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Chapter 1

Introduction

In this text, solid bodies are assumed continuous and the molecular structure

of materials is neglected. We assume that the matter of a body can be inde�nitely

divisible and accept the idea of an in�nitesimal volume of the body as well as the

notion of a particle so that the we can make use of the mathematical calculus.

Under the mechanical (applied surface traction, body forces) and thermal

(heating, cooling) interactions, a body deforms. Internal forces will be produced

between the parts of this body. The intensity of the internal forces will be called

stress. The amount of deformation that a body undergoes is described by strain.

When the stresses are small and removed, the body will revert to its original shape.

This behaviour is called elasticity.

A larger stress may cause plastic deformation. After a body undergoes plastic

deformation, it will not revert to its original shape when the stress is removed. This

phenomena is called plasticity.

Theory of Elasticity and Plasticity tries to explain the mechanical and geo-

metrical changes of the body under interactions. Since deformable solids are special

cases of continuous media, and since this is the �rst time the students of our faculty

have deal with the subject, we will present in details the governing equations for the

study of deformation and stress of a continuous material.

In Chapter 2, we will give a brief introduction to tensor calculus because

tensors (and especially tensors of second order [9]) are constantly used in mechanics

of continuous media. We are already familiar with the notion of scalars and vectors.

A scalar is a quantity with magnitude only. Examples of scalars are temperature,

time, mass...They are completely de�ned by only one value, e.g. degrees, seconds,

kilograms...A free vector is a quantity with magnitude and direction. Examples of

vectors are velocity, force, acceleration...they can be de�ned in a system of coordinate

by three values, for example, three components on the axes which together specify

both magnitude and directions. Tensors of second order, like strain, stress...are

not familiar [7]. Stress which will be discussed in this course is not encountered in
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everyday life. It has nine components, six of which are independent and their values

depend on the considered point and orientation relative to a set of reference axes.

At a particular orientation, six components become zero and stress has only three

principal components. These factors make stress di�cult to understand without a

deep consideration. Chapter 2 shows that scalars, vectors and tensors of second

order belong to the same family of quantities: the tensors.

Kinematics is presented in Chapter 3. It is a study of the geometric changes or

deformation in a body, without the consideration of forces causing the deformation.

This is only a geometrical problem, no physical principle is involved. We'll start

with the notion of motion, displacement then a measure of deformation: a strain

tensor. We will study the strain-displacement relations and relations between their

rates. Chapter 4 is dedicated for the study of stress state in a body under loadings.

The governing equations for the study of deformation and stress of a body are

the global laws presented in Chapter 5. These principles common to all media (such

as conservation of mass; the balance of linear momentum, moment of momentum,

and energy; and the entropy inequality law) are applied. Kinetics is the study of the

static or dynamic equilibrium of forces and moments acting on a body. Thermody-

namic principles are concerned with the conservation of energy and relations among

heat, mechanical work, and thermodynamic properties of the body. First, we will

derive these laws in an integral form, formulated for a �nite volume of material in

the continuum. Next, we will present the �eld equations for particles at every point

of the studied �eld.

The relations between stress and strain for a speci�c material are called con-

stitutive relations. We will derive the constitutive relation for elastic bodies in

Chapter 6 and for elastic-plastic bodies in Chapter 7. Obtained system of equations

will be applied to solve some practical engineering problems.

Several own or cited illustrative examples and exercise problems aim to test

and extend the understanding of concepts presented.

The authors of this text have been working together during their stay in

the years eighty of last century in the Institute of Technological Researches of the

Polish Academy of Sciences, and during the stay of the �rst author from 2002 to

2012 at the Faculty of Civil Engineering and Architecture of the Lublin University

of Technology.
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Chapter 2

The use of tensors

The tensors (mostly tensors of second order) play a very important role in

continuum mechanics. All laws of continuum mechanics must be formulated in terms

of these quantities that are independent of coordinates. In this chapter we give a

brief summary of tensor calculus.

2.1 Index notation

(a) In a three-dimensional space, frequently we denote the axes of the cartesian

coordinate systems as x, y, z and the unit vectors as i, j,k. For future convenience,

it is useful to abbreviate them by using a single component with a generalized index,

so we write x1, x2, x3 or

xi (i = 1, 2, 3) (2.1)

and we can denote the unit vectors for example as ei (i = 1, 2, 3).

Also, the homogeneous linear function can be de�ned as

a1x1 + a2x2 + a3x3 =
3∑
i=1

amxm = 0 (2.2)

where am (m = 1, 2, 3) are constants. The set of variables ai, xi ... that have only

one index is called object of order one, and a1, a2, a3 or x1, x2, x3 ... are called its

components. In this case the index i ranges from 1 to the dimension of the related

space, and during this course the indices have mainly values 1, 2 and 3.

(b) The homogeneous quadratic function has the form

a11(x1)2 + a12x1x2 + a13x1x3 + a21x2x1 + a22(x2)2 + a23x2x3+ (2.3)

+a31x3x1 + a32x3x2 + a33(x3)2 =
3∑

m,n=1

amnxmxn = 0

where amn are constants. The coe�cients of this function have 2 indices. We will

call them objects of order two. Each object of order two has 32 = 9 components.
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(c) In the same way we can de�ne the objects of order three and four as

aijk, Aijkl (2.4)

which have 3 and 4 indices respectively. Object of order three (in three-dimensional

space) has 33 = 27 components and object of order four - 34 = 81 components.

Object a, which has no index is called object of order zero. It has 30 = 1

component.

2.2 Summation convention

In the expressions (2.2) and (2.3) we can eliminate the use of the summa-

tion symbol
∑

by adopting the following convention: If an index occurs precisely

twice in a term of an expression, then it will be understood that we have the sum-

mation with respect to that index over its range (in this case from 1 to 3). Now the

expressions (2.2) and (2.3) can be rewritten as follows

amxm, amnxmxn (2.5)

An index that is summed over is called a dummy index. Again, this index itself can

be freely chosen because of the fact that the particular letter used is not important:

amxm = aixi = ajxj etc. (2.6)

An index that is not summed over is called a free index which can take any value

from the set of numbers 1, 2 and 3. Note that the free index appearing in every term

of an equation must be the same. Hence the equation ai = bk has no meaning.

2.3 Some operations

(a) Addition and substraction - de�ned only for objects of the same order

aij ± bij = cij, ai ± bi = ci etc.

(b) Multiplication - can be applied for objects of any order. Multiplication of an

object of order m by an object of order n yields object of order m+ n

cijkl = aijbkl, cij = aibj

(c) Contraction: Consider object of order four Aijkl, a set of 81 components. Giving

two indexes the same letter, say by replacing the j by i, will result in Aiikl. Con-

traction reduces the order of the object by 2, so this object now has only two free

indices (k and l), a set of 9 components, each being the sum of three of the original
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components Aiikl = A11kl +A22kl +A33kl (the summation convention applied). This

set now is an object of order two. As another example, Bii is the contraction of the

object Bij with

Bii = B11 +B22 +B33

which now is a scalar called the trace of Bij.

2.4 Some special objects

Symmetry and anti-symmetry

aij = aji − symmetry object (6 independent components)

aij = −aji − anti-symmetry object (only 3 independent components

because a11 = a22 = a33 = 0)

Aijk = Ajki = Akij = −Aikj = −Akji = −Ajik, absolute anti-symmetry object

of order three.

Such object has only one independent component A123. All others are equal to

+A123 or −A123 whether or not the indices permute like 1, 2, 3. Whenever the values

of any two indices coincide, Aijk vanishes, for example A112 = A333 = 0.

Absolute anti-symmetry object for it A123 = +1 is called the permutation

symbol and is de�ned by

εijk (2.7)

ε123 = 1, ε231 = 1, ε213 = −1 etc.

The Kronecker delta

δij =

{
1 if i = j

0 if i 6= j
(2.8)

Note that because of the summation convention

δkk = δ11 + δ22 + δ33 = 3

It is easy to verify that Aijδjk = Aik.

