the ingredient i in the component
j (stochastic - a random variable);

• bi – lower limit on the percentage of the ingredient i in the blend;

• di – upper limit on the percentage of the ingredient i in the blend;

• v j – yield coefficient for the component j ( v j∈(0,1]);

• wi – yield coefficient for the ingredient i ( w j∈(0,1]);

• Wj – size of a portion of the component j (measured in weight units e.g.
kilograms);

• M j – maximal allowed amount of the component j (optional);

• N j – minimal allowed amount of the component j;

• G j – number of available portions of the component j — stock size
(optional);

• D – required quantity of blend to be produced.
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Decision variables:

• x j – amounts of components to be used in the blend (measured in weight
units e.g. kilograms);

• y j – numbers of portions of components to be used in the blend (measured
in weight units e.g. kilograms).

Because of assumption of normality and independence of Aij, the optimization
model will be formulated at once in the following deterministic form (a mixed
integer nonlinear programming problem).

n

∑
j=1

c jy j→min (40)
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x j≥N j (46)

y j≤G j (47)

y j− integer (48)

where in (41) and (42) i = 1,2, . . .,m and in (44), (45), (46), (47) and (48) j =
1,2, . . .,n.

The objective function (40) is the same as (31). Groups of constraints (41),
(42), (43), (45) and (46) are the same as (15),(16), (17), (18) and (19), respectively
(they are adopted from the nonlinear model converted from the stochastic model
with arbitrary amounts of components available). Groups of constraints (44), (47)
and (48) are the same as (35), (38) and (39), respectively (they are adopted from
the deterministic model with components available in portions).
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The linearization is the following one

n

∑
j=1

c jy j→min (49)

subject to

q

∑
j=1

wiv jaijx j +
n

∑
j=q+1

wiv j(µij +Kα,biσij)x j≥biD (50)

q

∑
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n

∑
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wiv j(µij +Kα,diσij)x j≤diD (51)

n

∑
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x j = D (52)

xi≤Wjy j (53)

x j≤M j (54)

x j≥N j (55)

y j≤G j, (56)

y j− integer (57)

where in (50) and (51) i = 1,2, . . .,m and in (53), (54), (55), (56) and (57) j =
1,2, . . .,n.

The objective function (49) is the same as (31) or (40). Groups of constraints
(50) and (51) are the same as (26) and (27), respectively (they are adopted from
the linearization of the nonlinear model converted from the stochastic model with
arbitrary amounts of components available). Groups of constraints (53), (55) and
(56) are the same as (43), (45) and (46) or (17), (18) and (19), respectively (they
are adopted from the nonlinear model converted from the stochastic model with
arbitrary amounts of components available). Groups of constraints (54), (57) and
(58) are the same as (35), (38) and (39) or (44), (47) and (48), respectively (they
are adopted from the deterministic model with components available in portions).
The entire model is a mixed integer linear programming problem.

5 Conclusions

The results presented in this paper show that simple linear blending optimization
models which were created in the very beginnings of operational research in the
1940’s and 1950’s can still be developed. Developments consist in better reflect-
ing real-world conditions of making decisions. Introducing less restrictive assump-
tions in a model does not usually happen at no cost, however. This “cost” is mainly
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connected with the fact that problems created on the basis of more elaborate mod-
els require more calculations necessary to solve them. An increasing demand for
computational power may be “quantitative” (e.g. replacing simple LP models with
more complicated ones) or “qualitative” (i.e. “transition” to another, “more diffi-
cult” type of optimization: from linear to nonlinear, from real-number to integer,
from deterministic to stochastic).

The blending optimization model considered in this paper simultaneously takes
into account two factors: no certainty of content of ingredients in some com-
ponents and availability of components in fixed-size portions. Under additional
assumption of normality and independence of distributions of contents of ingredi-
ents, the model can be expressed a stochastic, more precisely a chance-constrained
linear stochastic programming problem. The primary model can be converted into
an equivalent integer nonlinear programming problem or in an approximate inte-
ger nonlinear programming problem. Both of the converted linear problems (es-
pecially the latter one) are tractable with existing optimization software

Further investigations on the subject may be performed towards connecting un-
certainty of contents of ingredients with other cases of nonlinearity of costs. This
includes costs with multiple fixed charges (components are available in arbitrary
amounts but there are also some extra fixed costs connected e.g. with engaging
trucks for transportation) or fixed costs of preparing a part of the portion of a com-
ponent (e.g. cutting a fragment of the ingot of some alloy in metallurgy). The
exact direction of those investigations should depend mainly on specific needs of
practitioners employed in various industries in which blending optimization is nec-
essary.
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w opakowaniach o ustalonych pojemnościach, Rola informatyki w naukach eko-
nomicznych i społecznych, Innowacje i implikacje interdyscyplinarne, 2/2013,
251–259.

Kowalik P., (2018a), Minimalizacja kosztu mieszanek jako zadanie programowa-
nia liniowego całkowitoliczbowego, [in:] Ludzie nauki w kręgu interdyscypli-
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Lower and upper partial moments of deformed modified
power series distributions
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tial (incomplete) moments, factorial partial (incomplete) moments, recurrence re-
lations, modified power series distributions, generalized Poisson distribution, gen-
eralized negative binomial distribution, generalized logarithmic series, lost game
distributions

Abstract

Recurrence formulae for lower and upper partial moments and lower and up-
per partial descending and ascending factorial moments of deformed modified power
series distributions are derived. The obtained formulae are demonstrated on the de-
formed generalized binomial, the deformed generalized Poisson, the deformed gen-
eralized logarithmic, the deformed lost games distribution and the deformed distri-
bution of the number of customers served in a busy period.

1 Introduction

In observing a random variable, it sometimes happens that some values are in-
correctly observed. For example, in determining the number of defects per unit
or item examined, an inspector may err by reporting units which actually con-
tain a single defect as being perfect or free of defects. The illustrative application
of this situation was studied by Cohen (1960). He considered altered data from
Bortkiewicz’s (1898) classical example on deaths from the kick of a horse in the
Prussian Army. In his example twenty of 200 given records which should have
shown one death were in error by reporting no deaths. The same example was
considered by Williford and Bingham (1979). They considered classical Poisson
distribution assuming some values of one are erroneously observed and reported
as being zeros. Moreover, the Poisson distribution belongs to the class of modified
power series distributions (MPSD) introduced by Gupta (1974). He obtained the

1Lublin University of Technology, Faculty of Fundamentals of Technology, Department of Math-
ematics.
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recurrence relation between the central moments, the factorial moments of MPSD.
Tripathi et al. (1986) obtained the incomplete moments of MPSD. They also ob-
tained the recurrence relation between the incomplete moments about origin and
the factorial incomplete moments of MPSD. Hassan and Ahmad (2009) studied
MPSD where some of the observations corresponding two are misclassified as one
with a positive probability. They obtain recurrence relations among ordinary, cen-
tral and factorial moments of MPSD deformed at the point two. The formulae and
recurrence relations for moments of MPSD deformed at any of the support point
were establish by Murat and Szynal (2003).

On the other hand the importance of partial or incomplete moments are well
known. In statistical decision theory, computations often involve the partial mo-
ments of a random variable. For instance, in finite-action problem with linear loss
functions, the expected value of perfect information and the expected value of sam-
ple information can be expressed in terms of linear loss integrals, which are simply
partial expectation. In Bayesian point estimation problem with linear loss func-
tions, partial expectations are use to determine the optimal decision, or point es-
timate. Some interesting examples, such as insurance purchasing, Bayesian point
estimation, inventory theory, theory of the firm, stopping rules, screening and clas-
sifications, are discussed by Winkler et al. (1972). Antle (2010) proposed the use
of partial-moment functions as a flexible way to characterize, estimate, and test
asymmetric effects of inputs on output as deviations from a reference value, such
as the mean or a behaviourally determined threshold. This research contributed
to the growing body of literature on methods to characterize agricultural output
as a random variable determined by complex interactions between management
decisions and exogenous random events such as weather and pests.

The present contribution deals with formulae and recurrence relations for lower
and upper partial moments, lower descending and ascending factorial partial mo-
ments and upper descending and ascending factorial partial moments of deformed
modified power series distribution with special reference to the deformed general-
ized binomial, the deformed generalized Poisson, the deformed generalized loga-
rithmic, the deformed lost games distribution and the deformed distribution of the
number of customers served in a busy period. These moments have been establish
with use of the method presented in Gupta (1974) and expressed in terms of its first
derivative. From these relations we can get other characteristics of deformed distri-
butions mentioned above, such as the coefficients of skewness and kurtosis which
play an important part in describing statistical properties of random variables.

2 Definitions and notations

In this study we are concerned with the case in which a value s+ 1 of MPSD is
reported as s, where s = 0,1,2, . . . . Suppose the number of defectives actually
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present in a sample is a random variable with MPSD. Let α designate the prob-
ability that a sample which actually contains s+ 1 defectives is misclassified by
reporting it as containing only s defectives. In all other cases we assume correct
observation and reporting of defectives. Let X designate the number of defectives
reported in a sample. The distribution of random variable X is called deformed
modified power series distribution (DMPSD) and its probability function is writ-
ten as

P[X = x] =



[
1+αg(θ)a(s+1)

a(s)

]
a(s)[g(θ)]s

f (θ) , x = s,

(1−α)a(s+1)[g(θ)]s+1

f (θ) , x = s+1,

a(x)[g(θ)]x

f (θ) ,
x 6= s,s+1, x ∈ N∪{0};

0 < α ≤ 1,

(1)

where f (θ) = ∑a(x)[g(θ)]x, g(θ) is positive, finite and differentiable and coeffi-
cients a(x) are free of θ .

The aim of this article is to establish the recurrence relation for moments of X
defined in the following definitions.

Definition 1 The rrr-th lower partial moment about a point ccc (r-th incomplete
moment on the left about a point c) is defined by

µr(t,c) =
t

∑
x=0

(x− c)rP[X = x]. (2)

Definition 2 The rrr-th upper partial moment about a point ccc (r-th incomplete
moment on the right about a point c) is defined by

µ
r(t,c) =

∞

∑
x=t

(x− c)rP[X = x]. (3)

Definition 3 The rrr-th lower partial descending factorial moment about a point
ccc (r-th incomplete descending factorial moment on the left about a point c) is de-
fined by

µ(r)(t,c) =
t

∑
x=0

(x− c)(r)P[X = x], (4)

where y(r) = y(y−1)(y−2) · · ·(y− r+1).

