
Probability in Action

edited by

Bartosz Przysucha

Politechnika Lubelska 

Lublin 2017

P
ro

b
a

b
ility

  in
 A

c
tio

n
Politechnika Lubelska 

From the Preface:  

We present to the readers the third volume of the book Probability in Action. The main purpose 
of the book discussed in the previous two parts has not changed. The book presents research 
carried out by the scientists of the Lublin University of Technology (…) also includes the papers 
contributed by our collaborators from other universities (…).

Research works discussed in the book involve probability theory, and statistics and its applications. 
These studies were conducted in the area of pure and applied mathematics in game theory,  
financial analysis, acoustics, and economy.

From the Review: 

The volume contains articles describing applications of probabilistic methods to various 
problems of everyday life ranging from the role of disinformation in political and military 
games to optimal insurance policies and risk assessment in credit market operations.  
I believe that its content may be of interest to a wide variety of specialists and thus recommend 
the publication of the volume…                                                                                                                                 

   Prof. dr hab. J. Kozicki
                                                            Institute of Mathematics, UMCS 
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Preface 

We present to the readers the third volume of the book Probability in 

Action. The main purpose of the book discussed in the previous two parts 

has not changed. The book presents research carried out by the scientists 

of the Lublin University of Technology: Przemysław Kowalik, Tomasz 

Warowny, and Ruslan Motoryn (Department of Quantitative Methods in 

Management, Faculty of Management), Ernest Nieznaj, Małgorzata Mu-

rat and Iwona Malinowska (Department of Mathematics, Faculty of 

Electrical Engineering and Computer Science) and by Ewa Łazuka (De-

partment of Applied Mathematics, Faculty of Fundamentals of 

Technology). This volume also includes the papers contributed by our 

collaborators from other universities – Tadeusz Banek (Faculty of Eco-

nomical and Technical Sciences, Pope John Paul II State School of 

Higher Education in Biała Podlaska, the former head of the Department 

of Quantitative Methods in Management of the Lublin University of 

Technology and the creator of the Probability in Action series), Bartło-

miej Stępień (Department of Mechanics and Vibroacoustics, AGH 

University of Science and Technology in Kraków), Andrii Kaminskyi and 

Konstantyn Pysanets (Faculty of Economics, Taras Shevchenko National 

University of Kyiv). 

Research works discussed in the book involve probability theory, and 

statistics and its applications. These studies were conducted in the area of 

pure and applied mathematics in game theory, financial analysis, acous-

tics, and economics. 

The book contains a presentation of a wide range of research on ap-

plied mathematics, organized in 10 thematically separate articles. The 

exception are two articles: Disinformation – advanced weapon in political 

and military games, which describe the same problem on two levels: a ze-

ro-sum matrix game and a non-matrix game – a stochastic view. 
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 Disinformation – advanced weapon  

in political and military games: 

 basic ideas – zero sum matrix games 

 

Keywords: disinformation, game theory, strategy, politics. 

Abstract 

A disinformation action is aimed at setting up a trap. It consists of creating a so-called 

“false game”, which is perceived by the opponent as the original game, i.e. the one that de-

scribes the actual nature of the conflict. Even the best strategy created for the false game 

will not work in the original game, and so, the manipulated player, falsely assuming that 

he plays the original game, applies a strategy which is ineffective with the real threats, thus 

falling prey to the manipulator. The approach proposed here may be a powerful tool in the 

political conflict and the special operations. In the papers we give analytical tools for stud-

ying games with disinformation, and a methodology necessary for initiating, using and 

conducting them. We present a numerical example which illustrates the key idea of con-

ducting disinformation in such games. Finally, we propose an algorithm which, step-by-

step, describes our approach for integrating disinformation into the classical scheme of 

game theory. To make things easier it is done for matrix games and in particular for zero-

sum matrix games. 

1    Introduction 

When writing about contemporary political games (with or without disinfor-

mation), one must start from a very general observation: it is hardly ever known 

what is at stake in a specific political game. Observers (and occasionally some 

players) are being informed about the actions being conducted, probably about 

implementations of the adopted strategies, but only those who are intended to be 

communicated, or those which relevant services managed to establish. Even 

though the general goal of the opponent is largely known, the stake in the current 

game usually is not. This is the basic difficulty in analysing such games and an 

irremovable barrier to implement the results of mathematical game theory 

([1,2,4]). In the latter, it is assumed that the goals of the game are either known 

                                                 
1 Faculty of Economical and Technical Sciences, Pope John Paul II State School of Higher Educa-
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to both players or there may be assigned known probabilities (stochastic games 

[3,4]). However, in stochastic games the entire analysis, and thus also the solu-

tions obtained, depend on the probabilities assumed at the beginning; as one is 

not able to verify these probabilities, no serious use of these games is possible in 

the political and military domain.  

This paper shows how to surmount that difficulty and take advantage of the 

potential of mathematical game theory. The paper is addressed to practitioners 

who want to apply disinformation methodically, particularly in politics in order 

to lead an opponent into a trap of the so-called false game (FG). The distorted 

image of the conflict is aimed at triggering a reaction of the opponent which will 

be detrimental for him in the real conflict.  

1.1   Relations with traditional game theory 

It should be emphasized that the proposed methodology goes beyond the 

framework of traditional game theory ([1,2]). That framework is shaped by the 

fundamental paradigm that the opponent is equally as cunning and intellectually 

able as we are. This can be explained as follows. Being ‘equal’ means being ‘at 

most’ and ‘at least’ simultaneously. Let us begin on ‘at most’ first. This para-

digm is included implicitly in the fundamentals of game theory (see [1,2]), at 

two points: (1) players act ‘rationally’, (2) the game has some prescribed rules, 

(which are given and known to players, or not). As rationality can be defined 

differently, depending upon players’ individual preferences and abilities, the 

point (1) means ‘players act rationally according to his own rationality’. To cre-

ate the conflict model, each player has not only to define his own rationality, but 

to estimate ‘rationality’ of the opponent as well. Together with the game rules 

taken from (2) all players’ intellectual abilities are fixed in the model created by 

an individual player. Certainly, the model cannot include elements outside of 

creator’s imaginations, but, on the other hand, it is created under the pressure of 

risk of opponent’s underestimation. This proves the ‘at most’ part with a strong 

indication toward ‘as close to equal as possible’. To see the ‘at least’ part look 

how the game is solved according to the game theory standards. The min-max 

strategy is the best response against opponent’s best strategy, where the best 

strategy (or response) is defined via the maximization (or minimization) opera-

tion, i.e., it has an absolute meaning. Hence a min-max procedure forces a player 

to find the best response against an opponent whose skills are at least as high as 

ours. This proves the ‘at least’ part. 

In order to apply game theory methodology in the practice of political and 

military conflicts we have to check all candidates’ intellectual abilities first and 

select only those who passed successfully the ‘equity’ exam! What if we met an 

idiot or, much worse, had the misfortune to confront with Alcibiades, Talleyrand 

or Julius Cesar? How must we identify all strategies at the disposal of these op-

ponents? This kind of player’s limitations we shall call “intellectual constraints”. 
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It is a huge paradox that a unique rigorous mathematical theory pretending to be 

useful in the practice of political and military conflicts is restricted by such unre-

alistic assumptions. Opposed to that, our methodology assumes that the oppo-

nent can be cheated. Such a successful disinformation action may give him 

a false image of the conflict. The history of political and military games offers 

enough examples to back such an assumption, whereas game theory itself offers 

no scheme for breaking free from this restrictive and unrealistic traditional para-

digm. This paper is a step in that direction. 

Inspired by two classic books, “The Art of War” ([6]), by Sun Tzu, and “New 

Lies for Old” ([5]) by Anatoliy Golitsyn, this paper can, in some restricted sense, 

be considered as a mathematical extract from these prototypes. 

The basic part of the work is devoted to the use of disinformation in two-

person zero-sum matrix games. We analyse the situation of a player who knows 

that he is being misled and that his image of the conflict is a false one, but he is 

also aware that he has no other. We pose the problem of getting the real picture 

of the conflict from the knowledge of the false one, and we show that the solu-

tion involves reversing the disinformation action. 

2    Disinformation in games 

We begin with some general remarks. Disinformation has always accompa-

nied political and military conflicts. However, the scale and range of techniques 

used nowadays in such actions is a new phenomenon and it should be assumed 

that this increasing trend will continue and even accelerate, propelled by new 

developments in information technology.  

Games may be played against: 

1. an external opponent (a foreign country); 

2. an internal opponent (political opposition); 

3. a total opponent (a foreign country and its agents located in the home 

country). 

Disinformation may concern: 

a) intentions (e.g. the place of landing the enemy troops); 

b) goals (e.g. a game aimed at breaking up an enemy alliance by creating 

and disclosing a conflict of interests between the allies). 

This paper is limited to a detailed discussion of item 1b.Item 1a is briefly al-

luded in Digression 1.  

3    Disinformation in zero-sum games 

Disinformation is a part of a political or military action aimed at misleading 

an opponent and giving him a false image of the conflict. The real goals of the 

disinformant (D) are hidden from his opponent (O), and replaced by other ones, 

seemingly as important. In this way, the original game (OG) which D wants to 

win turns into two games: OG and the false game (FG). Unaware of that, O de-
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velops the best (in his opinion) strategy (FGS) for the game FG, while that strat-

egy is in fact implemented in the original game OG. As OG and FG differ one 

from another in the way which is known only to D, the strategy FGS will not be 

successful in OG. Moreover, that strategy is transparent to D, because he has 

created FG and is able to analyse it. To make matters worse, it is D who can 

develop a counterstrategy against FGS, the one that will work best in the original 

game too! 

Examples 

1. To illustrate the above ideas, let us consider the extremely simplified mod-

el of a zero sum game with the payoff matrix 

� = �1 0 37 2 61 1 3
. 
D chooses one of the rows of � and O one of the columns. The payoff for D 

(and the loss for O) is the element in the chosen row and column. In this game, 

optimal strategies for the players are as follows: the second row for D, the sec-

ond column for O. The result of the game is 2, which means that O pays D two 

units. Choosing the second row is the optimal strategy for D as it guarantees 

a win of 2 (if O plays the second column), or wins of 7 or 6 if O plays the first or 

third column, respectively. Choosing the second column is the best for O as it 

guarantees a loss no higher than 2 (if D plays the second row), or even smaller 

losses of 0 or 1 if D plays the first or third row, respectively. Guaranteed 

wins/losses are equal and result is the best possible outcome for both players. 

Let us see what happens if we replace one sensitive element �� = 7 in the 

second row and first column of �, creating a false game with matrix  

� = �1 0 31 2 61 1 3
. 
In that game, the best strategy for O is to choose the first column as this guaran-

tees a loss no higher than 1, while the other columns carry a risk of losing 2 or 6. 

However, applying that strategy (first column) is disastrous for O when the game 

is played on the matrix � of the original game. Now, playing the second row, D 

wins as many as 7 units, which is the best possible outcome in game �, achieved 

as a result of game analysis and a successful disinformation action. 

2. Suppose that in a game with matrix 

� = �0 1 37 2 60 1 3
 
D managed to “convince” O that D is bound not to play the second row, i.e. that 

the matrix  
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�0 1 30 1 3� 
is the original matrix of the game. Then the best strategy for O would be to 

choose the first column, giving him a loss of only zero. However, when executed 

on the matrix � that strategy gives D a win of 7 (and thus a loss of 7 and not 0 

for O). 

3. Now, let us consider a simple zero sum game with � = � 1 −1−1 1 �. 
As it is easy to compute, the strategies (�, �) �= �col(1/2,1/2) are optimal 

and the value of the game �(�) is 0. Now, let us assume that in the result of 

disinformation the player Q is convinced that the true playoff is � = �1 −1 1 �, 
where  �is a given number. Simple computations show that now the min-max 

strategies (�( ), �( ))� are 

(�( ), �( )) = ! 2/(3 −  )(1 −  )/(3 −  )" 
for  � < 1 and the value of the game in this case is �(�) = � (1 +  )/(3 −  ) 
and �( ) �= �( ) = �01� 
if  > 1 with the value of the game is �(�) = �1. 

4. Assume now, that P successfully applied disinformation described in the 

example above to the original game G, i.e., P knows that Q plays on the matrix �. Being sure that Q will play strategy q in the primary game �, he may apply 

the best counterstrategy p(��)against �( ). This leads to the simple maximiza-

tion problem 

max� ,1 +  3 −  (2� − 1); 0 ≤ � ≤ 1/ 
with the obvious solution for  � < 1  �(��) �= �10�, when x belongs to (−1,1), 

�(��) �= �01�, when x belongs to (−∞,−1) 
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and the corresponding winning for P is 

�(��) = 11 +  3 −  1. 
Moreover, it should be noted that not only the values �(�)and �(��) are dif-

ferent, but the strategy �(��) is deterministic as opposed to mixed strategies �(�)�or �(�).� This shows that the proper selection of x can be very profitable 

for P giving him the high wins with no risk of errors occurring when the initially 

intended disinformation playoff x is wrongly estimated by Q, as could be in the 

case when the game value has the form similar to �(�). 
Generally, the following claim is not surprising. 

Claim. Disinformation is always profitable when applied to zero-sum games. 

Proof. Indeed, let (�(2), �(�))� be a pair of optimal min-max strategies in the 

original game G, i.e., �3��(�) ≤ ��3(�)����(�) ≤ ��3(�)����
for any (�, �). Playing optimally �(�) in the game �, player Q may secure �3(�)���(�), where �3��(�) ≤ ��3(�)��(�) ≤ ��3(�)��. 

However, since �(�) generally differs from �(�), we have ��3(�)���(�) ≤ ��3(�)��(�). 
Moreover, if P knows (�), then he can do better by applying �(��) defined 

in the condition �3(��)���(�) ≤ � �max45 ��3��(�) 
Obviously,  ��max45 ��3��(�) �≥ ��3(�)��(�) 
hence �3(�)��(�) ≤ ��3(�)���(�) ≤ ��3(��)��(�) 
proving the claim.  

Looking in the opposite direction one may say another claim. 

Claim. If disinformation was used as a rule, then it was applied to the zero-sum 

games. 

Let us now move from those particular cases to a general discussion.  

For that purpose, let us consider a game in which payoffs (wins or losses) are 

presented in the form of a matrix with n rows and m columns:  
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� ≝ ����… …��9… …��:�;�… …�;9 … …�;:�<�… …�<9… …�<:
 
The game is as follows: one player (D) chooses one of the rows of the matrix 

and the other player (O) chooses one of the columns. The players do not inform 

each other of their choices which are being made simultaneously. If D chooses 

row�= and O chooses column >, the payoff is the element �;9 in row = and col-

umn >. To fix ideas, we assume that �;9 is the payoff paid to D by O. If �;9 

turned out to be negative, D would pay O a win of �;9. In the literature, such 

games are called two person zero-sum matrix games. The mathematical theory 

of such games is widely known ([1]), as are the procedures for analysing and 

solving them. Let us assume that this very game with payoff matrix � is the 

original game for player D. If D can suggest that the game they are playing has 

payoffs specified in another matrix, e.g.  

� ≝ ?@��… …@�9… …@�:@;�… …@;9 … …@;:@<�… …@<9… …@<:A 
with @;9 different from �;9, then it is a classic example of a disinformation action 

mentioned at the beginning. In that case, O, believing that he is playing game �, 

develops the best (in his opinion) strategy against D, which has been referred to 

before as the false game strategy (FGS). In fact, that strategy is being used in the 

original game A. Of course, player D is familiar with that strategy as he has cre-

ated game � himself, knows the payoffs in it and is able to reconstruct O’s strat-

egy, i.e. FGS. With this knowledge, D can easily calculate the best response to 

FGS, while of course taking into account the fact that the real game has payoffs 

specified in the matrix �. Basing on the above pattern, it is easy to formulate the 

Optimum Disinformation Problem. 

It consists in distorting the matrix � into a matrix � in such a way that the 

strategy FGS calculated by O based on the matrix B is as advantageous as possi-

ble for D in the original game �. Formally, the distorting ∆ is an operation  C(D,E) ∋ �� → �Δ�(�) = �� ∈ �C(D,E) 
where C(D,E) is a set of all D – row and E - column real matrices.  

4    Mathematical model of the problem games 

We assume that A, B are matrices of the same dimensions. The standard n-

dimensional simplex is defined by 
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L< ≝ MN ⋴ ℝ<; �N; ≥ 0,QN; = 1<
;R� S. 

The best strategy �(�) of player O in the game on the matrix � is defined by 

the condition  ̂�, ��(�)̂ ≤ �max45 ̂�, ��(�)̂ ≤ �max45�
minXY �̂�, ��̂ 

for all � ⋴ L<, � ⋴ L:, where  ̂∙,∙̂ denotes the scalar product.  

As this strategy depends on the matrix �, we have denoted it by �(�). The 

best response of player D is the solution of the linear programming problem  max[̂�, ��(�)̂; �� ⋴ L<\, 
which depends on �(�), and hence on �. Let us therefore denote it by �(�(�)). 

Let #� signify the number of non-zero elements in the matrix �. We introduce 

a matrix index by setting 

^(�) ≝ (#�)!`Q �;9<,:
;,9R�  

This index strongly distinguishes matrices depending on the number of non-

zero elements. Disinformation actions which change payoffs in the game matrix 

from � to � may be costly, and the costs increase with the number of elements 

changed and the scale of the changes. The above index is aimed at measuring the 

scope and scale of the changes. It is of importance when constructing the false 

game matrix �. 

Remark: The assumption that the matrices � and � have the same dimensions, 

i.e. C(D,E) ∋ �� → ∆(�) = �� ∈ �C(D,E)� 
is of technical nature, but it does not restrict the generality of our considerations. 

If � has different dimensions, e.g. �a rows and b columns, it is enough to expand 

both � and � by adding zero entries to max(D, a) rows and max(E, b) columns. 

In the general variant, the matrix dimensions may be different. A larger matrix � 

corresponds to conflict escalation, a smaller to de-escalation.  

a. The Optimum Disinformation Problem (ODP) 

For a given matrix �, and c > 0, we search for max�[̂�(�(�)), ��(�)̂;^(� − �) ≤ c\ 
over all matrices B of the same dimension as A.  

Explicitly, ODP may be presented as follows. 
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Find  

max4d Mmax45 �ê�, ��(�)̂�; ̂N, ��(�)̂ ≤ �max4f ̂N,��̂g ; �^(� − �) ≤ c�S 
Remark. Sometimes it would be desirable to consider an weaker version of this 

problem when the goal is to force the opponent to play some particular strategy �h. The problem takes the form: Find � minXd [��[�h − �(�)]���; �^(� − �) ≤ c�\ 
over all matrices � of the same dimension as �, if a difference �h − �(�) should 

be measured in the image of �, or simply  minXd [��h − �(l)���; �^(l − m) ≤ c�\, 
if not. 

Disinformation directions. 

After finding the solution �(�, c) of ODP, one can examine which elements 

of the matrix �� should be modified, and by how much.  

It is the position of the elements subject to change in the matrix � that indi-

cates the directions of optimum disinformation, and the size of those elements 

corresponds to the intensity of disinformation action aimed at distorting the pic-

ture of the conflict. 

5    The algorithm 

a. Creating the matrix � of the original game 

This is the task for political and/or military analysts in close cooperation with 

mathematicians. It consists in:  

1. Identifying all major imaginable strategies of both players. This stage 

requires imagination and a capacity for creating operational combina-

tions and forming them into strategies and counterstrategies. 

2. Assessing the outcome of confronting each pair strategy vs. counter-

strategy.  

3. Assigning a numerical value (payoff) to each outcome of confrontation 

according to a single unit of measurement for all game outcomes. 

4. Entering those numerical values into appropriate places in the matrix. 

This stage is of utmost importance and should be verified many times based 

on the entire body of knowledge gathered in the all available information re-

sources, as it is aimed at recreating the real background, scope and goals of the 

conflict. The game matrix is a model of the actual conflict of interests. The task 

is an extremely delicate and complex one, as in real political games particular 

strategies are usually implemented not through one move, but through an entire 
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sequence of actions coordinated in time. An additional factor to be taken into 

account is the state of information resources during the implementation of that 

sequence, and the fact that they may dynamically expand. Such a situation may 

be conveniently described by creating a so-called dendrite (directed graph) 

which makes it easy to write the final outcome (payoff) of confronting a pair of 

strategies in the form of an element of a matrix. In the literature, this is referred 

to as transition from the extensive form (of the game) to the normal form ([1,2]). 

b. Defining optimal strategies in the original game � 

Having specified the matrix �, we find a pair of optimal strategies for play-

ers, and the corresponding values of the game. This may be done with the use of 

a spreadsheet or – in the case of large matrices – by applying more specialized 

tools, e.g. MATLAB. 

c. Creating the matrix B of the false game 

This consists in transforming the matrix � into a matrix � by changing the 

values of some elements (payoffs). It can only be done after analysing in which 

subject areas, and to what extent, influencing the opponent’s information centres 

is possible; this leads to selecting those elements of � that can be changed, and 

determines the scope of the changes. Only then can one mathematically analyse 

the impact of the selected elements, leading to the modification of elements of �. 

Such analysis will be the subject of another paper. Its summary is presented 

below in the form of a procedure: 

1. Arrange the elements of the matrix in non-increasing order. 

2. Consider the largest element  �;9.  

3. Analyse how many elements of column > must be modified and by how 

much to make it the dominating strategy for O in the modified game. 

4. Check if the change is possible in the light of available impact means. If 

yes, complete the procedure. If not, go to 5. 

5. Conduct the same reasoning for the second largest element, etc. If the 

outcome is satisfactory, finish; if not, go to 6.  

6. Analyse the combined impact of two largest elements of �, modifying 

item 3 in order to answer the question: how and by how much one should 

change the elements in columns in which those largest elements occur in 

order to make the strategy of choosing those columns the dominating 

strategy for player O. If the outcome is satisfactory, we finish the proce-

dure; if not, go to 7.  

7. Go back to 6, taking into consideration the next two, three elements etc. 

Remark. Implementing steps 1 to 7 leads to solving the Optimum Disinfor-

mation Problem (ODP). 
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d. Solution of the false game �. 

Similarly to the procedure for the original game, we now calculate the opti-

mal strategy “q” for player O in the false game �. 

e. Return to the original game � 

Having established the strategy “q” of the manipulated opponent (SOB, strat-

egy of player O in the false game �), we apply it to the original game �. We 

then solve the linear programming problem 

{�max̂�, ��̂�} 

over all probability distributions on strategies p of D, the result of which is the 

best counteraction against the manipulated O. 

f. Assessment of disinformation effectiveness  

This consists in comparing the result from item (e) with the result from item 

(b). If the difference between the results, relative to the costs of the disinfor-

mation action, is satisfactory, we finish the calculation procedure and move on 

to the implementation stage.  

If the difference is not satisfactory, we return loop-like to (c) and repeat all 

steps of the Algorithm until the result is satisfactory. 

g. Implementation 

Previous stages lead to finding the matrix � of the original game and the ma-

trix � of the false game, which differs from � in one or more elements. These 

elements determine the payoffs when the players confront certain strategies. 

A disinformation action should now be conducted so as to make O think that the 

payoffs will be as calculated in the matrix �. After completing the disinfor-

mation action, the actual game may be started, i.e. we apply the strategy calcu-

lated in (e). 
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A few remarks about point processes on the line 

 

Keywords: quasi Poisson point process, Poisson point process, Shepp example, Gumbel distribu-

tion, Burr distribution, generalized Poisson distribution. 

Abstract 

The purpose of this article is to provide the reader with several useful remarks about 

point processes. We deal, among other things, with a quasi-Poisson process, order statistics 

of point processes, the Gumbel, Burr and generalized Poisson distribution. 

1    Introduction 

The theory of point processes has many applications and models based on 

this theory can be applied in a broad range of disciplines. For example, in a book 

Case Studies in Spatial Point Pattern Modelling by A. Baddaley et al. (that is 

[1]), there is a bunch of articles concerning e.g. 

• forestry and plant ecology (for modelling positions of trees and plants) 

• epidemiology (home locations of infected patients) 

• zoology (burrows or nests of animals) 

• geography (positions of human settlements, towns or cities) 

• seismology (epicentres of earthquakes) 

• astronomy (locations of stars or galaxies). 

There are also several chapters in [13] devoted to Poisson point process 

methods applied to tomographic imaging in medicine. Therefore the theory of 

point processes is not only for its own sake, but may be useful in applied scienc-

es. This article is about several aspects of the theory. We finish this section with 

two definitions. A point process on a measurable space (�,ℰ) is a random vari-

able, usually denoted by Π, whose realizations are subsets of � containing 

a finite or countable number of points. Thus for a fixed set � ∈ ℰ, the random 

variable�
(�) ≔ |Π ∩ �|�counts the points that ,,fall” in �. Assume that µ is a σ-

finite measure on � A Poisson process on (�,ℰ) is a point process Π such that 

the following conditions hold 
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(i) for any � > 2 and any pairwise disjoint subsets ��, … , �� ∈ ℰ, the random 

variables 
(��),… , 
(��) are independent; 

(ii) if � ∈ ℰ then 
(�) has the Poisson distribution with parameter �(�). 
A measure � is often called the mean measure of Π, since �[
(�)] = ��(�). For 

most applications E is ℝ, ℝ� or ℝ� 
with a standard Borel σ-algebra. 

2    Shepp example of a quasi-Poisson process on 〈0,1〉 
This example, given by a mathematician Lawrence Shepp (1936-2013), was 

first published in [6] by Goldman in 1967. It was later cited in several books, 

e.g. [12, 13]. We study in detail the construction of this process as opposed to 

the mentioned books. We use cdf as an acronym for a cumulative distribution 

function, i.e. �(�) = ℙ(!�≤ �), as well as pdf for probability density function, #(�) = �′(�). If !�, … , !� are independent and identically distributed, we write 

iid. 

We construct a process 
 on the interval 〈0,1〉 in the following way. In the 

first step take ' > 0 and then choose a natural number � with probability ()*'�/�!, where � = 0,1,2,…. If � = 0 then nothing happens. If ��≥ 1 and � ≠ 3 let  

��(��, … , ��) = ����…�� (2.1)

be the cdf of the points 0�, … , 0� of 
 where ��, … , �� ∈ 〈0,1〉. That means that 

we choose � points independently each with uniform cdf ��(�1) = �1, �1 ∈〈0,1〉, 2 = 1,… , �. It is clear how cdf given by (2.1) looks on the outside of 〈0,1〉�. If � = 3 we choose three points 0�, 0�, 0� from 〈0,1〉 in such a way that 

their joint cdf is given by  

��(��, ��, ��) = ������ + 4(�� − ��)�(�� − ��)�(�� − ��)� �⋅ ������(1 − ��)(1 − ��)(1 − ��) (2.2)

 

Figure 1. The counting random variable 7(8) has a Poisson distribution for any interval 8 = (9, :). 
Source: own elaboration. 

We show in Remark 2.1 that it is in fact a cdf for certain 4 > 0. Although 

one-dimensional marginals of �� are uniformly distributed on 〈0,1〉, it is not 
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a product of those marginals. Let � = (;, <) be a subset of 〈0,1〉. First we will 

prove that for = = 0,1,2, … we have  

ℙ(
(�) = =) = ()*(>)?) ('(< − ;))@=! . (2.3)

Fix = and denote (as in [5]) by B�(;, <, =) the probability that exactly = of the 

points 0�, … , 0� are in (;, <), ��≥ =. Then  

B�(;, <,=) = C�=Dℙ�({0�, … 0@ ∈ (;, <)} ∩ {0@G�, … 0� ≠ (;, <)}) 
= C�=D�� HI�

@

1J�
(!>(01) − !?(01)) I �

�

1J@G�
(!?(01) + !�(01) − !>(01))K 

where  

!?(0) = L1,����0�≤ ;0,����0 > ;.  

The above equality follows from the fact that ℙ(0 ∈ (;, <)) = �(!>(0) − !?(0)) 
and ℙ(0 ∉ (;, <)) = 1 − (< − ;). The first product in the above expectation 

may be written in the form Ȃ �(−1)O!?P(0�)…!?Q(0@) where ;1 equals ; or < 

for 2 = 1,… ,= and R is the number of ;’s. The second product we may write as Ȃ �(−1)O!?QSP!(0@G�)…!?T(0�) where ;1 equals ;, < or 1 for 2 = = +1,… , � and R is the number of <’s. The first sum is over all multi-indexes (;�, … , ;@) and the second over all possible (;@G�, … , ;�). So each term in the 

above expectation has the form  

U�U�!?P(0�)…!?Q(0@)!?QSP!(0@G�)…!?T(0�). 
Next, we have  

��V!?P(0�)…!?T(0�)W = ��(;�, … , ;�) = ;�…;�, 
for any ��≥ 1. If � ≠ 3 then it follows directly from (2.1). It is also true for � = 3, because the second term in �� equals zero if at least two of its arguments 

are the same or at least one equals 1, i.e. ��(;, ;, <) = ;;<, ��(1, ;, <) = ;< and 

so on. Hence considered expectation takes the form  

U�U�;�…;@;@G�…;� = (U�;�…;@)(U �;@G�…;�). 
The first sum on the right hand side is Ȃ �@1JX C=2 D (−;)1<@)1 which equals to (< − ;)@. The second one we write as  
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U �
�)@

1JX
U �

�)@)1

YJX
C� −=2 D Z� −= − 2[ \ ;1(−<)�)@)1)Y 

which equals to (; + (1 − <))�)@. Therefore  

B�(;, <,=) = C�=D (< − ;)@(1 − (< − ;))�)@,����� ≥ =. 
From this one gets Δ = < − ;,  

ℙ(
(�) = =) = U �
G^

�J@
()* '��! C�=DΔ@(1 − Δ)�)@

= ()* ('Δ)@=! U �
G^

�J@
('(1 − Δ))�)@(� − =)! = ()*_ ('Δ)@=! , 

which means that this is the end of the proof of (2.3). Now we investigate lack of 

independence property of 
. This is obviously caused by (2.2). Take for example 

�� = C�` , �`D, �� = C�` , a`D and �� = Cb` , c`D, see also Figure 2. We will show that 
(��), 
(��) and 
(��) are not independent by proving  

ℙde�
�

1J�
{
(�1) = 1}f ≠I�

�

1J�
ℙ(
(�1) = 1) (2.4)

First, observe that the left hand side of (2.4) equals  

(
(��) = 1, 
(��) = 1, 
(�) = 3), 
where � = �� ∪ �� ∪ ��. From this one gets  

ℙde�
�

1J�
{
(�1) = 1}f = ℙ(
(��) = 1, 
(��) = 1, 
(�) = 3) =�

= ℙ(
(��) = 1, 
(��) = 1|
(�) = 3) ⋅ ℙ(
(�) = 3) 
From (2.3) we have ℙ(
(�1) = 1) = �

` '()*/` for 2 = 1,2,3, and ℙ(
(�) =
3) = C�` 'D� ()hi*/3! , From (2.2) we have  

ℙ(
(��) = 1, 
(��) = 1|
(�) = 3) = j �
�̀
�̀ j �

à
�̀ j �

c̀
b̀ ��(k��, k��, k��) 

which equals C�`D� + 44284 C�`D��. Thus for any 4 > 0 the following holds  
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ℙde�
�

1J�
{
(�1) = 1}f = Z18\

� + 44284 Z18\
�� ⋅ 13! Z38 '\

� () �̀*�
�����������������������������������������≠ Z38 '\

� () �̀* =I�
�

1J�
ℙ(
(�1) = 1), 

which proves (2.4).  

 

Figure 2. The situation in which 7(8), 7(n) and 7(o) are not independent. This is a conse-

quence of (2.2).  

Source: own elaboration. 

Remark 2.1. We will show here that �� is a cumulative distribution function for 

certain 4 > 0. Write ��(��, ��, ��) = ������ + 4B�(��, ��, ��), where  

B�(��, ��, ��) = ������(�� − ��)�(�� − ��)�(�� − ��)� ∙�������������������������������(1 − ��)(1 − ��)(1 − ��). 
Therefore the pdf of �� equals  

#�(��, ��, ��) = 1 + 4q�(��, ��, ��),������, ��, �� ∈ 〈0,1〉, 
where q�(��, ��, ��) = ∂sPstshB�(��, ��, ��). Since two dimensional marginals 

of �� are uniformly distributed on 〈0,1〉�, i.e. ��(��, ��) = ����, ��(��, ��) =���� and ��(��, ��) = ���� (which implies #�(��, ��) = 1 and so on) we have  

j ��X q�(��, ��, ��)k�1 = 0,����2 = 1,2,3. (2.5)

Denote by = the minimum value of q� on 〈0,1〉� and observe that = < 0 by 

(2.5). Then v+ q��≥ 0 for any v ≥ �|=|. Therefore the function (v + q�)/� is 

a pdf defined on 〈0,1〉�, where � = w �〈X,�〉h (v + q�)k������. But from (2.5) it 

follows that � = v, so #� = 1 + �
x q� is a pdf. This means that �� is a cdf for 

any 4 ∈ (0, �x〉. ∎  

Example 2.2. Consider (less complicated) two dimensional cdf version of (2.2). 

Take a random vector (!, z) with joint cdf given by  
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�(�, {) = �{ + �{(� − {)�(1 − �)(1 − {)|}}}}}}}~}}}}}}}�
J�(s,�)

,�����, { ∈ 〈0,1〉. 
We write �, { instead of ��, ��, see Figure 3. Hence ! and z are uniformly dis-

tributed on 〈0,1〉. The pdf of (!, z) equals  

#(�, {) = 1 − 4�� + 8��{ − 4{� + 8{�� + 3(�� + {�) − 8�{ +�����������������������������+�6���{ − 18��{� + 6�{�, 
where q(�, {) = #(�, {) − 1. We have mins,�∈�q(�, {) = −1, where � = 〈0,1〉�. 