We give without proof the following theorem and lemmas concerning the

permutation symbol εijk and the Kronecker deltar δmn:

Theorem 1

εijkεmnp = δimδjnδkp + δinδjpδkm + δipδjmδkn− (2.9)

−δimδjpδkn − δipδjnδkm − δinδjmδkp
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Lemma 1 Replacing p = k in (2.9) we have

εijkεmnk = 3δimδjn + δinδjm + δinδjm − δimδjn − δimδjn − 3δinδjm (2.10)

εijkεmnk = δimδjn − δinδjm

Lemma 2 Next, putting j = n in (2.10):

εinkεmnk = 2δim (2.11)

Problem 1 Prove that if Aij is an symmetric object, and Bijk- anti-symmetric

object with respect to the indices i, j, which means Aij = Aji, Bijk = −Bjik, then

AijBijk = 0.

Solution:

AijBijk = Aij

(
1

2
Bijk +

1

2
Bijk

)
= Aij

(
1

2
Bijk −

1

2
Bjik

)
=

1

2
AijBijk−

1

2
AjiBjik =

=
1

2
AijBijk −

1

2
AijBijk = 0 (Q.E.D.)

We have used in the second term the symmetry of Aij = Aji, then changed the

dummy indices i→ j; j → i.

2.5 Determinant

The determinant is de�ned as

∆ ≡ det|aij| =

∣∣∣∣∣∣∣
a11 a12 a13

a21 a22 a23

a31 a32 a33

∣∣∣∣∣∣∣
∆ = a11a22a33 + a12a23a31 + a13a21a32 − a31a22a13 − a11a32a23 − a21a12a33 (2.12)

or

∆ = εijk ai1aj2ak3

The right side of this expression is an absolute anti-symmetric object with respect

to the indices 1, 2, 3:

εijk ai1aj2ak3 = −εijk ai2aj1ak3 etc.

hence we can rewrite (2.12) in the form

εmnp ∆ = εijk aimajnakp (2.13)

Multiplying the above expression by εmnp using (2.11), after putting m = i in it, we

get

∆ =
1

6
εijk εmnp aimajnakp (2.14)
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2.7 Transformation of coordinates

The values of the components of a vector depend on the chosen coordinate

system. Often we have to reorient the coordinate system, and the components of

the vector change. Suppose that {e1, e2, e3} and {e′1, e′2, e′3} are unit vectors of two
right-handed rectangular Cartesian coordinate system. It is clear that in this case

triad {e1, e2, e3} can be made to coincide with triad {e′1, e′2, e′3} through a rigid body

rotation. Denote the values of the components of the vector a in these triads by

a1, a2, a3 and a′1, a
′
2, a
′
3 respectively. Since the vector is the same, we have:

a = aiei = a′je
′
j (2.22)

Multiplying both sides of the above relation respectively by ek or e′k, taking into

account (2.17) we obtain:

ak = aiδik = (e′j · ek)a′j (2.23)

and

a′k = a′jδjk = (ei · e′k)ai (2.24)

Denoting the cosine of the angle between e′j and ek by Qjk, we have respectively

from (2.23) and (2.24):

ak = Qjka
′
j (2.25)

and

a′k = Qkiai (2.26)

In matrix notation the equations (2.26) are a′1

a′2

a′3


 Q11 Q12 Q13

Q21 Q22 Q23

Q31 Q32 Q33


 a1

a2

a3

 (2.27)

Here (a)′ denotes the matrix of vector a with respect to the primed basis e′i and

(a) denotes the matrix of the same vector with respect to the unprimed basis e′i.

Equations (2.26) represent the transformation law relating the components of the

same vector with respect to di�erent Cartesian unit bases. From the de�nition of

Qjk we can write

e′j = Qjkek, QjiQjk = QijQkj = δik (2.28)

and as a result of the geometrical interpretation of the vector trip product of the

triad e′k:

detQij = +1 (2.29)
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De�nition 2 The pair (Ai, ek) determines a �rst order cartesian tensor (or a vec-

tor) if under the transformation of unit vectors (2.28) object Ai has the new values

A′j = QjiAi (2.32)

De�nition 3 A pair (Aij, ek) determines a cartesian tensor of order two if under

the transformation of unit vectors (2.28) the object Aij transforms into the new

values

A′ij = QimQjnAmn (2.33)

The pairs (Aij, ek) and (A′ij, e
′
l) represent the same second order tensor. Aij are

the values of this tensor in a coordinate system ek while A′ij are values in a new

coordinate system e′l.

In matrix notation, the equation (2.33) is: A′11 A′12 A′13

A′21 A′22 A′23

A′31 A′32 A′33

 =

 Q11 Q12 Q13

Q21 Q22 Q23

Q31 Q32 Q33


 A11 A12 A13

A21 A22 A23

A31 A32 A33


 Q11 Q21 Q31

Q12 Q22 Q32

Q13 Q23 Q33


(2.34)

De�nition 4 The pair (Ai...k, ek) determines a tensor of n-order if under the trans-

formation of unit vectors (2.28) the object Ai...k transforms to

A′j...m = Qji....Qmk Ai...k (2.35)

both Ai..k and A′j..m have n free indices.

Tensors, whose components are the same in all coordinate systems, are called isotropic

tensors [9]. The permutation symbol is an example of cartesian isotropic tensor of

order three, and Kronecker delta is an isotropic Cartesian tensor of second order.

Tensors will be denoted by bold-case letters. We use the summation con-

vention and the following notations, with suitable extensions for tensors of other

order.

1↔ δkl − the identity tensor (2.36)

(
T

A)kl = Alk − transpose of A (2.37)

−1

A inverse of A − (
−1

A klAlm = δkm) (2.38)

AB → AklBlm or AklmnBmn (2.39)

A⊗B → AkBl − the tensor product (2.40)

A ·B → AkBk or AklBkl = trace (A
T

B) (2.41)
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Now we can rewrite for example the relations between (2.32) and (2.33):

A′ = Q A A is a tensor of �rst order, vector (2.42)

A′ = Q A
T

Q A is a tensor of second order (2.43)

We need to distinguish tensor of second order T from its matrix of repre-

sentation Tij in some coordinate system ei. Using the notation (2.40), the tensor

product of two vector u and v is a tensor w with component wij = ui vj. In matrix

form: w11 w12 w13

w21 w22 w23

w31 w32 w33

 =

 u1

u2

u3

 (v1 v2 v3) =

 u1v1 u1v2 u1v3

u2v1 u2v2 u2v3

u3v1 u3v2 u3v3

 (2.44)

The product tensorial ei⊗ ej of two unit vectors makes a basis for tensors of

second order. The components of them are for example

(e1 ⊗ e1) =

 1 0 0

0 0 0

0 0 0

 ; (e1 ⊗ e2) =

 0 1 0

0 0 0

0 0 0

 .... (2.45)

Thus we can write:

T = Tij (ei ⊗ ej) (2.46)

The tensor product has a following property for three vectors a, b, c:

(a⊗ b) c = a (b · c) ⇒ (aibjcj) (2.47)

From (2.47) and (2.46) we have:

(T ek) = Tij (ei ⊗ ej) ek = Tijei δjk = Tik ei (2.48)

Multiplying both sides of (2.48) scalar with em we obtain:

em · (T ek) = em · (Tik ei) = δmi Tik = Tmk (2.49)

or Tmk = em · (T ek). This formula is valid with respect to any bases used, for

example:

T ′mk = e′m · (T e′k) (2.50)

and is very convenient in case when we only want to calculate some special compo-

nents of a tensor with respect to some chosen bases.
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2.9 Gradient of the scalar �eld. Normal vector to

the surface

Suppose that a scalar f is de�ned over a region of three-dimensional space

xi (i = 1, 2, 3). The equation

f(xi) = 0 (2.51)

de�nes a surface in this space. Then vector

∂f

∂xi
,

called the gradient of f , is normal to this surface at point xi.