Definition 4 The rrr-th upper partial descending factorial moment about a point
ccc (r-th incomplete descending factorial moment on the right about a point c) is de-
fined by

µ
(r)(t,c) =

∞

∑
x=t

(x− c)(r)P[X = x]. (5)
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Definition 5 The rrr-th lower partial ascending factorial moment about a point
ccc (r-th incomplete ascending factorial moment on the left about a point c) is defined
by

µ[r](t,c) =
t

∑
x=0

(x− c)[r]P[X = x], (6)

where y[r] = y(y+1)(y+2) · · ·(y+ r−1).

Definition 6 The rrr-th upper partial ascending factorial moment about a point
ccc (r-th incomplete ascending factorial moment on the right about a point c) is
defined by

µ
[r](t,c) =

∞

∑
x=t

(x− c)[r]P[X = x]. (7)

Moreover, we will use the following notation for

• ordinary lower and upper partial moments: µr(t,0)=mr(t), µr(t,0)=mr(t),

• central lower and upper partial moments: µr(t,m1(t))= νr(t), µr(t,m1(t))=
νr(t),

• factorial descending lower and upper partial moments: µ(r)(t,0) = m(r)(t),
µ(r)(t,0) = m(r)(t),

• factorial ascending lower and upper partial moments: µ[r](t,0) = m[r](t),
µ [r](t,0) = m[r](t).

3 Recurrence relations for lower partial moments
of DMPSD

In this Section we consider only the situation when a point of deformation s is less
than a limit t because if t < s then the lower partial moments are independent of a
point s. When t ≤ s then relations for lower partial moments of DMPSD coincide
with formulae obtained by Gupta (1974).

Theorem 1 The (r + 1)-th lower partial moment about a point c of DMPSD is
given by

µr+1(t,c) =
g(θ)
g′(θ)

dµr(t,c)
dθ

+

(
f ′(θ)
f (θ)

g(θ)
g′(θ)

− c
)
· (8)

µr(t,c)−α(s− c)r a(s+1)[g(θ)]s+1

f (θ)
, r ≥ 0.
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Proof. For DMPSD with s < t we have

µr(t,c) =
t

∑
x=0

(x− c)r a(x)[g(θ)]x

f (θ)
+ (9)

[
(s− c)r− (s+1− c)r]

α
a(s+1)[g(θ)]s+1

f (θ)
.

Differentiation (9) with respect to θ gives

dµr(t,c)
dθ

=
t

∑
x=0

(x− c)ra(x)
x[g(θ)]x−1g′(θ)

f (θ)
−

t

∑
x=0

(x− c)ra(x)
[g(θ)]x f ′(θ)

[ f (θ)]2

+
[
(s− c)r− (s+1− c)r]

αa(s+1)[g(θ)]s+1
[
(s+1)

g′(θ)
g(θ)

− f ′(θ)
f (θ)

]
.

Moreover, from (9) we have

α

t

∑
x=0

(x− c)r [g(θ)]
xa(x)

f (θ)
= µr(t,c)−β (s− c)r.

Hence
dµr(t,c)

dθ
=

g′(θ)
g(θ)

µr+1(t,c)+
[

c
g′(θ)
g(θ)

− f ′(θ)
f (θ)

]
µr(t,c)

+(s− c)r
αa(s+1)

[g(θ)]sg′(θ)
f (θ)

.

We get (8) after rearranging above formula.

Using (8) with c = 0 and next with c = m1(t) we obtain relations for lower
partial ordinary and central moments of DMPSD

mr+1(t) =
g(θ)
g′(θ)

dmr(t)
dθ

+
f ′(θ)
f (θ)

g(θ)
g′(θ)

mr(t) (10)

−αsr a(s+1)[g(θ)]s+1

f (θ)
, r ≥ 0.

νr+1(t) =
g(θ)
g′(θ)

dνr(t)
dθ

+αa(s+1)
[g(θ)]s+1

f (θ)
νr(t) (11)

−αa(s+1)
[g(θ)]s+1

f (θ)
[s−m1(t)]

r , r ≥ 0,

where

m1(t) =
f ′(θ)
f (θ)

g(θ)
g′(θ)

+α
a(s+1)[g(θ)]s+1

f (θ)
. (12)

Now we derive recurrence relation for lower partial descending factorial mo-
ments.
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Theorem 2 The (r+1)-th lower partial descending factorial moment about a point
c of DMPSD is given by

µ(r+1)(t,c) =
g(θ)
g′(θ)

dµ(r)(t,c)
dθ

+

(
f ′(θ)
f (θ)

g(θ)
g′(θ)

− c− r
)

µ(r)(t,c) (13)

−α(s− c)(r)
a(s+1)[g(θ)]s+1

f (θ)
, r ≥ 0.

Proof. For DMPSD with s < t we have

µ(r)(t,c) =
t

∑
x=0

(x− c)(r)
[g(θ)]xa(x)

f (θ)
+
[
(s− c)(r)− (s+1− c)(r)

]
(14)

·αa(s+1)
[g(θ)]s+1

f (θ)
.

Differentiation (14) with respect to θ with use of the property of descending fac-
torial

x(x− c)(r) = (x− c)(r+1)+(x− c)(r)(c+ r) (15)

gives

dµ(r)(t,c)
dθ

=
g′(θ)
g(θ)

t

∑
x=0

(x− c)(r+1) a(x)[g(θ)]x

[ f (θ)]
(16)

+

[
(c+ r)

g′(θ)
g(θ)

− f ′(θ)
f (θ)

] t

∑
x=0

(x− c)(r)
a(x)[g(θ)]x

[ f (θ)]

+
[
(s− c)(r)− (s+1− c)(r)

]
αa(s+1)

[g(θ)]s+1

f (θ)

·
[
(s+1)

g′(θ)
g(θ)

− f ′(θ)
f (θ)

]
.

Combining (14) and (16) we obtain

dµ(r)(t,c)
dθ

=
g′(θ)
g(θ)

µ(r+1)(t,c)+
[
(c+ r)

g′(θ)
g(θ)

− f ′(θ)
f (θ)

]
µ(r)(t,c)

+α(s− c)(r)a(s+1)
[g(θ)]s

f (θ)
.

Hence we obtain (13).

Putting in (13) c = 0 we get recurrence relations for lower descending factorial
moments of DMPSD

m(r+1)(t) =
g(θ)
g′(θ)

dm(r)(t)
dθ

+

[
f ′(θ)g(θ)
g′(θ) f (θ)

− r
]

m(r)(t) (17)

−αs(r)a(s+1)
[g(θ)]s+1

f (θ)
, r ≥ 0.
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We end this Section with lower partial ascending factorial moments.

Theorem 3 The (r+1)-th lower partial ascending factorial moment about a point
c of DMPSD is given by

µ[r+1](t,c) =
g(θ)
g′(θ)

dµ[r](t,c)
dθ

+

[
f ′(θ)
f (θ)

g(θ)
g′(θ)

− c+ r
]

µ[r](t,c) (18)

−α(s− c)[r]a(s+1)
[g(θ)]s+1

f (θ)
, r ≥ 0.

Proof. For DMPSD with s < t we have

µ[r](t,c) =
t

∑
x=0

(x− c)[r]
a(x)[g(θ)]x

f (θ)
+
[
(s− c)[r]− (s+1− c)[r]

]
(19)

·αa(s+1)
[g(θ)]s+1

f (θ)
.

Differentiating (19) with respect to θ and using the property of ascending factorial

x(x− c)[r] = (x− c)[r+1]− (x− c)[r](c− r)

we get

dµ[r](t,c)
dθ

=
g′(θ)
g(θ)

t

∑
x=0

(x− c)[r+1] a(x)[g(θ)]
x

[ f (θ)]
(20)

+

[
(c− r)

g′(θ)
g(θ)

− f ′(θ)
f (θ)

] t

∑
x=0

(x− c)[r]
a(x)[g(θ)]x

[ f (θ)]

+
[
(s− c)[r]− (s+1− c)[r]

]
αa(s+1)

[g(θ)]s+1

f (θ)

·
[
(s+1)

g′(θ)
g(θ)

− f ′(θ)
f (θ)

]
.

Combining (19) and (20) gives

dµ[r](t,c)
dθ

=
g′(θ)
g(θ)

µ[r+1](t,c)+
[
(c− r)

g′(θ)
g(θ)

− f ′(θ)
f (θ)

]
µ[r](t,c)

+α(s− c)[r]a(s+1)
[g(θ)]s

f (θ)
.

After some simply calculations we get (18).

Putting in (18) c = 0 we get recurrence relations for lower ascending factorial
moments of DMPSD The (r+ 1)-th lower partial ascending factorial moment of
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DMPSD is given by

m[r+1](t) =
g(θ)
g′(θ)

dm[r](t)
dθ

+

(
f ′(θ)
f (θ)

g(θ)
g′(θ)

+ r
)

m[r](t) (21)

−αs[r]a(s+1)
[g(θ)]s+1

f (θ)
, r ≥ 0.

Remark 1 From (8) and (17) for t→∞ we can get relations for complete moments
of non-zero DMPSD obtained by Murat and Szynal (2003).

4 Recurrence relations for upper partial moments
of DMPSD

It is obvious that for t ≥ s the upper partial moments are independent of a deforma-
tion point s and recurrence relations for these moments are the same as formulae
obtained by Gupta (1974). So we consider only the situation when s is greater
than t. Following the methods and techniques from previous section we obtain
undermentioned results.

Theorem 4 The (r + 1)-th upper partial moment about a point c of DMPSD is
given by

µ
r+1(t,c) =

g(θ)
g′(θ)

dµr(t,c)
dθ

+

(
f ′(θ)
f (θ)

g(θ)
g′(θ)

− c
)

µ
r(t,c) (22)

−α(s− c)r a(s+1)[g(θ)]s+1

f (θ)
, r ≥ 0.