Hence for any v�≥ 1 the function 1 + �
xq(�, {) is a pdf and �{ + 4B(�, {) is a 

cdf for any 4 ∈ (0,1〉. From the joint cdf of !, z it follows are they are dependent 

with �����(!, z) = �
�cX and the correlation coefficient � = �

�X. ∎  

Suppose that the joint pdf of (!, z) can be expressed in the form  

#(�, {) = #(�)q({) + �(�)�({) − �({)�(�), (2.6)

where #, q are one dimensional density functions and �,� are odd and integra-

ble functions. Assume also that � ≠ �. Then the pdf of ! is # and pdf of z is q, 

however !, z are not independent. If �(!z) exists then �(!z) = �(!)�(z)  
due to w �w ��{�(�)�({)k�k{ = w �w ��{�({)�(�)k�k{. In consequence �cov�(!, z) = 0 and !, z are uncorrelated, see [5] and [11]. 

 

Figure 3. The cdf of a random vector (�, �), where � and � are dependent and uniformly 

distributed on 〈�, �〉 with �����(�, �) = �
���. The shaded region is the support of (�, �). 

Source: own elaboration. 

Example 2.3. Consider a random vector (!, z) with joint pdf given by  

#(�, {) = 1 + Z12 − �\ sin(2�{) − Z12 − {\ sin(2��),�����, { ∈ 〈0,1〉. 



A few remarks about point processes on the line                                                             27 

It has the form of (2.6) with �(�) = �
�− � and �({) = sin(2�{). It is easy to 

see that w ��X �(�)k� = 0 and w ��X �({)k{ = 0. Since |�(�)�({)|�≤ �
�, it is in fact 

a pdf. Hence !, z are uniformly distributed on 〈0,1〉, dependent and uncorrelat-

ed, see also Figure 4. One more example in this fashion. Consider a vector (!�, z�) with pdf  

#�(�, {) = 12 + 14 (|2(� − 1) − 1|)sin(2�{) − 14 (|2({ − 1) − 1|)sin(2��), 
where (�, {) ∈ 〈0,2〉 × 〈0,1〉 with ��(�) = �

a |2(� − 1) − 1| and ��({) = �({) 
from the previous example. The joint pdf has also the form of (2.6) because of w ��X ��(�)k� = w ��X ��(�)k� = 0 and |��(�)�({)|��a. Hence �cov�(!�, z�) = 0, !� is uniformly distributed on 〈0,2〉 and z� on 〈0,1〉. ∎ 

 

Figure 4: The joint pdf of dependent, uncorrelated random variables �,� with uniform 

distribution on 〈�, �〉. The construction is based on (1.6). 

Source: own elaboration. 

3    Point processes on the line  

We need here a few facts about order statistics. So we begin with a short in-

troduction to this topic. Suppose that !�, … , !� are iid random variables each 

with cdf �(�). If we arrange them in order of magniture !(�) ≤ �!(�)�≤ ⋯ ≤�!(�) we call !(�) the �-th order statistic, � = 1,… , �. In particular !(�) =min{!�, … , !�} and !(�) = max{!�, … , !�}. Define the range ¢ as !(�) − !(�). 
Denote by �(£)(�) the cdf of !(£), ¤ = 1,… , �. It is well known that �(�)(�) =��(�) and �(�)(�) = 1 − (1 − �(�))�. But there is the general formula (see e.g. 

[4], Chapter 2)  
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�(£)(�) = U �
�

�J�
C��D��(�)(1 − �(�))�)� ,����¤ = 1,… , � 

or in terms of pdf  

#(£)(�) = �!(¤ − 1)! (� − ¤)! #(�)�£)�(�)(1 − �(�))�)£, (3.1)

where #(�) = �′(�). If 1�≤ ¤ < ¥�≤ � then the joint pdf of !(£) and !(¦) equals  

#(£)(¦)(�, {) = �!(¤ − 1)! (¥ − ¤ − 1)! (� − ¥)! #(�)�£)�(�) ⋅����������������������(�({) − �(�))¦)£)�#({)(1 − �({))�)¦,������≤ {. 
Example 3.1. We consider here a Poisson process on 〈0,1〉 with intensity '. So, 

take ' > 0 and choose � with probability ()*'�/�!, � = 0,1, …. If ��≥ 1 we 

choose � points 0�, … , 0� independently with uniform distribution on 〈0,1〉. So 

this time (3.1) is applied for each �. Let �§(¨)(�) = ℙ(
(x)�≤ �|�) be a condi-

tional cdf, where � denotes an event that the number of points occuring is at 

least one. Because ℙ(�) = 1 − ()* we have  

�§(¨)(�) = 11 − ()*U�
G^

�J�
()* '��! ℙ(!(�)�≤ �) = ()*1 − ()*U�

G^

�J�
'��! ���

����������������= (*s − 1(* − 1 ,����� ∈ 〈0,1〉, 
and the pdf of 
(x) equals #§(¨)(�) = '((* − 1))�(*s. As for 
(�) we have  

�§(P)(�) = ()*1 − ()*U�
G^

�J�
'��! (1 − (1 − �)�) = 1 − (

)*s
1 − ()*  

and the pdf #§(P)(�) = '(*((* − 1))�()*s where � ∈ 〈0,1〉. By the symmetry it 

follows that the distribution of 
(x) is the same as 1 − 
(�). Indeed, we have �§(¨)(�) = 1 − �§(P)(1 − �). Computation gives  

�(
(x)) = (*(* − 1 − 1' ,����' ∈ (0,+∞). 
Note that lim*→XG�(
(x)) = �

� and lim*→G^�(
(x)) = 1. Due to 
(x) =¬ 1 − 
(�) we 

have �(
(x)) = 1 − �(
(�)), so  

�(
(�)) = 1' − 1(* − 1 ,����' ∈ (0,+∞), 
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see also Figure 6. In a similar way we find the pdf of 
(�) (we assume here that 

there are at least two points in 〈0,1〉). Because ℙ(
(〈0,1〉)�≥ 2) = 1 − ()*(1 +') we have  

#§(t)(�) = ()*1 − ()*(1 + ')U �
G^

�J�
'��! �(� − 1)�(1 − �)�)� =�

�����������= '�(*(* − 1 − ' �()*s,����� ∈ 〈0,1〉.���������������������������� 
We used here the fact that #(�)(�) = �(� − 1)�(1 − �)�)� by (3.1). From this 

we obtain  

�(
(�)) = 2' − '(* − 1 − ' ,����' ∈ (0,+∞). 

 

Figure 5. 7 is a Poisson process on 〈�, �〉 with intensity  > � and 7(�), … , 7(®) are its order 

statistics. 

Source: own elaboration. 

 

Figure 6. Comparison of �(7(®)) to �(7(�)) (left) and �(7(¯)) to �(7(�)) (right). 

Source: own elaboration. 

Note that lim*→XG�(
(�)) = �
�, lim*→G^�(
(�)) = 0 and obviously �(
(�)) ≥ ��(
(�)), 

see Figure 6. The joint pdf of !(�) and !(�) equals �(� − 1)({ − �)�)� for � ≤ �{ and � ≥ �2. Hence the joint pdf of 
(�) and 
(x) equals  
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ℎ(�, {) = ()*'�1 − ()*(1 + ')U �
G^

�J�
'�)�(� − 2)! ({ − �)�)� =�

��������������= '�(* − 1 − ' (*(�)s),����0�≤ � ≤ �{�≤ 1. 
Denote by #±(²) the pdf of ¢ = 
(x) − 
(�) (the range of 
). Then ℙ(¢ ≤�²) = w �w �� ℎ(�, {)k�k{, where � = {(�, {): {�≤ � + ²}. Hence  

�±(²) = j �
�)´

X
j �
´Gs

s
ℎ(�, {)k�k{ + j �

�

�)´
j �
�

s
ℎ(�, {)k�k{�

�������������= '(* − 1 − ' µ(*´ Z1 − ² + 1'\ − 1 − 1'¶, 
where ² ∈ 〈0,1〉. Obviously �±(²) = 1 for ²�≥ 1 and �±(²) = 0 if ² < 0. Thus 

the pdf of ¢ equals  

#±(²) = '�(* − 1 − ' (*´(1 − ²),����² ∈ 〈0,1〉. (3.2)

If ' → +∞ then the graph of #±(²) is moved to 1, see Figure 7. ∎  

 

Figure 7. The pdf’s of W (the range of S) for λ=1, 5 and 10.  

Source: own elaboration. 

Example 3.2. Define a point process in a half line in the following way. Choose ' > 0 and � with probability ()*'�/�!. If ��≥ 1 we choose � points 0�, … , 0� 

independently each with exponential distribution ·()¸s, where ��≥ 0 and · > 0. This time 
(x) ∈ (0,+∞) and one gets  
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�§(¨)(�) = ()*1 − ()*U�
G^

�J�
('(1 − ()¸s))��! = (*(* − 1C(*(�)¹º»¼) − 1D, 

where � ≥ �0. The pdf of 
(x) is then  

#§(¨)(�) = '·(*(* − 1 ()¸s)*¹º»¼ ,����� ≥ �0. (3.3)

Remark 3.3. The probability distribution with the density  

#�(�) = '·()¸s)*¹º»¼ ,����� ∈ ℝ, (3.4) 

where ·, ' > 0 is called the Gumbel distribution. Therefore (3.3) is the pdf of 

a truncated Gumbel distribution if we restrict its support to (0, +∞). Indeed, 

from the fact that w �G^X #�(�)k� = ((* − 1)/(* we get (3.3), see Figure 8.  

 

Figure 8. The pdf of Gumbel and truncated Gumbel distribution for  = �, ½ = �, see (3.3) 

and (3.4).  

Source: own elaboration. 

As for 
(�), the situation is different. Since �(�) = 1 − ()¸s then #(�)(�) =1 − ()¸�s and  

#§(P)(�) = '·(* − 1()¸sG*¹º»¼ ,����� ≥ �0. 
Observe that lims→)^()¸sG*¹º»¼ = +∞ therefore the above pdf cannot be 

extended to the whole line in a natural way, see also Figure 9. The joint pdf of 
(�) and 
(x) equals (again we assume that there are at least two points in (0, +∞))  
#(�, {) = ·�'�(* − 1 − ' ()¸s)¸�(*(¹º»¼)¹º»¾),����0 ≤ ���≤ {.����∎ 
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Figure 9. The pdf’s of ¿7(®) and ¿7(�) for  = �, ½ = �. The support of both densities is 〈�, +∞). 
Source: own elaboration. 

In the next two examples we use the geometric distribution. So take a random 

variable ! with ℙ(! = �) = À(1 − À)�)�, where � = 1,2,3… and À ∈ (0,1). 
Then �(!) = 1/À and  

limÁ→XGℙ(! > �X) = limÁ→XG(1 − À)�Â = 1, 
for any fixed �X ∈ ℕ. And of course limÁ→XG�(!) = +∞.  

Example 3.4. Sometimes the following Burr distribution (in fact its pdf) is very 

useful in the theory of point processes applied to physical phenomena, see e.g. 

[14],  

#Ä(�) = Å� Z� − Æ· \Ç)�

· Z1 + Z� − Æ· \Ç\�G�
,����� ∈ (Æ, +∞), (3.5)

where �, Å > 0 are shape parameters, · > 0 is a scale parameter and Æ ∈ ℝ is a 

location parameter, see Figure 10. The cdf of (3.5) is then  

�Ä(�) = 1 − Z1 + Z� − Æ· \Ç\)� ,����� ∈ (Æ, +∞). (3.6)
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Figure 10. The pdf’s of the Burr distribution for different parameters. In both cases the 

location parameter È = �. 

Source: own elaboration. 

We define a point process 
 on say (Æ, +∞) in the following way. Take À ∈(0,1) and choose � with probability À(1 − À)�)�, � ≥ �1. Next choose � points 

independently each with a given cdf �(�). Assume that the support of �(�) is 

also (Æ, +∞). Then we have  

�§(¨)(�) = ÀU �
G^

�J�
É�)���(�) = ÀÉU �

G^

�J�
(É�(�))� = À�(�)1 − É�(�), 

where É = 1 − À. We want to find �(�) for which �§(¨)(�) = �Ä(�). The solu-

tion to À�(�)/(1 − É�(�)) = �Ä(�) is �(�) = �Ä(�)/(À + É�Ä(�)) so the 

answer is  

�(�) = 1 − À(1 + ((� − Æ)/·)Ç)� − É ,����� ∈ (Æ, +∞).����∎ 

Example 3.5. Construct a point process in a half line in the following way. As in 

the previous example take À ∈ (0,1) and � with probability À(1 − À)�)�, � ≥ �1. 

Next we choose � points 0�, … , 0� from (0, +∞) independently, each with expo-

nential distribution ·()¸s. Hence if � > 0 then  

�§(¨)(�) = ÀÉU �
G^

�J�
ÊÉ(1 − ()¸s)Ë� = À((¸s − 1)À(¸s + É , 

and from this  

#§(¨)(�) = À·(¸s(À(¸s + É)� ,����� ≥ �0. 
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Computation gives  

�(
(x)) = −ln(À)·(1 − À) ,����À ∈ (0,1), · > 0. (3.7)

Observe that since À and · are independent parameters we have limÁ→XG�(
(x)) =+∞ for fixed · and lim¸→G^�(
(x)) = 0 if À is fixed. However if · = )ÌÍ(Á)
�)Á  then 

�(
(x)) = 1, so one can control (3.7).�∎ 

4    Generalized Poisson distribution   

A random variable ! has a generalized Poisson distribution if  

Î(! = �) = '(' + �·)�)��! ()*)�¸,����� = 0,1,2,…, (4.1)

where ' > 0, · ∈ 〈0,1〉 are constants. One can also define this distribution for · < 0, see [2]. However if · > 1 then the right hand side of (4.1) is not a prob-

ability distribution and it was shown in [10] that  

U�
G^

�JX
'(' + �·)�)��! ()*)�¸ = (*(Ï/¸)�) < 1, 

where � is the solution to the equation �()Ï = ·()¸, see Figure 11. Note that 0 < � < · therefore the above sum is smaller than 1. For ' = 1 and · = 1.1 

this sum is about 0.83. There are generally two ways of proving that (4.1) de-

fines a probability distribution. The first type of proof uses the Lagrange expan-

sion  

Φ(²) = Φ(0) +U �
G^

�J�
Ñ��! ⋅ k

�)�
k²�)� [#�(²)Φ′(²)]´JX, 

where Φ(²) is an analytic function and Ñ = ²/#(²), see Jensen [8] (equation 6, 

p. 309; in fact this is the above expansion with Φ(²) = (*´ and #(²) = (¸´). To 

the second type of proof (that is based on direct summation) one needs to apply 

the formula  

U�
�

�JX
C��D (−1)�(² + �)O = L0,����������0 ≤ �R ≤ �� − 1(−1)��! ,������R = �, ����� 

true for any complex number ², see [10], Lemma 2, or [15] for details. The read-

er should also look into an interesting article by Gould [7].  
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Figure 11. If ½ > � then the formula (4.1) does not define a probability distribution. Its sum 

equals Ò(Ó/½)�) where ÓÒ)Ó = ½Ò)½. 

Source: own elaboration. 

Example 4.1. The moment generating function of ! with a pdf given by (4.1) 

equals  

v(0) = �((ÔÕ) = ()*̧±()¸¹º»SÖ))*, 
where · ∈ (0,1〉 and ¢ is the Lambert’s function defined as ¢(�)(±(s) = �. 

The reader can find this for example in [2]. Hence ′(0) = v(0)'()¸GÔ¢′(−·()¸GÔ). Note that ¢(−·()¸) = −· (it follows from the 

definition of ¢ and this function is usually denoted by ¢X in this interval) and 

therefore v(0) = (*)* = 1. In order to find ¢′(−·()¸) we use the fact that ¢′(�) = ¢(�)/(�(1 +¢(�))). We have  

¢′(−·()¸) = ¢(−·()¸)(−·()¸)(1 +¢(−·()¸)) = 1()¸(1 − ·). 
Therefore �(!) = v′(0) = '/(1 − ·). ∎ 

Table 1. Basic facts about Poisson and generalized Poisson distribution. The Lambert × 

function is defined as ×(Ø)Ò×(Ø) = Ø. 

distribution of ! Poisson generalized Poisson 

density ()*'�/�! ('(' + �·)�)�)/�! ⋅ ()*)�¸ 

support � = 0,1,2, … � = 0,1,2, … 

parameters ' > 0 ' > 0, · ∈ 〈0,1〉 
�(!) ' '/(1 − ·) 
��(!) ' '/(1 − ·)� 

�((1ÔÕ) (*(¹ÙÖ)�) ()*̧±()¸¹º»SÙÖ))* 

Source: own elaboration. 
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5    Multinomial distribution 

In the theory of point processes, especially in the construction of a Poisson 

point process, a role is played by a multinomial distribution, see Kingman [9]. 

We will investigate one aspect of it in Example 5.1. Recall that a random vector !Ú = (!�, … , !�) has a multinomial distribution with parameters � and ÀÚ =(À�, … , À�) if  
ℙ(!� = ��, … , !� = ��) = �!��! …��! À��P …À��Û , (5.1)

where �� +⋯+ �� = � and ��, … , �� �≥ 0. We assume also that Ȃ ��1J� À1 = 1 

and À1 ∈ (0,1), 2 = 1,… , �. Note that !1 has the binomial distribution with pa-

rameters � and À1, so �(!1) = �À1 and �Ü;¤�(!1) = �À1(1 − À1). Denote Ý = (0�, … , 0�). The characteristic function of !Ú is �(Ý) = #�(Ý) where #(Ý) =À�(1ÔP +⋯+ À�(1ÔÛ. From this we have  

�ÔÙPÔÙt…ÔÙÞ(O) (Ý) = (Ȃ−1)O �!(� − R)! À1PÀ1t …À1Þ(1(ÔÙPG⋯GÔÙÞ)#�)O(Ý), 
where R�≤ � and all 2�, … , 2O are different. Hence we have  

�(!1P!1t …!1Þ) = �!(� − R)! À1PÀ1t …À1Þ , 
and in particular �cov�(!1, !Y) = −�À1ÀY for 2 ≠ [. The distribution (5.1) is in 

fact degenerate since if ��, … , ��)� are fixed then �� is completely determined. 

Example 5.1. We will find the joint distribution of !�, !� if the vector !Ú =(!�, !�, !�, !a) has the following distribution  

ℙ(!Ú = (��, ��, ��, �a)) = 4!��! ��! ��! �a! Z
14\

�P Z38\
�t Z14\

�h Z18\
�à , (5.2)

where �� + �� + �� + �a = 4. As we have already mentioned, the distribution 

of (!�, !�, !�) is the same as !Ú, namely  

ℙ(!� = ��, !� = ��, !� = ��) �=
= 4!��! ��! ��! (4 − (�� + �� + ��))! Z

14\
�P Z38\

�t Z14\
�h Z18\

a)(�PG�tG�h), 
where �� + �� + ���≤ 4. From this we get  

ℙ(!� = ��, !� = ��) = #(��, ��) Z14\
�P Z38\

�t ,������ + ���≤ 4, (5.3)

where coefficients #(��, ��) are given in Table 2. ∎  
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Figure 12. The urn contains 2 balls of color 1, 3 balls of colour 2, 2 balls of colour 3 and 1 

ball of colour 4. We draw 4 balls with replacement. This urn model leads to multinomial 

distribution (5.2).  

Source: own elaboration. 

Table 2. The joint distribution of ��, �¯ given by (5.3). 

   ��\�¯  0 1 2 3 4 

1 
818a À�XÀ�X 

1088� À�XÀ�� 
548� À�XÀ�� 

128 À�XÀ�� 
À�XÀ�a 

2 
1088� À��À�X 

1088� À��À�� 
368 À��À�� 

4À��À�� 0 

3 
548� À��À�X 

368 À��À�� 
6À��À�� 0 0 

4 
128 À��À�X 

4À��À�� 0 0 0 

5 À�aÀ�X 0 0 0 0 

Source: own elaboration. 

Example 5.2. One can apply (2.6) also for discrete random variables. For exam-

ple, let !�, !� be rv’s with the following binomial distributions  

 ℙ(!1 = �) = Ê��ËÀ1�(1 − À1)�)�,����� = 0,1,2, (5.4)

where 2 = 1,2 and À� = �
�, À� = �

�. We use the algorithm described in [11] to 

construct the distribution of (!�, !�), see Figure 13. We have �(!�!�) = �
� with 

�(!�) = 1, �(!�) = �
�  hence �cov�(!�, !�) = 0. 
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 �¯\�� 0 1 2 

0 
16144 

35144 
13144 

1 
13144 

32144 
19144 

2 
7144 

5144 
4144 

Figure 13. The joint pdf of dependent, uncorrelated random variables ��, �¯ with marginal 

distributions given by (5.4). 

Source: own elaboration. 
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New algorithms for evaluation of standard uncertainty 

of long-term noise indicators  

Keywords: uncertainty, non-classical statistics, interval estimation, bootstrap method 

Abstract 

This paper discusses various issues connected with the assessment of environmental 

noise pollution indicators and their uncertainty. Particular attention is paid to the process 

of interval estimation, which can be a promising tool for determining the standard uncer-

tainty. Moreover, the two classical models of interval estimation and five non-classical al-

gorithms based on the method of bootstrap resampling are mentioned. A theoretical basis 

and the methodology of determining the confidence intervals by using the proposed mod-

els is presented in detail. The most important properties of presented algorithms are dis-

cussed in terms of their applicability and effectiveness in the task of probabilistic environ-

mental noise analysis. In addition, the possibility of using them to determine confidence 

intervals of acoustic indicators describing the environmental risk of noise and their stand-

ard uncertainty is analysed. Based on the analysis, alternative models of currently used es-

timation methods have been identified and can be used successfully in the statistical analy-

sis of environmental noise pollution. 

1    Introduction  

Directive 2002/49/EC of the European Parliament [15] obligates the Europe-

an Union countries to implement the common long-term policy of the environ-

ment protection against noise. Its realisation is based on the estimation of long-

term noise indicators in the areas under protection. The two basic indicators are: 

the average A-weighted long-term day-evening-night level ����, and the aver-

age A-weighted long-term night-time level ��. 

The basis for creating noise maps for sites under protection are the values of 

the above-mentioned long-term noise indicators. Any plans to prevent and re-

duce the harmful effects of noise in the environment are then associated with 

their values. These indicators characterise the acoustic climate over a long peri-

od. Most often it is assumed that this is one full calendar year, so values of the 

indicators depend on many factors (i.e. traffic intensity, structure of the vehicle 
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stream, average vehicle velocity, type and technical condition of the road sur-

face, distance of the nearest buildings from the road edge, technical condition of 

the vehicles). Estimation of long-term noise hazard indicators requires access to 

results of an all-year-long sound level monitoring program. In practice, it is al-

most impossible to meet such a requirement. Therefore estimations of indicators 

are usually done on the basis of highly limited random sample. They are ob-

tained as results of environmental sampling inspections. Sample size � is very 

small and ranges from few to a dozen or so elements [31,17,28]. 

The necessity of validation of the obtained results, which requires the analy-

sis of uncertainty budget of estimation, is connected with the process of calculat-

ing the average long-term noise indicators determined by values ���� and ��. 

An essential component of such budget is the type A standard uncertainty de-

fined as the standard deviation of the mean from the inspections results. The 

rules given in the ISO/IEC Guide 98-3:2008 [1] are based on the point estima-

tion methods and commonly used in the calculations. They are based on the 

classic variance estimators under restrictive assumptions (i.e. normality of meas-

urements results, adequate sample size, lack of correlation between elements of 

the sample and observation equivalence). Results of acoustical measurements 

usually do not meet these assumptions [11,18,7]. 

A point estimation of noise indicators using classical [21,20,9] and non-

classical [16,8,25] approach has been already performed. It should be noted that 

the probability of point estimation of a parameter being equal to the actual value 

of the estimated parameter is close to zero. There is no information about the 

distance between expected value of the estimated parameter and the true value of 

the population parameter in the point estimation. Overrating or underestimating 

values of noise indicators can have notable social and financial consequences. 

For this reason, it seems to be necessary to examine the issue of confidence 

intervals of the expected value of long-term noise indicators. Because the point 

estimate is unlikely to be exactly correct, a range of values is usually specified in 

which the population parameter is likely to be. The confidence interval will in-

clude the true value of the population parameter with some probability. The in-

terval estimation takes into account the estimation error for a given confidence 

level, as opposed to the point estimation. 

For this reason, the interval data analysis is used in acoustics. This approach 

has been successfully applied, among other things, to real-time analysis of 

acoustic signal [19] and in uncertainty determination of the directional sound 

diffusion coefficient [26] as well as to planning measurement strategies [24,23]. 

The interval arithmetic finds application in modelling the railway noise [3] and 

in determination of other acoustic parameters such as reverberation time of 

rooms [4] and partitions sound insulation [5] and its uncertainty [6]. However, 

interval estimation algorithm based on kernel density estimator [29] is used in 

the analysis of long-term noise indicators. 
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The interval estimation can be applied to uncertainty evaluation what is pre-

sented in ISO/IEC Guide 98-3/Suppl.1:2008 [2]. This document describes appli-

cation of the Monte Carlo method in case of typical problems of the uncertainty 

evaluation to which include: 

• the contributory uncertainties are not of approximately the same magnitude,  

• it is difficult or inconvenient to provide the partial derivatives of the model,  

• the probability density function for the output quantity is not a Gaussian 

distribution or a scaled and shifted t-distribution,  

• an estimate of the output quantity and the associated standard uncertainty are 

approximately of the same magnitude,  

• the models are arbitrarily complicated,  

• the probability density functions for the input quantities are asymmetric.  

However, Monte Carlo applications within the framework of the long-term 

indicators assessment present two problems. First, Monte Carlo analysis requires 

knowledge of the probability distributions of the parameters under consideration 

and such distributions are rarely well defined. Second, acoustical measurements 

are expensive and Monte Carlo requires an often unfeasibly large number of 

measured realizations to obtain statistically meaningful results. 

For this reason, it seems to be necessary to implement solutions of non-

classical statistic for solving these problems. These techniques are based on non-

parametric statistical methods, allowing determining the distribution of a random 

variable without any information on belonging or not to any specific class of 

distributions and with a limited sample size. For this reason, in the following it is 

proposed to use different models for constructing confidence intervals by means 

of the bootstrap method. The bootstrap method has been successfully applied to 

point estimation of expected value and uncertainty of noise indicators [16,25]. 

2    Selected models of interval estimation 

While analysing the measurement data we need to remember that estimation 

of the mean value and standard deviation of normal distribution or estimation of 

an exponential distribution parameter is basically equivalent to the estimation of 

the probability distribution of population from which the random sample is tak-

en. Actually, the estimation of the aforementioned parameters is equivalent to 

estimation of the density function of population. The fact that to estimate the 

probability density function it suffices to calculate a finite number of numerical 

estimators is a result of an assumption of a relatively accurate knowledge of 

a probabilistic model which governs the examined phenomenon – we have as-

sumed that we know this model with the accuracy to a finite number of numeri-

cal parameters. In cases presented above, the estimation of parameters which 

define the unknown distribution of population can therefore be called a paramet-

ric estimation of probability distribution. The parametric estimation requires an 
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adequate random sample size. In practice � ≥ 30 is often considered an ade-

quate random sample size [22]. 

At the same time, a histogram is another estimation of the unknown popula-

tion density. Being discrete, the histogram can be replaced with a continuous 

estimator, e.g. an adequate kernel density estimator or an estimator based on 

splines. These estimators of unknown probability density function do not need 

any assumptions about the sought form of a function and therefore are called 

non-parametric estimators. This family includes also distribution estimators 

based on the jackknife and bootstrap methods and on the Bayes’ theorem wid-

ened to include the probability distributions. The basic advantage of non-

parametric estimators is possibility to draw inference from a small random sam-

ple of a few to a dozen elements which does not have asymptotic properties. It is 

for this advantage that non-parametric estimators are increasingly used in the 

probabilistic analysis of environmental noise. 

Below, it will be presented in detail two generally used parametric models 

and five different techniques for constructing confidence intervals using the 

bootstrap method. The discussed parametric models are based on the assumption 

that the analysed sample comes from the normal distribution population with a 

known (	
� model) or unknown (	
� model) standard deviation. However, the 

first two non-parametric methods are based on bootstrap "tables", and bootstrap 

percentiles are used in the next three algorithms. 

2.1   Parametric models (�� and �� models) 

Consider a random sample � = (��, ��, … , ��) from a normal distribution 	(�, 
) with a known standard deviation 
 (	
� model). It is known that the 

mean from the sample �̀ = ��Ȃ ��� � �� has a normal distribution 	!�, 
/Ȃ�$. 
Therefore, the random variable  

% = �̀ − �
/Ȃ� ≈ 	(0,1) (1)

has a standard normal distribution 	(0,1) [22]. The interval to which values of 

random variable % belong with probability 1 − ), where ) is a known number 

from the interval (0, 1) is given  *!+,/� ≤ % ≤ +�.,/�$ = 1 − ),  (2)

where +,/� and +�.,/� are the (100 ⋅ )/2)th and 100(1 − )/2)th percentile 

points of a standard normal distribution, respectively. These values are given in 

the standard normal table (e.g. +3.3�5 = −1.960). After substituting the right-

hand side of the expression (1) in place of % and rearranging, the confidence 

interval for the 	
� model is given by [22]  
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*!−+�.,/� ≤ % ≤ +�.,/�$= * 8�̀ − +�.,/� 
Ȃ� ≤ � ≤ �̀ + +�.,/� 
Ȃ�: = 1 − ).  (3)

Most frequently, the standard deviation of population density is unknown 

(	
� model). Therefore, the random variable % given by the equation (1) can be 

replaced with the random variable [22]  

; = �̀ − �</Ȃ� ≈ =�.�.  (4)

This idea is not only natural but appropriate as well because the distribution of 

the random variable ; does not depend on the unknown parameter 
 and is 

known. Namely, it is a so-called t-distribution (also called Student’s distribution 

or Student’s t-distribution) with � − 1 degrees of freedom. 

Knowing the random variable T and its distribution =�.�, the confidence in-

terval for � can be written analogously to the previous case. The 	
� confidence 

interval of intended coverage 1 − ) is defined by [22] as  

* 8�̀ − =�.,/�,�.� >̀Ȃ� ≤ � ≤ �̀ + =�.,/�,�.� >̀Ȃ�: = 1 − ),  (5)

where =�.,/�,�.� indicates the 100(1 − )/2)th percentile point of a =�.� distri-

bution and *!; ≤ =�.,/�,�.�$ = 1 − )/2, whereas >̀ is an unbiased estimator of 

standard distribution whose value is defined as  

>̀ = @ 1� − 1A��
� � (�� − �̀)�.  (6)

3    Assumptions and ideas of the bootstrap method  

Consider an observed random sample � = (��, ��, … , ��) from an unknown 

probability distribution B with intent to estimate a parameter of interest C ==(B) on the basis of x. For this purpose, let an estimate CD = >(�) from x be cal-

culated. 

The bootstrap method was introduced in 1979 by Bradley Efron [12] as 

a computer-based method for estimating the standard error of CD. The bootstrap 

estimate of standard error requires no theoretical calculations and is available no 

matter how mathematically complicated the estimator CD = >(�) may be. 
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Figure 1: Schematic diagram of the bootstrap method.   

Source: own elaboration.  

Bootstrap methods depend on the concept of a bootstrap sample. Let BD be the 

empirical distribution, assigning probability 1/� to each of the observed values ��, E = 1,2,… , �. A bootstrap sample is defined as a random sample of size � 

drawn from BD, say �F = (��G, ��G, … , ��G) [14],  BD → (��G, ��G, … , ��G).  (7)

The symbol “b” indicates that �F is not the actual data set �, but rather a re-

sampled version of �. 

Symbolic expression (1) can be also verbalised as follows: the bootstrap data 

points ��G, ��G, … , ��G are a random sample of size � drawn with replacement from 

the population of � objects (��, ��, … , ��). The bootstrap data set (��G, ��G, … , ��G) consists of elements of the original data set (��, ��, … , ��). 
Corresponding to a bootstrap data set �F is a bootstrap replication of CD  CDF = >(�F).  (8)

The quantity >(�F) is the result of applying to �F the same function >(•) as this 

applied to �. 

3.1   Point estimation of distribution parameters by bootstrap method 

Point estimation of an unknown distribution parameter C of the examined 

variable is based on assuming that the estimator value of this parameter at the 

given sample is its estimation. Figure 1 presents a schematic diagram of the al-

gorithm of point estimation of bootstrap distribution parameters. By applying the 
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Monte Carlo method to the bootstrap, a bootstrap sample J is generated. The 

bootstrap samples are generated from the original data set (analysed sample). 

Each bootstrap sample has � elements generated by sampling with replacement � times from the analysed sample. Bootstrap replications CD�, … , CDF, … , CDK are 

obtained by calculating the value of the statistics >(�) on each bootstrap sample. 

The mean of these values can be assumed to be an assessment of parameter C. 

Thus, the assessment of parameter C can be expressed as [14]  

C̀L = 1JA�K
� � CDF .  (9)

The bootstrap estimate of the standard error is the standard deviation of the 

bootstrap replications [14]:  

>̀L = MȂ �KF � (C̀L − CDF)�J − 1 .  (10)

Further, the bootstrap estimate of bias NDK based on the B replications is defined 

by  NDL = C̀L − CD,  (11)

where C̀L is bootstrap estimate of parameter C and CD is estimate of parameter C 

from the original sample �. Note that the algorithm of Figure 1 applies exactly to 

calculation of (5), except that at the last step, C̀L − CD is calculated rather than >̀L. 

Of course, both >̀L and NDL can be calculated from the same set of bootstrap repli-

cations. 

4    Confidence intervals based on bootstrap method for the  

      expected value 

This section describes different techniques for constructing confidence inter-

vals using the bootstrap method presented in Section 3. The first two methods 

are based on bootstrap ”tables”, and bootstrap percentiles are used in the next 

three algorithms. 

