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Preface 

Face recognition has been one of the most challenging research problems for 

over last three decades. The main reasons are its vast applications such as 

missing persons or criminal identification, access control, driving license, ID 

card, or passport verification, and many others. Other causes of the growth of 

interest in the face recognition techniques are the huge computational power of 

modern CPUs and GPUs, the spread of personal computers and security or 

surveillance systems. These areas of applications need their own dedicated 

systems related to the problems which may occur. They are partial occlusion of a 

face, distance to the camera, illumination, pose, age, tattoos, or emotion 

expression changes, quality of an image, and system requirements.  Admittedly, 

in contrast to other biometric solutions such as fingerprints or iris recognition, 

facial recognition is a non-invasive method, i.e., there is no need to involve a 

verified person in the data acquisition process, however, problems with the 

personal data protection are one of the factors inhibiting its development. 

Over the years, many studies on face recognition have been published. Let us 

refer to the most important ones. Kanade (1977) proposed the method based on 

geometric dependencies between the facial parts. Turk & Pentland (1991) and 

Belhumeur et al. (1997) proposed two significant and still enhanced methods of 

dimensionality reduction, namely Eigenfaces (based on Principal Component 

Analysis, PCA) and Fisherfaces (based on PCA followed by Linear Discriminant 

Analysis, LDA). Other important methods proposed in the 90’s were Support 

Vector Machines (SVM, Phillips et al. 1998) or Elastic Bunch Graph Matching 

(EBGM, Wiskott et al. 1997). Ahonen et al. (2004) introduced to face 

recognition the theory of local descriptors, particularly the well-known Local 

Binary Pattern based on the local descriptions of specific pixels’ neighborhoods 

and building histograms of such descriptions. Kwak & Pedrycz (2005) worked 

on information aggregation (fusion) on a basis of classification processes 

conducted for the whole images or their parts. Recently, the most popular have 

been two branches of methods. The first is a group of sparse representation-

based approaches of dimensionality reduction, see Wright et al. (2009). The 

second, and giving accurate results, is the field of deep learning methods, see 

Huang et al. 2012, Sun et al. 2014, etc. An interested reader can find many 

comparative analyses and reviews of the face recognition approaches such as 

Forczmański & Kukharev (2007), Hassaballah & Aly (2015), Siwek & Osowski 

(2018), Wójcik et al. (2018), or Zhao et al. (2003). 

Obviously, many of the methods of facial recognition have their origins and 

utilize more general techniques of image analysis (Tadeusiewicz & Korohoda 

1997), classification (Stąpor 2011), fuzzy sets (Zadeh 1965), rough sets (Pawlak 

1991, Pawlak & Skowron 2007), Computational Intelligence (Kacprzyk & 

Pedrycz 2015, Rutkowski 2008), neural networks (Tadeusiewicz 1993, Duch et 
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al. 2000, Goodfellow et al. 2016), Granular Computing (Bargiela & Pedrycz 

2001, Pedrycz 2013, Pedrycz & Homenda 2013), or software libraries (e.g., 

Rafajłowicz et al. 2009). 

The classification problems are strictly related to the tasks of decision-

making theory, particularly multi-criteria decision-making theory (see, e.g., 

Słowiński 1998, Ishizaka & Nemery 2013). One of the connectors is the problem 

of aggregation of the classifiers results which can be solved by using 

aggregation functions (Beliakov et al. 2007, Grabisch et al. 2009, Gągolewski 

2015). The examples of modern aggregation functions are t-norms (Klement & 

Mesiar 2005), Ordered Weighted Averaging operators (OWA, Yager & 

Kacprzyk 2012), or Choquet integral (Sugeno 1974). Newer studies show that 

the special conditions on aggregation operators can be weakened leading to the 

increase of the final classification result, see, e.g., Lucca et al. 2015. Moreover, 

one of the advantages of using the decision-making theory is that it can be a 

helpful tool when making final decision about classification/misclassification of 

the subject in biometrical systems by its operator. It is worth noting that in 

biometric systems, particularly in forensic applications, the final decision about 

the criminal identification must be made by an expert. Hence, the methods such 

as Analytic Hierarchy Process (Saaty 1980, Saaty & Vargas 2012) can be 

successfully applied to the problems of describing the suspect, group decision on 

the classification, etc. It is worth to note that the systems of classification, when 

incorporated in the processes of linguistic modeling reflecting the way people 

describe other people using the decision-making tools, may significantly 

improve their performance. Moreover, there are still the problems of decision-

making theory which need solving. One of them is developing an interface 

allowing the expert to become fully independent from the limitations resulting 

from the use of numbers and language descriptions. 

In this book, we present the solutions of several problems appearing in face 

classification and related decision-making theory. Despite the area of interest 

presented in this study is wide, all issues discussed have some common features. 

The first is that all the techniques can be used to solve the classification or 

identification problems, even the AHP method. The second common feature is 

that local and linguistic descriptors, AHP, and fuzzy measure can serve as 

vehicles to extract or describe the features (e.g., biometric facial features) or 

their importance. Next, in case of all the methods considered here, the presence 

of an expert making a decision on classification or the reflection of the way 

human describe others is essential. Therefore, the proposed methods correspond 

to the paradigm of human-centric computing. Finally, at the base of the majority 

of considered methods are fuzzy techniques or the proposed models can be 

easily extended by using fuzzy approach. The organization of the material 

reflects the main objectives of the study. 

In chapter 2, we present the common and most frequently appearing 

techniques in the next parts of the book. They are, in particular, Analytic 
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Hierarchy Process and its variants, Particle Swarm Optimization (Kennedy et al. 

2001), being one of the most efficient and fast optimization tools. Moreover, we 

discuss the 𝜆-fuzzy measure and Choquet integral, playing a pivotal role in the 

aggregation tasks. Finally, the general concept of t-norms and aggregation 

operators are recalled. 

In chapter 3, we study the important problem of aging and age differences in 

face recognition which often appears when compared are the photographs taken 

in large intervals. We thoroughly examine the efficiency and potential 

application of many classical local descriptors such as Local Binary Pattern or 

Multi-Block LBP (Chan et al. 2007). Using the specialized FG-NET dataset with 

maximal age difference between the times of taking the photographs of one 

subject being 54 years we demonstrate the ability of local descriptors and local 

descriptors applied to Gabor wavelet images to cover the aging problem. 

Moreover, analyzed are various measures of similarity between the histogram 

features. At the same chapter, we propose a novel and original local descriptor 

which, unlike other local descriptors, is built on chain codes describing the local 

cross-neighborhood of a pixel. We analyze its two variants (i.e., simple and 

block-based) in relation to the problems of illumination, pose, or age on a basis 

of different public image datasets. Moreover, its robustness to noise and face 

occlusion is discussed. 

Chapter 4 is devoted to the application of linguistic descriptors to face 

identification algorithms. People are strongly efficient in recognizing faces. 

Moreover, the knowledge coming from human recognition processes 

observation and opinion yielded from experts’ assessments can be an invaluable 

input to the computational facial recognition systems and methods. First, we 

propose a method of facial features saliency evaluation based on the Analytic 

Hierarchy Process. The technique is equipped in novel method of confirmation 

of experts’ confidence based on the entropy measure. On a basis of the 

knowledge coming from experienced practitioners in the fields of psychology 

and criminology we determine the importance of the facial features and their 

groups in the processes of classification. Discussed are also potential constraints 

of the method and possible ways of its enhancement. Next, we propose a method 

of incorporating the results of AHP process carried for specific faces in the tasks 

of classification of the faces both by humans as well as with an application of 

computational methods related to real measures (lengths) of facial features. 

Presented are also processes based on classification of faces with an application 

of the voting and importance of the features determined by experts using AHP. It 

is worth noting that an application of PSO leads to the significant improvement 

of consistency of experts’ answers. 

In chapter 5, we partially depart from the face recognition problems to the 

more general idea of designing the graphical interface to the AHP method. 

People often do not understand the scales (both linguistic and numeric) 

associated with various decision-making tools. Moreover, they feel somehow 
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uncomfortable with such constraints. Therefore, we propose two simple 

graphical components, namely a slider and a dial arc, to improve the level of 

consistency of the reciprocal matrices produced in the AHP processes. In a series 

of experiments with crisp and fuzzy variants of the AHP we demonstrate the 

effectiveness of our proposal. Finally, the method is applied to the description of 

chosen facial features. We prove that the usage of a slider significantly improve 

the correctness of face parts’ description by an expert. 

Chapter 6 deals with an application of the Sugeno fuzzy measure and 

Choquet integral to the problems of face recognition. We are interested in an 

investigation of the abilities of the fuzzy measure to reflect the saliency of the 

information contained in specific facial regions. Moreover, we evaluate the role 

of the regions and their combinations in the facial recognition processes. In this 

context, we compare the results of experiments obtained with the presence of 

subjects and realized by computational methods of face recognition. Finally, we 

design the Sugeno fuzzy measure on a basis of the psychological experiments 

reported in the literature and related to the saliences of facial cues and propose a 

novel model of the face identification mechanism. In the second part of the 

chapter, we propose a method of finding the optimal values of the fuzzy measure 

densities (Choquet integral weights) on a basis of so-called positive and negative 

optimization reflecting the maximization and minimization of the Choquet 

integral values in the processes of aggregation of classification results, 

respectively. 

The last chapter of this book is directly devoted to the aggregation 

mechanism in face recognition problems. On a basis of the most popular 

classifiers, namely Eigenfaces and Fisherfaces, we examine various aggregation 

techniques in the context of their efficiency. The results of computational 

experiments suggest that Choquet integral, voting, median, and modified 

Hamacher t-norm are one of the best aggregation operators when the classifiers 

are based on the facial parts. Next, we analyze the generalizations and 

modifications of the Choquet integral based on the replacement of the product t-

norm under the integral sign by other t-norms and operators. The proposal has 

demonstrated a very good performance in a comparison with other methods 

studied in the literature. 

Chapter 2 is partially based on the ideas presented in Bereta et al. 2013 where 

the local descriptors in according to the aging problems were discussed and 

Karczmarek et al. 2016b; 2017c where the CCBLD local descriptor and its 

enhanced version were introduced, respectively. The material contained in the 

third chapter is partially based on the papers by Karczmarek et al. 2017d, where 

the saliency of facial features was discussed and by Karczmarek et al. 2019b, 

where an application of the AHP method to the face identification problem was 

proposed, and work (Karczmarek et al. 2016a) containing the discussion on 

voting with an application of facial weights. Chapter 4 deals with the material 

presented in an article by Karczmarek et al. (2018a) where a proposition of 
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describing facial features using graphical inputs to the AHP method was widely 

discussed and in the paper by Karczmarek et al. (2018c) where an application of 

graphical tools to the decision-making  process was proposed. The content of the 

fifth chapter uses some ideas presented in the paper by Karczmarek et al. (2014), 

where the discussion on the fuzzy measure in a context of face recognition was 

presented, and works by Karczmarek et al. (2017a; 2017b), where the evaluation 

of the fuzzy measure densities was performed. The last chapter is partially based 

on the material contained in Karczmarek et al. (2019a), where a comparison of 

various aggregation techniques in an application to face recognition was 

presented and Karczmarek et al. (2018b), where an analysis of a generalized 

Choquet integral as an aggregation operator was carried. 

I would like to thank Prof. Witold Pedrycz for invaluable discussions, in-

depth comments on the manuscript, and motivating me to convey the research. 

Moreover, I would like to thank Dr. Adam Kiersztyn who was the first reader of 

the book.  

The study was cofounded by National Science Centre, Poland (grant no. 

2014/13/D/ST6/03244). 
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1.  Preliminaries of Computational Intelligence and Decision–

Making Theory 

In this chapter, we recall the most important tools and frameworks of 

Computational Intelligence and decision-making theory. We briefly discuss the 

concepts of Analytic Hierarchy Process, Particle Swarm Optimization, fuzzy 

measure, Choquet integral, and t-norms. Moreover, we discuss the general 

concept of aggregation functions. At the end of this chapter, we place short 

description of various image datasets used in this book along with the sources. 

1.1. Analytic Hierarchy Process 

Analytic Hierarchy Process is one of the most important multi-criteria 

decision-making theory techniques which can be successfully applied both when 

one as well as a group of experts is engaged in a decision-making process. It was 

introduced by Saaty (Saaty 1980; 1988). Let us briefly discuss its most essential 

algorithmic and conceptual aspects. The method can be widely applied to 

generate the decisions related with choice, prioritization, ranking, order, 

evaluation, and other objectives at many levels of hierarchy. This may be 

understood as follows. At the beginning, one has to outline the hierarchy of 

concepts appearing in the problem. The top element is the goal. Lower are 

placed the criteria, and finally, at the bottom of the hierarchy placed is the set of 

alternatives. Assume that there are n alternatives (elements of interest). They can 

be organized in the form of a so-called reciprocal matrix R of the size 𝑛 × 𝑛. The 

entities of the matrix are the resulting values of pairwise comparisons between 

the alternatives. To estimate the values one frequently uses the following scale, 

see Saaty (1980), Saaty & Vargas (2012): 

 equal importance (1), 

 weak importance (2), 

 moderate importance (3), 

 moderate plus importance (4), 

 strong (essential) importance (5), 

 strong plus importance (6), 

 very strong (demonstrated) importance (7), 

 very, very strong improtance (8), 

 and extreme importance (9) 

or preference of one feature over the second. The full question can be formulated 

as: “To which extent the alternative A is preferred over the alternative B?”. It 

means that an expert (a group of experts) has to make 𝑛(𝑛 − 1)/2 pairwise 

comparisons. Of course, in the literature there are many different crisp versions 

of the above scale (1, 2, …, 7; 1, 3, 5, 7, 9; 1, 3, 5, 7; 1, 1.1, 1.2, …, 1.9, 2, 3, …, 

9, etc., or other scales, see Saaty (1977), Harker & Vargas (1987), Ishizaka & 
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Labib (2011) as well as built of the interval, fuzzy, or granular numbers, see, 

e.g., van Laarhoven & Pedrycz (1983), Pedrycz (2013), Kubler et al. (2016). The 

matrix R is called reciprocal since it satisfies the condition that for each entry 

𝑟𝑖𝑗 (𝑖, 𝑗 = 1, 2, … , 𝑛) we have 𝑟𝑖𝑗 = 1/𝑟𝑗𝑖. It implies that the diagonal elements 

are 𝑟𝑖𝑖 = 1. 

When working with real life problems one is interested in preserving possible 

high level of consistency of the pairwise comparison process results. This task is 

realized with using a so-called inconsistency index and a consistency ratio. The 

first of these parameters is defined as 𝜈 =
𝜆max−𝑛

𝑛−1
. Here, 𝜆max ≥ 𝑛 is a maximal 

eigenvalue of R. The second parameter, namely the consistency ratio 𝜇 reads as 

𝜇 = 𝜈/𝑟. The value r was found empirically by Saaty & Mariano (1979) as the 

average consistency index of 500 random reciprocal matrices. Its values are as 

follows: 0, 0, 0.52, 0.89, 1.11, 1.25, 1.35, 1.40, 1.45, 1.49 for 𝑛 = 1, 2, … , 10. 

For higher n the r-values were discussed by, for instance, Saaty (2000) or 

Alonso & Lamata (2006). 

Note that a common assumption here is that the value of consistency ratio 𝜇 

should not be greater than 0.1 to satisfy the decision makers (Saaty & Vargas 

2012). Such level of satisfaction from the process can be difficult to reach, in 

particular, in the case when intangible features (subjective ideas, psychological 

concepts, etc.) are evaluated. However, one can use various techniques of 

optimization to rebuild the reciprocal matrix. Here, we observe one of the main 

properties of AHP, namely a natural feedback mechanism expressing the level of 

consistency of the expert decision which is one of the pillars of its concepts, see 

Saaty & Vargas (2012). 

The importance (the degree of preference) of particular alternatives is 

obtained as the values of the eigenvector associated with the eigenvalue 𝜆max. 
The way of presentation of its values is typically two-fold. They are either 

normalized to the sum of the entries or to their maximal value. 

An interesting question appears when there are two or more experts engaged 

in the decision-making process using AHP. The final result of their independent 

(i.e., conducted individually) pairwise comparison processes can be obtained in 

two ways. The first is an arithmetic mean of the eigenvectors obtained on a basis 

of their work. The average may be weighted using the weights related to the 

inconsistency index (or consistency ratio). The second manner is a geometric 

mean of the reciprocal matrices’ entries which preserves the reciprocity property 

of the resulting matrix, see Aczél & Roberts 1989, Aczél & Saaty 1983, Forman 

& Peniwati 1998, etc. 

Finally, it is worth noting that AHP can be generalized by Analytic Network 

Process, where the criteria and alternatives depend on each other, see Saaty & 

Vargas (2012), Saaty (2005). 



17 

 

1.2. Particle Swarm Optimization 

Particle Swarm Optimization (Kennedy et al. 2001) is a socially-inspired 

method offering very fast and effective way of solving the optimization 

problems according to the assumed criteria. In particular, it is inspired by 

observation of behavior of flocks of birds or fish schools. The solutions of the 

considered optimization problems are represented by so-called particles. The set 

of particles creates the swarm. The particles during the execution of the method 

move through the search space and communicate their positions to the particles 

from the neighborhood. In each of the iterations, the positions are updated 

according to the parameters such as velocity and the differences between their 

best positions and actual positions, and the global best position and the actual 

position. To be more precise, assume that the ith particle’s velocity is denoted as 

𝒗𝑖, its position is given by 𝒙𝑖, personal best and global best positions by 𝒑𝑖 and 

𝒑𝑔, respectively, see Kacprzyk & Pedrycz (2015). These two parameters are the 

values giving the best optimization result in the previous iterations of the 

method. The velocities 𝒗𝑖 and positions 𝒙𝑖 are updated as follows. 

𝒗𝑖 = 𝒗𝑖 + 𝑎1𝑹1⨂(𝒑𝑖 − 𝒙𝑖) + 𝑎2𝑹2⨂(𝒑𝑔 − 𝒙𝑖)  (1.1) 

𝒙𝑖 = 𝒙𝑖 + 𝒗𝑖       (1.2) 

Here, 𝑹𝑗 (𝑗 = 1, 2) are random values from the range [0, 1], 𝑎𝑗 (𝑗 = 1, 2) are so-

called acceleration coefficients, and ⨂ denotes point-wise multiplication of 

vectors. The force that pulls the particles towards their own best positions is 

represented by a so-called cognitive term 𝑎1𝑹1⨂(𝒑𝑖 − 𝒙𝑖) while the social part 

is represented by 𝑎2𝑹2⨂(𝒑𝑔 − 𝒙𝑖). 

Note that the most common number of particles is 40. However, the number 

and criteria of stopping the algorithm vary according to the field of application. 

It may be the limiting number of iterations or reaching a solution of the 

optimization problem at a satisfying level. One of the most often modifications 

of the PSO algorithm is its inertia weight version with a parameter w standing by 

the first term of the formula (1): 

𝒗𝑖 = 𝑤𝒗𝑖 + 𝑎1𝑹1⨂(𝒑𝑖 − 𝒙𝑖) + 𝑎2𝑹2⨂(𝒑𝑔 − 𝒙𝑖)  (1.3) 

The parameter w balances the local and global search (Shi & Eberhart 1998). It 

can significantly reduce the time of the execution reaching satisfying level of 

convergence after few generations of the algorithm, see Eberhart & Shi (2001). 

1.3. Fuzzy Measure and Choquet Integral 

The fuzzy measure introduced by Sugeno (1974) generalizes the concept of 

classical measure. It replaces the typical additivity condition with the condition 

of monotonicity. Let X be a set and 𝑃(𝑋) = 2𝑋 be a family of all subsets of the 
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set X. Of course, such a family is 𝜎-field. Fuzzy measure is a set function 

𝑔: 2𝑋 → [0, 1] fulfilling the following conditions: 

𝑔(∅) = 0       (1.4) 

𝑔(𝑋) = 1       (1.5) 

𝑔(𝐴) ≤ 𝑔(𝐵) for 𝐴 ⊂ 𝐵, 𝐴, 𝐵 ∈  𝑃(𝑋)    (1.6) 

The last condition can be substituted by the following limit condition 

lim
𝑛→∞

𝑔(𝐴𝑛) = 𝑔 ( lim
𝑛→∞

𝐴𝑛)      (1.7) 

Here, the series {𝐴𝑛} (n=1, 2, …) is an increasing series of measurable sets. 

Also Sugeno (1974) introduced the following parametrized fuzzy measure 

version (an aggregation scheme): 

𝑔(𝐴 ∪ 𝐵) = 𝑔(𝐴) + 𝑔(𝐵) +  𝜆𝑔(𝐴)𝑔(𝐵), 𝜆 > −1  (1.8) 

Here, A and B are disjoint sets. The value of parameter 𝜆 describes the 

dependency between sets. If 𝜆 < 0 the measure is sub-additive. It means that the 

satisfaction which arises from one evidence source entails the satisfaction of the 

second one. It leads to the conclusion that they are in redundancy (competition) 

and that a combination of sets is not efficient. If 𝜆 > 0 then the synergy effect is 

present and the evidence sources efficiently support each other, see Grabisch 

1995 or Pedrycz & Gomide 1998. The value of 𝜆 can be yielded in a unique 

form (𝜆 > −1, 𝜆 ≠ 0) from the equation (Sugeno 1974) 

1 +  𝜆 = ∏ (1 + 𝜆𝑔𝑖)
𝑛
𝑖=1 , 𝑔𝑖 = 𝑔({𝑥𝑖})    (1.9) 

Here, similarly, 𝑥1, … , 𝑥𝑛 are non-overlapping sets, 𝑔𝑖 are the fuzzy measure 

densities. If we denote 𝐴𝑖 = {𝑥1, … , 𝑥𝑖}, 𝐴𝑖+1 = {𝑥1, … , 𝑥𝑖 , 𝑥𝑖+1}, the fuzzy 

measure over the area being the combination of the sets is determined 

recursively as 

𝑔(𝐴𝑖+1) = 𝑔(𝐴𝑖) + 𝑔𝑖+1 +  𝜆𝑔(𝐴𝑖)𝑔𝑖+1, 𝑔(𝐴1) = 𝑔1  (1.10) 

Now, assume that the values of function ℎ, namely ℎ(𝑥𝑖), 𝑖 = 1, 2, … , 𝑛, are 

sorted non-increasingly, and, moreover, we assume that  

ℎ(𝑥𝑛+1) = 0        (1.11) 

Then one can define the Choquet integral of a function h with respect to a 

measure g as follows: 

∫ℎ ∘ 𝑔 = ∑ ((ℎ(𝑥𝑖) − ℎ(𝑥𝑖+1))𝑔(𝐴𝑖)) 1≤𝑖≤𝑛    (1.12) 

Let us illustrate the concept with the help of the following example: Assume 

that the importance of particular sensors is as follows: 𝑔1 = 0.4, 𝑔2 =
0.35, 𝑔3 = 0.15, 𝑔4 = 0.32, 𝑔5 = 0.5 and the related values measured by the 

sensors are ℎ(𝑥1) = 0.45, ℎ(𝑥2) = 0.2, ℎ(𝑥3) = 0.5, ℎ(𝑥4) = 0.15, ℎ(𝑥5) = 0.8. 
After sorting the ℎ(𝑥𝑖) values and reordering the associated weights 𝑔𝑖 one can 

obtain the value of parameter 𝜆 ≈ −0.91, 𝑔(𝐴1) = 0.5, 𝑔(𝐴2) = 0.59, 𝑔(𝐴3) =
0.8, 𝑔(𝐴4) = 0.92, 𝑔(𝐴5) = 1. The value of Choquet integral is 0.57. Note that 

the fuzzy Choquet integral can be interpreted as specific median of the form (see 

Pedrycz & Gomide 1998) 

∫ℎ ∘ 𝑔 = med(ℎ(𝑥1), … , ℎ(𝑥𝑛), 𝑔(𝐴1), … , 𝑔(𝐴𝑛))  (1.13) 
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1.4. T-norms 

T-norms (triangular norms) are a generalization of a concept of probabilistic 

metric spaces (Menger 1942, Schweizer & Sklar 1983). These functions play a 

pivotal role when realizing the intersection and union operations on fuzzy sets, 

guaranteeing the properties of commutativity, associativity, and monotonicity. 

They can be formally defined as follows. 

A function 𝑡: [0,1]2 → [0, 1] is said to be t-norm if it satisfies the following 

conditions of commutativity, associativity, monotonicity, and boundary 

conditions, i.e., 

𝑡(𝑥, 𝑦) = 𝑡(𝑦, 𝑥)      (1.14) 

𝑡(𝑥, 𝑡(𝑦, 𝑧)) = 𝑡(𝑡(𝑥, 𝑦), 𝑧)     (1.15) 

𝑡(𝑥, 𝑦) ≤ 𝑡(𝑧, 𝑤) for 𝑥 ≤ 𝑧 and 𝑦 ≤ 𝑤    (1.16) 

and 

𝑡(0, 𝑥) = 0 and 𝑡(1, 𝑥) = 𝑥     (1.17) 

respectively. Typical examples of t-norms are product 

𝑇𝑃(𝑎, 𝑏) = 𝑎𝑏       (1.18) 

Łukasiewicz t-norm  

𝑇Ł(𝑎, 𝑏) = max(0, 𝑎 + 𝑏 − 1)     (1.19) 

drastic product 

𝑇𝐷𝑃(𝑎, 𝑏) = {
𝑏 for 𝑎 = 1
𝑎 for 𝑏 = 1
0 for 𝑎, 𝑏 ≠ 1

     (1.20) 

and Hamacher product  

𝑇𝐻(𝑎, 𝑏) =
𝑎𝑏

𝑎+𝑏−𝑎𝑏
for 𝑎, 𝑏 ≠ 0 and 0 otherwise  (1.21) 

1.5. Aggregation Functions 

The problem of aggregation (or, in general, fusion) of information appears in 

many areas of life. It can be, for instance, finding a champion on a basis of a 

series of sports competitions, decision-making on a basis of many experts’ 

evaluations, classification when more than one classification methods 

(classifiers) are merged, specifically, when the results must be aggregated. 

Formally, from the mathematical point of view, an aggregation function is n-

argument function 𝑓: [0,1]𝑛 → [0,1] having the properties as follows (see, 

Beliakov et al. 2007) 

𝑓(0, 0, … ,0) = 0      (1.22) 

𝑓(1, 1, … ,1) = 1      (1.23) 

and  

𝑓(𝒙) ≤ 𝑓(𝒚) for 𝒙 ≤ 𝒚, 𝒙, 𝒚 ∈ [0,1]𝑛     (1.24) 

Typical examples of aggregation functions are minimum, maximum, product, 

arithmetic, geometric, and harmonic means, or more advanced operators like 
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Choquet integral or Ordered Weighted Averaging operators (OWA, Yager & 

Kacprzyk 2012, Gadomer & Sosnowski 2018). The main properties of 

aggregation functions which can be as follows: 

 averaging aggregation 

min𝒙 ≤ 𝑓(𝒙) ≤ max𝒙      (1.25) 

 conjunctive aggregation 

𝑓(𝒙) ≤ min𝒙       (1.26) 

 disjunctive aggregation 

max𝒙 ≤ 𝑓(𝒙)       (1.27) 

 idempotency:  

𝑓(𝑥, 𝑥, … , 𝑥) = 𝑥      (1.28) 

 symmetry (the values are not dependent on the permutation of elements) 

 neutral element 

𝑓(𝑒,… , 𝑒, 𝑥, 𝑒, … , 𝑒) = 𝑥     (1.29) 

and many others, see (Beliakov et al. 2007). 

1.6. Face Image Datasets 

In the book we use the following facial image databases. 

 AT&T, formerly called ORL (AT&T Laboratories Cambridge). It is one of 

the best known and exploited databases of facial images consisting of 400 

images of 40 people (10 images per individual). The subjects present 

different pose, emotion, or mimic and the light can differ. The size of the 

images is 112×92 pixels. 

 The Facial Recognition Technology (FERET). It contains images collected 

under the FERET program, sponsored by the DOD Counterdrug Technology 

Development Program Office (Phillips et al. 1998; 2000). The most used 

here subset of images is built of 600 images (grouped in sets called ba, bk, 

and bj) of 200 people with different illumination and expression conditions 

and size 256×384 pixels. Moreover, we discuss the set called ColorFERET 

dataset. We select its 2722 photographs of 994 individuals. Each of them has 

from to 2 to 22 images taken with different distances to the camera. Another 

subset of FERET considered in this book is its grayscale part with subsets 

called fa, fb, ba, bk, and bj. The total number of images is 3880. 

 Face and Gesture Aging Database (FG-NET, Lanitis 2008). The set is 

consisted of Caucasian individuals’ images (1002 facial images of 82 

people). Their age varies in-between 0 and 69. Moreover, the pose, 

expression, and illumination vary. The image number per subject is in-

between 6 and 18. Maximum time gap is 54 years. Moreover, the dataset 

includes 640 children images (aged < 18 years). 
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 Yale Face Database (Belhumeur et al. 1997). It consists of 165 images of 15 

individuals with various expression and configuration (e.g., presence of 

glasses, light, etc.). 

 CAS-PEAL (Gao et al. 2008). It is a Chinese dataset with 9029 photographs 

of 1040 people. There are from 3 to 49 images per individual. The images 

are taken with various pose, expression, lighting and accessories (glasses or 

caps). 

 Essex Collection of Facial Images. Here, we work with the subset called 

faces94 contained in built of 20 images of 153 people. Their size is 180×200 

px. 

 PUT (Poznań Univerisity of Technology) Face Database (Kasiński et al. 

2008). An example of a face image is presented in Fig. 4.16. Its subset of 

1100 frontal images (11 per individual) has been used. 

 Labelled Faces in the Wild (LFW, Huang et al. 2007) images, in particular, 

its version by Sanderson & Lovell (2009) containing 12233 cropped images 

of 5748 people. 

 MUCT (Milborrow et al. 2010) containing 3755 faces with 76 manual 

landmarks. 

1.7. Conclusions 

In this chapter, we have briefly discussed the most important and used tools 

and mathematical models from the fields of Computational Intelligence and 

decision-making theory. In particular, we have recalled the definitions or 

descriptions of Analytic Hierarchy Process, Particle Swarm Optimization, fuzzy 

measure and fuzzy Choquet integral, aggregation functions, and t-norms. 

Moreover, we have presented various datasets appearing in the sets of 

experiments reported in this book. 
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2.  Local Descriptors in Face Recognition 

In this chapter, we present an in-depth view into local descriptors used in the 

area of face recognition. First, we propose a comparison of the quality of the 

main local descriptors related to Local Binary Pattern and its variations in an 

application to the problem of aging in face recognition. Next, we propose a so-

called Chain-Code Based Local Descriptor which describes both local and 

global facial features using the mechanism of chain codes. 

2.1. Introduction 

Typically, the studies on face recognition consider the problems of 

expression, pose, or illumination. The problem of aging is, in general, not 

commonly discussed. However, the number of works discussing this topic has 

been still increasing. Among the reasons are wide area of applications such as, 

for instance, missing people classification or an appearing of public datasets 

focusing the studies involving age factor, namely MORPH (Ricanek & Tesafaye 

2006) and Face and Gesture Aging Database (FG-NET). 

In general, the age-invariant face recognition techniques comprise two sets of 

methods. The first group embraces the methods focused on estimation of the age 

and simulation of the process of aging, see Lanitis et al. (2002), Park et al. 

(2010), Ramanathan & Chellappa (2010), Wang et al. 2006, Luu et al. (2011). 

These techniques result in new pictures using the models of aging compensating 

age effects. Such artificial facial images are matched. However, the process of 

aging is still difficult to simulate. One of the reasons is that different people age 

in a different manner since the process can be impacted by the factors like 

lifestyle, health, climate, place of living, etc. 

The second set of methods utilizes the features which are robust or relatively 

robust to the progression of age. An example is GOP (gradient orientation 

pyramid) combined with SVM (support vector machine), see Ling et al. 2010. 

The authors tested the algorithm using two private databases of passports. The 

errors were reported for various age gaps between the training set and testing set. 

Eigenfaces (Turk & Pentland 1991), Elastic Bunch Graph Matching (Wiskott et 

al. 1997) alone and in combination (also with soft biometric features) were 

discussed by Guo et al. (2010). The results were obtained for images of people 

presenting significant spans of age. The authors have shown that the accuracy 

does not decrease linearly with respect to the age differences. Moreover, when 

the age gaps are bigger than 15 years the recognition rate is drastically lower 

than for the differences lower than 15 years. Meng et al. (2010) compared PCA, 

LBP by Ahonen et al. (2004), GOP, and Gabor wavelets. LBP with Chebyshev 

norm has exhibited well performance for the age gaps in the scope 7–9 years and 

10–12 years. PCA was analyzed, among others, by Ricanek & Boone (2005) and 
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Sethuram et al. (2009). Multi-feature discriminant analysis was examined by Li 

et al. (2011). Periocular area was thoroughly examined by Juefei-Xu et al. 

(2011) through the algorithm called Walsh-Hadamard transform encoded LBP 

and unsupervised discriminant projection (Yang et al. 2007). For more in-depth 

analysis of the literature an interested reader can see the survey papers by Panis 

& Lanitis (2015), Jindal et al. (2015), Nimbarte & Bhoyar (2016), or Osman & 

Viriri (2018) as well as recent methods by Yang et al. (2014), Du et al. (2015), 

Nagpal et al. (2015), Boussaad et al. (2016), Pontes et al. (2016; 2017), Becerra-

Riera et al. (2017), Belver et al. (2017), Deb et al. (2017), Best-Rowden & Jain 

(2018), Georgopoulos et al. (2018), Li et al. (2018), Nimbarte & Bhoyar (2018a; 

2018b), or Punyani et al. (2018). 

The main goal of the study presented here is to evaluate and compare the 

efficiency and potential of the most important local descriptors along with their 

use in the facial recognition problems related to aging (age differences). Local 

descriptors (Local Binary Pattern and its variations) have been one of the 

dominating trends in computational face recognition literature. It is well known 

that the local approach is, in general, robust to expression, pose, or illumination 

changes. Here, we are interested in an in-depth examination of their robustness 

(efficiency) to the age changes. Moreover, we examine not only the wide class 

of local descriptors but we also analyze Gabor filters. Therefore, we offer the 

insight into the effectiveness and role of the approaches based on local 

descriptors in age invariant facial recognition. We evaluate the dependence of 

the accuracy on the age differences between the training and testing set as well 

as on the groups of age. Moreover, an evaluation of the dependence of the 

recognition rate on the subjects’ age appears as an interesting area of 

investigation. It should answer the question on the applicability of local 

descriptor-based methods as parts of more sophisticated face recognition 

systems. In addition, the methods incorporating local descriptors can play a key 

role in the problems related with age estimation. Finally, we bring forward an in-

depth comparison of local descriptors-based methods. We test the following 

descriptors: LBP (Local Binary Pattern), CSLBP (center-symmetric LBP), 

DLTP (differential local ternary pattern), ILBP (improved Local Binary Pattern), 

LGPBP (local Gabor phase binary pattern), LXGP (local Gabor XOR pattern), 

LXP (local XOR pattern), MBLBP (Multi-Scale Block LBP), TPLBP (three 

patch LBP), and WLD (a simplified Weber local descriptor). Moreover, chosen 

descriptors are tested in combination with Gabor magnitude images. We have 

selected such a set of local descriptors since they come with very promising 

accuracies in comparison with the results obtained on a basis of other local 

descriptors with no age gap. Note that here, we analyze only algorithms based on 

local descriptors and do not compare them with other techniques. This analysis 

would be interesting per se. However, it goes beyond the merit of this work. We 

concentrate on the aging problem in the context of its influence on the local 
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descriptors’ performance. The quantification of this relation will determine the 

best local approach and it will be a good input to combine with other methods. 

To complete our analysis of local descriptors we use a nearest neighbor 

classifier which is based on finding the distance measure between the vectors 

representing images. Therefore, a proper choice of this function is an important 

step. Therefore, to find the suitable measure, we conduct a series of experiments 

with various versions of measures of dissimilarity/similarity. The compared 

distances are as follows: Bray-Curtis, Canberra, Chebyshev, chi square statistics, 

correlation, cosine, histogram intersection, Euclidean, log-likelihood statistics, 

and Manhattan. 

Moreover, it is worth to stress that the local descriptors have been still 

intensively explored and developed as an interesting branch of methods in face 

recognition, see, for instance, works by Dornaika et al. (2014), Girish et al. 

(2014), Liao (2014), Reddy (2015), Ren et al. (2015; 2016), Smiatacz & 

Rumiński (2015), Yang et al. (2017b; 2018), Abid et al. (2018), Memiş (2018), 

and many others. A survey of local descriptors is presented in details by Bereta 

et al. (2013). 

In particular, an interesting local approach was presented by Chan et al. 

(2015). The local descriptor is called Full Ranking (FR). The method is based on 

the use of the available word dictionary. The technique directly incorporates the 

paradigm called BoVW (Bag-of-Visual-Words, see Sivic & Zisserman 2003). 

Similarly to the Local Binary Pattern, the neighboring pixels are under 

consideration. They are ordered and their indexes create a word. This word is 

substituted by another word being the most similar to the words contained in the 

dictionary. The word histograms are then the inputs to the classification 

processes. It is worth noting that Chan et al (2015) proposed circular and square 

neighborhoods of the central pixel having the dimensions 3 × 3 and 5 × 5 px. 

Here, we propose a descriptor called Chain Code-Based Local Descriptor 

(CCBLD). This novel and original local descriptor is based on an application of 

words but in a slightly different manner than by Chan et al. (2015). Here, we do 

not establish only one form of neighborhood, namely square or circular. On the 

contrary, we build the chain codes which start from the analyzed pixel. Such 

codes are built using, for instance, the consecutive maxima or minima of the 

gray scale pixel values in the cross-neighborhood. In this way, we replace the 

values from the range 0-255 by words which are built from four letters only. The 

result of the procedure is the local description of a facial image. Note that the 

codes containing more number of letters contain the information on the greater 

areas (being some kind of global structures) than the arbitrary shapes (squares or 

circles). Therefore, another main objective of the study detailed in this chapter is 

to present the Chain Code-Based Local Descriptor and its extended forms 

realized by an application of pixel blocks instead of singletons. Moreover, we 

analyze the dependency of the recognition accuracy on the length of the 

dictionary and the number of subregions which are the inputs to the histograms 
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describing the image parts. We also demonstrate the applicability, usefulness, 

and robustness of our CCBLD local descriptor to various conditions, age, and 

environments on a basis of experiments carried for the datasets such as AT&T, 

CAS-PEAL, ColorFERET, Essex, FERET, FG-NET, and Yale. It is worth to add 

that chain codes are very interesting artifacts per se. They are widely used to 

describe contours, see, for instance, McKee & Aggrawal 1977, Mehtre et al. 

1997, Bribiesca 1999, Bartyzel 2010, Yang et al. 2017a. 

2.2. Main Concept of Local Descriptors 

The origins of local descriptors are in texture analysis. Relatively recently, 

they have appeared in the studies on face recognition. The general concept of 

local descriptors-based techniques can be outlined as follows. The image 

features are described using the neighborhood (neighboring pixels). Next, they 

form a description of the whole image. The vectors created in this manner can be 

compared in the processes of classification of people. In the most cases, the 

vectors contain the histograms of features bins’ values for the image blocks 

(regions). Such histograms are built of pixels’ descriptions (labels). A pixel 

description is calculated on a basis of its neighborhood. The specific blocks’ 

descriptions can be concatenated giving rise to the geometry of the whole face. 

Note that such kind of approach does not need a training stage and seems to be 

relatively robust to the pose, luminance, or expression changes. However, the 

shortcomings lay, among others, in the length (size) of the compared vectors. 

The general concept of the descriptors of local features is depicted in Fig. 2.1. 

Note that the image fiducial points no. 𝑗, 𝑗 = 1,… , 𝑛, can be described by the 

vectors 𝒗𝑗. These vectors are then concatenated into the one vector describing 

the whole image. 

 

Fig. 2.1 The concept of local descriptors. 

Now, we will discuss various examples of local descriptors. Local Binary 

Pattern (LBP) is one of the best known. Ahonen et al. (2004) proposed its 
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application to the facial recognition methods. The formula describing a given 

central pixel 𝑝𝑐 reads as 

𝐿𝐵𝑃(𝑝𝑐) = ∑ 𝑠(𝑝𝑗 − 𝑝𝑐)2
𝑗 7

𝑗=0      (2.1) 

Here, 

𝑠(𝑥) = {
0 for 𝑥 < 0
1 for 𝑥 ≥ 0

      (2.2) 

From now, the variables 𝑝𝑐 and 𝑝𝑗  (𝑖 = 0,… , 7) denote the greyscale-level 

values of the center pixel and its neighboring pixels, respectively.  

An example of the LBP descriptor is shown in Fig. 2.2. The elements of the 

matrix are thresholded by the function 𝑠 with respect to the central pixel value. 

The zeros and ones obtained in this way are the input to the binary number built 

on a basis of a concatenation in a clockwise direction. Then the final decimal 

label of a pixel is found. An example face image coming from the FERET set 

and its LBP transformation are shown in Fig. 2.3.  

 

Fig. 2.2 LBP transform. 
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Fig. 2.3 Basic LBP transformation example: Original image (left) and the image after 

LBP transformation (right). 

An interesting modification of LBP is its circular version (Ahonen et al. 

2004), i.e., the modification based on the circular neighborhood of the pixel and 

bilinear interpolation at equidistant points positioned on the circle with center at 

𝑝𝑐. The advantages of this method are its robustness to the changes in 

illumination, and noise in flat areas, low computational cost, and rotation 

invariance. Here, we discuss its version proposed by Heikkilä et al. (2006; 2009) 

in the following form: 

𝐶𝑆𝐿𝐵𝑃(𝑝𝑐) = ∑ 𝑠 (𝑝𝑗 − 𝑝𝑗+𝑃
2

) 2𝑗
𝑃

2
−1

𝑗=0
    (2.3) 

As previously, 𝑠(𝑥) denotes a thresholding procedure and 𝑃 is a neighbor’s 

number. 