The length of this vector can be calculate by∣∣∣∣ ∂f∂xi
∣∣∣∣ =

(
∂f

∂xk

∂f

∂xk

) 1
2

Then the unit normal vector is as follows

ni =

∂f

∂xi(
∂f

∂xk

∂f

∂xk

) 1
2

(2.52)

From now, we use the following notation for partial derivation:

∂f

∂xi
= f,i ;

∂2A

∂xi ∂xk
= A,ik (2.53)

The expression (2.52) now has the form

ni =
f,i

(f,k f,k)
1
2

(2.54)

Problem 3 Find the unit normal vector of the surface with equation:

f = aixi − c = 0, a1 = a2 = a3 = 1, c = const

Solution:

Calculate the partial derivations of f

f,i =
∂f

∂xi
= ai

then

ni =
ai

(akak)
1
2

When a1 = a2 = a3 = 1

n1 = n2 = n3 =
1√
3

=

√
3

3
(2.55)

n · ek = cos(n, ek) =
1√
3

The project:"Building an ecological Europe - Master programs in English for students of Civil Engineering"

�nanced by Norwegian funds and domestic funds

17



"Building an ecological Europe - Master programs in English for students of Civil Engineering"

2.10 Invariants of a symmetric tensor of second or-

der. Principal directions

Consider a symmetric tensor of second order T, whose representation on

bases ei is a symmetric matrix Tik = Tki. Let ni be the components on bases ei of a

unit vector n. This vector determines a direction in the space. We are now looking

for a special direction ni, so that the multiplication Tiknk is parallel to ni:

Tn = T n ⇒ Tiknk = Tni (2.56)

where T is a coe�cient of proportionality. The above relation can be rewriten as:

(Tik − Tδik)nk = 0 with ni ni = 1 (2.57)

In long form:

(T11 − T )n1 + T12n2 + T13n3 = 0 (2.58)

T21n1 + (T22 − T )n2 + T23n3 = 0

T31n1 + T32n2 + (T33 − T )n3 = 0

Equations (2.58) are a system of linear homogeneous equations in n1, n2 and n3.

Obviously, a solution for this system is n1 = n2 = n3 = 0. This is known as the trivial

solution. To �nd the nontrivial solutions, we note that a system of homogeneous,

linear equations admits a nontrivial solution only if the determinant of its coe�cients

vanishes. That is,

det|Tik − Tδik| = 0 (2.59)

Expanding the determinant using (2.14) results in a cubic equation in T .

T 3 − ITT 2 + IITT − IIIT = 0 (2.60)

Equation (2.60) is called the characteristic equation of T, where

IT = Tii = T11 + T22 + T33

IIT =
1

2
εijr εlmr Til Tjm =

1

2
(δilδjm − δimδlj)Til Tjm =

1

2
(TiiTmm − TmiTim)(2.61)

=

∣∣∣∣∣ T11 T12

T21 T22

∣∣∣∣∣+

∣∣∣∣∣ T22 T23

T32 T33

∣∣∣∣∣+

∣∣∣∣∣ T33 T31

T13 T11

∣∣∣∣∣
IIIT =

1

6
εijk εlmn TilTjmTkn = det|Tij| =

∣∣∣∣∣∣∣
T11 T12 T13

T21 T22 T23

T31 T32 T33

∣∣∣∣∣∣∣
The values IT , IIT , IIIT are called the basic invariants of the tensor T. They are

independent. Every other invariants of the tensor T can be expressed in terms of
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the basic invariants. For example, in plasticity one frequently uses the so-called

octahedral invariant, de�ned as follows

T (0) =
√
IT

2 − 3 IIT =

√
3

2

√
TmiTim −

1

3
(Tkk)

2 (2.62)

It can be shown that when T is symmetric, the equation (2.60) has three real roots,

denoted by T1, T2, T3. Having these roots, we can obtain from the equations (2.57)

three directions n
(i)
j (i = 1, 2, 3), corresponding to the three roots. The numbers

T1, T2, T3 are called principal values of the tensor T and the corresponding vec-

tors n
(i)
j are called the principal directions of the tensor T. These three principal

directions are mutually perpendicular

n(i) · n(j) = δij

A right-handed coordinate system can be oriented to line up with the principal

directions of the tensor T and we call it the principal axis system. By de�nition

Tn = T n then using (2.50):

T11 = n(1) · (Tn(1)) = n(1) · T1n
(1) = T1

T22 = n(2) · (Tn(2)) = n(2) · T2n
(2) = T2

T33 = n(3) · (Tn(3)) = n(3) · T3n
(3) = T3

T12 = n(1) · (Tn(2)) = n(1) · T2n
(2) = 0...

Then the representation of T in this coordinate system is

T11 = T1, T22 = T2, T33 = T3; Tik = 0 for i 6= k

A plane, its normal makes equal angles with each axis of the principal axes system

is called the octahedral plane.

Problem 4 Find the principal values and principal directions for the tensor

Tij =

 2 0 0

0 3 4

0 4 −3


Solution:

The characteristic equation gives

det|Tik − Tδik| =

∣∣∣∣∣∣∣
2− T 0 0

0 3− T 4

0 4 −3− T

∣∣∣∣∣∣∣ = (2− T )(T 2 − 25) = 0
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Thus, there are three distinct eigenvalues, T1 = 2, T2 = 5 and T3 = −5.

For T1 = 2, Eqs. (2.58) gives

0n1 = 0; n2 + 4n3 = 0; 4n2 − 5n3 = 0;

and we also have Eq. (2.57):

(n1)2 + (n2)2 + (n3)2 = 1

Thus, n2 = n3 = 0 and n1 = ±1 so that the eigenvector corresponding to λl = 2 is

n(1) = ±e1

For T2 = 5, we have

−3n1 = 0; −2n2 + 4n3 = 0; 4n2 − 8n3 = 0;

thus (note the second and third equations are the same),

n1 = 0; n2 = 2n3;

and the unit eigenvectors corresponding to T2 = 5 are

n(2) = ± 1√
5

(2e2 + e3)

Similarly for T3 = −5, the unit eigenvectors are

n(3) = ± 1√
5

(−e2 + 2e3)

The right-handed principal axis system can be for example the triad: n(1) = e1,

n(2) =
1√
5

(2e2 + e3) and n(3) =
1√
5

(−e2 + 2e3). In this triad, the representation

of tensor T is  2 0 0

0 5 0

0 0 −5


Problem 5 Given the tensor

Tij =

 2 0 0

0 2 0

0 0 3


Show that:

a) This tensor has the following principal values λ1 = 3; λ2 = λ3 = 2 (obvi-

ously the ordering of the eigenvalues is arbitrary)

b) The principal direction corresponding to λ1 = 3 is ±e3 and there are

actually in�nitely many principal directions (any vector perpendicular to e3) corre-

sponding to the double root.
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Problem 6 Given the tensor

Tij =

 2 0 0

0 2 0

0 0 2


Show that:

a) This tensor has the triple roots T1 = T2 = T3 = 2.

b) Any direction is a principal direction.

2.11 The spherical and the deviatoric part of a ten-

sor

Every tensor of second order can be divided into two parts: the spherical and

the deviatoric one.

Tij =
1

3
IT δij + tij (2.63)

The spherical part of a tensor is de�ned as

1

3
IT δij (2.64)

and

tij = Tij −
1

3
IT δij (2.65)

is the deviatoric part of the tensor T. The deviator tij has only 5 components

independent because its �rst invariant

tii = It = 0 (2.66)

Hence, deviator has only two non-zero basic invariants II t, III t.

Problem 7 Show that the octahedral invariant of the tensor Tij is equal to the

octahedral invariant of his deviator tij.

Solution:

Since It = 0 then from (2.62) the octahedral invariant of the deviator is

t(0) =
√
−III t =

√
3

2
tmi tim =

√
3

2

√(
Tmi −

1

3
IT δmi

)(
Tim −

1

3
IT δim

)
=

(2.67)

=

√
3

2

√
TmiTim −

1

3
Iτ

2 = T (0)
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2.12 The Gauss Theorem

We give without proof the Gauss Theorem. It asserts a remarkable connection

between surface integrals and volume integrals. If V is a volume bounded by the

closed surface S and A a vector �eld that possesses continuous derivatives (and is

singled valued in V ). Divergence of the vector �eld A, denoted by divA is a scalar

de�ned by:

divA =
∂A1

∂x1

+
∂A2

∂x2

+
∂A3

∂x3

= Ai,i (2.68)

The Gauss Theorem: ∫
V

divA dV =

∫
S

A · n dS (2.69)

where n is the outward pointing unit normal vector to S. The integral in the right

side of (2.69) is called the �ux of the vector �eld A through the surface S. The

index form of (2.69) is ∫
S

xini dS =

∫
A

Aini dV (2.70)

we have used here the notation for partial derivation (2.53). Note that we may

extend this result to the case where A is a tensor �eld with the same proviso's.