Using (22) with c = 0 and next with c = m1(t) we obtain relations for upper
partial ordinary and central moments of DMPSD.

mr+1(t) =
g(θ)
g′(θ)

dmr(t)
dθ

+
f ′(θ)
f (θ)

g(θ)
g′(θ)

mr(t) (23)

−αsr a(s+1)[g(θ)]s+1

f (θ)
, r ≥ 0,

ν
r+1(t) =

g(θ)
g′(θ)

dνr(t)
dθ

+αa(s+1)
[g(θ)]s+1

f (θ)
ν

r(t) (24)

−αa(s+1)
[g(θ)]s+1

f (θ)
[s−m1(t)]

r , r ≥ 0,

where m1(t) is given by (12).
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Theorem 5 The (r+1)-th upper partial descending factorial moment about a point
c of DMPSD is given by

µ
(r+1)(t,c) =

g(θ)
g′(θ)

dµ(r)(t,c)
dθ

+

(
f ′(θ)
f (θ)

g(θ)
g′(θ)

− c− r
)

µ
(r)(t,c) (25)

−α(s− c)(r)
a(s+1)[g(θ)]s+1

f (θ)
, r ≥ 0.

From (25) for c = 0 we obtain recurrence relations for upper descending fac-
torial partial moments of DMPSD

m(r+1)(t) =
g(θ)
g′(θ)

dm(r)(t)
dθ

+

[
f ′(θ)g(θ)
g′(θ) f (θ)

− r
]

m(r)(t) (26)

−αs(r)a(s+1)
[g(θ)]s+1

f (θ)
, r ≥ 0.

Theorem 6 The (r+1)-th upper partial ascending factorial moment about a point
c of DMPSD is given by

µ
[r+1](t,c) =

g(θ)
g′(θ)

dµ [r](t,c)
dθ

+

[
f ′(θ)
f (θ)

g(θ)
g′(θ)

− c+ r
]

µ
[r](t,c) (27)

−α(s− c)[r]a(s+1)
[g(θ)]s+1

f (θ)
, r ≥ 0.

From (27) with c = 0 we get

m[r+1](t) =
g(θ)
g′(θ)

dm[r](t)
dθ

+

(
f ′(θ)
f (θ)

g(θ)
g′(θ)

+ r
)

m[r](t) (28)

−αs[r]a(s+1)
[g(θ)]s+1

f (θ)
, r ≥ 0.

Remark 2 From (22) and (26) for t → 0 we can get relations for complete mo-
ments of DMPSD obtained by Murat and Szynal (2003).

5 Examples

This Section is devoted to illustrative examples of formulae which we obtained in
Section 3 and 4. We consider some special cases of DMPSD.

Example 1 A discrete random variable X has deformed generalized Poisson dis-
tribution if its probability mass function is given by (1) with

a(x) =
b(b+ax)x−1

x!
, g(θ) = θe−aθ , f (θ) = ebθ ,
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where x = 0,1,2, ...; θ > 0, | θa |< 1.
The generalized Poisson distribution (α = 0) was introduced in Consul and

Jain (1973), and studied extensively by Consul (1989). Applications of the gen-
eralized Poisson distribution can be found in settings where one seeks to describe
the distribution of an event that occurs rarely in a short period, but where we ob-
serve the frequency of its occurrence in longer periods of time. The distribution
was found to accurately describe phenomena as diverse as the observed number of
industrial accidents and injuries, where a learning effect may be present, the spa-
tial distribution of insects, where initial occupation of a spot by a member of the
species has an influence on the attractiveness of the spot to other members of the
species, and the number of units of different commodities purchased by consumers,
where current sales have an impact on the level of subsequent sales through repeat
purchases.

Using (10) we get the following recurrence relation for lower partial ordinary
moments for the deformed generalized Poisson distribution

mr+1(t) =
θ

1−aθ

dmr(t)
dθ

+
bθ

1−aθ
mr(t)

−αsr (b+a+as)s

(s+1)!
θ

s+1e−θ(b+a+as), r ≥ 0.

From (11) we obtain the recurrence relation for lower partial central moments for
the deformed generalized Poisson distribution as follows

νr+1(t) =
θ

1−aθ

dνr(t)
dθ

+α
b(b+a+as)s

(s+1)!
θ

s+1e−θ(b+a+as)
νr(t)

−α
b(b+a+as)s

(s+1)!
θ

s+1e−θ(b+a+as)[sr−m1(t)
]r
, r ≥ 0,

where m1(t) =
bθ

1−aθ
−α

b(b+a+as)s

(s+1)!
θ

s+1e−θ(b+a+as).

Relations for partial factorial moments for deformed generalized Poisson dis-
tribution we obtain from (17), (21), (26) and (28)

m(r+1)(t) =
θ

1−aθ

dm(r)(t)
dθ

+

(
bθ

1−aθ
− r
)

m(r)(t)

−αs(r)
(b+a+as)s

(s+1)!
θ

s+1e−θ(b+a+as), r ≥ 0,

m[r+1](t) =
θ

1−aθ

dm[r](t)
dθ

+

(
bθ

1−aθ
+ r
)

m[r](t)

−αs[r]
(b+a+as)s

(s+1)!
θ

s+1e−θ(b+a+as), r ≥ 0,
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m(r+1)(t) =
θ

1−aθ

dm(r)(t)
dθ

+

(
bθ

1−aθ
− r
)

m(r)(t)

−αs(r)
(b+a+as)s

(s+1)!
θ

s+1e−θ(b+a+as), r ≥ 0,

m[r+1](t) =
θ

1−aθ

dm[r](t)
dθ

+

(
bθ

1−aθ
+ r
)

m[r](t)

−αs[r]
(b+a+as)s

(s+1)!
θ

s+1e−θ(b+a+as), r ≥ 0.

From above formulae putting a = 0 and b = 1 we can obtain recurrence rela-
tion for partial moments of deformed Poisson distribution with parameter θ .

Example 2 A random variable X has deformed generalized negative binomial
distribution if its probability mass function is given by (1) with

a(x) =
nΓ(n+bx)

x!Γ(n+bx− x+1)
, g(θ) = θ(1−θ)b−1, f (θ) = (1−θ)−n,

where for x = 0,1,2, ...; 0 < θ < 1, | θb |< 1.
The generalized negative binomial distribution (α = 0) was obtained as a par-

ticular family of Lagrangian distributions by Consul and Shenton (1972, 1973).
They showed that the class of Lagrangian distributions provide the distributions
of the busy periods of a single server under certain conditions. Neyman (1939,
1966) showed that the distribution of the total number N of infected beings start-
ing from those infected by a single infectious and up to the moment of extinction
of the epidemic is a particular case of the generalized negative binomial distribu-
tion. Kumar (1981) gave some more applications of the class of the generalized
negative binomial distribution in queueing theory and epidemiology.

Using (10) we get the following recurrence relation for lower partial ordinary
and central moments for the deformed negative binomial distribution

mr+1(t) =
θ(1−θ)

1−bθ

dmr(t)
dθ

+
nθ

1−bθ
mr(t)

−αsr nΓ(n+bx)[θ(1−θ)b−1]s+1

x!Γ(n+bx− x+1)(1−θ)−n , r ≥ 0,

νr+1(t) =
θ(1−θ)

1−bθ

dνr(t)
dθ

+
nθ

1−bθ
νr(t)

−αsr nΓ(n+bx)[θ(1−θ)b−1]s+1

x!Γ(n+bx− x+1)(1−θ)−n

[
s−m1(t)

]r
, r ≥ 0,

where m1(t) =
nθ

1−θb
−α

nΓ(n+bx)[θ(1−θ)b−1]s+1

x!Γ(n+bx− x+1)(1−θ)−n .
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Relations for lower partial descending and ascending factorial moments for
deformed generalized negative binomial distribution we obtain from (17) and (21)

m(r+1)(t) =
θ(1−θ)

1−bθ

dm(r)(t)
dθ

+

(
nθ

1−bθ
− r
)

m(r)(t)

−αs(r)
nΓ(n+bx)[θ(1−θ)b−1]s+1

x!Γ(n+bx− x+1)(1−θ)−n , r ≥ 0,

m[r+1](t) =
θ(1−θ)

1−bθ

dm[r](t)
dθ

+

(
nθ

1−bθ
+ r
)

m[r](t)

−αs[r]
nΓ(n+bx)[θ(1−θ)b−1]s+1

x!Γ(n+bx− x+1)(1−θ)−n , r ≥ 0,

m(r+1)(t) =
θ(1−θ)

1−bθ

dm(r)(t)
dθ

+

(
nθ

1−bθ
− r
)

m(r)(t)

−αs(r)
nΓ(n+bx)[θ(1−θ)b−1]s+1

x!Γ(n+bx− x+1)(1−θ)−n , r ≥ 0,

m[r+1](t) =
θ(1−θ)

1−bθ

dm[r](t)
dθ

+

(
nθ

1−bθ
+ r
)

m[r](t)

−αs[r]
nΓ(n+bx)[θ(1−θ)b−1]s+1

x!Γ(n+bx− x+1)(1−θ)−n , r ≥ 0.

Putting b= 0 we can get relations for partial moments of deformed binomial distri-
bution and putting b = 1 we can obtain relations for partial moments of deformed
binomial.

Example 3 A random variable X has deformed generalized logarithmic series
distribution if its probability mass function fulfil (1) with

a(x) =
Γ(bx)

xΓ(x)Γ(bx− x+1)
, g(θ) = θ(1−θ)b−1, f (θ) =−ln(1−θ).

The generalized logarithmic series distribution (α = 0) was obtained by Jain and
Gupta (1973) through Lagrange expansion of the ordinary logarithmic series dis-
tribution. It is also possible to get the generalized logarithmic series distribution
as a limiting form of the zero truncated generalized negative binomial distribution,
see Jain (1975).
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Relations for partial ordinary and central moments for deformed generalized
logarithmic series distribution are get from (10), (17) and (21)

mr+1(t) =
θ(1−θ)

1−bθ

dmr(t)
dθ

− θ

(1−bθ) ln(1−θ)
mr(t)

+αsr Γ(b+bs)
[
θ(1−bθ)b−1

]s+1

(s+1)Γ(s+1)Γ(b+bs− s) ln(1−θ)
, r ≥ 0,

νr+1(t) =
θ(1−θ)

1−bθ

dνr(t)
dθ

− θ

(1−bθ) ln(1−θ)
νr(t)

+αsr Γ(b+bs)
[
θ(1−bθ)b−1

]s+1

(s+1)Γ(s+1)Γ(b+bs− s) ln(1−θ)

(
s−m1(t)

)r
, r ≥ 0,

where

m1(t) =−
θ

(1−bθ) ln(1−θ)
+αsr Γ(b+bs)

[
θ(1−bθ)b−1

]s+1

(s+1)Γ(s+1)Γ(b+bs− s) ln(1−θ)
.