The next considered descriptors are improved LBP, see Jin et al. (2004), and 

multi-scale block LBP (Liao et al. 2007). The first of them is built using 

comparisons of all the pixels in the considered neighborhood with their mean 

(including the central value). ILBP is considered as the method well utilizing the 

information about texture and local shapes. Hence, it is robust to the illumination 

changes. 
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MBLBP is built in the following way: The average values of pixel blocks are 

used instead of values of single values. Each of these blocks is a square with 

pixels. One can group these blocks in larger blocks or place them equidistantly 

on a circle which surrounds the block placed in the center. One of the advantages 

of the MBLBP is that it enables encoding more global image structures than 

LBP in its basic form. MBLBP can be computed with using so-called integral 

images (Viola & Jones 2004). MBLBP was also considered by Chan et al. 

(2007). An example of the calculations is presented in Fig. 2.4.  

 
Fig. 2.4 An example of MBLBP with 9 blocks. Average values over 3x3 inner blocks are 

found. The block on the right is next an input to the simple LBP operation.  

Of course, it is possible to build the circular version of the MBLBP on a basis 

of the averages of patches positioned equidistantly on a given circle. 

The next considered local descriptor is LTP (local ternary pattern, Tan & 

Triggs 2007). The version presented here is called DLTP, differential LTP. It is 

based on the following transformation: 

𝑝𝑗
′ = {

−1 for  𝑝𝑗 ≤ 𝑝𝑐 − 𝑧

0 for  |𝑝𝑗 − 𝑝𝑐| < 𝑧

1 for  𝑝𝑗 ≥ 𝑝𝑐 + 𝑧

     (2.4) 

Here, 𝑝𝑐 , 𝑝𝑖 , 𝑝𝑖
′ are related to the values of central, neighboring, and the new 

value of neighboring pixels, respectively. z is an arbitrary value. Next, if all the -

1 values are replaced by 0, a so-called LTPU channel is formed. Similarly, if all 

the -1 values are replaced by 1 and 1 by 0, a channel called LTPL is built. Next, 

LBP is applied to these decimal values 𝐿𝑇𝑃𝑈(𝑝𝑐) and 𝐿𝑇𝑃𝐿(𝑝𝑐). The final 

result is 

𝐷𝐿𝑇𝑃(𝑝𝑐) = |𝐿𝑇𝑃𝑈(𝑝𝑐) − 𝐿𝑇𝑃𝐿(𝑝𝑐)|    (2.5) 

see (Bendada & Akhloufi 2010). The advantages of the descriptor are robustness 

to noise, expression and illumination changes. 

The next compared descriptor is TPLBP, three patch local ternary pattern. It 

is based on the transformation as follows (Wolf et al. 2008): 
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𝑇𝑃𝐿𝐵𝑃(𝑝𝑐) = ∑ 𝑠 (𝑑(𝐶𝑗, 𝐶𝑝𝑐) − 𝑑(𝐶𝑗+𝛼 mod 𝑃, 𝐶𝑝𝑐)) 2
𝑗𝑃−1

𝑗=0  (2.6) 

where P denotes a number of patches of a size 𝑤 × 𝑤 being equidistantly 

located on the circle with the center in 𝑝𝑐. The parameter 𝛼 is a distance between 

the patches positioned on a circle (here, one takes into account their order). The 

function 𝑑(∙,∙) is any distance while 𝑠(∙) stands for a threshold operation. The 

symbols 𝐶𝑗, 𝐶𝑗+𝛼 mod 𝑃 (𝑗 = 0,… , 𝑃 − 1) relate to the patches along the ring 

while the central patch is denoted as 𝐶𝑝𝑐.  

An interesting descriptor is WLD (Weber local descriptor, Chen et al. 2010). 

Its name comes from the psychological law which quantifies the change 

perception in a given stimulus. It states that the size of just noticeable difference 

between stimuli reads as a constant ratio of the value of original stimulus. WLD 

illustrates this concept. The components of WLD are orientation and differential 

excitation. The last one is dependent on the differences of intensities between a 

given pixel and its neighbors and on this pixel intensity. This can be formally 

written by the following equality: 

𝑊𝐿𝐷(𝑝𝑐) = arctan∑
𝑝𝑗−𝑝𝑐

𝑝𝑐

𝑃−1
𝑗=0      (2.7) 

Here, 𝑝𝑐 stands for the central pixel. The parameter j goes through its 

neighborhood. The advantages of WLD are, among others, noise and 

illumination robustness and the high ability to represent textures. 

2.3. Gabor filters  

Here, we discuss a role of Gabor wavelets in a combination with local 

descriptors. Moreover, note that the Gabor wavelets can be treated as local 

descriptors per se. An 𝐼(𝑥, 𝑦) image representation with a Gabor wavelet is the 

convolution 

𝐺𝑚,𝑛(𝑥, 𝑦) =  𝐼(𝑥, 𝑦) ∗ 𝜓𝑚,𝑛(𝑥, 𝑦)    (2.8) 

Here (Wiskott  et al. 1997, Xie et al. 2010), 

𝜓𝑚,𝑛(𝑥, 𝑦) =
‖𝑘𝑚,𝑛‖

2

𝜎2
𝑒
−
‖𝑘𝑚,𝑛‖

2
‖𝑧‖2

2𝜎2 (𝑒𝑖𝑘𝑚,𝑛 − 𝑒−
𝜎2

2 ) , 𝑧 = (𝑥, 𝑦) (2.9) 

and ‖∙‖ is a norm operation while 𝑘𝑚,𝑛 = (
𝑘𝑗,𝑥
𝑘𝑗,𝑦
) = (𝑘𝑛 cos𝜙𝑚

𝑘𝑛sin𝜙𝑚
),  𝑘𝑛 =

𝑓𝑚𝑎𝑥

2
𝑛
2

  (m = 0,… ,m𝑚𝑎𝑥 − 1, 𝑛 = 0,… , 𝑛𝑚𝑎𝑥 − 1) are to parameterize the Gabor 

filter orientation and frequency, respectively. In the most of the applications 

𝜙𝑚 =
mπ

8
, m𝑚𝑎𝑥 = 8,  and 𝑛𝑚𝑎𝑥 = 5. 𝜎 denotes the ratio of the Gaussian 

window to the wavelength. The parameter 𝑓𝑚𝑎𝑥 stands for the maximum 

frequency. Gabor magnitude is a modulus of 𝐺𝑚,𝑛(𝑥, 𝑦) and Gabor phase is its 

argument.  
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Gabor wavelets are used to model cells in visual cortex of the brains of 

mammals (Lee 1996). Therefore, they have found applications in image analysis. 

Moreover, they provide detailed information about the regions of a face (Zhang 

et al. 2009). Therefore, they were successfully used in cooperation with the 

algorithms such as EBGM or LBP or improved by jet selection (see Perez et al. 

2011, Serrano et al. 2010, Shen & Bai 2006). The shortcoming of Gabor filters 

usage is that they generate features with relatively long descriptions and of high 

dimensionality. One can rectify this problem using, for instance, Eigenfaces 

(Turk & Pentland 1991), Fisherfaces (Belhumeur et al. 1997), their simplified 

version (SGWs, Choi et al. 2008) and other techniques, see (Shylaja et al. 2011). 

2.4. Local descriptors in an application to Gabor wavelet images 

The methods based on combination of Gabor filters and local descriptions 

produce surprisingly well results. Examples are LGBPHS (local Gabor binary 

pattern histogram, Zhang et al. 2005) or MULGBP (multi resolution uniform 

local Gabor binary patterns, Jun et al. 2009). Here, we work with the detailed in 

the previous sections local descriptors being fused with the feature being the 

magnitude of Gabor wavelet. It is caused by the fact that local descriptors and 

Gabor filters are complementary. In addition, we discuss here three descriptors 

based on Gabor phase feature. They are LXP (local XOR pattern, Zhang et al. 

2007), LGPDP (local Gabor phase difference pattern, Guo & Xu 2008), and 

LGXP (local Gabor XOR pattern, Xie et al. 2010). 

The method called LXP first encodes the complex response of Gabor filter 

phase information by two bits. This process is realized on a basis of a quadrant 

bit coding. Two bits encode the quarter of the plane in which the considered 

complex response is placed. These two bits produce two binary maps, namely 

imaginary and real. The process results in 80 binary maps produced for standard 

collection of 40 Gabor filters. Next, for each pixel considered as a central point, 

XOR operation is carried to all pairs built of this pixel and its neighboring ones. 

The final result is the binary description in a decimal form. 

The LGPDP descriptor encodes the difference of Gabor phases between the 

central and neighboring pixels at each orientation and scale of Gabor wavelets. 

The concept of the method is that the differences are reformed to one-bit 

numbers on a basis of the following rule: In case of the absolute value belonging 

to [0, 𝜋/2] the resulting value is 1. In an opposite case the returned bit value is 0. 

Next, the decimal values of the numbers coming from a neighborhood are found. 

Finally, the spatial histograms at each orientation and scale are concatenated. 

This procedure results in both global and local form of information about the 

image. 

The last method considered here is LGXP. In this case, two phases belonging 

to the same interval are quantized within the same range. Therefore, if the phases 

of the neighbor pixel and the center pixel have similar phases (i.e., belonging to 
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the same interval), the number 1 is assigned to the neighboring pixel. In an 

opposite case, the value 0 is set. At the end of the process the binary results are 

merged as the local pattern (Xie et al. 2010). 

A general processing scheme of the classification process is depicted in Fig. 

2.5. At the beginning of the process a facial image is preprocessed (gray scale 

conversion, cropping, scaling). Next, it can be proceeded in one of the three 

manners: (i) using local descriptors, (ii) using Gabor filters and then local 

descriptors, or (iii) using Gabor filters only. The result is then compared with the 

images contained in a dataset and classified. 

 

Fig. 2.5 A general scheme of processing with local descriptors. 

2.5. Distance measures 

In the phase of recognition (classification) one has to determine a distance 

between two vectors representing facial images which belong to the training and 

testing set, respectively. A proper choice of a distance function plays a pivotal 

role here (Perlibakas 2004, Xue et al. 2007, Naveena et al. 2010, Bharkad & 

Kokare 2011, Smiatacz 2016). In this study, we compare various distances, or 

generally speaking, measures of similarity/dissimilarity, in an application to 

nearest neighbor classifier. They are Bray-Curtis, Canberra, Chebyshev, 

correlation, cosine, Manhattan, and three functions of the form 

𝐷(𝐴, 𝐵) = ∑ min(𝐴𝑗, 𝐵𝑗)𝑗      (2.10) 

χ2(𝐴, 𝐵) = ∑
(𝐴𝑗−𝐵𝑗)

2

𝐴𝑗+𝐵𝑗
𝑗       (2.11) 

𝐷(𝐴, 𝐵) = −∑ 𝐴𝑗log(𝐵𝑗)𝑗      (2.12) 

(i.e., histogram intersection, chi square statistics, log-likelihood statistics, 

respectively, see Ahonen et al. 2004). Here, 𝐴 and 𝐵 denote histograms, 𝑗 means 

the bin number, 𝐴𝑖 and 𝐵𝑖 are the bin values. 

2.6. Experimental results 

To assess the efficiency of local descriptors in an application to aging 

problem in face recognition we use the FG-NET Aging Database. In the series of 



35 

 

experiments, we preprocess the photographs using gray scale conversion, 

cropping, and scaling procedures.  

We have arranged the experiments into 3 categories as follows: (i) age 

differences between training and testing images, (ii) recognition accuracy in 

various age groups, (iii) leave-one-out experiments for the whole dataset. 

In the first experimental series, we extracted the training set containing 82 

images of 82 people. The age of each individual is possibly nearest to 18. The 

testing sets are built of the rest images according to the age differences between 

images contained in training set and testing set, respectively. The results of this 

partition are six sets containing the faces with age differences in between 0 and 5 

years and 6-10, 11-15, 16-20, 21-30, and 30+ years. The number of images in 

each of the sets is 270, 239, 221, 118, 47, and 25, respectively. The example 

faces (after preprocessing) are presented in Fig. 2.6. In the first row, presented is 

a training image. In the second row presented are two example images (the 

youngest and the oldest photographs) correctly classified while in the third row 

there are two analogical images missclassified with MBLBP local descriptor 

combined with the Gabor wavelet. Table 2.1 enlists the percentage values of 

rank-5, rank-10, and rank-15 recognition rates with respect to the above age 

difference groups for the local descriptors with no combination with Gabor filter 

images while Table 2.2 lists similar standing with recognition rates for the 

combinations of descriptors and Gabor wavelets. The distance function used in 

NN-classifer was the Euclidean one. The descriptors are represented by the best 

ones according to their settings across the age difference groups. 

Table 2.1 Percentage recognition rates (rank-5, rank-10, and rank-15) with respect to age 

difference groups using local descriptors with no combination with Gabor wavelet 

images. Bolded are the best values across the ranks. 

Age difference Rank CSLBP DLTP ILBP LBP MBLBP TPLBP WLD 

0-5 

5 26 21 25 24 30 29 18 

10 36 31 36 34 40 41 28 

15 44 42 45 40 51 46 40 

6-10 

5 21 20 22 18 22 24 15 

10 29 30 31 29 31 35 25 

15 37 39 37 38 39 45 34 

11-15 

5 18 13 15 15 13 15 12 

10 25 21 24 24 21 21 20 

15 32 28 33 31 33 32 27 

16-20 

5 13 12 16 13 17 12 12 

10 19 16 25 20 24 19 19 

15 25 21 33 30 31 30 22 

21-30 

5 6 15 6 9 17 13 9 

10 9 21 13 15 28 17 11 

15 19 21 23 26 36 32 21 

30+ 

5 24 20 8 12 4 20 24 

10 28 40 20 32 12 28 24 

15 28 40 32 36 20 32 24 
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Fig. 2.6 Incorrectly and correctly identified faces. The image in the first row belongs to 

the training set while in the second and third rows are depicted the examples of correctly 

and incorrectly identified images (i.e., they were found in the rank 15 list), respectively. 

The results enlisted in the tables suggest that the obtained accuracies can be 

significantly different in dependence on the local descriptors used in the process 

of classification. The best descriptor is the MBLBP when compared are the 

descriptors not combined with Gabor wavelets. It gives very good results when 

the age differences between the images coming from the training and testing sets 

are relatively short (0-5 years) or high (21-30 years). Still good results, but not 

so well as the produced by the MBLBP, observed were for LBP and its 

modifications: TPBLBP, CSLB, ILBP. The first modification is very robust to 

short and middle differences of age. 
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Table 2.2 Percentage recognition rates (rank-5, rank-10, and rank-15) with respect to age 

difference groups using local descriptors with combination with Gabor wavelet images. 

Bolded are the best values across the ranks. 

Age 

diffe

r. 

Ran

k 

Gab

or 

mag

n. 

CS 

LB

P 

DLT

P 

ILB

P 

LB

P 

M

B 

LB

P 

TP 

LB

P 

WL

D 

LGP

DP 

LG

XP 

LX

P 

0-5 

37 33 36 37 36 38 36 34 26 29 30 37 

45 43 47 46 47 47 44 43 37 36 37 45 

50 54 51 53 54 54 52 49 46 44 45 50 

6-10 

21 28 28 31 31 29 28 26 17 20 20 21 

32 39 37 42 41 40 37 36 25 30 28 32 

44 49 47 50 47 49 45 45 34 38 36 44 

11-

15 

17 19 21 23 22 21 20 18 15 17 14 17 

24 31 30 33 35 33 28 30 21 23 20 24 

34 38 39 39 41 43 35 36 28 31 28 34 

16-

20 

14 12 10 15 12 12 17 11 13 14 14 14 

22 24 19 25 22 26 25 20 24 21 25 22 

26 30 31 31 31 36 37 31 35 29 33 26 

21-

30 

32 23 19 30 28 26 23 21 17 9 6 32 

43 47 34 47 40 40 32 36 28 30 23 43 

47 55 51 53 45 45 47 40 34 38 32 47 

30+ 

24 20 20 20 20 16 20 16 20 20 12 24 

24 28 36 32 32 28 28 24 40 32 32 24 

40 44 44 44 40 28 40 28 40 32 40 40 

Moreover, the combination of local descriptors with Gabor wavelet images 

significantly improves the accuracy of recognition even up to 16% for age 

differences in between 0 and 5 years and up to 38% for 21-30 years age 

differences. The average increase was 13%, 23%, and 23% for rank 5, 10, and 

15, respectively. Similarly, as in the previous case, the best recognition rates 

were obtained for the MBLBP local descriptor and other LBP variations. 

However, also the Gabor wavelet images treated as local descriptors on their 

own present very well values of accuracies at similar level as the MBLBP 

combined with Gabor magnitudes in the group of short age differences. 

However, the results decrease faster for larger differences of age. As a 

conclusion one can state that local descriptors, particularly in combination with 

Gabor filters, are quite robust to facial age changes (differences) and can be a 

substantial part of face recognition systems oriented on the age-invariance 

problems. It is worth noting that the local descriptors which are based on the 

Gabor phase images, i.e., LGPDP, PGXP, and LXP do not exhibit good results 

(high accuracies) as the local descriptors combined with Gabor magnitudes do. 

Now, we repeat the experiments with slightly different settings. Namely, the 

image dataset is divided into the training set containing 189 images of 69 

subjects who are 16-22 years old. The probe sets are the face pictures at the ages 
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of 23-30, 31-40, 41-50, and 51-69 years and contain 108, 66, 37, and 16 pictures, 

respectively. The values of rank 5, 10, and 15 recognition rates for the above-

defined age groups are listed in Table 2.3 and Table 2.4, with respect to local 

descriptors combined and not combined with Gabor magnitudes. As in the 

previous case, the local descriptors are represented by their versions producing 

the best average recognition rates across the groups. 

Table 2.3 Rank-5, rank-10, and rank-15 percentage accuracies for the age groups 

obtained with local descriptors not combined with Gabor magnitude filters. 

Age group Rank CSLBP DLTP ILBP LBP MBLBP TPLBP WLD 

23-30 

5 38 34 43 40 44 42 28 

10 53 47 52 52 50 52 37 

15 59 54 59 58 58 62 46 

31-40 

5 17 15 17 14 23 24 11 

10 26 30 27 23 35 29 17 

15 36 44 35 38 36 39 26 

41-50 

5 16 16 14 14 24 16 11 

10 27 24 27 24 30 22 22 

15 32 27 30 38 32 30 24 

51-69 

5 0 6 0 6 6 6 13 

10 13 6 0 13 13 6 13 

15 13 13 13 19 13 6 19 

Table 2.4 The results of rank-5, rank-10, and rank-15 accuracies for the age groups 

obtained with local descriptors combined with Gabor magnitude filters. 

Age 

grou

p 

Ran

k 

Gab

or 

mag

n. 

CS 

LB

P 

DLT

P 

ILB

P 

LB

P 

M

B 

LB

P 

TP 

LB

P 

WL

D 

LGP

DP 

LGX

P 

LX

P 

23-

30 

5 51 58 42 54 59 56 46 43 32 37 33 

10 59 60 50 58 60 61 58 53 45 52 46 

15 69 63 61 62 64 64 64 60 56 62 56 

31-

40 

5 27 30 33 29 30 30 29 26 26 20 18 

10 45 45 41 48 45 45 44 39 33 27 33 

15 55 52 55 61 61 58 52 52 44 42 44 

41-

50 

5 38 49 49 54 49 49 43 32 41 32 27 

10 57 54 51 54 57 54 54 46 46 35 43 

15 62 57 54 54 57 59 59 51 49 41 46 

51-

69 

5 19 0 13 6 6 13 0 6 0 0 0 

10 19 13 25 13 6 13 13 6 0 6 0 

15 25 13 31 31 19 25 13 6 19 19 13 

The experiments with the images of adult subjects only confirm the main 

conclusions obtained with the experiments with age differences, i.e., that the best 

local descriptor with no combination with Gabor images is the Multi-scale Block 
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Local Binary Pattern. LBP and its modifications give quite worse results. Good 

options to choose are, in particular, ILBP, MBLBP, and LBP when we are able to 

combine them with Gabor magnitudes. Moreover, the Gabor wavelets are very 

valuable local descriptors on their own when the age groups are considered. As 

in the previous case, in combination with local descriptors, the recognition 

accuracies are essentially improved. Not satisfactory are the results produced by 

WLD, LGPDP, LXP, and LGXP. One can observe that the recognition rates are 

better than those obtained with the age differences. It is caused by removing the 

children images from the dataset. In the considered age groups the changes 

bones and muscles are not as rapid as in the childhood. 

The next set of tests is consisted of the experiments with the leave-one-out 

approach which is based on excluding one image from the set and the rest 

serving as a probe set. The results recorded at this stage of experiments are 

illustrated in Fig. 2.7 and in Fig. 2.8 without and with Gabor filtering, 

respectively. As before, the MBLBP local descriptor performs better than other 

descriptors. Local descriptors following the Gabor filters are the most valuable 

choice. The LBP descriptor and its modifications such as MBLBP, ILBP, and 

CSLBP produce evidently good results here. Weber local descriptor and DLTP 

do not seem to be good choices in this case. Again, LXP, LGXP, and LGPDP do 

not yield satisfying results. It is worth to stress that Gabor filter with no fusion 

with local descriptors is relatively worse than the rest of local descriptors merged 

with Gabor wavelets. 

 

Fig. 2.7 Rank-1, rank-5, rank-10, and rank-15 percentage recognition rates in case of 

leave-one-out experimental settings for the FG-NET dataset (descriptors with no Gabor 

filters). 
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The results of the above discussion are summarized in Table 2.5. 

The last series of experiments is devoted to the comparison of the most 

popular and intuitive similarity/dissimilarity measures and their impact on the 

recognition rates. The measures such as Bray-Curtis, Canberra, 𝜒2 statistics, 

correlation, cosine, Euclidean, histogram intersection, log-likelihood statistics, 

Manhattan, and Chebyshev are compared. To find the best option of the above 

measures we analyze the performance of ILBP, LBP, and MBLBP local 

descriptors fused with Gabor wavelet images. We have chosen the descriptors 

since they have exhibited the highest average recognition rates in the previous 

series of experiments. The results for four age groups (rank 15) and for leave-

one-out experimental setting (rank-1, -5, -10, and -15) are enlisted in Table 2.6. 

 

Fig. 2.8 Rank-1, rank-5, rank-10, and rank-15 percentage recognition rates in case of 

leave-one-out experimental settings for the FG-NET dataset (descriptors merged with 

Gabor filters). 

The results show that the optimal choice of the distance function (i.e., the 

similarity or dissimilarity measure) can essentially improve the accuracy of the 

method. Specifically, the Bray-Curtis, 𝜒2 statistics, histogram interection, and 

Manhattan distances exhibit relatively better results than popular Euclidean 

norm. This is visible especially when the differences in the age between the 

training and testing images are more than 7 years. In case of the differences less 

than 7 years, the Canberra measure can also be a proper choice. Leave-one-out 

experiments have shown that the differences between the results are almost 

negligible. However, the improvement of the recognition accuracy is possible 

when the distance measure is properly chosen. 

The set of the experiments and their results confirm the intuitive observation 

that the bigger age difference between the compared faces the lower the 



41 

 

recognition rate is. This trend is, however, not equal in all the discussed cases. 

Some exceptions can appear. They are mainly caused by the changing counts of 

images belonging to the compared training and testing sets. 

Table 2.5 Summary of the main results obtained for local descriptors in a context of 

aging problem. 

Descriptor Version with no Gabor filters 
Version combined with Gabor 

filters 

CSLBP 
Good results for age difference 10-

15 and age group 23-30 

Relatively high accuracy 

exhibited for all age differences 

and age groups <50 

DLTP 
Good accuracies for age differences 

20+ 

Relatively good option for the 

age group 50+ 

ILBP 

Very satisfying results for middle 

age differences and age groups <50 

and unsatisfactory results for the age 

group 50+ 

High accuracies for all the age 

groups and differences. Very 

good performance for the age 

difference <30 

LBP 
Average rates for all the age 

differences 

Good option for all the age 

groups and differences 

MBLBP 
High recognition rates for almost all 

the age groups and differences 

The highest average recognition 

rates when all the results are 

taken into account 

TPLBP 
Very good results for the age 

differences <15 and age group 23-40 

Good accuracies for all the age 

differences, in particular 16-20 

and age group 23-30 

WLD 

Relatively robust for high age 

differences and age groups, for the 

other collections of data the results 

are worse 

Inefficient in case of all the age 

groups 

Gabor 

magnitude 

filters 

Efficient for age differences >20 and 

age group >40 
n/a 

LGPDP 
Quite efficient for the age group of 

31-50 
n/a 

LGXP 
Good exhibition for age differences 

<20 and age group 23-40 
n/a 

LXP 
Quite effective for age differences 

11-20 and for age group 41-50 
n/a 

2.7. Chain Code–Based Local Descriptor and Its Extension 

Let us explain the main idea behind the Chain Code-Based Local Descriptor. 

In contrary to other local descriptors, CCBLD is not built on the basis of a given 

region (dimension and shape). The description of a pixel being under 

consideration comes from a larger number of pixels or block count. The image 

local properties influence this description. To be more precise, assume that we 
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begin at any arbitrary point of the image, i.e., a pixel I(x,y), and assume that in 

its cross-neighborhood there exists a pixel containing higher  gray-scale value, 

namely that one of the pixels IL(x-1,y), IU(x,y-1), IR(x+1,y), or ID(x,y+1) is of the 

highest value. The first letter of the chain code (pixel description) stands one of 

the corresponding signs, i.e., L, U, R, or D. The process is continued at the pixel 

of the maximal value and it stops when no pixel in some cross-neighborhood is 

of higher value. Note that the process must finish since there is a finite number 

of pixels in an image. Moreover, one can note that the cycles are not possible. In 

case when more than one maximum is found the special rule must be defined to 

choose the next step. Of course, the description of a pixel can be an empty string 

if no maxima is found in its neighborhood. In the same way, using the letters L, 

U, R, or D, we can build the chain on a basis of the consecutive local minima. 

The process of creating such a string is depicted in Fig. 2.9. 

 
Table 2.6 A comparison of the results obtained with various similarity/dissimilarity 

measures for different age groups and leave-one-out experiments (rank-1, -5, -10, and -

15). 
Descriptor 

/ method 

Age 

group 

Bray-

Curt. 
Canb. Cheb. 

Chi 

sq. 
Corr. Cos. Eucl. Hist. 

Log-

lik. 
Manh. 

ILBP 

23-30 62 66 32 62 63 62 62 62 61 62 

31-40 58 50 35 58 56 58 61 58 56 58 

41-50 59 59 35 59 57 57 54 59 54 59 

50+ 31 19 13 31 38 38 31 31 25 31 

LBP 

23-30 66 65 33 67 66 65 64 66 62 66 

31-40 61 53 29 59 62 64 61 61 56 61 

41-50 59 57 32 59 57 57 57 59 54 59 

50+ 19 6 31 25 31 38 19 19 13 19 

MBLBP 

23-30 65 61 38 65 63 64 64 65 62 65 

31-40 55 44 29 53 58 58 58 55 52 55 

41-50 65 43 32 65 59 59 59 65 62 65 

50+ 13 0 19 13 25 25 25 13 19 13 

ILBP, leave-
one-out, rank 

1 42 38 8 42 42 42 42 42 42 42 

5 60 58 20 61 61 60 60 60 59 60 

10 70 68 28 70 70 70 70 70 69 70 

15 77 74 37 76 75 75 75 77 75 77 

LBP, leave-
one-out, rank 

1 42 36 9 42 42 43 42 42 43 42 

5 60 55 21 61 59 60 60 60 60 60 
10 69 65 32 69 69 69 69 69 68 69 

15 75 73 40 76 75 75 76 75 75 75 

MBLBP, leave-

one-out, rank 

1 43 41 7 43 45 44 44 43 43 43 
5 63 61 19 63 62 62 63 63 62 63 

10 73 71 30 73 71 71 71 73 71 73 

15 78 77 38 79 76 76 76 78 78 78 
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Fig. 2.9 The process of building the chain-codes describing an image. 

The number of chain-codes (string descriptions of the pixels) can be large. 

Therefore, to reduce the dimension of the histogram one can introduce a 

dictionary of possible words. If a word does not appear in the dictionary it can 

be matched to the most similar one among the words contained in the dictionary. 

A comparison can be realized on a basis of Levenshtein distance, see 

(Levenshtein 1965, Navarro 2001). 

The whole image is described in a form of concatenated histograms of words 

coming from image subareas. In this way both local and global image properties 

are preserved. In a formal form this is written as  

𝐵 = [𝑐1,1
+ , … , 𝑐

1,
𝑛

2

+ , 𝑐1,1
− , … , 𝑐

1,
𝑛

2

− , … , 𝑐𝑖,𝑗
+ , … , 𝑐𝑖,𝑗

− , … , 𝑐𝑟,1
+ , … , 𝑐

𝑟,
𝑛

2

+ , 𝑐𝑟,1
− , … , 𝑐

𝑟,
𝑛

2

− ]  

         (2.13) 

Here i=1,…,r and j=1,…,n/2 are a number of subarea and a number of word in a 

histogram associated with the subarea, respectively. The words (c) created using 

the consecutive minima are marked by – while + is used to denote the words 

created by using the rule of consecutive maxima. 

The dictionary of words is designed in a slightly similar way as in Chan et al. 

(2015). We randomly pick up images and then the pixels from the dataset. The 

classifier is the Nearest Neighbor method based on any similarity measure to 

compare two histograms (i.e., the vectors of a form 𝒙 = (𝑥1, … , 𝑥𝑁), 𝒚 =
(𝑦1, … , 𝑦𝑁) ∈ ℝ

𝑁). 

Similarly as in case of the presented MBLBP descriptor one can modify the 

procedure described above using blocks of pixels instead of applying single 
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pixels. These blocks of pixels are represented as the means of the (2𝑝 + 1) ×
(2𝑝 + 1)-size blocks, namely 

𝐼(̅𝑥, 𝑦) = (𝐼(𝑥 − 𝑝, 𝑦 − 𝑝) +⋯+ 𝐼(𝑥, 𝑦) + ⋯+ 𝐼(𝑥 + 𝑝, 𝑦 + 𝑝))/(2𝑝 + 1)2 

        (2.14) 

As an example of construction of the descriptor let us consider the block of 

pixels presented in Fig. 2.4. If we analyze the central pixel with value 75 then 

the block of pixels are created as in the MBLBP example. Next, the chain codes 

are built as in the procedure depicted in Fig. 2.9. The final result is 𝑐− = 𝑈𝐿 and 

𝑐+ = 𝑅. Another example is depicted in Fig. 2.10. The presented description is 

𝑐− = 𝑈𝑈𝑅 and 𝑐+ = 𝑅. An overall processing scheme is shown in Fig. 2.11. 

 

Fig. 2.10 An example of building Chain Code-Based Local Descriptor for blocks of 

pixels of size 3x3 px. 
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Fig. 2.11 A processing scheme. 

2.8. Experimental Results 

We expose the results of an application of the CCBLD descriptor in an 

application to face recognition problems with seven various datasets. We 

compare the results with LBP and its modifications as well as Full Ranking 

descriptor presented in Ahonen et al. 2004 and Chan et al. 2015, respectively. 

2.8.1. AT&T Database 

In the first series of experiments we have compared various 

similarity/dissimilarity measures introduced in (Ahonen et al. 2004), namely 

correlation, histogram intersection, 𝜒2 statistics, and Hellinger (called also 

Bhattacharyya coefficient) as the methods of comparison of the histograms of 

words. The length of histograms is 500 and each of the images was divided into 

25 regions. The results of 100 repetitions of the tests (200 images, i.e., 5 images 

per person, randomly chosen to the training set and the rest selected to the 

testing set) are listed in Table 2.7. They show that the most promising results can 

be obtained on a basis of Hellinger similarity measure given by the following 

formula (see OpenCV documentation):  

𝑑(𝒙, 𝒚) = √1 −
∑ √𝑥𝑖𝑦𝑖
𝑛
𝑖=1

√∑ 𝑥𝑖
𝑛
𝑖=1 ∑ 𝑦𝑖

𝑛
𝑖=1

     (2.15) 

where 𝒙 = (𝑥1, … , 𝑥𝑛), 𝒚 = (𝑦1, … , 𝑦𝑛) ∈ ℝ
𝑛. Therefore, for all the next series 

of experiments, the results obtained with Hellinger measure will be presented.  

The next series of experiments are set as follows: The dataset was divided 

randomly by choosing 5 images of each subject to the gallery set and 5 

photographs to the testing set. We repeated the experiments 20 times. It is worth 

noting that each time a new dictionary of words was randomly built. Moreover, 

the experiments were carried with various dictionary lengths and divisions of the 
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images into the subareas. The division was always in the form 𝑑 × 𝑑, i.e., there 

is the same number of blocks horizontally and vertically and the subareas have 

the same proportions as the whole images. 

Table 2.7 The initial results of a comparison of similarity/dissimilarity measures. 

 Leave-one-out 
200 training and 200 testing 

images 

 
Recognition 

rate 

Std. 

dev. 
Recognition rate Std. dev. 

Correlation 97.5 0.46 92 2.07 

Histogram 

intersection 
98.43 0.37 93.46 1.94 

Chi-square statistics 95.67 0.69 89.03 2.47 

Hellinger 98.48 0.33 93.67 2.03 

 

The rank 1 recognition rates for the dimension of block surrounding the 

starting pixel 1 × 1, 3 × 3, 5 × 5, and 7 × 7, respectively, are listed in Table 2.8. 

The tests were carried with the dictionary lengths in the range 10, 20, …, 300. 

The number of subareas were in the range 1 to 100. Additional selected (the best 

with respect to categories) results for longer dictionaries are shown in Table 2.9. 

They were specified during an analysis of the progress of the accuracies 

obtained for CCBLD with lower length dictionaries. The choice of a dictionary 

containing 100 words for the basic CCBLD and a dictionary with the number of 

words in the range 400 – 600 for the block version of CCBLD is a sound 

alternative. The optimal image subregions count for the AT&T dataset is 9 or 16, 

i.e., there are 9 or 16 subregions of the equal size. 

The rank 1 – rank 10 for five versions of CCBLD local descriptor in 

comparison with LBP and Full Ranking descriptors visualized are in Fig. 2.12. 

Hereafter the writing CCBLD(Kpx,LxM,N) means the local descriptor with K-

pixel wide neighborhood starting image point, partition of the image on L rows 

and M columns, and N-element count dictionary. The results depicted at the 

image show the high efficiency and potential applicability of the proposed 

CCBLD local descriptor, particularly when referred to other published local 

descriptors. The notation FR(Z,LxM,N) means Full Ranking with circular 

neighborhood built of 17, 25 and square neighborhood built of 17 and 9 pixel 

values when Z = A, B, C, and D, respectively. 

The next series of experiments with the AT&T database is conducted after 

the preprocessing stage, i.e., the faces were cropped to the size 90 × 94 px, 

scaled, and the histograms were equalized. CCBLD produces over 98% 

recognition rate and for all the ranks successfully outperforms the other 

compared descriptors, see Fig. 2.13. 
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Fig. 2.12 Rank 1, rank 2, …, rank 10 recognition rates produced by chosen local 

descriptors. 

 

Fig. 2.13 Analogous results obtained for the AT&T images after the preprocessing. 
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2.8.2. FERET 

Here, we use the merged ba, bk, and bj subsets of the set. Similarly as in the 

case of the previous dataset, we have run twenty iterations of experiments based 

on the random choice of two images of each individual to the training set and 

one image to the testing set, respectively. CCBLD descriptor in its simplest form 

(1 px size neighborhood) produces better results than the other methods. 

However, the recognition rates are relatively low, i.e., 73.75%. From the other 

hand, they show the potential hidden in our approach as well as its ability to 

increase the efficiency on a basis of incorporation of other methods related with 

image recognition and preprocessing. Fig. 2.14 visualizes the results. The input 

to the next series of experiments was the same set of images but after the 

preprocessing based on eye detection, rescaling, face cropping to the size 

100 × 140 px, and histogram equalization. The results depicted at Fig. 2.15 

show again the usefulness of our proposal. Moreover, it is seen that the 

preprocessing stage slightly improves the accuracy by returning over 75% rate of 

recognition. 

 
Fig. 2.14 The cumulated recognition rates for rank 1 to rank 50 produced with 600 

FERET grayscale images. 

Now, let us discuss the set of experiments carried for the ColorFERET 

dataset. The only preprocessing was conversion to the grayscale. Fig. 2.16 

illustrates the results. Similar tests were run for cropped and rescaled to the size 

100 × 140 px images included in the grayscale part of the FERET. The subsets 

considered are called fa, fb, ba, bk, and bj. A comparison of CCBLD and other 
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descriptors is in Fig. 2.17. All the produced results show an evident applicability 

of the proposed approach. 

Table 2.8 Relation between dictionary length, number of subareas, size of blocks, and 

rank 1 recognition rates. 

 Number of words in the dictionary in the case of 1x1 pixel blocks 

Sub-

region 

count 

10 20 30 40 50 60 70 80 90 100 150 200 250 300 

1 52.95 69.33 74.78 77.58 79.68 81.45 82.28 82.80 82.93 83.75 85.23 84.60 85.50 85.53 

4 83.00 88.80 89.70 90.63 91.00 91.50 91.45 92.00 92.63 92.28 92.93 92.75 92.80 93.18 

9 90.23 92.58 93.38 94.15 94.28 94.65 94.85 94.75 95.43 95.23 95.68 95.75 95.93 95.83 

16 92.95 94.70 95.48 95.68 95.83 95.83 95.98 96.03 96.10 96.20 95.93 96.15 96.00 95.60 

25 93.68 95.10 95.33 95.30 95.53 95.60 95.55 95.55 95.53 95.58 95.45 95.15 95.10 94.85 

36 93.03 94.15 94.80 95.30 95.18 95.03 95.25 95.05 95.35 95.33 95.18 94.73 94.53 93.98 

49 93.55 94.30 94.20 94.53 94.28 94.48 94.18 94.28 94.15 94.28 93.93 93.75 93.53 93.10 

64 92.58 93.35 93.50 93.60 93.73 93.43 93.73 93.53 93.55 93.45 93.28 92.78 92.80 92.53 

81 92.45 93.18 93.38 93.40 93.20 93.40 93.28 93.20 93.13 93.25 92.85 92.63 92.43 92.25 

100 92.38 92.70 92.78 92.80 92.80 92.50 92.63 92.68 92.50 92.63 92.08 91.83 91.68 91.03 

 Number of words in the dictionary in the case of 3x3 pixel blocks 

Subr.  

count 
10 20 30 40 50 60 70 80 90 100 150 200 250 300 

1 72.13 85.28 88.93 91.08 92.03 92.88 93.38 93.13 94.08 94.13 94.93 95.30 95.35 95.75 

4 92.20 94.80 96.43 96.73 96.60 96.95 97.25 97.10 97.13 97.43 97.60 97.93 98.00 97.93 

9 96.05 97.28 97.60 97.88 97.83 97.93 98.00 97.85 97.85 97.95 97.95 98.20 98.15 98.20 

16 96.70 97.63 97.75 98.03 98.10 98.23 98.18 98.20 98.08 98.18 98.28 98.18 98.20 98.25 

25 96.58 97.10 97.20 97.05 97.35 97.28 97.08 97.28 97.43 97.23 97.20 97.00 97.23 97.20 

36 96.28 96.83 96.90 96.83 96.70 96.88 96.63 96.83 96.88 96.93 96.90 96.93 96.68 96.83 

49 96.50 96.58 96.43 96.58 96.50 96.58 96.48 96.60 96.53 96.43 96.40 96.55 96.40 96.45 

64 95.25 96.03 96.00 95.90 96.00 96.00 95.88 96.03 95.90 95.98 95.98 96.00 95.93 95.93 

81 95.38 95.50 95.80 95.70 95.53 95.65 95.70 95.55 95.60 95.55 95.68 95.73 95.70 95.55 

100 95.45 95.65 95.35 95.53 95.50 95.60 95.38 95.35 95.45 95.43 95.35 95.35 95.48 95.30 

 Number of words in the dictionary in the case of 5x5 pixel blocks 

Subr. 

count 
10 20 30 40 50 60 70 80 90 100 150 200 250 300 

1 72.90 85.98 89.28 91.18 91.73 92.65 92.88 93.25 93.43 93.78 94.78 95.03 95.75 95.65 

4 91.98 95.13 96.10 97.08 96.93 97.28 97.15 97.50 97.45 97.60 97.60 97.95 98.00 97.90 

9 95.78 97.38 97.30 97.43 97.68 97.88 97.83 97.75 97.85 98.10 98.00 98.00 98.00 98.00 

16 96.90 97.35 97.48 97.30 97.50 97.53 97.43 97.55 97.45 97.50 97.50 97.53 97.50 97.45 

25 95.90 96.25 96.33 96.45 96.48 96.45 96.60 96.70 96.53 96.58 96.73 96.73 96.73 96.73 

36 95.85 96.18 96.00 96.18 96.23 96.35 96.28 96.28 96.28 96.33 96.18 96.28 96.33 96.35 

49 95.33 96.03 95.95 96.13 95.93 95.95 96.00 96.00 95.93 95.95 96.10 95.93 95.90 95.93 

64 95.23 95.63 95.65 95.55 95.63 95.65 95.58 95.58 95.48 95.55 95.50 95.35 95.38 95.63 

81 95.13 95.33 95.50 95.53 95.30 95.48 95.35 95.30 95.25 95.28 95.15 95.18 95.28 95.08 

100 94.73 95.18 95.05 95.05 94.98 95.20 94.93 94.95 94.68 95.00 94.88 94.78 94.63 94.70 

 Number of words in the dictionary in the case of 7x7 pixel blocks 

Subr. 

count 
10 20 30 40 50 60 70 80 90 100 150 200 250 300 

1 70.13 84.13 87.08 90.10 91.50 91.85 92.78 92.55 92.78 93.28 94.03 94.68 95.18 95.28 

4 92.18 94.65 95.88 96.45 96.58 96.78 96.85 97.15 97.20 97.05 97.48 97.65 97.53 97.70 

9 96.33 97.35 97.73 97.93 98.00 98.15 98.13 98.10 98.33 98.33 98.33 98.33 98.33 98.28 

16 96.65 97.70 97.80 97.73 97.83 97.85 97.68 98.05 97.88 98.05 97.88 97.90 97.88 97.95 

25 96.18 96.85 96.80 97.03 96.95 97.23 97.03 97.23 97.18 97.20 97.18 97.15 97.05 96.95 

36 96.60 96.68 96.75 96.88 96.60 96.65 96.65 96.70 96.68 96.58 96.58 96.33 96.38 96.50 

49 95.80 96.13 96.10 96.38 96.30 96.35 96.25 96.55 96.28 96.35 96.33 96.28 96.43 96.40 

64 95.65 95.88 95.85 96.13 96.13 96.15 96.28 96.30 95.98 96.05 96.18 96.18 96.23 96.33 

81 95.60 95.83 95.70 95.70 95.90 95.78 95.85 95.48 95.65 95.65 95.73 95.60 95.70 95.63 

100 95.08 95.55 95.75 95.63 95.58 95.50 95.58 95.40 95.45 95.58 95.35 95.55 95.40 95.40 
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Fig. 2.15 The cumulated recognition rates for rank 1 to rank 50 produced with 600 

FERET grayscale preprocessed images. 