Problem 8 Prove that: ∫
S

x · n dS =

∫
S

xini dS = 3V (2.71)

Solution:

A useful application of the Gauss theorem involves the computation of the

volume of a solid. Consider the integral∫
S

xini dS

where x is the position vector and all other quantities have their meanings as above.

The divergence theorem states that∫
S

xini dS =

∫
V

xi,i dV =

∫
V

(
∂x1

∂x1

+
∂x2

∂x2

+
∂x3

∂x3

)
dV =

∫
V

(1+1+1) dV = 3V (Q.E.D.)

For example, in the case of a ball (sphere) of radius R, x ·n = |x||n| cos 00 = R and

relation (2.69) gives

R

∫
S

dS = RS = 3V

The surface area of a sphere is S = 4πR2; 4πR3 = 3V , then V = (4/3)πR3.
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Consider now in the initial con�guration an in�nitesimal vector dX, which links the

solid particle P0 located at X to the nearby particle Q0 located at X + dX. After

deformation dX becomes dx linking the same solid particles, which are now located

at P and Q as shown in Figure (3.1). Vectors dX and dx are material vectors

because they consist of the same solid particles. Vector dx can be obtained from

dX by di�erentiating (3.1). We obtain:

dx = x(X + dX, t)− x(X, t) =
∂x

∂X
dX ; dxi =

∂xi
∂Xj

dXj (3.4)

or

dx = F dX ; Fij =
∂xi
∂Xj

dXj (3.5)

F is named deformation gradient transporting any material vector dX onto its de-

formed dx.

The vector u(X, t) is called the displacement of the particle whose initial and

current positions are P0 and P respectively:

u = x−X or ui = xi −Xi (3.6)

From Equations (3.5) and (3.6) the deformation gradient F can be expressed as a

function of the displacement vector u according to

F = 1 +
∂u

∂X
; Fij = δij +

∂ui
∂Xj

(3.7)

3.2 Material and spatial description

When a solid is in motion, its properties like temperature, stress tensor (to be

de�ned in the next chapter) may change with time. We can describe these changes

by one of two ways:

1. Following the particles, i.e., we express these properties as functions of

the particles (identi�ed by the material coordinates X1;X2;X3 and time t. Such

a description is known as the material description. Other names for it are the

Lagrangian description and the reference description.

2. Observing the changes at �xed locations, i.e., we express theses properties

as functions of �xed position x1;x2;x3 and time t. Such a description is known as a

spatial description or Eulerian description. The spatial coordinates xi of a particle

at any time t are related to the material coordinates Xj of the particle by Eq. of

motion (3.1). That is, if the motion is known, one description can be obtained from

the other.

Note that in spatial description, what is described (or measured) is the change

of quantities at a �xed location as a function of time because spatial positions are

occupied by di�erent particles at di�erent times.
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Problem 9 Given the function of motion in Lagrangean description:
x1 = X1 + aX2

x2 = X2

x3 = X3

(3.8)

Find the spatial description, the strain tensors and the displacement in Lagrangian

and Eulerian descriptions.

Solution:

The inverse equations of (3.8) give the spatial description:
X1 = x1 − ax2

X2 = x2

X3 = x3

(3.9)

The Jacobian matrix is:

J =

∣∣∣∣∣∣∣
1 a 0

0 1 1

0 0 1

∣∣∣∣∣∣∣ (3.10)

Then we �nd the Lagrangian strain tensor:

Ejk =
1

2

(
∂xi
∂Xj

∂xi
∂Xk

− δjk
)

=

 0 a/2 0

a/2 a2/2 0

0 0 0

 (3.11)

and the Eulerian strain tensor:

E∗jk =
1

2

(
δjk −

∂Xi

∂xj

∂Xi

∂xk

)
=

 0 a/2 0

a/2 −a2/2 0

0 0 0

 (3.12)

The displacement in Lagrangian and Eulerian descriptions:
u1 = aX2

u2 = 0

u3 = 0


u1 = ax2

u2 = 0

u3 = 0

(3.13)

Problem 10 Given the function of motion in Lagrangian description:

x1 = X1 +X2(et − 1)

x2 = X1(e−t − 1) +X2

x3 = X3

Find the inverse function and the Lagrangian u(X, t) and Eulerian u(x, t) displace-

ment functions.
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Answer :

X1 =
−x1 + x2(et − 1)

1− et − e−t

X2 =
x1(et − 1)− x2

1− et − e−t
X3 = x3

u1 = X2(et − 1)

u2 = X1(e−t − 1)

u3 = 0

u1 = x1 −
−x1 + x2(et − 1)

1− et − e−t

u2 = x2 −
x1(et − 1)− x2

1− et − e−t
u3 = 0

3.3 Measure of deformation. Strain tensor

Deformation induces changes in the length of material vectors and the angle

they form. Calculate the square of length of material vector dX at time t0 and

vector dx at time t:

|P0Q0|2 = dS2 = dX2
1 + dX2

2 + dX2
3 = dXjdXj = δjk dXjdXk = dX · dX (3.14)

|PQ|2 = ds2 = dx2
1 + dx2

2 + dx2
3 = dxidxi = dx · dx (3.15)

and using (3.5) we have:

ds2 − dS2 =
∂xi
∂Xj

dXj
∂xi
∂Xk

dXk − δjk dXjdXk = 2Ejk dXjdXk = dX (2 E) dX

(3.16)

where:

Ejk =
1

2

(
∂xi
∂Xj

∂xi
∂Xk

− δjk
)

=
1

2

(
FTF− 1

)
(3.17)

Tensor E is called Lagrangian or Green's strain tensor (functions of lagrangian co-

ordinates X). The superscript symbol �T � denotes the transpose tensor. Tensor E

is symmetric.

In terms of displacement vector, we can write:

∂ui
∂Xj

=
∂xi
∂Xj

− δik (3.18)

and Eq (3.17) now takes the form:

Ejk =
1

2

(
∂uj
∂Xk

+
∂uk
∂Xj

+
∂ui
∂Xj

∂ui
∂Xk

)
(3.19)
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Consider an element dS laying on OX1 in the initial con�guration, then νj = δ1j,

(ν1 = 1, ν2 = ν3 = 0). From (3.25):

λ11(λ11 + 2) = 2E11 ⇒ λ11 =
√

1 + 2E11 − 1 (3.26)

hence the unit elongation of element dS = dX1 that was in the X1 direction in the

reference state depends on component E11.

Let P0Q0 and P0R0 be two unit vectors perpendicular to each other that were

on the direction X1 and X2 in the reference state, see Figure (3.2):

P0Q0 ‖ X1, λPQ = λ11; ν1 = (1, 0, 0), ν1
i = δ1i

P0R0 ‖ X2, λPR = λ22; ν2 = (0, 1, 0), ν2
i = δ2i

νi =
dXi

dS
, ν∗i =

dxi
ds

Because

xi = ui +Xi ⇒ dxi =

(
∂ui
∂Xk

+ δik

)
dXk

then

ν∗i =

(
∂ui
∂Xk

+ δik

)
ds

dXk =

(
∂ui
∂Xk

+ δik

)
dXk

dS

dS

ds

or

ν∗i =

(
∂ui
∂Xk

+ δik

)
ds

dXk =

(
∂ui
∂Xk

+ δik

)
νk

1 + λ

Due to motion, P0Q0 and P0R0 become PQ and PR respectively. Let the angle

between the two deformed vectors PQ and PR be denoted by ϕ∗12:

ν∗
(1) · ν

∗
(2) = cosϕ∗12 =

2E12√
(1 + 2E11)(1 + 2E22)

(3.27)

so the change of the angle between two vectors that were on the directions X1 and

X2 in the initial state, depends on E11, E22 and E12.

Hence, six components of the strain tensor Eij describe the deformation of

the body. When Eij = 0, then λPQ = 0 and ϕ∗ = 0 ⇒ there are no deformations.

Problem 11 Given the following displacement components [2]:

u1 = kX2
2 ; u2 = u3 = 0 (3.28)

(a) Sketch the deformed shape of the unit square OA0B0C0 shown in Fig-

ure 3.3.

(b) Calculate the Lagrangian strain tensor.