4.1   Normal approximated interval with bootstrapped bias and 

        standard error method (norm model)  

Consider a one-sample situation where the data are obtained by random 

sampling from an unknown distribution. Let CD be the estimate of a parameter 

from the original sample of interest C, and let C̀L be the bootstrap estimate of 

parameter C. Let >̀L be the bootstrap estimate of standard error of C̀L, and NDL be 

the bootstrap estimate of bias. Within this model, the confidence interval [10]  
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O{CD − NDL + >̀L ⋅ +,/� < R(C) < CD − NDL − >̀L ⋅ +,/�} = 1 − ),  (12)

where +,/� indicates the (100 ⋅ )/2)th percentile point of a 	(0,1) distribution, 

as given in the standard normal table (e.g. +3.3�5 = −1.960). 

4.2   Studentized confidence interval method (bootstrap-t or stud  

        model)  

Through the use of the bootstrap method, it is possible to obtain accurate in-

tervals without necessity to make normal theory assumptions. This section de-

scribes one way to get such intervals, namely the bootstrap-t or stud approach. 

This procedure estimates the distribution of % = TU∗.TẀ  directly from the data. In 

principle, it builds a bootstrap table. The bootstrap table is built by generating J 

bootstrap samples, and then computing the bootstrap version of % for each sam-

ple. The bootstrap table consists of percentiles of these J values. 

More specifically, in the bootstrap-t model J bootstrap samples are generat-

ed and for each sample the quantity  

%XF = CDF − CD>̀F ≈ =̀  (13)

is computed, where CDF is the value of CD for the bootstrap sample and >̀F is the 

estimated standard error of CDF for the bootstrap sample. The ()/2)th percentile 

of %XF is estimated by the value =̀,/� such that  #{%XF ≤ =̀,/�}J = )2.  (14)

Finally, the bootstrap-t confidence interval [14]  O{CD − =̀�.,/� ⋅ >̀L < R(C) < CD − =̀,/� ⋅ >̀L} = 1 − ),  (15)

where CD is the estimate of a parameter from the original sample, and >̀L is the 

bootstrap estimate of standard error of C̀L. 

4.3   Basic percentile method (per model)  

This and the next two subsections present another approach to bootstrap con-

fidence intervals based on percentiles of the bootstrap distribution of a statistic. 

The methods represent a different view of the standard normal-theory interval 

which leads to the percentile interval as a generalisation based on the bootstrap 

technique. 

Let ZD be the cumulative distribution function of CD. The 1 − ) percentile in-

terval is defined by )/2 and 1 − )/2 percentiles of ZD [14]:  
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 �[CD%,]^, CD%,_`] = [ZD.�()/2), ZD.�(1 − )/2)].  (16)

Since, by definition, ZD.�()/2) = CD,/�, the (100 ⋅ )/2)th percentile of the 

bootstrap distribution, the percentile interval can be also written as  O{CD(,/�) < R(C) < CD(�.,/�)} = 1 − ).  (17)

Expressions (16) and (17) refer to the ideal bootstrap situation in which the 

number of bootstrap replications is infinite. In practice, it is necessary to use 

some finite number J of replications. The approximate 1 − )/2 percentile inter-

val [14]  O{CDL(,/�) < R(C) < CDL(�.,/�)} = 1 − ),  (18)

where CDL(,/�) and CDL(�.,/�) are the (100 ⋅ )/2)th and 100 ⋅ (1 − )/2)th empiri-

cal percentiles of the CDF values, respectively. 

4.4   Bias-corrected percentile method (cper model) 

Construction of percentile intervals according to cper method is more com-

plicated than this of percentile intervals (per), but their use is almost as easy. 

The cper interval endpoints are also given by percentiles of the bootstrap dis-

tribution, but not necessarily the same ones as in (18). The percentiles used de-

pend on one number +̀3 called the bias-correction [14]. Later it will be described 

how +̀3 is obtained, but first the definition of cper interval endpoints must be 

given. 

The cper interval of intended coverage 1 − ) is defined by [13] as  O{CD,� < R(C) < CD,�} = 1 − )  (19)

where  )1 = Φ(2+̀3 − +,/�), )2 = Φ(2+̀3 + +�.,/�)  (20)

Here Φ(•) is the standard normal cumulative distribution function, and +,/� and +�.,/� are the (100 ⋅ )/2)th and 100 ⋅ (1 − )/2)th percentile points of 

a standard normal distribution, respectively. 

The value of the bias-correction +̀3 is obtained directly from the ratio of boot-

strap replications less than the original estimate CD [13],  

+̀3 = Φ.� c#{CDF < CD}J d  (21)

where Φ.�(•) denotes the inverse function of a standard normal cumulative 

distribution function. 
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4.5   Bias-corrected and accelerated percentile method (BCa model) 

Another algorithm is based on knowledge of percentiles of the bootstrap dis-

tribution. The BCa interval endpoints used depend on two numbers, ef and +̀3 

(21), called the acceleration and the bias-correction [10], respectively. 

The BCa interval of intended coverage 1 − ) is given by [14]  O{CD,� < R(C) < CD,�} = 1 − )  (22)

where  

)1 = Φc+̀3 + +̀3 + +,/�1 − ef(+̀3 + +,/�)d, )2 = Φc+̀3 + +̀3 + +�.,/�1 − ef(+̀3 + +�.,/�)d  (23)

Here Φ(•) is the standard normal cumulative distribution function, and +,/� and +�.,/� are the (100 ⋅ )/2)th and 100 ⋅ (1 − )/2)th percentile points of 

a standard normal distribution, respectively. The value of the bias-correction +̀3 

is obtained from (21). 

There are various ways to compute the acceleration ef. The easiest can be ex-

pressed in terms of jackknife values CD. A simple formula for the acceleration has 

the form [14]  

ef = Ȃ ��� � (CDghi� − CD�ghi�)j6{Ȃ ��� � (CDghi� − CD�ghi�)�}j/�,  (24)

where CDghi� is the jackknife estimate of parameter CD, and CD�ghi� are jackknife 

replications of CD. 
It must be explained at this point how CDghi� and CD�ghi� from (24) are to be ob-

tained by means of the jackknife method. Suppose a sample � = (��, ��, … , ��) 
and an estimator CD = >(�) are given. The jackknife is focused on samples that 

leave out one observation at a time [14]  ��ghi� = (��, ��, … , ��.�, ��k�, … , ��)  (25)

for E = 1,2, … , �, called the jackknife samples. The ith jackknife sample consists 

of the data set with the ith observation removed. Let  CD�ghi� = >(��ghi�)  (26)

be the ith jackknife replication of CD. 
The jackknife estimate CDghi� of parameter CD is defined as [14] 
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CDghi� = 1�A��
� � CD�ghi�.  (27)

5    Conclusion  

This paper discusses various issues connected with the assessment of envi-

ronmental noise pollution indicators and their uncertainty. Particular attention is 

paid to the process of interval estimation, which can be a promising tool for de-

termining the type A uncertainty. Currently, it is determined by using the classi-

cal variance estimators, which raises many doubts in relation to the results of 

acoustic research. In practice of measurement, the analysis of environmental 

noise pollution is based on a small sample size (results of the control tests), 

which does not have asymptotic properties. For this reason, attention has been 

paid to the necessity of implementation of non-classical statistical solutions. The 

most important accompanying assumption is the lack of limitations concerning 

the form and properties of analysed statistics as well as the size of analysed 

samples. 

A theoretical basis and the methodology of determining the confidence inter-

vals for the two classical models and five non-classical algorithms based on the 

bootstrap resampling method was presented in this paper. The possibility of 

using them to determine the confidence intervals of acoustic indicators describ-

ing the environmental pollution by noise and their type A standard uncertainty 

was analysed.  

In a classical approach, otherwise called frequency framework (	
�, 	
� 

models), confidence interval for the parameter C is called a random interval !C]^, C_`$, where C]^ and C_` are the functions of a random variable that O!C]^ < C < C_`$ = 1 − ). The number 1 − ) is called the confidence level. In 

the frequency approach, the estimated parameter C is a fixed constant, therefore 

an unknown value of this parameter can be covered by this interval or not. How-

ever, during a long series of observed trials, the frequencies of the compartments 

containing the actual value of the unknown parameter C is approximately equal 

to 1 − ), that is 100(1 − ))% of compartments will contain the estimated pa-

rameter. Thus, in the frequency approach, the resulting confidence interval !C]^, C_`$ can be interpreted as follows: confidence interval !C]^, C_`$ is one of 

these intervals, which with confidence probability 1 − ) contain the estimated 

parameter C. However, it is unacceptable to interpret that the parameter values 

change from C]^ to C_` because parameter C is not a random variable, but only 

an unknown constant. 

In conclusion, in classical approach, the interpretation of the confidence in-

terval should indicate the variability of the limits of the confidence interval ra-

ther than the parameter itself. However, it should be emphasized that, in prac-
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tice, we have at our disposal only one random sample, on the basis of which we 

determine the endpoints of a confidence interval, and then we do not know 

whether the estimated parameter belongs to this interval or not. 

Non-classical statistics offers different approach to the confidence intervals. 

In the bootstrap approach, the estimated parameter C is a random variable, there-

fore, it has the potential to assume different values with certain probabilities. In 

this approach, confidence intervals can be calculated precisely at a predeter-

mined level of probability. On this basis, it can be argued that with probability 1 − ), the estimated parameter will belong to the estimated confidence interval. 

In view of the above, conclusions which are probabilistic statements can be for-

mulated. 

Without any prior theoretical assumptions it should be stated that non-

classical methods of interval estimation based on the distribution of parameters, 

are an important and attractive alternative to the classical estimation method, 

more reliable than the other two estimation methods presented in this paper. 

Additionally, it must be emphasised that the bootstrap method can be suc-

cessfully applied to a small random sample not having any asymptotic proper-

ties. 

Analysing further properties of the obtained confidence intervals it should be 

also mentioned that percentiles of distributions 	(0,1) and =�.� used to deter-

mine the confidence interval limits in the 	
�, 	
� and norm models are sym-

metrical with respect to 0 (zero). As a result, the obtained confidence intervals 

are symmetrical with respect to point estimate of noise level indicators. Percen-

tiles used in the other models (per, cper, BCa, and stud) are asymmetrical with 

respect to 0 (zero). This is the reason for which intervals shifted more or less to 

the left or right with respect to the point estimate are obtained. This asymmetry 

reflects probabilistic properties of the examined noise indicators. 

The stud model can be characterised poor resistance to outlying values occur-

ring in the original sample. Outlying observations have a very substantial effect 

on value of %XF determined from (13), and as a consequence, on values of percen-

tiles =̀�.,/� and =̀,/� necessary to establish the lower and the higher limit of the 

confidence interval (15). 

Accordingly, three models, i.e. per, cper, BCa, can be recommended for the 

determination of confidence intervals and type A uncertainty, not only of noise 

indicators, but also other acoustic parameters. 
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 Disinformation – advanced weapon  

in political and military games: 

 basic ideas – non-matrix games 
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Abstract 

We analyse the problem how to defend against the opponent who uses disinformation 

intentionally.  It appears to be a reverse to the primal problem considered in [1]. Beginning 

from Section 8 we make a next step toward reality and consider an approach which takes 

into account our limited access to real data. This forces us to abandon deterministic word 

and use probability theory instead. The new apparatus helps us to model information flows 

under several obstacles introduced intentionally or not. Limited access to information has 

several consequences in games of strategy and we analyse some of the most significant. In-

formation transfer via public communication channels called mass media and other tubes 

of propaganda can be used for creation false conflict pictures, disinformation of public 

opinion, and in the consequence, forcing politicians to make decisions far from being op-

timal. In this connection several new mathematical problems are stated, some of them are 

very challenging and requires new concepts and ideas. To sketch possible approaches we 

analyse several related examples ranging from simple to advanced ones. In the last part we 

consider the games against Alcibiades. By Alcibiades we mean an exceptional intelligent 

and capable player whose skills are unlimited. Playing against Alcibiades is a great chal-

lenge requiring new methods and concepts. We adopt a notion of the Lagrange multipliers 

used in optimization theory for problems with constraints to model the intellectual con-

strains which an average player experiences having the bad luck by playing against Alcibi-

ades.  

1    Disinformation in non-matrix games  

In [1] was considered the matrix games. In this paper we shall extend the 

game model to general case. Let �, ��are the sets of admissible strategies for D 

and O respectively, and a mapping �� × �� ∋ ��, 	
 → ���, 	
 ∈ ℝ, is a payoff 

of the player D in the zero-sum game  between D and O. We want to find the 

payoff �� × �� ∋ ��, 	
 → ���, 	
 ∈ ℝ, in some admissible class �,�such that 
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arg�max������∈� �����, 	�
 = ���, 	
 
where ��, 	� are defined by the inequalities  max�� ���, 	�
 ≤ �max�� ���, 	
, 

max�� ���, 	�
 = �����, 	�
. 
Putting ���, 	
 = ̂�, �	̂ and ���, 	
 = � ̂�, �	̂,��we turn the general model 

into the previous matrix form. 

2    Disinformation in non-zero sum games 

The conflict not always has the most acute form and the players’ goals are 

not always exactly contradictory. There are conflicts in which players define the 

goals and scopes of the conflict differently and differently assess the win/loss 

values. It is then natural that the conflict is defined not by one, but by two matri-

ces. A matrix � represents the wins of player D, and a matrix � the wins of 

player O, and � + � is not a zero matrix. How can disinformation be built into 

such games? We will now answer this question, reasoning from the perspective 

of the disinformer D.  

Nash games ([2]). Let us assume that the matrices � and � of the original 

game are known to D. Such games are called Nash games. Standard analysis 

leads to specifying a pair of Nash strategies �%, �
 which are in equilibrium and 

each of them is the best against the other. There may be more than one such pair 

(non-unique solution). The further procedure of adding disinformation is analo-

gous to the case of zero-sum games, the only difference being that we now mod-

ify both the matrices � and �. 

3    Disinformation in & -person games 

Let us denote by '(�)*, … , ),
, - = 1,… , / the payoff of the -th player, corre-

sponding to strategies )*, … , ), used by players 2*, … , 2,. Let us assume that the 3th player, denoted by 4, is the disinformer, and his strategy is denoted by %. 

We assume that he may misinform the other players using manipulation tech-

niques which distort the picture of the conflict. As a result, for the other players, 

false payoffs 5(�)*, … , ),
 take place of the real ones '(�)*, … , ),
. 
To sum up, we assume that the players who are being misinformed know on-

ly the payoffs 5(�)*, … , ),
, - = 1,… , /,�and the sets of their acceptable strate-

gies Ϭ(, )( ⋴ Ϭ(. Player 4 knows '(�)*, … , ),
, for all - = 1,… , /. Then 4 faces 

the following problem: how to choose 5(�)*, … , ),
, depending on '(�)*, … , ),
, - = 1,… , /, - ≠ 3, in order to achieve the Nash optimum. 
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max�9':�;*, … , %, … , ;,
; �% ⋴ Ϭ:= = �':�;*, … , ;:, … , ;,
 
under the conditions 5(>;*, … , ;(, … , ;,? ≥ 5(>;*, … , )(, … . , ;,?, 
where  ;(, )( ⋴ Ϭ( and  - = 1,… , /, - ≠ 3. 

The task still requires specifying in more details to what extent it is possible 

to “modify” the payoffs  '( into 5(. Disinformation procedures may be costly if 

conducted on many fronts and at a huge scale. It is obvious that the less 5( dif-

fers from��'(, the lower the cost of the disinformation action. The modification 

may thus be measured using the following index:  

A:�5*, … , 5,
 ≝ C >#5(?! F5(�)*, … , ),
 − '(�)*, … . , ),
F,(H:
*I(I,  

where #5( is the number of non-zero modifications of '( corresponding to each 

sequence of strategies )*, … , ),. Let J�A
 be the cost of the disinformation 

operation. We then search for the Nash optimum as above with the additional 

condition J�A
 ≤ K, where K�is a specified financial limit. 

The algorithm specified for two-person games should now be adjusted, start-

ing from modifying the payoff of the player whose strategies have the greatest 

impact on the payoffs of player 4.  

4     Goals, strategies and the matrix of the game. Remarks on 

       modelling 

In the classical theory, the structure of each decision task (during a conflict or 

not) consists of the following, independent elements: the goal function (strategy 

assessment criterion) and the set of acceptable strategies. A decision task con-

sists in choosing the strategy in such a manner that the goal function reaches, or 

approaches, the optimum. Thus, the goal function determines the decision task, 

and the set of acceptable strategies defines the player’s possibilities. Both ele-

ments (the goal function and the set of acceptable strategies) are present in the 

game matrix. The set of strategies is explicitly represented by rows and columns, 

and the goal function is represented only implicitly, by assigning numerical val-

ues to the results of confronting particular strategy pairs. We formulate the goals 

of the game by entering sufficiently high payoff values into those matrix ele-

ments which correspond to our preferred results of confronting particular strate-

gy pairs. We also discredit undesirable confrontation results by entering suffi-

ciently low (negative) values into the corresponding matrix elements. Both kinds 

of elements are entered simultaneously, thus creating the game matrix. 



56                                                                                                                  Tadeusz Banek 

The above algorithm clearly shows that the problem is so complex that it can 

be solved only by appropriate computer simulations conducted on a case-by-case 

basis. This has several reasons.  

Firstly, such games feature so called mixed strategies. This means that, e.g., 

player O choosing columns has to “mix” them, i.e. pick various columns with 

different probabilities. Thus, his general strategy is a probability distribution on 

columns instead of choosing a single column. It turns out that it is only in such 

an extended set of strategies that an optimal strategy can be found. Consequent-

ly, this form of strategy should be expected for FGS as well.  

Secondly, while the FGS can be calculated in a general manner using the 

known procedure, the analysis of the impact of disinformation on that strategy, 

resulting in the false matrix �, is much more difficult.  

Thirdly, examining the impact of that action on the outcome of the original 

game with matrix �, is even more complex.  

Due to lack of general theoretical results, it should thus be assumed that 

computer simulations will be the basic research method – unless such results 

will soon appear, which is unpredictable.  

Of course, the feasibility of such a complex and ambitious analytical, math-

ematical and simulation task depends on our means and powers, but also on the 

complexity, scope and scale of the original game itself.  

Applying the above methodology also enables one to obtain conclusions of 

a qualitative nature, sometimes even without a complicated simulation analysis. 

Below we present an example of such a reasoning inspired by the actions of the 

player mentioned at the beginning of the present study. 

5    Disinformation and Russia 

At least since the Bolshevik times, Russia has played political games tainted 

by disinformation against all countries. For that purpose, it uses an extremely 

extensive spy network located in political circles, intellectual elites, propaganda 

centres and mass media of the attacked countries. However, disinformation, as 

explained above, leads to creating a false image of goals – and this is always 

profitable only in zero-sum games, in which the win of one player means the 

same loss of the other. A zero-sum game describes the most acute conflict of all 

– players treat their opponents as full-blown enemies. As disinformation is guar-

anteed to be profitable only in that case, and Russia uses it always, regardless of 

its opponent – there can only be one conclusion: this player treats all the other 

players as its full-blown enemies! 

6    Defence in games with disinformation 

So far, we have been analysing the position of player D, who – having appro-

priate means and powers – successfully disinforms others. In this section, we 

will analyse the situation from the perspective of player O, who assumes that he 
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is being misinformed. That player is aware that the matrix �, he is presented 

with differs from the matrix � of the original game, and that its elements have 

been purposely changed in order to lead him into the trap of the false game. Let 

us therefore follow the reasoning which has been applied so far by player D, in 

order to find an effective antidote. 

Let us start from the obvious. As � is the matrix of the false game, O’s opti-

mal strategy for �, and all nearly-optimal strategies, are immediately suspected 

of being a trap, and their corresponding payoffs are the consequence of the false 

image of the game. Also those elements of the matrix � which give very disad-

vantageous payoffs for O, and may therefore be aimed at discouraging O from 

using the corresponding strategies, are suspicious. Thus, it seems that the most 

reliable payoffs are those which are neither very encouraging nor very discour-

aging. Those payoffs should constitute a basis for redefining the game matrix 

using techniques applied by relevant services. If this is not possible, the opti-

mum disinformation problem (ODP) from item 4a should be reversed as follows. 

Let����, L
 be the solution of the ODP, i.e. for a given matrix � and L > 0, 
we search for  max�9̂��	��

, �	��
̂;A�� − �
 ≤ L= ≝ O < ∞ 

over all matrices � of the same dimension as �, i.e., 

O = ̂� R	>���, L
?S , �	>���, L
?̂�. 
The problem of optimal identification of the matrix ��(POI-A) is as follows:  

Given �, we search for the solution ��, L
 of the equation ���, L
 = � 

or simply 

argTmax�� U9̂��	��

, �	��
̂;A�� − �
 ≤ L=VW = � 

Calculation aspects. 

Even if ODP had a unique solution ���, L
, without the knowledge of L, and 

without an explicit form of the index A��
, one should not expect uniqueness 

of solution of POI-A. Additionally, the problem is very unstable, in the sense 

that small changes of parameters may result in significant changes of the solu-

tion. In that case, the only way to proceed is to use computer simulations, lead-

ing to approximate solutions differing from the optimal one by a tolerable error. 
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Example. In order to illustrate the problem and the difficulties in solving it, let 

us consider the example from Section 3 from [1], the only modification being 

that O is now aware that the matrix  

� = X1 0 31 2 61 1 3\ 
is the matrix of the false game. In that game, the optimal strategy for the disin-

formation-unaware O would be to choose the first column. However, if O knows 

that � is the matrix of the false game, it is exactly the elements corresponding to 

that “optimal” strategy that are the most suspicious. Thus, the first column con-

taining ]** = �]^* = ]_*=1 is in fact different, so some of its elements are dif-

ferent from 1. It is therefore reasonable to delete that column. After its removal, 

the game matrix is  

` = X0 32 61 3\. 
Clearly, choosing the second row is now the optimal strategy for D, guaran-

teeing the payoff a = 2 (and the same loss for O). It follows that the payoffs in 

the first column of � are falsified in such a way that the value of at least one of ]**, �]^*, ]_* is greater than 2, as only in that case does it make sense to set 

a trap resulting in a greater payoff. This conclusion is consistent with the real 

picture of the conflict expressed by the matrix  

� = X1 1 37 2 61 1 3\ 
in which �c^* = 7 > 2 = a > 1 = �]^*. 

7    The identification problem for non-matrix games 

On the level of generality adopted in section 6, the reconstruction problem 

for the matrix � having � as given turns to the following. 

Consider a nonempty class � of admissible mappings of the form �� × �� ∋��, 	
 → ���, 	
 ∈ ℝ, and some B ∈ �. For � ∈ �, we define strategies ���, 	�
 �∈ ��� × ��, by the conditions  max�� ���, 	�
 ≤ �max�� ���, 	
, 
max�� ���, 	�
 = �����, 	�
, 
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and define  ���
 �≝ �arg�max������∈� �����, 	�
. 
The identification problem: Find � satisfying the equation ���
 = �. 

8    A stochastic view: alchemy of disinformation 

In the model of disinformation which we have proposed, the matrix B�=�]:(
 of the false game is deterministic. The player O knows numerical values of 

the entries ]:( exactly. Certainly, this assumption is far from reality and was 

adopted for convenience in preliminary stages of the theory. In practice, an ex-

pert think tank working for the player O has to estimate the numerical values of ]:(�by taking into account several events observed in the past and present. In the 

mathematical terms, these events form the so called sigma-sub-field on which 

conditional expectation operations should be performed. This suggests the fol-

lowing mathematical framework on which all mathematical models should be 

build. The elements ]:( are random variables defined on some probability space 

(d,,ℙ). There is some sigma-sub-field f of g,, formed by observations made by 

O. Then an estimator �]hij��of ]:( is computed and placed in the false game ma-

trix. If the estimation has to be least squares optimal, then in the class of random 

variables having finite second moments, we have �]hij �= k�U�]:(�F�f�V 
where k�9�∙����f�= is the conditional expectation operator. In this setting f� is the 

sigma-field of events which were suggested to O by D as describing the true 

conflict picture. Hence, the estimator �]hij  of ]:( computed from f�are the true 

elements of the false game matrix �n �= � >�]hij?.  
Remark 1. It should be made clear that in the stochastic extension of the optimal 

disinformation we arrive to a new type of problems. First, when the sigma-sub-

field f is selected from g, in order to implement disinformation in this case, it is 

enough to use the appropriate events which took place in the past and publicize 

these outcomes via mass media and other tubes of propaganda. Doing that, we 

make some hypotheses about reality more probable then others. Bayes theorem 

applies and the false picture of the conflict is created. However, it may appear 

there are no such appropriate events in the past. In this case, the new and appro-

priate events should be created and the initial sigma field g should be extended 

to, say, �. In the both cases we have the complex interplay between highly ab-

stract mathematical objects such as probability spaces, sigma-sub-fields of 

events, probability measures and random variables from the one side and the 
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disinformation actions taken in reality on the other. These actions can be viewed 

as generation of information flows produced in the real world and resulting from 

the appropriate sigma-sub-fields �o , pqr0, st, s > 0,�of events taken from the 

model. �o is called a filtration when �u ⊏ �o , for �) < p. Set w = �x, and note 

that there are many different filtrations �o called a ‘bridge’ such that �x = w. 
9    The stochastic disinformation problem (SDP) 

To state this problem precisely, let the random variable ]:( taking values in 

a finite interval rc, ]t be defined on (d,,ℙ).  

For any L > 0, and a real number β:(�qrc, ]t find:  

1) a filtration  �o , pqr0, st, s > 0, where �z is trivial;  

2) a family of probability measures  ℙo on �o , pqr0, st such that ℙx�>�F�kx �U�]:(�F��x�V − �β:( �F ≤ �L? �≥ 1 − �L� 
where the expectation kx is taken with respect to the measure ℙx.  

Having the information flow �o, pqr0, st, s > 0 and treating the probability 

measures ℙo on �o , pqr0, st as the objective probabilities, the opponent is forced 

to accept β:( as the approximation of ]:(�close to the best. 

Moreover, each filtration corresponds to a sequence of events in the real 

world and only some of them can be arranged in reality. Since the arrangements 

are costly we arrive in this way to a new type of control optimization problems. 

In the classical control problems a state of a system is a point in some finite (or 

not finite) dimensional state space and the goal is to minimize a cost of transfer-

ring the system form an initial to final state. Here we have the ‘bridge’ problem 

of transferring an initial sigma-sub-field �z to the final w along the trajectory �o , pqr0, st, which has to be realizable in practice and cost-minimal.  

In order to find �x and ℙx the following observations may be helpful. For 

fixed L > 0, denote  f�{|},~ = ��UF��]:( −�β:( �F ≤ �LV 
a sigma-sub-field of g. Next step is to assign high probabilities to the events in f�{|},~ and small outside f�{|},~.  
Example. In order to see what one can expect let us consider an simplified ver-

sion of the problem. Take one random variable ] instead of the collection ]:( 
and a parameter�p�equal 0 or 1 instead pqr0, st. The last simplification changes 

information flows into two-steps procedure. Assume  9]��
; ��qΩ= = ��, 	
�and�β�q���, 	
. 
Next, define a set ���,~ = 9��q�Ω; ���]��
 − �β�� ≤ �L= 
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and put 

���
 = � 1 − Lℙ����,~
 �ℙ>� ∩ ���,~? +� L1 − ℙ����,~
 �ℙ>� ∩ ���,~��������? 
for ��q� g. It is easy to check that � is a probability measure on g. Moreover,  k� �U�]��
�F�g�����,~V �= �β +�k� �U�]��
 �− �βF�g�����,~V = �β +�]�~ � 
where g�����,~ is a restriction of g�on ���,~, ]�~ �= k� �U�]��
�− �βF�g�����,~V and  

�]�~� ≤ k� �U�]��
�− �β�F�g�����,~V ≤ L�1 − L
, 
since �>���,~? = �1 − L. 

The assumptions above guarantee that ���,~ �is nonempty and  g�����,~ is 

a nontrivial sigma-field for any β�q���, 	
.� 
In conclusion we have shown that by reaping the events from g�����,~ via the 

tubes of propaganda according to the new measure � one may convince the op-

ponent that β is a good estimator of ]��
 with error not bigger than L. 
Example. In the more general case we have a random variable 9]��
; ��qΩ= ⊂��, 	
 on (d,,�ℙ), a number β�q��c, ]
 and want to define a new measure ��on g 

such that k� �U�]~��
�F�g�����,~V 
is close to β, for some ]~ close to ]. The point is that  ��, 	
, �c, ]
 are not relat-

ed to each other. Denote 5� distribution of ] under ℙ, and �� its density with 

respect to the Lebesgue measure (assumed to exists). Let 

�~��
 = �1 − L
����
 +� L��� ������
 
where ; = �c, ]
 ∪ )��������
, � = ; ∩ �c, ]
, ���is an indicator function and )��������
 = 9�q���, 	
;�����
 > 0=. Let ]~ be a random variable having densi-

ty �~ .� Define a measure � on ℝ by the formula  

��P
 = ��~��
%����
�  

and a new measure � on (d, g) by the formula ���
 = ����;�]~�*��
q�
 
Then  k� �U�]~��
�F�g�����,~V = �β +�k� �U�]~��
�− �βF�g�����,~V 
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where 

 ���,~ = 9��q�Ω; ���]~��
 − �β�� ≤ �L=. 
Since  

�>���,~? = ��>�;�]~�*��
q���,~? = �� ��1 − L
����
 +� L��� ����
� %���~
��~  

                                                      ≤ 2�1 − L
�L�max����
 +�^~���� , 
then k� �9�]~��
 �− �β�; ���,~= �≤ L�����,~
 ≤ �L�o�L
. 
Remark. As the above examples clearly indicate, the ‘false conflict picture’, 

a main goal of disinformation actions, consists in creation of a new probability 

measure ��which differs locally from the objective measure ℙ. ��assigns higher 

probability than ℙ does to some events and lowest to others making some hy-

pothesis more probable, or convincing then other. More about this point in the 

next examples is given.  

10    The ‘right proportion’ optimization problem (RPOP) 

In order for disinformation to be credible and convicting it cannot be bother-

some or naïve. It cannot be false ostentatiously too, i.e., it should be a mixture of 

a truth and lies in a right proportion. This proportion can be a subject of the 

RPOP, or a family of problems when many criteria are taken into account.  

The question how to mix ‘a truth and lies’ in a right proportion appears in 

many hazard games the most famous being poker. In this game the mix problem 

takes the form of bluffing. It is instructive to recall the famous version of asym-

metric poker analysed in Section 19.14 of [1]. The optimal strategy for Player 1 

is to ‘bluff’ by making a higher bid, say �, despite having a weak hand. The 

right proportion between ‘bluffing’ and ‘non-bluffing’, i.e., making a lower bid, 

say � is given in the formula 

� = ��1 − �
1 + 3� , �where�� = �/���and��0 < � < �. 
This may be explained as follows. Let us call a hand in the interval r0, �t 

a weak hand. Having a weak hand Player 1 is advised to make a higher bid sug-

gesting opponents he is having a strong hand. Now, if the numbers in r0,1tare 

chosen randomly with equal probability, then � is a probability of having a weak 

hand – and bluffing. Hence � = ��1 − �
 �1 + 3�
�  give us the answer how to 

mix ‘false and true’ playing the version of poker considered in [1]. It is interest-

ing to note that the maximal value of �, �£¤¥ = 0.10511, is achieved when 
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� = 0.23241.�Certainly, ��1 − �
 �1 + 3�
�  is a right value for � mixing 

‘a truth and lies in a right proportion’, but only in the specific version of poker 

considered in [1]. To find a general answer we have to consider a general model. 

Example. This example is a version of the famous experiment by Amos Tversky 

and Daniel Kahneman on inductive reasoning and posterior probabilities de-

scribed in their Prospect Theory.  

Consider two alternatives called hypothesis *̈ and ¨^ having a priori proba-

bilities �* and �^, �* + �^ = 1. Let  ℙ�9�Q� :̈�= = 	:�, i = 1,2 

be a conditional probability of an event�� under the hypothesis :̈. How often 

has � to be repeated by the propaganda tube in mass media to convince oppo-

nent’s public opinion that, say, *̈ is more than 95% sure? 

From Bayes rule ℙ�9� *̈�Q�= = �*��	*
,/[�*��	*
, +��^��	^
,]= 1/r1 + �c��]
,t ≥ 0.95 

where c = ��^/�*�and ] = �	^/	*. It follows that / ≥� �ln�19�c
/�ln�]�*
. 
provided 0 < ] < 1. When �* = 0.05, c = 19, �	* = 0.8, ] = 0.25, then for ℙ�9� *̈�Q�=t ≥ 0.95 it is enough to have / ≥ 5. In the words: in order to shift 

public opinion belief concerning the hypothesis *̈ from 5 to 95 percent it is 

enough to repeat in the row Q in mass media five times only (!) provided 	*/	^ = 4. 
11    Disinformation in complex games 

In order to provoke opponents to make a false move in the main game the 

player S, we call him the Strategist, can arrange an artificial game, or games. We 

call this combination of games the ‘complex game’. There are many variants of 

the complex games depending on the number of players involved in the combi-

nation, initial knowledge they possess, etc. Consider first the simplest one. Let D 

and P play the game on the matrixes � and � as it was described in preceding 

paragraphs.  However, D does not know that he is playing with a third player S 

a game with matrix `. Moreover, S was clever enough to arrange the game be-

tween D and P, because he wanted D to make a move which is bad in the game 

D vs C. However, it may appears that there is another player, an super Strategist 

(SS) playing the game with S, or (S and D), or (S and D and P) who has ar-

ranged the whole combination. In this way we arrive to the hierarchy of complex 

games and Strategists, a theme which was mentioned early in the Introduction. 

The hierarchy can be described easily in the von Neumann scheme. For instance, 

the payoffs 

 



64                                                                                                                  Tadeusz Banek 

'��)*, )^
, �'®�)^, )^
, '¯�)^, )_
,� '¯¯�)_, )°
, '��)*, )^
, �'®�)*, )^
, '¯�)^, )_
,� '¯¯�)^, )_, )°
, '��)*, )^
, �'®�)*, )^
, '¯�)^, )_
,� '¯¯�)*, )^, )_, )°
, 
fully describe the game structures mentioned above. Although, each row strong-

ly indicates the dominant role of the last player, then looking in the averse direc-

tion, i.e., from the row to the structure, there is only a hint that S has arranged 

the game P vs D and SS has arranged S vs D in the first row. S arranged the 

games (P vs D) and SS arranged (D vs S) in the second row. In the third row SS 

has arranged all games.  