Table 2.9 Selected rank 1 recognition rates. 

 Dictionary length 

Blocks 

dimension 

Subregion 

count 
400 500 600 700 800 900 1000 

3 4 97.95 98.2 98.15 98.23 98.08 98 98.08 

3 9 98.13 97.98 - - - - - 

3 16 98.28 98.15 98.15 98.23 - - - 

5 4 98 97.93 - - - - - 

5 9 98.15 98.05 98.23 98.15 - - - 

5 16 97.6 97.45 - - - - - 

7 4 97.68 97.5 - - - - - 

7 9 98.45 98.3 98.23 98.3 98.23 98.23 98.23 

7 16 97.85 97.95 97.75 97.78 - - - 

9 4 - 96.73 - - - - - 

9 9 98.35 98.38 98.4 98.4 98.28 98.28 98.28 

9 16 - 97.83 - - - - - 

11 4 - 96.15 - - - - - 

11 9 - 97.73 - - - - - 

11 16 - 97.53 - - - - - 
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Fig. 2.16 Rank 1 – rank 100 recognition rates produced by the chosen techniques in 

group of FR, LBP, and CCBLD with the ColorFERET images. 

 

Fig. 2.17 Rank 1 – rank 100 recognition rates produced by the chosen techniques in 

group of FR, LBP, and CCBLD with the grayscale FERET 3880 images. 

2.8.3. Yale 

Fig. 2.18 illustrates the recognition rates obtained with various feature 

extractors. Here, one can observe an essential dependence of the accuracy on the 

way of partition of the image into the sub-areas. Morover, one can note a very 
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huge dependence of the of the accuracy on the dictionary length. Here, the 

experiment settings are as follows: 5 or 6 images per person were randomly 

taken to the training set and the rest were taken to the testing set. We have 

repeated all the experiments 20 times. 

 

Fig. 2.18 Rank 1 – rank 10 recognition rates for the Yale Face Database. 

2.8.4. CAS-PEAL 

The results are shown in Fig. 2.19. One can observe that in the case of lower 

ranks the CCBLD descriptor gives better results than other compared methods. 

However, CCBLD with one-pixel neighborhood gives very similar results when 

the ranks over 20 are discussed. Again, 20 iterations of the experiments with half 

of each person’s images randomly selected to the training set and the rest being 

in testing set were executed. 
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Fig. 2.19 Rank 1 – rank 100 recognition rates yielded with the CAS-PEAL dataset. 

2.8.5. Essex 

Here, the results are presented in Fig. 2.20. The set is relatively easy. It 

means that the compared local approaches bring satisfying results. However, 

similarly to the previous cases, CCBLD produces better recognition rates than 

the LBP and FR local descriptors. The experimental setting were the same as in 

the CAS-PEAL set. 

 

Fig. 2.20 Rank 1 – rank 10 recognition rates for CCBLD, LBP, and FR local descriptors 

produced for the Essex dataset. 
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2.8.6. FG-NET 

Again, we consider the FG-NET database. The results of comparison are 

shown in Fig. 2.21. In the sequel, the images were preprocessed (i.e., converted 

to the grayscale, cropped (128 × 150 px), rescaled, and the histogram 

equalization procedure was applied). In this case the results are presented in Fig. 

2.22. The first part of this chapter has proven that despite the fact that local 

approaches are not sufficient to bear the aging progress task in the context of 

face recognition they have the potential to be combined with other techniques. 

The results produced by CCBLD suggest that it can be a sound alternative when 

compared with other local approaches, in particular, in the case of preprocessed 

images. Note that the parameters of the tests are the same as in the previous 

cases, i.e., 20 iterations, half of the images contained in the training and the rest 

in the testing set, respectively. 

 

Fig. 2.21 Rank 1 – rank 50 recognition rates in the case of FG-NET dataset. 
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Fig. 2.22 Rank 1 – rank 50 recognition rates in the case of preprocessed images from the 

FG-NET dataset. 

2.8.7. Computational Effort 

Here, we discuss the time of performance for chosen procedures and 

operations related to the execution of the face recognition methods based on 

CCBLD descriptor. They are the time needed to build a dictionary, processing 

the files containing the words associated with image pixels, i.e., their changing 

to the files containing the words best matching to the words contained in the 

dictionary, and the time needed to compare two histograms of words. We 

analyze the computational effort on the 600 grayscale images from the FERET 

image base. The algorithm speed values with respect to its particular steps are 

listed in Table 2.10, Table 2.11, and Table 2.12. One can observe that the most 

impact on the application execution time has the dictionary length. 

Table 2.10 Computing time (measured in ms) of selected steps of the CCBLD algorithm 

in its version with 1x1 px block size, no image partition, and the length of dictionary 

being 100 to 1000 words. 
 The length of dictionary 

Step 100 200 300 400 500 600 700 800 900 1000 

Dict.  

build. 
561 2636 5163 11529 19923 29001 40544 55474 74823 94489 

Chang. 

text  

imag. 

1950 3532 5229 6855 8540 10445 12548 14017 15819 17714 

Hist. 

build. 
193 196 197 198 198 204 200 199 201 200 

Two  

hist. 

comp. 

0.24 0.36 0.49 0.62 0.74 0.86 0.97 1.09 1.21 1.32 
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Table 2.11 Computing time (measured in ms) of chosen steps of the CCBLD version 

with no image partition, the length of dictionary set to 100, and the size of starting pixel 

neighboring block from 1x1 to 15x15. 
 Size of the starting pixel neighboring block 

Action 1x1 3x3 5x5 7x7 9x9 11x11 13x13 15x15 

Dictionary building 561 187 171 124 140 140 124 124 

Changing text images 1950 2033 2119 2075 2071 2008 1972 1982 

Histogram building 193 194 194 194 195 193 193 206 

Two histograms comparison 0.24 0.24 0.24 0.25 0.24 0.24 0.24 0.24 

Table 2.12 Computing time (measured in ms) of chosen steps of CCBLD version with 

no image partition, the length of dictionary set to 100, the size of starting pixel 

neighboring block set to 1x1, and the changing partition of an image. 
 Image partition 

Action 1x1 2x2 3x3 4x4 5x5 6x6 7x7 8x8 9x9 10x10 

Dictionary 

building 
561 452 670 561 702 468 655 483 530 670 

Changing text 

images 
1950 1967 1901 1935 1958 1896 1912 1946 2003 1948 

Histogram 

building 
193 193 195 196 198 200 203 204 208 211 

Two histograms 

comparison 
0.24 0.62 1.23 2.07 3.14 4.42 5.89 7.6 9.44 11.62 

2.8.8. Robustness to Noise and Occlusion and Block Version of 

CCBLD Based on Median 

Here, we analyze the problem of noise and occlusion robustness when they 

are artificially added to the photographs. The facial images coming from the 

AT&T and grayscale FERET datasets were modified using the well-known salt 

and pepper and Gaussian noises. The recognition rates are presented in Table 

2.13. Similarly, the images were modified by adding white rectangles of random 

size and placement. Their maximum dimensions were 30 × 60 px and 90 × 150 

px with respect to AT&T and FERET sets, respectively. Moreover, we tested the 

CCBLD version for which the method of finding the maxima or minima from 

the set of averages of the block was replaced by finding the extrema among the 

block medians. This makes the descriptor significantly more robust to the 

occurrence of noise. 

2.8.9. Similarity/Dissimilarity Measures Performance 

The last series of experiments is devoted to statistics exhibiting the 

performance of four well-known measures of similarity/dissimilarity which are 

applied to the comparison of word histograms representing the images. They are 

Hellinger, 𝜒2 statistics, correlation, Hellinger, and histogram intersection 

measure. The results are gathered in Table 2.14. As supposed in the first series 
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of experiments (see above), the best results are produced by the Hellinger 

measure. A good alternative may be also histogram intersection measure. 

Table 2.13 Recognition rates for the images with occlusion, Gaussian noise, and salt and 

pepper noise.  
  Occl Salt & pepper noise (%) Gaussian noise (%) 

Set Method  10 20 30 40 50 10 20 30 40 50 

AT&T 

CCBLD 

(1px, 

4x4,100) 

36.35 81.25 61.55 37.08 18.30 9.08 83.88 61.50 36.43 19.75 13.95 

CCBLD 

(7px, 

3x3,400) 

 with an 

average 

of pixel 

 block 

63.30 97.45 95.60 95.83 93.70 89.38 97.43 95.40 93.58 90.90 87.48 

CCBLD 

(7px, 

3x3,400) 

with a 

 median 

of pixel 

 block 

69.30 97.65 96.83 96.23 95.85 95.48 97.23 96.85 95.93 95.90 95.28 

LBP 32.23 83.53 62.83 39.50 21.58 11.40 83.68 61.20 33.58 16.08 6.88 

FR(D, 

5x5,300) 
23.53 31.38 20.35 10.98 8.48 5.80 33.63 19.58 12.68 5.33 4.38 

FERET 

CCBLD 

(1px, 

7x7,400) 

7.08 67.38 60.15 53.13 44.30 36.58 20.15 67.93 61.75 54.68 43.78 

LBP 7.53 62.30 56.85 55.18 53.70 44.83 33.45 63.95 61.18 53.60 49.68 

FR(D, 

4x4,500) 
1.43 53.48 47.85 41.10 32.33 21.25 16.28 54.95 49.4 43.73 30.53 

2.9. Conclusions 

In this chapter, first, we have discussed an application of local descriptor-

based techniques to the problem of aging in face recognition task. The 

descriptors were considered as standalone entities or in combination with Gabor 

magnitude images and Gabor phase images. The tests show that the accuracies 

are the best in case of the fusion of local descriptors and Gabor magnitudes and 

the descriptor such as MBLBP. The recognition rates obtained with this 

descriptor seem to be the most stable in comparison to other descriptors. On the 

other hand, the recognition rates obtained with Gabor phase-based descriptors 

are essentially low. Finally, various dissimilarity/similarity measures were 

compared in an application to histograms built of LBP, ILBP, and MBLBP 

values. The results of the experiments show that the fusion of local descriptors 

and Gabor filters is a method which can be successfully utilized in the tasks 

related with age progress. However, the methods have to be supplemented by 

other reducing the dimension of the data and increasing the accuracy of 

recognition. 

Next, we have thoroughly examined the performance of the Chain Code-

Based Local Descriptor and its extensions based on the descriptions of pixels 
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(blocks of pixels) being the neighbors of a given central image point (or block). 

Considered were various problems of face recognition (aging, noise, occlusion, 

pose, illumination, preprocessing) and an application of CCBLD in their context. 

The carried series of experiments show that CCBLD outperforms other methods 

such as Local Binary Pattern and its extensions and Full Ranking. 

Table 2.14 Performance of the measures used to compare the histograms of words. 

Local descriptor Chi-square Correlation Hellinger Histogram intersection 

CCBLD(1px,4x4,100) 93.30 93.80 96.20 95.88 

FR(D,5x5,300) 94.90 93.53 94.23 94.93 

LBP 97.00 93.20 97.00 96.83 
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3.  An Application of Linguistic Descriptors to the Face 

Recognition Problems 

In this chapter, we discuss an application of linguistic descriptors to the 

problem of facial recognition. The idea behind this concept comes from the 

strong believe that people are highly efficient in the task of recognizing faces. Of 

course, it is impossible to retrieve huge datasets of facial images without any 

computational effort. However, the knowledge coming from the observation of 

human recognition processes and expert opinions can be an invaluable input to 

the computational methods of face recognition. Particularly, we propose a 

method of assessing the facial features saliency in the process of facial 

recognition and analyze a set of classifiers based on expert knowledge. These 

two important processes may be effectively supported by Analytic Hierarchy 

Process. 

3.1. Introductory Notes 

Capturing a way people recognize and describe other people has been still a 

challenging research problem. Much research is still focused on how to describe 

the essence of the recognition process. It is obvious that we are very efficient in 

recognizing others. This task is even easier if the face to be recognized has been 

seen previously. Moreover, we are extremely efficient in the processes of 

comparison of the chosen facial regions or parts, particularly if they belong to 

one of the most important from the recognition point of view, namely 

pericocular area (Hollingsworth 2014). Despite of this ability, it is impossible for 

the people to remember and correctly recognize thousands of faces. Moreover, 

this task is even more difficult to do in a reasonable amount of time. On the 

other hand, computer algorithms work relatively well. However, they still cannot 

fully manage the various illumination, noise, pose, distance to the camera, 

quality of an image, or age of the depicted person–related problems. 

Furthermore, the mechanisms of recognition and description of the facial 

elements and, in general, faces by humans, still remain uncaptured by machines. 

It is noteworthy that the manner people describe the faces and the facial regions 

using natural language is relatively simple. Moreover, it is relatively common 

for the whole population. This fact is used by specialists from the fields of 

forensics and criminology, at least from the area of one culture. It is related to 

the so-called phenomenon of the own race bias which means that the faces from 

one’s own ethnicity or culture are better remembered than of another ethnicity 

(see DeLozier & Rhodes 2015). 

O’Toole et al. 2007 reported that the fusion of subjects’ anwers and the 

computational algorithms can improve the rate of correct face verification. This 

observation can be an input to in-depth studies on the linguistic descriptors of 

the face and the computational face classification methods. Undoubtedly, the 
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saliency of specific facial parts may be crucial here. There may be two reasons 

of this. First, we can exclude the non-important facial features from the 

consideration what can save our time and resources. The second cause is that the 

saliency of information contained within a concrete face region or feature can be 

different than the information covered by the other feature. And here, the 

problem of estimation of the relevance of the features appears. 

However, one cannot focus only on the specific facial features treated 

separately. People process a face in a holistic way (Sinha et al. 2006) with a 

pivotal role of the second-order relations between features (spacing), see 

Rotshtein et al. 2007. Particularly, the internal features are proven to be more 

important than the external (contour of a face, hair, etc.) in the process of 

familiar faces recognition. Inversely, when unfamiliar faces are considered the 

external features are more important (Ellis et al. 1979; Young et al. 1985). 

Classic studies by Davies et al. 1977, Haig 1986, and Matthews 1978 

demonstrate that eyebrows/eyes followed by the regions of mouth and nose are 

the most descriptive areas. Furthermore, the saliency of eyebrows was proved 

and intensively examined, for instance, by Sadr et al. 2003. An interesting 

research on various region fusions and their importance were considered by 

Tome et al. (2015a). Literature surveys on recognition of familiar and unfamiliar 

(i.e., trained and untrained) faces and cue saliency are covered in Shepherd et al. 

1981, Johnston & Edmonds 2009, and Vignolo et al. 2013. Beside these facts, 

there are the publications presenting the importance of particular facial regions 

in the computational methods of face recognition. A description of these 

methods can be found in chapter 6. Finally, noteworthy is the fact that the 

holistic way of processing faces by humans strictly corresponds to the Gestalt 

theory which is one of the trends in psychology. In this theory the concept of 

holism arises as a very important idea (Wagemans et al. 2012). The meaning of 

the whole is something more that its parts (composites) summing process 

(Koffka 1935). One of the ideas of the Gestalt theory is the global precedence 

hypothesis (Navon 1977). It states that the processing of visual objects 

constituting a hierarchical structure including a set of dependencies among the 

parts proceeds from the top of hierarchy, namely the global structures, towards 

the analysis of local properties which are at the bottom positions (Wagemans et 

al. 2012). When the objects like a face are considered, we can observe the spatial 

relationships which exist between the parts of the face. Next, there are spatial 

relations between the subregions or subparts, etc. According to the theory, these 

relations are more general than the specific attributes and their properties (e.g., 

length, width, etc.). Capturing these spatial relationships appears as an 

interesting task here. To fully address this problem, one has to estimate the 

saliency of particular facial features. This evaluation can be proceeded on a basis 

of judgments of professional experts in the field of psychology or forensics. 

Next, the obtained results (weights) can be an input to build an efficient 

classifier based on many formal tools, e.g., aggregation or fusion operations. 
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Moreover, the above-mentioned global precedence hypothesis directly 

corresponds to Granular Computing paradigm, see Pedrycz 2013. That is, the 

features can be collected into semantically sound entities. The entities refer to 

internal or external facial features, lower or upper half of a face and other areas 

which constitute information granules. It is worth noting that the last partition 

was proposed in Kurach et al. 2014. All these granules of information are 

consisted of “atomic” features (facial parts). For instance, the lower half of face 

can be represented (or decomposed) by mouth, chin, cheeks, etc. At the end, the 

entire face consists of these groups. Having in mind the above assumption about 

the difference between the whole face and the direct summing of its features, our 

main task is to find the essence of the process of working with the relationships 

between the cues at each level of granulation (abstraction). It means that we 

must find out how to proceed with the atomic facial cues, their groups (regions 

or areas), and the face positioned at the highest abstraction level. Such approach 

is intuitively appealing and the feature space being a result of the proceeding is 

linguistic. Hence, it can be described using the granular information terms. 

Hence, the need of improvement and work on the linguistic descriptors-based 

methods applied to face recognition processes has been constantly discussed in 

the literature topic. In fact, it is believed that computer can achieve an efficient 

and realistic interaction between human and machine (see, Iwamoto & Ralescu 

1992). However, this process can vary depending on people. Moreover, factors 

like their culture, age, profession, etc. can be a source of misunderstandings. 

Fukushima & Ralescu (1995) proposed a so-called adjustment procedure to 

minimize these differences between descriptions. Moreover, applications of 

Granular Computing models as well as engaging specialists having an 

experience in psychology or criminology to assess the facial regions can be 

pivotal here. For instance, Kumar et al. (2009; 2011) experimented with a large 

set of “witnesses” who used the Amazon Mechanical Turk service taking into 

account 65 and 73 facial features, recpectively, to get descriptions of a set of 

facial images. Fukushima & Ralescu (1995), Nakayama et al. (1992a; 1992b) 

proposed a system based on 19 features which were evaluated by subjects using 

the terms such as small, rather small, medium, rather big, and big. Next, these 

terms were considered as fuzzy sets and the classification process was based on 

the measure of overlap. The method of obtaining the linguistic values was 

conducted in the way described by Miyajima et al. (1992). Norita (1994) 

improved the method with an application of so-called total impressions words, 

e.g., cold face. A neuro-fuzzy algorithm using linguistic descriptors built of 

triangular and trapezoidal membership functions was applied in (Lee et al. 

1998). In Wu & Narasimhalu (1998) it was proposed fuzzy retrieval system 

where the chosen facial parts were described using linguistic descriptions and 

fuzzy sets. A latent semantic space built of exact pixel lengths and descriptions 

of unmeasurable features like person’s character were presented by Ito & 

Koshimizu (2004). Also, latent semantic space was discussed thoroughly in Ito 
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& Koshimizu (2006). A metadata set containing automatically generated face 

descriptions was presented in Sridharan et al. 2005. Conceptual fuzzy sets and 

linguistic descriptions of parts of a face in an application to draw a face using a 

so called average face was discussed by Benhidour & Onisawa (2007; 2008). 

Semantic feature extraction and tensor subspace analysis were discussed by 

Zhou & Schaefer (2010) where semantic features are three regions of a face. 

However, the information about facial parts was yielded computationally. In 

Alattab & Kareem (2012b) 100 participants of a series of experiments gave the 

semantic descriptions of the faces. However, the number of proceeded faces had 

to be narrowed. In Conilione & Wang (2012) the labelling of the features was 

obtained using fuzzy clustering. Again, 100 respondents established (by filling 

questionnaires) the weights of facial features to be applied in a facial retrieval 

system. However, the features were detected using the method of segmentation 

proposed in (Alattab & Kareem 2012a). An interesting approach was proposed 

by Kurach et al. 2014. A concept of hierarchical granulation of facial features 

and fuzzy rules used to classify the faces were applied. The fuzzy sets were 

strictly related to the measures of the most salient facial regions. A so called soft 

biometrics used in a communication between the robot and its human partner 

were discussed in (Martinson et al. 2013) including the linguistic descriptors of a 

face. A very interesting concept of sketching with words was proposed by 

Rahman & Beg (2015). Fuzzy geometry, fuzzy granules, and computing with 

words (Zadeh 2001; 2009) were applied to convert the imprecise linguistic 

descriptors into complete faces. It is worth noting that a quite similar kind of 

facial description was applied in the processes of recognition of emotions and 

social interaction. For instance, a very popular method here is FACS (Facial 

Action Coding System). It is used to quantify the actions of a face using Action 

Units, see Ekman & Friesen (1978), Pantic & Rothkrantz (2000a; 2000b). Fuzzy 

inference and clustering were applied by Conilione & Wang (2012) while an 

automatic conversion of landmarks of the face to a set of features was proposed 

by Tome et al. (2015b). Finally, neural network-based classifier based on the 

experts’ description, a concept of weights related to fuzzy memberships, and 

quantitative methods of evaluating the importance of facial features in the 

recognition processes were discussed in Dolecki et al. 2016, Kiersztyn et al. 

2016a; 2016b, respectively. The modern descriptions of facial features which 

can be utilized in criminal investigations may be found in standardizing 

documents such as FISWG (2016), police websites (e.g. a Chicago Police 

Department (2016)) or textbooks by Czerw 1995 and Lindsay et al. 2007. An 

interested reader can read a survey of the methods contained in (Karczmarek et 

al. 2015). 

The ultimate goal of the study presented in this chapter is to find the saliency 

of the facial features which are utilized in the processes of human face 

recognition. Moreover, we are interested in an investigation of the efficiency of 

the process. The obtained weights of the facial areas (regions, parts, etc.) can be 
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applied in the processes of computational face recognition methods based on 

aggregation or fusion schemes which are one of the important trends in the 

investigation of classification methods, see, e.g., Anderson et al. 2018. 

Moreover, the results may be applied in the fields of criminology, forensics, 

psychology of emotion, etc. The method of obtaining their rankings at various 

levels of abstraction can be of particular interest of the professionals and 

researchers of the disciplines. 

The novelty of our proposal comes from an application of Analytic Hierarchy 

Process introduced by Saaty (1980). Here, we propose to use a hierarchy built of 

three levels. It means that the information of the whole face in general is placed 

at the top. Particular features of a face are positioned at the bottom. Moreover, 

we use only the linguistic data (information). They are not expressed in a 

numerical form. To obtain the realiable results we have engaged experts in the 

field of psychology and criminology having an experience in a practical 

problems. Finally, the originality of our approach is that we use the entropy 

measure to evaluate the results of the AHP at the three levels of hierarchy. It can 

be used to verify the confidence of information produced in the AHP process. 

When working with experts evaluating particular facial features or estimating 

the importance of facial areas in general, an application of the mechanism of 

evaluation of their work, namely the entropy measure and reciprocity property 

can lead to the reduction of biases occuring in an expert’s work, see, e.g., Dror et 

al. 2012 where an impact of technology is described or Zhang et al. 2016 where 

the influence of internal feelings on the emotion recognition is discussed. 

Noteworthy is the fact that the approach based on an expert opinions cannot 

be overrated in an applications to forensics. The modern state-of-the-art methods 

based on, e.g., deep learning models (Sun et al. 2014), sparse recognition 

(Wright et al. 2009), or local descriptors (Ahonen et al. 2004) can be 

supplemented by the expert-based knowledge. This fact corresponds to the point 

of view presented in the literature of forensic science, e.g., Arca et al. 2011. 

Here, it is important to stress, that always at the end of the recognition process, 

an expert must give an opinion whether a person is classified or eliminated 

(Spaun et al. 2001). Inversly, an expert or a group of experts can be effectively 

supplemented by the algorithms of feature extraction followed by MCDM. In 

addition, the data collected by the expets can be an invaluable source of 

information for the research in other domains of science. The method presented 

here can be a kind of a novel road map to obtain the saliency of newly 

introduced facial features considered in various problems. Moreover, the 

experts’ presence can be a form of reducing the semantic gap between the low 

level and high level features (Liu et al. 2007). Even if the experts evaluate the 

features subjectively or their assessments are dominated by a so-called own race 

bias the techniques of ajustment of their evaluations can be applied here. Finally, 

it is worth to stress that the information granularity which is the outcome of the 
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method can be quantified (or captured) on a basis of the structure of multilevel 

hierarchy of AHP at various levels of abstraction. 

3.2. Facial Features Saliency 

Here, we are highly interested in obtaining the saliency of particular facial 

features and their groups. Our ultimate goal is to determine the order of the most 

salient, important, and useful from the point of view of a classification task, 

features. The AHP criterion is the importance of the face parts while the 

particular facial features constitute the AHP alternatives. 

The experts (or expert, AHP user) evaluate the pairwise comparisons 

(alternatives) of the elements of the AHP hierarchy. Assume that we have a set 

of n alternatives (features of a face). Then the judgements’ results generate the 

n×n matrix A and the principal eigenvectors wi=[wi,1,…,wi,n] of the AHP 

reciprocal matrices are derived. The specific element values correspond to the 

saliency of particular features according to the judgements of ith expert 

(i=1,…,p). Next, they are normalized, yi=wi/maxjwi,j and the coefficients µi, 

denoting consistency ratios, are obtained. The weights related to the experts are 

ωi=1-µi, and, again, they are normalized, i.e., ui=ωi/(ω1+…+ωp). Finally, the 

saliency of the j
th
 feature is given by 

 xj=y1j u1+y2j u2+…+ypj up, j=1,…,n        (3.1)                          

It is worth noting here, that AHP has been also applied to image retrieval 

based on semantic representation of an image (Cheng et al. 2005; Chou and 

Cheng 2006) and to emotion recognition, see Cheng et al. (2007). 

The authors of many experimental studies analyzing the processes of 

recognition divide the face onto obligatory parts. The examples may by the 

upper half and the lower half (Haig 1986), the areas of forehead, nose, and 

mouth (Kurach et al. 2014), eyebrows, eyes, nose, mouth, chin, hair (Matthews 

1978), eyebrows, eyes, nose, mouth, and cheeks (Karczmarek et al. 2014), etc. 

Here, we are interested in a departure from this way of face partitioning. The 

main objective is to find the set of features being the most salient in practical 

problems. 

The details of the method are as follows. First, the Analytic Hierarchy 

Process is utilized as described above to quantify the saliency of the cues. To get 

the result three experts from the fields of psychology and criminology are asked 

to estimate the cues according to their personal experience and knowledge. 

The objective is to find the most salient features of a face in a collection of 

the features. The saliency is understood as the importance of a feature in a 

process of face recognition by humans. There are the following groups (high 

level features sets – compositions of features) of alternatives: 

(a) An information deduced from the observation of the whole face, e.g., gender, 

age, etc. 

(b) Eye area with a forehead; 
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(c) The region of a nose and ears; 

(d) Mouth and chin region;  

(e) Hair, neck, and other external facial features. 

Note that (a) – (d) represent internal features of a face. 

The motivation behind this partition is that the witnesses of crimes or the 

subjects of psychological examinations describe facial images containing 

internal or external features of unknown criminals with usage of many 

appearance details. Note that during an examination of computational 

applications there are difficulties in comparisons of the images on a basis of hair 

or ears regions. Of course, it is difficult since the external features can vary or be 

hidden under hair. 

In the series of our experiments three experts are incorporated to evaluate the 

facial features. Namely a police detective (with more than 30 years of 

experience) and two psychologists (with over 10 years of experience) are 

engaged. The pairwise comparisons to be done by them are carried to determine 

whether the feature a is preferred over b to the value from the range 1 (equal) to 

9 (extreme preference). The results of the comparisons are inputs to the 

corresponding reciprocal matrices. The final result of AHP running is the 

normalized eigenvector associated with the maximal eigenvalue. Moreover, the 

inconsistency index and consistency ratio are the results. They give a detailed 

information (insight) into the features from the points (a) to (e). Next, AHP is 

runned for the components of the regions (a) – (e). At the end, AHP is used to 

produce the orders of features in 10 groups of internal parts of the face. The 

topology of the overall process is presented in Fig. 3.1. 

 

Fig. 3.1. Three levels of AHP hierarchy. Only chosen leafs are presented at the bottom 

level for the clarity of presentation. Similarly, only a few features at the middle level are 

represented at the image. 
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Table 3.1 The selection of features of a face with their linguistic descriptors. 

Features Linguistic descriptors 

General information  

Shape of the face 
rectangular, pentagonal, oval, round, triangular, ellipsoidal, 

trapezoidal, rhomboidal 

Gender female, male 

Origin Caucasian, Spanish, Asian, African, etc. 

Age (estimated) child, young adult, middle age adult, older adult 

Hair  

Length short, average, long 

Texture straight, wavy, curly 

Color 
light blonde, blonde, dark blonde, auburn, chestnut, black, 

red, turning gray, gray 

Forehead area  

Width low, average, high 

Height narrow, average, wide 

Shape rectangular, square, trapezoidal, inversely trapezoidal 

Skin smooth, creased, wrinkled 

Eyebrows  

Length short, average, long 

Direction horizontal, turned up, turned down 

Distance between the 

eyebrows 
merged, narrow, average, wide 

Position low, average, high 

Shape arched, straight, broken-lined, wavy, bushy 

Thickness narrow, average, wide 

Color light, average, dark 

Eyes  

Shape of the lower eyelid normal, thickened, saggy 

Distance between eyelids narrow, average, wide 

Fissures length short, average, long 

Direction of the fissures horizontal, turned up, turned down 

Inter-eye distance narrow, average, wide 

Color hazel, blue, green, gray 

Nose  

Length short, average, long 

Width narrow, average, wide 

Width of the nasal bridge narrow, average, wide 

Shape of the nasal bridge rectangular, trapezoidal, inversely trapezoidal 

Shape of the nasal tip rounded, spiked, blunt, angular 

Nostrils narrow, average, wide 

Ears  

Protrusion flat against head, average, protruding 

Length short, average, long 

Cheeks  

Fullness sunken, normal, filled 
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Length of the bones short, average, long 

Width of the bones narrow, average, wide 

Mouth  

Shape of the opening 

between lips 
straight, concave, convex, wavy 

Fullness low, average, high 

Width short, average, long 

Width of the philtrum narrow, average, wide 

Chin  

Shape round, oval, angular, triangular, concave 

Size small, average, big 

The data contained in Table 3.1 show that the atomic facial features have the 

properties more easily described in linguistic terms than the regions with a single 

feature and its neighborhood or grouped (collected) features. One can note that 

the table contains specific details, e.g., the eyebrows shape as well as the regions 

containing the groups of features which cover the importance of the possibility 

to affect the perception of a user in more general way. It cannot be seen in terms 

of typically physical measures such as length, width, and others.  

It is worth noting that the facial description details are thoroughly presented 

in (FISWG 2016) or description sheets provided by the Chicago Police 

Department (2016). In the table contained are the attributes being, in our 

opinion, relatively easy to get from the two-dimensional pictures of the faces 

and, as well as, the most descriptive. 

3.3. Observer’s Classification Process Confidence 

A witness of a crime or an observer describes a suspect (a specific 

individual). The hierarchy developed in a previous section can be useful in an 

evaluation of the process of identification (classification). The idea comes from 

the entropy concept. Assume that the suspect evaluates the length of eyebrows 

using Analytic Hierarchy Process applied to the following attribute 

quantification: short, average, long. The question can be formulated as follows: 

To which extent do you prefer long eyebrows in describing someone’s (in this 

case, the suspect) eyebrows as opposed to long eyebrows? Moreover, we assume 

that the following values were obtained as the AHP process result: z1, z2, z3. 

They, obviously, correspond to the values of this specific subject’s length of 

eyebrows. On the basis of these values one can find the entropy of the attribute 

length of eyebrows, namely H(Length). The remaining entropies are H(Color), 

H(Position), H(Direction), H(Shape), H(Distance between the eyebrows), and 

H(Thickness). According to the Fig. 3.2, the eyebrows feature entropy can be 

yielded as 
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H(Eyebrows) = vcolor H(Color) + vlength H(Length) + vdirection H(Direction) + 

vdistance H(Distance between the eyebrows) + vposition H(Position) + vshape 

H(Shape)   + vthickness H(Thickness)     (3.2) 

where vcolor, vlength, vdirection, ... denote the weights of the attributes color, length, 

direction …, respectively. For example, H(Length) can be found as 

H(Length) = - (z1 log z1 + z2 log z2 + z3 log z3)    (3.3) 

Similar considerations can be repeated for the other facial features. Note that 

the values vcolor, vlength, vdirection, vdistance, vposition, vthickness, and vshape stand for the 

assessments of the facial features which are not related to any specific 

individual. 

Similarly, the entropies for specific areas of the face can be found at the 

second level of Analytic Hierarchy Process hierarchy. For instance, the entropy 

for the eyes area can be obtained as 

H(Eyes region) = veyebrows H(Eyebrows) + veyes H(Eyes) + vforehead H(Forehead)  

         (3.4) 

Here, veyebrows, veyes, and vforehead stand for the weights found using Analytic 

Hierarchy Process for eyebrows, eyes, and forehead, respectively. 

A total entropy for the whole face can be found yielded from the formula 

H(Face) = vgeneral H(General info) + veyes H(Eyes region) + vnose H(Nose region)  

+ vmouth H(Mouth region) + vexternal H(External area)   (3.5) 

Here vgeneral, veyes, vnose, vmouth, and vexternal are, as previously, the weights produced 

for the five features groups at the highest AHP level, see points (a) – (e). Note 

that the lowest confidence of the observer is obtained for the highest Htotal value. 

If the value is too high (i.e., if it extends the assumed value) this fact may call 

for repeating the identification process or engaging another expert (observer). 

 

Fig. 3.2. The hierarchy of entropies related to the particular facial features and their 

weights. 
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3.4. Experimental Studies 

We have asked each of the above mentioned p=3 experts to proceed the 

pairwise comparisons between the features of face. The experts are assumed to 

take into account their independent and subjective opinion about the saliency of 

the facial features in the process of classification (recognition). They evaluated 

these relations using Analytic Hierarchy Process method in the 10 sets of facial 

features. The experts filled the special questionnaires in a spreadsheet program. 

One may claim that the number of experts should be increased. However, the 

obtained results are intuitively appealing. Moreover, the level of consistency is 

satisfying. Similarly, the factors such as availability, position in a group, the 

heterogeneity level, experience, and others can play a pivotal role in a process of 

evaluation. The number of engaged experts (three) seems to be a well-

established compromise between the agility of the pairwise comparisons process 

(their total number) and their preferences representativeness. Finally, if the 

number of experts would be too large, the opinions might be averaged and lead 

to the disappearance of differences between the experts’ preferences obtained in 

the opinion aggregation process. 

Let us describe the process of obtaining the features saliency. First, AHP is 

used at the first level. We consider the question to which extent texture is 

suitable in evaluating hair over length. Analogously, the experts have to compare 

hair texture and color as well as hair color and length. Example answers are 

detailed in Table 3.2. Similar questionnaires related to mouth region are listed in 

Table 3.3. Finally, a comparison of the main groups of facial features in a form 

of reciprocal matrix is presented in Table 3.4. The consistency ratio values 

regarding to the experts and the estimated features are depicted in Fig. 3.3. 

The collected set of results is presented in Fig. 3.4. They are the average 

values of reciprocal matrices eigenvectors being the outputs of AHP. It is easy to 

observe that the most common and intuitive opinions are reflected in this setting, 

for example the most descriptive and salient facial areas are eyes, nose, and 

mouth regions. However, one of the surprises can be that the experts do not 

confirm the saliency of the eyebrows excluding eyes. The explanation can be 

that despite the studies on the computational facial recognition discuss it, in real 

life the people are focused on the eye region rather than on the eyebrows. 

Another interesting fact may be a relatively low position of an origin of a 

subject. It may be caused by the fact that the experts work and live in relatively 

homogeneous society. The experts establish the color as a very dominating 

feature in many cases (for instance, hair and eye colors). Unfortunately, this 

information may be difficult to utilize in the computational processes in the 

cases when the images are grayscale. However, if the model of color is RGB this 

fact may be very useful. Finally, note that the experts do not see the importance 

of the details such as the philtrum width. Nevertheless, in our opinion, the 
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presence of this kind of features in such rankings can be practically helpful when 

the set of images is of a good quality, for instance, when the resolution of images 

is high. 

Next, we realize the AHP at the second level of hierarchy. The question to 

the experts is: To which extent a group of features A is regarded more salient 

than a group of features B in the face classification processes? Features A and B 

are general information, hair, and the areas of cheeks, chin, ears, eyebrows, eyes, 

mouth, and nose. Fig. 3.5 and Fig. 3.6 depict the results and associated 

consistency ratios, respectively. Hair and the area of eyes are, according to the 

experts’ opinions, the most salient. 

 

Fig. 3.3. Consistency ratios related to expert evaluations. 

Table 3.2 Experts’ reciprocal matrices regarding to hair feature. 

Criminology expert 

Hair feature Length Texture Color 

Length 1 1 0.25 

Texture 1 1 0.1(6) 

Color 4 6 1 

Psychology expert no. 1 

Hair feature Length Texture Color 

Length 1 9 9 

Texture 0.(1) 1 0.1(6) 

Color 0.(1) 6 1 

Psychology expert no. 2 

Hair feature Length Texture Color 

Length 1 4 0.25 

Texture 0.25 1 0.(3) 

Color 4 3 1 
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Table 3.3 Experts’ reciprocal matrices related to mouth area. 

Criminology expert 

Mouth feature 
Opening between lips 

shape 
Fullness Width 

Philtrum 

width 

Opening between lips 

shape 
1 6 4 6 

Fullness 0.1(6) 1 0.1(6) 0.(3) 

Width 0.25 6 1 5 

Philtrum width 0.1(6) 3 0.2 1 

Psychology expert no. 1 

Mouth feature 
Opening between lips 

shape 
Fullness Width 

Philtrum 

width 

Opening between lips 

shape 
1 0.2 0.(3) 3 

Fullness 5 1 4 4 

Width 3 0.25 1 3 

Philtrum width 0.(3) 0.25 0.(3) 1 

Psychology expert no. 2 

Mouth feature 
Opening between lips 

shape 
Fullness Width 

Philtrum 

width 

Opening between lips 

shape 
1 0.(3) 0.25 3 

Fullness 3 1 0.25 4 

Width 4 4 1 5 

Philtrum width 0.(3) 0.25 0.2 1 

 

Fig. 3.4. Facial features saliency (averaged experts opinions) normalized to the sum per 

group (equal to 1). 
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Table 3.4 Experts’ reciprocal matrices regarding to the general groups of features. 

Criminology expert 

Main group 
General 

information 

Eyes & 

forehead 

Nose & 

ears 

Mouth & 

chin 

External 

features 

General inf. 1 0.25 0.1(6) 0.2 0.5 

Eyes & 

forehead 
4 1 3 3 7 

Nose & ears 6 0.(3) 1 0.25 8 

Mouth & 

chin 
5 0.(3) 4 1 8 

External 

features 
2 0.14 0.125 0.125 1 

Psychology expert no. 1 

Main group 
General 

information 

Eyes & 

forehead 

Nose & 

ears 

Mouth & 

chin 

External 

features 

General inf. 1 6 6 6 6 

Eyes & 

forehead 
0.1(6) 1 6 4 4 

Nose & ears 0.1(6) 0.1(6) 1 0.25 3 

Mouth & 

chin 
0.1(6) 0.25 4 1 4 

External 

features 
0.1(6) 0.25 0.(3) 0.25 1 

Psychology expert no. 2 

Main group 
General 

information 

Eyes & 

forehead 

Nose & 

ears 

Mouth & 

chin 

External 

features 

General inf. 1 0.25 0.25 0.5 1 

Eyes & 

forehead 
4 1 0.(3) 0.5 4 

Nose & ears 4 3 1 5 4 

Mouth & 

chin 
2 2 0.2 1 4 

External 

features 
1 0.25 0.25 0.25 1 
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Fig. 3.5. The AHP second level facial features saliency. 

 

Fig. 3.6. Consistency ratios related to the second level of AHP. 

Additionally, we have conducted another set of experiments and considered 

the more general group of facial features: General information, eyes and 

forehead, nose and ears, mouth and chin areas, and external features which 

constitute the third AHP level. Taking into account only the face, one can obtain 

the following dependencies: The highest importance is associated with the 

highest features, see Fig. 3.7 and Fig. 3.8 for the detailed results. 
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Fig. 3.7. AHP results for the most general facial features (third level of AHP). 

 
Fig. 3.8. Consistency ratios related to the most general facial features. 