Using formulae (17) and (21) we obtain partial factorial moments as follows

m(r+1)(t) =
θ(1−θ)

1−bθ

dm(r)(t)
dθ

−
(

θ

(1−bθ) ln(1−θ)
+ r
)

m(r)(t)

+αsr Γ(b+bs)
[
θ(1−bθ)b−1

]s+1

(s+1)Γ(s+1)Γ(b+bs− s) ln(1−θ)
, r ≥ 0,

m[r+1](t) =
θ(1−θ)

1−bθ

dm[r](t)
dθ

−
(

θ

(1−bθ) ln(1−θ)
− r
)

m[r](t)

+αsr Γ(b+bs)
[
θ(1−bθ)b−1

]s+1

(s+1)Γ(s+1)Γ(b+bs− s) ln(1−θ)
, r ≥ 0,

m(r+1)(t) =
θ(1−θ)

1−bθ

dm(r)(t)
dθ

−
(

θ

(1−bθ) ln(1−θ)
+ r
)

m(r)(t)

+αsr Γ(b+bs)
[
θ(1−bθ)b−1

]s+1

(s+1)Γ(s+1)Γ(b+bs− s) ln(1−θ)
, r ≥ 0,

m[r+1](t) =
θ(1−θ)

1−bθ

dm[r](t)
dθ

−
(

θ

(1−bθ) ln(1−θ)
− r
)

m[r](t)

+αsr Γ(b+bs)
[
θ(1−bθ)b−1

]s+1

(s+1)Γ(s+1)Γ(b+bs− s) ln(1−θ)
, r ≥ 0.

When we put b= 1 in above formulae we get partial moments of deformed Fisher’s
logarithmic series distribution.
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Example 4 A random variable X has deformed lost games distribution if its
probability mass function is defined by (1) with

a(x) =
a

2x−a

(
2x−a

x

)
, f (θ) = θ

a, g(θ) = θ(1−θ),

where x = a,a+1, ...; a≥ 1, 0 < θ < 1
2 .

The lost games distribution (α = 0) was obtained by Kemp and Kemp (1968)
as the distribution of the total number of games lost by the ruined gambler starting
with a monetary units against an infinitely rich adversary. They also showed that
this distribution can be obtained as the distribution of the number of customers
served in a busy period starting with a customers of an M/M/1 queue.

In this case relations for partial ordinary and central moments we get from
(10), (17) and (21)

mr+1(t) =
θ(1−θ)

1−2θ

dmr(t)
dθ

+
a(1−θ)

1−2θ
mr(t)

−αsr a
2s−a+2

(
2s−a+2

s+1

)
θ

s+1−a(1−θ)s+1, r ≥ 0,

νr+1(t) =
θ(1−θ)

1−2θ

dνr(t)
dθ

+
a(1−θ)

1−2θ
νr(t)

−αsr a
2s−a+2

(
2s−a+2

s+1

)
θ

s+1−a(1−θ)s+1
(

s−m1(t)
)r
, r ≥ 0,

where m1(t) =
a(1−θ)

1−2θ
−α

a
2s−a+2

(
2s−a+2

s+1

)
θ

s+1−a(1−θ)s+1.

Relations for partial factorial moments are as follows

m(r+1)(t) =
θ(1−θ)

1−2θ

dm(r)(t)
dθ

+

(
a(1−θ)

1−2θ
− r
)

m(r)(t)

−αs(r)
a

2s−a+2

(
2s−a+2

s+1

)
θ

s+1−a(1−θ)s+1, r ≥ 0,

m[r+1](t) =
θ(1−θ)

1−2θ

dm[r](t)
dθ

+

(
a(1−θ)

1−2θ
− r
)

m[r](t)

−αs[r]
a

2s−a+2

(
2s−a+2

s+1

)
θ

s+1−a(1−θ)s+1, r ≥ 0,

m(r+1)(t) =
θ(1−θ)

1−2θ

dm(r)(t)
dθ

+

(
a(1−θ)

1−2θ
− r
)

m(r)(t)

−αs(r)
a

2s−a+2

(
2s−a+2

s+1

)
θ

s+1−a(1−θ)s+1, r ≥ 0,
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m[r+1](t) =
θ(1−θ)

1−2θ

dm[r](t)
dθ

+

(
a(1−θ)

1−2θ
− r
)

m[r](t)

−αs[r]
a

2s−a+2

(
2s−a+2

s+1

)
θ

s+1−a(1−θ)s+1, r ≥ 0.

Example 5 A random variable X has deformed distribution of the number of
customers served in a busy period of the queue M/M/1 if its probability mass
function is given by (1) with

a(x) =
a

2x−a

(
2x−a

x

)
, f (θ) =

(
1+θ

θ

)a

, g(θ) =
θ

(1+θ)2 .

In this case partial ordinary and central moments fulfil recurrence relations

mr+1(t) =
θ(1+θ)

1−θ

dmr(t)
dθ

+
a

θ −1
mr(t)

−αsr a
2s−a+2

(
2s−a+2

s+1

)
θ a+s+1

(1+θ)a+2s+2 , r ≥ 0,

νr+1(t) =
θ(1+θ)

1−θ

dνr(t)
dθ

+
a

θ −1
νr(t)

−α
a

2s−a+2

(
2s−a+2

s+1

)
θ a+s+1

(1+θ)a+2s+2

(
s−m1(t)

)r
, r ≥ 0,

where

m1(t) =
a

θ −1
−α

a
2s−a+2

(
2s−a+2

s+1

)
θ a+s+1

(1+θ)a+2s+2 .

Relations for partial factorial moments are as follows

m(r+1)(t) =
θ(1+θ)

1−θ

dm(r)(t)
dθ

+

(
a

θ −1
− r
)

m(r)(t)

−αs(r)
a

2s−a+2

(
2s−a+2

s+1

)
θ a+s+1

(1+θ)a+2s+2 , r ≥ 0,

m[r+1](t) =
θ(1+θ)

1−θ

dm[r](t)
dθ

+

(
a

θ −1
+ r
)

m[r](t)

−αs[r]
a

2s−a+2

(
2s−a+2

s+1

)
θ a+s+1

(1+θ)a+2s+2 , r ≥ 0,

m(r+1)(t) =
θ(1+θ)

1−θ

dm(r)(t)
dθ

+

(
a

θ −1
− r
)

m(r)(t)

−αs(r)
a

2s−a+2

(
2s−a+2

s+1

)
θ a+s+1

(1+θ)a+2s+2 , r ≥ 0,
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m[r+1](t) =
θ(1+θ)

1−θ

dm[r](t)
dθ

+

(
a

θ −1
+ r
)

m[r](t)

−αs[r]
a

2s−a+2

(
2s−a+2

s+1

)
θ a+s+1

(1+θ)a+2s+2 , r ≥ 0.

6 Conclusion

Obtained recurrence relations for partial lower and upper moments generalize and
extend formulae for moments established by Gupta, Gupta and Thripati (1986).
They also complement formulae given by Murat and Szynal (2003).
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Investment risks and their measurement
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Abstract

The article is devoted to analysis of investment risks and their measurement.
Three approaches for risk measurement are examined. These approaches have been
applied to risk estimation of basic cryptocurrencies. Statistical assessment of ba-
sic risk measures from each approach was accomplished. The investigation shows
that cryptocurrencies have completely distinctive characteristics of risk-return cor-
responding. It distinguishes cryptocurrencies from traditional investment assets and
from new investment opportunities. The results are important for investment and risk
management purposes.

1 Introduction

Risk takes a central place in the framework of investment decision making. The
relationship between return and risk is in the core of modern investment thinking.
As a rule, higher return should be associated with higher risk. The opposite cor-
respondence is also true: higher risk should be covered by additional return (risk
premium). Consequently, it is very logically to analyze risk-return correspondence
before investment decision.

A source anchor of construction of such correspondence is risk measurement.
Risk measurement is a procedure of assigning some numerical value to risk. This
procedure can be formalized for investment risk by following scheme:

Procedure of risk measurement
1Taras Shevchenko National University of Kyiv, Department of Economic Cybernetics.
2Technical University of Lublin, Faculty of Management, Department of Quantitative Methods

in Management.
3Taras Shevchenko National University of Kyiv, Department of Economic Cybernetics.
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So, risk measurement supposes to introduce some mapping ρ which each ran-
dom variable R (representing return of investment asset) assigned nonnegative
number ρ (R) ∈ [0; +∞]. Let us consider this procedure in details. The return of
investment over a period of time [t; t +1] will be expressed through the formula:

Rt, t+1 =
Pt+1−Pt

Pt
,

where Pt and Pt+1 are prices of an investment asset at times t and t + 1, respec-
tively. Rt, t+1 will be a random variable, because the future price Pt+1 is unknown.
Thereafter R, which reflects return over the time, is also a random variable.

Assigning a numerical value for risk is complicated because various approaches
for presentation of mapping ρ exist. Three conceptual approaches are the most sig-
nificant ones:

• Risk measurement is based on reflecting the variability of return and income.

• Risk measurement is focused on losses in negative situation.

• Risk measurement associates with sensitivity of return to some factors. Mea-
surement is focused on response level.

Each approach incorporates some important characteristics of multifaceted no-
tion of risk and has a number of indicators. In general, there are several dozen of
risk measures, which represent one or another aspect of risk (example is presented
in Szego (2004)). An attempt of understanding the essence of properties which
should be represented in risk measure was formulated in Artzner et al. (1999).
The authors created a notion of a coherent risk measure. Risk measure ρ is coher-
ent if satisfies the following properties (axioms):

Axiom 1 Sub-additivity. For all R1 and R2 we have

ρ (R1 +R2)≤ ρ (R1)+ρ (R2)

Axiom 2 Positive homogeneity. For all R and for all λ ≥ 0 we have

ρ (λR) = λρ (R)

Axiom 3 Monotonicity. If R1 ≥ R2 then ρ (R1)≤ ρ (R2)

Axiom 4 Translation invariance. For all R and for all α ≥ 0 we have

ρ (R+α) = ρ (R)−α
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Each of these axioms formalizes some essential investment risk property. Thus
Axiom 1 presents diversification effect. Axiom 2 describes linear increase of risk
if some investment position is linearly increased. Axiom 3 presents a natural prop-
erty: if returns for one investment are always higher than returns for other invest-
ment, then risk of the first investment is lower. Axiom 4 formalizes adding to
investment a free-risk asset.