Despite the problem of one−to−one relations between the structures and the 

rows, there is the fundamental question of how the structure (or the row) has to 

be identified in practice by players or observers. Since this work is addressed to 

the active players rather than passive, and to the players rather than observers, 

we are mainly interested in the methodology telling how to create the complex 

games, and less about the identification problems for itself. 

What differs political games from non−political is that these games are cou-

pled, i.e., they cannot be divided into a set of two person games analysed sepa-

rately. Making a political move in the game I vs J, players I and J give signals to 

other players as well. Moreover, these signals have to be consistent with the 

previous and with players’ politics as a whole. In the consequence, the next 

moves of I and J have to take these constrains into account. Considered as possi-

ble and even reasonable in separate games, say I vs J, some strategies are con-

tradictory in the games I vs K, J vs K, since they generate not coherent and in-

consistent political signals. Shortly, the ):�– strategy of player I applies in every 

game played by I and therefore it must appear in the corresponding payoffs.  

12    Playing with Alcibiades 

In this section we refer to this point in the Introduction where the question 

“but what if we had a misfortune to confront with Alcibiades, Talleyrand or 

Julius Caesar?” was posed. By the ‘game with Alcibiades’ we mean a game with 

highly intelligent and capable player, whose ability to find strategies and apply 

them is superior.  The game is asymmetric since Alcibiades knows how to im-

plement these strategies contrary to his opponent who does not even if these 

strategies can be guessed. At a first glance, the opponent’s position is hopeless. 

How to play with a master who, in addition, is informationally privileged? 

Where could one find his Achilles’ heel?  

Before we shall begin studying how to play with Alcibiades, let us start with 

much simpler question – how high is a potential cost of risking the game with 

Alcibiades? We focus here on the following dominant factor – intellectual supe-

riority of Alcibiades over his opponent, say O.  
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12.1   Zero-sum games  

Example 1. To model this game let us consider a large payoff matrix ± (possi-

bly infinite) and a smaller submatrix A of the bigger ±. Assume the players 

know ± and A. Despite of knowing ±, O is not able to guess in details the form 

of corresponding strategies �3, -
 unless the result c:( is an element of A. For 

instance, building a bridge was a great challenge in ancient times and only Cae-

sar’s legions were capable for making this effort in a short time. Hence, the 

strategies which use such advanced engineering capability were unthinkable and 

not feasible for his opponents, nevertheless the results of these strategies (if ap-

plied) could be easily estimated and the corresponding payoff c:( were known. 

Thus we assume, Alcibiades can manage in choosing any column of ±, whereas 

only the rows  of A are allowed for his opponent O to play. If the pair �3, -
 was 

selected the element c:( of ± has to be paid by Alcibiades to his opponent. Fol-

lowing an idea of R.J.-B. Wets (see [3] and the references herein) we apply the 

Lagrange multiplier to incorporate these intellectual constraints into the model.  

Applying the well-known analogy between games and linear programming 

(see [2]) we arrive to the problem  max9̂³ − ´, µ̂ + ̂³£ − ¶, â�; �µ ≤ ³,, �·a ≤ ³¸= ≜ O* +�O^ 

where � = º»¼�µ, a
 is unnormalized probability distribution vector on columns 

of ±, �· is a matrix obtained from ± after elimination all rows and columns of 

A. ³£ ³,, ³¸, and ³ are all vectors of the form ³ = º»¼�1,1,… . 
 of appropriate 

dimensions and ½ = º»¼�´, ¶
 is a Lagrange multiplier. Since a normalized 

probability distribution 	 = º»¼��, ¾
, where 

� = µ̂³, µ̂ + ̂³£, â� ¾ = â³, µ̂ + ̂³£, â� 
then we should have  ½��, 0
 = ̂´, �̂ = 0, 
what implies ̂´, µ̂ = 0. 

Note that maximization over � = º»¼�µ, a
 is equivalent to maximization 

over U and V separately. Let denote µ∗�and a∗� solutions (assumed to exist) cor-

responding to O* and O^ respectively. If the Lagrange multiplier is chosen 

properly, we have O^ = 0 and ̂³£ − ¶, a∗̂ = �0. 
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Solving for ¶ with minimal (Euclidean) norm we obtain 

¶∗�a
 = ̂³£, a∗�a∗�̂ ̂ a∗�a∗� , â 
hence �½∗��, 0
 = ´∗��
 = 0 implies �´∗ = 0, 

and ��½∗�0, ¾
 = ¶∗�¾
 = r̂³, µ∗̂ + ̂³£, a∗̂�t¶∗�a
 
is the incremental cost of violating intellectual constrains (here µ∗ is the solution 

corresponding for O*). 

Example 2. Now we want to find the Lagrange multiplier ½ connected with the 

opponent strategies, i.e., with the rows of ±. The corresponding linear pro-

gramming problem has a form, find  min9̂³ + ´,Â + ̂³£ + ¶,¨̂; �xA ≥ ³,, ��·
x¨ ≥ ³¸= ≜ Ã* +�Ã^ 

where P= º»¼�A,¨
 is unnormalized probability distribution vector on the rows 

of ±. Again, we argue that although all rows are known to the player O, but 

only those belonging to � can be viewed as strategies. Hence, not all but only 

those belonging to � are allowed to play. Minimization over � is equivalent to 

minimization over A and ¨ separately. Let denote A∗ and ∗̈�solutions (as-

sumed to exist) corresponding to Ã*, Ã^ respectively. If the Lagrange multiplier ½ is chosen properly we have Ã^ = 0 and ̂³£ + ¶, ∗̈̂ �= �0. 
Solving for ¶ with minimal norm we obtain  

¶∗�¨
 = − ̂³£, ∗̈� ∗̈�̂ ̂ ∗̈� ∗̈� , ¨̂ 
thus ´∗ = 0 

and ��½∗�0, ℎ
 = ¶∗�ℎ
 = −r̂³,A∗̂ + ̂³£, ∗̈̂t¶∗�¨
 
is the incremental cost of violating intellectual constrains specified above. 

Remark. Piecing together the above results one can conclude how to estimate 

a cost of violating these two constrains appearing jointly.  

Remark. Even though we still do not know how to play with Alcibiades we do 

know the game is worth of playing or not.  
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12.2   Non-zero-sum games  

In order to explain how the concept of intellectual constrains and its pricing 

can be used in the practice of political and military games let’s consider the fa-

mous Kennedy vs Khrushchev game during the Cuban Missile Crisis in 1962. 

We shall focus on particular question: how costly were the intellectual constrains 

of Khrushchev who underestimated JFK. The analysis should be done from 

Khrushchev perspective available to him at 1962 before the game begun. 

The first ascertaining is that only God knows everything and therefore cannot 

be cheated, not humans. Even high intelligence cannot create new information 

but only can use the amount available. Therefore the Achilles heel of the high 

intelligence are data. Moreover, Alcibiades seems to be more ‘sensitive’ with 

respect to data changes then any ‘ordinary’ player. Indeed, Alcibiades has enor-

mous ability to create unexpected (unpredictable) strategies and this is perhaps 

his main advantage. Since, strategies are mappings from information into ac-

tions, the number n of possible strategies is  n = ºcÅ%��ℹ
 
where �ℹ denote the set of all non-anticipative mappings ℹ → �, where�ℹ is a set 

of all available information and � is a set of all possible actions. It follows that 

increasing (decreasing) information, or actions one increases (decrease) the set 

of Alcibiades strategies. 

It is instructive to compare two numbers: 100*z and 10*zz, where the first is 

a number of strategies when ºcÅ%���
 = 100 and ºcÅ%�ℹ
 = 10, whereas in the 

second is opposite; ºcÅ%��
 = 10 and ºcÅ%�ℹ
 = 100. Since 100*z = 10^z << 10*zz, we see that increasing card (ℹ
 ten times gives 10Çz times more strate-

gies then increasing card (�
 ten times. The comparison partially explains the 

role played by intelligence agencies in modern political and military games. 

By preparing ‘new information’ one may provoke him to made a false move 

much worse (for him) comparing with the case when game is played with an 

ordinary player who is less ‘sensitive’ with respect to information changes. 

However, this ‘new information’ usually requires a new communication channel 

hence we shall continue this theme in the next paper. 
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 Notes on risk minimization  
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Abstract 

Risk is inherently connected with decisions hence risk analysis should be an significant compo-

nent of decision making processes. The essential part of the risk analysis is estimation and subse-

quently minimization of risk. This note offers a general approach to modelling, estimation and min-

imization of risk by using analytical and simulation methods. 

1    Introduction 

Human activities are risky. Unpredictable changes in dynamic neighbourhood, dis-

turbances, noises, climate changes, hazards events − all are the risk sources. They can 

cause some deviations from a planned scenario and the aim of risk analysis is to identi-

fy all possible events which can lead up to this negative aftermath which imply losses. 

Sometimes it is possible and useful to introduce a quantitative characterization of possi-

ble losses as a function of these quantities modelled here by a random variable � and as 

a function of possible actions � which have to be chosen in order to minimize its ef-

fects. Localization of risk sources and estimation of hazards elements and/or events 

together with their probabilities are the subjects of risk estimation. These results are 

used next for the purpose of risk minimization. How it is done constitute the main 

theme of these notes. 

The problem of risk minimization can be seen in a broader sense. For this purpose, 

let us consider the decision problem of profit maximization with uncertainty. Let in-

come � depend on chosen actions � = ���	�
, . . . , ��, i.e., � = ����, and all possible 

losses are in the form � = �	�, �����, where ���� denotes a random element. It is 

natural for decision maker (DM), to pose 
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Problem 1. Given a set of available decisions �, a profit function ���� − �	�, �����, 
find sup�∈�ℙ	�; ���� − �	�, ����� > ��, 
where � is a highest level of not acceptable profits. Because ℙ	�; ���� − �	�, ����� > �� = ℙ	�; �	�, ����� < ���� − ��, 
the problem is equivalent to sup�∈�ℙ	�; �	�, ����� < ��, 
where � = ���� − �, which is our main model for the risk minimization.  

More generally, if a formula for the profit function  	�, ����� is known, then it is 

more natural to set another problem. 

Problem 2. Given  	�, �����, find sup�∈�ℙ	�;  	�, ����� > ��. 
As these examples indicate, risk minimization can be a part of more general optimi-

zation problems. 

2    Statement of the problem 

Definition 3. We call �:ℝ × ℝ$ ⊃ � × & ∋ ��, (� → ���, (� ∈ ℝ* ≡ ,0,∞�, where �, & are non empty open sets, a loss function, iff  ���, /(� ≥ ���, 1(� 
for � ∈ ℝ, ( ∈ ℝ$ and / ≥ 1 ≥ 0.  

Problem 4. Given � ≥ 0, a loss function �, and �: 2 → ℝ$, a vector valued random 

variable defined on probability space �2, ℱ, ℙ�, find sup�∈�ℙ	�; �	�, ����� < ��. 
Denote by 45 the distribution function of �, and by 65�7� its density (if exists). 

Then 

ℙ	�; �	�, ����� < �� =
89:
9;<�>45�?7�, or
<�> 65�7�?7,

 

where B = Cℝ$ ∋ 7; ���, 7� < �D. 
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Example 5. When E = F = 1, & = C7 > 0D, � ≥ 0, ���� > 0, for all � ∈ �, ���, (� =����7H, then ℙ��; �����H��� < �� = ℙI�; ���� < J�/����L = 45 IJ�/����L, 
hence sup�∈�ℙ��; �����H��� < �� =�

sup�∈�45 IJ�/����L = 45 Msup�∈�J�/����N , by�monotonicity�of�45 

However, for the loss functions which are generally not invertible we have to work 

harder. 

Definition 6. We call a pair 	�, W����, where��W��� = ���������  sup�∈�ℙ��; �	�, ����� < ��, a risk graph of ��, 45�. 
Example 7. Working devices are subjected to breakdowns. The pause needs X working 

hours for reparations which are costly. Let KT is a cost of reparation which takes X 

working hours, where [ is the reparation cost per hour. Let \�X� represents a cost of X − hours pause of device’s work. Then the total cost of the breakdown is [X + \�X�. 
Denote � = �����
, �H� = ����X, [�. If � − workers are employed, then the financial 

loss function is ���, �� = �
�H + \��
/��, 
where \�0� = 0, 0 ≤ 1 ≤ /, implies \�1(� ≤ \�/(�, for ( ∈ ℝ, if ���, �� has to fulfill 

the formal requirements. This formula reflects a joint effect of randomness represented 

by � and actions chosen represented here by �. If 4_` is a joint distribution function of 

the random variable ����X, [�, then  

ℙ	�; �	�, ����� < �� = <�>4_`�?7�, 
where  B = Cℝ*H ∋ 7; 7
7H + \�7
/�� < �D. 
3    Development 

3.1    Approach via smooth transformations  

Let a�0, b� be a centered ball in ℝ$ of radius b, c:ℝ × ℝ$ → ℝ$, be a smooth 

mapping such that c	�, a�0, b�� = B = C7; ���, 7� < �D, 
for some b = b��, �� dependent on � and �.  
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Example 8. Let ���, (� = (_d���(, d = 	6ef� ∈ g�E, E�, where g�E, E� is a set of quadratic E × E matrices. We allow d 

to depend on �, i.e., d = d��� = I6ef���L. Moreover, if d = 	6ef� ∈ gh*�E, E� − set 

of quadratic E × E symmetric, positive defined matrices, then  c��, (� = ib dj
/H���(, 
satisfies  kd
/H���c��, (�kℝl = ib �(�ℝl ≤ i, 
if �(�ℝl ≤ b. Thus c	�, a�0, b�� = ib dj
/H���a�0, b� = B, 
for any nonnegative b, i. Note, that ∂∂o ,c�� + op, (�qrst = − i2b djv/H���dwx ���(, 
where  	dwx ����ef = y∇6ef���, p{, 
and  

|c��, }� = ~det ∂c��, }�∂} ~ = ib �detdj
/H���� = ib �detd����j
/H. 
Thus ∂∂o ,|c�� + op, }�qrst = − i2b �detd����jv/H��$

es
 detde��, p�, 
where de��, p� is a matrix obtained from d��� by o − differentiation of its �����column.  

Now turning back to the general case, we have 

 � �> 65�7�?7 = � �ℝl ¶>�7�65�7�?7 

 = � �¶��t,���}�65	c��, }��|c��, }�?} 

 = � ��t I� �ℝl�� ¶�l�����∩��t,���}�65	c��, }��|c��, }�?ℋ$j
�}�L?� 

 = � �����t I� �ℝl�� ¶�l������}�65	c��, }��|c��, }�?ℋ$j
�}�L ?� ≡ |���, 
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where in the line two we have changed variables putting 7 = c��, }�, and in the next 

lines integration is performed with respect the Hausdorff measure ℋ$j
, and �$j
��� = Cℝ$ ∋ 7; �7�ℝl = �D is a centered sphere of radius �, and |c is a Jacobian 

of c (see [3]) Hence, the necessary condition for �å to maximize ℙ	�; �	�, ����� <��, is  ∂∂o ,|�� + op�qrst = 0. 
Theorem 9. ∂∂o ,|�� + op�qrst = y∇b	�å�, p{ < �ℝl�� ¶�l��I�	�å�L�}�65 Ic	�å, }�L |c	�å, }�?ℋ$j
�}� 

 +� ��	�å�t �� �ℝl�� ¶�l������}� �∇�65 Ic	�å, }�L , p� |c	�å, }�?ℋ$j
�}��?� 

 +� ��	�å�t M� �ℝl�� ¶�l������}�y∇�|c	�å, }�, p{65 Ic	�å, }�L ?ℋ$j
�}�N ?� 

 

Proof. Differentiation ∂∂o �< ��	�å*rw�
t �< �ℝl�� ¶�l������}�65 Ic	�å + op, }�L |c	�å + op, }�?ℋ$j
�}�� ?��rst 

gives the result. 

Example 10. (continued) Put b��� = �. Substitution 

 
��r �65 Ic	�å + op, }�L |c	�å + op, }��rst 

 = − 
H ,65x Ic	�å, }�Ldjv/H���dwx ���}|c	�å, }� 
 +65 Ic	�å, }�L �detd����jv/HȂ �$es
 detde��, p�q�å 

into 

< �¡t �< �ℝl�� ¶�l������}� �∇�65 Ic	�å, }�L |c	�å, }�, p� 65 Ic	�å, }�L |c	�å, }�?ℋ$j
�}��?�, 
gives the result.  

3.2   Standard approach 

Let’s define a new random variable ¢ = ����¢
, . . . ¢$�, such that ¢
 = �
, ..., ¢$j
 = �$j
, ¢$ = ���, ��. Then 
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6£�7� = 65 Ic	�7��L �|c�7��, 
where c = ����c
, . . . c$�, c
�7� = 7
,..., c$j
�7� = 7$j
, c$�7� = ���, 7�. Consequent-

ly 

|c�7� = ∂���, 7�∂7$  

6£�7� = 65�7
, . . . , 7$j
, ���, 7
, . . . , 7$�� ¤∂���, 7
, . . . , 7$�∂7$ ¤, 
and 

6£l�7$� = < �6£�7�?7
. . . ?7$j
 = < �65 Ic	�7��L �|c�7��?7
. . . ?7$j
 

������������= < �65�7
, . . . , 7$j
, ���, 7
, . . . , 7$�� ¤∂���, 7�∂7$ ¤ ?7
. . . ?7$j
, 
hence sup�∈�ℙ	�; �	�, ����� < �� = sup�∈�ℙ��; ¢$��� < ���

= sup�∈�< �¡
j�6£l�7$�?7$= sup�∈� < �¡j� ¥< �65�7
, . . . , 7$j
, ���, 7
, . . . , 7$�� ¤∂���, 7�∂7$ ¤ ?7
. . . ?7$j
¦ ?7$, 

hence for |��� = ℙ	�; �	�, ����� < ��, 
we have |�� + op� = ℙ	�; �	� + op, ����� < �� 
= < �¡j� ¥< �65�7
, . . . , 7$j
, ��� + op, 7
, . . . , 7$�� ¤∂��� + op, 7�∂7$ ¤ ?7
. . . ?7$j
¦ ?7$. 
Theorem 11. The necessary condition of optimality for �∗, is � �¡j� �� �∂¨65�7
, . . . , 7$j
, ���∗, 7��©∇����∗, 7�, pª «�¨��∗,¬��¬l « ?7
. . . ?7$j
� ?7$ +  

� �¡j� ,� �sign��$��∗, 7��65�7
, . . . , 7$j
, ���∗, 7��©∇��$��∗, 7�, pª?7
. . . ?7$j
q?7$ = 0,  
for all p ∈ �, where �$��, 7� = ∂���, 7�∂7$ . 
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Proof.  ∂∂o = < �¡
j� ¥< �∂¨65�7
, . . . , 7$j
, ���, 7��©∇����, 7�, pª ¤∂���, 7�∂7$ ¤ ?7
. . . ?7$j
¦ ?7$ +�

����������< �¡
j� ¥< �sign��$��, 7��65�7
, . . . , 7$j
, ���, 7��©∇��$��, 7�, pª?7
. . . ?7$j
¦ ?7$ . 

Example 12 (see [2]). Let ���, 7� = ©�, 7ªH, �~¯�°, d�, then |��� = ℙ	�; �	�, ����� < ���= 1J�2±�$�d�<�> exp ³−12 �7 − °�_dj
�7 − °�´ ?7,�B = Cℝ$ ∋ 7; ©�, 7ªH < �D. 
Let 7 = d
/H} + °, 
hence 

|��� = 1J�2±�$< �>��� exp ³−12�}�H´ ?}, B��� ≜ ¶ℝ$ ∋ };−Ȃ� − ©�, °ª < yd
/H�, }{ < Ȃ� − ©�, °ª¸. 
and 

|��� = 1Ȃ2±< �¹���
º��� exp »− /H2 ¼?/, i��� = −	Ȃ� + ©�, °ª�/½d
/H�¾$,�¿��� = 	Ȃ� − ©�, °ª�/½d
/H�¾$, 

where ½d
/H�¾$ is the last coordinate of d
/H�.  

3.3   Markowitz models 

Since the middle of 20th century when Harry Markowitz published his famous paper 

"Portfolio Selection" [1], the Markowitz Model (MM) begun its carrier in the financial 

world. There are several version of MM developed by his followers (Roy, Tobin, 

Sharpe) and even today MM is still an active research area. Using our notation and con-

vention, let � = �����
, . . . , �$� denotes financial investment in risky assets, i.e. Ȃ �$es
 �e = [, where [ is a total amount of money which has to be invested in stock. Let � = �����
, . . . , �$� is return’s vector, hence ©�, �ª is a total investment profit. Elemen-

tary computations give  
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 À©�, �ª = ©�, À�ª = ©�,Áª 
 pib�©�, �ª� = À,©�, �ª − À©�, �ªqH 

 = À,©�, �ª − ©�,ÁªqH 

 = À,©�, � − ÁªqH 

 = À�_,� − Áq,� −Áq_� 

 = �_�À,� −Áq,� −Áq_�� = �_d�, 
where d = ��p��, ��, and À is expectation with respect ℙ. Markowitz posed the fol-

lowing 

Problem 13. Given [ and �, find minC�_d�; ©|, �ª = [, ©Á, �ª = �D, 
where | = ����1, . . . ,1�, or equivalently, find min¶�Â�H; yd
/H|, Â{ = [, yd
/HÁ, Â{ = �¸. 
Solution 14. It is immediate that the minimal norm Â ∈ 1FiE	d
/H|, d
/HÁ�, hence Â∗ = id
/H| + ¿d
/HÁ, 
where i, ¿ solves i©d|, |ª + ¿©d|,Áª = [, i©dÁ, |ª + ¿©dÁ,Áª = �. 
If ©d|, |ª©dÁ,Áª − ©d|,ÁªH ≠ 0, then there is a unique pair i∗, ¿∗ which satisfies 

above equations. Thus �∗ = dj
/HÂ∗ = i∗| + ¿∗Á. 
We are going now to describe the Markowitz problem using the loss functions and 

the smooth transformation approach. For ���, �� = ���Hkdj
/H,� −ÁqkH, 
we have 

 ℙ	�; �	�, ����� < �� = � �> 45�?7�, 
 B = Äℝ$ ∋ 7; kdj
/H,� − ÁqkH < �/���HÅ. 

If �~¯�Á, d�, then 45�?7� = 65�7�?7, where  

 65�7� = �2±�j$/H�d�j
/Hexp Ä− 
H kdj
/H,7 − ÁqkHÅ. 
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Let } = dj
/H,7 − Áq, then 

 ℙ	�; �	�, ����� < �� = � �> 45�?7� =��������������= �2±�j$/H�d�j
/H � �> exp Ä− 
H kdj
/H,7 −ÁqkHÅ ?7 = 

 = �2±�j$/H � �¶�	t,¡/���Æ��}�exp Ä− 
H �}�HÅ ?} ≜ Ç$��, ����. 
Since Ç$��,⋅�, is decreasing on �0,∞�, hence sup�∈�ℙ	�; �	�, ����� < �� = sup�∈�Ç$��, ���� = Ç$��, arginfC���; � ∈ �D�. 
But � = Cℝ ∋ �; ©|, �ª = [, ©Á, �ª = �D, hence �∗ must be of the Markowitz form �∗ = i∗| + ¿∗Á. 

4    Multivariate loss functions 

We call �:ℝ × ℝ$ ∋ ��, (� → ���, (� ∈ ℝ*Ê ≡ ,0,∞�Ê a loss function, iff  �e��, /(� ≥ �e��, 1(�, for��� = 1, . . . , Á, � ∈ ℝ, ( ∈ ℝ$, and / ≥ 1. 

Problem 15. Given � and � ∈ ℝ*Ê, find sup�∈�ℙ	�; �
	�, ����� < �
, . . . , �Ê	�, ����� < �Ê�. 
Denote by 45 the distribution function of �, and by 65�7� its density (if exists). 

Then 

ℙ	�; �
	�, ����� < �
, . . . , �Ê	�, ����� < �Ê� =
89:
9;<�>45�?7�, or
<�> 65�7�?7,

 

where B = Cℝ$ ∋ 7; �
��, 7� < �
, . . . , �Ê��, 7� < �ÊD. 
Definition 16. We call a sequence 	�
, . . . , �Ê, W��
, . . . , �Ê��, where  W��
, . . . , �Ê� = sup�∈�ℙ	�; �
	�, ����� < �
, . . . , �Ê	�, ����� < �Ê�, 
a risk graph of ��, 45�.  
Example 17. Let �
	�, ����� = �
	�, �
���� and �H	�, ����� = �H	�, �H����, 
where �
, �H, are independent random variables with distributions 4
, 4H, respectively.  
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Then 

 sup�∈�ℙ	�; �
	�, ����� < �
, �H	�, ����� < �H� 
 = sup�∈�½ℙ	�; �
	�, �
���� < �
� ⋅ ℙ	�; , �H	�, �H���� < �H�¾ 
 = sup�∈� M� �>� 4
�?7
�N M� �>Æ 4H�?7H�N, 

where Be = Cℝ ∋ 7e; �e��, 7e� < �eD, � = 1,2. 

4.1   Resulting loss function 

4.1.1   Cascade paths 

If the risky actions are in the ’cascade’ path, then it may be reasonable to introduce 

a weighted sum of loss functions  ���, �� = Ë
�
��, ��+. . . +ËÊ�Ê��, ���= ©Ì, Í�Î, Ï�ª,����Ì = ÐÑÒ�ÓÔ, . . . , ÓÕ�. 
Then ℙ	�; �	�, ����� < �� = ℙ	�; yΛ, �	�, �����{ < ���= <�>45�?7
. . . ?7$�,�B = C7 ∈ ℝ$; ©Λ, ���, 7�ª < �D, 
hence  

sup�∈�ℙ	�; �	�, ����� < �� = sup�∈�<�>45�?7
. . . ?7$�. 
When Ë
 =. . . = ËÊ = 1, then we have an ordinary sum of loss functions, and B =Cℝ$ ∋ 7; ©|, ���, 7�ª < �D, | = ����1, . . . ,1�, in this case. 

4.1.2   Cascade paths 

If the risky actions are parallel, then it may be reasonable to introduce  g��, �� ≜ max	�
��, ��, . . . , �Ê��, ��� 
as a resulting loss function. 

4.2   Conditional risk 

Sometimes it is necessary to include an additional information into the model. Oper-

ational risk models for instance, by definition include all information available up to the 

moments when the planned actions have to be executed. Information means here 

a knowledge that some events has occurred or not. In the language of probability theory 
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it has a form of sub-sigma field of ℱ, say G. Then the conditional risk model consists 

in solving 

Problem 18. Given Ø ⊂ ℱ, � and � ≥ 0, find sup��Ú�∈Ûℙ	�; �	�, ����� < ��G�. 
where ℙ�⋅ �G�, is a conditional probability. Contrary to the previous problems, here we 

look for a G −measurable random variable ���� ∈ ℝ and the class of such variables is 

denoted here by �. 

If 45�7�G� is a conditional distribution function of �, and 65�7�G� its density (if ex-

ists), then 

ℙ	�; �	�, ����� < ��G� =
89:
9;<�>45�?7�G�, or
<�> 65�7�G�?7,

 

where B = Cℝ$ ∋ 7; ���, 7� < �D. 
4.3   Operational risk 

If the action � ∈ ℝ is subjected to imperfection or randomly perturbed, then the 

joint effect of these imperfection is called the operational risk. In the simplest case 

disturbances add to actions, i.e.,  p��� = � + Ü���, 
where � is a chosen action, Ü��� models imperfections and disturbances, p��� is a 

resulting action. Let ¢��� = ���	����, Ü����. Then  [	�, ¢���� ≜ �	� + Ü���, �����, 
is a new loss function provided that ���, �� is. Due this modification of the loss func-

tion the operation risk can be included into considerations for ordinary loss functions. 

5    Risk in net’s operations 

There is sometimes a need to consider a risk of more advanced, multistage, activity 

which is conducted in many different parallel paths. The paths crossed at some stages 

and the next actions can be initiated when the previous have already been completed. 

The paths structure is called a net. At each stage there is associated an elementary risk 

which we have considered in previous sections. The problem which we are going to 

consider in this section is how to model the resulting risk of the whole project which is 

mapped in the net. We have considered a sequence of actions realized on the path and 

called such structure a cascade. The resulting loss function of a cascade is a sum of the 
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elementary risk functions. For parallel paths starting from the initial point S and ending 

at the point E, it is natural to define the resulting loss function g as  g��, (� ≜ max	�
��, (�, . . . , �Ê��, (��, 
where �e, � = 1, . . . , Á, is the loss functions of the ��� − path. 

In general, the loss functions reflects three kind of losses; financial measured mone-

tary, temporal measured at time units, and product’s quality loss which results in de-

mand’s decreasing. It is natural to accept the following rules: 

• the financial losses always add despite the place in net where they occur - thus they 

are always in cascade; 

• the temporal losses are in cascade only when they are in cascade path. If the paths 

are parallel, then the temporal losses are parallel too; 

• the quality losses can belong to the both classes thus requires individual case stud-

ies. 

Example 19 (Example 4 continued) 

 �
��, �� = �
/�, temporal�losses�component, 
 �H��, �� = �
�H + \��
/��, financial�losses�component. 

6    Generalizations 

In the more realistic and advanced cases the distribution function 45 of �, (thus the � itself), can depend of action chosen �. This will be reflected in the notations 45�, 65�, ��, if needed. Hence, the problems considered previously, takes now the corrected 

form; given � and � ∈ ℝ*Ê, find sup�∈�ℙ	�; �
	�, ������ < �
, . . . , �Ê	�, ������ < �Ê�, 
where 

ℙ	�; �
	�, ������ < �
, . . . , �Ê	�, ������ < �Ê� =
89:
9;<�>45��?7�, or
<�> 65��7�?7,

 

where B = Cℝ$ ∋ 7; �
��, 7� < �
, . . . , �Ê��, 7� < �ÊD. 
Example 20. In the Example 4 we have assumed that the number X of working hours 

needed to complete the reparation does not depend on the number of workers who do 

the job. However, everyday practice shows that, in contrary, it strongly does. The gen-

eralized version reads as follows. The pause needs X� working hours for reparations if � 

workers are employed. Let [X� is a cost of reparation which takes X� working hours, 

where [ is the reparation cost per hour. Let \�X�� represents a cost of X��hours pause of 
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device’s work. Then the total cost of the breakdown is [X� + \�X��, provided ��work-

ers are employed. Denote �� = �����
�, �H� = ����X�, [�. Then the loss function is 

 �
��, ��� = �
�, temporal�losses�component, 
 �H��, ��� = �
��H + \��
��, financial�losses�component. 

This formula reflects a joint effect of randomness represented by �� and actions chosen 

represented here by �. If 4_�̀  is a joint distribution function of the random variable ����X�, [�, then  

ℙ��; �
��, ��� < �
, �H��, ��� < �H� = <�>4_�̀ �?7�, 
where B = CℝH ∋ 7; 7
 < �
, 7
7H + \�7
� < �HD. 

6.1   Approach via smooth transformations 

It follows that theory developed in Section 2.1 needs some modifications. Indeed, in 

the general case, we have 

 � �> 65��7�?7 = � �ℝl ¶>�7�65��7�?7 

 = � �¶��t,���}�65�	c��, }��|c��, }�?} 

 = � ��t I� �ℝl�� ¶�l�����∩��t,���}�65�	c��, }��|c��, }�?ℋ$j
�}�L?� 

 = � �����t I� �ℝl�� ¶�l������}�65�	c��, }��|c��, }�?ℋ$j
�}�L?� 

 ≡ |���, 
where in the line 2 we have changed variables putting 7 = c��, }�, where c:ℝ ×ℝ$ → ℝ$ is a smooth mapping such that  c	�, a�0, b�� = B = Cℝ$ ∋ 7; �
��, 7� < �
, . . . , �Ê��, 7� < �ÊD, 
for some b = b��, �� dependent on � and �. In the next lines integration ([3]) is per-

formed with respect to the Hausdorff measure ℋ$j
, and �$j
��� = Cℝ$ ∋ 7; �7�ℝl =�D is a centred sphere of radius �, and |c is a Jacobian of c. Hence, the necessary condi-

tion for �å to maximize ℙ	�; �	�, ����� < ��, is  ∂∂o ,|�� + op�qrst = 0. 
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Theorem 21. ∂∂o ,|�� + op�qrst�= y∇b	�å�, p{< �ℝl�� ¶�l��I�	�å�L�}�65 Ic	�å, }�L |c	�å, }�?ℋ$j
�}� 
+< ��	�å�

t �< �ℝl�� ¶�l������}� �∇�6�å Ic	�å, }�L , p� |c	�å, }�?ℋ$j
�}��?� 

+< ��	�å�
t �< �ℝl�� ¶�l������}�y∇�|c	�å, }�, p{65�å Ic	�å, }�L ?ℋ$j
�}��?� 

Proof. Differentiation 

∂∂o Þ < ��	�å*rw�
t ß < �ℝl�� ��l������}�65�å*rw Ic	�å + op, }�L |c	�å + op, }�?ℋ$j
�}�à?�á

rst
, 

gives the result.   