(c) Find the angle between deformed vectors (i.e., dx1 and dx2) of the mate-

rial elements dX1 and dX2, which were at the point C.
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principal directions (i.e., E1;E2;E3) are the principal values of E, or principal

strains. The principal strains are to be found from the characteristic equation of

E (see (2.60)), i.e.,

E3 − IEE2 + IIEE − IIIE = 0 (3.29)

where (see Eq.(2.61))

IE = E11 + E22 + E33

IIE =

∣∣∣∣∣ E11 E12

E21 E22

∣∣∣∣∣+

∣∣∣∣∣ E22 E23

E32 E33

∣∣∣∣∣+

∣∣∣∣∣ E33 E31

E13 E11

∣∣∣∣∣ (3.30)

IIIE =

∣∣∣∣∣∣∣
E11 E12 E13

E21 E22 E23

E31 E32 E33

∣∣∣∣∣∣∣
The coe�cients IE; IIE and IIIE are called the principal invariants of the strain

tensor.

3.5 Material derivative. Velocity

The time rate of change of a quantity (such as temperature or velocity or

stress tensor) of a material particle is known as a material derivative. We shall

denote the material derivative by a dot over this quantity. For example, if the

displacement is a function of Lagrangian coordinates u = u(X, t). For �xed X ,

that means for a particular particle, the velocity is the time partial derivation:

v = u̇ =
∂u(X, t)

∂t
(3.31)

When a spatial description of the displacement is used, we have u = u(x, t), where

xi, the coordinates of the present positions of material particles at time t are related

to the material coordinates by the known motion xi = xi(X1, X2, X3, t). Then,

v = u̇ =
∂u(x, t)

∂t
+
∂u(x, t)

∂x
· dx
dt

(3.32)

or in index form:

vi =
∂ui(x, t)

∂t
+
∂uk
∂xk

dxk
dt

, v =
∂u(x, t)

∂t
+
∂u

∂x
· v (3.33)

In the same way we can calculate the material derivative of other quantities. For

example, acceleration a is the material derivative of velocity in Eulerian coordinates:

a = v̇ =
∂v(x, t)

∂t
+
∂v(x, t)

∂x
· v (3.34)
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Problem 12 Given the displacement �eld (3.13) where a = sin t:
u1 = (sin t)X2

u2 = 0

u3 = 0


u1 = (sin t)x2

u2 = 0

u3 = 0

(3.35)

Find the velocity.

Solution:

In initial coordinates vi =
∂ui
∂t

, then:
v1 = (cos t)X2

v2 = 0

v3 = 0

(3.36)

and we calculate the material derivative in spatial coordinates:
v1 = (cos t)x2 + t2v2

v2 = 0

v3 = 0

(3.37)

From these equations we obtain:
v1 = (cos t)x2

v2 = 0

v3 = 0

(3.38)

Problem 13 The motion of a continuum is given in the form [2]:

x1 = X1 + ktX2; x2 = (1 + kt)X2; x3 = X3 (3.39)

If the temperature �eld is given by the spatial description

T = α(x1 + x2) (3.40)

then:

(a) Find the material description of temperature and (b) obtain the velocity

and the rate of change of temperature for particular material particles and express

the answer in both a material and a spatial description.

Solution:

(a) Substituting Eq. (3.39) into Eq. (3.40), we obtain the material description

for the temperature,

T = α[X1 + ktX2 + (1 + kt)X2] = αX1 + α(1 + 2kt)X2 (3.41)
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(b) From Eq. (3.39)

Since the displacement is given in Lagrangian coordinates, the velocity is the

partial derivative par rapport t:

v1 = kX2; v2 = kX2; v3 = 0 (3.42)

and the rate of change of temperature in Lagrangian coordinates:

Ṫ = 2αkX2 (3.43)

From equations (3.39) we obtain:

X2 =
x2

1 + kt
(3.44)

By putting (3.44) in (3.42) and (3.43) we have the spatial description for velocity

and rate of temperature:

v1 = v2 = k
x2

1 + kt
; v3 = 0

Ṫ = 2α k
x2

1 + kt

Although the Eulerian temperature �eld is independent of time, we observe the

change in time of temperature of each particle, because it moves in space.

3.6 The rate of deformation tensor

Calculate the material derivative of the material element dx. From (3.4)-(3.5)

we have:

dx =
∂x

∂X
dX = F dX (3.45)

then:

(dx). = dv = Ḟ dX = ḞF−1 dx (3.46)

or

dv = gradv dx (3.47)

where

gradv =
∂v

∂x
(3.48)

This leads to the de�nition of velocity gradient:

L = gradv = ḞF−1 (3.49)
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In Cartesian coordinates:

(gradv)ij =



∂v1

∂x1

∂v1

∂x2

∂v1

∂x3

∂v2

∂x1

∂v2

∂x2

∂v2

∂x3

∂v3

∂x1

∂v3

∂x2

∂v3

∂x3


(3.50)

Decomposing L into symmetry and antisymmetry parts:

D =
1

2
(L + LT ) ⇒ the rate of deformation tensor (3.51)

Ω =
1

2
(L− LT ) ⇒ the spin tensor (3.52)

With respect to Cartesian rectangular system of coordinates:

Dij =
1

2
(vi,j + vj,i) =



∂v1

∂x1

1

2

(
∂v1

∂x2

+
∂v2

∂x1

)
1

2

(
∂v1

∂x3

+
∂v3

∂x1

)
1

2

(
∂v2

∂x1

+
∂v1

∂x2

)
∂v2

∂x2

1

2

(
∂v2

∂x3

+
∂v3

∂x2

)
1

2

(
∂v3

∂x1

+
∂v1

∂x3

)
1

2

(
∂v3

∂x2

+
∂v2

∂x3

)
∂v3

∂x3


(3.53)

Ωij =
1

2
(vi,j−vj,i) =



0
1

2

(
∂v1

∂x2

− ∂v2

∂x1

)
1

2

(
∂v1

∂x3

− ∂v3

∂x1

)

−1

2

(
∂v1

∂x2

− ∂v2

∂x1

)
0

1

2

(
∂v2

∂x3

− ∂v3

∂x2

)

−1

2

(
∂v1

∂x3

− ∂v3

∂x1

)
−1

2

(
∂v2

∂x3

− ∂v3

∂x2

)
0


(3.54)

Tensor D is called rate of deformation tensor and describes the rate of change of

length and the rate of change of direction of the material element dx, while the spin

tensor Ω only rotates this element (without changing its length).

3.7 In�nitesimal deformation

Assume that: ∣∣∣∣ ∂ui∂Xj

∣∣∣∣� 1 (3.55)
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then from (3.6) ∂/∂xj ' ∂/∂Xj, the current and the initial con�gurations can

eventually be merged xi ' Xi. The Lagrangian and Eulerian strain tensors coincide:

Eij ' E∗ij ' εij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
(3.56)

In Cartesian system of coordinate:

εij =



∂u1

∂x1

1

2

(
∂u1

∂x2

+
∂u2

∂x1

)
1

2

(
∂u1

∂x3

+
∂u3

∂x1

)
1

2

(
∂u2

∂x1

+
∂u1

∂x2

)
∂u2

∂x2

1

2

(
∂u2

∂x3

+
∂u3

∂x2

)
1

2

(
∂u3

∂x1

+
∂u1

∂x3

)
1

2

(
∂u3

∂x2

+
∂u2

∂x3

)
∂u3

∂x3


(3.57)

Tensor ε is known as the in�nitesimal strain tensor. Components ε11, ε22 and ε33

are called normal strains, while εij (i 6= j) are called shear strains.

Since εij has the same order of magnitude as

∣∣∣∣ ∂ui∂Xj

∣∣∣∣, then when

∣∣∣∣ ∂ui∂Xj

∣∣∣∣� 1,

the in�nitesimal strain tensor |εij| � 1. On the other hand, when |εij| are very

small, for example in the case of movement of rigid body |εij| = 0,

∣∣∣∣ ∂ui∂Xj

∣∣∣∣ can have

any order of magnitude.

The antisymmetric tensor

ωij =
1

2

(
∂ui
∂xj
− ∂uj
∂xi

)
(3.58)

is known as the in�nitesimal rotation tensor.