Examples of coherent risk measures are Conditional Value-at-Risk (considered
below, see Rockafellar and Uryasev (2000)) and the Fischer measure (see Fischer
(2003)).

It is necessary to note that presented approach for coherency is not unique.
Approaches of coherency are considered in Kaminskyi (2006).

Below we consider applications of three approaches of risk measurement to
cryptocurrencies. Cryptocurrencies are one of the alternative investment assets
which demonstrated high developing since last years. The investment problems of
cryptocurrencies are discussed in Lee, Guo and Wang (2018), Chan et al. (2017),
Gangwal (2018) and Trimborn, Mingyang and Härdle (2017),

We have chosen for analysis cryptocurrencies with capitalization higher than
1 billion USD. They are:

Table 1. A list of cryptocurrencies chosen for analysis

Cryptocurrency Ticker
tape

Start day
of trading

Capitalisation
on 17.08.2018

Share of total
market

capitalization

Bitcoin BTC 18.07.2010 $111.23B 52.1%
Ethereum ETH 10.03.2016 $30.27B 14.2%
Ripple XRP 22.01.2015 $12.28B 5.8%
Bitcoin Cash BCH 03.08.2017 $9.31B 4.4%
EOS EOS 02.07.2017 $4.34B 2.0%
Stellar Lumens XLM 22.02.2017 $4.20B 2.0%
Litecoin LTC 24.08.2016 $3.31B 1.6%
Tether USDT 14.04.2017 $2.68B 1.3%
Cardano ADA 31.12.2017 $2.59B 1.2%
Monero XMR 30.01.2015 $1.55B 0.7%
Ethereum Classic ETC 28.07.2016 $1.42B 0.7%
TRON TRX 14.11.2017 $1.39B 0.7%
IOTA MIOTA 14.06.2017 $1.34B 0.6%
Dash DASH 04.03.2017 $1.29B 0.6%
NEO NEO 08.09.2017 $1.14B 0.5%

Source: Data sources used for investigation were https://investing.com and http://thecrix.de
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2 The variability approach for risk measurement

The variability approach is focused on dispersion or deviation from an expected
outcome. The most simple risk measure is a range which equals to difference
between maximum and minimum possible values:

L(R) = max[0,T ]R(t)−min[0,T ]R(t) .

This risk indicator is important for the investor from the point of view of receiv-
ing a general picture about future possibilities (it is assumed that future distribution
will be the same as historical distribution). The shortcoming of this risk indicator
is that maximum and minimum prices were on peak and crisis times. These may
be rare events and not relevant for periods of stability. Consequently, it is more
efficient to use inter-quartile range:

Q(R) = Q75% (R(t))−Q25% (R(t))

Of course, the most famous risk measure used in this approach is standard
deviation which characterizes deviation from the expected value of R:

σ (R) =

√√√√√+∞∫
−∞

(R−E (R))2 dF(R)

Expected value of R is defined as

E (R) =
+∞∫
−∞

RdF (R)

where F is the distribution function of the random variable R.
If we use statistical estimations of R, then unbiased estimate of standard devi-

ation is:

σ̂ (R) =

√
1

T −1

T

∑
t=1

(R(t)−E (R))2

Statistical estimation of E (R) can be calculated by formula:

E (R) =
1
T

T

∑
t=1

R(t) (T -number of periods).

The other indicators which can be used for risk measurement in the frameworks
of the variability approach are skewness and kurtosis. Skewness summarizes di-
vergence from symmetry of distribution:
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S (R) = E
(

R−E(R)
σ (R)

)3

=
µ3 (R)

σ (R)3

where µ3 (R) = E(R−E(R))3.
The unbiased statistical estimation of skewness is:

Ŝ (R)Unbiased =

√
(T −1)T
T −2

·

1
T

T
∑

t=1
(R(t)−E(R))3

(
1
T

T
∑

t=1
(R(t)−E (R))2

)(3/2) .

Negative skewness indicates a long left tail of distribution, or the possibility of
larger losses than profits. Positive skewness is a desirable characteristic for risk-
averse investors. The motivation of that is based on the expected utility theory.
Typically, the third derivative of the utility function of a risk-averse investor is
positive (see e.g. Scott and Horvath (1980)) and this derivative is a multiplier for
skewness in the Taylor expansion of expected utility.

The kurtosis (sometimes the term “excess kurtosis” is used) coefficient K can
be considered as assessment of the size of distribution tails:

K (R) = E
(

R−E (R)
σ (R)

)4

−3 =
µ4 (R)

σ (R)4 −3

where µ4 (R) = E(R−E(R))4.
Kurtosis can be considered as measure of risk associated with heavy tails or

outliers. Kurtosis greater than 0 indicates a fatter tail than the normal distribution
has. Hence, this distribution may generate more extreme values which lead to
potential catastrophic risks. The sample kurtosis is

K̂(R) =

1
T

T
∑

t=1
(R(t)−E(R))4

(
1
T

T
∑

t=1
(R(t)−E (R))2

)2 −3

An unbiased estimator of the sample excess kurtosis is

K̂ (R)Unbiased =
(T −1)

(T −2)(T −3)
·
(
(T +1) K̂ (R)+6

)
Results of statistical estimations for considered risk measures are presented at

the Table 2.
Risk-return correspondence at the frameworks of classical consideration ex-

pected return and standard deviation (Markowitz (1959)) is presented on Figure 1.



102 Andrii Kaminskyi, Ruslan Motoryn, Konstantyn Pysanets

Table 2. Statistical estimations of indicators from variability approach for risk measurement
(daily return, time period: 01.01.2018 – 17.08.2018)

Crypto-
currency

Expected
return

Range Inter-
quartile

Standard
deviation

Skew-
ness

Kurt-
osis

BTC -0.22% 31.00% 3.20% 4.70% -0.16 1.15
ETH -0.23% 34.80% 3.70% 5.69% -0.10 0.66
XRP -0.58% 54.50% 4.60% 6.69% 0.14 2.43
BCH -0.40% 60.60% 4.90% 7.05% 0.39 3.23
EOS 0.17% 64.10% 4.80% 8.91% 1.23 4.75
XLM 0.15% 86.80% 5.00% 8.66% 1.60 10.07
LTC -0.41% 52.60% 3.90% 6.24% 0.94 4.82

USDT -0.01% 4.70% 0.10% 0.44% 0.58 9.72
ADA -0.54% 63.70% 4.60% 8.11% 1.19 4.57
XMR -0.33% 45.80% 4.90% 6.56% -0.07 1.18
ETC -0.03% 53.20% 4.70% 7.16% -0.06 1.59
TRX 0.31% 142.60% 4.80% 12.32% 3.86 31.50

MIOTA -0.58% 52.70% 5.40% 7.36% -0.06 0.63
DASH -0.64% 37.20% 4.10% 5.79% 0.07 0.92
NEO -0.16% 92.60% 5.60% 9.93% 1.70 9.11

Figure 1. Correspondence “expected return – standard deviation”

So, Figure 1 illustrates an interesting property of risk-return correspondence
for cryptocurrencies: a transparent dependency between risk and return is absent.
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3 Risk measurement as losses in negative situation

This conceptual approach is based on considering different measures relating to the
interpretation of “negative situation” for the investor. Among others, it is possible
to mark out downside deviation risk measure. This measure focuses on the returns
that below MAR (minimum acceptable return). MAR should be considered as
a minimum threshold. Another risk measure at analysing frameworks is TUW
(time under the water). This measure calculates how long does the investor wait to
recover its money at the start of the drown down period. But, of course, the most
popular in this group is the left-tail risk measures, such as Value-at-Risk (VaR)
(Holton 2003). This risk measure presents a quantile corresponding to some level
of safety (example 95%, 99% or 99.9%). The economic logic of VaR is based on
risk covering. If, for example, VaR orients for 95%, then 5% biggest losses will
throw off. VaR will cover maximum losses at the framework of 95% possibilities.

VaR is a very efficient measure for market risk. Moreover, it is a regulative risk
measure in banking. But together with advantages this measure has shortcomings,
too. First shortcoming raises from the fact that VaR is really only one point of
probability distribution function (pdf). Behaviour of pdf left-side and right-side
from VaR is out of consideration. Second gap of VaR is absence of coherency
property. Coherency property of Value-at-Risk occurs only for elliptical class of
distributions.

Risk measure Conditional Value-at-Risk (CVaR) is based on generalization of
VaR. This is conditional mathematical expectation:

CVaR(R) = E(R|R≤ VaR(R))

The essence of VaR and CVaR is illustrated by picture at Figure 2.

Figure 2. Essence of VaR and CVaR
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Advantages of CVaR include coherency of this risk measure and more correct
considering of possible losses.

Statistical estimations of VaR and CVaR for cryptocurrencies under consider-
ation we present below in Table 3.

Table 3. Statistical estimations of VaR and CVaR (daily return, safety level – 95%; time period:
01.01.2018 – 17.08.2018)

Cryptocurrency VaR CVaR Cryptocurrency VaR CVaR
BTC -8.2% -11.0% ADA -12.2% -15.1%
ETH -9.6% -12.8% XMR -11.1% -14.3%
XRP -11.7% -14.9% ETC -12.0% -15.9%
BCH -10.5% -15.3% TRX -15.1% -19.1%
EOS -12.9% -17.4% MIOTA -13.3% -16.2%
XLM -12.8% -16.1% DASH -9.4% -13.1%
LTC -8.7% -12.7% NEO -13.1% -17.8%

USDT -0.6% -1.1%

The ratio CVaR/VaR characterizes correspondence between “catastrophic” loss-
es and maximal losses at the frameworks of 95% safety level. Our consideration
shows that ratio belongs to interval [1.22; 1.81]. Such interval is relatively wide,
so cryptocurrencies are quite different in behaviour of left pdf tails.