6.2   Standard approach  

Let us define a new random variable ¢ = ����¢
, . . . ¢$�, such that ¢
 = �
, ..., ¢$jÊ = �$jÊ, ¢$jÊ*
 = �
��, ��,...,¢$ = �Ê��, ��. Then 6£�7� = 65 Ic	�7��L �|c�7��, 
where c = ����c
, . . . c$�, c
�7� = 7
,..., c$jÊ�7� = 7$jÊ,...,c$jÊ*
�7� = �
��, 7�,..., c$�7� = �Ê��, 7�. Consequently for ¢�Á, E� = ����¢$jÊ*
, . . . , ¢$� we have 

6£�Ê,$��7$jÊ*
, . . . , 7$� = < �6£�7�?7
. . . ?7$jÊ = < �65 Ic	�7��L �|c�7��?7
. . . ?7$jÊ�= < �65�7
, . . . , 7$jÊ, �
��, 7�, . . . , �Ê��, 7����|c�7���?7
. . . ?7$jÊ 

and sup�∈�ℙ	�; �
	�, ����� < �
, . . . , �Ê	�, ����� < �Ê� = sup�∈�ℙ��; ¢
��� < �
, . . . , ¢Ê��� < �Ê� 
= sup�∈�< �¡�

j� . . . < �¡â
j� 6£�Ê,$��7$jÊ*
, . . . , 7$�?7$jÊ*
. . . ?7$ 
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= sup�∈�< �¡�
j� . . . < �¡â

j� ¥< �65�7
, . . . , 7$jÊ, �
��, 7�, . . . , �Ê��, 7��+ �|c��7��?7
. . . ?7$jÊ¦ ?7$jÊ*
. . . ?7$, 
hence for |��� = ℙ	�; �
	�, ����� < �
, . . . , �Ê	�, ����� < �Ê�, 
we have |�� + op� = ℙ	�; �
	� + op, ����� < �
, . . . , �Ê	� + op, ����� < �Ê� = 

< �¡�
j� . . < �¡â

j� ¥< �65�7
, . . , 7$jÊ, �
�� + op, 7�, . . ,�����Ê��
+ op, 7���|c�*rw�7��?7
. . ?7$jÊ¦ ?7$jÊ*
. . ?7$ . 

Theorem 22. The necessary condition of optimality for �∗ is 

< �∂¨65�7
, . . . , 7$j
, ���∗, 7��©∇����∗, 7�, pª ¤∂���∗, 7�∂7$ ¤ ?7
. . . ?7$j
 

+< �sign��$��∗, 7��65�7
, . . . , 7$j
, ���∗, 7��©∇��$��∗, 7�, pª?7
. . . ?7$j
 = 0, 
where 

�$��, 7� = ∂���, 7�∂7$ . 
Proof.  ∂∂o ,|�� + op�qrst = < �∂¨65�7
, . . . , 7$j
, ���, 7��©∇����, 7�, pª ¤∂���, 7�∂7$ ¤ ?7
. . . ?7$j
 

����������������������������������+< �sign��$��, 7��65�7
, . . . , 7$j
, ���, 7��©∇��$��, 7�, pª?7
. . . ?7$j
. 
7    Average risk minimization 

Sometime it is useful to consider 

Problem 23. Given a loss function �, and �: 2 → ℝ$, a vector valued random variable 

defined on probability space �2, ℱ, ℙ�, find inf�∈�À½�	�, �����¾. 
where À stands for expectation against measure ℙ.  
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In our notations 

À½�	�, �����¾ = < �ℝl ���, 7�65�7�?7. 
Example 24 (see [4]) (Games against Nature) Consider two person, zero-sum game 

with matrix payoff B = 	ief�, � = 1, . . . , E, ã = 1, . . . , Á which models possible losses ief when the player N (Nature) applies strategy ��� row against defender’s strategy ã�� 

column. We assume that N has chosen the probability distribution F = ����F
, . . . , F$�, 
as strategy for playing the rows b
, . . . , b$ of B, see figure below ,¯\&q,6
, . . . , 6Êq 

�F
. . .F$� �
i

 . . . i
Ê. . . . .i$
 . . . i$Ê�. 

Thus À½�	�, �����¾ = � �
åeå$ � �
åfåÊ Feief6f, 
where the probability vector 6 = ����6
, . . . , 6Ê� is a strategy for playing columns of B 

by defender. Consequently, inf�∈�À½�	�, �����¾ = infæ � �
åeå$ � �
åfåÊ Feief6f = infæ ©Ü, 6ª, 
where  Ü = ����Ü
, . . . , ÜÊ�, Üf = � �
åeå$ Feief. 
Since 6f ≥ 0, Ȃ �
åfåÊ 6f = 1, hence the best 6∗ must be in the form 6ç = 1, for some 1 ≤ è ≤ Á, and 6f = 0, for ã ≠ è. Certainly, Üç ≤ Üf, for all ã ≠ è. 

8    Decisions with risk 

8.1   Projects selection 

We shall consider in this section the following decision problem: one has to select 

one project between many alternatives. With each of them there is associated a loss 

function �e, � = 1, . . . , ?, and the risk graphs 	�e, W��e��, of 	�e , 45é�, where �e is a 

random variable associated with �e� project. How one has to select the ’right’ project? If 

there is the one, common for all projects a level of risk tolerance, say ℵ, then one should 
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select a project, say F, such that � = minC�e; W��e� = ℵD. However, when these pro-

jects are distributed between different areas of public administration, such as health, 

security, transport, etc., then there no exists one, level of risk tolerance which is com-

monly accepted and this rule has to be modified. Let ℵe, � = 1, . . . , ?, is a risk tolerance 

level in ���  area of project implementation. Then the previous rule can be generalized 

to � = minC�e; W��e� = ℵeD. 
8.2   Losses minimization under risk level constraints 

If decision maker is interested with loss minimization, then he should consider if 

there exists a risk tolerance level which cannot be exceeded (see [2] for extended dis-

cussion). Once this level b ∈ ,0,1q, is chosen, then it is natural to define a set \�,¡ = ¶� ∋ ��; ℙ	�; �	�, ����� > �� ≤ b¸, 
of admissible strategies such that probability of losses bigger than �, is less than b. 

Formally we can state 

Problem 25. Given �, 45, find a strategy �� such that ℙI�; �	��, ����� ≤ �	�, �����L > 1 − b. 
for � ∈ \�,¡. 

Proposition 26  �� = arg�inf¶4̈ ���j
 �1 − b�; � ∈ \�,¡¸, 
where 

 4¨������ = � �¡j� 6¨������?7$, 
 6¨����7$� = � �65�7
, . . . , 7$j
, ���, 7
, . . . , 7$�� «�¨��,¬��¬l « ?7
. . . ?7$j
. 

Proof. Since 6¨��� ≥ 0, 4̈ ���j
  can be defined as  4̈ ���j
 �i� = inf¶1; 4¨����1� < i¸. 
From section entitled ’Standard approach’  ℙ	�; �	�, ����� < �� = 4¨������ ≥ 1 − b, 
hence � ≥ 4̈ ���j
 �1 − b�, i.e., minimizing �	�, �����, under fixed probability constrain 

implies minimization of 4̈ ���j
 �1 − b� with respect to � ∈ \�,¡. 
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Crucial for implementing numerical simulations is the following’ 

Corollary 27 If ��, �� → 4¨������ belongs to \�ℝ ×ℝ�, then minimizing 4̈ ���j
 �1 −b� is equivalent to minimization of 4¨����1 − b�.  
Proof. We have 

 4̈ ��ë�j
 �1 − b� = inf�∈ìë,í4̈ ���j
 �1 − b� = inf�∈ìë,íinf¶1; 4¨����1� < 1 − b¸ 
 = inf ³1; inf�∈ìë,í4¨����1� < 1 − b´ �bycontinuityof4̈ � 
 = inf¶1; 4¨��ë,í��1� < 1 − b¸ 
 = 4̈ ��ë,í�j
 �1 − b��� = ��,¡ , 

where ��,¡ is minimizing strategy for 4̈ . 

9    Numerical simulations 

Theory developed in the previous sections allows to make risk minimization given 

loss function ���, �� and probability distribution 45 of random element �. However, 

this approach has some defects. In order to use differential calculus for optimization one 

must be sure that all functions appearing in the model are smooth. But, as some exam-

ples show dependence 4� on � does not, and not-smooth optimization seems to be inev-

itable. On the other hand, when the model is smooth, then standard variational methods 

of optimization lead to analytical formulae which are complex and difficult to apply. It 

looks therefore reasonable to consider parallel approach based on numerical simula-

tions. 

9.1   Monte-Carlo method 

For the clarity of presentation we consider first the problem of probability calcula-

tion via the M-C method under simplifying assumptions 

9.1.1   ÏÔ,...,Ïî are stochastically independent 

We assume firstly that �� does not depend on �, and simply write �, instead of ��. 

Secondly, we assume that coordinates of �, i.e., the random variables �
,...,�$, are sto-

chastically independent, hence 45 = 4
 ⊗. . .⊗ 4$, where 4e = 45é. Similarly for densi-

ties 65 = 6
 ⊗. . .⊗ 6$, where 6e = 65é. Thus 

 ℙ	�; �
	�, ����� < �
, . . . , �Ê	�, ����� < �Ê� 
 = � �> Ȃ �$es
 6e�7e�?7e , 
 ��B = Cℝ$ ∋ 7; �
��, 7� < �
, . . . , �Ê��, 7� < �ÊD. 
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Now we introduce a new probability space � = 	,0,1�$, ⊑ �ℬ�, Λ,t,
�$ �, where ⊑ �ℬ� is 

a sigma field of Borel sets on ℝ$, restricted to ,0,1�$, and Λ,t,
�$  is a n-dimensional 

Lebesgue measure restricted to ,0,1�$. The generic elements of ,0,1�$ we denote by Ü = �Ü
, . . . , Ü$�. On � define random variables � = ��
, . . . , �$�, by the formulae  �e�Ü� = 4ej
�Üe�, 
where 4ej
�i� = infC1; 4e�1� < iD. 
Now 

 4��7� = Λ,t,
�$ �Ü; �
�Ü� < 7
, . . . , �$�Ü� < 7$� 
 = Λ,t,
�$ 	Ü;Ü
 < 4
�7
�, . . . , Ü$ < 4$�7$�� 
 = Ȃ �$es
 4e�7e� = 45�7� = ℙ��;�
��� < 7
, . . . , �$��� < 7$�, 

what implies ℙ	�; �
	�, ����� < �
, . . . , �Ê	�, ����� < �Ê�= Λ,t,
�$ 	Ü; �
	�, ��Ü�� < �
, . . . , �Ê	�, ��Ü�� < �Ê�= Λ,t,
�$ IÜ; �
I�, 4
j
�Ü
�, . . . , 4$j
�Ü$�L< �
, . . . , �ÊI�, 4
j
�Ü
�, . . . , 4$j
�Ü$�L < �ÊL. 
Consequently, by the Central Limit Theorem the probability ℙ	�; �
	�, ����� < �
, . . . , �Ê	�, ����� < �Ê� 
is approximately equal to  

≃ 1̄��ô
fs
 ¶õ�Ü�, 

where Φ = Ä,0,1�$ ∋ Ü; �
I�, 4
j
�Ü
�, . . . , 4$j
�Ü$�L< �
, . . . , �ÊI�, 4
j
�Ü
�, . . . , 4$j
�Ü$�L < �ÊÅ 
and therefore can be obtained by independent simulations of Üe, � = 1, . . . , E, according 

to the uniform distribution on ,0,1�, and summing Ȃ �ôfs
 ¶õ�Ü�/¯. 

Final remark in this section; when �� is � − dependent, all calculations have to be 

done for each fixed �, and then 
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 sup�∈�ℙ	�; �
	�, ����� < �
, . . . , �Ê	�, ����� < �Ê� 
 ≃ 
ô sup�∈�Ȃ �ôfs
 ¶õ����Ü�, 

where Φ��� = Ä,0,1�$ ∋ Ü; �
I�, 4�
j
�Ü
�, . . , 4�$j
�Ü$�L< �
, . . , �ÊI�, 4�
j
�Ü
�, . . , 4�$j
�Ü$�L < �ÊÅ 
and 4�e��� = ℙ��; �e���� < ��. 
Remark 28. When �
,...,�$ are stochastically dependent, then there no more exist 4e, � = 1, . . , E such that 45 = 4
⊗. . .⊗ 4$. However, the approach presented in this sec-

tion can be applied as a first step approximation. For this purpose, define 4÷e�7e�, � = 1, . . . , E as marginal distributions of 45, i.e.,  

4÷e�7e� = < �ℝl�� 45�7
, . . . , 7$�ø�fùe ?7f . 
Besides 45 ≠ 4÷
 ⊗. . .⊗ 4÷$, all calculations which were done above can be repeated and 

the final error become as smaller as stochastically dependences are weaker. 

9.1.2   Ï = ú�û� 
We shall consider now the case with a given smooth, invertible mapping c:ℝ$ →ℝ$, such that  � = c���, 

where � = üýþ��
, . . . , �$�, and �
, . . . , �$ is a sequence of independent random varia-

bles uniformly distributed on ,0,1�. Because of the inverse assumption � = cj
��� = üýþ	�
���, . . . ,�$���� 
there exists a collection �
�⋅�, . . . ,�$�⋅�, of scalar functions �e on ℝ$, such that �
���, . . . ,�$���, are stochastically independent. Uniform distributions of �e���, im-

plies that as basic probability space we may choose � = �,0,1�$, ⊑ �ℬ�, Λ,t,
�$ � from 

the previous subsection. From probability theory we know, that for any bounded ℎ: ℝ$ → ℝ, 

 À½ℎ	c����¾ = � �ℎ	c�}��6��}�?} = � �ℎ�7�6�	cj
�7���|cj
�7��?7 

 = À,ℎ���q = � �ℎ�7�65�7�?7, 
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hence 

 65�7� = 6�	cj
�7���|cj
�7�� = Ȃ �$es
 6e	cj
�7���|cj
�7��, 
by independence of �e, and where 6e = 6�é, 6e�i� = ¶,t,
��i�. This means that for � = c���, we have ℙ	�; �
	�, ����� < �
, . . . , �Ê	�, ����� < �Ê� 
= <�> 65�7�?7 = <�>ø�$

es
 6e	cj
�7���|cj
�7��?7 = <�>ø�$
es
 ¶,t,
�	cj
�7���|cj
�7��?7, 

B = Cℝ$ ∋ 7; �
��, 7� < �
, . . . , �Ê��, 7� < �ÊD. 
By using the last integral expression one can simulate numerically the inquired proba-

bility in the following procedure: 

1. select randomly an independent sequence �
�1�, . . . , �$�1�, from ,0,1� according to 

the uniform distribution, 

2. compute 7
 = üýþ	7
�1�, . . . ; , 7$�1��,  
where 7
�1� = c	�
�1�, . . . , �$�1��, . . . , 7$�1� = c	�
�1�, . . . , �$�1��; 

3. check if �
��, 7
� < �
, . . . , �Ê��, 7
� < �Ê; 

4. if so take a number one, if not take zero; 

5. repeat step 1 with a sequence �
�2�, . . . , �$�2�; 
6. repeat step 2 with a sequence 7H = üýþ	7
�2�, . . . , 7$�2��, 

where 7
�2� = c	�
�2�, . . . , �$�2��, . . . , 7$�2� = c	�
�2�, . . . , �$�2��; 
7. repeat step 3 by checking if �
��, 7H� < �
, . . . , �Ê��, 7H� < �Ê; 

8. repeat step 4; 

9. repeat steps 1-4 in feedback ¯ times. 

Use these computations in the sum 

 ℙ	�; �
	�, ����� < �
, . . . , �Ê	�, ����� < �Ê� 
 ≃ 
ôȂ �ôes
 ¶>	7e��|cj
	7e��. 

9.1.3   General case 

We shall consider now the case when 45, and 4� are given and we are looking for a 

smooth mapping c:ℝ$ → ℝ$, such that  � =� c���, 
where =�  means distributional equality, i.e., 45 = 4����, and where � is a random vector 

uniformly distributed on ,0,1�$. Let cj
�7� = ��7� = üýþ	�
�7�, . . . ,�$�7��. Then  
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 45�7� = ℙ��;�
��� < 7
, . . . , �$��� < 7Ê� 
 = ℙ	�;�
��� < �
�7�, . . . , �$ < �$�7�� 
 = 4�	�
�7�, . . . ,�$�7�� = Ȃ �$es
 4�é	�e�7��. 

Problem 29. Given 45, find c:ℝ$ → ℝ$ such that 

45�7� =ø�$
es
 4�é	�e�7�� =ø�$

es
 �e�7�, 
for 0 ≤ �e�7� < 1, � = 1, . . . , E. 

Definition 30. Let us denote by 4
, 4
H, . . . , 4
,...,$j
, ’cascade’ marginals of 45, defined 

as 

 4
�7
� = lim¬Æ,...,¬l→�45�7�, 
 4
,H�7
, 7H� = lim¬�,...,¬l→�45�7�, 
 . .. 
 4
,...,$j
�7
, . . . , 7$j
� = lim¬l→�45�7�. 

We shall find a solution map c in the special, ’cascade’ form 

 7
 = c
��
�, 
 7H = cH��
, �
�, 
 . .. 
 7$ = c$��
, . . . , �$�. 

Theorem 31.  

 c
��
� = 4
j
��
�, 
 cH��
, �H� = 4
,Hj
�4
j
��
�, �
�H�, 
 cv��
, �H, �v� = 4
,H,vj
 I4
j
��
�, 4
,Hj
�4
j
��
�, �
�H�v�L, 
 . .. 
 c$��
, . . . , �$� = 45j
 I4
j
��
�, 4
,Hj
�4
j
��
�, . . . , �
�H�v�L 

where 4
,...,çj
 , è = 1, . . . , E − 1, is an inverse of 4
,...,ç�7
, . . . , 7çj
,⋅�, with respect to the 

last variable when 7
, . . . , 7çj
, are fixed. Similarly, 45j
 is an inverse of 45�7
, . . . , 7$j
,⋅�.  
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Proof. To prove the first equality, note  4
�7
� = 45��7
� = ℙ��
 < 7
� = ℙ�c
��
� < 7
� = ℙ	�
 < �
�7
�� = �
�7
�, 
hence  

 7
 = �
j
��
� = 4
j
��
� = c
��
�. 
Similarly for the second 

 4
,H�7
, 7H� = 45�5Æ�7
, 7H� = ℙ��
 < 7
, �H < 7H� 
 = ℙ	�
 < �
�7
�, �H < �H�7
, 7H�� = �
�7
��H�7
, 7H�, 

hence 

 �H�7
, 7H� = ��,Æ�¬�,¬Æ����¬�� , 4
,H�7
, 7H� = �
�H, 
 7H = 4
,Hj
�7
, �
�H� = 4
,Hj
�4
j
��
�, �
�H� = cH��
, �H�. 

Finally for the third 

 4
,H,v�7
, 7H, 7v� = 45�5Æ5��7
, 7H, 7v� = ℙ��
 < 7
, �H < 7H, �v < 7v� 
 = ℙ	�
 < �
�7
�, �H < �H�7
, 7H�, �v < �v�7
, 7H, 7v�� 
 = �
�7
��H�7
, 7H��v�7
, 7H, 7v�, 

hence 

 �v = �v�7
, 7H, 7v� = ��,Æ,��¬�,¬Æ,¬�����¬���Æ�¬�,¬Æ� = ��,Æ,�	��������,��,Æ��	��������,���Æ�,¬�����Æ  

and consequently 

 7v = 4
,H,vj
 	4
j
��
�, 4
,Hj
�4
j
��
�, �
�H�, �
�H�v� = cv��
, �H, �v�. 
Next steps follow by induction. 

To complete the proof, we have to show that the mapping c is the solution of our 

problem, i.e., 45 = 4����. Note that 4�����7� = ℙ�c
��
� < 7
, cH��
, �H� < 7H, cv��
, �H, �v� < 7v, . . . � = ℙ	�
 < �
�7
�, �H < �H�7
, 7H�, �v < �v�7
, 7H, 7v�, . . . �$ < �$�7��  
= ℙ��
 < 4
�7
�, �H < ��,Æ�¬�,¬Æ����¬�� , �v < ��,Æ,��¬�,¬Æ,¬�����¬��	�,Æ�
�,
Æ�	��
�� , . . . , �$ < �$�7��  

= 4
�7
� ��,Æ�¬�,¬Æ����¬�� ��,Æ,��¬�,¬Æ,¬�����¬��	�,Æ�
�,
Æ�	��
�� . . . ���¬���,...,l���¬�,...,¬l��� = 45�7�.  
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This completes the proof, since equality 45 = 4���� holds for any ordering of 7
, . . . , 7$ 

variables.    

We complete this section by noting, that once the mapping c is found, then the simu-

lations can be realized according to the procedure described in the end of the previous 

section. 

10    Selecting Ï from expert’s distribution and independent data 

We are going to consider the problem of finding 45. We assume that a subjective 

distribution 45h obtained by experts is given. In addition, we have an access to new ob-

servations ($, E = 1, . . . , �, which were unavailable for the experts. In order to state this 

problem generally, let  

�(
, . . . , ($� → 4��,...,�l�7� = 1E��$
es
 ¶�j�,¬q�(e�, 

be an empirical distribution of �, computed from the first E observations. 

Problem 32. Given 4��,...,�l and ($*
, find 4��,...,�l��  

Solution 33.  4��,...,�l���7� = 1E + 1 ½E4��,...,�l�7� + ¶�j�,¬q�($*
�¾. 
Proof. Indeed 1E + 1 ½E4��,...,�l�7� + ¶�j�,¬q�($*
�¾ = 

1E + 1 ���$
es
 ¶�j�,¬q�(e� + ¶�j�,¬q�($*
�� = 1E + 1� �$*


es
 ¶�j�,¬q�(e� = 4��,...,�l���7�. 
Thus the initial problem can be solved in two steps; (1) accept 45h as 4��,...,�â�7� for 

some Á, (2) compute 4��,...,�l�7�, for E = Á + 1,Á + 2, . . . , Á + �, using the above 

formula. 

There is enormous number of papers dealing with risk analysis and estimation at var-

ious levels of generality and scope. We give below only those which are closely related 
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Abstract 

The aim of this article is to model and forecast weather monthly time series with dif-

ferent Auto Regressive Integrated Moving-Average methodology with R software. Month-

ly air temperature, wind speed and precipitation data were used from January 1st ,1980 to 

December 31st , 2010, the data is derived from measurements of Lleida (Spain) station. It 

will be demonstrated that obtained models are able to capture the dynamics in the data and 

produce sensible forecasts. 

1    Introduction 

In recent years a lot of different statistical models were establish and devel-

oped to predict time series. Basic approaches to construct sensible forecasts, 

which can capture regular pattern and dynamic of data are methods based on dif-

ferentiation and methods based on decomposition. In this article we focus on 

methods based on differentiation such as seasonal and non-seasonal Auto Re-

gressive Integrated Moving-Average (SARIMA, ARIMA) and Autoregressive 

Integrated Moving-Average with external regressors in the form of Fourier terms 

(ARIMAF).  

In last decades, ARIMA models have been widely used for various applica-

tions such as medicine, business, economics, finance and engineering. Many sci-

entists use ARIMA models to understand the phenomena like temperature, pre-

cipitation and wind speed.  Muhammet [20] used ARIMA method to predict the 

temperature and precipitation in Afyonkarahisar Provincei, Turkey until the year 

of 2025. Balyani et al. [3] selected ARIMA as the optimal model of temperature 

in a 50-year time period (1955-2005) for Shiraz, south of Iran, while Babazadeh 

et al. [2] forecasted monthly air temperature of India using seasonal autoregres-

sive integrated moving average (SARIMA) model. Khedhiri [15] studied the sta-

tistical properties of historical temperature data of Canada for the period (1913-
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2013) and determined seasonal ARIMA model for the series and predicted future 

temperature records. El-Mallah and Elsharkawy [8] showed that linear ARIMA 

model and quadratic ARIMA model had the best overall performance in making 

short-term predictions of annual temperature in Libya. Hipel and McLeod in 

their book [4] showed that many different ARIMA models can be used to make 

sensible forecast of precipitation data. More ARIMA models for precipitation 

time series one can find in Said et al. [22], Khadar Babu et al. [14], Kwon et al. 

[17], Soltani et al. [23]. Forecasting with use of ARIMA models of wind speed is 

provided for example by Torres [24], Lalarukh, Yasmin [18], Cadenas, Rivera 

[7]. 

By referring to mentioned above studies for weather parameters forecasting 

the best model using statistical methodology could vary by changing the data. 

So, it is important to assess all the time series models for any area and any 

weather parameters for choosing the best model for our purpose. So the aim of 

this paper is to examine statistical properties of monthly air temperature, precipi-

tation and wind speed from Lleida station located in Spain, develop predictive 

models and use them to forecast monthly values up to six years ahead. Lleida 

has a semi-arid climate with Mediterranean-like precipitation patterns (annual 

average of 369 millimetres), foggy and mild winters and hot and dry summers 

(Köppe-Geiger classification: BSk) and represents Mediterranean south clima-

tes. Its latitude is 41°42
’ 
(°N), longitude 10°6’ (°E) and altitude 337 metres. The 

descriptive statistics of the studied time series are presented in Table 1.  

The paper is organized as follows. In Section 2, a brief account of methods 

based on differentiation that is ARIMA, SARIMA and ARIMAF models are 

given. Methods of model selections are provided in Section 3. In Section 4 the 

detailed analysis of time series of monthly air temperature, precipitation and 

wind speed of Lleida is conducted to construct models, which will generate sen-

sible the six year ahead forecast. Section 5 offers the concluding remarks. 

Table 1. Descriptive statistics of the whole monthly 31 years’ meteorological time series from 

Spain (ES). Mean, min, max, standard deviation (Std) and median have units corresponding 

to the units of meteorological variable, skewness and kurtosis are non-dimensional.  

Variable Mean Min Max Std Median Skewness Kurtosis 

Air temperature (°C) 15.0 0.2 27.7 7.1 14.6 0.0 1.7 

Wind speed (m/s) 2.6 0.8 5.5 0.7 2.5 0.6 3.8 

Precipitation (mm/day) 0.9 0.0 4.2 0.9 0.6 1.3 4.4 

Source: data from the ECA&D project website www.ecad.eu.  
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2    Methodology 

ARIMA model was popularized by Box and Jenkins [4]. It is a combination 

of three mathematical models. It uses auto-regressive, integrated, moving-

average (ARIMA) models for time series data. An ARIMA (p, d, q) model can 

account for temporal dependence in several ways. Firstly, the time series is def-

erence to render it stationary, by taking � differences. If d = 0, the observations 

are modelled directly, and if � ≠ 0, the differences between consecutive obser-

vations are modelled. Secondly, the time dependence of the stationary process ���� is designed, by including � auto-regressive. The equation for � is that: 

�� = 
 + ������
�

��� + �� ,�������� 
where 
 is the constant, � is the parameter of the model, �� is the value that ob-

served at � and �� stands for random error. Thirdly, � is the moving-average 

terms, in addition to any time-varying covariates. It takes the observation of pre-

vious errors. The equation is 

�� = �� + �������
�

��� ,������� 
where �� is the parameter of the model. Finally, combining these two models we 

get ARMA model. So the general form of the ARMA models is given by 

�� = � + ������
�

��� + �������
�

��� ,����  (1)

where �� is a stationary stochastic process, c is the constant, �� is the error or 

white noise disturbance term, � means auto-regression coefficient and �� is the 

moving average coefficient. For a seasonal time series, these steps can be re-

peated according to the period of the cycle, whether time interval. Usually 

ARIMA models are described using the backward operator B defined as �� ��! = ����,���������� > #; ��, #%&. 
Using following notation 

 (! = 1 − ��(��
��� ,����� ≠ 0, 

θ (! = 1 − Ȃ ��(����� ,������ ≠ 0, 
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the relation (1) can be written respectively as  �! 1 − �!-.� = � + � �!�� . 
The seasonal ARIMA process noted as SARIMA(p, d, q)(P, D, Q)m is given by Φ �0! �! 1 − �0!1 1 − �!-.� = � + Θ �0!� �!�� , 
where m is the seasonal period,  Φ (! and Θ (!  are polynomials of orders 3 and 

Q respectively, each containing no roots inside the unit circle and m is a number 

of periods per season. If � ≠ 0, there is an implied polynomial of order d + D in 

the forecast function [6]. 

The main task in SARIMA forecasting is selecting an appropriate model or-

der, that is the values p, q, P, Q, D, d. If d and D are known, we can select the 

orders p, q, P and Q via of the chosen forecast error measure. Sometimes 

SARIMA model does not tend to give good result for time series with a period 

greater than 200. In such situation the simplest approach is a regression with 

ARIMA errors, where the order of the ARIMA model and the number of Fourier 

terms is selected by minimizing the RMSE, MAE or MASE. In such models ex-

ternal regressors in the form of Fourier terms are added to an ARIMA(p,d,q) 

model to account for the seasonal behaviour. We can consider ARIMA models 

with repressors as a regression model which includes a correction for autocorre-

lated errors that is we can add ARIMA terms to the regression model to elimi-

nate the autocorrelation and further reduce the forecast error measure. To do this 

we re-fit the regression model as an ARIMA(p,d,q)  model with regressors, and 

specify the appropriate AR(p) or MA(q) terms to fit the pattern of autocorrela-

tion we observed in the original residuals. To be more precise, we consider the 

following model 

�� = � + �456789 2;<�= + >6�?7 2;<�= @A
6�� + &� ,� 

where &� is an ARIMA process, 56 and >6 are Fourier coefficients and m is 

a length of period. The value of K is chosen by minimizing forecast error 

measures. For the purpose of this article this process will be noted as 

ARIMF(p,d,q)[K]. According to Hyndman [13] the main advantages of this ap-

proach are: it allows any length seasonality for data with more than one seasonal 

period, Fourier terms of different frequencies can be included, the seasonal pat-

tern is smooth for small values of K and the short-term dynamics are easily han-

dled with a simple ARMA error. The only real disadvantage (compared to 

a seasonal ARIMA model) is that the seasonality is assumed to be fixed (the pat-

tern is not allowed to change over time), but in our situation, seasonality is re-

markably constant (compare Figure 1). 
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3    Model selection 

To improve the model accuracy wide range of error measures is used in addi-

tion to ACF and PACF. Commonly used measure are mean absolute error 

(MAE) and root mean square error (RMSE). MAE is defined by the formula 

BCD = 19�|F�|G
��� , 

where n is the number of periods of time and F� = .� − H�  is the forecast error 

between the actual value .� and the forecasted value H�. The MAE is the average 

over the verification sample of the absolute values of the differences between 

forecast and the corresponding observation. RMSE given as follows  

IBJD = K19�F�LG
���  

is a next frequently used measure of accuracy forecast. The RMSE is the square 

root of the average the squared values of the differences between forecast and 

the corresponding observation. MAE and RMSE have the same units of meas-

urement and depend on the units in which the data are measured.  

Hyndman and Koehler [11] proposed the mean absolute scaled error (MASE) 

to comparing forecast accuracy. Their idea that is suitable in all situations is by 

scaling the error based on the in-sample MAE from the naive (random walk) 

forecast method. Using the naive method, the one-period-ahead forecasts is gen-

erated from each data point in the sample. Thus, a scaled error is defined as �� = F�1& − 1Ȃ M.� − .���MN��L , 
where N is the length of the training data set. For one-step-ahead forecasts 

MASE is calculated as 

BCJD = 1=�|��
0
��� |, 

where = is the number of one-step-ahead forecasts. For h-step-ahead forecasts 

we calculate MASE as 

BCJD = 1ℎ�|��
P

��� |. 
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When MASE < 1, the proposed method gives, on average, smaller errors than 

the one-step-ahead forecast errors from the naive method. Conversely, it is 

greater than one, if the forecast is worse than the average naive forecast comput-

ed on the training data. The only circumstance under which this measure would 

be infinite or undefined is when all historical observations are equal (see Hynd-

man R. J. [10] and Hyndman R. J., Koehler A. B. [11]). The MASE is independ-

ent of the scale of the data, so can be used to compare forecasts for data sets with 

different scales. When comparing forecasting methods, the method with the 

lowest MASE is the preferred method. 

After choosing the adequacy model, the accuracy of the model will be deter-

mined by looking at 3 diagnostic methods which are: standardized residuals, 

ACF of residuals and p-values for Ljung-Box statistics. The standardized residu-

als must be stationary (the variance near to zero), ACF of residuals has no 

spikes, the Ljung-Box p-values must be above 0.05. The Ljung-Box test was 

proposed by Ljung and Box [19] and is based on the statistic  

Q∗ = S S + 2!� T�LS − #P
��� , 

where T is the length of the time series, T� is the k-th autocorrelation coefficient 

of the residuals, and h is the number of lags to test. Large values of Q* indicate 

that there are significant autocorrelations in the residual series. It can be tested 

against a WL distribution with ℎ − X degrees of freedom, where K is the number 

of parameters estimated in the model. This test is a diagnostic tool used to test 

the lack of fit a time series model and is applied to the residuals of time series af-

ter fitting on model to the data. 

4    Analysis and results 

A good fitting of the model with the historical data does not necessarily mean 

good forecasting. This problem can be overcome by measuring true out of sam-

ple forecast accuracy. For this purpose the total data are divided into a learning 

set and a test set. Then, the learning set is used to estimate parameters of a model 

and the test set is used to assess the predictability accuracy of the fit. In our pro-

ject, the collected 372 months from January 1980 to December 2010 data set 

was divided into a set of observations from January 1980 to December 2004 – 

the learning set and a set of observations from January 2005 to December 2010 – 

the test set. The learning set was only used in the model fitting, so obtained fore-

casts are genuine forecast made without using the values of the observations be-

longing to the test set and the accuracy measures are computed on the basis of 

the test set only. 

To detect possible presence of seasonality and trend we inspect the plots of 

the observed data side by side with the plots of autocorrelation function (ACF) 
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and partial autocorrelation function (PACF) with addition of time series decom-

position into its constituent components, which are: usually trend component, ir-

regular component, and if it is a seasonal time series, a seasonal component. The 

visual analysis ACF and PACF plots in Figure 1 suggest that the air temperature 

and wind speed Lleida time series show seasonal character. We observed a slow 

decay of the ACF and PACF at multiple lags of 12, which are significant. Quite 

different situation takes place in case of precipitation data, where time series 

courses, ACF and PACF plots do not indicate any seasonal character and any 

trend. 