Note: We can write the equations (3.22) in the form:

Ejk =
1

2

(
∂uj
∂xk
− ∂uk
∂xj

+
∂ui
∂xj

∂ui
∂xk

)
= εjk +

1

2
(εij + ωij)(εki − ωki)

so Ejk ≈ εjk only when εjk and ωjk are in�nitesimal.

Problem 14 Let us consider the �nite rotation of a bar (see Figure 3.4). We have:

X = R cos ϑ0

Y = R sin ϑ0

x = R cos (ϑ+ ϑ0)

y = R sin (ϑ+ ϑ0)

The displacement vector in material description:

u(X, Y ) = x−X = R cos(ϑ+ ϑ0)−R cosϑ0 = X (cosϑ− 1)− Y sinϑ

v(X, Y ) = y − Y = X sinϑ+ Y (cosϑ− 1)
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It means that the �rst scalar invariant of the in�nitesimal strain tensor is equal to

the unit volume change known as the dilatation. In Cartesian coordinates:

Iε = divu =
∂u1

∂x1

+
∂u2

∂x2

+
∂u3

∂x3

(3.65)

It is often useful to extract the deviatoric part (see (2.65)) accounting for the

material distortion only, from the deformation tensor ε. The resulting tensor e is

the deviatoric strain tensor, expressed by

e = ε− 1

3
Iε 1 (3.66)

or in index form:

eij = εij −
1

3
εkk δij (3.67)

The strain deviator eij relates to the change in shape, while εkk relates to the volume

change of the element.

3.9 The compatibility equations for the in�nitesi-

mal strain tensor

Six components of the in�nitesimal strain tensor εij depend on three com-

ponents of the displacement vector ui (3.56), so we have six functions to �nd three

functions ui, then in general, we can not �nd a single-valued solution. Hence, the

components of the strain tensor must satisfy some conditions. They are called com-

patibility conditions or compatibility equations.

1. From (3.57), calculate the following derivatives:

∂2ε11

∂x2
2

=
∂3u1

∂x1∂x2
2

∂2ε22

∂x2
1

=
∂3u2

∂x2
1∂x2

2
∂2ε12

∂x1∂x2

=
∂3u1

∂x1∂x2
2

+
∂3u2

∂x2
1∂x2

then we obtain:
∂2ε11

∂x2
2

+
∂2ε22

∂x2
1

= 2
∂2ε12

∂x1∂x2

This relation says that given the elongations of two elements perpendicular each

other, then the change of angle between them is not arbitrary. Two similar equations

are obtained in the same way for other directions.
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2. By calculating the derivatives of shear strains:

2
∂ε12

∂x3

=
∂2u1

∂x2∂x3

+
∂2u2

∂x1∂x3

2
∂ε23

∂x1

=
∂2u2

∂x3∂x1

+
∂2u3

∂x2∂x1

2
∂ε31

∂x2

=
∂2u3

∂x1∂x2

+
∂2u1

∂x3∂x2

we obtain :

∂

∂x1

(
−∂ε23

∂x1

+
∂ε31

∂x2

+
∂ε12

∂x3

)
= 2

∂3u1

∂x1∂x2∂x3

= 2
∂2ε11

∂x2∂x3

This relation says that when we know the angle changes of three elements that are

perpendicular to each other, then the elongations can not be arbitrary. Similar pro-

cedure can be followed and �nally we obtain the six strain compatibility equations:

∂2ε11

∂x2
2

+
∂2ε22

∂x2
1

= 2
∂2ε12

∂x1 ∂x2

∂2ε22

∂x2
3

+
∂2ε33

∂x2
2

= 2
∂2ε23

∂x2 ∂x3

∂2ε33

∂x2
1

+
∂2ε11

∂x2
3

= 2
∂2ε31

∂x3 ∂x1

(3.68)

∂

∂x1

(
−∂ε23

∂x1

+
∂ε31

∂x2

+
∂ε12

∂x3

)
=

∂2ε11

∂x2∂x3

∂

∂x2

(
∂ε23

∂x1

− ∂ε31

∂x2

+
∂ε12

∂x3

)
=

∂2ε22

∂x3∂x1

∂

∂x3

(
∂ε23

∂x1

+
∂ε31

∂x2

− ∂ε12

∂x3

)
=

∂2ε33

∂x1∂x2

The above equations can be written in the following form using the permutation

symbol (2.7)

εphi εmjk εki,hj = 0 (3.69)

where we have used the notation for partial derivation (2.53):

εki,hj =
∂2εki
∂xh ∂xj

or in the form

Rijkl = εij,kl + εkl,ij − εil,jk − εjk,il = 0 (3.70)

The object Rijkl generally has 34 = 81 components, but only six non-zero compo-

nents (the equation (3.68)) because of some symmetry (symmetry of the in�nitesimal

strain tensor, the partial derivations etc.).
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Equations (3.70) are the representation of tensor E(n) on principal axis of the stretch

tensor U. The meaning of each E(n) for every value of n is the same as mentioned

before.
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three terms in equation (4.15) where the stress vectors are multiplied by the areas

(the product of two in�nitesimal lengths), we obtain:

T−e1 ∆S1 + T−e2 ∆S2 + T−e3 ∆S3 + Tn∆S = 0 (4.16)

Using (4.15) ∆Si = ∆S ni, (i = 1, 2, 3) we have:

T−e1 n1 + T−e2 n2 + T−e3 n3 + Tn = 0 (4.17)

But from the law of action and reaction

T−e1 = −Te1 ; T−e2 = −Te2 ; T−e3 = −Te3

then equations (4.17) becomes:

Tn = Te1 n1 + Te2 n2 + Te3 n3 = Tei ni (4.18)

Equation (4.18) represents the Cauchy's theorem. It says that when we know

three vectors of stress Te1 ,Te2 ,Te3 for the three mutually perpendicular area ele-

ments whose normals are e1, e2, e3, then we know the vector of stress for any plane

with unit outward vector n, and thus we knows the stress state in the point M .

Decompose the stress vectors Te1 ,Te2 ,Te3 on axes:

Te1 = σ11 e1 + σ12 e2 + σ13 e3

Te2 = σ21 e1 + σ22 e2 + σ23 e3 (4.19)

Te3 = σ31 e1 + σ32 e2 + σ33 e3

Since Te1 is the vector of stress acting on the plane whose outward normal is e1,

then σ11 is its normal component and σ12, σ13 are its shear components. In the same

way we have the normal and shear component on others planes. This suggests the

de�nition of a stress tensor σ:

Tn =
T

σ n ⇒ Tn
i = σjinj (4.20)

and the matrix representation of stress tensor σ in the bases e1, e2, e3 is: σ11 σ12 σ13

σ21 σ21 σ23

σ31 σ32 σ33

 (4.21)

Note that for each stress components σij the �rst index i indicates the plane on

which the stress component acts, and the second index indicates the direction of the

component. For example σ12 is the stress component acting on the direction e2 on

the plane whose outward normal is e1. Both σ12 and σ13 are shearing stresses acting
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1. Find the stress vector, its magnitude, magnitude of normal stress, shear

stress and the angle between this vector on the plane passing through the point having

the unit normal n = (2/3)e1 + (−2/3)e2 + (−1/3)e3.

2. Find the principal stresses and principal directions.

3. If

e′1 =
1

3
(2e1 + 2e2 + e3)

and

e′2 =
1√
2

(e1 − e2)

�nd σ′12.