Figure 3. Correspondence “expected return – CVaR”
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4 Risk measurement at the frameworks of sensitivity
analysis

One of the most important approaches for investment risk measurement is based
on sensitivity analysis. The importance of this approach is based on possibility
to structure risk into systematic and nonsystematic risks. Systematic risk reflects
impact of market changes to return of an investigated asset. Sensitivity analysis
involves procedures for assessment of such impacts. Classical approach consists
in using a linear regression model for return:

RA = αA +βARI + εA

where

• RI indicates return of some market index (source of systematic risk);

• RA is return of investment asset;

• βA - coefficient of sensitivity (more precisely, this coefficient explains sen-
sitivity numerically);

• αA- coefficient of linear regression;

• εA is a random variable which indicate “own” – nonsystematic risk (not
caused by the index).

One of the crucial suppositions in this model is independence between random
variables RI and εA. So, covariance between those random variables equals 0.

Risk structuring on systematic and nonsystematic risk can be obtained after
applying operator of variance to formula for RA:

σ
2(RA) = β

2
A ·σ2(RI)+σ

2(εA).

Ratios
β 2

A ·σ2(RI)

β 2
A ·σ2(RI)+σ2(εA)

and
σ2(εA)

β 2
A ·σ2(RI)+σ2(εA)

will be indicators of significance of systematic risk and nonsystematic risk corre-
spondingly. Ratios are measured as percentages.

In our research we applied such approach to the index model which is based
on the cryptocurrencies index CRIX (Trimborn and Härdle (2017)). The results –
beta-coefficients to index CRIX are given in Table 4.
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Table 4. Statistical estimation of beta-coefficient daily return, period: 01.01.2018–17.08.2018

Cryptocurrency Beta coefficient Cryptocurrency Beta coefficient
BTC 0.1262 ADA 0.2382
ETH 0.1361 XMR 0.0544
XRP 0.1840 ETC 0.1214
BCH 0.1485 TRX 0.2518
EOS 0.1925 MIOTA 0.0495
XLM 0.1579 DASH 0.0753
LTC 0.0852 NEO -0.0353

USDT -0.0171

Structure of the risk is presented at the Figure 4.

Figure 4. Correspondence between systematic and nonsystematic risks

Results show that nonsystematic risks are dominated.
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5 Conclusions

The measurement of investment risk is multifaceted task which supposed to apply
different approaches. Each approach points out specific features of risk.

The application of different approaches for the risk measurement of basic cryp-
tocurrencies makes it possible to form some conclusions. First conclusion indi-
cates a relatively high level of risk at the frameworks of volatility and significant
outliers. Most cryptocurrencies demonstrate 5%–10% of standard deviation. The
ratio of Range/Interquartile range is also relatively high. Kurtosis demonstrates
high values. The risk measurements on the base of VaR and CVaR also indicate
their values as high as ratio CVaR/VaR. All these results can be explained by sig-
nificant outliers.

Second conclusion concerns exclusively high proportion of nonsystematic risk.
Economically this can be explained by absence of meaningful factor which affects
for all cryptocurrencies. This also revealed in low values of beta-coefficients in
CRIX index model. On the other hand, such results may be raised from imperfec-
tion of index construction.

Third conclusion, maybe the most interesting, consists in fact that “classical”
relationship between risk and return cannot be identified.
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Abstract

We discuss here the concept of entropy and its application to Markov chains and
Markov operators. We focus our attention on the Boltzmann-Gibbs and the Shannon
entropy. The Kolmogorov-Sinai and Makarov entropy will be discussed in a separate
article.

1 Preliminaries

We begin with some formal stuff. So the first thing to declare is a measure space
(X ,A ,µ) where X is a phase space, usually a subset of Rd , A denotes the σ -
algebra of subsets of X nad µ is a measure on A that is assumed to be σ -finite.
If f ∈ L1(X ,A ,µ) it means that || f || :=

∫
X | f (x)|dx < ∞. A density is f ≥ 0

with || f || = 1. An observable O is a map from X to R (e.g. energy, pressure,
temperature, etc). The Boltzmann-Gibbs entropy of the density f is defined as

H( f ) =−
∫

X
f (x) log f (x)dx. (1)

Sometimes it is also termed “differential entropy” (usually in mathematical liter-
ature). It is important to note that it has not the same properties as the Shannon
entropy, see definition (8) below. For example, it may be negative. If f is the den-
sity of the gaussian distribution N(µ,σ2), then H( f ) = log(σ

√
2πe) and H( f )< 0

for σ < 1/
√

2πe, see also Fig. 1. Definition (1) can be formalized in the following
way H( f ) =

∫
X η( f (x))dx, where

η(x) =
{
−x logx, x > 0
0, x = 0.

1Lublin University of Technology, Faculty of Electrical Engineering and Computer Science, De-
partment of Mathematics.
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Many properties of the entropy H is derived from the Gibbs inequality

w−w logw≤ v−w logv, w,v > 0, (2)

and the integrated Gibbs inequality

−
∫

X
f (x) log f (x)dx≤−

∫
X

f (x) logg(x)dx, (3)

where f ,g are pdfs such that η( f ) and η(g) are integrable. It is well known, see
e.g. Mackey (2003), that if µ(X) < ∞ then the uniform density f∗(x) = 1/µ(X),
x ∈ X , maximizes the Boltzman-Gibbs entropy. This mean that if f 6= f? then
H( f )< H( f∗).

Example 1 By Geo(p) we denote the geometric distribution with parameter p. So
if X ∼ Geo(p), then P(X = k) = p(1− p)k−1, k = 1,2, . . . and p ∈ (0,1). We use
here rather the definition of the Shannon entropy (8) than (1), but it makes no
difference in this case. Also, the notation H(p) is more convenient than H( f ) or
H(X). Thus

H(p) =−
+∞

∑
k=1

p(1− p)k−1 log[p(1− p)k−1] =− log(p)
+∞

∑
k=1

p(1− p)k−1

− p log(1− p)
+∞

∑
k=1

(k−1)(1− p)k−1,

and using ∑
∞
k=1 kxk = x/(1− x2), for |x|< 1, we get

H(p) =−(1− p)
p

log(1− p)− log p, p ∈ (0,1). (4)

From this limp→0+ H(p) = +∞ and limp→1 H(p) = 0, see Fig. 1.

1 2

1

H(σ)

H(p)

Figure 1. The Shannon entropy H(p) (nonnegative) of geometric distribution and the
Boltzman-Gibbs entropy of normal distribution N(µ,σ2). Note that H(σ) < 0 for σ <
1/
√

2πe
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We have the following theorem, see Theorem 2.2 in Mackey (2003). It ex-
plains how to find the probability distribution with maximal entropy under certain
constraints.

Theorem 2 Assume that O(x)≥ 0 is a measurable function and that

< O >=
∫

X
O(x) f (x)dx. (5)

Then the maximum of the entropy H( f ), subject to the constraint (5), occurs for
the density

f∗(x) = Z−1e−νO(x) with Z =
∫

X
e−νO(x)dx,

where ν is implicitly determined from

< O >= Z−1
∫

X
O(x)e−νO(x)dx.

Additionally, H( f∗) = logZ +ν < O >.

Remark 3 It should be noted that for any discrete random variable X with values
in {1,2,3, . . .} we have E(X)≥ 1. Namely,

E(X) =
∞

∑
n=1

npn ≥
∞

∑
n=1

pn = 1.

Example 4 Let X = {1,2,3, . . .} and O(n) = n, then < O >= µ . It is assumed
that µ ≥ 1. We have

f∗(n) =
1
Z

e−νn, Z =
+∞

∑
n=1

e−νn =
1

eν −1
,

where ν is the solution to

µ = (eν −1)
+∞

∑
n=1

ne−νn =
(eν −1)e−ν

(1− e−ν)2 =
1

1− e−ν
.

From this we get eν = µ/(µ−1), Z = µ−1 and finally

f∗(n) =
1
µ

(
1− 1

µ

)n−1

, n = 1,2, . . .

This means that among all probability distributions on N with a given mean µ the
geometric distribution has the biggest entropy. �
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If a vector (X ,Y ) has density fX ,Y (x,y) = fX(x) fY (y), meaning that X and Y
are independent, then H( fX ,Y ) = H( fX)+H( fY ). Indeed, by definition

H( fX ,Y ) =−
∫ ∫

fX(x) fY (y) log( fX(x) fY (y))dxdy

=−
∫ ∫

fX(x) fY (y) log fX(x)dxdy−
∫ ∫

fX(x) fY (y) log fY (y)dxdy

= H( fX)+H( fY ).

For the normal vector N(~µ,Σ) the entropy equals 1
2 log[det(2πeΣ)], where Σ is

a covariance matrix of ~X . Note that this does not depend on ~µ . In particular, for
(X ,Y ) with

~µ =

 µ1
µ2

 and Σ =

 σ2
1 ρσ1σ2

ρσ1σ2 σ2
2


we have H( fX ,Y ) = 1+ log(2πσ1σ2) +

1
2 log(1− ρ2). Since X ∼ N(µ1,σ

2
1 ) we

have H( fX) =
1
2(1+ log(2πσ1)) and similarly H( fY ) = 1

2(1+ log(2πσ2)). Hence,
in this case and Boltzmann-Gibbs entropy

H( fX)+H( fY )−H( fX ,Y ) =
1
2 ln(1−ρ

2)≤ 0.

If X ∼ Geo(p1) and Y ∼ Geo(p2) and X ,Y are independent, then

P(X = m,Y = n) = p1(1− p1)
m−1 p2(1− p2)

n−1, m,n ∈ N,

and H(X ,Y ) = H(X)+H(Y ). In other words: H(X ,Y ) = H(p1)+H(p2) by (4).
Now, let (X ,Y ) be a random vector with a probability mass function

P(X = m,Y = n) = pm,n, m,n ∈ N,

and given µ1 = E(X), µ2 = E(Y ). Then it turns out that (X ,Y ) with

pm,n =
1

µ1µ2

(
1− 1

µ1

)m−1(
1− 1

µ2

)n−1

, m,n ∈ N

has the biggest entropy. This is because of the following theorem, see Theorem
2.3 in Mackey (2003). In fact it is a generalization of Theorem 2.