  

  

  

Figure 1. Autocorrelation Function (ACF) and Partial Autocorrelation Function (PACF) 

plots for time series from Lleida stations.  

Source: data from the ECA&D project website www.ecad.eu, plots prepared with the R software. 
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Additionally, the air temperature time series decomposition into its constituent 

components given in Figure 2 indicates regular fluctuations, which are repeated 

from year to year with about the same timing and lever intensity. The same be-

haviour one can observe for the wind speed time series decomposition in Figure 

3. This analysis supports the above assertion of seasonality in the data, hence, 

the need for seasonal differencing with period of 12. The decomposition of the 

precipitation time series in Figure 4 does not show any regular changes in sea-

sonal component. 

 

Figure 2. Air temperature time series graphs with random, seasonal and trend components 
in Lleida station)  

Source: data from the ECA&D project website www.ecad.eu, plots prepared with the R software. 
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Figure 3. Wind seed time series graphs with random, seasonal and trend components in 

Lleida station. 

Source: data from the ECA&D project website www.ecad.eu, plots prepared with the R software. 

 

Figure 4. Precipitation time series graphs with random, seasonal and trend components in 

Lleida station.  

Source: data from the ECA&D project website www.ecad.eu, plots prepared with the R software. 
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This investigation in plots, ACF, PACF and decomposition of considered time 

series force us to consider SARIMA (p,d,q)(P,D,Q)m models with m=12, D=1, 

Q=0, P=0, d=1 or d=0, and p, q changing from 0 to 3. The best parameters 

among considered 32 SARIMA models for air temperature and wind speed were 

chosen by minimizing the forecast RMSE and MASE. In order to establish AR-

IMAF models parameters we tried d=0 and d=1, p and q between 0 and 3 while 

the number of Fourier terms K varied between 1 and 10. So for both of consid-

ered as seasonal series we tested 320 cases. The models which are the most 

closed to the actual data were chosen by minimizing forecast RMSE and MASE. 

The best model parameters with their forecast errors are presented in Table 2.  

The precipitation data are modelled with ARIMA models. We chose the best 

parameters by minimizing forecast RMSE and MASE among 32 different mod-

els considering p, q changing from 0 to 3 and d equal 0 or 1. Obtained models 

with their forecast errors are presented also in Table 2. 

One can observe that for air temperature and wind speed time series the 

smallest forecast RMSE and MASE were produced by SARIMA model with the 

same parameters, while selection of ARIMAF parameters for the best forecast 

depends on assumed error. 

Table 2. The statistical models parameters and errors forecast for chosen models with the 

smallest RMSE and MASE.  

 Model MAE RMSE MASE 

Air temperature 

SARIMA(2,0,3)(0,1,0)12 1.4290 1.8237 0.8907 

ARIMAF(3,1,3)[5] 1.0929 1.3572 0.6812 

ARIMAF(1,1,0)[3] 1.0869 1.3638 0.6775 

Wind speed 

SARIMA(3,0,3)(0,1,0)12 0.4039 0.5015 0.7595 

ARIMAF(1,1,3)[3] 0.3438 0.4518 0.6465 

ARIMAF(3,1,3)[3] 0.3435 0.4550 0.6459 

Precipitation ARIMA(3,0,3) 0.5998 0.7908 0.7101 

Source: data from the ECA&D project website www.ecad.eu, own calculations. 

.All models were diagnosed by Ljung-Box test. The p-values is greater than the 

usually chosen critical level of 0.05 (see Table 3) except ARIMAF(1,1,0)[3] 

model. Then ARIMAF(1,1,0)[3] model will not be utilized to perform air tem-

perature forecasting. The Ljung-Box test applied to other models from Table 2 is 

no significant and therefore we do not reject the null hypothesis in all cases. This 

indicates, that the residuals of those fitted models are white noise, and for that 

reason the models fit the series quite well, the parameters of the models are sig-

nificant and the residuals are uncorrelated.  
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Table 3. p-values for Ljung-Box test of chosen models.  

 Model p-value for Ljung-Box test  

Air temperature 

SARIMA(2,0,3)(0,1,0)12 0.9426 

ARIMAF(3,1,3)[5] 0.5075 

ARIMAF(1,1,0)[3] 0.0130 

Wind speed 

SARIMA(3,0,3)(0,1,0)12 0.8572 

ARIMAF(1,1,3)[3] 0.9821 

ARIMAF(3,1,3)[3] 0.9983 

Precipitation ARIMA(3,0,3) 0.4120 

Source: data from the ECA&D project website www.ecad.eu, own calculations. 

Moreover, residuals appear to be randomly, scattered, no evidence exists that 

the error terms are correlated with one another as well as no evidence of exist-

ence of an outlier, what is shown in their plots and ACF plots. In Figures 5a, 5b 

and 5c there are plots of residuals and ACF residuals plots for models with the 

smallest RMSE. Thus the residuals plots and its ACF plots collaborate the con-

clusion of the Ljung-Box test and we can use models listed in Table 2, except 

ARIMAF(1,1,0)[3], to make forecasts. 

ARIMAF(3,1,3)[5] 

 

Figure 5a. Plots of residuals and their ACF plots for models with smallest RMSE –
ARIMAF(3,1,3)[5]. 

Source: data from the ECA&D project website www.ecad.eu, plots prepared with the R software. 
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ARIMAF(1,1,3)[3] 

 

Figure 5b. Plots of residuals and their ACF plots for models with smallest RMSE –

ARIMAF(1,1,3)[3].  

Source: data from the ECA&D project website www.ecad.eu, plots prepared with the R software. 

ARIMA(3,0,3) 

 

Figure 5c. Plots of residuals and their ACF plots for models with smallest RMSE –

ARIMA(3,0,3). 

Source: data from the ECA&D project website www.ecad.eu, plots prepared with the R software. 
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Figure 6 compares the results obtained the SARIMA(2,0,3)(0,1,0)12  and ARI-

MAF(3,1,3)[5] models with the real data for air temperature in Lleida. In this 

figure it can be observed how both models follow the same tendency of real da-

ta, however a higher difference between the real data and data predicted with 

SARIMA model is noticed. This observation is corroborated by calculated fore-

cast errors measure presented in Table 2. 

 

Figure 6. Real data and forecast plots for monthly air mean temperature time series from 

Lleida. The larger plots contain test set and forecast whereas the smaller inside plots pre-

sents learn set.  

Source: data from the ECA&D project website www.ecad.eu, plots prepared with the R software. 

Forecast results using SARIMA and ARIMAF models for monthly wind speed 

are presented in Figure 7. From Table 2 we can see that the RMSE errors of  

ARIMAF(1,1,3)[3] are smaller compared with SARIMA(3,0,3)(0,1,0)12 model, 

showing that ARIMAF(1,1,3)[3] model is identified as the best fitted time series 

model for wind speed and is the best way of representing the observed wind 

speed pattern. 

The statistical ARIMA model structured as (3, 0, 3) appeared to be the best 

fitting for the precipitation forecasting purpose at Lleida. The forecast and test 

set are plotted and compared in Figure 8. 
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Figure 7. Real data and forecast plots for monthly wind speed time series from Lleida. The 

larger plots contain test set and forecast whereas the smaller inside plots presents learn set.  

Source: data from the ECA&D project website www.ecad.eu, plots prepared with the R software. 

 

Figure 8. Real data and forecast plots for monthly precipitation time series from Lleida. The 

larger plots contain test set and forecast whereas the smaller inside plots presents learn set.  

Source: data from the ECA&D project website www.ecad.eu, plots prepared with the R software. 

5    Conclusions 

The dynamics of meteorological time series for Lleida (Spain) station located 

in Mediterranean south climate zone were analysed via three ARMA models. 

The results indicated that the studied meteorological quantities possess specific 

time and space dynamics, which can be attributed to climatic conditions. Above 

studies for weather parameters forecasting show that the best model using statis-
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tical methodology could vary by changing the forecast error. We observed that 

for air temperature and wind speed time series selection of parameters of ARI-

MAF model were depended of assumed forecast error, while the smallest fore-

cast RMSE and MASE were created by SARIMA model with the same model 

parameters. It mean that for obtaining a reasonable and sensible forecast, more 

than one forecast error measure should be used in practice. The empirical study 

of two seasonal real data sets highlights the importance of considering the sea-

sonality in forecasting of air temperature and wind speed in Lleida, contrasting 

to forecasting precipitation. In addition, the conducted research clearly suggests 

that ARIMAF models gives better prediction for seasonal time series. The result 

indicate, that the use of ARIMA models to weather time series analysis is a val-

uable tool to get information about analysed data structures and their compo-

nents, being a good basis for successful future forecast. 
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Construction of an optimal bonus-malus system  
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Abstract 

The paper is devoted to the construction of an optimal bonus-malus system which will 

provide the insurer with financial balance in the portfolio and will be fair for the insureds. 

The first part describes a model of number of claims based on the negative binomial distri-

bution. The next section presents the test used to compare the empirical and the theoretical 

probability distributions. The following part covers methods of estimating net premiums. 

Another section is devoted to the Bayesian methods. In the last part of the work, which is 

based on survey data, calculations that determined the value of premium in the optimal bo-

nus-malus system were carried out. 

1    Introduction 

The bonus-malus system is one of the elements of tariffication in motor in-

surance which makes the insurance premiums dependent on the current history 

of insurance. The most common factor taken into consideration is the number of 

claims in the previous year of insurance. The insured without the history of 

claims is classified to the basic class and then in subsequent periods of insurance 

they move to a specific tariff class in accordance to the number of claims. De-

spite criticism of the bonus-malus systems, they are widely used around the 

world and are an important element of tariffication. 

The aim of this work is to construct an optimal bonus-malus system for 

a sample obtained from a survey carried out among car owners. In the survey the 

respondents were asked to answer three questions about their reported damages 

(caused by their own cars) in 2016 and their impact on the increase of their in-

surance premiums in the following year. 

To describe number of claims in the portfolio of the insureds, a model based 

on the negative binomial distribution was used. The article covers comparing the 

theoretical and empirical distributions, using the �� test as the test of goodness 

of fit. Further part of the work is a description of methods of estimating motor 
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insurance premiums, with emphasis on a posteriori tariffs. The problem of 

Bayesian methods was discussed, focusing on the method of estimating premium 

rates in bonus-malus systems. The Bayesian premium rate estimator using the 

quadratic loss function and based on the number of claims and the equivalent net 

premium principle was reviewed. In the last part of the article an optimal bonus-

malus system was designed. Presenting estimator values, parameters � and �, 

expected sample sizes, �� test and the premium rate was possible thanks to the 

use of Excel spreadsheet. 

2    Model describing the process of occurrence of claims 

In motor insurance risk models it is assumed that the number of claims in 

a given unit of time is a discrete random variable and that the distribution of 

claims in the portfolio for each insured is of the same type. According to the 

actuarial literature, Poisson distribution and the negative binomial distribution 

are most commonly used in claims distribution models. The Poisson model as-

sumes that the risk portfolio is homogeneous. However, in the real world, the 

risk portfolio is usually heterogeneous. Therefore, we will use the model based 

on the negative binomial distribution to describe the number of claims in the 

insureds’ portfolio. 

The negative binomial distribution is a mixture of Poisson distribution and 

gamma distribution (see e.g. [6]). Let the random variable � have the Poisson 

distribution with the parameter � > 0 described by the equation:  

	(� = �) = ��(�) = ���! ���,������� = 0,1,… (1)

Let � be the realization of the random variable Λ, which has the gamma distribu-

tion with parameters (�, �) and the density function described by the equation:  

�(�) = � ��Γ(�) ���������for�� > 0,
�������������������������for�� ≤ 0,  (2)

where � > 0 and � > 0. As a result of the composition of Poisson distribution 

with gamma distribution, we obtain the distribution of number of claims de-

scribed by the random variable # with the probability distribution defined as 

follows:  

 

	(# = �) = $� = % �&' ��(�)�(�)(� = % �&' �)�! ��� �*+(�) ��������(� =
= �*+(�)�!% �&' ��,�����(�,�)�(� =
= �*+(�)�! +(�,�)(�,�)*-) % �&' (�,�)*-)�*-)./0.(/-1)2+(�,�) (�.
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The last integral’s value is 1 since it is the intergal of gamma distribution density 

function with parameters (� + �, 1 + �). Hence: ������� 
	(# = �) = $� = ��Γ(�)�! Γ(� + �)(1 + �)�,� = � + � − 1� �� 6 11 + �7

�,� =
= � + � − 1� 6 �1 + �7

� 6 11 + �7
� .  (3) 

This is the formula of probability of the random variable # with the negative 

binomial distribution (see e.g. [10]). Assuming that $ = ��,� and 8 = ��,�, we 

obtain: 

	(# = �) = $� = 6� + � − 1� 7 $�8�, (4)

where 

6� + � − 1� 7 = Γ(� + �)Γ(�)Γ(� + 1) = Γ(� + �)Γ(�)�! . 
The expected value and variance of the negative binomial distribution with 

parameters (�, 8) described by equations (3) and (4) are respectively:  

9# = �(1 − $)$ = ��,������������:�# = �(1 − $)$� = �� 61 + 1�7. (5)

The moment generating function of # is given by the equation:  

;<(=) = 6 $1 − (1 − $)�>7� ,������������= < −ln(1 − $). (6) 

The most common distribution used for describing the number of claims in 

heterogeneous portfolios is the negative binomial distribution. It is used to mod-

el the claims distribution, as 9# < :�#. The greater the difference between the 

expected value and the variance, the greater is the heterogeneity of the risk in the 

portfolio. 

3    Adjusting the theoretical distribution to the empirical  

      distribution of the number and value of claims  

The initial choice of theoretical claims distribution can be based on the calcu-

lated sample moments and the frequency coefficients. Let #�, #�, … , #B be 

a simple sample of independent random variables that have the same discrete 

distribution and let �� be the number of observations #C in the sample, for which #C = �, where � = 0,1,2, …. Then, the E-th sample raw moments have the form:  
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;F = 1GH�B
CI� #CF ,��������E = 1,2,3,… (7)

 and for aggregated data: 

;F = 1G H �K��
�I' �F�� ,��������E = 1,2,3,… (8) 

where G = Ȃ �K���I' �� and M is the number of classes. 

First three sample central moments can be expressed in terms of the raw mo-

ments:   

• #N = ;�,  

• O� = ;� −;��,  

• PQ = ;Q − 3;�;� + 2;�Q.  

Frequency coefficients are described by the equation:  

R� = (� + 1)��,��� ,����� = 0,1,2,…. (9)

In the initial stage of research, the choice of theoretical distribution of claims 

is usually reduced to the evaluation of adjusting the empirical data to one of the 

distributions from the so-called (�, �, 0) class. These distributions are discrete 

and their probabilities $� = 	(# = �) fulfill the recurrence relation:  

$� = 6� + ��7$���,����� = 1,2,3,… (10)

The only distributions belonging to this class are:   

• Poisson distribution with parameter � > 0, for which:  (�, �) = (0, �), 
• binomial distribution with parameters (S, 8) where S ∈ ℤ,, 8 ∈ (0,1), for 

which:  

(�, �) = 6−8$ , (S + 1) 8$7, 
• negative binomial distribution with parameters (E, 8) where E > 0, 8 ∈(0,1), for which:  (�, �) = (8, (E − 1)8). 

For distributions from the (�, �, 0) class the function R� may be written as a 

linear function:   
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R� ≈ (� + 1) $�,�$� = �� + (� + �),������� = 0,1,2,…. (11)

Function R� describes a line of slope �. 

• If � = 0 and #N = O�, then the number of claims distribution may be the 

Poisson distribution,  

• If � < 0 and #N > O�, then the number of claims distribution can be mod-

elled by the binomial distribution,  

• If � > 0 and #N < O�, then the number of claims distribution may be the 

negative binomial distribution.  

If the function described by the equation (9) increases faster than linear, the 

skewness of the distribution shall be considered. Let R = 3O� − 2#N + 2 (WX�<N)X<N .   

• If PQ = R, then the negative binomial distribution should describe the num-

ber of claims in the portfolio well.  

• If PQ < R, then the generalized Poisson-Pascal distribution or the Poisson-

Inverse Gaussian can be used to model the distribution of number of claims.  

• If PQ > R, then Neyman type A, Polya-Aeppli, Poisson-Pascal or negative 

binomial distribution can be used (see e.g. [12]).  

4    Pearson’s YZ test 

Verifying the goodness of fit of theoretical and empirical distributions is car-

ried out by means of so-called tests of goodness of fit. They help to verify the 

null hypothesis, which assumes that the analysed random variable has a distribu-

tion belonging to a certain distribution family. 

Definition 3.1. ([2]) The test of goodness of fit is used to verify a simple or 

complex hypothesis concerning the fit between the distribution of the set of val-

ues in the sample and the theoretical distribution, i.e. a hypothesis of the form: [': ] ∈ ℱ where ] is the cumulative distribution of the studied feature in the 

population and ℱ is a certain class of distributions.  

The test most commonly used to verify the goodness of fit of theoretical and 

empirical distributions is the Pearson’s �� test (see e.g. [11]). It can only be used 

when the following assumptions are satisfied:   

• number of classes � is not less than 5,  

• sample size G ≥ 10�,  

• all empirical numbers are always greater than 5 (if the class size does not 

meet the condition, the adjacent classes should be merged).  

For a large sample G ≥ 200 we set the number of classes according to Table 1. 
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Table 1. Number of classes for YZ test 

 Number of observations Number of classes 

<400 15-19 

401-600 20-24 

601-800 25-27 

801-1000 27-30 

1001-1500 30-35 

1501-2000 35-40 

Source: own elaboration.  

Let a studied feature of the population have cumulative distribution ] (con-

tinuous or not). Given a large sample (#�, #�, … , #B) randomly and independent-

ly drawn from the population, on the basis of the results from it, it is necessary 

to verify the hypothesis that the feature has a distribution of type ℱ, i.e. [': ] ∈ℱ where ℱ is a certain class of distributions. The alternative hypothesis takes the 

form [�: ] ∉ ℱ. 

Let G denote the size of a random sample from the population. In order to 

verify the hypothesis [', test results should be divided into � mutually disjoint 

classes of sizes GC, where G� + G� +⋯+ G� = G. Thanks to the properties of 

the theoretical distribution we can calculate the probabilities $C that the analyzed 

random variable with the given distribution takes values belonging to c-th class 

(c = 1,2,… , �). The probabilities $C must satisfy the condition $C = Ȃ ��CI� $C = 1. 

By multiplying $C by G we obtain the expected numbers G$C. 
As a measure of divergence between the observed numbers G�, G�, … , G� and 

expected numbers G$�, G$�, … , G$� we use the statistic: 

�� = H��
CI�

(GC − G$C)�G$C = H��
CI�

GC�G$C − G. (13)

Assuming the truth of hypothesis [', the statistic defined by the formula (12) 

has an asymptotic distribution �� with � − S − 1 degrees of freedom, where S is 

the number of parameters of the theoretical distribution. Because of the asymp-

totic distribution of the statistic, this test can be used when the sample is large 

(see e.g. [2]). 

The value of �� is 0 if and only if all the observed numbers are equal to ex-

pected numbers. Thus, the greater the divergence, the greater the value of �� 

statistic. We reject the null hypothesis if the value of the �� statistic calculated 

from the sample belongs to the critical area determined by our assumed signifi-

cance level d. 
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5    Methods of estimating the premium rate in motor insurance  

The premium is a fee that an individual exposed to risk pays to the insurer for 

taking over some of the risk involved in their activity. The premium is calculated 

by the insurer according to a principle that random aggregate claims of the in-

sured clients in a given portfolio shall be compensated by pre-determined fees 

(premiums). 

In the process of calculating premiums, three golden rules of insurance must 

be taken into account (see e.g. [7]). The first principle determines the need for 

balance between the insurance fund and the benefits and compensations paid by 

the insurance company. The second principle postulates the necessity to main-

tain a proportional relationship between the premium and the sum insured. The 

higher the sum insured, the higher the insurance premium. The third rule of 

equivalence of premiums and benefits defines the need to maintain an adequate 

relationship between the premium and degree of risk, which means that premi-

ums shall be differentiated in different types of insurance. 

A key part of an insurance premium is the net premium that covers the com-

pensation and benefits. The net premium plus other expenses (administrative 

costs, insurer’s profit, taxes etc.) is the gross premium. The net premium is cal-

culated on the basis of the anticipated number and size of claims and then in-

creased by so-called security surcharge to cover any fluctuations in loss ratio 

over time. 

We denote by Π(#) the premium that the insurer charges to cover a risk #. 

When we refer to the risk #, what we mean is that claims from this risk are dis-

tributed as the random variable #. In the individual risk model, as well as in the 

collective risk model, the random variable of interest O denotes the total claims 

on a portfolio of insurance contracts. In the individual risk model O is modelled 

as the sum of all claims on the policies, which are assumed independent. The 

model that is often used to approximate the individual model is the collective 

risk model. In this model, an insurance portfolio is viewed as a process that pro-

duces claims over time. We calculate the distribution of the total claim amount 

in a certain time period, but now we regard the portfolio as a collective that pro-

duces claims at random points in time. We write O = #� + #� +⋯+ #f, where g denotes the number of claims and #C is the c-th claim, and by convention, we 

take O = 0 if g = 0. The number of claims g is a random variable, and we as-

sume that the individual claims #C are independent and identically distributed. 

We also assume that g and #C are independent. 

Basic methods of calculating the net premium are: equivalence of premium 

principle (pure risk premium principle), expected value principle and standard 

deviation principle (see e.g. [3]). The choice of a premium principle depends 

heavily on the importance attached to its properties. There is no premium princi-

ple which is uniformly best. 
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Equivalence of premium principle is based on the assumption of balance of 

collected net premiums and the expected amount of compensation. Therefore:  Π(O) = 9(O). (13)

This principle is applied in homogeneous non-life insurance groups, in which we 

assume that:   

• the probability of an insurance case for every risk in the portfolio is the 

same,  

• every risk in the portfolio is insured for the same amount,  

• every insurance case causes total or partial damage,  

• it is possible to specify the intensity indicator, which shows how much of the 

insured sum represents the insurance claim in a given risk group.  

The equivalence of net premium principle in the long run leads to the insurer’s 

ruin and therefore it is modified by introducing a safety factor. 

Expected value principle includes the safety factor introduced due to the 

uncertainty of the premium calculation, therefore:  Π(O) = (1 + h)9(O). (14)

Parameter h > 0 called the safety factor is determined by the insurer for each 

risk respectively. The expected value principle does not include the variability of 

the random variable, so its subsequent modifications were designed. 

Standard deviation principle corrects premiums by factors that include the 

variability of the random variable O, therefore:  Π(O) = 9(O) + ij(O), i > 0 (15)

In very large portfolios and with full risk information, the equivalence of 

premium principle should be applied. The insurer’s goal should be to determine 

the premium that is adequate to the risks represented by an individual insured 

and that ensures the solvency of the insurance company. Too high premium 

could result in loss of customers and consequently lead to the insurer’s ruin. 

6    The essence of the bonus-malus system 

Determining premium rates in motor insurance when the bonus-malus system 

is applied can be divided into two stages. First, for each insured a basic premium 

is determined by including them in a specific tariff group. This is the a priori 

pricing, which includes factors describing the driver and the vehicle details. 

However, there are some individual driver’s characteristics that we cannot de-

termine a priori, such as: reflexes, law compliance, knowledge of traffic regula-

tions, stress behaviour or influence of alcohol. Those factors have a significant 

impact on the number of accidents. Therefore, the second stage is the a posterio-

ri pricing, through which the basic premium is adjusted to the individual history 

of the insured’s claims (see e.g. [9]). Non-accident drivers are rewarded with 
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a premium reduction (bonus) and the drivers that caused one or more accidents 

are penalized with a higher premium (malus). The a posteriori pricing is de-

signed to estimate the individual risk, so that each insured in the long term pays 

a premium corresponding to their frequency of claims. Such pricing is called the 

bonus-malus system. 

The bonus-malus system in motor insurance is defined as a system for setting 

an individual premium, taking into account the number of claims reported by the 

insured in the past. The premium rate depends on the value of damages reported 

in the previous insurance periods, on the basis of which the insured person is 

classified into the relevant tariff class (see e.g. [8]). 

Definition 5.1. ([5]) The insurer’s system of determining individual net premi-

ums can be called the bonus-malus system if:   

• the insureds in a given tariff group (portfolio) are assigned to a finite number 

of tariff classes PC for c = 1,2,… , k in such a way that their annual premium 

depends only on the tariff class in which they are located,  

• the tariff class in the current insurance period (usually one year) depends on 

the class in which the insured was classified in the previous insurance period 

(in the previous year) and the number of claims in the previous insurance pe-

riod.  

The bonus-malus system is based on the following assumptions:   

• not all the insureds cause the same amount of damage on average per year,  

• insurance periods are of equal length,  

• the amount of damages caused by the insured does not depend on their size,  

• the distribution of number of damages caused by the insured in one year 

does not change over time,  

• the distribution of size of a single damage is constant over time and is the 

same for all insureds,  

• the insureds remain in the same bonus-malus class throughout the entire 

single insurance period.  

• The bonus-malus system is described by three elements:   

• initial class, to which all new insureds are classified,  

• basic premium rates vector �N = (��, ��, �Q, … , �l) expressed as a percentage 

of the basic premium,  

• transition rules describing moving from one class to another depending on 

the number of claims in the previous period.  

Tariff classes in bonus-malus systems differ in the premium rate, expressed 

as a percentage of the basic premium. Classes with premium rate less than 100% of basic premium are classes in which there is a ’bonus’ and classes with 

premium rate greater than 100% of basic premium are the ’malus’ classes. 

 Insurance companies usually describe transition rules by using tables. 

A sample presentation of the bonus-malus system is shown in table 2. 
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Table 2. Bonus-malus system in comprehensive cover. 

 Number of observations Number of classes 

<400 15-19 

401-600 20-24 

601-800 25-27 

801-1000 27-30 

1001-1500 30-35 

1501-2000 35-40 

Source: own elaboration. 

The bonus-malus system presented in table 2 contains k = 5 classes, for 

which the premium rate has the following form:  �N = n1.1 1 0.8 0.7 0.6r. 
With such a bonus-malus structure, its two functions are assumed: tariff and 

preventive. The first one makes it possible to match the premium rate to individ-

ual risk better. The second one causes reduction in the number and size of claims 

through higher or lower premium rates. In case of markets where various bonus-

malus systems coexist, the selective function is also fulfilled. This means that a 

properly designed system attracts good drivers and discourages bad ones (see 

e.g. [1]). 

Every bonus-malus system consists of classes with specified premium rates, 

the initial class and transition rules. Thus, to each bonus-malus class a premium 

rate is assigned, which is a percentage of net premium and is also called the bo-

nus-malus coefficient. The design of bonus-malus systems is primarily the esti-

mation of premium rates in each class of the system as well as determining the 

transition rules. 

The ’optimal bonus-malus system’ is a system that fulfils the expectations of 

both the insurance company and the insured. It is therefore a system that pro-

vides the insurer with a financial balance in the portfolio and at the same time is 

fair to the insured. It can be determined with the use of Bayesian methods (see 

e.g. [4,5]). In the construction of optimal bonus-malus systems, Bayesian indi-

vidual risk parameters will be used to estimate net premiums. In this case, the 

premium rate is the quotient of the Bayesian premium (determined on the basis 

of individual history of the insured’s claims) and the premium for the single 

policy determined for the whole portfolio, called the collective premium. The 

optimal bonus-malus system constructed this way is fair to the insured, since 

each insured pays a premium proportional to the number of their claims in the 

past. It is also financially balanced, since the average bonus-malus premium for 

a policy from the portfolio is equal to the average premium calculated without 

the use of the bonus-malus system. 
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7    Bayesian estimators of bonus-malus premium rates 

In this part of the work the Bayesian estimator of risk structure parameter 

(called the Bayesian premium with quadratic loss function) will be calculated 

(see e.g. [2, 3, 12]). The estimator of bonus-malus premium rate will be derived, 

depending on the individual number of claims. This can be done by calculating 

the collective premium while taking into account the expected number of claims 

in the portfolio (in this case 9# = 1 and the random variable g has the expected 

value 9g). 

In motor insurance, the individual net premium in insurance period = + 1 is 

determined on the basis of the equation:  Π(#, g) = (9#)(9g)�>,�, (16)

where 

• Π(#, g) – individual net premium in insurance period = + 1,  

• 9# – expected value of a single claim in the portfolio,  

• 9g – expected value of number of claims for a single policy in the portfolio,  

• �>,� – premium rate in insurance period = + 1.  

We assume that random variables of number and value of claims are inde-

pendent. 

The premium rate is the quotient of the a posteriori premium, called the 

Bayesian premium, and the collective premium for the portfolio, called the 

a priori premium: 

�>,� = 	s	f 100% = Π(#,g)(9#)(9g) 100%, (17)

where   

• 	s – Bayesian premium,  

• 	f – collective premium.  

In order to construct the bonus-malus system, the insurer must specify the 

percentages �>,� and set the transition rules. 

Let us assume the following notations:   

• gt – random variable for number of claims in u-th year,  

• (��, ��, … , �>) – vector of numbers of claims observed over the past = years,  

• �>,�(��, ��, … , �>) – unknown loss parameter in year = + 1 for the policy 

described by the observation vector (��, ��, … , �>).  
Suppose the distribution of claims in the portfolio is negative binomial de-

fined by (3). The claim frequency parameter � has the a priori gamma distribu-

tion (2) with parameters � and �. Assuming a quadratic loss function, the Bayes-

ian estimator of the parameter � is the conditional expected value of the  a poste-

riori distribution and has the form: 
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�vs = �>,�(��, … , �>) = 9�n�|��, … , �>r = x �&
'

�(](�|��, … , �>)� (18)

where 9�n�|��, … , �>r is the conditional expected value of the a posteriori dis-

tribution of parameter � and ](�|��, … , �>) is the cumulative distribution of the 

random variable � for observed values (��, ��, … , �>) (see e.g. [5]). Using the 

Bayes’ theorem we obtain:  

(](�|��, … , �>) = y(�/,…,�z|�){|(�)% �}~ y(�/,…,�z|�){|(�) =
2)�.z2Ȃ �z��/ ()�!)

1*�.122*./�(*)
% �}~ 2)�.z2Ȃ �z��/ ()�!)

1*�.122*./�2�(*)
(� =

= 2)�.z2Ȃ �z��/ ()�!)
1*�.122*./�2�(*)

1*Ȃ �z��/ ()�!)�(*)% �}~ �*-)./0.(1-z)2{� = �*-)./0.(1-z)2{�% �}~ �*-)./0.(1-z)2{� =
= (�,>)*-)�*-)./0.(1-z)2{�(�,>)*-) % �}~ �*-)./0.(1-z)2{� = (�,>)*-)�*-)./0.(1-z)2{�% �}~ (�,>)*-)�*-)./0.(1-z)2{� =
= ��*��*�./0.1�2{�% �}~ ��*��*�./0.1�2{� = ��*��*�./0.1�2+(��) (�,

  

where 	(��, … , �>|�) = 	(��|�)…	(�>|�) = �)/0.2�/! … �)z0.2�z! = �)0.z2Ȃ �z��/ (��!). 
Thus, the a posteriori distribution of the parameter � is a gamma distribution 

with parameters �� = � + � and �� = � + =, where � = Ȃ �>CI� �C. 
The Bayesian estimator of the parameter � is the expected value of the gam-

ma distribution with parameters �� and �� and has the form: 

�vs = �>,�(��, … , �>) = ���� = � + �� + = . (19)

The predictive distribution of the number of claims in year = + 1 is the nega-

tive binomial distribution with the probability distribution function defined by 

the formula: 

	(g>,� = �|g� = ��, … , g> = �>) = Γ(�� + =)=! Γ(��) � ��1 + ���
�� 6 11 + ��7

> . (20)

Standard premium rates in motor insurance are estimated on the basis of the 

number of claims reported by the insured over the period 1,… , =. Then the equa-

tion (16) can be represented as follows: Π(#, g) = (9#)(9g)�>,�(��, … , �>). (21)



Construction of an optimal bonus-malus system                                                            121 

Assuming that the distribution of the number of claims is the negative bino-

mial distribution, we obtain 9g = ��. Further assuming that 9# = 1 and that in 

this case Π(#, g) = Π(g), the equation (21) has the form: 

Π(g) = �� �>,�(��, … , �>). (22)

Thus, the premium rate in year = + 1 for the insured who reported � claims 

over the past = years should be: 

�>,�(��, … , �>) = ��Π(g)100%. (23)

Thus, assuming the negative binomial distribution of number of claims, using 

the quadratic loss function in the Bayesian estimation, applying the equivalence 

of premium principle in calculating the individual net premium and taking into 

account the formula (19), the premium rate in year = + 1 for the insured who 

reported � claims over the past = years can be calculated with the formula: 

�>,�(��, … , �>) = �(� + �)�(� + =) 100%. (24)

8    Construction of an optimal bonus-malus system 

In February 2017 a study among car owners was conducted. Its aim was to 

gain information on the number of policies, from which � claims were reported, 

where � = 0,1,2,… (see Table 3). 500 people participated in the online survey. 

The respondents were asked to answer three questions regarding their claims (for 

damages caused by their own cars) reported to insurance companies in 2016 and 

causing an increase of their premium rate in the following year. 

Table 3. Observed numbers (empirical) 

� 0 1 2 3 4 and more 

Number of 

policies with � claims  

378 81 24 10 7 

Source: own elaboration. 

An Excel spreadsheet was used to determine the values of descriptive statis-

tics and estimators. For � ≥ 4 a simplification � = 4 was made in calculations, 

i.e. it was assumed that Ȃ ���� �� = ��, which had no significant impact on final 

results since the respondents rarely reported more than 4 claims. Let G =Ȃ ���I' �� = 500 be the number of risks from observations. For out data we ob-

tain: 
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#N = ;� = 1GH ��
�I' ��� = 0,3740, 

;� = 1GH ��
�I' ���� = 0,7580, 

;Q = 1GH ��
�I' �Q�� = 1,9820, 

PQ = ;Q − 3;�;� + 2;�Q = 1,2362, O� = ;� −;�� = 0,6181. 
Using the formulas (5), we can calculate the values of parameters � and �: 

#N = ��, 
O� = �� 61 + 1�7, 

O� = �� 61 + 1�7 = #N 61 + 1�7 = #N + #N�, 
� = #NO� − #N, 

� = #N� = #N�O� − #N. 
Therefore: 

� = #NO� − #N = 1.5322, 
� = #N�O� − #N = 0.5730. 