Let us now consider the confidence of the process of identification realized 

by a witness (observer) as described in the previous section. The experts 

evaluated six images of persons contained in the ColorFERET database. The 

example face images are presented in Fig. 3.9. These are the first six images of 

the database which were RGB and containing the persons with no glasses. The 

experts assessed the features coming from the forehead, eyebrows, and eyes 

regions. The questions were in the following form: To which extent the 

eyebrows length is regarded long versus short? The sum 

H(Eyes region) = veyebrows H(Eyebrows) + veyes H(Eyes) + vforehead H(Forehead)     

         (3.6) 
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returns the entropy for the eyes area and serves as an observation on expert 

confidence as the witness. Here, we consider the eye and forehead areas only to 

narrow the number of pairwise comparisons. However, this fact does not lead to 

the loss of generalization. 

 
Fig. 3.9. Example images from the ColorFERET Dataset. In a text, we relate to the faces 

as person 1 (the first image in the top row), person 2, person 3, person 4, person 5, and 

person 6 (the last picture in the bottom row), respectively. 

The experts’ evaluations are listed in Table 3.5. Here, there are presented the 

average weights for the width and height of the forehead, length and thickness of 

the eyebrows, length and color of eyes. The winning values of the facial features 

are bolded. Table 3.6 consists of the average sums (i.e., the sums of entropies of 

particular experts divided by their number) of all considered entropies of the 

features for all the images. The conclusion from the data is that the features of 

the persons no. 1 and no. 2 are very difficult to estimate. On the other hand, 
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persons no. 5 and no. 6 are relatively easy to assess. A partial explanation of this 

fact may be that the forehead covered by hair and pose of the subject can lead to 

the difficulties in estimation. However, the data included in Table 3.6 can be 

helpful here. In case of 3 last persons the experts’ opinions formed in AHP 

resulting vectors gave more than 50% certainty to have concrete linguistic 

values. The entropies determined when all the features were used are listed in 

Table 3.7. One can observe that the shape of face, between eyebrows distance, 

the shape of the eyebrows, and the eyes color are the most difficult to evaluate. 

Table 3.8 shows the average entropies yielded from the results of the 

descriptions of all the faces by each of the experts taking part in the series of 

experiments. There were two ways of calculations of the values. In the first case, 

all the entropies for all the features were summed and averaged. The second 

manner was based on the accumulation using the hierarchy introduced above and 

the weights obtained by the same experts. The explanation of the results is that 

evaluating the specific and concrete features of the face the most confidence 

appears in case of criminology expert (denoted as expert no. 1) and the first 

expert in the field of psychology (expert no. 2). From the other hand, 

considering the weights applied to abstract facial features we can note that the 

most confident is second expert from the field of psychology (expert no. 3). It 

leads to the conclusion that this expert found the best possible relationship 

between the abstract facial features. 

Table 3.5 AHP results regarding to the chosen images of the face and features. 

Feature 
Value/Person 

number 
1 2 3 4 5 6 

Width of a forehead 

Low 0.30 0.10 0.07 0.29 0.28 0.05 

Average 0.40 0.48 0.40 0.35 0.39 0.16 

High 0.30 0.42 0.52 0.36 0.33 0.79 

Height of a forehead 

Narrow 0.30 0.10 0.38 0.08 0.29 0.32 

Average 0.49 0.31 0.26 0.40 0.35 0.18 

Wide 0.13 0.61 0.45 0.28 0.57 0.76 

Length of the eyebrows 

Short 0.06 0.31 0.53 0.06 0.05 0.07 

Average 0.21 0.36 0.35 0.43 0.18 0.52 

Long 0.73 0.33 0.12 0.51 0.77 0.41 

Thickness of the 

eyebrows 

Narrow 0.17 0.10 0.11 0.07 0.05 0.08 

Average 0.56 0.58 0.32 0.42 0.19 0.54 

Wide 0.28 0.31 0.57 0.51 0.76 0.38 

Length of the eyes 

Short 0.07 0.13 0.33 0.10 0.09 0.33 

Average 0.55 0.35 0.27 0.54 0.61 0.52 

Long 0.38 0.52 0.39 0.37 0.30 0.14 

Color of the eyes 

Hazel 0.69 0.66 0.67 0.62 0.08 0.50 

Blue 0.06 0.06 0.04 0.05 0.66 0.05 

Green 0.09 0.09 0.09 0.10 0.08 0.20 

Gray 0.16 0.19 0.19 0.22 0.17 0.25 
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Table 3.6 The entropies related to the individuals. They are accumulated through all the 

facial features. The second row presents the number of AHP vectors containing the 

entries higher than 0.5. 

Person number 1 2 3 4 5 6 

Average sums of all features’ entropies 

(no weights) 
21.27 21.51 20.82 21.00 19.85 20.26 

Number of AHP vectors’ elements > 

0.5 
45 45 46 50 51 50 

Table 3.7 The average entropies of all the features considered in the experiments. 

 Facial feature Entropy value 

Forehead 

Height 1.13 

Width 1.14 

Shape 1.51 

Skin 1.11 

Eyebrows 

Length 1.06 

Direction 1.06 

Between eyebrows distance 1.57 

Position 1.15 

Shape 1.84 

Thickness 1.13 

Color 1.10 

Eyes 

Lower eyelid shape 1.16 

Between eyelids distance 1.08 

Length of fissures 1.20 

Fissures direction 1.03 

Distance between eyes 1.10 

Color 1.40 

Table 3.8 The values of entropies associated with the particular experts. 

 
Police 

expert 

Psychology 

exp. 1 

Psychology 

exp. 2 

Average sum of all features’ 

entropies (no weights) 
20.51 20.58 21.25 

Average entropies, see formula (3) 1.33 1.28 1.27 

3.5. Classification Based on the Linguistic Descriptors 

In the previous section we have proposed an application of Analytic 

Hierarchy Process to the estimation of importance of the facial features in the 

processes of face recognition realized by humans. Here, proposed is an approach 

to the face recognition problem realized both by humans as well as computers 

which is based on linguistic descriptors. Specifically, we apply Analytic 

Hierarchy Process to obtain linguistic values of the parts of face, particularly of 

the face features. 

As mentioned above, we apply the Analytic Hierarchy Process to find the 

weights associated with specific features of the face and the membership degrees 
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of concrete facial features to the linguistic attributes. Therefore, we assume that 

we are able to extract the most important and descriptive features of the face and 

that they can be relatively easily assessed by people analyzing two-dimensional 

image of the face. The general idea of the method is that the experts taking part 

in an assessment of the features have to answer the questions of a form: To 

which extent the feature X is preferred over the feature Y? We can extend this 

form of a question as: To which extent an attribute a is preferred over an 

attribute b of this feature? The result of this process is a normalized vector 

𝒘 = [𝑤1, … , 𝑤𝑁]. It is consisted of N weights related with N facial features 

under consideration. Now, let us assume that a concrete face and its specific 

features are considered. All the features are described using linguistic 

descriptors. Hence, the vectors of the form 𝒇1, 𝒇2, … , 𝒇𝑁 are produced. They 

describe each feature of the considered face. They can be easily concatenated 

into one vector. It describes the whole face: 𝒇 = [𝒇1, 𝒇2, … , 𝒇𝑁]. Denote the 

whole set of descriptions of the images by ∑. The goal is to classify a face 

coming from this set as belonging or not belonging to one of the classes of faces 

in ∑. Let us assume that this new face is described by a vector 𝒇𝑛𝑒𝑤. The 

classification process can be realized by the NN-classifier by finding a minimal 

distance between 𝒇𝑛𝑒𝑤 and the vectors 𝒇 coming from ∑. For example, let us 

analyze the feature length of the eyebrows and assume that the faces were 

evaluated by an expert and the expert’s answers with regard to the eyebrow 

length were: short-middle: 1 – 5, short-long: 1 – 9, and middle-long: 1 – 7. Then 

the AHP reciprocal matrix is [
1 0.2 0. (1)
5 1 0.14
9 7 1

]. Then the eigenvector associated 

to its maximal eigenvalue is  [0.055, 0.173, 0.772]. The entries correspond to 

the linguistic values short, middle, and long, respectively. This example shows 

that the example eyebrow is rather long than middle or short. In this manner we 

can build the vector describing the whole face on a basis of concatenation of the 

vectors corresponding to particular facial features. This method corresponds to 

the psychological studies (LaVergne et al. 2016) suggesting that people have 

difficulties with evaluation of physical attributes of humans and can be a sound 

alternative to the approaches based on the direct evaluations. 

3.6. Linguistic and Numeric Information Fusion 

In the previous section, we have discussed a manner of including the 

linguistic terms being the outputs of the expert’s opinion. Such kind of vectors 

can be supplemented by numerical values. These values can come directly from 

the geometrical relations appearing between the specific parts of a face. 

Similarly to the linguistic descriptions of the faces contained in an image set, 

one can determine the membership degrees of the measurable features’ numeric 

values such as eye length to the linguistic attributes short, middle, long, etc. One 
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of the techniques appearing here can be the well-known K-means method 

(Hartigan & Wong 1979). Now, we will discuss two particular methods based on 

K-means and membership functions. Note that other methods can be applied 

here as well. 

First, let us discuss the first of the proposed methods, namely the one based 

on K-means and normalization of the lengths of features. Consider all the N 

possible (available) facial features. One can divide them into two subsets of 

features: measurable and non-measurable. The first class can be characterized by 

the fact that they can be measured in terms of width or height. Also, they can be 

linearly ordered, e.g., short, medium, and long. The second class is built of the 

features such as the shape of the face and others. The specific values of the 

measurable facial features can be considered as input data which can be 

clustered by Fuzzy C-means (Bezdek et al. 1984) or K-means methods. Hence, a 

sound alternative here can be an application of K-means for a clustering of the 

analyzed dataset into three groups, which correspond to the descriptors short, 

medium, long or small, average, long with respect to the M measurable features 

separately. 

This clustering conducted with respect to each separate feature allows us to 

more deeply analyze the crucial differences between the faces being under 

consideration and the result is N clusters, not three general and multidimensional 

ones. The clustering is based on data being the results of measuring the distances 

between the chosen points positioned on the facial images contained in an image 

database. The localization of example landmarks is presented in Fig. 3.10. For 

example, let us consider the feature forehead width. It can be found by the 

formula (𝑑(𝑃1, 𝑃2) + 𝑑(𝑃3, 𝑃4))/2. Here, 𝑃𝑘 , 𝑘 = 1, 2, … ,55, are the coordinates 

of the kth point and, of course, they do not exhaust the set of possible landmarks 

to be used in the method. For instance, for the feature nose length the centers of 

clusters associated to the linguistic descriptors such as short, medium, and long 

can be designed. Next, the membership degree of each person to each cluster can 

be found. These clusters serve to describe the values of the nose length feature. 
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Fig. 3.10 Landmarks and their positions. The facial image comes from FERET dataset. 

Once the lengths of M measurable features 𝛼𝑖
𝑘  (𝑖 = 1, 2, … ,𝑀, 𝑘 =

1, 2, … ,𝑚) (m is the considered faces number), the results have to be 

normalized. Next, the obtained distances are scaled. It is done by setting the 

constant distance for all the pupils of the faces: 𝛼𝑖
𝑘∗ = 𝑐𝑜𝑛𝑠𝑡 𝛼𝑖

𝑘 where const is a 

coefficient of scaling. They are clustered using K-means method. After 

normalization, the length of specific feature can be the starting point for 

examining the membership degree of every person to a cluster separately built 

for each feature. K-means returns the set of cluster centers. Precisely, for each of 

the measurable parts of faces, one can receive three numerical values which 
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correspond to the descriptors of the form: small, average, and long. The 

descriptions are contained in the vectors 𝒄𝑘  (𝑘 = 1, 2, … ,𝑀). Now, the 

membership degrees to the respective cluster centers can be found as follows. 

Denote the vector containing the measurable features of the kth person as 

𝒅𝑘  (𝑘 = 1, 2, … ,𝑚). The distances between each of the features to the centers 

𝒄𝑘 can be found. It means that for each person 𝑘 = 1, 2, … ,𝑚 the new vectors 

𝒛𝑖
𝑘 (𝑖 = 1, 2, … ,𝑀) elements can be obtained as 𝒛𝑖,𝑗

𝑘 = |𝑑𝑘,𝑖 − 𝑑𝑖,𝑗|. Here, the 

index 𝑗 = 1, 2, 3 corresponds to the descriptor short, middle, or long. To 

visualize the method consider the following example. If a specific length of the 

eyebrows is 𝑑 = 35 and the centers vector obtained in clustering process is 
[25, 37, 47] then the distance vector is 𝒛 = [10, 2, 12]. Next, one can 

standardize the vectors 𝒛𝑖
𝑘, namely 𝑧𝑖,𝑗

𝑘∗ = (𝑟𝑖 − 𝑧𝑖,𝑗
𝑘 )/𝑧𝑖,𝑗

𝑘 , where 𝑟𝑖 =

max1≤𝑘≤𝑚 𝑑𝑘,𝑖 −min1≤𝑘≤𝑚 𝑑𝑘,𝑖 and 𝑑𝑘,𝑖 means a dispersion of measurable 

feature no. i, see Fig. 3.11. In the example, if the spread for the considered 

feature is 48 then 𝒛∗ = [3.8, 23, 3]. The final result is the set of normalized to 

the value of 1 vectors 𝒛𝑖
𝑘∗. They contain the membership degrees to the clusters 

related to specific linguistic values. 

 
Fig. 3.11 The relations between feature lengths and cluster centers. For details, see the 

description in text. 

Now, let us discuss the method of membership functions formation. Here, we 

focus triangular membership functions as an efficient way of describing 

(quantifying) the variables in linguistic form, namely long, medium, and short. 

The functions we consider are 

𝐴1(𝑥) = {

1 for 𝑥 ≤ 𝑥𝑚𝑖𝑛
𝑐−𝑥

𝑐−𝑥𝑚𝑖𝑛
 for 𝑥𝑚𝑖𝑛 < 𝑥 ≤ 𝑐

0 for 𝑐 < 𝑥

    (3.7) 

𝐴2(𝑥) =

{
 

 
𝑥−𝑥𝑚𝑖𝑛

𝑐−𝑥𝑚𝑖𝑛
 for 𝑥𝑚𝑖𝑛 < 𝑥 ≤ 𝑐

𝑥𝑚𝑎𝑥−𝑥

𝑥𝑚𝑎𝑥−𝑐
 for 𝑐 < 𝑥 ≤ 𝑥𝑚𝑎𝑥

0 for 𝑥𝑚𝑎𝑥 < 𝑥

    (3.8) 
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𝐴3(𝑥) = {

0 for 𝑥 ≤ 𝑐
𝑥−𝑐

𝑥𝑚𝑎𝑥−𝑐
 for 𝑐 < 𝑥 ≤ 𝑥𝑚𝑎𝑥

1 for 𝑥𝑚𝑎𝑥 < 𝑥

    (3.9) 

Here, 𝑥𝑚𝑖𝑛 = min1≤𝑘≤𝑚 𝑥𝑘 ,  𝑥𝑚𝑎𝑥 = max1≤𝑘≤𝑚 𝑥𝑘. This manner of feature 

description suggests its realization by means of three membership functions 

which overlaps. This overlap is 0.5. One can adjust the modal value c of the 

function 𝐴2(𝑥) to get the flexibility at a certain level. This adjustment is realized 

on a basis of values of vectors 𝒇𝑗. The example of membership functions model 

is depicted in Fig. 3.12. For each of M facial features which are measurable we 

have to minimize the sum 

∑ ∑ ∑ (𝐴𝑙(𝑥𝑘) − 𝑓𝑘,𝑙
(𝑗)
)
2

3
𝑙=1

𝑚
𝑘=1

𝑛
𝑗=1     (3.10) 

Here, n is the experts count or more precisely, it denotes the number of Analytic 

Hierarchy Processes conducted for this particular feature, m denotes a number of 

facial images being under examination, while 𝑓𝑘,𝑙
(𝑗)

 stands for the entries of 

vectors related to the kth face. Finally, the feature’s length is 𝑥𝑘. Note that other 

types of memberships such as, for instance, Gaussian membership functions can 

be also used here. 

 
Fig. 3.12 Examples of fuzzy membership functions. 

3.7. The Process of Classification 

The main processing flow is depicted in Fig. 3.13. One expert or a group of 

experts describe a face by evaluating the features using Analytic Hierarchy 

Process. The results of particular specific features evaluations are then 

concatenated into the vectors which represent activation levels of facial 

descriptors. These descriptors form a linguistic space. They can be easily 

averaged on a basis of arithmetic mean. Parallelly, the measures of facial 

features are kept in a form of the vectors of membership values of linguistic 

terms short, medium, and long. These vectors are the input to the classification 

process realized by an intuitively appealing classifier which is Nearest Neighbor 

with a weighted Euclidean distance function in the following form: 
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 𝑑(𝒙, 𝒚) = ∑ √𝑤𝑖(𝑥𝑖 − 𝑦𝑖)
2𝑛

𝑖=1      (3.11) 

where 𝒘 = [𝑤1, 𝑤2, … , 𝑤𝑛], 𝒙 = [𝑥1, 𝑥2, … , 𝑥𝑛], 𝒚 = [𝑦1, 𝑦2, … , 𝑦𝑛]. Note that 

the form of a square root of the ith weight was determined in a series of 

experiments by trial and error. 

Let us consider that p experts take part in the AHP process. Then p weight 

vectors are obtained, namely 𝒘1, 𝒘2, … ,𝒘𝑝. They describe the saliency 

(importance) of face features. It means that 𝒘𝑖 = [𝑤𝑖,1, 𝑤2,1, … , 𝑤𝑖,𝑁], 𝑖 =
1, 2, … , 𝑝. Now, one can reform the vectors of weights and rebuild the vectors of 

the form 𝒗𝑖 = [𝑣𝑖,1, 𝑣𝑖,2, … , 𝑣𝑖,𝑄], 𝑖 = 1, 2,… , 𝑝. Q denotes the sum of all the 

linguistic values which correspond to the N features of a face. Note that this kind 

of building weight vectors means that, for example, the eyebrow length weight 

vector associates with vector elements 𝒗𝑖 which corresponds to short, medium, 

and long linguistic values. Moreover, note that 𝑣 =
(𝑣1+𝑣2+⋯+𝑣𝑝)

𝑝
, i.e., they are 

averaged. 

 
Fig. 3.13 An overall scheme of the process of classification. 

3.8. Experimental Studies 

The series of experiments was carried with using the well-known FERET 

dataset. To show the efficiency of our proposal we work with the first 50 facial 

images coming from the subset called ba and the first 50 images from the subset 

called bk. We denote the first set as A and the second one as B (i.e., training and 

testing set, respectively). Three experts (our friends or lab members) were to 

analyze the facial images coming from the set A, while three experts were asked 

to work with the images being in the set B. Two experts filled the questionnaires 

related to the set A and set B. To be precise, they had to play a role of a witness 

of a crime who describes the images using AHP method in a way proposed 

above. The images were evaluated using specially prepared forms in a 

spreadsheet program. As a result, three questionnaires for sets A and B were 
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obtained. Additionally, an experienced face recognition expert (our lab member) 

described 𝑁 = 52 of the most descriptive, in our opinion, features which come 

with linguistic descriptors. To choose the features we used the standards 

explained in Chicago Police Department (2016), Czerw (1995), FISWG (2016). 

The features which are non-measurable were chosen as follows (alphabetically): 

cheeks fullness, chin details, chin prominence, chin shape, depth of the philtrum, 

direction of the fissures, eyebrows direction, eyebrows shape, earlobe shape, 

ears protrusion, ears shape, forehead profiling, forehead shape, forehead skin, 

gender, hair length, hair texture, hairstyle, mouth fullness, origin, placement of 

eyes shallow, position of the earlobe, shape of the face, shape of the lower 

eyelid, shape of the nasal bridge, shape of the nasal tip, shape of the opening 

between lips, size of the earlobe while the measurable features are: chin size, 

distance between eyelids, distance between the eyebrows, ears length, eyebrows 

length, eyebrows position, eyebrows thickness, fissures length, forehead height, 

forehead width, height of the nasal bridge, inter-eye distance, length of the 

cheeks, lower lip height, mouth width, nose length, nose width, nostrils, size of 

the nose holes, upper lip height, width of the cheek bones, width of the nasal 

bridge, width of the philtrum. Table 3.9 contains the experiments’ results. They 

show that AHP is a useful tool here. In particular, if more than one expert 

evaluates the images, a good recognition rate level is observed, i.e., more than 

90%. A detailed analysis of the results shows that the methods of assessing the 

membership degrees to related linguistic values represented by clusters or 

membership functions may successfully supply the process of description 

proceeded by the experts. The fusion of information (in the form of vectors) 

coming from the measurements of the lengths of features and linguistic 

descriptors obtained from the experts strongly improves the classification 

algorithm accuracy. Particularly, in the case when the images are assessed by a 

single expert, 94% of subjects are correctly classified. When more experts are 

involved the efficiency of our proposal improves. Two experts participation in 

the process of face evaluation seems to be relatively inexpensive option. In the 

case when K-means is utilized to construct an augmented vector of features, 

good identification accuracy is reported for only two experts involved in the 

evaluation of the training set and one expert describing the testing images (more 

than 97% of recognition rate). Moreover, an application of weights generated in 

the AHP method improves the performance of the method at the level of 6 

percentage points. In addition, an application of the well-known PSO 

optimization method (see Kennedy et al. 2001, Kacprzyk & Pedrycz 2015, and 

introductory chapter) to the experts’ answers regarding to the specific facial 

features as well as to the abstract relations between the features (weight 

generation of the features) leads to an improvement of the classification results 

up to 1.5% recognition rate level. Note that here, the termination criterion of the 

PSO was that the inconsistency index should be less or equal 0.1. The results are 

denoted in Table 3.9 by AHP & PSO and AHP & PSO & K-means. The numbers 
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of PSO particles and generations were 30 and 300, respectively. Finally, we 

compare the proposed method with other approaches, particularly with local 

descriptors-based methods (LBP, Local Binary Patterns, see Ahonen et al. 2004, 

and MBLBP, Multi-scale Block Local Binary Pattern, see Chan et al. 2007 and 

Liao et al. 2007). The setup for the series of numerical experiments was as 

follows: Each image in the dataset was divided into 𝑛 × 𝑛 subrectangles. The 

best recognition rate was obtained for 𝑛 = 6. The sizes of MBLBP blocks were 

3, 5, and 7 pixels, respectively. Our method outperforms the LBP-based 

approaches. Moreover, we compare our proposal with other linguistic 

descriptors-based approaches such as AHP with no distances information and 

the classifier based on neural networks (Dolecki et al. 2016), voting on the 

chosen lengths of features (see the next part of this chapter), and fuzzy sets 

obtained directly from the weights given by users (Kiersztyn et al. 2016). 

3.9. Voting and Linguistic Descriptors for Face Recognition 

Here, the linguistic descriptors obtained directly from an expert or a group 

experts treated as the votes when evaluating face are considered as an input to 

face recognition processes.  

We develop a feature space which is linguistic and we assess its capabilities 

of discrimination. Assume that there are considered n features and that we have 

their quantification denoted by linguistic labels 𝑐𝑖 , 𝑖 = 1, 2, … , 𝑛. Then, we 

dispose a total number ∑ 𝑐𝑖
𝑛
𝑖=1  of 0-1 element Boolean vectors. In contrast, the 

feature space with numeric entries is built of n-dimensional vectors. If more than 

one expert evaluates the faces, the Boolean vector can be substituted by 

probabilities of occurrences of some linguistic labels. Consider a face and 

selected n particular features (descriptors) 𝒇1, 𝒇2, …, 𝒇𝑛 such as length of eye. 

Each of descriptors can be quantified using small number of fuzzy sets (or, more 

generally, granular values) such as small, medium, large and others. Such 

descriptors can be concatenated into a single vector describing the face, say 

𝒇 = [𝒇1, 𝒇2, … , 𝒇𝑛 ]. Denote the whole collection of facial images by ∑. The 

goal is to identify any facial image as belonging or not belonging to the set of 

faces contained in ∑. As in previous section, the face image can be described as 

𝒈. The identification can be realized using nearest neighbor classifier by finding 

a minimal distance between all the face images 𝒇 ∈ ∑ and 𝒈. For instance, 

consider the feature length of nose and assume that ten experts assess this feature 

as follows: Three of them evaluated someone’s nose as short, five of them 

described it as middle, and two experts said it is long. In this way, the 

membership values vector 𝒇 = [0.3, 0.5, 0.2]. Moreover, if all the features are 

evaluated, the face contained in the image is described in a form of the vector of 

a dimension ∑ 𝑐𝑖
𝑛
𝑖=1 . This vector is a result of concatenation of n vectors built 

similarly to 𝒇. As in the previous section, the weights of these features can be 
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obtained in the pairwise comparison process. The main flow of the whole 

process of classification is presented in Fig. 3.14. The k experts assess abstract 

facial cues using AHP. The results of their consideration, after an aggregation 

process, constitute a weight vector to be used in a classification. The 

compositions of the vectors coming from abstract and specific features of the 

faces are compared using NN classifier. 

Table 3.9 Recognition rates. 

Experts count in sets A (train.) and B 

(test.) 
1/1 1/2 2/2 3/1 3/2 3/3 

AHP 74 90 96.67 96 100 100 

AHP & weights 
72. 

89 
91.33 96.44 96 100 100 

AHP & K-means 94.22 97.33 99.33 98.67 100 100 

AHP & K-means & weights 94.67 97.11 99.11 99.33 100 100 

AHP & Particle Swarm Optimization 75.33 90 96.44 96.67 100 100 

AHP & Particle Swarm Optimization 

& weights 
74.44 90.44 95.78 96 100 100 

AHP & PSO & K-means 94.44 97.56 99.33 99.33 100 100 

AHP & PSO & K-means & weights 94.67 97.78 99.11 99.33 100 100 

AHP & triangular membership 

functions 
87.56 93.11 96.22 95.33 98 100 

AHP & triangular MF & weights 87.56 93.56 96.67 97.33 99.33 100 

AHP & K-means & triangular MF 94 97.78 99.33 98.67 100 98 

AHP & K-means & triangular MF & 

weights 
94.22 96.67 98.44 98.67 100 100 

AHP & normalized lengths 77.33 91.78 96.89 96.67 100 100 

AHP & normalized lengths & weights 78.44 92.44 96.67 96.67 100 100 

Other methods based on linguistic descriptors 

AHP & neural networks (Dolecki et 

al. 2016) 
96  95.3   98 

Voting 38.94 48.13 62.75 53.79 69.41 78.18 

Fuzzy measures (Kiersztyn et al. 

2016) 
20.8 29.3 43.6 35.3 53.5 67.2 

Example approaches with no attendance of experts 

Lengths 66 

Lengths & weights 68 

K-means 56 

K-means & weights 54 

Triangular membership functions 58 

Triangular membership functions & 

weights 
64 

LBP (6 × 6) 88 

MB-LBP (7 px square block, 6 × 6) 88 

MB-LBP (3 px, 6 × 6) 84 

MB-LBP (5, 6 × 6) 84 
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Fig. 3.14 An overall processing scheme. 

If we assume that p experts are involved in the AHP process of evaluation of 

n facial cues we obtain p weight vectors: 𝒘1, 𝒘2, … ,𝒘𝑝 associated with the 

saliency of these facial cues having the following form 

𝒇 = [𝑤𝑖,1, 𝑤𝑖,2, … , 𝑤𝑖,𝑛], 𝑖 = 1, . 2, … , 𝑝. Analogously, the concatenated weight 

vectors produce ∑ 𝑐𝑖
𝑛
𝑖=1 -element vectors denoted as 𝒘̅𝑖. These weights can be 

used (in dependence of needs) in the present form or in their inverted form: 

𝒗̅𝑖 = max[𝑤̅1, 𝑤̅2, … , 𝑤̅𝑛] − 𝑤̅𝑖     (3.12) 

NN classifier is realized using the distance or similarity functions such as 

Euclidean, Manhattan, cosine, correlation, modified Euclidean of the form 

𝑑(𝒙, 𝒚) =
∑ (𝑥𝑖−𝑦𝑖)

2𝑛
𝑖=1

∑ 𝑥𝑗
2𝑛

𝑗=1 ∑ 𝑦𝑘
2𝑛

𝑘=1

     (3.13) 

where 𝒙 = [𝑥1, 𝑥2, … , 𝑥𝑛], 𝒚 = [𝑦1, 𝑦2, … , 𝑦𝑛] are non-zero vectors. 

Moreover, the classification can be realized using weighted versions of the 

above distances (i.e., Euclidean, Manhattan, squared Euclidean, and modified 

Euclidean). 

3.10. Experimental Results 

To show the efficiency of the method we used the same set of images A 

(training set) and B (testing set) as in the previous section. Next, seventeen 

people being our lab members and friends were asked to assess the images in the 

above presented feature space. Each of them described either 50 images 

contained in the set A or the same number of images included in the set B. The 

experts used special application to fill the questionnaires consisted of Boolean 

values associated to the facial linguistic descriptors. The number of the features 

was narrowed to 𝑛 = 27 which are, in our opinion, quite easy to be estimated by 

experts. The features and they possible values are collected in Table 3.10. 
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Table 3.10 Linguistic descriptors of facial features. 

Cue Linguistic descriptors 

Chin shape round, oval, angular, triangular, concave 

Chin size small, average, big 

Distance between 

eyelids 
narrow, average, wide 

Distance between 

eyes 
narrow, average, wide 

Ears protrusion fitting, average, protruding 

Eye length short, average, long 

Eyebrows direction horizontal, turned up, turned down 

Eyebrows length short, average, long 

Eyebrows position low, average, high 

Eyebrows shape arched, straight, broken-lined, wavy, bushy 

Eyebrows thickness narrow, average, wide 

Facial shape 
rectangular, pentagonal, oval, round, triangular, ellipsoidal, 

trapezoidal, rhomboidal 

Fissures direction horizontal, turned up, turned down 

Forehead height low, average, high 

Forehead shape rectangular, square, trapezoidal, inversely trapezoidal 

Forehead width narrow, average, wide 

Gender female, male 

Inter-eyebrows 

distance 
merged, narrow, average, wide 

Lower lip height low, average, high 

Lower eyelid shape normal, average, saggy 

Mouth width short, average, long 

Nasal bridge length narrow, average, wide 

Nasal tip shape rounded, spiked, blunt, angular 

Nose length short, average, long 

Nose width narrow, average, wide 

Origin Caucasian, Spanish, Asian, African 

Upper lip height low, average, high 

In addition, 4 experts (our lab members or friends) estimated the above-

mentioned 27 features (abstract, not concrete) using the Analytic Hierarchy 

Process to obtain the weights being the averages of their individual estimations. 

The values are depicted in Fig. 3.15. Note that the weights are relatively 

intuitively appealing because of the fact that the confidence of the experts’ 

evaluations is at a high level. The exception is the case of head and forehead 

shapes, origin, and gender. The source of this fact can be that some experts put 

the weight on the importance of the features in the automatic face recognition 

processes while other experts put the weight on the features related with face 

recognition realized by humans, particularly related with feelings. 
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Fig. 3.15 Average values of facial features weights obtained by experts. 

In the series of experiments the tests for all the combinations of three, five, 

and seven experts estimated the training and testing set A and B, respectively, 

were run. The results presenting the accuracy of classification based on majority 

voting were presented in Table 3.11. One can observe that the best distance 

function is the Manhattan distance. Moreover, the weights obtained on the basis 

of experts’ knowledge with regards to the importance of facial features can 

improve the recognition rates, specifically for the lower ranks they reach 100% 

level. Rank-1 recognition rates for the chosen classifiers such as voting, 

Manhattan distance-based Nearest Neighbor, modified Euclidean distance-based 

NN, and weighted modified Euclidean distance-based NN are enlisted in Table 

3.12. Presented are the average values for all the combinations of experts. An 

intuitively appealing fact is that the more experts is involved in the estimation of 

the facial features process, the recognition rate is closer to 100%. In addition, as 

before, one can observe that the weights improve the accuracy of the 

classification methods, particularly when the lower number of experts is engaged 

in the experiments. The justification is that the weights fill the lack of the data 

coming from the estimation proceeded by the experts. Adding the weights to the 

modified Euclidean measure can improve the average recognition result by 1%. 

If more than one expert estimates training set and only one expert estimates 

testing set, the results are better by even 5%. In case of six or more experts, the 

results obtained with weighted modified distance are worse by ca. 1%. 

Interesting is fact that the improvement of classification rate for one expert 
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estimating the training set increases when the number of experts estimating the 

testing set grows up to 3.55%.  

It is noteworthy that considering only the space of features which are 

numeric, namely such that they can be sorted in a linear order (i.e., short, 

medium, and long) and if the weighted squared Euclidean distance is applied to 

their lengths after normalization, i.e., 1 is equal to the longest cue in the set, the 

accuracy reaches 54%, see Fig. 3.16. Here, the experts’ presence can effectively 

increase the recognition rate. 

Table 3.11 The recognition rates obtained with majority voting and the method based on 

comparison of concatenated vectors using various distance functions. 

Three experts estimating training and testing sets 

Rank Voting Eucl. Manh. Cosine Correl. 
Mod. 

Euclid. 
W. 

Euclid. 
W. 

Manh. 
W. sq. 
Euclid. 

W. 

mod. 

Eucl. 
1 56.03 77.96 78.18 77.85 77.70 77.61 76.90 76.64 78.24 78.87 

5 85.82 96.97 97.00 97.01 96.90 96.81 97.66 97.20 97.99 97.84 

10 93.93 99.21 99.23 99.25 99.20 99.16 99.63 99.46 99.74 99.65 
Rank 

number 

for 
which 

100% 

rec. rate 
is 

reached 

48 39 36 36 38 42 32 28 25 27 

Five experts estimating training and testing sets 

1 71.40 92.36 92.65 92.77 92.64 92.85 91.60 91.28 92.42 92.99 
5 93.13 99.86 99.84 99.87 99.86 99.86 99.88 99.85 99.94 99.91 

10 97.68 99.99 99.99 99.99 99.99 99.99 100 99.99 100 100 

Rank 
number 

for 

which 
100% 

rec. rate 

is 
reached 

47 17 15 17 18 19 11 20 11 11 

Seven experts estimating training and testing sets 

1 79.38 97.40 97.80 97.21 97.20 97.40 96.72 97.42 97.28 97.18 

5 96.43 100 100 100 100 100 100 100 100 100 
10 99.33 100 100 100 100 100 100 100 100 100 

Rank 

number 
for 

which 

100% 
rec. rate 

is 

reached 

21 3 4 3 3 4 4 4 4 3 
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Table 3.12 Rank 1 recognition rates for various methods of classification. 

Number of experts estimating training (vertically) and testing (horizontally) set 

Voting 

 1 2 3 4 5 6 7 8 

1 38.94 36.52 46.16 45.46 50.62 49.10 53.14 52.67 

2 42.23 47.55 50.58 55.57 56.36 57.99 58.45 58.94 

3 46.26 44.18 56.03 55.77 61.79 60.13 64.65 62.95 

4 51.38 53.95 61.60 65.63 68.60 69.62 71.85 71.95 

5 52.92 51.25 64.05 65.02 71.40 70.60 74.55 74.21 

6 55.07 56.56 66.25 69.95 74.10 75.08 77.64 77.88 

7 55.93 54.92 68.33 69.54 75.87 75.55 79.38 77.50 

8 58.06 58.46 70.05 73.24 77.87 78.95 81.81 80.44 

9 56.00 55.86 70.46 71.26 78.68 78.21 82.75 78.00 

Manhattan distance 

 1 2 3 4 5 6 7 8 

1 38.94 48.13 53.79 57.47 59.97 61.90 63.00 62.67 

2 47.21 62.75 69.41 74.42 76.93 79.23 80.39 82.56 

3 52.31 69.49 78.18 82.38 85.33 87.70 88.61 89.69 

4 55.78 75.06 82.51 87.41 89.83 91.81 92.76 93.79 

5 58.25 77.58 85.78 89.90 92.65 94.03 95.13 95.94 

6 59.99 80.52 88.23 92.05 94.10 95.76 96.50 97.14 

7 61.40 81.59 89.28 93.02 95.32 96.61 97.80 98.06 

8 62.58 83.24 90.40 94.16 96.19 97.77 98.31 99.11 

9 63.50 83.57 91.43 94.51 96.71 98.64 99.75 100.00 

Modified Euclidean distance 

 1 2 3 4 5 6 7 8 

1 38.94 48.13 53.79 57.47 59.97 61.90 63.00 62.67 

2 44.38 60.38 69.06 74.35 77.88 80.20 81.94 83.83 

3 50.13 68.48 77.61 82.87 86.11 88.39 89.99 91.29 

4 54.34 73.36 82.45 87.44 90.44 92.42 93.81 94.71 

5 57.08 76.52 85.48 90.11 92.85 94.60 95.73 96.35 

6 59.12 78.65 87.53 91.83 94.29 95.86 96.82 97.55 

7 60.67 80.21 88.94 92.96 95.23 96.69 97.40 97.89 

8 62.39 81.24 89.92 93.83 95.77 96.95 97.47 97.78 

9 62.25 82.43 90.50 94.51 96.21 97.07 97.50 98.00 

Weighted modified Euclidean distance 

 1 2 3 4 5 6 7 8 

1 38.25 49.26 55.06 59.01 61.66 63.35 64.69 66.22 

2 49.30 63.70 71.06 75.60 78.43 80.35 81.70 83.00 

3 55.54 71.08 78.87 83.41 86.36 88.30 89.70 90.88 

4 59.16 75.57 83.41 87.82 90.50 92.39 93.62 94.57 

5 61.61 78.45 86.33 90.44 92.99 94.62 95.77 96.51 

6 63.25 80.52 88.30 92.19 94.44 95.89 96.69 97.31 

7 64.67 81.96 89.78 93.40 95.36 96.57 97.18 97.44 

8 65.83 82.95 90.75 94.25 95.98 96.93 97.33 97.56 

9 67.50 83.93 91.46 94.80 96.57 97.36 97.00 98.00 
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Fig. 3.16 Recognition rates regarding to rank 1 – rank 25 (a method based on the 

normalized lengths of features). 

3.11. Conclusions 

In this chapter, we have introduced a method of evaluation of the importance 

of face features in the process of face recognition realized by humans. Our 

approach is based on the knowledge and opinions of the experts. Moreover, the 

method can be easily adjusted in the computational face recognition methods 

depending upon the practical needs. We have proposed the Analytic Hierarchy 

Process method as a generic approach of obtaining the weights of the essential 

facial features to be used by humans describing faces. The AHP structure is built 

of three levels of hierarchy. It has been developed along with the method of 

finding the relevance and confidence of the assessment of subjects which is 

based on the entropy measure. The novelty and originality of the approach lays 

in the fact that linguistic values (and not numerical) were used to generate 

intuitively appealing and interesting results. Moreover, the set of results of the 

pairwise comparisons conducted by experts can be an invaluable and interesting 

example to other studies. 

Furthermore, we have discussed a novel and original approach to the facial 

recognition realized by humans with an application of the Analytic Hierarchy 

Process. This method can be an efficient tool to realize the process of evaluation 

of faces by an expert or a group of experts. Very good results were obtained in a 

series of experiments, namely the recognition rates varied from 94% to 100%. It 

means that the AHP-based method can be an important vehicle to improve the 
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processes where the presence of experts is very important (or necessary, e.g., in 

forensic science).  

Finally, we have thoroughly studied an original combination of AHP and 

human face images linguistic descriptors. These descriptions were received from 

the experts’ evaluations. Such kind of approach can work as a successful 

complement to other classifying methods. 
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4.  User Centric Graphic Enhancements of Methods of Decision-

Making 

In this chapter, we present a novel and innovative approach to the 

enhancement of Analytic Hierarchy Process which is one of the most important 

techniques used in decision-making theory. Typically, the matrices of pairwise 

comparisons are built on the basis of numerical inputs given by the experts 

evaluating the set of alternatives. These numerical values are often natural 

numbers from the range 1-9 or fuzzy memberships built on a basis of this scale. 

Here, we introduce the graphic approach to the AHP method which lets the 

experts to be independent on the constraints which the numerical scale brings 

with itself. To obtain such effect, we propose to use well-known GUI 

components such as slider and dial arc. The series of experiments show that the 

application of the graphical elements significantly improves the AHP 

inconsistency indices. Moreover, using Particle Swarm Optimization, we find 

the parameters of non-linear mappings which let to preserve the low 

inconsistency of the experts’ opinions and, of course, the obtained values of 

preferences related to particular features (alternatives). 

4.1. Enhancements of Analytic Hierarchy Process 

Despite the classical approach to Analytic Hierarchy Process (Saaty 1980) is 

relatively intuitive and simple, in a number of situations, the consistency is 

difficult to be maintained at high (satisfactory) level. The reasons may be of 

various kind, namely misunderstanding of the AHP method by people or simply 

their lack of experience, difficulties with matching the numerical (or even 

linguistic) values of the AHP scales with their meaning which can be really 

important problem when two or more experts are engaged in the process of 

evaluations. Even if their general preferences are relatively similar, the 

aggregated results may lead to higher inconsistency. Finally, many people do not 

feel comfortable with somehow restricting scales. The process of choice of the 

numbers may be exhausting and lead to perfunctory treating of the process, 

particularly in the situations when higher number, say 10 or more, of alternatives 

is considered. 

In the literature there were a number of proposals generalizing or improving 

the generic AHP approach, e.g., fuzzy weights describing the criteria of decision 

and alternatives (van Laarhoven & Pedrycz 1983), aggregation mechanism when 

a group of experts make the pairwise comparisons (Forman & Peniwati 1988, 

Dong et al. 2015), different scales, e.g., linear, power, and others, see Saaty 

(1977), Harker & Vargas (1987), or Ishizaka & Labib (2011). However, in 

Tavana et al. (1997) it was presented that people prefer to use verbal evaluations 

than plain numeric values. Linguistic modeling or Granular Computing-based 

techniques can be an important improvement here, see Pedrycz & Vasilakos 
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1999, Cabrerizo et al. 2018, Pedrycz 2013, Pedrycz & Song 2014, Liu et al. 