Theorem 5 Suppose that Oi(x)≥ 0, i= 1, . . . ,m is a sequence of measurable func-
tions with given averages < Oi(x) >. Then the maximum entropy H( f ) for all
densities f , subject to the conditions

< Oi >=
∫

X
Oi(x) f (x)dx, (6)
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occurs for the density

f∗(x) = Z−1
m

∏
i=1

e−νiOi(x) with Z =
∫

X

m

∏
i=1

e−νiOi(x)dx,

where ν ′i s are determined from

< Oi >= Z−1
∫

X
Oi(x)e−νiOi(x)dx, i = 1, . . . ,m.

In the following example we consider a situation when both X and Y have geomet-
ric distribution and are positively correlated. In addition, we calculate the entropy
of (X ,Y ).

Example 6 (Basu-Dhar bivariate geometric distribution) Consider a random vec-
tor (X ,Y ), supported on N2, which has the following distribution

pm,n =


pm−1

1 (p2 p12)
n−1q1(1− p2 p12), m < n,

(p1 p2 p12)
m−1(1− p1 p12− p2 p12 + p1 p2 p12), m = n,

pn−1
2 (p1 p12)

m−1q2(1− p1 p12), m > n,

(7)

where pm,n = P(X = m,Y = n) and p1, p2, p12 ∈ (0,1) are independent parameters
with q1 = 1− p1, q2 = 1− p2. It was introduced in Basu and Dhar (1995) and
is called the bivariate geometric distribution, due to the fact that X and Y have
geometric distribution (we will see it in a while). The joint survival function of
(X ,Y ) is

P(X > m,Y > n) = pm
1 pn

2 pmax(m,n)
12 .

Incidently, one interesting feature of this distribution is the loss memory property.
Namely, for any k,m,n ∈ N, we have

P(X > m+ k,Y > n+ k|X > m,Y > n) =
P(X > m+ k,Y > n+ k)

P(X > m,Y > n)

=
pm+k

1 pn+k
2 pmax(m+k,n+k)

12

pm
1 pn

2 pmax(m,n)
12

= (p1 p2 p12)
k

which is P(X > k,Y > k). Before calculating the entropy of (X ,Y ) we will find the
distribution of X. We have

P(X = m) =
+∞

∑
n=1

pm,n = (p1 p12)
m−1(1− p1 p12)(1− pm−1

2 )+ pm−1
1 q1(p2 p12)

m

+(p1 p2 p12)
m−1(1− p1 p12− p2 p12 + p1 p2 p12)

= (1− p1 p12)(p1 p12)
m−1, m = 1,2,3, . . .
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therefore X ∼ Geo(1− p1 p12). Similarly Y ∼ Geo(1− p2 p12). We also have

E(XY ) =
1− p1 p2 p2

12
(1− p1 p12)(1− p2 p12)(1− p1 p2 p12)

,

and in consequence

cov(X ,Y ) =
p1 p2 p12(1− p12)

(1− p1 p12)(1− p2 p12)(1− p1 p2 p12)
≥ 0.

Denote N2 = D1 +D2 +D3, where D1 = {(m,n) ∈ N2 : m > n}, D2 = {(m,n) ∈
N2 : m = n} and D3 = {(m,n) ∈ N2 : m < n}. We have, see also (9),

H(X ,Y ) =− ∑
(m,n)∈N2

pm,n log pm,n =− ∑
(m,n)∈D1

pm,n log pm,n︸ ︷︷ ︸
=HD1

− ∑
(m,n)∈D2

pm,n log pm,n︸ ︷︷ ︸
=HD2

− ∑
(m,n)∈D3

pm,n log pm,n︸ ︷︷ ︸
=HD3

.

We begin with HD2 . By (7)

HD2 =−c
∞

∑
m=1

(p1 p2 p12)
m−1 log

[
c · (p1 p2 p12)

m−1] ,
where c := 1− p1 p12− p2 p12 + p1 p2 p12. Direct computation gives

HD2 =
−c

(1− p1 p2 p12)2

[
logc+ p1 p2 p12 log

( p1 p2 p12

c

)]
.

As for D1, with b := q2(1− p1 p12), we have

HD1 =−b logb
∞

∑
m=2

m−1

∑
n=1

pn−1
2 (p1 p12)

m−1

︸ ︷︷ ︸
=S1

−b log p2

∞

∑
m=2

m−1

∑
n=1

(n−1)pn−1
2 (p1 p12)

m−1

︸ ︷︷ ︸
=S2

−b log(p1 p12)
∞

∑
m=2

m−1

∑
n=1

(m−1)pn−1
2 (p1 p12)

m−1

︸ ︷︷ ︸
=S3

.
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Performing calculations we obtain

S1 =−
p1 p12q2

(1− p1 p2 p12)
log[q2(1− p1 p12)], S2 =−

p2q2(p1 p12)
2 log p2

(1− p1 p2 p12)2

and

S3 =−
p1 p12q2

(
1− p2(p1 p12)

2
)

log(p1 p12)

(1− p1 p12)(1− p1 p2 p12)2 .

In a similar way we find HD3 . Finally we have

H(X ,Y ) =− p12 [p1q2 log[q2(1− p1 p12)]+ p2q1 log[q1(1− p2 p12)]]

(1− p1 p2 p12)

−
p2

12
(

p2
1 p2q2 log p2 + p1 p2

2q1 log p1
)

(1− p1 p2 p12)2

− p1q2 p12(1− p2(p1 p12)
2) log(p1 p12)

(1− p1 p12)(1− p1 p2 p12)2

− p2q1 p12(1− p1(p2 p12)
2) log(p2 p12)

(1− p2 p12)(1− p1 p2 p12)2

− c
(1− p1 p2 p12)2

[
logc+ p1 p2 p12 log

( p1 p2 p12

c

)]
,

where c = 1− p1 p12− p2 p12 + p1 p2 p12. �

2 Entropy and Markov chains

The Shannon entropy of a discrete random variable X with values in {x1, . . . ,xn}
and a probability distribution ~p = (p1, . . . , pn), i.e. P(X = xi) = pi, i = 1, . . . ,n, is
defined as

H(X) :=−
n

∑
i=1

pi log pi (8)

with the notion that 0 · log0 = 0 if pi = 0 for some i. We also use H(~p) for H(X).
Directly from definition we have that 0 ≤ H(X) ≤ log(n). Note that H(X) = 0 if
and only if X = const and H(X) = log(n) only if P(X = xi) = 1/i for i = 1, . . . ,n.
The definition of (8) extends also to infinite sum. However note that then the
Shannon entropy may be infinite. Namely, define Cp := ∑

∞
n=2(n logp n)−1, for p ∈

R. It is know that Cp < ∞ for p > 1 and Cp = ∞ if p ≤ 1. Let X be a rv with
P(X = n) = (Cpn logp n)−1, where n = 2,3, . . . and p > 1. We have

H(X) =−
∞

∑
n=2

1
Cpn(logn)p log

(
1

Cpn(logn)p

)
=

1
Cp

∞

∑
n=2

(
log(Cp)

n(logn)p +
1

n(logn)p−1 +
p log(logn)
n(logn)p

)
= ∞
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for p ∈ (1,2]. Analogously to (8), the entropy of a random vector (X1, . . . ,Xn) is

H(X1, . . . ,Xn) :=− ∑
i1,...,in

pi1,...,in log pi1,...,in , (9)

where pi1,...,in = P(X1 = xi1 , . . . ,Xn = xin). If X = {Xn}n≥1 is a sequence if random
variables, then the entropy rate of X is defined as

H(X ) := lim
n→+∞

1
n

H(X1, . . . ,Xn) (10)

if the above limit exists. For X ,Y we define H(X |Y ) := H(X ,Y )−H(Y ) and

H ′(X ) := lim
n→+∞

H(Xn|X1, . . . ,Xn−1), (11)

if this limit exists. We recall that a sequence of random variables X1,X2, . . . is
stationary if for all n, the distribution of the vector (X1, . . . ,Xn) is the same as that
of (X1+k, . . . ,Xn+k) for every k≥ 1. For stationary sequences we have the theorem,
see e.g. Theorem 12.1.5 in Bremaud (2017)

Theorem 7 If X = {Xn}n≥1 is a stationary sequence of random variables, then
both (10), (11) exist and H(X ) = H ′(X ).

We want to state the analogous theorem for Markov chains, however we need just
few definitions. Assume that each Xn ∈R. We say that X1,X2, . . . is a time invariant
Markov chain if

P(Xn+1 = xn+1|Xn = xn, . . . ,X1 = x1) = P(Xn+1 = xn+1|Xn = xn)

for each n ∈ N, all x1, . . . ,xn+1 ∈R and

P(X2 = y|X1 = x) = P(X3 = y|X2 = x) = P(X4 = y|X3 = x) = . . . ,

for all x,y ∈R. Thus a time invariant Markov chain is characterized by its initial
state and a probability transition matrix P = (pi j), where

pi j = P(Xn = x j|Xn−1 = xi), i, j ∈ I.

We say that a probability distribution π = (π1,π2, . . .) is the stationary distribution
of a Markov chain P if

π = πP ⇔ π j = ∑
i∈I

πi pi j, ∀ j ∈ I.

For a stationary Markov chain the following theorem holds, see e.g. Theorem 4.2.4
in Cover and Thomas (2006).
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Theorem 8 Suppose that a stationary Markov chain X = {Xn}n≥1, with transi-
tion matrix P, has a stationary distribution π . Then

H(X ) =−∑
i, j

πi pi j log pi j. (12)

We begin examples with a random walk on a graph without weights. For general
case see Chapter 4 in Cover and Thomas (2006).