Thus R� = (� + �) + �� = (0.5730 + 1.5322) + 0,5730�, where � =0,1,2,…. The slope � is positive and #N < O�, so the distribution of number of 

claims may be negative binomial. 

The statistical test procedure starts with the null hypothesis: 

 [': The random variable for number of claims has the negative binomial 

distribution. 

Assuming the truth of the null hypothesis, we calculate the expected numbers 

(theoretical) G$�. Using the characteristics of the theoretical distribution, we can 
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calculate the probabilities $� that the random variable for number of claims with 

negative binomial distribution is of values from class �, where � = 1,2,… ,M −1 and M is the number of classes. Of course numbers $� must satisfy the condi-

tion Ȃ �K���I' $� = 1. Then, by multiplying $� by G we obtain the expected num-

bers: 

 $� = � + � − 1� � ��,��� � ��,���, 
 $' = � + 0 − 10 � ��,��� � ��,��' = � ��,���, 
$�,� = � + �� + 1� ��,��� � ��,���,� = � + �� + 1� ��,��� � ��,��� � ��,�� =

= � ��,��� + �� + 1� ��,��� � ��,��� =
= � ��,�� (�,�)!(���)!(�,�)! � ��,��� � ��,��� =
= � ��,�� (�,�)(�,���)!(�,�)�!(���)! � ��,��� � ��,��� =
= � ��,�� ��,��,�� (�,���)!�!(���)! � ��,��� � ��,��� =
= (�,�)(�,�)(�,�)� + � − 1� � ��,��� � ��,��� = (�,�)(�,�)(�,�)$� .

 

Thus, the probability that � claims will be reported can be calculated:  

$' = � ��,��� = 0.7499, 

$� = �(�,�)$' = 0.1697, 

$� = �,��(�,�)$� = 0.0527, 

$Q = �,�Q(�,�)$� = 0.0178, 

$� = 1 − ($' + $� + $� + $Q) = 0.0099. 

Table 4 contains the calculated expected numbers G$�.  

Table 4. Expected numbers (theoretical). 

� 0 1 2 3 4 and more ��� 374.95 84.85 26.35 8.9 4.95 

Source: own elaboration.   
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To evaluate the adequacy of the theoretical distribution to the empirical dis-

tribution, we will use the Pearson’s �� test, since the following assumptions are 

satisfied: 

• � = 5 – number of classes is not less than 5,  

• G = 500 ≥ 10� = 50,  

• empirical numbers are greater than 5.  

Let us assume that the significance criterion will be the value of probability 

of the null hypothesis less than 0.05, i.e. d = 0.05. The value of the �� statistic 

is:  

�� = H ��
�I'

(G� − G$�)�G$� = 1.1591. 
We have � = 5 classes and 2 necessary parameters of the distribution (S =2). Therefore, the number of degrees of freedom is (� = � − S − 1 = 5 − 2 −1 = 2. Thus ��� = 5.9915 and �� = 1.1591 < ��� = 5.915. 

Therefore, there is no reason to reject the null hypothesis that the random var-

iable for the number of claims has a negative binomial distribution. 

We assume that the distribution of number of claims is the negative binomial 

distribution, 9# = 1 and Π(#, g) = Π(g). Using the formula (24), we can cal-

culate premium rates in year = + 1 for the insured who reported � claims over 

the past = years. The calculated premium rates of the optimal bonus-malus sys-

tem are presented in Table 5. 

Table 5. Premium rates of the optimal bonus-malus system. 

� � = � � = � � = Z � = � � ≥ � 

0 100     

1 61 166 272 377 483 

2 43 119 195 270 346 

3 34 93 152 211 270 

4 28 76 124 173 221 

5 23 64 105 146 187 

6 20 56 91 127 162 

Source: own elaboration.  

9    Summary 

The main aim of the article was to construct an optimal bonus-malus system. 

The chosen model of number of claims, estimating the premium rate in motor 

insurance as well as the loss function made it possible to design a system meet-
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ing all the expectations of both the insurance company and the surveyed in-

sureds. 

 To calculate the net premium rates, the Bayesian estimator of individual risk 

parameter was necessary. In this case, the premium rate is the quotient of the 

Bayesian premium by the individual premium for a single policy determined for 

the whole portfolio. An optimal bonus-malus system constructed this way is fair 

for the insured since each of them pays a premium proportional to the number of 

their claims in the past. Moreover, it is financially balanced since the average 

premium for a policy from the portfolio determined with the use of the bonus-

malus system is equal to the average premium calculated without the use of the 

bonus-malus system. 

 The bonus-malus systems used in the insurance market are constantly being 

modified and the theoretical methods of constructing those systems are an im-

portant problem in the field of actuarial mathematics. 
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 Selection of independent variables in econometric 

models as a binary programming problem  

and its application to spreadsheet-based calculations  

Keywords: econometric model, independent variables, dependent variables, correlation, binary 
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Abstract 

Selecting independent variables in an econometric model can be performed by using 

one of many criteria or methods. No matter what method of selection is used, some combi-

nation of variables out of k potential independent variables is selected. If the number “1” is 

assigned to each of the selected variables and the number “0” each of the non-selected 

ones and the criterion of optimal selection is a single function (maximized or minimized) 

depending on input data, then the selection process can be considered as a binary pro-

gramming problem.  More precisely, zero-one combinations of independent variables can 

be considered as vectors of binary variables (“variables” in the sense of the optimization 

theory, not econometrics). There exists at least one method of selection of independent 

variables (by M. Rocki) explicitly based on binary linear programming. However, at least 

two other methods (developed by Z. Hellwig and Z. Pawłowski) can be reformulated as 

binary non-linear programming problems. Those reformulations are not innovative in any 

theoretical aspect of the methods nevertheless they may be very useful for practitioners in 

various fields when performing calculations using spreadsheet programs.  

1    Introduction 

Selection of independent (or explanatory) variables in an econometric model 

is performed in order to reject variables irrelevant to that model. Many methods 

of selection of variables have been developed. Whatever is the mathematical 

idea behind any specific method, some very general, common description of all 

the methods exists. Let us consider k potential independent variables. Assuming 

that each variable can be rejected or not, there are � = 2� combinations of re-

jected and not rejected variables. The decision applied to each variable can be 

described numerically by using 0 for rejection and 1 for acceptance. The combi-

nation of k zeroes obviously stands for rejection of all the variables, or, in other 
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words, acknowledging the fact all the input data are not valid to create an econ-

ometric model. Such a zero-one (binary) notation leads directly to a formulation 

of the variable selection problem as “find an optimal k-element combination of 

zeroes and ones from a set of � = 2� combinations”. Finding an optimal k-

element combination of zeroes and ones can be slightly reformulated. Let us 

assign to each potential independent variable a binary (zero-one valued) decision 

variable. The earlier usage of the word “variable” obviously refers to its meaning 

in econometrics whereas the latter to its mean in optimization theory (mathemat-

ical programming). Now, the variable selection problem can be expressed as 

“find an optimal k-element combination of binary decision variables ��, � =1,2, . . . , 
”. If the criterion of optimality of selection of independent variables 

can be expressed as a single formula (either maximized or minimized), depend-

ing on input data and binary decision variables i.e. a function of binary decision 

variables ��, then binary programming formulation of the problem may be ap-

plied.  

Such an explicit binary programming approach to selection of independent 

variables was proposed by M. Rocki in 1980 ([12], [13] and [14]). The method 

uses binary linear programming and is based on an older method of selection 

(introduced in years 1968-1969), known as the method of capacity of infor-

mation bearers, also called by the name of its author Z. Hellwig, the Hellwig 

method ([2,3]). 

It turned out that the Hellwig method itself can be easily reformulated into a 

binary linear programming problem. Apparently such a reformulation does not 

make much sense since because the method is, by the definition, nothing more 

than checking all the possible combinations in order to find the one for which 

so-called integral capacity of information bearer is maximal. An important prac-

tical reason for this reformulation exists however, namely a convenient imple-

mentation of the Hellwig method in spreadsheets. Spreadsheet software, like 

Microsoft Office Excel, OpenOffice/LibreOffice Calc or WPS Spreadsheets is 

commonly used by researchers and, probably much more often, by busi-

ness/public sector practitioners for many purposes including constructing econ-

ometric models. However, this software, whereas usually includes many built-in 

“statistical” features, is not user-friendly in some widely used econometrical or 

statistical applications. The above statement applies also to the Hellwig method. 

Some spreadsheet implementations of the Hellwig method based on explicit 

enumeration of all the possible “0-1” combinations were developed ([1,4,7,8]). 

Whereas generating all the possible “0-1” combinations of potential independent 

variables in a spreadsheet file is relatively easy, the exponential growth of the 

number of combinations results in poor performance of the software due to large 

sizes of files. This is why a different approach to the implementation of the 

Hellwig method in spreadsheets, based on binary non-linear programming was 
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successfully developed ([5,6]) and applied to some real-world calculations 

([9,16]).  

Another method of selection of independent variables which can be reformu-

lated as a binary non-linear programming problem is the one by Z. Pawłowski 

(presented for the first time in 1981 in [11]) which consists in maximization of 

the coefficient of multiple correlation for all the combinations of a fixed number 

of independent variables. 

This paper in sections 2 and 3 contains a review of existing achievements of 

binary programming approach to selection of independent variables. In section 

4, a proposal of binary programming reformulation of the Pawłowski method is 

presented. 

The paper does not estimate or compare considered methods of selection of 

independent variables regarding their quality from the “statistical” point of view 

because its main goal is a practical aspect of necessary calculations, not their 

statistical “background”. Calculating correlation matrices in spreadsheet envi-

ronment, which it is not directly supported by built-in spreadsheet functions is 

not considered here (see e.g. [5,6] for details). 

2    The Hellwig method as a binary non-linear programming  

      problem  

The method of capacity of information bearers (also called the method of op-

timal choice of predictors or, after its author, the Hellwig method) is of one 

methods of selecting independent variables for an econometric model. As many 

others, the method consists in selecting such variables which are strongly corre-

lated with the dependent variables and, simultaneously, weakly correlated with 

other independent variables ([2,3]). The selection of variables requires “testing” 

all of � = 2� − 1 combinations of k potential independent variables (“zero” 

combination i.e. rejecting all the variables is not considered). The following 

notation (based on [10]) will be used: 

• � – number of a combination (� = 1,2, . . . , �); 

• 
� – number of variables in the �th
 combination; 

• � – number of a variable in the �th
 combination (� = 1,2, . . . , 
); 

• �� – correlation of the �th
 independent variable with the dependent variable;  

• ��� – correlation of the �th
 independent variable with other independent vari-

ables included in the �th
 combination � = 1,2, . . . , 
 , � ≠ �; 

The individual capacity of information bearer (later referred to as individual 

capacity of information) ℎ�� for the �th
 independent variable (� = 1,2, . . . , 
) in 

the �th
 combination � = 1,2, . . . , � is defined as  
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ℎ�� = ��21 +� �����
�
�=1,�≠�

.� 
The integral capacity of information bearer (later referred to as integral ca-

pacity of information) for the �th
 combination is the sum of the abovementioned 

individual capacities of information bearers for the �th
 combination: 

ℎ� = �ℎ�

�
�=1 � 

The combination of independent variables for which the maximum of integral 

capacity of information is attained is chosen to be included in the econometric 

model. 

Both individual and integral capacities of information are normalized i.e. they 

are included in the [0,1] interval. They increase as the independent variables are 

strongly correlated with the dependent variable and the independent variables 

are weakly correlated one to another. 

Individual capacities of information for the �th
 combination can also be ex-

pressed by formulas in which correlations are not indexed by combination-

dependent indices but by “general” indices i and j varying from 1 to k 

ℎ� = ����2Ȃ �������
�=1 ,����� = 1,2, . . . , 
. 
The number „1” from the definition was replaced with |���| (obviously equal to 1 

for any i). The main difference to compare with the original definition by Hell-

wig is that selection of correlations which “occur” in an individual capacity of 

information is done by multiplication by 0-1 coefficients of the combination, not 

by the combination-dependent index of summation (see [6] for details) This is 

why the above formula is “universal” i.e. it stands for all the individual capaci-

ties of information for the j
th

 independent variable.  

An immediate consequence of the above concept of indexing is considering  �� - coefficients of 0-1 combinations as 
 binary variables (the word „variable” 

is used here in the same meaning as in the deterministic optimization theory). 

The problem of finding the maximum of the integral capacities of infor-

mation bearer can now be expressed as the following binary non-linear pro-

gramming problem of 
 variables ��(� = 1,2, . . . , 
). 
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� �����Ȃ ����������� → max�
��� ���� 

subject to Ȃ ������ ≥ 1 – rejecting all the potential independent variables is not allowed �� – binary (an independent variable "� not selected (0)/ selected (1)). 

The above formulation of the Hellwig method turned out to be easy to im-

plement in spreadsheet software (Microsoft Excel, LibreOffice/OpenOffice 

Calc). The implementation uses built-in optimization software (called Solver, 

which is one common name for different optimization software) as a computa-

tional engine that performs the search for the best combination of independent 

variables. Application of optimization features of spreadsheet software to calcu-

lations necessary for the Hellwig methods seems to be useful in university edu-

cation and data processing in scientific research or business practice.  

3    The Rocki method as a binary linear programming problem  

In 1980 M. Rocki introduced a method of selection of independent variables 

algorithm based on binary linear programming [12,13,14]. The statistical idea of 

his method was similar to that of the Hellwig method. His main aim was to re-

duce the number of necessary calculations to compare with the Hellwig method. 

Analogically to the Hellwig method, the Rocki method prefers selecting such 

variables which are strongly correlated with the dependent variable and, simul-

taneously, weakly correlated with other independent variables. The method is 

also based on formulas similar to that used in the Hellwig method. Using the 

notations defined in the previous section the Rocki method can be expressed as 

follows:    

������� �→max�
���  

subject to  

�������� ≤ �∗ + 
(1 − ��),�����
��� = 1,2,… , 
 

�� − �binary,����� = 1,2, … , 
 

where �∗ is some threshold value.  

Some extension of the Rocki model [13,15], providing elimination of so-

called catalytic variables can be done by adding the following linear constraints   
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������� + 1 − �� ≥ 0����� = 1,2,… , 
 − 1,����� = 1,2, … , 
 

������� ≤ ���� �� + 1 − ������� = 1,2, … , 
 − 1,����� = 1,2,… , 
 

Since it is a standard binary linear programming problem, a spreadsheet im-

plementation can be done easily. 

4    The Pawłowski method as a binary non-linear programming  

      problem and its spreadsheet implementation 

In 1981 Z. Pawłowski in [11] proposed a method of selection of independent 

variables which is based on maximization of the coefficient of multiple correla-

tion for all the combinations of a fixed number of independent According to the 

original formulation also the fraction of variance unexplained (FVU) must not be 

larger than some threshold level. For further considerations some additional 

notations must be introduced (based on [10]).  

Let 

./� = 0����⋮��2 ����. = 0��� ��� ⋯ ������ ��� ⋯ ���⋮ ⋮ ⋱ ⋮��� ��� ⋯ ���2 = 0 1 ��� ⋯ ������ 1 ⋯ ���⋮ ⋮ ⋱ ⋮��� ��� ⋯ 1 2 
be a vector of correlations of independent variables with the dependent variable 

and a matrix of correlations of independent variables, respectively.  

Let us define 

5 = 6 1 ./7./� . 8 =
9::
:; 1 �� �� … ���� 1 ��� ⋯ ����� ��� 1 ⋯ ���⋮ ⋮ ⋮ ⋱ ⋮�� ��� ��� ⋯ 1 <==

=>
 

The coefficient of multiple correlation is then ? = @1 − ABC�5ABC�.  and FVU is D� = 1 − ?� = ABC�5ABC�. .  

Let coefficients of combinations of independent variables be the following 

vector E = F�� �� … ��G. 
The main problem of a spreadsheet implementation of the problem under 

consideration is similar to that of the implementation of the Hellwig method. 
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Namely, it is necessary to express the optimization criterion as an objective 

function i.e. a formula directly dependent on 0-1 coefficients of combinations.  

In order to express values of the abovementioned determinants as depending 

on combinations of independent variables it is necessary to modify the matrices . and W to make them depend on 0-1 coefficients �� of the combination. The 

modifications are the following 

.(E) = 0 1 ������� ⋯ �������������� 1 ⋯ �������⋮ ⋮ ⋱ ⋮������� ������� ⋯ 1 2 

5(E) =
9::
:; 1 ���� ���� … �������� 1 ������� ⋯ ����������� ������� 1 ⋯ �������⋮ ⋮ ⋮ ⋱ ⋮���� ������� ������� ⋯ 1 <==

=>
. 

Let �∗ be a threshold value for the fraction of variance unexplained and p the 

number of independent variables to be selected. Considering the coefficients �� 

of combinations to be binary variables in an optimization problem, the Pawło-

wski method can be expressed as   

.(E) = I1 − JKL�5(E)JKL�M(E) �→max 

subject to  

D(�)� = 1 − .(�)� = JKL�5(E)JKL�.(E) ≤ �∗ 
�� + �� +⋯+ �� = N,      ��, ��, … , �� ����binary. 

The objective function can be replaced with an equivalent but simpler one, so 

finally the optimization problem for the Pawłowski method is JKL�5(E)JKL�M(E) �→min 

subject to  JKL�5(E)JKL�.(E) ≤ �∗ 
�� + �� +⋯+ �� = N,            ��, ��, … , �� ����binary. 
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A possible spreadsheet implementation must be based directly on “encod-

ing” the 5(E) matrix (and, simultaneously, .(E) which is “embedded” in the 

latter one) as spreadsheet formulas. The idea of an implementation will be ex-

plained by a small-size example (based on [10]) and illustrated by screenshots.  

Example. Find the best combination (in the sense of the Pawłowski method) of 

two independent variables out of four potential independent variables (the input 

data are given below) 

./� = 00.70.90.10.52         . = 0 1 0.8 0.2 0.40.8 1 0.1 0.60.2 0.1 1 0.30.4 0.6 0.3 1 2          �∗ = 0.2����N = 2 

A possible layout of the above data in the spreadsheet (together with necessary 

formulas) is shown on Figure 1. 

 

 

Figure 1. A screenshot of the example implemented in a spreadsheet (compatibility provided 
for Microsoft Excel 2007+ and LibreOffice Calc 5.0+). 

Source: own elaboration.  

Input data are located in the following cells 

• B2 – number 1 (the top-left element of the matrix 5); 

• C2:F2– correlations of the independent variables with the dependent varia-

ble; 

• C3:F6– matrix correlations of all independent variables; 

• B8 – number 1 (the “dummy” variable with the fixed value of 1, used to 

simplify some formulas below); 

• C8:F8 – numbers 1 (the initial values of the coefficients of combination – 

i.e. the variables in the optimization problem); 

• I8 – the threshold value �∗ for the fraction of variance unexplained ; 

• I9 – p, the number of independent variables to be selected.; 
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• A10:A14 – auxiliary numbers 1,2,3,4,5 used to simplify the formula for the 5(E) matrix. 

The formulas are placed as follows 

• B3:C6   {=TRANSPOSE(C2:F2)} – a transpose of the array of correlations 

of all independent variables with the dependent variable, necessary to con-

struct the 5 and the 5(E) matrices (an array formula); 

• B10:F14 {=IF(A10:A14=TRANSPOSE(A10:A14),1,B2:F6*B8:F8* 

TRANSPOSE(B8:F8))| – 5(E) in B10:F14 which also includes “embed-

ded” .(E) in C11:F14 (an array formula); 

• G8  =SUM(C8:F8) – sum of the variables 

• I3   =MDETERM(B10:F14) – det 5(E)  
• I4   =MDETERM(C11:F14) – det .(E) 
• I6   =(1-I3/I4)^0.5 – ?(E) 
• I7   =I3/I4 – D(E)� 

The array formula in B10:F14 is the main “trick” of the implementation. The 

condition (referring to auxiliary numbers 1, 2, 3, 4, 5 in both the “explicit” loca-

tion A10:A14 and the “virtual” transposed location TRANSPOSE(A10:A14)) 

provides that the IF function returns 1’s as entries of the main diagonal i.e. B10, 

C11, D12, E13, F14. Elsewhere, non-diagonal entries of the “original” 5 matrix 

(B2:F6) are multiplied by products of pairs of variables ���� (B8:F8* TRANS-

POSE(B8:F8)) what results in returning zeroes instead of original correlations 

whenever at least one of �� and �� is zero. 

Tests performed on numerical data in various versions of Microsoft Excel 

showed that the previously formulated binary non-linear programming problem 

requires a slight change in order to obtain a correct solution. Not only initial 

values of the variable cells must be all equal to one (as visible on Figure 1), but 

also the constraint  �� + �� +⋯+ �� = N 

must be changed to �� + �� +⋯+ �� ≤ N. 

Finally, the Excel Solver settings should be as shown on Figure 2. The screen-

shot is made in Excel 2007 and it is valid for all the versions up to 2007. All the 

options of Solver are left at their default values. The settings for the newer Solv-

er interface (Excel 2010 and later) are similar but they were skipped because of 

the size of the screenshot. Also LibreOffice Calc can be used for selection of 

independent variables with the Pawłowski method.  
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Figure 2. A screenshot of the Solver settings for the example implemented in a spreadsheet 

(Microsoft Excel 2007 and earlier, easily adaptable to a newer interface in Microsoft Excel 

2010 and later). 

Source: own elaboration, numerical data for matrices W and R are taken from Example 5 in [10]. 

The result of the calculations is shown on Figure 3. 

 

Figure 3. The result of selection of independent variables with the Pawłowski method per-

formed by using Microsoft Excel or LibreOffice Calc with their Solver add-ins.  

Source: own elaboration, numerical data for matrices W and R are taken from Example 5 in [10]. 
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The result is identical with that obtained in [10] i.e. variables 2 and 4 are se-

lected. However, the example in [10] does not include a threshold value �∗ so 

the value of �∗ = 0.2� in the example presented in this paper was added just to 

provide compatibility with original Pawłowski’s concept. 

If no integer/binary non-linear optimization feature is available in a spread-

sheet programme (or it is inefficient in dealing with an optimization problem 

resulting from the Pawłowski method, like e.g. WPS Spreadsheets 10.2.0.5934, 

a part of WPS Office 2016), then there is still an option of using direct enumer-

ating of all the 0-1 combinations. This option can be implemented analogically 

to similar implementations of the Hellwig method ([4,7,8]). Its main disad-

vantage is the fact that it basically limited to 10-15 potential independent varia-

bles due to spreadsheet efficiency issues. Details of the direct enumerating of all 

the 0-1 combinations are beyond the scope of this paper.  

5    Summary 

One of practical aspects of applying econometric tools to real-world prob-

lems is dealing with large amounts of numerical data what makes it necessary to 

engage computers and appropriate software into calculations. Obviously the cost 

of software as well as the quality of its usage (including training) cannot be ne-

glected. This is why the choice of software is an important issue, and that choice 

may be either introducing new software or exploiting some features of the soft-

ware already used. Spreadsheet implementations of methods of selection of in-

dependent variables in econometric models were developed because of populari-

ty of that kind of software in business, public administration, education and sci-

entific research. Existing successful spreadsheet implementations of some meth-

ods of selection of independent variables based on binary programming show 

that it can be worth considering creating such implementations also for other 

methods.  
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Abstract 

The article is devoted to analysis of application the statistical potential of credit bu-

reaus. Credit bureaus became an inherent part of modern credit market, especially at the 

segment of consumer lending. At the same time, possibilities of bureau`s statistics are not 

used effectively. The article suggests approaches to increasing effectiveness of risk man-

agement in consumer lending segment based on the study of data amassed by credit bu-

reaus. In particular, the analysis of rejected applications, the analysis of statistical distribu-

tion of scoring inflows and bureau benchmarking are considered. The reject analysis gives 

the possibilities to improve rules for discrimination good and bad borrowers. The statistical 

analysis of market inflow is a good indicator for understanding risk environment. Bureau 

benchmarking which based on market statistics provides good comparison for understand-

ing effectiveness separate creditors.   

1    Introduction  

The system of credit bureaus is one of the most important components of 

modern credit relations and an important infrastructural element of the credit 

market. Credit bureaus engage in collection and exchange of credit reports, thus 

reducing the information asymmetry between lenders and borrowers. Effective-

ness of this system contributes to greater reliability of lending, strengthens and 

improves stability of the financial sector. 

Effective performance of credit bureaus reduces credit risks and makes loans 

more affordable to responsible borrowers. In the corporate segment, credit bu-

reaus help increase competitiveness of organizations. 

Credit bureaus have existed and accumulated experience in the credit markets 

of some developed countries for more than 150 years. The first bureaus appeared 
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in the second half of the 19th century in Austria (1860), Sweden (1890), Finland 

(1890) and, later on, in other countries of Western Europe. Today, credit bureaus 

operate in the credit markets at almost all countries. Credit information exchange 

systems have integrated into the institutional architecture of a developed market 

economy, both in Europe and in the world. In Europe, in the vast majority of 

countries (17 against 6), provision of credit information is optional. Genesis of 

credit bureaus and cross-country evidence are presented in [7,10,11,17].  

The organization of the bureau system, its structure and functions differ from 

one market to another. In a number of countries, the bureau system is organized 

as a competitive environment of private institutions. A typical example is the 

system of credit bureaus in the United States of America, where there are three 

basic bureaus (TransUnion, Experian and Equifax) and a number of smaller 

bureaus serving individual regions or industries. Bureaus there share both posi-

tive and negative credit information. In Germany, the bureau of credit histories 

is a union of eight regional, legally and economically independent entities 

(SCHUFA). In France, this system is represented by a state register. In Den-

mark, Belgium, Spain, Australia, Mexico, Brazil and several other countries 

provide only negative credit information.  

In 1997, a Credit Information Bureau (BIK) was established in Poland. The 

main task of BIK was to provide information on clients' creditworthiness. At 

present, more than 680 institutions participate in BIK information exchange 

systems. Information resources BIK cover over 137 million credit accounts 

owned by 23 million Poles ([21]). According to experts from the World Bank in 

2013, Poland was one of the leaders in the region and globally in terms of the 

quality of the credit information. 

Credit bureaus as inherent element of the consumer loans market were estab-

lished in Ukraine at 2005. There are 7 credit bureaus in Ukraine in current peri-

od, though three largest bureaus cover 99% of individual borrowers ([22,23,24]). 

The market of personal loans uses bureaus very intensively. The market of cor-

porative credits interacts with bureaus non-actively. 

There are about 30 credit bureaus in Russia (the main five of them hold in-

formation about 95% of borrowers). Moreover, the Central Bank of Russia cre-

ated a central catalogue of credit histories containing information on bureaus 

holding particular borrower's credit history.  

It is necessary to note that some countries use approach based on establish 

state credit register. Bosnia and Herzegovina is an example. 

Credit bureaus are focused on the collection and provision of credit infor-

mation to participants in the credit market. At the same time, they accumulate 

enormous statistical information, and its use presents significant potential in 

improving the efficiency of risk management systems. This article suggests ap-

proaches for using the data of credit bureaus in order to raise the efficiency of 

credit risk management systems in consumer lending segment. 
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2    Functions of credit bureaus 

Economic literature comprises a number theoretical and empirical studies de-

voted to the analysis of the functions of credit bureaus, credit reporting systems, 

and their role. Important contributions to the study of credit reporting were made 

by M. Miller, D. Rudmen, T. Jappelli, M. Pagano, S. Djankov, V.Simovic, 

M.Rothemund, M.Gerhardt  and many others.  

The system of credit information exchange through credit bureaus consists of 

economic, technical, and legal components. This article focuses on the economic 

one. Existing research (for example, [5]) has defined a number of credit bureaus’ 

economic functions, including the following: 

Reduction of information asymmetry risk. The risk of information asymmetry 

is inherent to credit relations, as lenders and borrowers often have different in-

formation at their disposal. When credit bureaus system is not existent, lenders 

can not properly assess the borrowers’ creditworthiness. Borrowers may hide 

information about some negative aspects of their past and, vice versa, assign 

greater importance to the positive aspects. Taken together, this may lead to 

a potentially misguided decision made by lender and increases the credit risk. 

Moreover, borrowers may be over-credited and hide this information from the 

lender, applying for a new loan. Reduction in the information asymmetry with 

the help of credit bureaus decreases lenders’ risk, helps reject adverse borrowers 

and ensures more favourable terms for responsible and trustworthy borrowers. 

1) Reduction in costs on information collection and data analysis. In the ab-

sence of credit bureaus, creditors need to spend a lot of time searching for 

information about borrowers in different sources. As an alternative to bu-

reaus, they may use the so-called ‘blacklists’, but their legitimacy is under 

big question. When credit bureaus are present on the market, they store in-

formation on all credit transactions, and when a credit institution makes a 

query to the bureau, the required information is promptly provided. Modern 

information technologies enable collection, systematization and provision of 

credit information in a highly efficient manner. The duration of the query to 

the bureau and receipt of the answer takes only a few seconds. 

2) Reduction of moral hazard to borrowers. Failure to repay a loan may result 

from the economic to do so or from the borrower’s reluctance to make the 

necessary payment. In the latter case, credit bureaus stimulate borrowers to 

develop more responsible attitude to fulfilling their obligations. Information 

about credit transactions is stored for a long period (e.g., in Ukraine it is 

stored for ten years), during which a borrower with a negative credit history 

will not be able to get a loan from banks working with the bureau. 

The abovementioned functions have a significant impact on the credit mar-

ket. In particular, reductions in information asymmetry and moral hazard allow 

lenders reduce interest rates on loans. Generally, lenders include risk premium 
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into the interest rate, which naturally affects the lending economy: with an in-

crease of risk premium, the demand for loans falls. 

There may be differences in the implementation of credit bureau functions in 

specific markets and they are usually reflected in the principles of bureau system 

organization and in market structure. Main differences in the organization of 

bureau systems are as follows: 

1) obligation to provide information to the bureau by all lenders; 

2) participation of the state in the credit bureau system; 

3) information provided to bureau users (only negative, or both negative and 

positive); 

4) need of agreement with the borrower on processing and transferring of 

his/her personal information to the bureau. 

3    Implementation of credit bureaus into the risk management 

      system 

The information significance of credit bureaus is growing. The first reason of 

this is that the databases have currently accumulated enough statistics about 

borrowers to provide lenders with increasingly comprehensive information re-

ports. The second reason is that the content of information available to the bu-

reau is also growing. For example, currently, borrowers’ photos are collected 

and stored in their credit history files helping to reduce potential risk of fraud. 

Yet, in such circumstances, the issue of effective implementation of the lender's 

interaction with the bureau into the general system of risk management is be-

coming increasingly important. Consequently, it calls for exploring the logic of 

interaction with other structural elements of risk management and defining its 

most effective option. General logic of risk management system is presented in 

[2,18]. The interaction credit bureaus with other components were considered 

for consumer lending in [12] and [15]. 

In our study, we analysed several conceptual approaches to the implementa-

tion of credit bureau services to the credit risk management system of consumer 

lending. As an assumption, we consider the situation when several credit bureaus 

operate in the market, as it represents the most common model in modern credit 

markets. Therefore, the model of work with bureaus involves the need to interact 

with several bureaus, as information provided by different bureaus may not 

overlap. However, an opposite argument in this case is that the higher cost of 

working with several bureaus will affect the economy of lending. 

To illustrate the case, we assume that lenders interact with three major bu-

reaus (for instance, this is a true case in Ukraine, where most lenders work with 

three credit bureaus). We distinguish two main models of the organization of 

interaction between the lender and the credit bureau: 

• a model of sequential queries to different bureaus; 

• a model of simultaneous queries to all bureaus. 
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The model of sequential queries is illustrated in Figure 1, and the model of 

parallel queries is presented in Figure 2. 

 

Figure 1. Model of sequential queries to credit bureaus.  

Source: own elaboration. 

The advantage of the first model is the reduction of risk management costs 

for the use of bureau services. If negative credit history is revealed in the first 

query to the Bureau 1, subsequent queries may be avoided. At the same time, it 

makes sense to make queries to the bureau on the basis of Hit Rate, i.e. the effec-

tiveness of finding a credit history with the bureau. A disadvantage of this model 

is that fragmentary credit history is obtained, which does not allow to fully as-

sess the risks. This refers to the situation when a query to Bureau 1 yields nega-

tive history, while Bureau 2 and Bureau 3 may hold positive credit history on 

other loans. For example, the negative credit history in the Bureau 1 may have 

been due to outstanding payments during the crisis period on the market. 

 

Figure 2. Model of simultaneous queries to credit bureaus. 

Source: own elaboration.   

The advantage of the second model is that it provides lenders with a compre-

hensive picture of the borrower's entire credit history. This allows making an 
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informed credit decision taking into account not only the negative aspects of 

credit history, but also the positive ones. 

We studied the models of organization of the credit risk management system 

in the framework of interaction of queries to credit bureaus and other compo-

nents of risk management, in particular, the ‘black lists’ and the internal applica-

tion credit scoring. We distinguish between two main models of credit risk man-

agement in consumer lending. Their rationale is presented in Figure 3. 

The first model involves initial check of the borrower against the internal 

‘black-lists’ as well as other lender’s procedures of identification and verifica-

tion. A certain percentage of applications (e.g., according to statistical data in 

Ukraine, we estimate this level at 10%-15%) is rejected at this stage. Others 

potential borrowers are subjected to internal application scoring and creditwor-

thiness check procedures. Here, the rejection rate is a little higher (we estimate it 

to reach 10%-20%). Following first two stages, 65%-80% of the potential bor-

rowers from the incoming flow get checked through a query sent to the credit 

bureau. Based on information from the bureau, approximately 30% of borrowers 

with a negative credit history are rejected. Finally, the remaining 35%-50% of 

loan applications are approved. 