Solution:

1. The stress vector is obtained from the equation (4.20) as:

(Tn) =

 7 0 2

0 5 0

2 0 4


 2/3

−2/3

−1/3

 =

 4

−10/3

0


or

Tn = 4e1 − (10/3)e2

The magnitude of this vector is

|Tn| =
√

(4)2 + (−10/3)2 =
√

244/3MPa

The magnitude of the normal stress simply is:

|σn| = T · n = (4)(2/3) + (−10/3)(−2/3) + (0)(−1/3) = 44/9MPa

The magnitude of the shear stress is:

|τ n| =
√
|Tn|2 − |σn|2 =

√
(244/9− (44/9)2 =

√
260/9MPa

The cosine of angle ϑ between vectors Tn and n:

cosϑ =
|σn|
|Tn|

≈ 0.94 ; ϑ ≈ 200

2. From Eqs (4.24)∣∣∣∣∣∣∣
(7− σ) 0 2

0 (5− σ) 0

2 0 (4− σ)

∣∣∣∣∣∣∣ = (7− σ)(5− σ)(4− σ)− 4(5− σ) = 0

(5− σ)[(7− σ)(4− σ)− 4] = 0

we �nd the principal stresses σ1 = 8, σ2 = 5, σ3 = 3 (MPa).
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For σ1 = 8 we have from (4.23):
(7− 8)n1 + 0 · n2 + 2n3 = 0

0 · n1 + (5− 8)n2 + 0 · n3 = 0

2n1 + 0 · n2 + (4− 8)n3 = 0

(n1)2 + (n2)2 + (n3)2 = 1

From the second equation we have n2 = 0, the �rst and third equation gives n1 =

2n3. Putting these values to the forth equation we �nd n3 = ±1/
√

5, then we have

the �rst principal direction n(1) = (±2/
√

5)e1 + (±1/
√

5)e3. For σ2 = 5:
(7− 5)n1 + 0 · n2 + 2n3 = 0

0 · n1 + (5− 5)n2 + 0 · n3 = 0

2n1 + 0 · n2 + (4− 5)n3 = 0

(n1)2 + (n2)2 + (n3)2 = 1
2n1 + 2n3 = 0

0 = 0

2n1 − n3 = 0

(n1)2 + (n2)2 + (n3)2 = 1

then n1 = n3 = 0, n2 = ±1 and n(2) = (±1)e2. Similarly for σ3 = 3 we �nd

n(3) = (±1/
√

5)e1 + (∓2/
√

5)e3.

The three principal directions are mutually perpendicular, we can check this

by calculating the scalar product n(i) · n(j) = 0 for i 6= j.

Taking for example three vectors n(1) = (2/
√

5)e1 + (1/
√

5)e3, n(2) = 1,

n(3) = (−1/
√

5)e1 + (2/
√

5)e3. They form a right-handed system of coordinate

because the triple product of them is positive (equals to 1) (see (2.21)). In this

coordinate system, the stress tensor has a simple form: 8 0 0

0 5 0

0 0 3


where six components are equal to zero.

3. To �nd the primed component we use (2.50) T ′12 = e′1 · (T e′2):

T ′12 = (2/3, 2/3, 1)

 7 0 2

0 5 0

2 0 4


 1/

√
2

−1/
√

2

0

 = (2/3, 2/3, 1)

 7/
√

2

−5/
√

2

7/
√

2

 =

=
25

3
√

2
MPa
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4.5 Decomposition of the stress tensor

Stress tensor can be decomposed into two parts as in Section (2.11). Denote

by p the mean normal stress (or hydrostatic pressure):

p =
1

3
(σ11 + σ22 + σ33) =

1

3
Iσ (4.28)

Tensor pδij represents hydrostatic tension:p 0 0

0 p 0

0 0 p

 (4.29)

then the deviatoric stress tensor is de�ned by

sij = σij − p δij = σij −
1

3
Iσ δij (4.30)

or

sij =

s11 s12 s13

s21 s22 s23

s31 s32 s33

 =

σ11 − p σ12 σ13

σ21 σ22 − p σ23

σ31 σ32 σ33 − p

 (4.31)

Subtracting a constant normal stress in all directions will not change the principal

directions, so the principal directions are the same for the deviatoric stress tensor

as for the original stress tensor. We can also �nd them from the equations:

(sij − s δij)nj = 0 (4.32)

here the characteristic equation has the form:

s3 − IIs s− IIIs = 0 (4.33)

where the invariants of the deviatoric stress tensor are:

Is = sii

IIs =
1

2
sij sji

IIIs =
1

3
sij sjk ski = det(sij)

(4.34)

A state which the mean normal stress sii = 0 is called pure shear. Denoting by s1, s2

and s3 the principal values of deviatoric stress tensor, we also have:

Is = s1 + s2 + s3 = 0

IIs = (s1s2 + s2s3 + s3s1)

IIIs = s1s2s3

(4.35)

The project:"Building an ecological Europe - Master programs in English for students of Civil Engineering"

�nanced by Norwegian funds and domestic funds

51



"Building an ecological Europe - Master programs in English for students of Civil Engineering"

Also the invariants of the deviatoric stress tensor can be calculated in terms of

principal values of the stress tensor σ1, σ2, σ3:

Is = 0

IIs =
1

3
(I2
σ − 3 IIσ) =

1

6

[
(σ1 − σ2)2 + (σ2 − σ3)2 + (σ3 − σ1)2

]
IIIs =

1

27
(2 I3

σ − 9 Iσ IIσ + 27 IIIσ)

(4.36)

Thus, any stress state σij can be decomposed into two stress state, one of which is

pure shear sij and the other is hydrostatic tension p δij. The deviatoric stress tensor

plays a very important role in the stress-strain relationship discussed later in this

course.

4.6 Principal shear stresses

Suppose that x1, x2, x3 are principal axes. The normal to a plane is ni and

the normal stress σn on this plane given by (4.22):

σn = σij ni nj = σ1 n
2
1 + σ2 n

2
2 + σ3 n

2
3 (4.37)

where σ1, σ2, σ3 are principal stresses. Then the shear stress on this plane τn is

given by (4.10)

(τn)2 = (σ1 n1)2 + (σ2 n2)2 + (σ3 n3)2 − σ2
n = (σ1 n1)2 + (σ2 n2)2 + (σ3 n3)2− (4.38)

−(σ1 n
2
1 + σ2 n

2
2 + σ3 n

2
3)

For known values of σ1, σ2, σ3, equation (4.38) is an equation of ni. Calculating the

extremum of this function, it follows that the maximum shear stress is one half the

largest di�erence between any two of the principal stresses and occurs on an area

element whose unit normal makes an angle of 450 with each of the corresponding

principal axes. The quantities

τ1 =
1

2
|σ1 − σ3|, τ2 =

1

2
|σ3 − σ1|, τ3 =

1

2
|σ1 − σ2| (4.39)

are called principal shear stresses. The largest numerical value of the principal shears

is called the maximum shear stress. For σ1 > σ2 > σ3, then τmax = (1/2) |σ1 − σ3|
or τmax = max (τ1, τ2, τ3).
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∗ Components of the �rst Piola-Kirchho� stress tensor (nominal stress tensor) S

are densities of actual force acting on undeformed area.

∗ There are no simple interpretations for the components of the second Piola-

Kirchho� stress tensor.

These stress tensors are the generalized forces conjugated with generalized measures

of deformation D, F and E, because of:

σ ·D = S · Ḟ = π · Ė (4.44)

In case of in�nitesimal strain: F = (1 + gradu), detF ≈ (1 + divu) then

σ ≈ S ≈ π (4.45)
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leads to:

dI

dt
=

d

dt

∫
V (t)

M(x, t)dV =

∫
V (t)

d

dt
M(x, t)dV =

∫
V (t)

dM(x, t)

dt
dV +

∫
V (t)

M
d

dt
(dV )

(5.2)

The material derivative of M similarly as in (3.33), (3.34), and the rate of change

of a volume element integral can be shown basing on (3.64):

d

dt
dV = (divv) dV

then
dI

dt
=

∫
V

[(
∂M

∂t
+ gradM · v

)
+Mdivv

]
dV (5.3)

Denoting the material derivative of M by

Ṁ =
∂M

∂t
+ gradM · v =

∂M

∂t
+
∂M

∂xi
vi (5.4)

we obtain:
d

dt

∫
V (t)

M(x, t) dV =

∫
V

(
Ṁ +M divv

)
dV (5.5)

Also, using the Gauss (divergence) theorem (2.69) for the last two terms in (5.4) to

obtain another form of the rate, showing the contribution of particles in regions (1),

(2), (3) on �gure 5.1:

d

dt

∫
V (t)

M(x, t) dV =

∫
V

∂M

∂t
dV +

∫
S

M (v · n) dS (5.6)

All global conservation laws have the following form:

d

dt

∫
V (t)

M(x, t) dV =

∫
V

fdV +

∫
S

gdS (5.7)

where functions M, f are de�ned on V , while g is de�ned on S.