Example 9 Consider a graph G and a particle that walks randomly from vertex
to vertex of G. The random walk X = {Xn}n≥1, where Xn ∈ {v1, . . . ,v5} (or we
can simply put the numbers of vertices {1, . . . ,5}) is a sequence of vertices of G.
If Xn = i, the next vertex j is chosen from among the vertices connected to i with
a probability proportional to the number of the edges connecting i to j, see Fig. 2.

v1

v2 v3

v4

v5

I

1
2

I
1
2

I

1
3
I

1
3

I
1
3

J
1
3

I
1
3I

1
3 J

1
2

J
1
2

J
1
4

J
1
4

I
1
4
I1
4

Figure 2. Random walk on a graph

This random walk is a Markov chain with transition matrix

P =


0 1

2 0 0 1
2

1
3 0 1

3 0 1
3

0 1
3 0 1

3
1
3

0 0 1
2 0 1

2
1
4

1
4

1
4

1
4 0


The stationary distribution of P is given by π = ( 2

14 ,
3

14 ,
3
14 ,

2
14 ,

4
14). By (12) we

have

H(X ) =
4
14

log2+
6
14

log3+
4
14

log4≈ 1.064. �

Example 10 Suppose that a particle jumps from 0 to n, n≥ 1 with probability pn

and then goes back to 0 in n steps as shown in Fig. 3. When a particle is at 0, then
it again jumps to a natural number and goes back to 0 and repeats this scheme
infinitely many times. This process is a Markov chain with values in {0,1,2, . . .}
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0 1 2 . . . n . . .
p1

p2

pn

Figure 3. Markov chain on {0,1,2,. . . }. An illustration of Example 10

and infinite transition matrix P

P =


0 p1 p2 p3 . . .
1 0 0 0 . . .
0 1 0 0 . . .
0 0 1 0 . . .
. . . . . . . . . . . . . . .


where ~p = (p1, p2, . . .) is a probability distribution, i.e. ∑

∞
i=1 pi = 1 and each pi ≥

0. We will find the stationary distribution of P. Denote π =(π0,π1,π2, . . .). Solving
π = πP we get

πP = (π1,π0 p1 +π2,π0 p2 +π3, . . .)⇒ (πP)n =

{
π1, n = 0,
π0 pn +πn+1, n≥ 1.

From this π1 = π0, π2 = π0(1− p1) and so on. Hence π0 is arbitrary, π1 = π0 and

πn = π0

(
1−

n−1

∑
i=1

pi

)
, n≥ 2.

Now we check the condition ∑
∞
n=0 πn = 1. If µ := ∑

∞
n=1 npn < ∞ then

∞

∑
n=0

πn = π0(µ−1),

and π0 = 1/(µ−1). Thus the stationary distribution of P is given by

π0 = π1 =
1

µ−1
, πn =

1
µ−1

(
1−

n−1

∑
i=1

pi

)
, n≥ 2. (13)

In consequence

H(X ) =−
∞

∑
j=1

π0 p0, j log p0, j =−π0

∞

∑
j=1

pi log pi =
H(~p)
µ−1

.

In particular, for a geometric distribution Geo(p) we have

H(X ) =− p
(1− p)

log p− log(1− p), p ∈ (0,1). �
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3 Conditional entropy and Markov operators

The conditional entropy of a density f with respect to a density g is defined as
follows

Hc( f |g) =−
∫

X
f (x) log

[
f (x)
g(x)

]
dx. (14)

The first important property of Hc is that Hc( f |g)≤ 0, for any densities f ,g (by the
Gibbs inequality (3)). Additionally Hc( f |g) = 0 only if f = g. The second prop-
erty is that if g = 1/µ(X) then Hc( f |g) = H( f )− log µ(X). Thus, when µ(X) = 1,
then Hc( f |1) = H( f ), see Mackey (2003).

A linear operator P : L1(X ,A ,µ)→ L1(X ,A ,µ) is called a Markov operator
if it satisfies

(1) if f ≥ 0, then P f ≥ 0;

(2) if f ≥ 0, then ||P f ||= || f ||.

Consider l1 space. Recall that it is a Banach space that consists of infinite se-
quences x = (x1,x2, . . .) such that

||x|| :=
∞

∑
i=1
|xi|< ∞.

We write x≥ 0 if xn ≥ 0 for each n = 1,2, . . .. An x∈ l1 is termed a density if x≥ 0
and ||x|| = 1. For more information about Markov operators in l1 see Rudnicki
(2014).

Example 11 Suppose that P = (pi j) is a infinite transition matrix, i.e. its entries
are non-negative and

∞

∑
j=1

pi j = 1, i = 1,2, . . . . (15)

We define an operator P on l1 by

Px := x ·P =

(
∞

∑
i=1

xi pi1,
∞

∑
i=1

xi pi2, . . .

)

It is a Markov operator. If x ≥ 0 and x ∈ l1, then by non-negativity and (15) we
have

||Px||=
∞

∑
j=1

∞

∑
i=1

xi pi j =
∞

∑
i=1

∞

∑
j=1

xi pi j =
∞

∑
i=1

xi = ||x||. �

We have the following theorem, see Theorem 3.1 in Mackey (2003). In fact, this
is a theorem by J. Voigt, see Voigt (1981).
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Theorem 12 If P is a Markov operator, then

Hc(P f |Pg)≥ Hc( f |g) (16)

for f ≥ 0 and all densities g.

Example 13 Consider the transition matrix

P =


1
2

1
2 0 0 0 . . .

0 1
2

1
2 0 0 . . .

0 0 1
2

1
2 0 . . .

0 0 0 1
2

1
2 . . .

. . . . . . . . . . . . . . . . . .


It is also a Markov operator as explained in Example 11. If x ∈ l1, then

(Px)n =

 1
2 x1, n = 1,
1
2(xn−1 + xn), n≥ 2.

(17)

Take for example xn =(1
2)

n and yn = 2(1
3)

n, where n≥ 1. It is clear that x=(xn)n≥1
and y = (yn)n≥1 are densities. Thus

Hc(x|y) =−
∞

∑
n=1

xn log
xn

yn
=−

∞

∑
n=1

(
1
2

)n

log
[

1
2

(
3
2

)n]
= log 8

9 = 3log2−2log3≈−0.1177.

From (17) we have

(Px)n =

 1
4 , n = 1,
3
2(

1
2)

n, n≥ 2,
(Py)n =

 1
3 , n = 1,

4(1
3)

n, n≥ 2.

Therefore

Hc(Px|Py) =−1
4

log
3
4
− 3

2

∞

∑
n=1

(
1
2

)n

log
[

3
8

(
3
2

)n]
= 5log2− 13

4 log3≈−0.1047,

and finally

Hc(Px|Py)−Hc(x|y) = 2log2− 5
4 log3 = log 4

4√243
> 0. �
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4 Appendix 1

As for the Shannon entropy, see (8) and (9) for definition, we have the following
properties (see Cover and Thomas (2006) or Bremaud (2017)):

(1) if X1,X2, . . . ,Xn are independent, then

H(X1, . . . ,Xn) = H(X1)+ . . .+H(Xn).

(2) in general however we have (no independence assumed)

H(X1, . . . ,Xn)≤ H(X1)+ . . .+H(Xn).

Furthermore, the equality holds only if X1, . . . ,Xn are independent.

Define H(X |Y ) = H(X ,Y )−H(Y ). From this H(X |Y )≤ H(X) and

(3) for rv’s X ,Y

H(X ,Y ) = H(X)+H(Y |X) = H(Y )+H(X |Y )

(4) for X1, . . . ,Xn+1, the following holds

H(X1, . . . ,Xn+1) = H(X1, . . . ,Xn)+H(Xn+1|X1, . . . ,Xn)

(5) if n≥ 2, then

H(X1, . . . ,Xn) = H(X1)+H(X2|X1)+ . . .+H(Xn|X1, . . . ,Xn−1).

5 Appendix 2

We solve here the problem 1.9.2 from Norris (1997).
Problem 1.9.2 Two particles X and Y perform independent random walks on the
graph shown in the Fig. 4. So, for example, a particle at A jumps to B, C or D with
equal probability 1/3.

Find the probability that X and Y ever meet at a vertex in the following cases:

(a) X starts at A and Y starts at B;

(b) X starts at A and Y starts at E.

For I = B,D let MI denote the expected time, when both X and Y start at I,
until they are once again both at I. Show that 9MD = 16MB.
Solution. If a particle X performs a random walk on a graph with 21 vertices, then
its state space is I = {A,B,C, . . .}. Call this random walk a Markov chain on G
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BA

D

E

C

Figure 4. Two particles perform a random walk on G

or simply P. It is clear that P is irreducible. It is also periodic with period d = 2.
Hence we can write I = C0 ∪C1, where C0 = {A,E, . . .} and C1 = {B,C,D, . . .},
see Fig. 5 below. We have |C0| = 12, |C1| = 9. For example, if a particle starts
from A it can return to A only in an even number of steps. In terms of classes: if
a particle starts from class C0 it can return to C0 only in an even number of steps.
The same is true for class C1: starting from C1, a particle can return to C1 only in
an even number of steps. However if a particle starts from C0 it can reach C1 only
in an odd number of steps. Now we use the coupling method. Namely, if Xn and

BA

D

E

C

Figure 5. We have two classes: C0 = {A,E, . . .}, C1 = {B,C,D, . . .}

Yn are independent Markov chains on I, then (Xn,Yn) is a Markov chain on I× I.

(a) Since A and B are in different classes, we have

P{∃ n≥ 1,∃ i ∈ I : (Xn,Yn) = (i, i)|X0 = A,Y0 = B}= 0.

This means that X and Y will never meet.

(b) Since A,E ∈C0 then the Markov chain (Xn,Yn) with (X0,Y0) = (A,E), consid-
ered only on C0×C0 is irreducible, recurrent and aperiodic. This is because
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every finite closed class is recurrent, see Theorem 1.5.6 in Norris (1997). In
such a Markov chain we have

P{∃ n≥ 1,∃ i ∈ I : (Xn,Yn) = (i, i)|X0 = A,Y0 = E}= 1

by Theorem 1.5.7 in Norris (1997). In conclusion: particle X starting at A and
Y starting at E will meet at a vertex with probability 1.

Next, recall that the valency vi of vertex i ∈ I is the number of edges at i and
σG = ∑i∈I vi is the total valency of G. Thus we have σG = 56, vB = 4 and vD = 3.

Denote by mB,mD the expected return time to B and D respectively. Then, by
Theorem 1.7.7 in Norris (1997) we have mB = 56/4 = 16 and mD = 56/3 = 18 2

3 .
Again, consider a Markov chain on G×G. The number of vertices of the graph

G×G is 212. We have

σG×G = 562 = 3136, v(B,B) = 16, v(D,D) = 9

hence
MB =

3136
16

= 256, MD =
3136

9
⇒ 9MD = 16MB.
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