In terms of scoring methodology, Figure 4 illustrates the borrower's assess-

ment in the framework of the model. Area B represents the part of applicants’ 

incoming flow rejected at the internal ‘black lists’ check. At the stage of scoring 

assessment, applications with a score below the cut-off point are rejected (darker 

area A on the left). Finally, at the third stage, rejection decisions are made on the 

basis of information received from credit bureaus, (area C in Fig. 4). Area D 

represents approved applications (potentially issued loans). 

Using the second model of using credit bureaus as part of risk management 

system, credit bureau information, applications are initially checked with the 

bureau (and an area similar to C is rejected), then  against the ‘black lists’ (area 

B), and eventually, another part of borrowers’ applications are rejected follow-

ing internal scoring (area A). 

Both models described above have a number of advantages. The first model’s 

advantage is that the costs it involves are lower. The queries to the credit bureaus 

are made only for those applicants who have successfully passed stages 1 and 2. 

Taking into account that 20% to 35% applications are rejected at these stages, it 

means the costs are reduced by similar values. For instance, a bank with an in-

coming inflow of 10,000 potential customers per month and paying a fee of $1 

per query, may achieve cost savings in the amount of $2000-$3500 per month. 

One disadvantage of this model is the amount of time spent by banking person-

nel on the first two stages for clients with negative credit history. Thus, if pro-

cessing of each application takes about one hour during the first two stages (fill-

ing in the application form, etc.), and then 30% of them are rejected following 

negative information from the credit bureau, then, additional expenses may 

reach up to 3600 hours per month. 
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Fig. 3. Models of implementation of the credit bureau services in the system of credit risk 

management 

Source: own elaboration. 
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Figure. 4. Graphic illustration of processing borrower`s application 

Source: own elaboration.   

The second model, on the other hand, allows lender to save time spent on ap-

plication processing. Having made query to the credit bureau and received nega-

tive information, lender can immediately stop application process and move to 

serving the next client. Operating efficiency in this case grows together with 

costs for credit bureau services. 

The efficiency of these models may be defined by the state of the market. 

The first model would be preferable for lenders with a small application inflow. 

The second model can be effectively used in a dynamic market with large num-

ber of customers, in particular, with express loans and store loans. In order to 

evaluate the effectiveness of the models, we recommend comparing the cost of 

bureau services and the cost of applications processing for stages 1 and 2 of the 

first model. 

Increasing effectiveness of risk management based on the use of credit bu-

reau information 

Nowadays, credit bureaus store huge amounts of market data. The idea of us-

ing bureaus’ statistics for the study of economic problems was first proposed by 

David Burch in the 1970s. Burch used information from Dun's Market Identifi-

ers (DMI), a private credit bureau, to find out the dependency of employment 

rates on firm relocations between US states ([3]). 

There is a variety of ways how credit bureaus’ data can be used to improve 

the effectiveness of risk management systems. Our study focuses on three as-

pects: 
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• reject service; 

• statistical analysis of the incoming flow of applications; and 

• benchmarking the lender's performance. 

Reject service. In order to improve the efficiency of credit risk management 

system, we suggest using the statistical potential of credit bureaus for assessing 

loan applications that were rejected by lender at the verification stage (step 1) 

and at the application scoring stage (step 2). Analysis of rejection decisions by 

further monitoring the borrower's risks is called the analysis of rejected applica-

tions or the reject service. Feelders in [8] studied this phenomenon for commer-

cial loans. Also, reject inference was analysed in [9]. 

To improve the effectiveness of verification process, it makes sense to first 

classify the rules making part of this process and being used to take the rejection 

decisions. Assume that rejections are based on k rules:�1 ,…, ��. Then, when 

lenders make queries to bureaus to receive additional information on borrowers 

whose applications were rejected in accordance with k rules, they can get infor-

mation on whether other loans were granted after the rejection, and if they did, 

then whether they were paid back on time (“Good” loan status) or not (“Bad” 

loan status). A matrix of rejected applications can then be created shows at Ta-

ble 1. 

Table 1. Reject analysis for verification rules. 

Verification 

rule 

No loans received 

after rejection 

Loan received after 

rejection and paid 

back on time 

Loan received after 

rejection and not paid 

back on time 

�� ��� �� �� 

… … … … 

�	 ��	 �	 �	 

Source: own elaboration. 

Economic analysis of rejected applications by certain rule helps compare and 

evaluate interest income from “good” and losses from “bad” cases. If the interest 

income from “good” exceeds the loss from “bad”, verification should be 

changed by removing this rule. 

Information provided by credit bureaus can be used for analysis of rejected 

applications based on application scoring values. Its logic is presented is Figure 

5 and is based on consideration of “good” and “bad” results for rejected applica-

tions. 
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.  

Figure 5. Rationale for analysis of reject service based on application scoring. 

Source: own elaboration.   

In the simplest application scoring model, applications go through one stage 

only where at a pre-defined cut-off point the decision is made on loan approval 

or rejection.  Reject service analysis provides lenders with more detailed infor-

mation on applicants whose loan applications had been rejected. Using this in-

formation, lenders can adjust decision-making rules in order to issue more loans 

in the future. It also allows improving the discriminatory power of application 

scoring by including additional information on good and bad statuses of borrow-

ers’ existing loans from credit bureau into classification of good and bad loans at 

the stage of scoring system development or upgrading. 

Thus, information from the credit bureau allows additional statistical calcula-

tions to optimize the risk management system, in particular through the im-

provement of the verification and application scoring stages. Analysis of rejected 

applications (reject service) can improve the effectiveness of discriminating 

between good and bad applications at the first and second stages. 

Let us consider example of application reject service procedure. Authors have 

applied described reject service logic for one Ukrainian financial company, 

which issued consumer loans in 2013-2017. During this period 33210 applica-

tions were rejected in credit granting. The rejected procedures were based on the 

model which present at the left part of Fig.3 (“black lists” and internal applica-

tion scoring). The statistics from three basic Ukrainian bureaus which were ana-

lysed by authors indicate that 18421 (55,59%) rejected applicants have received 

loans in other financial institutions after rejections. The information in credit 

bureaus about other 14789 (=33210-18421) is absent after rejections. To all ap-
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pearance, these rejected applicants were really “Bad” and any creditor did not 

want to grant loans for them.  

18421 rejected applicants on the base of bureaus information were divided to 

11347 (“Goods”) and 7074 (“Bads”). “Goods” repaid loans successfully without 

delinquency more than 91 days. “Bads” had delinquency more 91 days and 93% 

of them did not go out from delinquency during one year after it begun.  

We used statistical analysis for reject factors. Here we present factors which 

were included in internal application scoring. There were 13 basic application 

factors. First group of factors included socio-demographic factors: age, borrower 

gender, marital status, number of children, education level. Second group in-

cluded professional factors: job position and time at employment. Third group of 

factors was devoted to welfare indicators: applicant`s monthly income, owner-

ship indicators, time of car using. Fourth group was focused on loan characteris-

tics: required amount of loan, duration of loan, recurring loan.  Abovementioned 

characteristics formed core of internal application score, but did not exhaust all 

indicators for estimation.  

We analysed Information Value (IV) statistic which is good screener for pre-

dictor variables of application scoring. Calculation of IV ( see, for example [1], 

[20]) was done by formula (1): 


� = (
�

���
����_����� − ���_�����) ⋅ ln(����_�����

���_�����
) ⋅ 100%  (1)

����_����� is a share of “Good” applications for attribute � among all 

“Good” cases and ���_����� is a share of “Bad” ones for attribute � amoung all 

“Bad” cases. According to IV methodology, its statistic values interpretation is:  

• 
� < 0,02 – factor has no predictive influence; 

• 0,02 ≤ 
� < 0,1 – low influence power; 

• 0,1 ≤ 
� < 0,3 – average influence power; 

• 0,3 ≤ 
� < 0,5 – statistically high predictive influence; 

• 
� ≥ 0,5 – influence should be checked because of suspicious high influ-

ence power of factor. 

Statistic IV is using in application scoring by signing higher weights to those 

predictors which have higher IV.  

Firstly, we analysed statistics IV for Goods and Bads from creditor portfolio 

of loans. Then we expanded pool for analyses according to Fig.5. The results are 

presented at the Table 2 below. 
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Table 2. IV statistics for creditor`s data and for expanded data through reject service. 

Factors, which included 

into application scoring 

IV statistic for the data 

from creditor loans port-

folio 

IV statistic for the ex-

panded data, which in-

clude rejective queries 

Age 0.056120 0.054181 

Borrower gender 0.001998 0.002449 

Marital status 0.028445 0.027949 

Number of children  0.020031 0.032251 

Education level 0.017229 0.014506 

Job position  0.019830 0.005123 

Time at employment. 0.000212 0.002403 

Applicant`s monthly  

income 

0.123439 0.257549 

Ownership indicators,  0.006214 0.007006 

Time of car using 0.001763 0.001906 

Required amount of loan 0.005119 0.088092 

Duration of loan 0.000114 0.011906 

Recurring loan 0.159000 0.297540 

Source: authors` calculation.  

IV statistics are similar for some predictors and differs for other. The differ-

ences in our case are concerned with “applicant`s monthly income”, “required 

amount of loan”, “duration of loan” and “recurring loan”. It means, that compar-

ing this information values with ones, used for internal credit scoring develop-

ment, lender can improve its scorecard, for example by correcting weights of 

risk factors or including additional factors, or change decision rules based on the 

results of the analysis. 

Thus, information from the credit bureau allows for additional statistical cal-

culations to optimize the risk management system, in particular through the im-

provement of the verification steps and application scoring decisions step. 

Analysis of rejected applications (reject service) can improve the effective-

ness of discrimination between goods and bads applications at the first and sec-

ond stages. 

4    Statistical analysis of applications inflow 

The statistical potential of the credit bureau provides an opportunity to calcu-

late the average market values of certain parameters of the borrower incoming 

flow. As example, at the Table 3 we illustrate market inflow at the form of risk 

distribution. Data reflect Ukrainian consumer credit market inflow for January-
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September of 2017 year.  R1-R15 are risk classes of International Bureau of 

Credit Histories (R1 indicate low risk, R15 indicate high risk). 

Table 3. Inflow risk distribution in Ukrainian consumer credit market (%). 

R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R15 

1.6 3.3 3.7 5.7 7.3 6.5 7.7 8.4 9.7 8.8 7.8 8.3 6.6 6.9 7.7 

Source: authors` calculation on the base of [24]. 

They can be used to compare the level of inflow risk to market risk for each 

individual lender. Identifying this difference is directly related to the effective-

ness of lender’s risk management. Therefore, if the incoming flow of applica-

tions is riskier than market, risk management should be ‘tougher’. Conversely, if 

the incoming flow is better compared to market average, then the risk manage-

ment system may be ‘softened’. Graphs in Figure 6 illustrate this approach. They 

show a comparison of the inflows of the entire market (in dark grey) against 

banks A and B (in light gray). Incoming flows are shown by the distribution 

functions of scores of potential borrowers applying separately to these banks, 

and in general on the market. R1-R15 are scoring classes (a total of 15 classes), 

each characterized by borrowers’ default probability. Class R1 corresponds to 

almost zero probability of default, and R15 to 100%, other classes have interim 

default probability values between R1 and R15. 

The upper graph shows that the inflow of borrowers to Bank A is character-

ized by a higher number of borrowers with lower credit risk than average on the 

market. Bank B’s inflow, by contrast, is worse than the market average. This 

assessment is a unique tool provided by the bureau and raising the question: why 

is the flow of borrowers to the bank is worse than the market average? If lend-

er’s inflow can be improved by changes in marketing policies, then it will have 

impact on risk management. 

5    Benchmarking effectiveness of the risk management system 

Assessing effectiveness of credit risk management is a rather challenging 

task. Traditional indicators for such assessment include different types of over-

due rates, rate of approved applications, rate of return on arrears, etc. However, 

these indicators, considered for an individual lender, do not reflect the impact of 

entire market conditions. A sound approach to evaluate lender performance is to 

use specific benchmarking that would reflect market average values. Then, com-

parison of individual lender’s values to average market values gives an oppor-

tunity to assess their effectiveness properly. Among others this problems inves-

tigated in [14]. 
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Figure 6. Comparison of market and bank inflows. 

Source: authors` calculation on the base of [24]. 

Statistical data from credit bureaus provides lenders with meaningful infor-

mation on the effectiveness of risk management indicators for the market in 

general. Based on them, lenders may develop benchmarking that will include 

dynamics of changes in the market. 

We propose to consider the following five indices as indicators of the credit 

risk management effectiveness: 

Bad Rate (BR). The percentage of borrowers with approved applications 

who have overdue payments of over 90 days. BR is one of basic indicators of the 

risk management system. Credit bureau data may be used to calculate the value 

of this indicator for the entire market or for a specific segment. Comparing BR 

of a particular lender to the market bad rate average helps assess the effective-

ness of risk management in general. 
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First Payment Default (FPD). This is an indicator of the effectiveness of 

risk management in counteracting fraudulent actions. Failure to make the first 

payment on the loan, as a rule, is a sign of fraud. 

Approval Rate (APR). This rate is a very important indicator that stands for 

the percentage of approved loans compared to application inflow. APR not only 

defines the effectiveness of differentiation between bad and good applications, 

but also illustrates the quality of the inflow. It is also an indirect indicator of the 

effectiveness of the risk management system. 

Average Score Value (ASV).  Bureau inflow ASV may be considered as an 

averaged indicator of inflow risk level. It is used to compare average score val-

ues for lender’s inflow with similar market values. A more advanced approach 

may include comparing the distribution functions of the scoring values of the 

market inflow and values for the lender's inflow. 

Rate of Collected Delinquency (RCD). This indicator compares the level of 

BR with overdue amounts repaid. RCD is an indicator of quality in managing 

overdue loans portfolio. Based on data from credit bureau, this rate can be calcu-

lated for the market and then compares to lender’s RCD.  

Benchmarking model based on abovementioned indicators is presented in 

Figure 7. 

 

Figure 7. Benchmarking model based on credit bureau data. 

Source: own elaboration. 

To illustrate how the model works, let us consider it for two lenders A and B, 

whose data on risk management is presented in Table 4. 
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Table 4. Benchmarking of two lenders against market average 

 

Market 

(credit bureau statistics) 
Lender Ѐ Lender B 

BR (%) 8% 6% 15% 

FPD (%) 1,5% 1,5% 2% 

APR (%) 40% 50% 60% 

ASV (from 0 to 100)     54 62 49 

RSD 8% 11% 4% 

 Source: own elaboration. 

Taking market indicators as base value (value equals 1) for comparison, we 

have obtained the following benchmarking result, presented in Figure 8. 

 

Figure 8. Benchmarking for lenders A and B: comparison of effectiveness of risk-

management systems. 

Source: own elaboration. 

From comparison of the parameters of the risk management systems of lend-

er A and market average, we conclude that the position of lender A is better than 

market average. Conversely, indicators of lender B are worse than market aver-

age. Therefore, the risk management system of lender A is considered more 

effective than that of lender B. 

Naturally, benchmarking for assessing the effectiveness of risk-management 

may include more indicators that could be calculated using credit bureau data.  
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 6    Conclusions 

Credit bureaus today are inherent constituent of credit market. Especially, 

they are highly developing at the segment of consumer lending. Creditors in-

clude queries to bureau into the loan issuing procedure, especially when dealing 

with risk assessment risk procedures. Moreover, credit bureaus accumulate great 

volume of different statistics. These statistics using form good potential for 

analysis and solving different economic problems.  This potential may be use 

more intensively. Our findings suggest that data stored by credit bureaus pre-

sents significant opportunities for improving effectiveness of credit risk man-

agement systems. 

Indeed, implementation of effective credit risk-management system is a very 

important objective for lenders. Credit risk management systems are complex for 

large banks. All procedures have been realized automatically. Verification of 

effectiveness may be characterizes by non-clear, fuzzy results. Statistics of credit 

bureaus provide some good instruments for increasing effectiveness risk man-

agement systems. Comprehensive analysis of rejected applications (reject ser-

vice), analysis of application inflow and benchmarking of the risk management 

system effectiveness based on data collected by credit bureaus has significant 

impact on the effectiveness of lenders’ risk management systems 
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 Estimating the probabilities of a simultaneous  

occurrence of random phenomena  
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Abstract  

In this paper random variables with uniform, binomial and Gauss distributions are con-

sidered. Those variables describe the times of the start and duration of random phenomena. 

It was shown how to estimate the probability of simultaneous occurrence of selected phe-

nomena in the fixed period. Relevant definitions, formulas and examples are provided. 

1    Introduction 

In many areas of their activity, people make decisions in conditions of uncer-

tainty because many phenomena that influence their behaviour and decisions are 

carried out in a random way. These can be economic, social and natural phe-

nomena. It is difficult to predict them all, determine when they will occur and 

how long they will last. For example, when investing in stock market shares, the 

investor would like to see no bear market during his investment; the person 

planning a holiday would like to have nice weather in the chosen time; in the 

production process it is advisable that too many machines not to fail at the same 

time to avoid production downtime. Therefore it is necessary that phenomena for 

which there is no certainty as to the time of their occurrence are described by 

means of random variables. In case of many phenomena it is often important to 

know the value of the likelihood of simultaneous occurrence. The paper pre-

sents, with certain assumptions about the distributions of random variables, how 

to describe them and how to estimate the probabilities of their simultaneous 

occurrence. Relevant definitions, formulas and examples are also provided.  

                                                 
1 Department of Quantitative Methods in Management, Faculty of Management, Lublin University 

of Technology, e-mail: t.warowny@pollub.pl 
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2    Description of phenomena by means of random variables 

      with the uniform distribution 

Definition. Random variable � has a uniform distribution on a measurable set �, 

if for each measurable set � is 

��� ∈ �� = 	�� ∩ ��
	��� , 

where 	 denotes the measure of a set. 

Let us consider two phenomena denoted by �1 and �2, respectively. Let us in-

troduce the following notations and assumptions: 

• �- random variable representing the moment of the beginning of the phe-

nomenon ��,  

• Δ� - time of duration of the phenomenon ��, it is a fixed value, 

• � - random variable representing the moment of the beginning of the phe-

nomenon ��,  

• Δ� - time of duration of the phenomenon ��, it is a fixed value, 

• �, �- independent random variables with the uniform distributions on the 

interval �0, ��. 
Let us calculate the probability of an event „phenomena will last simultane-

ously at least Δ� ≥ 0". It is obvious that the condition Δ�, Δ� ≥ Δ� must be satis-

fied. 

Let us consider two cases. 

Case 1. The phenomenon �� will begin not later than the phenomenon ��. In 

order for them to occur simultaneously for at least Δ�, the following conditions 

must be met 

� ≥ �           and         � ≤ � +  ! −  #. 
The above statement is illustrated by Fig. 1.  

 In many areas of their activity, people make decisions in conditions of uncer-

tainty because many phenomena that influence their behaviour and decisions are 

carried out. 

 

Fig. 1. A geometrical interpretation of Case 1. 

Source: own elaboration. 

0 

� 

� + Δ� − Δ� � + Δ� � � 
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Case 2. The phenomenon �2 will begin not later than the phenomenon �1. In 

order for them to occur simultaneously for at least Δ� the following conditions 

must be met 

� ≤ �         and         � ≤ � +  $−  #, 
what is illustrated by Fig. 2. 

 

Fig. 2. A geometrical interpretation of Case 2. 

Source: own elaboration. 

Thus we have 

%� ≥ �� ≤ � +  ! −  #            or              %� ≤ �� ≥ � −  $ +  #. 
The set of points with coordinates ��, �� satisfying the above conditions is a set 

of lines on Fig. 3.  

 

Fig. 3. A geometrical interpretation of an event „the phenomena will occur for at least  #”. 

Source: own  elaboration. 
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By the definition of the uniform distribution we conclude that t the probabil-

ity of an event “the phenomena will occur simultaneously for at least Δ�” is 

equal to 

� = �� − '� − '��� , (1)

where:  

'1 = �� − �Δ� − Δ���2
2 , '2 = �� − �Δ� − Δ���2

2 , 
what results in  

� = 2�� − �� − �Δ� − Δ���� − �� − �Δ� − Δ����
2�� . (2)

Example 1. Two machines operate independently one of another. Statistically, 

in each of them a piece (bearing) breaks down once a month (720 hours). Re-

placement of the bearing stops the first machine for 20 hours, the second one for 

15 hours. The production process is stopped if the machines are stopped simul-

taneously for more than 5 hours. What is the probability that within a month the 

production will be stopped? 

We have: � = 720, Δ� = 20, Δ� = 15, Δ� = 5. 

By using (2) we obtain 

� = 2 ⋅ 720� − �720 − �20 − 5��� − �720 − �15 − 5���
2 ⋅ 720� = 0.034. 

The probability that within a month the production will be stopped is then equal 

to 0.034. 

In the case of many decision problems, it may often be important to answer 

the question: how long must the selected phenomenon last (e.g. Δ�) so that the 

probability in question had a fixed value? 

To answer the above question it is necessary to solve a quadratic equation of 

the variable Δ� in the following form: 

� = 2�� − �� − �Δ� − Δ���� − �� − �Δ� − Δ����
2�� = -, (3)

where β is the probability required by the decision maker. 

Addressing Example 1 let us consider another example. 

Example 2. How much should the time of replacement of the broken bearing in  

the first machine be decreased so that the probability of stopping the production 

process would be 0.02? 

We have: � = 720, Δ� = 15, Δ� = 5, β = 0,02, Δ� =? 
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The solution of the equation  

2�� − �� − �Δ� − Δ���� − �� − �Δ� − Δ����
2�� = β = 0.02 

is Δ� = 9.48. Replacement of the broken bearing in the first machine should last 

about 9.5, the probability of stopping the production process would be 0.02. 

When we assume in (2) that Δ� → 0,  we obtain  

� = 2�� − �� − �Δ� − Δ���� − �� − �Δ� − Δ����
2��

→ 2�� − �� − Δ��� − �� − Δ���
2�� . (4)

Formula (4) is the probability of  an event that two phenomena will occur simul-

taneously at any given time. Hence we obtain that both phenomena will not oc-

cur simultaneously with probability equal 

1 − � = �3 = 2�� − 2��Δ� + Δ�� + �Δ��� + �Δ���
2��  (5)

Example 3. The environmental guard received information from a trusted source 

that the next night, the trash from the production facility would be dumped into 

the forest. The exact time is unknown, but it is known that this illegal procedure 

will start between 22:00 and 6:00 and will last for 2 hours. Due to the workload, 

the guard will be able to appear at the crime scene at a random, independent 

moment, and be able to stay there for no longer than an hour. In order that the 

dishonest owner of the production facility could be punished, he must be caught 

in the act. What is the probability that the guard will be able to witness the 

dumping of trash into the forest? 

We have: � = 8, Δ� = 2, Δ� = 1. After using (5) we obtain  

� = 2��Δ� + Δ�� − �Δ��� − �Δ���
2�� = 2 ⋅ 8 ⋅ �2 + 1� − 2� − 1�

2 ⋅ 8� = 0,336. 
A guard who can spend one hour on waiting has about 33% chance of catch-

ing the deceitful owner of the plant. 

Suppose the inspector wants the probability to be equal at least β. How 

much time would he have to spend on waiting in the woods? In this case, the 

inequality of the variable Δ� must be solved 

� = 2��Δ� + Δ�� − �Δ��� − �Δ���
2�� ≥ β. 

After transforming the above quadratic inequality to the form 

−�Δ��� + 2� ⋅ Δ� + 2� ⋅ Δ� − �Δ��� − 2β�� ≥ 0 
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it is easy to determine its solution which has the form of 

Δ� ∈ 5� − ȂΛ2 , � + ȂΛ2 8, 
where Λ = 4��� + 2� ⋅ Δ� − �Δ��� − 2β���. Taking into account Δ� ≤ � we 

obtain  

Δ� ∈ 5� − ȂΛ2 , �8. (6)

Suppose the inspector wants the probability of proving the crime to be at 

least 0.6. We have � = 8, Δ� = 2, β = 0,6. By substituting these values into 

formula (6) we obtain 4,1 ≤ Δ� ≤ 8. The inspector would have to reserve at 

leaat 4 hours and 6 minutes for waiting. 

3    Description of phenomena by means of random variables 

       with the binomial distribution 

Until now, we have assumed that each of the considered phenomena would 

certainly occur. The time of their beginning was random. Let’s assume now that 

the phenomena at a given time may exist (but not necessarily) with certain prob-

abilities. Due to the limited scope of this paper, only certain specific cases will 

be considered. Situations where many phenomena will occur in a given period 

will be considered, and the probability of simultaneous occurrence of a fixed 

number of those phenomena will be estimated. The following definitions and 

properties will be needed. 

Definition. A random variable 9: has a binomial distribution with the parame-

ters �:, ;�, : ∈ Ν, 0 < ; < 1 if 

��9> = ?� = @:?A ;B�1 − ;�>CB, ? = 0,1, . . . , :. (7)

If ; is the probability of occurrence of some event in a single experiment, 

then ��9> = ?� is the probability of occurring this event exactly ? time in : 

experiments. It can be shown that the expected value of the above random varia-

ble is D�9>� = :; and the variance is�F2�9:� = :;�1 − ;�. Variable 9: is often 

referred to as the number of successes in Bernoulli's scheme. 

Example 4. The probability that within one working day the machine will crash 

is ; = 0,1. Failure will stop the machine until the end of the day. The possibili-

ties of subsequent failures are independent of each other. What is the probability 

that in the next 30 days the machine will be immobilized for no more than 5 

days? 

Let random variable have binomial distribution with parameters��:, ;�. Let 

us compute 
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��9GH ≤ 5� = ��9GH = 0 ∨ 9GH = 1 ∨ 9GH = 2 ∨ 9GH = 3 ∨ 9GH = 4 ∨ 9GH = 5� = ��9GH = 0� + ��9GH = 1� + ��9GH = 2� + ��9GH = 3� + ��9GH = 4� ++��9GH = 5�. 
Using (7) we obtain 

��9GH ≤ 5� = J �
K

BLH
@30? A ⋅ 0, 1B ⋅ 0, 9GHCB = 0,927. 

To estimate the probabilities of the simultaneous occurrence of phenomena de-

scribed by binomial distribution random variables, the de Moivre-Laplace theo-

rem is often used as a special case of the central limit theorem [1, p.350 and 

later]. 

The de Moivre–Laplace theorem. If 9: is a sequence of binomial random vari-

ables with parameters �:, ;�, then for any real numbers α1, α1 such that α1 < α2 

there is a formula: 

lim:→∞�Rα1 <
9: − :;

S:;�1 − ;� < α2T = U�α2� − U�α1�, 
where U is a distribution function of normal distribution. 

The above statement can also be formulated as follows: 

� R 9> − :;
S:;�1 − ;� < αT → U�α�, : → ∞, α ∈ V 

what means that the random variable 
9:−:;

S:;�1−;� is asymptotically normal. 

Remark. If � is a random variable of the continuous type, then ��� ≤ α� =��� < α�. For discrete-type random variables, such an inequality does not need 

to be hold. If 9:t is a sequence of random variables with a binomial distribution 

with parameters �:, ;�, hence discrete-type ones, then for non-negative integers ?1, ?2the following formula is often used in the following way [3, p.235]: ��?1 ≤ 9: ≤ ?2� = ��?1 − 0,5 < 9: < ?2 + 0,5� =
= �R?1 − 0,5 − :;

S:;�1 − ;� < 9: − :;
S:;�1 − ;� <

?2 + 0,5 − :;
S:;�1 − ;� T .

 

Then, by the de Moivre – Laplace theorem we obtain   

lim:→∞��?1 ≤ 9: ≤ ?2� = UR?2 + 0,5 − :;
S:;�1 − ;� T − UR?1 − 0,5 − :;

S:;�1 − ;� T. 
It is possible then to apply the following approximation  
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��?� ≤ 9> ≤ ?�� ≈ U R?� + 0,5 − :;S:;�1 − ;� T − U R
?� − 0,5 − :;
S:;�1 − ;� T. (8)

If ?1 = ?2 = ?, then 

��? ≤ 9> ≤ ?� = ��9> = ?� ≈ U R? + 0,5 − :;S:;�1 − ;� T − U R
? − 0,5 − :;
S:;�1 − ;� T. (9)

Simultaneously we know  that  ��9> = ?� = @:?A;B�1 − ;�>CB. 

Estimation of precision of approximation in the de Moivre – Laplace theorem is 

following [2, p.173 and later]: 

Example 6. In an office facility 1000 light bulbs are lit. For each light bulb, the 

probability of blurring is 0.1 during the day. 

a) What is the probability that no more than 100 bulbs will burn in the day? 

b) What is the probability that over 200 bulbs burned during the day? 

c) What is the probability that the number of burnt bulbs is between 100 and 

120 during the day? 

Solution. Let 9: be the number of successes in the Bernoulli scheme (by success 

we mean the burning of the bulb). The probability of success is equal ; = 0.1; : = 1000.  

a) We have to calculate ��9> ≤ 100�. Using (7) we have 

��9> ≤ 100�= = ��9> = 100� + ��9> = 99�+. . . +��9> = 1� + ��9> = 0� = 0.5266. 

If we use de Moivre–Laplace theorem, we will obtain   

��9> ≤ X� = � R 9> − :;
S:;�1 − ;� ≤

X − :;
S:;�1 − ;�T ≈ U R X − :;

S:;�1 − ;�T. 
Hence 

��9> ≤ 100� ≈ U Y100 − 1000 ⋅ 0,1Ȃ9.49 Z = U�0� = 0. 
The probability that no more than 100 light bulbs will burn during the day is 

equal to 0.5266. 

b) We have to calculate ��9> > 200� = 1 − ��9> ≤ 200�.  
��9> ≤ 200� ≈ U Y200 − 1000 ⋅ 0,1Ȃ9.49 Z = U�32.46� ≈ 1. 

The probability that more than 200 light bulbs will burn during the day is close 

to zero. 

c) We have to calculate ��100 ≤ 9> ≤ 120�. Using (8) we have 
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��?� ≤ 9> ≤ ?�� ≈ U R?� + 0,5 − :;S:;�1 − ;� T − U R
?� − 0,5 − :;
S:;�1 − ;� T. 

Hence 

��100 ≤ 9> ≤ 120� ≈ U Y120 + 0,5 − 100Ȃ9.49 Z − U Y100 − 0,5 − 100Ȃ9.49 Z
≈ 1 − 0.435 = 0.565. 

Finally, let us recall the commonly known property of normal distribution called 

the three sigma rule. 

Property. If � is a random variable with a normal distribution with parameters 	, F, then ��	 − 3F ≤ � ≤ 	 + 3F� ≈ 0.997. 

We know that if the random variable has 9:,�a binomial distribution with pa-

rameters �:, ;�, then the expected value of 9: is equal to D�9>� = :;, and the 

standard deviation is equal to F�9>� = S:;�1 − ;�. By the de Moivre-Laplace 

theorem,  
9:−:;

S:;�1−;� has an asymptotically normal distribution with parameters 0 

and 1. Based on the above property, we obtain that 

� R−3 ≤ 9> − :;
S:;�1 − ;� ≤ 3T ≈ 0.997 

or 

� @−3S:;�1 − ;� + :; ≤ 9> ≤ 3S:;�1 − ;� + :;A ≈ 0.997. 
The above means that the number of successes in the Bernoulli scheme with the 

probability of near to 1 is within the range 

@−3S:;�1 − ;� + :;, 3S:;�1 − ;� + :;A. 
In Example 6 we have : = 1000, ; = 0.1, so the interval is  

\−3Ȃ1000 ⋅ 0.1 ⋅ 0.9 + 1000 ⋅ 0.1; 3Ȃ1000 ⋅ 0.1 ⋅ 0.9 + 1000 ⋅ 0.1^
= �90.76; 109.24�. 

This means that with the probability close to 1, the number of light bulbs that 

will burn during the day is between 91 and 109,  

then ��	 − 3F ≤ � ≤ 	 + 3F� ≈ 0.997. 

Example 7. Two cark parks with separate entrances are planned to be built near 

the airport. It is estimated that in any time of the day there will be parked 500 

cars by average in the both car parks together. We assume that cars will be arriv-

ing separately and their drivers will choose one of the two car parks with proba-

bility ; = 0.5�, independently one from another. What should be the smallest 
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number of places on each of the car parks so that there would be a free place for 

each of incoming cars with probability 99%?  

Solution. Let 9>� be a number of successes in the Bernoulli scheme. By “suc-

cess” we mean a choice of one of the car parks and finding a free place on it. 

The probability of the success is ; = 0.5, : = 500.� 
By using the de Moivre–Laplace theorem we must find such a number X, so 

that  

��9_HH ≤ X� = 0.99.� 
We know that  

��9> ≤ X� = � R 9> − :;
S:;�1 − ;� ≤

X − :;
S:;�1 − ;�T ≈ U R X − :;

S:;�1 − ;�T.� 
Hence 

U R X − :;
S:;�1 − ;�T = 0.99, 

so  

X − :;
S:;�1 − ;� = U−1�0.99� = 2.3263. 

We obtain 

X − 500 ⋅ 0.5
S500 ⋅ 0.5 ⋅ �1 − 0.5� = 2.3263, 

so  X = 276. 

There should be 276 places on each of the car parks so that there would be a free 

place for each of incoming cars with probability 0.99. 

4    Final conclusions 

In many areas of human activity, the decision-making process may be influ-

enced by a variety of phenomena that may occur in the future and have a signifi-

cant impact on the outcome of the decisions. Simultaneous occurrences of many 

random phenomena can bring both positive and negative effects. 

In this paper it is presented how phenomena can be described with random 

occurrences. For example, random variables with uniform and binomial distribu-

tion are used. It is presented how to calculate the probabilities of simultaneous 

occurrence of these phenomena. The knowledge of these probabilities, in many 

cases, may limit the possibility of making a wrong decision and thus reduce its 

negative effects. 
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