2018, and many others. However, there is still a need of a significant 

improvement of decision tools by involving graphical input by user (Kabassi & 

Virvou 2015, Kersten 1987). The experts could choose among tools based on 

numeric, verbal or graphical inputs in experiments presented by Weistroffer et 

al. (1999). The advantages of an application of the graphical approaches were 

presented in details in Power & Sharda (2007), Larichev et al. (2003), von 

Winterfeldt & Edwards (1986). Mustajoki & Hämäläinen (2000) proposed an 

application of a slider. However, despite of promising concept no discussion of 

the impact of a slider on the decision-making process performance was 

presented. Moreover, in (Ito & Shintani 1997) it was presented a graphical user 

interface for persuasion mechanism for negotiation among agents based on 

integer values. Bhargava et al. 1999 presented a comparison of graphical 

decision support systems including interfaces to AHP based on numerical values 

and linguistic option panels. Drop down menus as well as sliders (but with 

linguistic descriptions of particular positions) were discussed by, for instance, 

Thirumalaivasan & Karmegam, 2001 and Thirumalaivasan et al. 2003. Perini et 

al. (2009) proposed radio buttons with a descriptions of the form A>>>>B, 

A>>>B, etc., where A and B are compared alternatives. An et al. (2011) 

described an interface to fuzzy AHP (based on numerical values). Cay & Uyan 

described an interface with typical radio buttons and their linguistic descriptors. 

Wang et al. (2014) proposed numerical interface for a hybrid method based on 

fuzzy AHP and GRA originally developed by Deng (1989). Numerical drop 

down menus built in reciprocal matrices were discussed in Hanine et al. (2016). 

Other improvements of AHP techniques such as aggregation techniques and 

optimization approaches to the process were discussed in the previous chapters. 

Kiersztyn et al. (2018) proposed a method of determination of a matrix of 

dependencies between experts’ opinions based on a slider. 

Here, we propose a method which helps to depart from the user forcing 

method of quantifying the preferences. It is based on two graphical tools which 

are components available in almost all of the graphical programming 

environments. They are slider, sometimes called track bar, and dial arc. Sliding 

the position of the slider or rotating the dial arc can free the user from the 

numeric-oriented choice, particularly if the differences between the succeeding 

slider’s values are negligibly small and imperceptible for the experts. This is 

easy to obtain when the property of maximal value of the slider is sufficiently 

large, say 100. In the case of the dial arc the positions are related with the angle 

rotation in-between -180 to 180 degrees. The examples of a slider and a dial arc 

are presented in Fig. 4.1 and Fig. 4.2, respectively. 
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Fig. 4.1 An example of the graphic interface based on a slider. All the values of the 

component including neutral 0 value and its maximal and minimal positions are hidden 

to not suggest any decision to the user. The highest preference of Mercedes is at the 

maximal left position while the highest preference of Audi is pointed by the slider’s 

maximal right position. 

 

Fig. 4.2 An example of a realization of graphic interface with the use of a dial arc. 

Similarly to the previous case, the central position is neutral. The left minimal (-180°) 

and the right maximal (180°) mean the preference of Ford over Kia and an opposite 

situation, respectively. 

To obtain the matrix of pairwise comparisons preserving the reciprocity 

property, the slider’s positions should be transformed to the values from the 

scale [1/9, 9] or another, say [1/7, 7]. It is worth to stress, that the expert is not 

able to take part in this step of the process. The conversion is realized with using 

the following formula: 

𝑡(𝑞) = {

8

9𝑟
𝑞 + 1 for 𝑞 ∈ [−𝑟, 0)

8

𝑟
𝑞 + 1 for 𝑞 ∈ [0, 𝑟]

     (4.1) 

where q denotes the geometric position of the slider or dial arc, while r is a 

maximal value of the graphical component. 
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4.2. Non-linear Transformation of the Reciprocal Matrix 

The use of graphic interfaces alone does not completely eliminate the 

inconsistencies of the pairwise comparisons process. They should be reduced to 

minimum. The role of a transformation (1) is to simplify the scale to be [1/9, 9]. 

However, some inevitable inconsistencies might still occur. Therefore, to 

minimize the inconsistency index we introduce a non-linear transformation 

which is non-decreasing and defined with a set (vector) of parameters to be 

established. The procedure of their finding has to include their adjustment to 

minimize the inconsistencies. One of such models of non-linear and non-

decreasing functions is a piecewise linear function given by the formula 

𝑓(𝑡) =
(𝑏𝑖−𝑏𝑖−1)(𝑡−𝑎𝑖−1)

𝑎𝑖−𝑎𝑖−1
+ 𝑏𝑖−1 for 𝑡 ∈ [𝑎𝑖−1,𝑎𝑖)      (4.2) 

where t≥1 and the coefficients 𝑎𝑖 , 𝑏𝑖 ∈ [1, 9] (𝑖 = 2,… , 𝑝 + 1). If 𝑡 <1 the 

function value is obtained as 1/𝑓(1/𝑡). 
Obviously, the mapping parameters are the coefficients a2, a3, …, ap which 

are positioned on the x-axis and the coefficients b2, b3, …, bp lay on the y-axis. It 

means that p linear segments is formed. Observe that the boundary coefficients 

are a1=1, ap+1=9, b1=1, and bp+1=9. An example of such kind of the 

transformation is shown in. Fig. 4.3. 

 
Fig. 4.3 Examples of a piecewise linear function f and a combination of sigmoid 

functions g for p=3 segments. 

As a conclusion we can stress that (1) maps the slider values to the cells of 

the reciprocal matrix while (2) and the next expression (3) are established to 

result in more consistent matrix. 

Of course, there is no need to limit to only one non-linear mapping. Another 

function of this kind may be a combination of sigmoidal functions. Its value in 

the segment [𝑎𝑖−1,𝑎𝑖) is read as follows 
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𝑔(𝑡) =
𝐿

1+𝑒
−𝑘(𝑡−

𝑎𝑖+𝑎𝑖−1
2

)
 for 𝑡 ∈ [𝑎𝑖−1,𝑎𝑖)   (4.3) 

where L can be obtained from the formula 

𝐿 = 𝑏𝑖−1 (1 + 𝑒
𝑘
𝑎𝑖−𝑎𝑖−1

2 )     (4.4) 

while 

𝑘 = 2
ln

𝑏𝑖
𝑏𝑖−1

𝑎𝑖−𝑎𝑖−1
       (4.5) 

for 𝑡 ≥1 and the coefficients 𝑎𝑖, 𝑏𝑖 ∈ [1, 9]. Again, note that for the value t<1 

we take 1/𝑔(1/𝑡).  

4.3. Minimization of Inconsistency 

So far, we have established a collection of graphic data written in the scale 

[1/9, 9]. However, the AHP user is interested in minimizing the inconsistencies 

of the experts’ reciprocal matrices. This conviction is due to the fact that the 

experts are not necessarily rational. A properly chosen non-linear transformation 

of the results can significantly improve reaching this aim. Of course, the 

piecewise linear function and combination of sigmoidal functions seem to be a 

good choices to serve as this mapping. This implies that their coefficients, i.e., 

a2, a3, …, ap and b2, b3, …, bp have to be found. A good strategy here is to use 

Particle Swarm Optimization (see Kennedy et al. 2001, Kacprzyk & Pedrycz 

2015, and chapter 1). The results of evaluations of m (in particular m=1) experts 

are contained in the form of m reciprocal matrices, namely A1, A2, …, Am. The 

goal here is to establish the parameters of the transformations f or g for which 

the sum of inconsistency indices 𝜈𝑘 is minimal:  

arg min𝑎2<⋯< 𝑎𝑝, 𝑏2< …< 𝑏𝑝 ∑ 𝜈𝑘
𝑚
𝑘=1     (4.6) 

All the particles (in particular, their initial positions and velocities) of the 

swarm are initialized using the random method. Next, in the iterations of the 

method, they are reset using the following formulae: 

𝒗𝑖 = 𝒗𝑖 + 2[𝑹1⨂(𝒑𝑖 − 𝒙𝑖) + 𝑹2⨂(𝒑𝑔 − 𝒙𝑖)]   (4.7) 

𝒙𝑖 = 𝒙𝑖 + 𝒗𝑖       (4.8) 

Here, xi denotes a vector particle which means that it is an i-th vector of values 

a2, a3, …, ap, b1, b2, …, bp of f or g, respectively, the rest of symbols are 

described in the similar way as in chapter 1, see, formulae (1.1) and (1.2). It is 

worth to stress that the conditions ai-1 < ai and bi-1 < bi are to be preserved. It is 

easy to fulfill it by an application of the increases ∆𝑖= 𝑎𝑖+1 − 𝑎𝑖 and 𝛿𝑖 =
𝑏𝑖+1 − 𝑏𝑖 , 𝑖 = 1,… , 𝑝, in the optimization space instead of the origin values ai 

and bi, respectively. After the optimization process the yielded transformations f 

and g are applied to all the reciprocal matrices. The average eigenvector of all 

the reciprocal matrices is a result of the process. Of course, one could apply a 

geometric mean to the initial reciprocal matrices entries and optimize just one 
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matrix, see (Dong et al. 2010). Fig. 4.4 depicts an overall processing scheme of 

the process. 

 

Fig. 4.4 Main processing phases of the method. 

4.4. Experimental Results 

In the series of experiments, we consider four typical problems (which model 

of 4-5 year old crossover or SUV is less emergency, where would you like to go 

on vacation, who is a better footballer, and which TV series would you like to 

watch?). 

4.4.1. Crossovers and SUVs’ Reliability  

We have decided to compare the list of fifteen car models, namely Audi Q5, 

BMW X1, Chevrolet Captiva, Dacia Duster, Ford Kuga, Honda CR-V, Hyundai 

ix35, Kia Sportage, Mercedes GLK, Mitsubishi ASX, Nissan Juke, Suzuki 

Grand Vitara, Toyota RAV4, Volvo XC60, and Volkswagen Tiguan, see the 

report of reliability TÜV-Report 2017. Three experts (consumers with general 

but not specialized knowledge) were to fill the scoresheet questionnaires in three 

manners, namely the questionnaires with integral values corresponding to the 

descriptions given in the previous sections and simple dedicated applications 

with graphical interfaces containing slider and dial arc, see print screens 

presented in Fig. 4.1 and Fig. 4.2. Note that the order of pairwise comparisons 

presented to the experts was random. The comparison between SUV and 

crossover models on a basis of normalized experts priorities values along with 

inconsistency indices are listed in Table 4.1. The results listed in the table show 

that the lowest inconsistency level can be reached when experts use a very 

intuitive graphical component, namely slider. However, a dial arc is not as 

intuitive as a slider. The participants of our tests stressed it during the 

experiment series. It may be a reason why the inconsistencies obtained when 

using this tool are higher. No matter of inconsistency analysis, it is worth to 

stress that the general preference is always the same, i.e., it is the same model of 

the car and the relations between the second, third, and fourth place are almost 

negligible. Let us consider the results of an application of non-linear 
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transformations which were found by the PSO method in a series of 20 

repetitions. Note that the first and the fifth SUV are the same (Mercedes and 

Volvo), while the cars being at places no. 2, 3, and 4 change and their results are 

dependent on the method. The reason of this may be as follows: After 200 PSO 

iterations, the inconsistency indices are very close to 0, in particular in the case 

when the experts use dial arc. To focus on the properties of the method from 

now on, the default number of PSO particles is 40 while the number of segments 

(i.e., p) is 10. Additionally, an interesting result is presented in Fig. 4.5. The 

transformation plots giving the lowest inconsistencies lay under the rest of the 

plots. As one can see, this rule is satisfied in other kinds of experiments. 

Furthermore, the segments count (p) and the particles number do not influence 

the final results of AHP, see Fig. 4.6, Fig. 4.7, and Fig. 4.8. Note that the last 

three figures show the results obtained with slider. However, similar results can 

be obtained using other variants of our approach (dial arc). Interesting 

information is presented in Fig. 4.9. It depicts all the experts answers after 

transformation through the non-linear piecewise linear function being the result 

of the PSO process. Observe that here, the values laying almost at the right and 

left slider’s end, but not being the end itself (which is 𝑠 = 100 and −𝑠 = −100) 

are used relatively rarely. The figure shows that almost the whole range of the 

floating point scale values is used provided that a relatively high features 

number is under comparison. 

Table 4.1 The preferences (normalized to 1) for SUVs and crossovers. 

Compared 

cars 
Num. Sliders 

Dial 

arcs 

Num. 

+piec. 
lin. f. 

Num. 

+comb. 
sigm. f. 

Sliders 

+piec. 
linear f. 

Sliders 

+comb. 
sigm. f. 

Dial 
arcs 

+piec. 

lin. f. 

Dial 
arcs 

+comb. 

sigm. f. 

Mercedes 

GLK 
1 1 1 1 1 1 1 1 1 

BMW X1 0.78 0.79 0.8 0.79 0.81 0.83 0.86 0.89 0.95 
Honda CR-V 0.75 0.84 0.79 0.79 0.84 0.83 0.82 0.96 0.96 

Audi Q5 0.68 0.85 0.75 0.72 0.76 0.88 0.82 0.96 0.98 

Volvo XC60 0.63 0.67 0.66 0.65 0.68 0.72 0.76 0.86 0.92 

Mitsubishi 
ASX 

0.37 0.44 0.28 0.42 0.5 0.53 0.63 0.83 0.88 

Toyota RAV4 0.31 0.42 0.4 0.37 0.47 0.51 0.59 0.79 0.86 

VW Tiguan 0.28 0.35 0.36 0.34 0.45 0.45 0.55 0.74 0.83 

Ford Kuga 0.22 0.35 0.29 0.29 0.40 0.43 0.51 0.77 0.85 

Hyundai ix35 0.17 0.25 0.2 0.24 0.36 0.36 0.47 0.76 0.83 

Kia Sportage 0.16 0.2 0.19 0.23 0.35 0.31 0.43 0.74 0.81 

Nissan Juke 0.14 0.2 0.17 0.21 0.33 0.31 0.43 0.72 0.8 

Suzuki Grand 

Vitara 
0.12 0.15 0.13 0.18 0.29 0.25 0.38 0.73 0.79 

Chevrolet 

Captiva 
0.1 0.14 0.15 0.16 0.27 0.23 0.35 0.67 0.76 

Dacia Duster 0.05 0.07 0.09 0.09 0.17 0.13 0.22 0.6 0.7 

Inconsistency 

index 
0.17 0.09 0.2 0.02 0.02 0.02 0.02 0 0 
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Fig. 4.5 The average non-linear transformations (piecewise linear function and 

combination of sigmoid functions) after 20 repetitions of experiments. Numerical AHP 

refers to the scoresheet-based questionnaires. 

 

Fig. 4.6 A convergence of PSO fitness function values in consecutive iterations for 20, 

40, 60, 80, and 100 particle populations, respectively (a case of slider and piecewise 

linear transformation function). 
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Fig. 4.7 The results in dependency on the number of segments of piecewise linear 

function (3, 5, 8, 10, 13, 15, 20, and 25 segments) in comparison with an original 

ranking (TÜV). 

 

Fig. 4.8 The average plots of transformations when the function is built from 3, 5, 8, 10, 

13, 15, 20, and 25 segments, respectively. 
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Fig. 4.9 The experts answers before (slider positions) and after transformation by 

piecewise linear function. 

4.4.2. The Choice of the Holidays 

Here, the set of possible choices was built of the countries or islands in the 

Mediterranean Sea area (Bulgaria, Crete, Cyprus, Egypt, Madeira, Mallorca, 

Sicilia, and Turkey). Again, similarly to another considered cases, the 

inconsistency index was the smallest when the sliders were in use.  

Table 4.2 shows the results. The order of preferences of the experts is as 

follows: 1. Mallorca, 2. Madeira, 3. Crete. Relatively small changes start at the 

position no. four. It depends on the method’s choice. It is worth noting that the 

combination of the classic Analytic Hierarchy Process, non-linear transform and 

Particle Swarm Optimization leads to the swap between two last holiday 

choices, namely Egypt and Turkey. Moreover, when slider is used, no changes 

after PSO are seen. Dial arc followed by the PSO swaps the places no. 4 and 5 

(Bulgaria and Cyprus). As in the case of SUVs, the smallest inconsistency 

indices were yielded by the AHP based on the dial arc angular values inputs. 

Fig. 4.10 contains the plots of average transformations after 20 series of 

experiments. 
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Fig. 4.10 Holidays choice: The average plots of transformations sought in the PSO 

method. 

Table 4.2 Holidays choice. 

Place Numbers Sliders 
Dial 

arcs 

Num. 

+ 

piec. 
lin. f. 

Num. 

+ 
comb. 

sigm. 

f. 

Sliders+ 
piec. 

lin. f. 

Sliders+ 
comb. 

sigm. f. 

Dial 

arc+ 

piec. 
lin. f. 

Dial arc+ 
comb. 

sigm. f. 

Bulgaria 0.23 0.26 0.24 0.27 0.30 0.32 0.39 0.56 0.75 

Crete 0.43 0.36 0.4 0.46 0.5 0.41 0.48 0.68 0.84 

Cyprus 0.16 0.18 0.21 0.20 0.25 0.25 0.34 0.59 0.75 

Egypt 0.05 0.04 0.05 0.07 0.1 0.06 0.1 0.36 0.56 

Madeira 0.57 0.59 0.55 0.6 0.63 0.62 0.68 0.73 0.88 

Mallorca 1 1 1 1 1 1 1 1 1 

Sicilia 0.19 0.18 0.2 0.23 0.29 0.23 0.31 0.54 0.73 

Turkey 0.05 0.05 0.06 0.07 0.09 0.07 0.11 0.36 0.58 

Inconsistency 

index 
0.2 0.16 0.21 0.05 0.05 0.03 0.03 0 0 

4.4.3. Top Football Players 

In the third series of experiments the experts were to choose top football 

(soccer) players among the following footballers: Gareth Bale, Antoine 

Griezmann, Robert Lewandowski, Cristiano Ronaldo, Lionel Messi, Neymar, 

and Luis Suárez. In this case an application of non-linear transformation being 

the result of PSO slightly changed the order, namely Messi followed Ronaldo. 

However, the reciprocal matrices being the results of slider and dial arc 

applications were relatively stable and the orders have not been changed after 

using the PSO-based non-linear transformation. Again, the transformation plots 

and inconsistency values are very similar to the corresponding statistics obtained 

in the previous topics (car models and holidays choice), see Table 4.3 and Fig. 

4.11. 
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Table 4.3 The choice of the best football player. 

Player Num. Slid. 
Dial 
arc 

 

Num.+ 

piec. 

lin. f. 

Num.+comb. 
sigm. f. 

Slid.+ 

piec. 

lin. f. 

Slid.+ 

comb. 
sigm. 

f. 

Dial 

arc+piec. 

lin f. 

Dial 
arc+ 

comb. 

sigm. 
f. 

Ronaldo 1.00 1.00 1.00  1.00 0.98 1.00 1.00 1.00 1.00 

Messi 0.96 0.87 0.81  1.00 1.00 0.90 0.92 0.90 0.96 
Griezmann 0.10 0.08 0.11  0.12 0.15 0.11 0.14 0.47 0.72 

Suárez 0.19 0.20 0.20  0.22 0.26 0.25 0.29 0.53 0.76 

Neymar 0.40 0.39 0.43  0.43 0.46 0.45 0.47 0.74 0.88 

Bale 0.15 0.14 0.26  0.19 0.22 0.18 0.22 0.60 0.78 

Lewandowski 0.34 0.39 0.35  0.39 0.44 0.41 0.44 0.71 0.84 

Inconsistency 

index 
0.2 0.18 0.27  0.03 0.03 0.02 0.02 0 0 

 

Fig. 4.11 PSO-optimized non-linear transformations obtained for the problem of the 

choice of the best footballer. 

4.4.4. Preferred TV Series 

In this series of experiments our experts were to choose the TV series which 

is most preferred among the following: Game of Thrones, House of Cards, 

Narcos, Vikings, and The Walking Dead. Game of Thrones and The Walking 

Dead have won in the ranking of preferences. The results show that the rest of 

places in ranking depend on the method of pairwise comparisons. One of the 

reasons may be an emotional relation to the particular series which implied that 

the experts have often used maximal values of the AHP scale. Moreover, the 

observed inconsistencies were different in a comparison to the previous 

experimental series. The best result was noted when a slider approach was in 

use. Table 4.4 consists of the full set of results while Fig. 4.12 depicts the 

average plots of obtained non-linear transformations. 



117 

 

Table 4.4 TV series' preferences. 

Place Num. Slid. Dial 

arc 

Num. 

+ 

piec. 

lin. f. 

Num.+ 

comb. 

sigm. 

f. 

Slid.+ 

piec. 

lin. f. 

Slid.+ 

comb. 

sigm. 

f. 

Dial 

arc+ 

piec. 

lin. f. 

Dial 

arc+ 

comb. 

sigm. 

f. 

Game of 

Thrones 

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

House of 

Cards 

0.37 0.40 0.40 0.44 0.59 0.72 0.90 0.63
 

0.71 

Narcos 0.19 0.18 0.18 0.29 0.45 0.60 0.81 0.53 0.64 

Vikings 0.46 0.52 0.47 0.35 0.28 0.36 0.37 0.40 0.54 

The Walking 

Dead 

0.70 0.67 0.89 0.61 0.59 0.81 0.94 0.80 0.92 

Inconsistency 

index 

0.11 0.06 0.31 0.06 0.06 0 0 0 0.02 

 

Fig. 4.12 The plots of the average non-linear transformation found in the Particle Swarm 

Optimization process for the TV series choice. 

A conclusion after the analysis of the considered cases is that the graphical 

tools, particularly a slider followed by an optimization method, are able to 

improve the consistency of the experts pairwise comparisons. Moreover, their 

application can lead to the effective determination of the importance of 

particular preferences. 
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4.5. Fuzzy Extensions of the Analytic Hierarchy Process 

In this section, we consider an extension of Analytic Hierarchy Process based 

on fuzzy numbers, namely interval, triangular, and trapezoidal. In case of the 

interval membership function the expert sets the range of the preferred values 

and they are equivalently important. Using triangular fuzzy membership 

functions, the user chooses the most important preference. However, two 

boundary values are the points where the preference vanishes. Finally, these two 

approaches are merged in the case of trapezoidal fuzzy number, where the expert 

has to select the interval of the most preference and the points where the 

preference is vanishing. The examples of numeric interfaces for triangular 

numbers are depicted in Fig. 4.13, Fig. 4.14, and Fig. 4.15. It is worth to note 

that implementing such kind of interface the developer has to remember about 

the monotonicity of the preference values to avoid the unnecessary errors when 

transforming to the AHP fuzzy values. Moreover, it is worth stressing that the 

intervals are enabled to be in a degenerated form (a point value). 

The slider values are transformed onto the fuzzy AHP scale using formula 

(1). The final crisp value can be chosen by, for instance, the method of inverse 

distribution, where the membership functions serve as distributions. 

 

Fig. 4.13 Numerical interface for triangular fuzzy number-based Analytic Hierarchy 

Process. 

 

Fig. 4.14 Linguistic interface for triangular fuzzy number-based Analytic Hierarchy 

Process. 
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Fig. 4.15 Graphical interface for three slider-based Analytic Hierarchy Process. 

4.6. Experimental Results 

The two following series of experiments with the following problems were 

conducted to show the efficiency of our proposal: 

 Problem #1 Which national football team will get the title of world 

champion in football (soccer) in 2018? 

 Problem #2 Which movie genre do you prefer? 

The experiments were carried in the similar way as in the crisp version of 

AHP with one difference: There is no optimization process following the 

decision by experts. Three football fans and three TV series fans were to decide 

which team will win the football world championship and a favorite TV series, 

respectively. The results are listed in Table 4.5. It is worth noting that the slider-

based graphical interfaces give the best results in the sense of lowest 

inconsistency independently onto the way of aggregation of the results of a 

group of experts, i.e., arithmetic mean of three experts’ evaluations or geometric 

mean of AHP reciprocal matrices’ entries. Such situation is observed in 9 cases 

of 16. 
Table 4.5 A comparison of inconsistency indices for the fuzzy extensions of AHP 

interface. 

Problem 
1 

num. 

1 

ling. 

1 

slid. 

2 

num. 

2 

ling. 

2 

slid. 

3 

num. 

3 

ling. 

3 

slid. 

4 

num. 

4 

ling. 

4 

slid. 

World 

champion-

arithm. 

approach 

0.071 0.086 0.111 0.174 0.101 0.087 0.081 0.126 0.064 0.108 0.124 0.106 

World 

champion-

geom. 

approach 

0.028 0.024 0.054 0.082 0.023 0.02 0.028 0.048 0.022 0.037 0.039 0.039 

Movie-

arithm. 

approach 

0.118 0.122 0.197 0.152 0.154 0.128 0.128 0.146 0.155 0.127 0.182 0.175 

Movie-

geom. 

approach 

0.011 0.016 0.036 0.037 0.047 0.025 0.02 0.056 0.018 0.024 0.047 0.015 



120 

 

4.7. An Application of Graphical Interface to the Biometric Features 

Description  

In this section, we give a thorough in-depth analysis of the problem of face 

description by the experts. A situation when the witness of a crime or a specialist 

has difficulties in a correct description of the facial parts is quite often. One of 

the promising ways of improving this process may by an application of AHP. 

The pairwise comparison method could help experts to use more intuitive 

approach that typical numerical or linguistic values. Here, we show chosen 

interesting results of an application of the above-mentioned method which helps 

to improve the judgements of the experts regarding the description of facial 

features as well as their rationality. The experiments were carried with using the 

PUT Face Database. An example of a face image is presented in Fig. 4.16. We 

asked one experienced face recognition expert to assess a set of 20 images. 

These photos are of high resolution and a few facial features including eye 

position are precisely found. It will help to thoroughly check the dependencies 

between the real values of facial parts’ lengths and experts’ evaluations. An 

example of an interface to the AHP face estimation is presented in Fig. 4.16. 

 

Fig. 4.16 A print screen of the executed application. The facial image comes from PUT 

Face Database. 

The first of the features under consideration is the eyebrow width. Our expert 

described 20 images of people presenting their head central position using the 

AHP pairwise comparison method applied to three linguistic values: short, 

average, and long. The optimization process based on Particle Swarm 

Optimization was repeated ten times to get the 10-segment piecewise linear 

function f. Its plot is presented in Fig. 4.17. The values of coefficients of 

maximal eigenvectors of AHP reciprocal matrices before the PSO process are 

shown in Fig. 4.18. Fig. 4.19 presents analogical values after the transformation 
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by the function f. One can observe an improvement of the results. It is 

manifested in the form of trend lines corresponding to short, average, and long 

linguistic variables. An important fact is that the average inconsistency index 

before and after optimization was 0.072 and 0.007, respectively. Similar 

considerations were made for the facial width feature. The list of detailed values 

is presented in Table 4.6. Fig. 4.20 presents the mapping f while Fig. 4.21 and 

Fig. 4.22 depict the trends of the results before and after the PSO process of 

optimization, respectively. It is worth noting, that again the inconsistency index 

was improved and changed from 0.048 to 0.007. These two results present the 

effectiveness and potential applicability of the proposed method to the 

description of biometric features. 

 

Fig. 4.17 The transformation function f (eyebrows width). 
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Fig. 4.18 The set of AHP results including trend lines (before the optimization process). 

 

Fig. 4.19 The AHP results after PSO-based optimization with respect to the sum of 

maximal eigenvalues. 
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Fig. 4.20 The transformation function f (a case of face width). Here the Ox-axis 

corresponds to the ai coefficients while Oy-axis represents the values of bi. 

Table 4.6 The detailed results corresponding to Fig. 4.19. 

Pixel length Short Average Long 

19.45 0.71 0.20 0.08 

22.50 0.72 0.19 0.08 

23.92 0.66 0.20 0.14 

24.16 0.48 0.39 0.13 

28.69 0.71 0.22 0.08 

30.51 0.82 0.11 0.08 

31.65 0.40 0.37 0.23 

31.95 0.24 0.42 0.33 

32.16 0.12 0.32 0.57 

33.45 0.23 0.39 0.38 

33.48 0.34 0.53 0.13 

34.97 0.55 0.29 0.16 

35.26 0.16 0.25 0.59 

35.27 0.20 0.41 0.39 

37.82 0.36 0.51 0.13 

42.67 0.07 0.11 0.81 

43.62 0.25 0.38 0.37 

48.31 0.18 0.64 0.18 

55.12 0.16 0.26 0.58 

58.32 0.09 0.18 0.73 
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Fig. 4.21 Results related to the face width feature (before the optimization procedure). 

 

Fig. 4.22 Results related to the face width feature (after the optimization procedure). 

4.8. Conclusions 

In this chapter, we have proposed a novel and in-depth approach to the 

Analytic Hierarchy Process and fuzzy Analytic Hierarchy Process decision-

making techniques based on the graphic interfaces such as slider or dial arc. This 

way of obtaining the experts’ opinions gives very consistent results. A series of 

experiments related to real life problems such as the prediction of sport results, 

preferred TV series, etc. show the applicability of the method. Moreover, we 

have shown that the method is worth considering in tasks related to biometric 
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features description. Moreover, an application of PSO optimization helps to 

decrease the level of inconsistency of pairwise comparison reciprocal matrix. 
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5.  Fuzzy Measures and Facial Features Saliency 

In this chapter, we are focused on the design of fuzzy measures (specifically, 

𝜆-fuzzy measure) related to the importance of particular facial features. 

Moreover, we are interested in finding its optimal set of parameters which lead 

to the best possible performance of classifiers built on the basis of Choquet 

integral. 

5.1. Introduction 

One of the most challenging research problems has been still an 

understanding of the mechanisms of recognition and perception of faces. Despite 

the fact that humans recognize others in relatively different way, some properties 

of the mechanisms are common. They are, for instance, important features 

perception, the mutual relationships between them, and finally, an identification 

of responsible brain areas. These facts can significantly supply the 

computational methods of facial recognition alleviating the limitations of 

humans. 

One of the divisions of face recognition methods is that there exist holistic 

matching and feature-based matching approaches (see, Zhao et al. 2003 for 

details). The first of them is, for instance, a well-known Fisherfaces (Belhumeur 

et al. 1997), a representative of the latter group is, for instance, LBP (Ahonen et 

al. 2004, Heikkilä et al. 2009). However, there are many approaches combining 

these two main trends. They are called hybrid. Examples are, among others, the 

work by Pentland et al. 1994 (a combination of the eigenfeatures, Eigenfaces by 

Turk & Pentland 1991, and the combined modular representation) or component 

(parts of face)-based approaches (Heisele et al. 2003, Huang et al. 2003, Bonnen 

et al. 2013). Among all these methods, fuzzy information fusion produces 

promising results (Kwak & Pedrycz 2005). 

From the point of view of this kind of methods an in-depth studies and 

understanding the way of faces perception by people is a key task. For instance, 

people process the faces holistically, see Sinha et al. 2006. Here, the spacing 

between face elements (i.e., second-order spatial relations) play a pivotal role 

(Rotshtein et al. 2007). However, the familiar (trained) faces are recognized on a 

basis of internal parts (e.g., eyes, nose, or mouth). The external features (e.g., 

face contour or hair properties) are very salient in the process of untrained 

(unfamiliar) face recognition (Ellis et al. 1979, Young et al. 1985). Davies et al. 

(1977) proved that the forehead, eyes, or mouths change causes the lowest error 

rates in a series of experiments with subjects. The well-known Photofit Kit was 

used in this work. Haig (1986) and Matthews (1978) presented similar results. 

The observers claimed that eyebrows/eye followed by mouse and nose areas are 

the most dominant parts if the internal features are compared. Moreover, 
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O’Donnell & Bruce (2001) presented the results showing that people are very 

sensitive to changes in the region of eyes of familiarized faces. Upper face of 

face and eyebrows were, again, confirmed as very salient by Haig (1986). Sadr 

et al. (2003) revealed the results of experiments where subjects recognized the 

celebrities’ faces with no eyebrows worse than the images without eyes. The 

mean difference was 9.5%. Literature surveys on human face recognition and 

cue importance are presented in (Johnston & Edmonds 2009) and (Shepherd et 

al. 1981). The psychological mechanisms and cue saliency in the processes of 

face recognition were also discussed by Venkat et al. 2013, Da et al. 2010, Pujol 

& García 2012, Fang et al. 2011, Choi et al. 2012, or Robins et al. 2018. 

Computational face recognition methods in relation to cue saliency were 

examined in a series of works. Here, it is noteworthy that they are important 

from another point of view. In many forensic applications the face can be 

covered and only a small region can be visible (e.g., when a subject wears 

sunglasses, a helmet, a balaclava, a veil, or a mask). We describe a few works 

with details. Template matching strategy was applied by Brunelli & Poggio 

(1993) with the ranking of saliency as follows: eyes, mouth, nose and the 

template of a whole face. Similar order of features was yielded by Lam & Yan 

1998 on a basis of correlation values treated as a similarity measure and by 

Kwak & Pedrycz 2005 with an application of Fisherfaces. The techniques based 

on Radial Basic Functions Networks were applied to determine the importance 

of facial features or facial parts by Sato et al. 1998, Gutta et al. 2002, and Gutta 

& Wechsler 2003. A region-based partitioning and generic approach were 

compared by Ekenel & Stiefelhagen (2009) on a basis of discrete cosine 

transform-based feature extraction (Ekenel & Stiefelhagen 2005). For example, 

the following order of overlapping regions was obtained: Forehead, left eye and 

right eye, left cheek and right cheek. Noteworthy is that an increased number of 

features (14) did not produce satistying results. In (Yan & Osadciw 2004) 

discussed was the combination of Eigenfaces carried for eyes, mouth, nose and 

forehead region. An interesting result was that adding an individual eigenfeature 

can improve the recognition rate except for the nose area. Fisherfaces for chosen 

regions of face was discussed in (Dargham et al. 2012). 3D morphable model 

approach was considered in an application to 14 facial regions by Heisele & 

Blanz (2005). Almost all of the studies produce one common result that the 

region of eyes exhibits the highest value of discrimination. Other results on an 

importance of particular facial features were published by Neo et al. 2007, Neo 

et al. 2010, Park et al. 2011, Savvides et al. 2004a, Savvides et al. 2004b, 

Savvides et al. 2006, Teo et al. 2007, Woodard et al. 2010, and Wright et al. 

2009. 

The advantage of information about the importance of facial features in the 

process of face classification can be utilized particularly in the techniques based 

on an aggregation of different classifiers. Such classifiers can be built using 

specific facial features, regions, or whole faces, transformations of the images, 
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methods, and multi-modal biometrics. A proper choice of the aggregation 

operator (function) leads to the increment of accuracy of the method. However, 

the optimal choice of this aggregation operator is difficult and has not been 

studied intensively in the literature so far.  

Let us recall a few significant results related to the aggregation of face 

recognition classifiers. Brunelli & Poggio 1993 proposed a technique of scoring 

for the regions of eyes, nose, mouth, and the whole face. Pentland et al. 1994 

presented proposals for aggregation of Eigenfaces. Haddadnia & Ahmadi 2004 

used the majority rule for RBF neural networks. Jarillo et al. 2008 discussed 

Bayesian product and majority voting to the aggregation process of methods 

based on dimensionality reduction. Liu & Liu (2010) discussed a weighted sum 

rule and similarity matrices. Dolecki et al. (2016) applied utility functions. The 

classifiers were the parts of face. Hu et al. (2015) analyzed t-norms as the 

aggregation functions. Al-Hmouz et al. 2017 proposed fuzzy set and three-

valued logic-based decision mechanism. Embedding of the colors fusion with 

deep learning framework was proposed by Alrjebi et al. 2016.  

A special role in the aggregation methods is played by the fuzzy measure. Its 

application may help in a determination of weights related to the criteria 

corresponding to particular classifiers. On a basis of this fact the procedure of 

final classification can be realized by fuzzy integral. Such approach was 

proposed in (Kwak & Pedrycz 2005), where the Fisherfaces-based classifiers 

applied to the regions of the whole face, eyes, nose, and mouth were aggregated. 

Similarly, Melin et al. (2005) applied modular neural networks to eyes, nose, 

and mouths areas. Wavelet-based classifiers were aggregated by Kwak & 

Pedrycz 2004. Yan et al. 2006 aggregated the separate component SVMs outputs 

using their importance. Lee & Marshall (2008) applied similar techniques to the 

three-dimensional case. Gender recognition on a basis of fuzzy measure was 

proposed in Li et al. 2012. The particular classifiers were SVMs applied to chin, 

mouth, nose, eyes, forehead, hair, and clothing. Other fuzzy measure 

applications to the problems of pattern recognition can be found in Pedrycz 

(1990), Graves & Nagarajah (2007), Keller et al. (1994), Yan & Keller (1991), 

Grabisch (1995), Mirhosseini et al. (1998), Martínez et al. (2014; 2015). 

In this study, we build the fuzzy measure on a basis of the results of 

computational and psychological experiments and relate it to the importance of 

face areas for the human processes of recognizing faces. Note that the fuzzy 

measure is able to potentially capture the important information associated with 

the significance of special face areas and their connections or combinations. To 

the recognition purpose, the information contained in the merged areas and in 

the specific areas is used by people. An intuitively appealing fact is that the more 

features are included in the process of face recognition, the better accuracy can 

be obtained. Here, the property of monotonicity appears as a key factor. 

Formally, this fact can be transformed using fuzzy measure which is based on 

the pivotal concept of monotonicity, and then it can be experimentally evidenced 
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on the basis of a series of experimental experiments in order to evaluate the 

performance of fuzzy measure. In the experimental section we consider the areas 

of eyes, nose, mouth, and left and right cheeks. They can be seen as the most 

descriptive facial features. The main goals of the study discussed in this work 

are: 

 Investigating the fuzzy measure abilities to reflect the saliency of the 

information contained in facial areas and their groups. 

 Evaluation and numeric quantification of the facial regions and their 

combinations roles in the face recognition processes. 

 Finding the relations between the importance (quantified by fuzzy measure) 

of merged (combined) facial regions and the accuracy produced using 

Eigenfaces and Fisherfaces as well-known representatives of the face 

recognition algorithms. 

 A comparison between the results of experiments obtained with the presence 

of subjects and realized by computational face recognition methods. 

 Design of the Sugeno fuzzy measure on a basis of the psychological studies 

results related to cue saliency and a proposition of a novel model of the face 

identification mechanism. 

Moreover, we are interested in a comprehensive studying of the fuzzy 

measure abilities to cover and evaluate the significance of the information of 

chosen parts of a face. Similarly, the concatenations of the regions of a face are 

worth investigating in this context. Particularly, an interesting is to examine the 

way on how the appearance of these regions impacts the process of recognition. 

Finally, one of the main objectives of the study is to determine the optimal 

parameters (densities) of the Sugeno 𝜆-fuzzy measure by a thorough comparison 

of the results obtained for the above six facial parts as well as for different 

combinations and the whole area of the face. To find the relations we will 

examine different classification techniques like PCA (Principal Component 

Analysis, Turk & Pentland 1991), LDA (Linear Discriminant Analysis, 

Belhumeur et al. 1997), LBP (Local Binary Patterns, Ahonen et al. 2004), 

MBLBP (Multi-scale Block LBP, Chan et al. 2007, Liao et al. 2007), FR (Full 

Ranking, Chan et al. 2015), CCBLD (Chain Code-based Local Descriptor, 

Karczmarek et al. 2016; 2017). The results are obtained with utilizing the image 

datasets as follows: AT&T, FERET, Yale (Yale Face Database), and Labeled 

Faces in the Wild cropped version. 

5.2. A General Scheme of the Aggregation Process 

Here, we discuss the general scheme of processing. It highlights a sequence 

of tasks in a classification based on an aggregation method, see Fig. 5.1. The 

general flow is relatively typical to all the processes which utilize the 

aggregation mechanisms. The first stage is preprocessing of a face including 
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cropping, scaling, an eventual histogram equalization. Next, the positions of 

important regions (eyes, nose, mouth, left and right cheeks) are determined 

manually. Then, the accuracies for the selected segments of the face and their 

combinations on a basis of PCA, and PCA followed by LDA, are determined. 

Next, the 𝜆-fuzzy measure is constructed on a basis of atomic facial regions-

related recognition rates. Moreover, the recognition rates associated with chosen 

combinations of the areas are yielded. 

 

Fig. 5.1 An overall processing scheme. 

5.3. Fuzzy Measure and Choquet Integral Interpretation 

To identify an image on a basis of a given number of regions (classifiers), 

one should take into account the weights associated with criteria (individual and 

related to the groups, i.e., facial regions concatenations). The weights present 

recognition qualities of particular classifiers and affect the final decision in a 

proper way, i.e., the aggregation result. It is important that the fuzzy measure 

can express the relations between the regions on a basis of particular classifiers 

(see Grabisch 1995). In a formal way, denote by 𝑋 = {𝑥1, … , 𝑥𝑛} the overall area 

of a face. The entities 𝑥1, … , 𝑥𝑛 are non-overlapping segments (eyes, nose, etc.). 

Then, we can define a fuzzy measure as a set function fulfilling the relations (for 

a general theory, see the preliminary chapter) (1.4), (1.5), and (1.6). The first 

two conditions say that the whole face carries the complete information 

associated with the face. The last monotonicity property quantifies the 

observation from the area of psychology that the possibility of a proper 

classification of a face increases when the information (knowledge) about the 

facial region is augmented by parts of knowledge about other regions of face. 

Recall that the parametrized version of the measure has the form (1.8). In this 

formula A and B are disjoint sets. The 𝜆 parameter shows the dependency 

between the regions of the face. If 𝜆 < 0 (super-additivity), the measure is sub-

additive. It means that the satisfaction which arises from one evidence source 

(face area) entails the satisfaction of the second one. It leads to the conclusion 

that they are in redundancy (competition) and that a combination of regions is 
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not efficient. If 𝜆 > 0 then the synergy effect is present and the evidence sources 

efficiently support each other, see Grabisch 1995, Pedrycz & Gomide 1998. The 

value of 𝜆 can be yielded in a unique form (𝜆 > −1, 𝜆 ≠ 0) from the equation 

(Sugeno 1974) (1.9), where 𝑥1, … , 𝑥𝑛 represent the regions of face which do not 

overlap and 𝑔𝑖 are fuzzy measure densities. If we denote 

𝐴𝑖 = {𝑥1, … , 𝑥𝑖}, 𝐴𝑖+1 = {𝑥1, … , 𝑥𝑖, 𝑥𝑖+1}, the fuzzy measure over the area being 

the combination regions is determined recursively as (1.10). 

The fuzzy measure g is linked with the classification concept proposed in 

(Kwak & Pedrycz, 2005). Denote by dij the distance between a test image and 

the jth image in ith classifier (e.g., a region of a face). Moreover, let d
(i)

 denote 

average distance between all the vectors of images in the ith classifier and let Ck 

be the kth class. This leads to the formula  

ℎ(𝑥𝑖𝑘) =
1

𝑁𝑘
∑ 𝜈𝑖𝑗𝜈𝑖𝑗∈𝐶𝑘       (5.1) 

for the kth class values with the maximal membership grade in the ith classifier. 

Here, 

𝜈𝑖𝑗 =
1

1+
𝑑𝑖𝑗

𝑑(𝑖)

       (5.2) 

Then, Choquet integral of a function h is defined in the following way 

∫𝑔 ∘ ℎ = ∑ ((ℎ(𝑥𝑖𝑘) − ℎ(𝑥𝑖+1,𝑘))𝑔(𝐴𝑖)) 1≤𝑖≤𝑛   (5.3) 

with an assumption that 

ℎ(𝑥𝑛+1,𝑘) = 0       (5.4) 

and that the values h(∙) are non-increasingly sorted. Note that this is a direct 

incorporation of the formulas (1.12) and (1.11), respectively with the assumption 

that here is the double indexing used. Choquet integral is required to return as 

high as possible values when the patterns (elements) are contained in the same 

class and low values when they come from different classes. 

5.4. Experimental studies 

In the experiments’ series the main goal is to find the recognition rates for 

important face regions and their combinations. Moreover, we are interested in 

finding the corresponding fuzzy measure values for these parts. In parallel, we 

find these values on a basis of the results of psychological experiments described 

in the literature. The fuzzy measure properties are one of our interests here. The 

experimental results in this study were carried for the AT&T facial images and 

FERET Database.  

In the preliminary series of tests, we obtained the recognition rates for the 

following six subregions of the face separately: Eyebrows, eyes, nose, mouth, 

and cheeks (left and right). Our choice of the regions was motivated by the fact 

that they cover almost the whole area of a face, have very descriptive value, and 

are important in the processes of classification by humans. These regions (for 
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which the preliminary tests gave the best results) are depicted in Fig. 5.2 while 

Table 5.1 shows their size details. 

 

Fig. 5.2 The whole face and its subregions. 

Table 5.1 Characteristics of particular facial segments. 

Region 
AT&T FERET 

Width (px) Height (px) Width (px) Height (px) 

Original image 92 112 256 384 

Face after cropping 90 94 100 140 

Eyebrows area 88 14 91 14 

Eye area 82 14 84 15 

Nose area 35 28 37 31 

Mouth area 51 28 54 29 

Left/right cheek region 22 55 24 72 

The first series of experiments is devoted to obtaining the fuzzy measures for 

atomic facial regions and their merges (combinations) on a basis of Principal 

Component Analysis technique. The AT&T image dataset was randomly divided 

into two equal sets (training and testing) containing five people of each subject. 

Similar experiments were done for the images from FERET set with two images 

per person in the training set and one image in the testing set. In parallel, 

Fisherfaces (PCA followed by LDA) was carried for the same sets. Each 

experimental setting was repeated 100 times. The final reported accuracies are 

the averages of all the results. 

Table 5.2 presents the recognition rates obtained for the atomic salient 

regions while Fig. 5.3 depicts the values obtained from the fuzzy measure 

calculations with respect to the connected (combined) regions as well as the 

accuracies yielded for the concatenated facial images. The concatenation is 

understood as follows: It is the result of merging two pictures treated as vectors 

with pixel values entries. Similar results are illustrated in Fig. 5.4, Fig. 5.5, Fig. 

5.6 for the respective combinations of 3, 4, and 5 areas. Next, the scatter plot of 

the accuracies and accuracies obtained with an application of fuzzy measure are 

visualized in Fig. 5.7, Fig. 5.8, Fig. 5.9, and Fig. 5.10. Moreover, a linear 

regression expressing the relation between the fuzzy measure-based results and 
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the classification schemes are shown. Here, it is important to note that the 

accuracy values are rescaled to consist with the fuzzy measure boundary 

condition. Analogical results were obtained for the results produced on a basis of 

probability measure. It represents the additive class of measures, see Fig. 5.11, 

Fig. 5.12, Fig. 5.13, and Fig. 5.14. It is constructed using the basic areas of the 

face (e.g., eyes) and applying the condition of additivity for the concatenation of 

areas. Again, the values are normalized to satisfy the condition (1). 𝜆-values, 

maximal and minimal differences between Sugeno fuzzy measure values along 

with the recognition rates are enlisted in Table 5.3. A visualization of the 

Fisherfaces recognition rates and fuzzy measures corresponding to combination 

of eyebrows, eyes, nose, and mouth areas as well as nose, mouth, left and right 

cheeks is presented in Fig. 5.15. We distinguish these parts since they represent 

the upper and lower part of a face, respectively (this partition is widely discussed 

in the literature). Finally, Fig. 5.16 includes the values of the accuracies and the 

fuzzy measure values for the regions of mouth and eyes which are gradually 

augmented by areas in their neighborhoods. 

Table 5.2 Atomic facial regions and corresponding percentage recognition rates. 

Area 
AT&T set FERET set 

Eigenfaces Fisherfaces Eigenfaces Fisherfaces 

Eyebrows 62.16 81.75 28.81 72.93 

Eyes 67.03 79.86 15.42 52.4 

Nose 59.77 66.23 10.29 31.28 

Mouth 49.31 60.89 4.08 18.75 

Left cheek 36.55 68.06 9.4 30.68 

Right cheek 39.42 67.96 10 36.17 

 

Fig. 5.3 Accuracies and fuzzy measure obtained for concatenations of (a) two facial 

areas using Eigenfaces and Fisherfaces. Here Eb, E, N, M, Lch, and Rch denote 

eyebrows, eyes without eyebrows, nose, mouth, left cheek, and right cheek region, 

respectively. 
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Fig. 5.4 Accuracies and fuzzy measure obtained for concatenations of three facial areas 

using Eigenfaces and Fisherfaces. 

 

Fig. 5.5 Accuracies and fuzzy measure obtained for concatenations of four facial areas 

using Eigenfaces and Fisherfaces.  

 

Fig. 5.6 Accuracies and fuzzy measure obtained for concatenations six facial areas using 

Eigenfaces and Fisherfaces. 
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Fig. 5.7 Accuracies versus fuzzy measure values for Eigenfaces and AT&T database. 

 

Fig. 5.8 Accuracies versus fuzzy measure values for Fisherfaces and AT&T database. 

 

Fig. 5.9 Accuracies versus fuzzy measure values for Eigenfaces and FERET database. 
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Fig. 5.10 Accuracies versus fuzzy measure values for Fisherfaces and FERET database.  

 

Fig. 5.11 Accuracies versus probability measure values for Eigenfaces and AT&T 

database. 

 

Fig. 5.12 Accuracies versus probability measure values for Fisherfaces and AT&T 

database. 
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Fig. 5.13 Accuracies versus probability measure values for Eigenfaces and FERET 

database. 

 

Fig. 5.14 Accuracies versus probability measure values for Fisherfaces and FERET 

database. 

Table 5.3 A Sugeno fuzzy measure parameter, minimal and maximal differences 

between the obtained fuzzy measure and recognition rates on the concatenated facial 

regions. 

Technique 𝜆 value Min. difference Max. difference 

Eigenfaces (AT&T) -0.98944 0.11 0.31 

Fisherfaces (AT&T) -0.9995 0.06 0.17 

Eigenfaces (FERET) 0.82529 0.04 0.78 

Fisherfaces (FERET) -0.9608 0.02 0.24 
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Fig. 5.15 Fisherfaces accuracy and corresponding fuzzy measures for merged regions in 

case of the upper part (bins on the left) and lower part (bins on the right) of face.  

 

Fig. 5.16 Fisherfaces accuracy and the fuzzy measure values for the eyes area gradually 

augmented by other areas. 
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Fig. 5.17 Fisherfaces accuracy and the fuzzy measure values for the mouth area 

gradually augmented by other areas. 

The following conclusions can be deducted from the results. First, for any 

face region, particularly, eyes, the accuracy of the recognition is better when the 

region of interest is getting bigger. In addition, the rate of recognition increases 

when considered is the combination of important facial parts. Second, the most 

important and descriptive area is the eyebrows and eyes region (more generally, 

the upper part of the face). In particular, the eyebrows are very significant in the 

computational face recognition process with over 81% accuracy in case of the 

AT&T database. Their occurrence in the area of consideration can significantly 

increase the rate of recognition. It is depicted in Fig. 5.24. Note that augmenting 

the region of eyes by any other areas of face does not increase the performance 

of the method in a meaningful fashion, see Fig. 5.23. 

Another important observation is that the 𝜆 -fuzzy measure seems to be 

strongly sub-additive with 𝜆 ≤ −0.9608. This property occurs in all considered 

cases. The exception is the Eigenfaces method for the FERET dataset. The 

explanation is that the accuracies are low and the method is ineffective. Hence, 

the λ is positive. This fact comes from the boundary conditions (1) and (2). 

However, fuzzy measure may be treated as a very good source of evidence for 

important regions of the face since it corresponds to the recognition rates yielded 

for the combined regions. This observation means that the interactions between 

the salient areas are reflected by Sugeno 𝜆 -fuzzy measure. This fact is easily 

seen from the plots depicting the scatter between the values of the measure and 

real recognition rates. Note that the points far away from the regression line 

correspond to atomic areas and the merges of areas underrating the accuracies, 

for instance left and right cheeks or nose segments. 
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In addition, the correlation between the Sugeno fuzzy measure and accuracy 

in the case of six atomic facial areas is less than the correlation in the case of 

four areas, see Fig. 5.15. It leads to the conclusion that if the chosen parts of face 

are occluded one can take into account only the most important parts, e.g., 

eyebrows and eyes with combination with the segments being available. 

However, the general tendency is that both Sugeno fuzzy measure and accuracy 

increase when the greater number of face segments is concatenated (merged). 

The greatest differences between accuracy and fuzzy measure are observed for 

lower regions of the face, e.g., mouth. These segments are considered as less 

useful classifiers than, for example, the area of eyes. One can note that the 

Sugeno fuzzy measure slightly overvalues the potential importance (weight) of 

information covered in these areas. 

Let us compare the scatter between the accuracies of classifiers, fuzzy 

measure, and probability measure presented in Fig. 5.9 and Fig. 5.13. It shows 

that the fuzzy measure is flexible and its values are closer to the scaled 

accuracies than the probability measures. Again, in the case of Eigenfaces 

carried on the FERET dataset the scatters are similar. Recall that this is the 

above-discussed case of low efficiency of the method. 

Finally, consider the experiments presented in the work by Matthews (1978). 

The subjects answered a question about dissimilarity and similarity of images 

being modified: one or more of the facial features such as eyes, eyebrows, nose, 

mouth, chin, or hair were changed. We removed the last feature (hair) from our 

considerations since it is an external face area. The face images were built with a 

police “Identikit” from the transparent overlays of face areas. A part of results 

along with Sugeno fuzzy measure values are included in Fig. 5.18. Accuracies 

observed in the psychological experiments and in our series of experiments with 

the PCA followed by LDA technique for chosen facial regions are presented in 

Fig. 5.19. A similar comparison with the Sugeno fuzzy measure is depicted in 

Fig. 5.20. 
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Fig. 5.18 Fuzzy measure built from the psychological experiments’ results in comparison 

to recognition accuracies. Abbreviations are similar as in the previous case, Ch denotes a 

chin area. 

 

Fig. 5.19 Accuracies obtained in experiments by Matthews (1978) and in computational 

experiments using Fisherfaces. 
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Fig. 5.20 A comparison of the values of fuzzy measure obtained on a basis of results of 

psychological and computational experiments. 

On the basis of human recognition accuracies the value of parameter λ is  

-0.99994 while the correlation between accuracies and computed Sugeno fuzzy 

measures for chosen elements of face is 0.846. This leads to the conclusion that 

the λ-fuzzy measure reflects the manner humans recognize others. Moreover, it 

can be applied to the process of modeling the interactions between the features 

of face. In the Fig. 5.19 it is presented that in the process of human face 

recognition on a basis of particular facial features and their concatenations 

(combinations) have very similar meaning as well as their importance is 

comparable with the importance in the process of computational identification 

and that the relationships between their values are kept. Similar situation, as a 

consequence of this fact, takes place in the fuzzy measure values case. 

The last series of experiments is based on the division of the individuals into 

8 sets 𝐴1, … , 𝐴8 in such a way that 𝐴1 ⊂ 𝐴2 ⊂ ⋯ ⊂ 𝐴8. The subsets of AT&T 

dataset are built as follows: The first is contained of five subjects, second 

contains ten individuals, etc. Similarly, FERET subsets are built of 25, 50, ..., 

200 individuals, respectively. As in the previous experiments, we observe the 

recognition accuracies with Eigenfaces and Fisherfaces methods. Next, the fuzzy 

measure is constructed with respect to the densities being the accuracies for the 

atomic face areas (eyebrows, eyes, nose, mouth, left cheek, right cheek). These 

values of 𝜆 are shown in Fig. 5.21 and Fig. 5.22. Note that 𝜆 tends to -1 with 

decreasing number of people in the dataset and with the efficiency of the method 

(i.e., if it reaches the highest accuracies). The explanation lays in boundary 

conditions on the fuzzy measure. It tends to satisfy them by the results 
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overvaluation. Moreover, note that the value of 𝜆 is linearly dependent on the 

number of people in the set in case of Eigenfaces method. 

The fuzzy measure values and their dependence on the number of classes 

from each dataset are depicted in Fig. 5.23 and Fig. 5.24. In this case four lower 

and four upper combinations of facial segments were considered. The measure is 

stable in the case of effective methods, e.g., Fisherfaces with five training 

images per person obtained for AT&T or if the important facial part is 

considered, e.g., the eye region with its surrounding. But in the cases of less 

effective methods such as Eigenfaces, the fuzzy measure decreases with 

increasing number of classes. It is strictly associated with the real accuracies 

which decrease very similarly. 

 

Fig. 5.21 λ values for AT&T.  

 

Fig. 5.22 λ values for FERET.  
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Fig. 5.23 Fuzzy measure values obtained for combinations of areas for AT&T dataset in 

dependence on the number of classes. 

 

Fig. 5.24 Fuzzy measure values obtained for combinations of areas for FERET dataset in 

dependence on the number of classes. 

5.5. Sugeno Fuzzy Measure Densities Evaluation 

In the previous part of this chapter, we it was stated that the Choquet integral 

is required to return as high as possible values when the patterns (elements) 

belong to the same class and low values when they belong to different classes. 

Therefore, we propose an optimization method which maximizes the Choquet 

integral values for intra-class relations and minimizes them for inter-class 

relations, i.e., one has to find the values of fuzzy measure densities g(xi) (i = 1, 
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…, n). They are associated with importance (weights) of classifiers related to the 

methods which they represent or to the particular facial regions.  

The above situations will be referred as positive and negative optimization, 

respectively. Therefore, the task can be simply defined as finding the facial 

regions saliency or the importance of classifiers in these two classification 

aspects. Here, a suitable optimization vehicle can be Particle Swarm 

Optimization. In our situation the parameters to be optimized are g(xi) (i = 1, …, 

n).  The particles and their velocities are initially randomly set. Next, their 

positions (xi, i = 1, …, n) are updated according to the following manner (see the 

preliminary chapter for details): 

𝒗𝑖 =
1

2
(1 + 𝑟)𝒗𝑖 + 2𝒓1⨂(𝒑𝑖 − 𝒙𝑖) + 2𝒓2⨂(𝒑𝑔 − 𝒙𝑖)  (5.5) 

𝒙𝑖 = 𝒙𝑖 + 𝒗𝑖       (5.6) 

see formulae (1.1) and (1.2) for a detailed description. Note that this version of 

PSO incorporates the random inertia weight weight concept reducing the time of 

execution to reach the satisfying level of convergence after realization of a series 

of generation. 

It is worth noting that the process of optimization is relatively sensitive on 

random numbers r, 𝒓1, and 𝒓2. Therefore, it should be repeated many times to 

obtain the final average results. It means that this approach can be difficult to use 

in real time systems. Thus, one can find the densities of the fuzzy measure once. 

Next, they can be updated successively not necessarily during the face 

recognition system execution. In addition, the negative and positive results of 

optimization can differ significantly since the first of them is responsible for 

verification that two given images are not of the same individual while the 

second is more helpful in statement that the two images are of the same person. 

Moreover, the most important question is: How to connect these two 

approaches? The most intuitive answer is to find the weighted average in the 

most optimal way. It can be found during the daily practice and on the basis of 

trial-error-based method in dependence on the image dataset structure. Fig. 5.25 

depicts an overall processing scheme of our proposal. 
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Fig. 5.25 An overall scheme of processing. 

5.6. Experimental Results 

Here, we analyse the series of experiments with four face image databases. 

We examine the efficiency of the method of determining the classifiers 

importance (saliency) on a basis of introduced concept of negative and positive 

optimization and compare them with the weights obtained from votes of the 

experts and the recognition rates of particular classifiers treated as the weights. 

5.6.1. AT&T  

First, we analyse the series of experiments with AT&T database. The images 

from the set were cropped and scaled. Moreover, the images were partitioned. 

An example of such partition is shown in Fig. 5.2 (F – whole (cropped) face, Eb 

– eyebrows, Eo – eyes only, N – nose, M – mouth, Lch – left cheek, Rch – right 

cheek) and in Fig. 5.26 (E – eye region, Ee, En, Em – extended areas of eyes, 

nose, and mouth, respectively). We asked over 30 subjects (our students and lab 

members) to give the weights of particular facial features in the human or 

computational face recognition. The results (average) are shown in Table 5.4. 

Next, we carry the series of numerical experiments. We run the process of 

optimization to find the negative and positive results for each of the eight sets of 

face regions. The average values after 100 series of experiments in two cases: (a) 

two randomly chosen images to the training set per person, (b) five randomly 

selected photos of one person to the training set, respectively, are enlisted in 

Table 5.5. The considered facial parts were eyebrows, eyes only, nose, mouth, 

cropped face, left and right cheek areas. Table 5.5 presents also similar results 

for the collection of extended eyes, extended nose, extended mouth, and cropped 

face regions. The reference methods were the simple forms of Local Binary 

Patterns, Multi-scale Block LBP, Full Ranking, and Chain Code-Based Local 
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Descriptor, Principal Component Analysis with Canberra distance between the 

vectors representing features, and Linear Discriminant Analysis with cosine 

distance measure. 

 

Fig. 5.26 Chosen parts of face (eye area and extended parts of eyes, nose, and mouth). 

Table 5.4 Saliences of face areas yielded from the experts (questionnaires). 

Set of features Weights 

Eyebrows, eyes only, nose, mouth 0.12; 0.43; 0.23; 0.21 

Eyebrows, eyes only, nose, mouth, cropped face 0.08; 0.2; 0.12; 0.11; 0.49 

Eyebrows, eyes only, nose, mouth, cropped face, left 

cheek, right cheek 

0.08; 0.2; 0.11; 0.11; 0.39; 

0.05; 0.05 

Eyebrows, eyes only, nose, mouth, left cheek, right 

cheek 

0.12; 0.34; 0.2; 0.18; 0.08; 

0.08 

Eyes, nose, mouth 0.52; 0.25; 0.23 

Eyes, nose, mouth, cropped face 0.28; 0.13; 0.12; 0.46 

Extended eyes, extended nose, extended mouth 0.46; 0.27; 0.26 

Extended eyes, extended nose, extended mouth, 

cropped face 
0.26; 0.16; 0.15; 0.43 

The data gathered in Table 5.5 show the differences between the saliency of 

various facial regions in the processes of aggregation of classifiers. In addition, 

noteworthy is the fact that the abilities of positive classification and negative 

classification are at different levels. However, in the case for Eigenfaces and 

Fisherfaces this general rule is not confirmed. 

Next, the results of optimization (both negative and positive) were used in the 

role of an input to the process of identification where the 𝜆-fuzzy measure 

densities are built in the following form: 

𝑔𝑖 = 𝛼𝑤𝑖,positive + (1 − 𝛼)𝑤𝑖,negative    (5.7) 

where i is associated with the number of feature (or classifier), 𝑤𝑖,negative and 

𝑤𝑖,positive are a negative and positive weight values, respectively, 𝛼 changes 

from 0.05, 0.1, … to 1. Here, the most important question arises: Which (if any) 

𝑔𝑖 does produce the best recognition rates? To answer this question one has to 

find a suitable 𝛼 value. Fig. 5.27 depicts the example results obtained for various 

classifiers after the dataset division into two parts with equal number of images. 

Note that, for instance, the choice of α in case of LDA with cosine distance is 

not important while in case of the CCBLD descriptor the parameter α=0.35 gives 

the best results of classification. Moreover, it is easy to observe that it is possible 

to find the classifiers importance with no presence of experts. 

Now, we are interested in a comprehensive examination for which techniques 

or parts of a face one should ask experts, seek the optimal weight values, or 

conduct the initial process of identification. In Table 5.6  there are presented the 

winning forms of obtaining the fuzzy densities applied in the aggregation 
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processes with respect to specific set of facial parts. Cl. denotes the situation 

where the best aggregation result was obtained on a basis of the initial results. 

Ex. means that the experts found the best densities while the specific value is 

related with some parameter α. One can conclude that in case of more than four 

classifiers both initial results and experts cannot establish the densities. A 

possible explanation is that the experts may have difficulties in estimation of the 

weights for such divisions of face and if the regions’ overlapping is possible. If 

the experts see the regions as relatively vast and are able to notice more details 

then the weights providing is easier. Moreover, if one analyzes the methods 

resulting in high recognition rates, it may be observed that they can provide 

relatively optimal weights during the initial pre-tests. The case of local 

descriptors it better to proceed with optimization methods since they are chosen 

in their simplest forms. 

 

Fig. 5.27 The results of aggregation of classifiers. First 7 bars are for the particular 

classifiers based on facial parts, next 21 are for α which connects the negative and 

positive weights. Two last bars describe weights obtained from initial pre-tests and 

questionnaires. Initial pre-tests are the normalized results of classification with respect to 

particular classifiers. 
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Table 5.5 Negative and positive weight values found in the optimization process when 

two/five images per person were taken to the training set. 
Two images per person in the training set (Eb, Eo, N, M, Lch, Rch) 

 LBP MB-LBP Full Ranking CCBLD Eigenfaces Fisherfaces 

Optimization: neg. pos. neg. pos. neg. pos. neg. pos. neg. pos. neg. pos. 

Eyebrows 0.03 0.35 0.01 0.43 0.03 0.24 0.02 0.43 0.11 0.3 0.07 0.3 
Eyes only 0.26 0.02 0.07 0.03 0.28 0.03 0.11 0.04 0.2 0.04 0.24 0.06 

Nose 0.32 0.04 0.28 0.12 0.32 0.03 0.4 0.06 0.05 0.03 0.1 0.04 

Mouth 0.27 0.03 0.17 0.02 0.26 0.02 0.17 0.02 0.07 0.02 0.16 0.01 
Cropped face 0.04 0.37 0.34 0.26 0.04 0.41 0.24 0.3 0.51 0.1 0.38 0.15 

Left cheek 0.03 0.12 0.07 0.09 0.03 0.17 0.03 0.1 0.03 0.3 0.02 0.14 

Right cheek 0.05 0.07 0.06 0.05 0.03 0.1 0.02 0.05 0.03 0.21 0.02 0.29 

Five images per person in the training set (Eb, Eo, N, M, Lch, Rch) 

 LBP MB-LBP Full Ranking CCBLD PCA LDA 

Optimization: neg. pos. neg. pos. neg. pos. neg. pos. neg. pos. neg. pos. 

Eyebrows 0.03 0.31 0.01 0.41 0.03 0.26 0.02 0.37 0.17 0.2 0.16 0.14 
Eyes only 0.29 0.03 0.06 0.04 0.28 0.02 0.11 0.05 0.16 0.14 0.16 0.15 

Nose 0.32 0.04 0.29 0.1 0.32 0.03 0.38 0.07 0.04 0.03 0.04 0.05 

Mouth 0.25 0.03 0.18 0.01 0.27 0.02 0.19 0.01 0.03 0.03 0.04 0.02 
Cropped face 0.04 0.39 0.33 0.29 0.04 0.41 0.24 0.35 0.51 0.5 0.5 0.53 

Left cheek 0.03 0.12 0.06 0.1 0.03 0.16 0.03 0.1 0.05 0.05 0.05 0.05 

Right cheek 0.03 0.07 0.07 0.04 0.03 0.1 0.03 0.04 0.05 0.04 0.04 0.05 

Two images per person in the training set (Ee, En, Em, F) 

 LBP MB-LBP Full Ranking CCBLD PCA LDA 

Optimization: neg. pos. neg. pos. neg. pos. neg. pos. neg. pos. neg. pos. 

Ee 0.28 0.04 0.05 0.08 0.25 0.04 0.01 0.04 0.18 0.49 0.31 0.47 

En 0.07 0.1 0.02 0.29 0.04 0.08 0.07 0.08 0.03 0.11 0.04 0.1 
Em 0.05 0.04 0.77 0.01 0.7 0.04 0.48 0.04 0.02 0.01 0.07 0.01 

F 0.6 0.83 0.16 0.62 0.01 0.85 0.44 0.85 0.77 0.39 0.58 0.42 

Five images per person in the training set (Ee, En, Em, F) 

 LBP MB-LBP Full Ranking CCBLD PCA LDA 

Optimization: neg. pos. neg. pos. neg. pos. neg. pos. neg. pos. neg. pos. 

Ee 0.61 0.04 0.05 0.06 0.26 0.03 0.01 0.19 0.27 0.27 0.18 0.25 

En 0.03 0.09 0.02 0.3 0.04 0.06 0.03 0.04 0.03 0.03 0.04 0.03 

Em 0.34 0.04 0.79 0.01 0.7 0.05 0.53 0.02 0.01 0.02 0.02 0.02 
F 0.01 0.83 0.14 0.63 0.01 0.86 0.43 0.75 0.69 0.69 0.76 0.7 

5.6.2. FERET Database 

Now, we consider the subset of FERET dataset consisted of 200 grayscale 

images (3 images per person). The experiments are organized similarly as in the 

previous case with the exception that the set of methods is narrowed to 

Fisherfaces with Euclidean and cosine norms. Local descriptor-based classifiers 

did not produce satisfying results. Again, the face images were preprocessed. 

First, they were cropped and scaled. Next, the histograms were equalized and, 

finally, they were splitted onto subregions. 

The parts of face were chosen in the same way as in the AT&T case. We do 

not carry new experiments with experts and work with the weights obtained for 

the AT&T set. The average values (after 100 series of experiments) of negative 

and positive optimization methods for two sets of regions (eyebrows, eyes only, 

nose, mouth, cropped face, left cheek, right cheek and extended eyes, extended 

nose, extended mouth, and cropped face areas) are listed in Table 5.7. 
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Note that in case of relatively small seven regions the proportions between 

negative and positive optimization results relatively vary. In the case of wider 

parts of face (e.g., extended parts) negative and positive weights are quite 

similar. Fig. 5.28 depicts the example aggregation results for the collection of 

classifiers based on eyebrows, eyes only, nose, mouth, cropped face, left cheek, 

and right cheek areas for Fisherfaces with Euclidean and cosine norms and 

Eigenfaces with Canberra norm. Finally, Table 5.7 contains the results of finding 

the best possible weights to set the fuzzy densities. From Fig. 5.28 and Table 5.7 

it is possible to observe that the classifiers’ initial values are relatively easier to 

obtain for the small parts of the face but in case of the whole images included 

into the process of aggregation, the optimization method seems to be a good 

choice to find the densities of fuzzy measure. Moreover, for the FERET dataset 

the weights evaluated by experts are not as well as the weights found from the 

computations. 

Table 5.6 Winning forms of obtaining the densities of fuzzy measure. 

Classifier 

No. 

Train. 

imag. 

LBP 
MB- 

LBP 

Full 

Ran. 

CCB 

LD 

PCA 

+Eucl. 

dist. 

PCA 

+Canb. 

dist. 

LDA 

+Eucl. 

dist. 

LDA 

+cos. 

dist. 

Eb + Eo + N 

+ M 

2 Cl. Cl. Cl. Cl. Cl. Cl. Cl. Cl. 

5 Cl. Ex. Cl. Cl. Cl. Cl. Cl. Cl. 

Eb + Eo + N 

+ M + F 

2 0.35 0.1 0.35 Cl. Cl. 0.25 Cl. Cl. 

5 0.3 0.15 0.25 Cl. Cl. Ex. Ex. Ex. 

Eb + Eo + N 

+ M + F + 

Lch + Rch 

2 0.25 0.1 0.35 0.3 0.05 0.25 0.4 0.4 

5 0.25 0.8 0.25 0.3 Cl. Ex. 0.2 Ex. 

Eb + Eo + N 

+ M + Lch + 

Rch 

2 0.3 Cl. 0.35 0.3 0.05 Cl. 0.55 0.45 

5 0.25 0.2 0.25 Cl. Cl. Cl. Cl. Cl. 

E + N + M 
2 Cl. Cl. Cl. Cl. Cl. Ex. Ex. Ex. 

5 Cl. Cl. Cl. Cl. Cl. Ex. Ex. Ex. 

E + N + M + 

F 

2 Cl. Cl. Cl. Cl. Cl. Ex. 0.7 Ex. 

5 Cl. Cl. Cl. Cl. Cl. Ex. Ex. Ex. 

Ee + En + 

Em 

2 Cl. Cl. Cl. Cl. Cl. Ex. Ex. Ex. 

5 Cl. Cl. Cl. Cl. Ex. Ex. Ex. Ex. 

Ee + En + 

Em + F 

2 Cl. Cl. Cl. Cl. Cl. Ex. Cl. Cl. 

5 Cl. Cl. Cl. Cl. Cl. Ex. Ex. Ex. 
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Fig. 5.28 The results of aggregation of classifiers. 

Table 5.7 Negative and positive weights obtained in the optimization process. 

 Eigenfaces Fisherfaces (Eucl. dist.) Fisherfaces (cos. dist.) 

Optimization: neg. pos. neg. pos. neg. pos. 

Eyebrows 0.11 0.45 0.09 0.46 0.05 0.42 

Eyes only 0.21 0.08 0.12 0.06 0.27 0.06 

Nose 0.06 0.07 0.17 0.04 0.08 0.05 

Mouth 0.06 0.02 0.13 0.02 0.08 0.02 

Cropped face 0.5 0.29 0.45 0.26 0.44 0.29 

Left cheek 0.03 0.04 0.02 0.09 0.03 0.07 

Right cheek 0.03 0.05 0.02 0.07 0.03 0.09 

 Eigenfaces Fisherfaces (Eucl. dist.) Fisherfaces (cos. dist.) 

Optimization: neg. pos. neg. pos. neg. pos. 

Extended eyes 0.29 0.4 0.27 0.38 0.24 0.36 

Extended nose 0.02 0.02 0.03 0.02 0.03 0.02 

Extended mouse 0.02 0.01 0.01 0.01 0.02 0.02 

Cropped face 0.67 0.57 0.68 0.58 0.71 0.6 

Finally, we conduct the experiments with various methods of face 

recognition applied to the whole facial images. The chosen methods are: 

Eigenfaces with Canberra norm, Fisherfaces with cosine norm, Chain Code-

Based Local Descriptor, Local Binary Pattern, and Multi-Scale Block Local 

Binary Pattern with three pixel blocks. The last methods (local descriptors) are 

implemented with their best settings, i.e., giving best recognition rates. The 
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results are gathered in Table 5.9. Moreover, there are contained the weights 

obtained in the set of initial experiments. It is easy to see that there is a slight 

correlation between the positive weights and the normalized classification results 

of the methods. The winning option (the one which produces the highest 

accuracy) is the combination of negative and positive densities obtained on the 

basis of optimization with the balance parameter α = 0.1, 0.15, or 0.2, see Fig. 

5.29. 

Table 5.8 Winning forms of finding the fuzzy measure densities (FERET). 

Classifiers Eigenfaces 
Fisherfaces (Eucl. 

dist.) 

Fisherfaces (cos. 

dist.) 

Eb + Eo + N + M Cl. Cl. Cl. 

Eb + Eo + N + M + F 0.4 0.25 0.25 

Eb + Eo + N + M + F + Lch 

+ Rch 
0.55 0.3 0.25 

Eb + Eo + N + M + Lch + 

Rch 
Cl. Cl. Cl. 

E + N + M Cl. Cl. Cl. 

E + N + M + F 0.65 0.5 0.85 

Ee + En + Em Cl. Cl. Cl. 

Ee + En + Em + F 0.95 1 0.55 

Table 5.9 Weights related to the methods. 

 
Negative 

optimization 
 

Positive 

optimization 

Normalized 

initial 

results 

Principal Component 

Analysis 
0.47  0.06 0.2 

Linear Discriminant 

Analysis 
0  0.77 0.23 

Chain Code-Based Local 

Descriptor 
0.17  0.05 0.19 

Local Binary Pattern 0.27  0.06 0.19 

Multi-Scale Block Local 

Binary Pattern 
0.1  0.06 0.19 
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Fig. 5.29 The values of α in relation to the accuracy of the aggregation of various 

classifiers for the whole face FERET images. 

5.6.3. Yale Dataset 

In a series of 100 repetitions of experiments we used four local descriptors, 

namely Multi-Scale Block Local Binary Pattern and Chain Code-Based Local 

Descriptor with 5 pixel width and 7 pixel width block versions. The training and 

testing sets in each series of experiments was built as follows: Five images from 

each class were randomly chosen to fill this set while five other random images 

built the testing one. Similarly to the FERET case, the weights obtained in the 

experiments are listed in Table 5.10. One can see here that the combination of 

MBLBP and CCBLD methods leads to the conclusion that negative and positive 

optimization can slightly differ and that they stand in an opposition to each 

other. It is a relative kind of problem. Therefore, the normalized results of initial 

experiments appear here as the best weights, i.e., the best aggregation accuracy 

was obtained for the fuzzy measure built on their basis. 
Table 5.10 Weights assigned to the CCBLD and MBLBP methods. 

 
Negative 

optimization 

Positive 

optimization 

Normalized 

initial 

results 

Chain Code-Based Local 

Descriptor 
0.94 0 0.33 

Multi-Scale Block Local Binary 

Pattern (5 px) 
0.02 0.66 0.33 

Multi-Scale Block Local Binary 

Pattern (7 px) 
0.04 0.34 0.34 
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5.6.4. LFW Dataset 

The last series of experiments was conducted with the usage of Labelled 

Faces in the Wild images, specifically on a basis of the version of this dataset 

containing cropped images. Two groups of images were selected to obtain the 

negative and positive optimization results, respectively, while the third group 

was built to verify the results. Note that in contrast to the other considered sets 

of images, here one image group is used only to verify results. 

The group of images used to obtain the negative weights were built of images 

of 187 individuals having exactly four images and of 187 other individuals (one 

image per person), i.e., training and testing set, respectively. The second group 

was created of people with exactly five pictures in the LFW. Four images per 

person were randomly selected to the training set. The rest images constituted 

the testing set. The verifier set was consisted of the pictures of 311 individuals 

with exactly six images. Four images per person were randomly chosen as 

training and one as testing set. The weights found in the numerical experiments 

using Chain Code-Based Local Descriptor, Local Binary Pattern, and Multi-

Scale Block Local Binary Pattern with 5 px block size are presented in Table 

5.11. It is worth to add that the classification results for the combination of the 

obtained negative and positive weights were better than the results obtained with 

weights being the normalized initial classification results. The optimal value of α 

is 0.05. 

Table 5.11 Weights associated with the methods for LFW. 

 
Negative 

optimization 

Positive 

optimization 

Normalized 

initial 

results 

Chain Code-Based Local 

Descriptor 
0.01 0.95 0.35 

Local Binary Pattern 0.93 0.02 0.35 

Multi-Scale Block Local 

Binary Pattern 
0.06 0.04 0.29 

5.6.5. General Results 

Here, we present a summary of the above experiments. The average 

normalized (to the maximal values set as 1) recognition rates for all the 155 sets 

of experiments with classification based on aggregation of classifiers are 

detailed in Fig. 5.30. The plot suggests that the factor related to positive 

optimization slightly outweighs. However, a priori evaluation of a proper value 

of α highly depends on the type of classifier. 
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Fig. 5.30 Average (normalized) values of 155 experiments carried in the study in relation 

to the values of the parameter α as well as the densities obtained in the initial tests (pre-

tests) and with experts’ presence (voting). 

5.7. Conclusions 

In the first part of this chapter, we have considered an application of the 

Sugeno fuzzy measure as a vehicle to quantify a manner of aggregation of 

discriminatory information covered in facial segments. We have thoroughly 

analyzed the monotonicity and additivity properties in the context of face 

classification with relation to the salient facial areas. The series of experiments 

show that the fuzzy measure is an important vehicle to aggregate the pieces of 

knowledge which resides within the areas of the face. On the basis of the most 

cases one can conclude that the fuzzy measure appears as an effective 

classification model. This fact is strictly related to its monotonicity property. 

Next, we have proposed a novel and original approach to obtain the optimal 

values of the densities of the fuzzy measure being the base of the important 

concept of classification on a basis of aggregation with the Sugeno 𝜆-fuzzy 

measure and Choquet integral. The densities of the measure relate to the saliency 

of facial features and the importance of particular classifiers, i.e., methods not 

related with particular facial features. Our approach has been thoroughly 

compared with the expert-based method and has shown its high efficiency in the 

series of experiments carried for the classical face recognition methods such as 

Eigenfaces, Fisherfaces, and local descriptors. 
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6.  Aggregation Mechanism in Face Recognition 

In this chapter, we consider an important technique of aggregation of 

classifiers’ results which can be used in many problems of image recognition. A 

proper choice of an aggregation operator can essentially improve the 

classification rate. In the first part of the chapter, we discuss various techniques 

of aggregation and find the best ones in dependence of the applied measure of 

similarity between the vectors representing features. The second part is devoted 

to the efficient and useful method based on Choquet integral. We compare the 

performance of its various modifications and extensions. 

6.1. Introduction 

The techniques of information fusion, in general, and the aggregation 

functions (operators) in particular, realizing them, are applied to many fields of 

science and research, for instance, computer science, biology, economics, etc. 

(Torra and Narukawa 2007). The same situation is present in the field of face 

recognition where many works addressed the tasks of classification based on two 

or more classifiers. Such classifiers may be constructed on a basis of many 

regions (parts) of face, many 2D, 3D, or infrared facial images. 

The face partitioning may be caused by many factors. The most important are 

the following: First, in real life problems, not always the whole face is visible 

but only its small parts. The face can be occluded, for instance, by a helmet, a 

mask, a veil, or sunglasses. Second, by choosing a few parts of a face we can 

reduce the size of data proceeded, and in some cases, the computational time and 

effort. Finally, an intuitively appealing fact is that even few methods of 

classification applied to the whole face images can significantly improve the 

recognition rate. However, one should have in mind that the time needed to 

execute the method can be drastically longer. Here, the question appears: How to 

find the best possible operator of aggregation of such classifiers. This type of 

operator should efficiently maximize the classification and minimize the 

possibility of incorrect identification of a face.  

The main goal of this work is to find the best aggregation operators applied to 

the processes of the information integration. The information comes from 

different classification methods (classifiers). If we use the most intuitive 

methods based on the nearest neighbor classifier, they are essentially dependent 

on the distance (similarity) measures used in the process of vector of features 

comparison. Therefore, our aim is to find the best possible aggregation 

techniques in dependence on the distance measures used for one of the most 

popular (classical) classifiers, namely Fisherfaces (Belhumeur et al. 1997) 

applied to the well-known facial image datasets (AT&T and FERET). The parts 

of face used in the experimental series are eyebrows, eyes, nose, and mouth 
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areas. We carry a quantitative and comprehensive analysis of over 1000 

aggregation functions published in the literature along with the guidelines of 

their application. The work is important not because of finding of the best 

possible aggregation function but also because it sheds the light on the ways of 

work of the most important functions considered as potential aggregators.  

Our work is highly experimental and we implement methods appearing in the 

literature. Therefore, let us discuss the most important works appearing in the 

topic of aggregation operators and face recognition based on aggregation 

functions. The aggregation operators theory can be found in many monographs 

such as Beliakov et al. 2007; 2016, Torra & Narukawa 2007, Grabisch et al. 

2009, Pedrycz et al. 2011, Calvo et al. 2014, Baczyński et al. 2017a; 2017b, etc. 

and in the articles or books on T-norms and co-norms (Alsina et al. 2006, 

Klement et al. 2000, Klement & Mesiar 2005, fuzzy sets and their applications 

(Grabisch 1995, Liu et al. 2012, Pedrycz & Gomide 1998), ordered weighted 

averaging operators (OWA, Yager & Kacprzyk 2012), and multi-criteria 

decision-making theory, e.g. Das & Guha 2015. 

It is worth to stress that one of the main properties of aggregation functions 

are monotonicity and specific boundary conditions. One of the goals of the study 

presented in this chapter is to examine the generalizations of Choquet integral 

based on a kind of modification related with a structural flexibility by an 

incorporating, among others, t-norms instead of product operation under the sign 

of the integral. Bustince et al. (2016) and Lucca et al. (2016b) introduced such 

class of functions which is weaker if compared to the conditions of aggregation. 

The authors called this class using the term pre-aggregation functions. Their 

main property is a so-called directional monotonicity, i.e., monotonicity along a 

fixed direction. Therefore, our next main objective is to thoroughly examine this 

wide class of functions with respect to its effectiveness as the aggregation tool. 

We are interested in comparing their potential with the original fuzzy Choquet 

integral which is one of the most effective aggregation operators. We are going 

to design 25 classes of such integrals which are built using the t-norms instead of 

the product operation. The accuracies are tested using 4 sets of images: AT&T, 

FERET, Yale (Yale Face Database), and cropped LFW. The classifiers used in a 

comparison are Eigenfaces (PCA, Turk & Pentland 1991), Fisherfaces (PCA 

followed by PCA, Belhumeur et al. 1997), Full Ranking (Chan et al. 2015), 

Local Binary Pattern (Ahonen et al. 2004), Multi-Scale Block Local Binary 

Pattern (Chan et al. 2007, Liao et al. 2007), and Chain Code-Based Local 

Descriptor in an application to the whole facial images and their parts.  

It is worth noting that in the image recognition literature there are present two 

approaches to the fusion of information. The first is based on the combination of 

information coming from the images (a data-level approach). The second one is 

based on the classification utilizing the inputs being the results of particular 

classifiers. This is the score-level approach. 
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The most known applications of information aggregation in the literature are 

as follows. Brunelli & Poggio 1993 utilized template matching strategy to yield 

an improvement of recognition result adding the scores for eyes, nose, mouth, 

and the whole face. Pentland et al. 1994 used the eigenfeatures approach to the 

most salient facial cues with a few strategies of aggregation. Similar approaches 

were proposed by Gottumukkal & Asari 2004 and Kim et al. 2005. Majority rule 

for RBF neural networks-based classifiers were used by Haddadnia & Ahmadi 

2004. Kwak & Pedrycz (2005) proposed an integration of classification results 

based on the Fisherfaces approach utilizing the images of chosen facial features 

(eyes, nose, mouth, whole face). The aggregation operator was Choquet integral 

and fuzzy measure. A similar method was proposed by Kwak & Pedrycz (2004) 

to aggregate the results of classification based on an original facial images and 

their three kinds of wavelet decompositions. It is worth noting that the Choquet 

fuzzy integral as an aggregation operator was also used by Mirhosseini et 

al.1998, Melin et al. 2005, Martínez et al. (2014; 2015). Newer results are 

obtained, among others,  by Ekenel and Stiefelhagen 2009 (fourteen facial parts 

included), Jarillo et al. 2008 (majority voting and Bayesian product for various 

classifiers), Oh et al. 2013 (polynomial-based RBF neural networks 

aggregation), Radtke et al. 2014 (a selection and fusion of ensembles yielded  

through combination of Boolean classifiers), Tome et al. 2013 (fifteen facial 

features studied), Dolecki et al. 2016 (utility functions as aggregation operators), 

Kurach et al. 2014 (Granular Computing techniques), Campomanes-Alvarez et 

al. 2016 (modeling of the craniofacial correspondence in craniofacial 

superimposition by aggregation functions), Al-Hmouz et al. 2017 (a three-valued 

logic with decision based on fuzzy sets for multimodal facial images), 

Karczmarek et al. 2018 (an aggregation of linguistic descriptors-based 

techniques and computational methods), Kiersztyn et al. 2018 (a concept of a so-

called multi-level aggregation), and many others. A comparison of fuzzy 

measure-based ensamble classifiers was presented by Agrawal et al. 2018.  

Finally, it is worth to note that in the works by Ahonen et al. 2004, Bereta et 

al. 2013, Bharkad & Kokare 2011, Naveena et al. 2012, Perlibakas 2004, Xue et 

al. 2007, and Smiatacz 2016 the authors analyzed the influence of various 

chosen distance measures on the classifier performance. A general conclusion 

appears that the proper choice of the measure can essentially improve the 

accuracy of the method. 

6.2. Aggregation Functions for Face Recognition 

Consider the following problem. There is a system of face recognition based 

on comparing the regions of face. Such kind of system allows the situation that 

someone is classified as a person A when the eye area region is taken into 

account. However, when a region of mouth is utilized, he/she is identified as a 

person B. Finally, on a basis of the nose areas, he/she is supposed to be a person 
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C. This is a typical misclassification example. Here, a question appears: How to 

identify this individual properly? The answer is to find an aggregation function 

which will return a correct class on a basis of the specific classifiers’ results. The 

input to the procedure of aggregation will be the distances between the vectors 

representing features or the rankings with assigned points. Of course, this is only 

the wish and it can be impossible to find such an ideal function. But an 

intuitively appealing fact is that the more number of classifiers the better final 

classification result. 

Recall (see chapter 1) that an aggregation function can be defined as the 

function 𝑓: [0,1]𝑛 → [0,1] having the properties (1.22) – (1.24).  

The example problem discussed above is a typical task of the information 

fusion and multi-criteria decision-making theory. The authors such as Grabisch 

et al. (2009) suggest to use, for instance, weighted arithmetic mean or the 

aggregator operators based on the integral concept like Choquet integral. 

Similarly, at the level of data fusion the authors propose to use, again, Choquet 

integral or other concepts. 

Here, we revise this problem. First, we conduct the processing stages as 

follows: 

1. Preprocessing (internal face cropping, scaling, histogram equalization). 

2. Determining the positions of the eye, eyebrows, nose, and mouth areas. The 

parameters of the regions were chosen in the initial sets of experiments. 

3. Execution of the dimensionality reduction method, i.e., Fisherfaces for the 

determined regions.  

4. A comparison of the feature vectors being the result of the method of 

dimensionality reduction coming from the training and testing sets with 

using 16 various distance measures. 

5. Normalization of the distances to the interval [0, 1].  
6. Aggregation of the results using one of over 1000 aggregation operators. 

The set of the aggregation functions was built on a basis of the well-known 

books describing aggregation operators with their applications such as Alsina et 

al. 2006, Beliakov et al. 2007; Grabisch et al. 2009, Pedrycz & Gomide 1998. 

Because of the size constraints we do not show all the formulas here. Only the 

functions producing the best classification accuracies are reported. 

The special kind of the aggregation operators is the Choquet integral. Let us 

recall its concept in an application to the face recognition since it frequently 

appears in the further text. Assume that 𝑋 = {𝑥1, … , 𝑥𝑛} represents the whole 

facial area. Here 𝑥1, … , 𝑥𝑛 represent the particular facial parts like eyes, nose, 

etc.  

Definitions of fuzzy measure and 𝜆-fuzzy measure were recalled in chapter 1, 

see formulas (1.1) – (1.3) and (1.8), respectively. Moreover, a definition of the 

Choquet integral and the way it is constructed in an application to the face 

recognition problem is presented by the formulas (5.1) – (5.4). 
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6.3. Similarity Measures 

In mathematics considered are many dissimilarity or similarity measures used 

to find the degree of matching of two vectors of the form 𝒙 = (𝑥1, 𝑥2, … , 𝑥𝑛) ∈
ℝ𝑛, 𝒚 = (𝑦1, 𝑦2, … , 𝑦𝑛) ∈ ℝ

𝑛. In our experimental settings we utilize the 

functions as follows: 

 Bray-Curtis  

𝑚(𝒙, 𝒚) =
∑ |𝑥𝑖−𝑦𝑖|
𝑛
𝑖=1

∑ |𝑥𝑖+𝑦𝑖|
𝑛
𝑖=1

      (6.1) 

 Canberra  

𝑚(𝒙, 𝒚) = ∑
|𝑎𝑖−𝑏𝑖|

|𝑎𝑖|+|𝑏𝑖|
𝑛
𝑖=1       (6.2) 

 Chebyshev  

𝑚(𝒙, 𝒚) = max𝑖|𝑥𝑖 − 𝑦𝑖|     (6.3) 

 𝜒2-statistics  

𝑚(𝒙, 𝒚) = ∑
(𝑥𝑖−𝑦𝑖)

2

𝑥𝑖+𝑦𝑖

𝑛
𝑖=1       (6.4) 

 Correlation  

𝑚(𝒙, 𝒚) = 1 −
∑ ((𝑥𝑖−

1

𝑛
∑ 𝑥𝑗
𝑛
𝑗=1 )(𝑦𝑖−

1

𝑛
∑ 𝑦𝑗
𝑛
𝑗=1 ))𝑛

𝑖=1

(∑ (𝑥𝑖−
1

𝑛
∑ 𝑥𝑗
𝑛
𝑗=1 )

2
𝑛
𝑖=1 )

1
2
(∑ (𝑦𝑖−

1

𝑛
∑ 𝑦𝑗
𝑛
𝑗=1 )

2
𝑛
𝑖=1 )

1
2

  (6.5) 

 Cosine  

𝑚(𝒙, 𝒚) = 1 −
∑ (𝑥𝑖𝑦𝑖)
𝑛
𝑖=1

(∑ 𝑥𝑖
2𝑛

𝑖=1 )
1
2(∑ 𝑦𝑖

2𝑛
𝑖=1 )

1
2

    (6.6) 

 Euclidean  

𝑚(𝒙, 𝒚) = (∑ (𝑥𝑖 − 𝑦𝑖)
2𝑛

𝑖=1 )
1

2     (6.7) 

 Manhattan  

𝑚(𝒙, 𝒚) = ∑ |𝑥𝑖 − 𝑦𝑖|
𝑛
𝑖=1      (6.8) 

 Median of absolute differences 

𝑚(𝒙, 𝒚) = med𝑖|𝑥𝑖 − 𝑦𝑖|     (6.9) 

 Median of square differences  

𝑚(𝒙, 𝒚) = med𝑖(𝑥𝑖 − 𝑦𝑖)
2     (6.9) 

 Modified Euclidean  

𝑚(𝒙, 𝒚) =
∑ (𝑥𝑖−𝑦𝑖)

2𝑛
𝑖=1

∑ 𝑥𝑖
2𝑛

𝑖=1 ∑ 𝑦𝑖
2𝑛

𝑖=1

     (6.10) 

 Modified Manhattan 

𝑚(𝒙, 𝒚) =
∑ |𝑥𝑖−𝑦𝑖|
𝑛
𝑖=1

∑ |𝑥𝑖|
𝑛
𝑖=1 ∑ |𝑦𝑖|

𝑛
𝑖=1

     (6.11) 

 Squared Euclidean  

𝑚(𝒙, 𝒚) = ∑ (𝑥𝑖 − 𝑦𝑖)
2𝑛

𝑖=1      (6.12) 

 Weighted cosine  
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𝑚(𝒙, 𝒚) = 1 −
∑

𝑥𝑖𝑦𝑖
√𝑤𝑖

𝑛
𝑖=1

(∑ 𝑥𝑖
2𝑛

𝑖=1 )
1
2(∑ 𝑦𝑖

2𝑛
𝑖=1 )

1
2

    (6.13) 

 Weighted Manhattan  

𝑚(𝒙, 𝒚) = ∑
|𝑥𝑖−𝑦𝑖|

√𝑤𝑖

𝑛
𝑖=1       (6.14) 

 Weighted squared Euclidean  

𝑚(𝒙, 𝒚) = ∑
(𝑥𝑖−𝑦𝑖)

2

√𝑤𝑖

𝑛
𝑖=1       (6.15) 

In all the above formulas 𝒘 = [𝑤1, 𝑤2, … , 𝑤𝑛] is a vector of weights 

associated with the eigenvalues found during execution of the Fisherfaces 

procedure. The above functions are commonly used in related studies on face 

recognition. 

6.4. Experimental Studies 

Here, we discuss various techniques of aggregation in an application to the 

results returned by the basic classifiers built on four facial parts: Eyebrows area, 

eyes with no eyebrows region, nose segment, and mouth area, i.e., the most 

salient facial features. We test the efficiency of the most common aggregation 

functions in an application to the face recognition problem solved with the 

Fisherfaces method for the AT&T dataset and FERET database (its subsets 

called ba, bk, and bj). Taking on account the results of the previous chapter (i.e., 

the accuracies of Fisherfaces method for the specified parts of face) one can built 

the weights for all the aggregation functions appearing in our experiments and 

which need weights. One of such kind of functions is, for instance, the above-

mentioned fuzzy Choquet integral. The weights with respect to eyebrows, eyes, 

nose, and mouth segments are: 0.28, 0.28, 0.23, and 0.21 in the case of AT&T 

and 0.42, 0.3, 0.18, and 0.1 in the case of FERET dataset, respectively. 

Recall that in the settings presented here, we show the average results of the 

best accuracies obtained for each of the above discussed measures in an 

application to the Principal Component Analysis method followed by Linear 

Discriminant Analysis in an application to the image sets randomly divided into 

the training and testing sets as follows: 5 images of each person from the AT&T 

set were placed in the training set and the rest in the testing set. In the case of 

FERET database 2 images were training set while one image per person was 

treated as a probe. For each measure the experiments were repeated 200 times to 

get reliable results. In almost all cases we present maximally the best five 

aggregation functions provided that they gave satisfactory results, see Table 6.1. 

For chosen aggregation operators the tests were repeated to find the parameter of 

the function giving potentially the best results. 
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6.5. General Results 

Table 6.1  Chosen results of classification with respect to various aggregation operator 

and distance measures. 

Image 

set 
Aggregation operator Accuracy 

Euclidean distance 

AT&T 

𝑓(𝑥, 𝑦) = min(𝑥, 𝑦)min(1, 𝑥𝑝 + 𝑦𝑞) for 𝑝 = 1, 𝑞 = 2 91.52 

𝑓(𝑥, 𝑦) = min(𝑥√𝑦, 𝑦) (EV-copula, extreme value copula) 91.5 

𝐶𝜆
𝐹𝐺𝑀(𝑥, 𝑦) = 𝑥𝑦 + 𝜆𝑥𝑦(1 − 𝑥)(1 − 𝑦) for 𝜆 = 0.75 (Farlie-

Gumbel-Morgenstern copula) 
91.46 

𝐶(𝑥, 𝑦) = 𝑝𝑥𝑦 + (1 − 𝑝)min(𝑥, 𝑦) for 𝑝 = 0.75 (general 

nonassociative symmetric copula) 
91.46 

𝑅𝑀𝒘,𝛾(𝑥1, … , 𝑥𝑛) = (log𝛾 ∑ 𝑤𝑖𝛾
1

𝑥𝑖𝑛
𝑖=1 )

−1

 for 𝛾 = 0.75 (weighted 

radical mean) 

91.45 

𝑓(𝑥, 𝑦) = min(𝑥, 𝑦)min(1, 𝑥𝑝 + 𝑦𝑞) for 𝑝 = 2, 𝑞 = 1 91.45 

FERET 

Fuzzy Choquet integral with mem. grades of the form µ𝑖𝑗 =
1

1+
𝑑𝑖𝑗

𝑑𝑖̅̅̅̅

, 

𝑖 - classifier number, 𝑗 – training image index, 𝑑𝑖̅ - average 

distance within classifier no. 𝑖, 𝑑𝑖𝑗  - distance between an 

unknown image and training image no. 𝑗 within classifier no. 𝑖 

84.59 

med(𝑥1, … , 𝑥𝑛) (median) 84.54 

Fuzzy Choquet integral with mem. grades µ𝑖𝑗 =
1

2
(1 +

𝑑𝑖𝑗

𝑑𝑖̅̅̅̅

1+
𝑑𝑖𝑗

𝑑𝑖̅̅̅̅

) 84.52 

Fuzzy Choquet integral with mem. grades µ𝑖𝑗 =
1

2
(1 +

𝑑𝑖𝑗

1+𝑑𝑖𝑗
) 84.5 

Voting (i.e., one vote for any minimum in one of classifiers) 83.98 

m𝑤(𝑥1, … , 𝑥𝑛) =
1

𝑛

∑ 𝑤𝑖𝑥𝑖
𝑛
𝑖=1

∑ 𝑤𝑖
𝑛
𝑖=1

 (weighted average) 82.61 

Squared Euclidean distance 

AT&T 

𝑓(𝑥, 𝑦) = min(𝑥, 𝑦)min(1, 𝑥𝑝 + 𝑦𝑞) for 𝑝 = 0.9, 𝑞 = 0.9 91.54 

𝑇𝜆,𝒘
𝑌 = max (0, (1 − ∑ 𝑤𝑖(1 − 𝑥𝑖)

𝜆𝑛
𝑖=1 )

1/𝜆
) for 𝜆 = 10 (weighted 

Yager t-norm) 
91.51 

𝑓(𝑥, 𝑦) = min(𝑥√𝑦, 𝑦) (EV-copula) 91.5 

𝑓(𝑥, 𝑦) = min(𝑥, 𝑦)(𝑥𝑝 + 𝑦𝑞 − 𝑥𝑝𝑦𝑞) for 𝑝 = 0.9, 𝑞 = 0.9 91.5 

𝐶𝛼(𝑥, 𝑦) =
𝛼2(1−𝛼)

2
max(𝑥 + 𝑦 − 1,0) + (1 − 𝛼2)𝑥𝑦 +

𝛼2(1+𝛼)

2
min(𝑥, 𝑦) for 𝛼 = −0.25 (commutative, non-associative 

copula) 

91.41 

FERET 
The order of operators as in the case of Euclidean distance with 

the accuracies 84.59, 84.29, 84.2, 84.03, and 82.49, respectively 
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Modified Euclidean distance 

AT&T 

𝑂𝑊𝐴𝑃(𝑥1, … , 𝑥𝑛) = (∑ (𝑤𝑖𝑥(𝑖)
𝑟 )𝑛

𝑖=1 )
1/𝑟

 for 𝑟 = 0.1, 𝑤𝑖 =
2𝑖

𝑛(𝑛+1)
 

and decreasing (𝑥(1), … , 𝑥(𝑛)) (power-based OWA) 
90.7 

𝑂𝑊𝐺𝑀(𝑥1, … , 𝑥𝑛) = ∏ 𝑥(𝑖)
𝑤𝑖𝑛

𝑖=1  for 𝑤𝑖 = 1 −
𝑖−1

𝑛
 and decreasing 

(𝑥(1), … , 𝑥(𝑛)) (ordered weighted geometric mean) 
90.66 

𝑇𝛼(𝑥, 𝑦) = (1 +
[(1+𝑥)−𝛼−1][(1+𝑦)−𝛼−1]

2−𝛼−1
)
−1/𝛼

− 1 for 𝛼 = 10 90.6 

𝑂𝑊𝐺𝑀(𝑥1, … , 𝑥𝑛) for 𝑤1 =
1

2
, 𝑤2 =

1

2
, 𝑤3 =

1

4
, 𝑤4 =

1

8
 (the rest 

parameters are given as above) 
90.58 

𝑇𝜆
𝐹 (𝑥, 𝑦) = log𝜆 (1 +

(𝜆𝑥−1)(𝜆𝑦−1)

𝜆−1
) for 𝜆 = 0.0001 (Frank t-

norm) 
90.58 

FERET 

𝐺𝛼(𝑥, 𝑦) = log(𝑒
𝛼𝑥 + 𝑒𝛼𝑦) for α = 0.99 86.48 

𝐸𝑀(𝑥1, … , 𝑥𝑛) =
1

𝛼
log (

1

𝑛
∑ 𝑒𝛼𝑥𝑖𝑛
𝑖=1 ) for 𝛼 = 10 (exp. mean) 86.36 

𝑇𝜆,𝒘
𝐹 (𝑥1, … , 𝑥𝑛) = log𝜆 (1 +

∏ (𝜆𝑥𝑖−1)
𝑤𝑖𝑛

𝑖=1

(1−𝜆)
∑ 𝑤𝑖−1
𝑛
𝑖=1

) for 𝜆 = 0.25 

(weighted Frank t-norm) 

86.27 

𝑀(𝑥1, … , 𝑥𝑛) =
𝐺𝑀(𝑥1,…,𝑥𝑛)

𝐺𝑀(𝑥1,…,𝑥𝑛)−𝐺𝑀(1−𝑥1,…,1−𝑥𝑛)
 for geom. mean 

𝐺𝑀(𝑥1, … , 𝑥𝑛) (Kolesárová function) 
86.26 

𝑅𝑀𝒘,𝛾(𝑥1, … , 𝑥𝑛) = (log𝛾(∑ 𝑤𝑖𝛾
1/𝑥𝑖𝑛

𝑖=1 ))
−1

 for 𝛾 = 5 (weighted 

radical mean) 
86.26 

Weighted squared Euclidean distance 

AT&T 

𝑇𝜆,𝒘
𝑌   for 𝜆 = 10 (weighted Yager t-norm, see weighted Euclidean 

dist.) 
85.32 

𝑓(𝑥, 𝑦) = min(𝑥√𝑦, 𝑦) (EV-copula) 85.29 

𝑂𝑊𝐺𝑀(𝑥1, … , 𝑥𝑛) for 𝑤𝑖 = 1 −
𝑖−1

𝑛
 (see mod. Eucl. dist.) 85.25 

Power-based OWA (see mod. Eucl. dist.) 85.24 

𝑇𝜆
𝐹 (𝑥, 𝑦) for 𝜆 = 0.0001 (Frank t-norm) 85.21 

FERET 

Fuzzy Choquet integral with mem. grades µ𝑖𝑗 =
1

1+
𝑑𝑖𝑗

𝑑𝑖̅̅̅̅

 (see Eucl. 

dist.) 

80.31 

med(𝑥1, … , 𝑥𝑛) (median) 79.94 

Fuzzy Choquet integral with mem. grades µ𝑖𝑗 =
1

2
(1 +

𝑑𝑖𝑗

𝑑𝑖̅̅̅̅

1+
𝑑𝑖𝑗

𝑑𝑖̅̅̅̅

) 79.75 

Fuzzy Choquet integral with mem. grades µ𝑖𝑗 =
1

2
(1 +

𝑑𝑖𝑗

1+𝑑𝑖𝑗
) 79.42 

𝑇𝜆,𝒘
𝑌  for 𝜆 = 0.25 (weighted Yager t-norm, see weighted Eucl. 

dist.) 
78.08 

Manhattan distance 

AT&T 𝑇𝜆(𝑥, 𝑦) = 𝑥𝑦/(𝜆 + (1 + 𝜆)(𝑥 + 𝑦 − 𝑥𝑦)) for 𝜆 = 0.6 (mod. 90.91 
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Hamacher t-norm) 

Mod. Hamacher t-norm for 𝜆 = 0.5 90.91 

𝑅𝑀𝒘,𝛾(𝑥1, … , 𝑥𝑛) for 𝛾 = 1.01 (weighted radical mean, see 

Euclid. dist) 
90.9 

∑ (𝑤𝑖/𝑥𝑖)
𝑛
𝑖=1  (weighted harmonic mean) 90.9 

𝑓(𝑥, 𝑦) = min(𝑥√𝑦, 𝑦) 90.89 

FERET 

Fuzzy Choquet integral (see Euclid. dist.) 82.96 

med(𝑥1, … , 𝑥𝑛) 82.9 

Fuzzy Choquet integral with mem. grades µ𝑖𝑗 =
1

2
(1 +

𝑑𝑖𝑗

𝑑𝑖̅̅̅̅

1+
𝑑𝑖𝑗

𝑑𝑖̅̅̅̅

) 82.88 

Fuzzy Choquet integral with mem. grades µ𝑖𝑗 =
1

2
(1 +

𝑑𝑖𝑗

1+𝑑𝑖𝑗
) 82.79 

Voting (as above) 82.18 

Modified Manhattan distance 

AT&T 

𝑅𝑀𝒘,𝛾(𝑥1, … , 𝑥𝑛) for 𝛾 = 1.01 (weighted radical mean) 90.61 

Weighted harmonic mean 90.59 

𝑇𝛼,𝛽(𝑥, 𝑦) =
1

𝛽
((1 +

((1+𝛽𝑥)−𝛼−1)((1+𝛽𝑦)−𝛼−1)

(1+𝛽)−𝛼−1
)
−1/𝛼

− 1) for 

𝛼 = −10, 𝛽 = −0.5 

90.5 

∑ (𝑤𝑖/𝑥(𝑖))
𝑛
𝑖=1  for 𝑤1 = 1,𝑤2 = 0.9, 𝑤3 = 0.8, 𝑤4 = 0.7 (ordered 

weight. harm. mean) 
90.48 

𝐹𝛼(𝑥, 𝑦) = 𝛼/ log(𝑒
𝛼/𝑥 + 𝑒𝛼/𝑦 − 𝑒𝛼) for 𝛼 = 0.1 90.48 

FERET 

𝐹𝛼(𝑥, 𝑦) = −
1

𝛼
log(𝑒−𝛼𝑥 + 𝑒−𝛼𝑦) for 𝛼 = 0.99 (Wiener-Shannon 

law extension) 
84.99 

𝑀𝑔(𝑥1, … , 𝑥𝑛) = {

√∏ 𝑥𝑖
𝑛
𝑖=1

𝑛

√∏ 𝑥𝑖
𝑛
𝑖=1

𝑛
+ √∏ (1−𝑥𝑖)

𝑛
𝑖=1

𝑛
 for {0, 1} ⊈ {𝑥1, … , 𝑥𝑛}

0 otherwise

 

(quasi-arithm. mean) 

84.7 

𝑅𝑀𝒘,𝛾(𝑥1, … , 𝑥𝑛) for 𝛾 = 7 (weighted radical mean) 84.7 

𝑀(𝑥1, … , 𝑥𝑛) (Kolesárová function, see mod. Euclid. dist.) 84.7 

Weighted Frank t-norm for 𝜆 = 0.25 (see mod. Euclid. dist.) 84.68 

Weighted Manhattan distance 

AT&T 

Weighted harmonic mean 82.94 

𝑅𝑀𝒘,𝛾(𝑥1, … , 𝑥𝑛) for 𝛾 = 1.01 (weighted radical mean) 82.93 

OWGM for 𝑤1 = 1,𝑤2 =
3

4
, 𝑤3 =

1

2
, 𝑤4 =

1

4
 82.6 

Power-based OWA (see mod. Euclid. dist.) for 𝑤1 =
1

2
, 𝑤2 =

1,𝑤3 =
3

2
, 𝑤4 = 2 

82.6 

𝑇𝜆(𝑥, 𝑦) = 𝑥𝑦/(𝜆 + (1 + 𝜆)(𝑥 + 𝑦 − 𝑥𝑦) for 𝜆 = 0.5 (Mod. 

Hamacher t-norm) 
82.56 

Chebyshev distance 

AT&T Mod. Hamacher t-norm for 𝜆 = 0.5 or 𝜆 = 0.6 87.67 
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Mod. Hamacher t-norm for 𝜆 = 1 87.6 

𝑓(𝑥1, … , 𝑥𝑛) = ∏ 𝑥𝑖
𝑤𝑖𝑛

𝑖=1 , weighted geom. mean, weighted 

product 
87.58 

𝐺(𝑥1, … , 𝑥𝑛) = (∏ 𝑥𝑖
𝑤𝑖𝑥𝑖

𝑝
𝑛
𝑖=1 )

1/∑ 𝑤𝑖𝑥𝑖
𝑝𝑛

𝑖=1
 for 𝑝 = 0.1 (weighted 

Gini mean) 
87.57 

Mod. Hamacher t-norm for 𝜆 = 2 87.56 

Cosine distance 

AT&T 

Mod. Hamacher t-norm for 𝜆 = 0.5 93.81 

Mod. Hamacher t-norm for 𝜆 = 0.6 93.81 

Mod. Hamacher t-norm for 𝜆 = 1 93.8 

𝐴(𝑥, 𝑦) = {
𝑥𝛼𝑦1−𝛼 for 𝑥 ≤ 𝑦

𝑥1−𝛽𝑦𝛽  otherwise
 for 𝛼 = 0.75, 𝛽 = 0.25 93.8 

𝑓(𝑥, 𝑦) = min(𝑥√𝑦, 𝑦) 93.79 

FERET 

Voting 90.96 

Fuzzy Choquet integral with mem. grades µ𝑖𝑗 =
1

2
(1 +

𝑑𝑖𝑗

1+𝑑𝑖𝑗
) 90.79 

Fuzzy Choquet integral with mem. grades µ𝑖𝑗 =
1

2
(1 +

𝑑𝑖𝑗

𝑑𝑖̅̅̅̅

1+
𝑑𝑖𝑗

𝑑𝑖̅̅̅̅

) 90.72 

Median 90.66 

Fuzzy Choquet integral (see Euclidean dist.) 90.35 

Weighted cosine distance 

AT&T 

OWA for 𝑤1 =
1

4
, 𝑤2 =

1

8
, 𝑤3 =

1

12
, 𝑤4 =

1

16
 84.79 

𝑂𝑊𝐺𝑀(𝑥1, … , 𝑥𝑛) = (min(𝑥1, … , 𝑥𝑛))
1−α(max(𝑥1, … , 𝑥𝑛))

α for 

𝛼=0.1 (special OWGM) 
84.65 

OWA for 𝑤1 = 1,𝑤2 =
3

4
, 𝑤3 =

1

2
, 𝑤4 =

1

4
 84.61 

OWA for 𝑤1 = 1,𝑤2 =
1

2
, 𝑤3 =

1

4
, 𝑤4 =

1

8
 84.56 

𝐸(𝑥1, … , 𝑥𝑛) = log∑ (𝑤𝑖 log 𝛼
𝑥𝑖)𝑛

𝑖=1 / log 𝛼 for 𝛼 = 10 (weighted 

exp. mean) 
84.31 

FERET 

The first four aggregation operators as in the case of cosine 

distance, the fifth operator is weighted average. The results are 

87.77, 87.71, 87.7, 87.67, and 87.67, respectively 

 

Correlation distance 

AT&T 

𝑓(𝑥, 𝑦) = min(𝑥√𝑦, 𝑦) 93.8 

𝐴(𝑥, 𝑦) = {
𝑥𝛼𝑦1−𝛼 for 𝑥 ≤ 𝑦

𝑥1−𝛽𝑦𝛽  otherwise
 for 𝛼 = 0.75, 𝛽 = 0.25 93.79 

𝑇𝜆(𝑥, 𝑦) = 𝑥𝑦/(𝜆 + (1 + 𝜆)(𝑥 + 𝑦 − 𝑥𝑦) for 𝜆 = 1 (mod. 

Hamacher t-norm) 
93.76 

Weighted geom. mean 93.76 

𝑇𝜆(𝑥, 𝑦) for 𝜆 = 0.5 93.75 

𝐺(𝑥1, … , 𝑥𝑛) = (∏ 𝑥𝑖
𝑤𝑖𝑥𝑖

𝑝
𝑛
𝑖=1 )

1/∑ 𝑤𝑖𝑥𝑖
𝑝𝑛

𝑖=1
 for 𝑝 = 0.01 (weighted 93.75 
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Gini mean) 

FERET 
The results are the same as in the cosine distance case with 

accuracies 90.73, 90.59, 90.51, 90.49, and 90.14, respectively 
 

Bray-Curtis distance 

AT&T 

𝑇(𝑥, 𝑦) = 𝑥𝑦/(𝑥 + 𝑦 − 𝑥𝑦) 93.83 

𝑓(𝑥, 𝑦) = min(𝑥√𝑦, 𝑦) 93.69 

Weighted harmonic mean 93.63 

𝑅𝑀𝒘,𝛾(𝑥1, … , 𝑥𝑛) for 𝛾 = 1.01 (weighted radical mean) 93.63 

𝐴(𝑥, 𝑦) for 𝛼 = 0.75, 𝛽 = 0.25 (see correlation distance) 93.61 

FERET 

Fuzzy Choquet integral with mem. grades µ𝑖𝑗 =
1

2
(1 +

𝑑𝑖𝑗

1+𝑑𝑖𝑗
) 90.2 

Fuzzy Choquet integral with mem. grades µ𝑖𝑗 =
1

2
(1 +

𝑑𝑖𝑗

𝑑𝑖̅̅̅̅

1+
𝑑𝑖𝑗

𝑑𝑖̅̅̅̅

) 90.15 

Median 90.13 

Voting 90.13 

Fuzzy Choquet integral (see Euclidean distance) 90.05 

Canberra distance 

AT&T 

𝑇𝜆(𝑥, 𝑦) = 𝑥𝑦/(𝜆 + (1 + 𝜆)(𝑥 + 𝑦 − 𝑥𝑦) for 𝜆 = 20 (mod. 

Hamacher t-norm) 
91.43 

𝑇𝜆(𝑥, 𝑦) for 𝜆 = 𝑒 and 𝜆 = 4 (mod. Hamacher t-norm) 91.41 

𝑇𝜆,𝒘
𝑌   for 𝜆 = 2 (weighted Yager t-norm, see weighted Euclid. 

dist.) 
91.4 

𝑇𝜆(𝑥, 𝑦) for 𝜆 = 2 91.4 

𝑇𝜆(𝑥, 𝑦) for 𝜆 = 1 91.37 

FERET 

Voting 83.92 

Weighted average 83.76 

Fuzzy Choquet integral with mem. grades µ𝑖𝑗 =
1

2
(1 +

𝑑𝑖𝑗

1+𝑑𝑖𝑗
) 83.44 

Fuzzy Choquet integral with mem. grades µ𝑖𝑗 =
1

2
(1 +

𝑑𝑖𝑗

𝑑𝑖̅̅̅̅

1+
𝑑𝑖𝑗

𝑑𝑖̅̅̅̅

) 83.36 

Median 83.32 

χ
2
-statistic measure 

AT&T 

𝑇𝜆(𝑥, 𝑦) for 𝜆 = 0.0001 (mod. Hamacher t-norm) 82.06 

Power-based OWA (see mod. Euclid. dist.) 81.7 

𝑓(𝑥, 𝑦) = min(𝑥, 𝑦)min(1, 𝑥𝑝 + 𝑦𝑞) for 𝑝 = 0.5, 𝑞 = 0.5 81.63 

𝑓(𝑥, 𝑦) = min(𝑥, 𝑦)(𝑥𝑝 + 𝑦𝑞 − 𝑥𝑝𝑦𝑞) for 𝑝 = 0.5, 𝑞 = 0.5 81.63 

𝐶𝛼(𝑥, 𝑦) = max ((𝑥−𝛼 + 𝑦−𝛼 − 1)−
1

𝛼, 0) for 𝛼 = 0.25 (Clayton 

copula) 
81.59 

𝐹𝛼(𝑥, 𝑦) = (𝑥
−𝛼 + 𝑦−𝛼 − 1)−

1

𝛼 for 𝛼 = 0.25 81.59 

𝐹𝛼(𝑥, 𝑦) = 1 − 𝑒
−[(− log(1−𝑥))−𝛼+(− log(1−𝑦))−𝛼−]−1/𝛼 for 𝛼 = 0.25 81.59 

T-norm generated by 𝑔𝜆
𝑇(𝑡) = (

1−𝑡

𝑡
)
𝜆

 for 𝜆 = 0.25 (Dombi  81.59 
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t-norm) 

𝐹𝛼(𝑥, 𝑦) = (1 + ((
1

𝑥
− 1)

𝛼

+ (
1

𝑦
− 1)

𝛼

)

1

𝛼
)

−1

 for 𝛼 = 0.25 81.59 

Median of absolute differences 

AT&T 

𝑇𝜆(𝑥, 𝑦) for 𝜆 = 0.5 (mod. Hamacher t-norm) 83.12 

Weighted harmonic mean 83.09 

Weighted radical mean 83.08 

𝑅𝑀𝒘,𝛾(𝑥1, … , 𝑥𝑛) for 𝛾 = 1.01 (weighted radical mean) 83.07 

𝑇𝜆(𝑥, 𝑦) for 𝜆 = 1 (mod. Hamacher t-norm) 83.03 

T-norm generated by 𝑔𝜆
𝐴𝐴(𝑡) = (− log 𝑡)𝜆 for 𝜆 = 2 Aczél–

Alsina t-norm (Gumbel-Hougaard copula) 
83.03 

Median of square differences 

AT&T 

T-norm generated by 𝑔𝜆
𝐴𝐴(𝑡) = (− log 𝑡)𝜆 for 𝜆 = 2 (see above) 83.03 

T-norm generated by log((𝜆 + (1 − 𝜆)𝑡)/𝑡) for 𝜆 = 0.1 

(Hamacher t-norm) 
83.00 

𝑇(𝑥, 𝑦) = 1/ (1 + ((
1−𝑥

𝑥
)
𝑝

+ (
1−𝑦

𝑦
)
𝑝

)

1

𝑝
) for 𝑝 = 0.5 (Dombi t-

norm) 

82.98 

𝐹𝛼(𝑥, 𝑦) = (1 + ((
1

𝑥
− 1)

𝛼

+ (
1

𝑦
− 1)

𝛼

)

1

𝛼
)

−1

 for 𝛼 = 0.5 82.98 

𝐹𝛼(𝑥, 𝑦) = exp(1 − ((1 − log 𝑥)
𝛼 + (1 − log 𝑦)𝛼 − 1)1/𝛼) for 

𝛼 = 2 
82.96 

Table 6.1 shows that in the case of Euclidean measure the best results for 

AT&T set are obtained with aggregation operator 

𝑓(𝑥, 𝑦) = min(𝑥, 𝑦)min(1, 𝑥𝑝 + 𝑦𝑞) and its parameters 𝑝 = 1, 𝑞 = 2, or 

𝑝 = 2, 𝑞 = 1. Since not all the possible parameters were used in the first series 

of experiments, we have arranged additional test series to find their optimal 

values. Fig. 6.1 shows that the best accuracies are yielded when the parameters p 

and q are of similar values (are placed close to the main diagonal) and are in the 

range 1 – 3. When the FERET set is considered Choquet integral produces the 

best results. Two of these results are obtained when a so-called compensation 

mechanism is used to construct the integral. In addition, median and weighted 

average can be a good choice here. 
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Fig. 6.1 The results of repeated experiments for the winning function in the case of 

Euclidean distance. 

Relatively similar standings were generated for squared Euclidean measure. 

However, in this case the product 𝑓(𝑥, 𝑦) = min(𝑥, 𝑦)min(1, 𝑥𝑝 + 𝑦𝑞) gives 

the best accuracies for AT&T. The additional experiments carried for this 

operator for wider range of the parameters p and q have shown that the structure 

of the results is close to the plot depicted in the previous case, see Fig. 6.2.  
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Fig. 6.2 The relation between the accuracies and winning function’s parameters in the 

case of weighted squared distance. 

In the case of modified Euclidean distance the families of Frank operators 

and OWAs dominate. The plot presented in Fig. 6.3 shows the results of 

repeated experiments for power-based ordered weighted average in relation to 

the value of the parameter r. To get the best accuracy one should choose 

relatively small values of r (less than 0.4). When FERET set is considered, the 

best results are found with the operator 𝐺𝛼(𝑥, 𝑦) when 𝛼 = 0.99. But only the 

values of 𝛼 being close to 1 guarantee good results here.  
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Fig. 6.3 The dependence of the results produced by power-based OWA operator on the 

values of its parameter.  

The analysis of the results obtained with the weighted squared Euclidean 

distance and AT&T dataset shows that many functions can be applied here with 

a success (t-norms, multiplication and power functions’ modifications, or OWA 

and OWGM). In the case of FERET dataset the fuzzy Choquet integral produces 

high accuracies.  
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Now, let us consider other than Euclidean distance-based measures. When 

Manhattan measure is under consideration, one can note that the Hamacher t-

norm modifications and various weighted means can be sound alternatives. The 

repeated tests for the modified Hamacher function are illustrated in Fig. 6.4. This 

function can be a very good operator of aggregation for almost all of the 

measures of dissimilarity/similarity with relatively wide range of its parameter 𝜆.  

 

Fig. 6.4 The results produced by the modification of the Hamacher function for various 

similarity measures. 

An interesting fact is that the Modified Manhattan distance produces other 

results. One can observe that in this case many different families of mean 

functions may be utilized. Fisherfaces method works well with weighted radical 

and harmonic means and Wiener–Shannon low extension. From the other hand, 

a comparison of results for weighted Manhattan measure shows that they are 

relatively close to the results yielded with the Manhattan measure with no 
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weights. In the series of experiments for Chebyshev distance, Hamacher t-norm 

modification, Gini mean, and different averages with weights presented the 

highest accuracies. In the case of cosine distance measure, fuzzy Choquet 

integrals, median, and voting work well with the FERET set of images. The 

experiments with AT&T show, again, that the modification of Hamacher 

function and weighted geometric mean work well. Similar results can be 

obtained for weighted cosine measure. EV-copula and geometric mean with 

weights produce good accuracies for AT&T and correlation distance. 

Experiments with FERET set have shown that fuzzy Choquet integral, median, 

and voting are well choices. Bray-Curtis distance applied to Fisherfaces 

produces well results when fuzzy Choquet integral is used as an aggregation 

operator for FERET dataset. For the AT&T dataset the functions known from 

the previously considered distances, namely A(x,y) and T(x,y), dominate. The 

effectiveness of A(x,y) is illustrated in Fig. 6.5.  

 

Fig. 6.5 Fisherfaces with Bray-Curtis measure and the function A(x,y) as the aggregator 

operator. 

The next considered distance is Canberra measure. Here, voting, fuzzy 

Choquet integral, and various modifications of Hamacher functions are the most 

efficient. In the case of χ
2
-statistic measure again, the Hamacher function 

modification is a sound alternative. Moreover, a function 𝑓(𝑥, 𝑦) =

min(𝑥√𝑦, 𝑦) can be a good choice. But the highest results are about 80-81% 

recognition rate which is unsatisfying value. Finally, we discuss the median of 

absolute differences and median of square differences. The first of them can be 

used effectively only in the case of AT&T dataset. Here, again Hamacher 
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function modifications and two means (weighted harmonic and radical) are the 

most efficient aggregation operators. The t-norm called Aczél-Alsina appears in 

case of the two median-based distances as one of the best five aggregation 

functions. However, it is not efficient. The accuracy is, in general, lower than 

90%. Fig. 6.6 shows the dependency of the aggregation efficiency on the value 

of parameter λ. The best is found when 𝜆=1.6. 

 

Fig. 6.6 The values obtained with various values of Aczél–Alsina t-norm parameter. 

The next comparison is presented for weighted Manhattan function but for 

PCA only instead of PCA+LDA method with AT&T dataset. The weighted 

Manhattan function gave the best recognition rates in the case of Eigenfaces. 

The results are presented in Table 6.2.  

Table 6.2 Aggregation results for Eigenfaces and weighted Manhattan function. 

Aggregation operator Accuracy 

𝐴(𝑥, 𝑦) = {
𝑥𝛼𝑦1−𝛼 if 𝑥 ≤ 𝑦

𝑥1−𝛽𝑦𝛽  otherwise
 for 𝛼 = 0.75, 𝛽 = 0.25 89.18 

EV-copula 𝑓(𝑥, 𝑦) = min(𝑥√𝑦, 𝑦) 89 

Function 𝐶𝛼(𝑥, 𝑦) (see results for Fisherfaces) for 𝛼 = 0.5 88.99 

Farlie-Gumbel-Morgenstern copula 𝐶𝜆
𝐹𝐺𝑀(𝑥, 𝑦) for 𝜆=0.5 88.98 

General nonassociative symmetric copula 𝐶(𝑥, 𝑦) (see results for 

Fisherfaces) 
88.98 

The next standing is the set of standard deviations with respect to the 

considered similarity/dissimilarity measures which were obtained during our 

experiments, see Table 6.3. Only the measures giving more than 70% average 

accuracy were taken into account. The values of standard deviations suggest that 
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the winning aggregation operators could slightly differ if the experimental series 

would be repeated. However, the appearance in the top of the rankings of the 

functions such as fuzzy Choquet integral or modified Hamacher function is 

rather not accidental. 

Table 6.3 Standard deviations yielded in the experimental series with the Fisherfaces 

method. 

Measure AT&T set FERET set 

Bray-Curtis 2.08 2.6 

Canberra 2.08 2.6 

Chebyshev 3.88 3.05 

χ
2
-statistics 4.51 - 

Correlation 2.02 2.38 

Cosine 2.03 2.37 

Euclidean 2.67 2.58 

Manhattan 2.42 2.59 

Median of absolute differences 2.69 - 

Median of square differences 2.72 - 

Modified Euclidean 2.55 2.43 

Modified Manhattan 2.32 2.51 

Squared Euclidean 2.81 2.62 

Weighted cosine 5.51 2.85 

Weighted Manhattan 3.19 2.75 

Weighted squared Euclidean 3.85 2.78 

The last comparison of the results discussed in this part is the set of 

accuracies reported for the most efficient (in our opinion) aggregation functions, 

namely fuzzy Choquet integral, median, and voting. The former is considered in 

the version described in details for Euclidean distance realized for FERET set of 

images. Note that in the FERET case one can aggregate the recognition results 

also using the median operator. However, the fuzzy Choquet integral was the 

best option for ten similarity measures. 

One can see that there is a slight difference between the results obtained for 

the two considered databases. There are at least two reasons of this fact. The first 

is that the AT&T dataset is relatively easy dataset, i.e., there are 10 images of 

each subject and the number of classes in only 40 while the number of classes in 

case of FERET is 200 with only 3 images per person. The second fact is that the 

expression of faces in the FERET dataset varies more than in the case of AT&T. 

Finally, the preprocessing of FERET images also included histogram 

equalization procedure. 
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Table 6.4 Accuracies obtained for fuzzy Choquet integral (c), median (m), and voting (v) 

with the AT&T and FERET dataset. 
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AT&T database 

m 91.9 89.0 83.9 73.9 92.2 92.3 88.9 87.8 78.0 77.3 86.2 86.7 78.1 88.4 79.7 77.1 

v 88.4 83.8 81.6 77.5 88.4 88.6 87.0 86.1 72.2 72.2 86.0 85.5 75.1 87.0 79.8 75.7 

c 92.6 91.3 83.3 67.0 92.6 92.7 87.4 86.5 80.2 78.9 81.6 84.8 81.7 86.5 76.7 75.3 

FERET database 

m 90.1 83.3 79.0 51.3 90.5 90.7 84.5 82.9 68.4 68.1 83.1 82.9 87.7 84.3 79.9 77.5 

v 90.1 83.9 77.8 40.9 90.7 91.0 84.0 82.2 67.5 64.8 79.3 81.3 87.8 82.5 77.0 76.3 

c 90.0 83.3 79.1 63.2 90.1 90.3 84.6 83.0 68.3 68.4 84.3 83.1 87.6 84.6 80.3 77.6 

6.6. Generalizations of Aggregation Functions 

Lucca et al. (2016b) introduced a concept of a so-called r-increasing function. 

It is a function 𝑓: [0, 1]𝑛 → [0, 1] that for all points (𝑥1, 𝑥2, … , 𝑥𝑛) ∈ ℝ
𝑛 and 

𝑝 > 0 satisfies the relation  

𝑓(𝑥1, 𝑥2, … , 𝑥𝑛) ≤ 𝑓(𝑥1 + 𝑝𝑟1, 𝑥2 + 𝑝𝑟2, … , 𝑥𝑛 + 𝑝𝑟𝑛)  (6.16) 

where 𝒓 = (𝑥1, 𝑥2, … , 𝑥𝑛). 
Next, the same authors proved that if 𝑇: [0, 1]2 → [0, 1] satisfies 𝑇(𝑥, 𝑦) ≤

𝑥, 𝑇(𝑥, 1) = 𝑥, 𝑇(0, 𝑦) = 0, T is [0, 1]-increasing, and if for any fuzzy measure 

g the generalized Choquet integral is a function of the form 

𝐶ℎ′ ∫ ℎ ∘ 𝑔(𝑇) = ∑ 𝑇(ℎ(𝑥𝑖) − ℎ(𝑥𝑖+1), 𝑔(𝐴𝑖)) 1≤𝑖≤𝑛   (6.17) 

with an assumption that 

ℎ(𝑥𝑛+1) = 0       (6.18) 

then one can find such a non-zero vector r that Ch’ is r-increasing, it satisfies the 

boundary aggregation conditions, and 

min(𝑥1, 𝑥2, … , 𝑥𝑛) ≤ 𝐶ℎ’ ≤ max(𝑥1, 𝑥2, … , 𝑥𝑛)   (6.19) 

This property may suggest an application of the constructions of the form 

(6.17) and many more generalizations as an efficient aggregation operator. 

Therefore, in the experimental part of this study we analyse 25 classes of 

functions based on the formula (6.17) where the role of the function T is played 

by the functions enlisted in the monograph (Alsina et al. 2006, p. 72, Table 2.6) 

and article (Lucca et al. 2016b). The former work contains the list of the most 

important families of t-norms appearing in the literature while the latter study 

discusses simple functions such as minimum, product, Łukasiewicz t-norm 

𝑇Ł(𝑎, 𝑏) = max(0, 𝑎 + 𝑏 − 1), drastic product 𝑇𝐷𝑃(𝑎, 𝑏) = 𝑏, 𝑎, or 0 for 𝑎 =
1, 𝑏 = 1, or 𝑥, 𝑦 ≠ 1, respectively, nilpotent minimum 𝑇𝑁𝑃(𝑎, 𝑏) =
min(𝑎, 𝑏) for 𝑎 + 𝑏 > 1 and 0 otherwise, and Hamacher product 𝑇𝐷𝑃(𝑎, 𝑏) =
𝑎𝑏

𝑎+𝑏−𝑎𝑏
for 𝑎, 𝑏 ≠ 0 and 0 otherwise.  
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Note that the general processing scheme is the same as in the previous part. 

Specific classifiers results are aggregated and the results return the final 

classification effect, i.e., whether the face is correctly classified or not. 

6.7. Experimental Results 

In the first part of tests, we use the AT&T image set. The faces were initially 

cropped and scaled (as in the previous chapter). Next, 18 subjects being our 

friends or lab members evaluated the saliency of 6 facial features, namely 

eyebrows, eye, nose, mouth, and left and right cheeks areas, respectively. The 

normalized weights with respect to these parts of face are as follows: 0.13, 0.32, 

0.2, 0.21, 0.07, and 0.07. 

In the first series of computational experiments, we conducted 100 iterations 

of the above-mentioned classification processes for the Eigenfaces method. We 

used two norms, namely Euclidean and Canberra, which serve as the measures 

of distances in the set of vectors representing the features of a face after the 

PCA-based dimensionality reduction of the images. During each of the iterations 

5 face images per person were randomly chosen to be placed in the training set. 

The rest part of the image dataset served as the testing set. Table 6.5 lists the 

results as follows. In the first column placed are the numbers of t-norm families 

for which the average accuracies were better than the accuracy obtained with 

classical Choquet integral (i.e., the product under the integral sign), in the next 

columns given are the range of the family parameter for which the values are 

obtained, an argument for which the maximal value is produced, and the 

difference between the accuracy for the specific t-norm and the accuracy for the 

product operator. In addition, listed are the median and voting aggregation 

operators as the methods yielding relatively stable results in the aggregation 

processes (see the previous part of this chapter). Note that the actual 

classification results are not essential in the comparison. It is because the fuzzy 

Choquet integral has proven to be well-established aggregation function utilized 

in the facial recognition problems (Kwak & Pedrycz 2005). Therefore, we 

present only the values of positive differences between the analyzed 

generalization of Choquet integral and the classical Choquet integral, i.e., its 

version with product t-norm. A similar comparison was done for the classifiers 

based on LDA and three norms to compare its resulting vectors, i.e., Canberra, 

cosine, and Euclidean distances, see Table 6.6.  

Table 6.7 enlists the detailed results obtained with using six local descriptors 

(Chain Code-Based Local Descriptor, Full Ranking, Local Binary Pattern, and 

three versions of Multi-Scale Block Local Binary Pattern, i.e., with 3, 5, and 7 

pixel width square blocks, respectively). The descriptors were used in their 

simplest forms with no partition of the face images into the subareas. Again, 100 

iterations of the tests were carried for FERET dataset (with the same division 

into the training and testing sets as in the previous part of this chapter). The 
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method applied for the six facial regions was the Fisherfaces technique and the 

analyzed similarity measures were correlation, cosine, and Euclidean distances, 

see Table 6.8. The next series of tests were carried not for the parts of the face 

but for various methods applied for the whole images of face. Eight techniques, 

i.e., Eigenfaces with Euclidean distance, Fisherfaces with Eucldiean measure, 

CCBLD, Full Ranking, LBP, and three variants of MBLBP were utilized for 

FERET dataset. The same protocol of testing was used. The weights associated 

with particular classifiers were their normalized average accuracies. Labeled 

Faces in the Wild images were analyzed using CCBLD, Full Ranking, LBP, and 

MBLBP with block of width 5 px. We have chosen the images of the people 

who have exactly six images in the dataset. Four images of each person were 

randomly chosen to the training set. One image was selected to the testing set. In 

the case of Yale database, the six local descriptors discussed above were used in 

the experiments repeated 100 times for 5 images of each person put in the 

training set and the rest in the testing one. The summary of the tests with Yale, 

FERET, and LFW is presented in Table 6.9. 

Table 6.5 The results obtained with the AT&T dataset and the Eigenfaces method 

applied to the chosen feature regions. 

 Canberra measure Euclidean measure 

T-norm 

family 

num. 

Range of 

the 

parameter 

Value of 

the best 

argument 

Corresp. 

maximal 

difference 

Range of 

the 

parameter 

Value of 

the best 

argument 

Corresp. 

maximal 

difference 

1 [0.1,0.2] 0.1 0.23 [-0.7,-0.1] -0.6 2.23 

2 - - - [1.2,1.6] 1.4 0.85 

3 [0.1,0.3] 0.2 0.23 [-10.0,-0.1] -4.2 4.25 

4 1.1 1.1 0.15 [0.6,0.9] 0.7 3.23 

5 [0.2,0.8] 0.4 0.25 [-10.0,-0.1] -5.7 3.18 

6 [1.1,1.3] 1.2 0.15 [0.2,0.9] 0.4 2.98 

7 - - - [0.1,0.5] 0.3 1.58 

8 - - - [1.5,3.4] 1.9 1.43 

9 - - - [0.3,10.0] 0.8 2.93 

10 - - - [0.1,10.0] 1.4 1.98 

11 - - - [0.1,0.6] 0.3 2.48 

12 - - - [0.3,0.5] 0.4 1.95 

14 - - - [0.1,0.6] 0.4 2.78 

15 [1.1,1.3] 1.2 0.23 [0.1,0.9] 0.1 2.58 

17 - - - [1.1,1.4] 1.2 1.65 

20 [-0.8,0.1] -0.3 0.25 [-10.0,-1.1] -9.8 2.98 

24 - - - [1.1,1.5] 1.2 1.55 

25 - - - [0.1,1.4] 0.8 2.6 

median - - - - - 14.25 

voting - - - - - 8.95 
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Table 6.6 The results obtained with the AT&T dataset and the Fisherfaces method 

applied to six face segments. 

 Canberra measure Cosine measure Euclidean measure 

T-norm 
fam. 

num. 

Range of 
the 

param. 

Value 

of the 

best 
arg. 

Cor- 

resp.  

max. 
differ. 

Range of 
the 

param. 

Value 

of the 

best 
arg. 

Cor- 

resp.  

max. 
differ. 

Range of 

the param. 

Value 

of the 

best 
arg. 

Cor- 

resp. 

max. 
differ. 

1 [0.1,0.2] 0.1 0.48 [0.1,0.3] 0.2 0.4 [0.1,0.2] 0.1 0.23 

3 [0.1,0.5] 0.4 0.28 [0.3,0.7] 0.4 0.15 [0.1,0.4] 0.2 0.28 
4 [1.1,1.2] 1.1 0.15 [1.1,1.3] 1.2 0.2 1.1 1.1 0.28 

5 [0.2,1.3] 0.6 0.18 [0.5,2.4] 0.8, 0.13 [0.1,1.3] 0.4 0.28 

6 [1.3,1.4] 1.3 0.03 [1.2,1.6] 1.4 0.1 [1.1,1.5] 1.3 0.3 
10 - - - - - - [5.8,10.0] 8.5 0.13 

12 0.4 0.4 0.45 [0.5,0.6] 0.5 0.28 - - - 

14 -0.1 -0.1 0.03 -0.1 -0.1 0.03 -0.1 -0.1 0.3 
15 [1.1,1.4] 1.3 0.35 [1.2,2.0] 1.4 0.28 [1.1,1.3] 1.2 0.28 

20 [-0.7,1.0] 0.1 0.18 [-0.3,2.4] 0.6 0.18 [-0.8,0.8] -0.1 0.38 

23 0.1 0.1 0.13 0.1 0.1 0.38 0.1 0.1 0.05 
median - - - - - - - - 1.25 

voting - - - - - - - - 1.65 

Noteworthy is that 25 various families of t-norms were evaluated as the 

substitutes of the product operator under the Choquet integral sign with their 

parameter 𝛼 = −10,−9.9, . . . , −0.1, 0, 0.1,… , 9.9, 10 (of course, if the formula 

enables specific values). We have assumed that the choice of such division of 

arguments represents relatively wide and satisfies covering of their possible 

values. The results show that the t-norms no. 1, 3, 4, 5, 6, 9, 10, 11, 14, 15, 20, 

and 25 have a great potential to serve as valuable aggregation operators. Note 

that their numbers correspond to the enumeration proposed in the monograph by 

Alsina et al. (2006) at page 72, Table 2.6. Two functions (voting and median) 

can also serve as aggregation operators in the face recognition problems. It is 

interesting that only the function (with the index no. 10), namely  

𝑇𝛼(𝑥, 𝑦) =
𝑥𝑦

(1+(1−𝑥𝛼)(1−𝑦𝛼))
1
𝛼

     (6.20) 

for 𝛼 ≥ 3.1 and median produce the average accuracies being better that the 

fuzzy Choquet integral with the product under integral sign with respective 

average differences between their results and the results generated by Choquet 

integral being 0.15 and 0.77. The best choice of parameter α for the function 

𝑇𝛼(𝑥, 𝑦) is 9.8. However, the range of parameter for which other families of t-

norms return satisfying results varies. Hence, in general, it is difficult to predict 

its optimal value. There are also the functions that are totally impractical from 

the aggregation point of view, namely the functions with indices 16, 19, and 22. 

Note that they do not appear in the tables containing the results. 
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Table 6.7 The results obtained with the AT&T dataset and various local descriptors for 

the six facial parts. 

 
Chain Code-Based Local 

Descriptor 
Full Ranking Local Binary Pattern 

T-norm 
fam. 

num. 

Range of 

the param. 

Val. 

of 
the 

best 

arg. 

Cor- 

resp. 

max. 
differ. 

Range 
of the 

param. 

Val. 

of the 

best 
arg. 

Cor- 

resp. 

max. 
differ. 

Range of 

the param. 

Val. 

of the 

best 
arg. 

Cor- 

resp. 

max. 
differ. 

1 0.1 0.1 0.2 - - - - - - 

3 [-0.2,0.3] 0.3 0.3 [-0.4,-0.3] -0.3 0.05 [-0.3,-0.2] -0.2 0.08 

4 1.1 1.1 0.23 - - - 0.9 0.9 0.05 
5 [-0.5,1.0] 0.7 0.23 [-0.6,-0.5] -0.6 0.1 [-0.6,-0.3] -0.5 0.1 

6 [0.8,1.3] 1.1 1.13 [0.7,0.9] 0.7 0.05 0.8 0.8 0.13 

9 - - - - - - - - - 
10 [3.3,10.0] 9.7 0.18 [1.9,10.0] 8.7 0.1 [4.2,10.0] 7.3 0.15 

11 - - - - - - - - - 

12 - - - - - - - - - 
14 -0.1 -0.1 0.03 - - - - - - 

15 [0.9,1.3] 1.2 0.25 0.9 0.9 0.03 0.9 0.9 0.13 

20 [-1.7,0.4] 0.2 0.25 - - - [-1.9,-1.4] -1.5 0.13 
25 - - - - - - - - - 

median - - 3.1 - - 4.48 - - 1.68 

voting - - 1.85 - - - - - - 

 
Multi-scale Block Local 

Binary Pattern (3 px) 

Multi-scale Block Local 

Binary Pattern (5 px) 

Multi-scale Block Local 

Binary Pattern (7 px) 

T-norm 
fam. 

num. 

Range  
of the 

param. 

Val. 

of  
the 

best 

arg. 

Cor- 

resp. 

max. 

differ. 

Range  
of the 

param. 

Val. 

of  
the 

best 

arg. 

Cor- 

resp. 

max. 

differ. 

Range  
of the 

param. 

Val. 

of 
 the 

best 

arg. 

Cor- 

resp. 

max. 

differ. 

1 -0.1 -0.1 0.45 [-0.2,-0.1] -0.1 0.28 [-0.2,-0.1] 0.1 0.9 

3 [-1.3,-0.1] -0.7 0.5 [-2.3,-0.1] -1.3 0.85 [-3.6,-0.1] -0.9 1.48 

4 0.9 0.9 0.53 [0.8,0.9] 0.8 0.78 [0.7,0.9] 0.8 1.28 
5 [-1.8,-0.1] -1 0.48 [-2.6,-0.1] -0.8 0.73 [-3.4,-0.1] -1.4 1.53 

6 [0.6,0.8] 0.8 0.43 [0.5,0.9] 0.7 1.03 [0.4,0.9] 0.7 1.55 

9 [0.1,10.0] 7.9 0.53 [2.9,10.0] 5.4 0.6 [2.1,10.0] 4.5 1.38 
10 [0.1,10.0] 0.2 0.55 [0.1,10.0] 2.2 0.93 [0.1,10.0] 0.5 1.55 

11 0.1 0.1 0.05 0.1 0.1 0.43 0.1 0.1 1.05 

12 - - - - - - 0.3 0.3 0.05 
14 0.1 0.1 0.33 0.1 0.1 0.28 0.1 0.1 1 

15 [0.6,0.9] 0.7 0.5 [0.5,0.9] 0.6 0.55 [0.3,0.9] 0.6 1.43 

20 [-3.8,-1.1] -2.6 0.53 [-5.1,-1.1] -3.5 0.75 [-1.9,-1.8] -1.9 0.08 
25 [0.1,0.2] 0.1 0.53 [0.1,0.2] 0.2 0.45 [0.1,0.3] 0.2 1.3 

med. - - 2.43 - - 4.15 - - 3.83 

voting - - - - - 0.93 - - 2.18 
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Table 6.8 The results obtained with the FERET dataset and the Fisherfaces method and 

three norms applied to six face segments. 

 Correlation measure Cosine measure Euclidean measure 

T-

norm 

fam. 

num. 

Range 

of the 

param. 

Value 

of the 

best 

arg. 

Cor- 

resp. 

max. 

differ. 

Range 

of the 

param. 

Value 

of the 

best 

arg. 

Cor- 

resp. 

max. 

differ. 

Range of 

the 

param. 

Value 

of the 

best 

arg. 

Cor- 

resp. 

max. 

differ. 

1 [0.1,0.4] 0.1 0.63 [0.1,0.5] 0.2 0.78 [0.1,0.4] 0.2 1.08 

3 [0.1,0.7] 0.3 0.33 [0.1,0.6] 0.2 0.45 [0.1,0.6] 0.5 0.8 

4 [1.1,1.2] 1.1 0.18 [1.1,1.2] 1.1 0.15 [1.1,1.2] 1.2 0.43 

5 [0.1,1.7] 0.5 0.33 [0.1,1.6] 1.1 0.45 [0.1,1.9] 0.9 0.6 

6 - - - - - - 1.3 1.3 0.05 

10 - - - - - - [5.4,10.0] 10 0.35 

12 [0.4,0.6] 0.5 0.78 [0.4,0.7] 0.5 0.75 [0.4,0.6] 0.5 1.15 

14 -0.1 -0.1 0.2 -0.1 -0.1 0.4 -0.1 -0.1 0.03 

15 [1.1,1.9] 1.3 0.5 [1.1,2.0] 1.4 0.68 [1.1,1.9] 1.4 0.93 

18 0.1 0.1 0.8 [0.1,0.3] 0.1 1.03 0.1 0.1 0.43 

20 [-0.9,1.8] -0.1 0.4 [-0.9,1.7] 0.2 0.6 [-0.9,2.0] 0.7 0.83 

23 [0.1,0.2] 0.2 0.75 [0.1,0.2] 0.1 0.73 0.1 0.1 1.2 

Table 6.9 Various methods applied to the whole images of face with respect to different 

datasets. 

 FERET LFW Yale 

T-

norm 

fam. 

num. 

Range 

of  

the 

param. 

Value 

of the 

best 

arg. 

Cor- 

resp. 

max. 

differ. 

Range 

of the 

param. 

Value 

of  

the 

best 

arg. 

Cor- 

resp. 

max. 

differ. 

Range  

of the 

param. 

Value 

of the 

best 

arg. 

Cor- 

resp. 

max. 

differ. 

1 
[-0.6,-
0.1] 

-0.3 0.11 - - - -0.1 -0.1 0.15 

2 - - - [2.9,5.6] 3.9 0.03 [3.3,10.0] 5.8 2.13 

3 
[-10,-
0.1] 

-9.4 0.09 - - - [-0.3,0.3] -0.2 0.02 

5 
[-10,-

0.1] 
-5.8 0.1 - - - [-10,-0.1] 0.5 0.03 

6 - - - - - - 2.3 2.3 0.02 

7 0.1 0.1 0.05 - - - - - - 

8 [2.7,6.2] 4.8 0.08 [8.2,10] 10 0.02 [7.7,10.0] 10 0.95 
9 [0.3,10] 1.3 0.11 [5.5,5.9] 5.5 0.01 [4.6,10.0] 7.9 0.09 

10 [0.1,10] 0.5 0.06 - - - [0.1,0.2] 0.2 0.03 

11 [0.1,0.4] 0.2 0.11 - - - - - - 
13 0.1 0.1 0.01 - - - - - - 

14 
[-

0.1,0.5] 
0.2 0.11 - - - [-10,-6.5] -7.4 1.39 

15 [0.1,0.9] 0.1 0.11 - - - [0.7,0.9] 0.9 0.04 

17 2 2 0.01 [1.7,2.2] 1.8 0.01 [1.8,2.7] 2.1 1.36 

20 
[-10,-
1.1] 

-10 0.11 - - - 
[-1.8,-
1.1] 

-1.8 0.04 

21 - - - [1.4,4.1] 2.2 0.02 - - - 
24 - - - [1.9,2.8] 2.2 0.02 [2.1,4.6] 2.9 1.37 

25 [0.1,1.1] 0.5 0.11 - - - [0.1,0.2] 0.1 0.09 

med. - - 0.05 - - 0.01 - - 2.04 
vot. - - 0.08 - - 0.03 - - 2.51 
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6.8. Further Generalizations of Choquet Integral 

In this part of the study, we analyze the further generalizations and 

modifications of the Choquet integral. The motivation for this study is the series 

of works with propositions of modifications of the Choquet integral in relation to 

the classification problems. Hereafter, we assume that the general assumptions 

on the Choquet integral parameters and its generalization given by the formula 

(6.18) are still valid. The following Choquet-like functions were introduced: 

𝐶𝑀(𝑥) = ∑ 𝑀(ℎ(𝑥𝑖) − ℎ(𝑥𝑖+1), 𝑔(𝐴𝑖))
𝑛
𝑖=1    (6.21) 

(Lucca et al. 2014, Lucca et al. 2015) 

𝐶𝐹(𝑥) = min(∑ 𝐹(ℎ(𝑥𝑖) − ℎ(𝑥𝑖+1), 𝑔(𝐴𝑖))
𝑛
𝑖=1 , 1)  (6.22) 

(Lucca et al. 2018) 

𝐶𝐶(𝑥) = ∑ (𝐶(ℎ(𝑥𝑖), 𝑔(𝐴𝑖)) − 𝐶(ℎ(𝑥𝑖+1), 𝑔(𝐴𝑖)))
𝑛
𝑖=1   (6.23) 

(Lucca et al. 2017) 

𝐶𝑂𝑏(𝑥) = ∑ 𝑂𝑏(ℎ(𝑥𝑖) − ℎ(𝑥𝑖+1), 𝑔(𝐴𝑖))
𝑛
𝑖=1    (6.24) 

(Lucca et al. 2016a) where 𝑂𝑏(⋅) is a so-called overlap function (i.e., 

commutative, increasing, continuous, 𝑂𝑏(𝑝, 𝑞) = 0 for 𝑝𝑞 = 0 and  𝑂𝑏(𝑝, 𝑞) =
1 for 𝑝𝑞 = 1), and 

𝐶𝑀𝑖𝑛(𝑥) = ∑ (min(ℎ(𝑥𝑖), 𝑔(𝐴𝑖)) − min(ℎ(𝑥𝑖+1), 𝑔(𝐴𝑖)))
𝑛
𝑖=1  (6.25) 

(Dimuro et al. 2018). Moreover, we propose to examine a set of several 

functions being modifications of the above formulas: 

𝐶𝑀𝐶(𝑥) = ∑ (𝐶(ℎ(𝑥𝑖), 𝑔(𝐴𝑖)) − 𝐶(ℎ(𝑥𝑖+1), 𝑔(𝐴𝑖)) + 𝐶(ℎ(𝑥𝑖) −
𝑛
𝑖=1

ℎ(𝑥𝑖+1), 𝑔(𝐴𝑖)))       (6.26) 

𝐶𝑀𝑀𝑖𝑛(𝑥) = ∑ 𝑀 (min(ℎ(𝑥𝑖), 𝑔(𝐴𝑖)) −min(ℎ(𝑥𝑖+1), 𝑔(𝐴𝑖)))
𝑛
𝑖=1   

         (6.27) 

𝐶𝑀𝑀𝑖𝑛2(𝑥) = ∑ 𝑀(min(ℎ(𝑥𝑖), 𝑔(𝐴𝑖)),min(ℎ(𝑥𝑖+1), 𝑔(𝐴𝑖)))
𝑛
𝑖=1  

         (6.28) 

𝐶𝑀𝑖𝑛𝑀(𝑥) =

∑ (min(𝑀(ℎ(𝑥𝑖), 𝑔(𝐴𝑖)), 𝑔(𝐴𝑖)) − min (𝑀(ℎ(𝑥𝑖+1), 𝑔(𝐴𝑖)), 𝑔(𝐴𝑖)))
𝑛
𝑖=1   

          (6.29) 

𝐶𝐷𝑖𝑓𝑓1(𝑥) = ∑ 𝑀(ℎ(𝑥𝑖−1) − ℎ(𝑥𝑖+1), 𝑔(𝐴𝑖))
𝑛
𝑖=1    (6.30) 

𝐶𝐷𝑖𝑓𝑓2(𝑥) = ∑ 𝑀(ℎ(𝑥𝑖−1) + ℎ(𝑥𝑖+1) − ℎ(𝑥𝑖), 𝑔(𝐴𝑖))
𝑛
𝑖=1  (6.31) 

and 

𝐶𝐷𝑖𝑓𝑓3(𝑥) = ∑ 𝑀((ℎ(𝑥𝑖−1) − ℎ(𝑥𝑖+1))/ℎ(𝑥𝑖−1), 𝑔(𝐴𝑖))
𝑛
𝑖=1  (6.32) 
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6.9. Experimental Results 

Here, we discuss 27 experiments with settings similar to the described in the 

previous cases. AT&T, FERET, Yale, LFW, PUT, and MUCT datasets were in 

use. The details of each experiment are presented in Table 6.10. Our proposition, 

inspired by numerical methods formulas used in an approximation theory, 

namely, the 𝐶𝑀𝐶(𝑥) function produces the best results (it has hit Choquet 

integral in 22 of 27 competitions). However, the functions 𝐶𝑀(𝑥), 𝐶𝐹(𝑥), and 

𝐶𝐶(𝑥) produce also strong results (21 hits). Note that for a few series of 

experiments no winning function has been found. 

Table 6.10 Summary of experiments with various generalizations and modification of 

Choquet integral serving as aggregation function. The symbol X is put in for the 

aggregation operators giving the accuracy higher than Choquet integral with product 

under the integral sign. The last two rows are the sum of Xs and the sum of global best 

results, i.e., the number of results giving the best result in case of specific classifiers. 
Dataset, method 

of classification, 

partition of a face 

or specific 

methods 

CM CF CC COb CMin CMC CMMin CMinM CDiff1 CDiff2 CDiff3 

AT&T, 

Eigenfaces 

(Euclidean 

distasnce) for eb, 

eo, n, m, lch, rch 

X X X   X X X    

AT&T, 

Eigenfaces 

(cosine distance) 

for eb, eo, n, m, 

lch, rch 

           

AT&T, 

Eigenfaces 

(Canberra 

distance) for eb, 

eo, n, m, lch, rch 

X X X   X      

AT&T, 

Fisherfaces 

(Euclidean 

distasnce) for eb, 

eo, n, m, lch, rch 

X X X   X      

AT&T, 

Fisherfaces 

(cosine distance) 

for eb, eo, n, m, 

lch, rch 

X X X   X      

AT&T, 

Fisherfaces 

(Canberra 

X X X   X      
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distance) for eb, 

eo, n, m, lch, rch 

AT&T, LBP for 

eb, eo, n, m, lch, 

rch 

X X X   X      

AT&T, MBLBP 

(3 px) for eb, eo, 

n, m, lch, rch 

X X X   X      

AT&T, MBLBP 

(5 px) for eb, eo, 

n, m, lch, rch 

X X X   X      

AT&T, MBLBP 

(7 px) for eb, eo, 

n, m, lch, rch 

X X X   X      

AT&T, Full 

Ranking (3 px) 

for eb, eo, n, m, 

lch, rch 

X X X   X      

AT&T, CCBLD 

(3 px) for eb, eo, 

n, m, lch, rch 

X X X   X      

AT&T, 

Eigenfaces 

(Euclidean 

distasnce) for ext. 

e, n, m, face 

           

AT&T, 

Eigenfaces 

(cosine distance) 

for ext. e, n, m, 

face 

           

AT&T, 

Eigenfaces 

(Canberra 

distance) for ext. 

e, n, m, face 

X X X   X      

AT&T, 

Fisherfaces 

(Euclidean 

distasnce) for ext. 

e, n, m, face 

X X X   X   X   

AT&T, 

Fisherfaces 

(cosine distance) 

for ext. e, n, m, 

face 

X X X   X      

AT&T, 

Fisherfaces 

(Canberra 

distance) for ext. 

e, n, m, face 

X X X   X      

AT&T, pca X X X   X X X    
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(Canb.), lda 

(cos.), lbp, mblbp 

(5 px), full rank., 

ccbld 

FERET, 

Fisherfaces 

(Euclidean 

distasnce) for eb, 

eo, n, m, lch, rch 

X X X   X      

FERET, 

Fisherfaces 

(cosine distasnce) 

for eb, eo, n, m, 

lch, rch 

X X X   X      

FERET, 

Fisherfaces 

(correlation 

distasnce) for eb, 

eo, n, m, lch, rch 

X X X   X      

FERET, pca 

(Canb.), lda 

(cos.), lbp, ccbld, 

mblbp (3 px) 

     X   X   

Yale, CCBLD, 

MBLBP (5 px), 

MBLBP (7px) 

           

LFW, CCBLD, 

LBP, MBLBP 

(5px) 

X X X X  X X X X X  

MUCT, pca 

(Canb.), lda 

(cos.), ccbld, lbp 

(7x7), mblbp 

(3px, 7x7) 

X X X   X   X   

PUT, pca (Canb.), 

lda (cos.), ccbld, 

lbp, mblbp (3px), 

distances 

           

Sum of the results 

better than 

Choquet integral 

21 21 21 1 0 22 3 3 4 1 0 

Sum of global 

best results 
2 2 11 1 0 9 1 1 3 0 0 

Moreover, the best average calculated over all the experiments was obtained 

by the same integrand function as previously, see formula (6.20), with the 

parameter α=7.4. However, among all the descripted tests, the following five 

families of t-norms hit the individual classifiers’ results over 68 times (families 

no. 1, 3, 5, 15, and 20, respectively): 
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𝑇𝛼(𝑥, 𝑦) = (max(𝑥
−𝛼 + 𝑦−𝛼 − 1,0))

−
1

𝛼, 𝛼 ∈ (−∞, 0) ∪ (0,∞) (6.33) 

𝑇𝛼(𝑥, 𝑦) =
𝑥𝑦

1−𝛼(1−𝑥)(1−𝑦)
, 𝛼 ∈ (−∞,−1]   (6.34) 

𝑇𝛼(𝑥, 𝑦) = −
1

𝛼
log (1 +

(𝑒−𝛼𝑥−1)(𝑒−𝛼𝑦−1)

𝑒−𝛼−1
), 𝛼 ∈ (−∞, 0) ∪ (0,∞) 

         (6.35) 

𝑇𝛼(𝑥, 𝑦) = exp (1 − ((1 − log 𝑥)
𝛼 + (1 − log 𝑦)𝛼 − 1)

1

𝛼),  𝛼 ∈ (0,∞) 

         (6.36) 

𝑇𝛼(𝑥, 𝑦) = (1 +
((1+𝑥)−𝛼−1)((1+𝑦)−𝛼−1)

2−𝛼−1
)
−
1

𝛼
,  𝛼 ∈ (0,∞) ∪ (0,∞) 

         (6.37) 

6.10. Conclusions 

In this chapter, we have determined the most efficient aggregation operators 

in an application to the results of classifiers based on particular facial parts when 

the method of classification was Fisherfaces with 16 various 

similarity/dissimilarity measures utilized to compare the vectors representing the 

features. Choquet integral, median, voting, Hamacher function modifications 

and a few other operators appear as sound aggregation alternatives which may 

be considered in the systems based on several nearest neighbor classifiers. 

Next, we have examined 25 classes of t-norms by replacing the product t-

norm under the formula of the Choquet integral in the context of classifiers 

aggregation. Moreover, we have evaluated recently published new modifications 

of Choquet integral as well as with our own proposals. We based our tests on the 

facial parts and various methods utilizing the general nearest neighbor 

classification approach. In such an approach one of the families of t-norms 

exposed its well performance as the vehicle to build an effective classifier. 
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Conclusions and Future Work 

In this book, solutions of selected important face recognition and decision-

making theory problems on a basis of chosen Computational Intelligence 

techniques have been proposed. In the first chapter we have recalled the most 

important decision-making theory and Computational Intelligence techniques. In 

the next chapter we have analyzed the efficiency of local descriptors to cover the 

problems of aging and age differences in a face recognition aspect. The 

descriptors were also considered in a combination with Gabor wavelet images. 

The accuracies obtained during the experimental experiments show their 

potential efficiency. In particular, the Multi-Scale Block Local Binary Pattern 

descriptor has demonstrated its stability and invariance to the various kinds of 

problems (age gaps, age groups, similarity/dissimilarity measure applied to the 

nearest neighbor classifier, etc.). Moreover, a novel and efficient Chain Code-

Based Local Descriptor was introduced as a valuable vehicle to facial 

recognition. Feature work can focus on an enhancement of local descriptors 

theory or analyzing them in an application to significant face areas such as 

periocular region. An interesting may be an in-depth examination of 

combinations various LBP-based transforms and deep learning architectures. 

In the same chapter, we have thoroughly analyzed the performance of the 

Chain Code-Based Local Descriptor and its various extensions based on an 

application of pixel blocks instead of single pixels. CCBLD has demonstrated its 

robustness to various problems appearing in face recognition tasks such as 

aging, noise, occlusion, pose, illumination, or preprocessing level. In a series of 

tests CCBLD has shown its potential and outperformed other important local 

descriptors such as Local Binary Pattern or Full Ranking. Future studies may 

focus on the consideration of other than the Levenshtein method of word 

comparison, an examination of the rotation invariance problem, and an 

application of the descriptor to the fields of image analysis such as texture 

analysis or noise detection. 

The third chapter has dealt with methods of evaluation of the saliency of 

facial features in the process of face recognition realized by humans, and after 

adjustment procedures, in the processes carried by computers. The presented 

approach is based on the expert knowledge. In particular, it has been shown that 

the Analytic Hierarchy Process can efficiently serve as a generic approach of 

obtaining the weights of the facial features and their groups to be used by people 

(experts or witnesses of a crime) who describe faces. The three-level AHP 

hierarchy has been developed along with the entropy-based method of finding 

the relevance and confidence of the assessment of subjects. It is novel and 

original approach since the fundamental from the point of human perception 

linguistic (not numerical) values have been used to build important and 

intuitively appealing results. Moreover, the AHP has been used to construct the 
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classifiers based on human (expert) knowledge. It demonstrated recognition 

rates varying between 94 and 100%. It leads to the conclusion that the AHP-

based approaches can be important vehicles to improve the processes with 

important and dominating role of an expert or a group of experts. Future work 

may be focused on automatization of the process of the estimation of the both 

abstract and concrete facial features and applying the feature weights to the 

problems of aggregation of classifiers based on the facial regions, or an 

application of the entropy measure to estimate the crime witness. 

Chapter 4 has been devoted to a novel and in-depth approach to the AHP and 

fuzzy AHP techniques based on the graphic interfaces. This way of acquisition 

of the experts’ evaluations leads to very consistent results. A series of tests with 

real life problems (prediction of sports results, preferred movie genre, etc.) 

demonstrates the efficiency and potential applicability of the proposal. In 

addition, the examples of using show that the method can be easily applied to 

biometrics tasks, in particular, to the problem of description of biometric 

features. Finally, PSO-based optimization leads to marginalization of the 

inconsistency appearing in the experts’ reciprocal matrices. Future studies may 

be focused on an application of uncertainty modeling, e.g., an application of 

another slider related to the level of uncertainty and Granular Computing 

methods related to an optimal allocation of the granularity of information. 

Finally, it is interesting to check another geometric graphical components (multi 

range slider, dial arc with a range [-90°, 90°], etc.) or a time length (delay) of the 

decision-making by experts. 

In the chapter no. 5 an application of Sugeno fuzzy measure as a vehicle to 

quantify a manner of aggregation of the important information concained in 

facial regions or parts has been discussed. Its property of monotonicity in the 

context of face classification with respect to the saliency of facial regions has 

been thoroughly analyzed. On the basis of the experiments one can conclude that 

the fuzzy measure appears as an efficient classification model. Next, a novel and 

original approach to obtain the optimal values of the fuzzy measure densities 

being the fundamental part of the important concept of classification on a basis 

of aggregation with the Sugeno 𝜆-fuzzy measure and Choquet integral has been 

described. The densities relate to the saliency of facial regions or parts and the 

importance of particular classifiers, i.e., methods not related with particular 

facial features but with algorithms of classification. The proposed approach has 

demonstrated high efficiency in the series of experiments conducted for the 

classical face recognition methods such as Eigenfaces, Fisherfaces, and local 

descriptors. Future work may be focused on the analysis of other than 

Eigenfaces and Fisherfaces methods in relation to the application of fuzzy 

measure, analysis of the problem of increasing (high) number of facial features, 

or a comprehensive study of eye area along with its subareas and their influence 

on the recognition processes based on the fuzzy measures. Moreover, exploiting 

other than PSO optimization techniques or finding the optimal weights for other 
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than the Choquet integral-based aggregation methods such as OWA (Ordered 

Weighted Averaging) operators. 

In the last chapter, the most efficient aggregation operators in an application 

to the results of classifiers based on particular facial parts when the method of 

classification was Fisherfaces or Eigenfaces with 16 various 

similarity/dissimilarity measures utilized to compare the vectors representing the 

features have been analyzed. A several operators such as Choquet integral, 

median, voting, or Hamacher function and others appear as sound aggregation 

alternatives which may be successfully considered in the biometric systems 

based on the nearest neighbor classifiers. In the second part of the chapter 25 

classes of t-norms located in the place of the product t-norm under the formula 

of the Choquet integral in the context of aggregation of classifiers have been 

thoroughly checked. Moreover, various modifications of Choquet integral have 

been discussed in this aspect. We have based our tests on the facial parts and 

selected important methods utilizing the general nearest neighbor classification 

approach. One of the families of t-norms exposed its well performance as the 

vehicle to build an effective aggregation function for this group of classifiers. 

Future studies can be focused on the next generalizations of fuzzy integrals of 

Sugeno or Shilkret types. In addition, an interesting seems to be the question on 

the optimal classifiers number in relation to an aggregation operator. 