5.2 Conservation of mass. Continuity equation

If we follow a volume V of material through its motion, its volume and density

may change, but its total mass will remain unchanged. Taking M = % in (5.6), the

integral
∫
V

%dV is now the mass of the body. In this case in relation (5.7) functions

f = g = 0. Because of the mass conservation, we have:

d

dt

∫
V

%dV = 0 (5.8)
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Since this is valid for every region V , then locally we have

%̇+ % divv = 0 (5.9)

This equation is the equation of conversation of mass, also called equation of conti-

nuity. In Cartesian coordinate system, the equations read:

∂%

∂t
+

∂%

∂x1

v1 +
∂%

∂x2

v2 +
∂%

∂x3

v3 + %

(
∂v1

∂x1

+
∂v2

∂x2

+
∂v3

∂x3

)
= 0 (5.10)

For an incompressible material, the material derivative of the density is zero, then

the equation of continuity reads:

divv =
∂v1

∂x1

+
∂v2

∂x2

+
∂v3

∂x3

= 0 (5.11)

In problems of statics, the equation of continuity is identically satis�ed.

5.3 Conservation of momentum. Equation of mo-

tion

Each particle of the body must satisfy the Newton's equation of motion, and

for the whole body, we must have the conservation of momentum. Let function M

in (5.6) be the momentum: M = %v where v is the particle velocity. The left-hand

side of (5.6) now is the rate of momentum, then the right-hand side must be sum of

forces acting on the body, namely body and surface forces, hence f = %b, g = T(n).

The global conversation law of momentum reads:

d

dt

∫
V

%vdV =

∫
V

%bdV +

∫
S

T(n)dS (5.12)

where S is the bounding surface of the region in question. Applying (5.3) for material

derivative and using (4.22) for T(n), we obtain:∫
V

[
d(%v)

dt
+ (%v)divv

]
dV =

∫
V

%bdV +

∫
S

(σn)dS (5.13)

where σ is the Cauchy stress tensor, n is the outward pointing unit normal to S.

Use the Gauss theorem (2.69) for the last term:∫
V

[ %̇v + % v̇ + (%v) div (v)− %b− divσ] dV = 0 (5.14)

then ∫
V

 (%̇+ % divv )︸ ︷︷ ︸
0

v + % v̇ − %b− divσ

 dV = 0
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Following the equation of continuity (5.9): %̇+% divv = 0 we can rewrite the equation

in the form: ∫
V

(divσ + %b− % v̇)dV = 0 (5.15)

Because V is arbitrary, we obtain from (5.15) the local form for momentum conver-

sation:

divσ + %b = % v̇ (5.16)

This equation is called the equation of motion. If the acceleration vanishes, then

equation (5.16) reduces to the equilibrium equation:

divσ + %b = 0 (5.17)

In Cartesian coordinate system, the equation (5.16) reads:

∂σ11

∂x1

+
∂σ12

∂x2

+
∂σ13

∂x3

+ %b1 = %v̇1

∂σ21

∂x1

+
∂σ22

∂x2

+
∂σ23

∂x3

+ %b2 = %v̇2

∂σ31

∂x1

+
∂σ32

∂x2

+
∂σ33

∂x3

+ %b3 = %v̇3

(5.18)

5.4 Conservation of moment of momentum. Sym-

metry of Cauchy's stress tensor

Let nowM = r×%v be the moment of momentum about a reference origin of

the Cartesian coordinate O, where we denote by r the radius vector that represents

the position of a point in space. Now f = r × %b, g = r × T(n) are moment of

body and surface force about origin O. The global law of conversation of moment

of momentum reads:

d

dt

∫
V

r× %v dV =

∫
V

r× %b dV +

∫
S

r×T(n) dS (5.19)

Introducing Cauchy's formula T(n) = σ n into the last integral, we have:

d

dt

∫
V

r× %v dV =

∫
V

r× %b dV +

∫
S

r× (σ n) dS

Using (2.20) we write this expression in the index form:

d

dt

∫
V

εijkxj% vk dV =

∫
V

εijkxj% bk dV +

∫
S

εijk xj(σkp np) dS
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Transforming the last integral into a volume integral by Gauss's theorem:

d

dt

∫
V

εijk xj % vkdV =

∫
V

εijk xj % bk dV +

∫
V

εijk [xj,p(σkp) + xj σkp,p] dV

Following the same procedure as for the momentum: evaluating the material deriva-

tive according to (5.5), because V is arbitrary then the expression under the integral

must be zero:

εijk ẋj % vk+εijk xj %̇ vk+εijk xj % v̇k+εijk xj % vk vm,m = εijk xj % bk+εijk δjp σkp+εijk xj σkp,p

The �rst term equals to zero, because this is the vector product of vectors v and

%v; δjp σkp = σkj. Hence this equation becomes:

−εijk xj %̇ vk − εijk xj % v̇k − εijk xj % vk vm,m + εijk xj % bk + εijk σkj + εijk xj σkp,p = 0

or

εijk xj (σkp,p + % bk − % v̇k)− εijk xj vk (%̇+ % vm,m) + εijk σkj = 0

The terms in brackets vanish by the equation of motion (5.16) and equation of

continuity (5.9), this equation is reduced to

εijkσkj = 0

i.e.

σjk = σkj (5.20)

5.5 Conservation of energy. The �rst law of Ther-

modynamics

In continuum mechanics, a deforming body is considered as a thermodynamic

system. The motion of a body must be governed by the law of conservation of energy

(the �rst law of thermodynamics). This law relates the mechanical work done on

the system and the heat transferred into the system to the change in total energy of

the system. Let u be the speci�c internal energy (per unit mass), then the function

M = %(u+ 1/2v ·v) in equation (5.7) now is the sum of internal and kinetic energy

of the volume element, f = %b ·v is the rate of work of body forces, and g = g1 +g2.

The function g1 = T(n) · v is the rate of external surface forces done on body while

g2 = −q · n gives the rate of heat �ow by conduction across the surface S. Here q

is a vector whose magnitude gives the rate of heat �ow by conduction across a unit

area. Vector q is called the heat �ux, measured by [q] = [J/m2 s].

First law of thermodynamics states that in any process the total energy of the

system is conserved. Total change of the sum of internal dU/dt and kinetic energies
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where Dij is the rate of deformation tensor de�ned in (3.53). A little calculation

yields:

%u̇+ u(%̇+ % vm,m) + vi (% v̇i − % bi − σij,j) +
1

2
vi vi(%̇+ % vm,m) = σij Dij − qi,i

The terms in brackets vanish by the equation of motion (5.16) and equation of

continuity (5.9), this equation is reduced to

%u̇ = σij Dij − qi,i (5.24)

or in absolute form:

%u̇ = σ ·D− div q (5.25)

This is the energy equation in the deformed con�guration.

5.6 Second Law of Thermodynamics:

Clausius-Duhem Inequality

The �rst law of thermodynamics is a statement of the energy balance, which

applies regardless of the direction in which the energy conversion between work and

heat is assumed to occur. In real thermodynamic process we always have dissipation.

The quantity of energy is conserved but an amount of it transforms into heat to the

surrounding and can not be recovered. The second law of thermodynamics imposes

restrictions on possible directions of thermodynamic processes. Work can be changed

to heat, but the reverse process is impossible because of the inherent loss of usable

heat when work is done, e.g. heat produced by friction of the system.

A state function, called the entropy of the system, is introduced as a measure

of useful energy. We postulate that there exist two functions:

• Absolute temperature T (T > 0)

• Entropy S, or speci�c entropy s

It means that the entropy is additive:

S =

∫
V

%sdV (5.26)

The entropy can change by interaction of the system with its surroundings through

the heat transfer dS(e), and by irreversible changes dS(i) that take place inside the

system:

dS = dS(e) + dS(i) (5.27)
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where:

dS(e) =
dQ

T
(5.28)

and

dS(i) ≥ 0 dS(i) = 0 only for reversible processes (5.29)

The inequality:

dS(i) = dS − dS(e) > 0 (5.30)

is a statement of the second law of thermodynamics for irreversible processes. Hence

for any process:
dS

dt
− 1

T

dQ

dt
≥ 0 (5.31)

Inequality (5.31) is known as the Clausius - Duhem inequality.

A simple example: why the heat �ows always in the direction from the hot

to the cold part of the body? Consider a body like a system of two parts with

temperatures T1 and T2 respectively. In the heat �ow process, some quantity dQ of

heat �ows from the �rst to the second part, then the entropy of the �rst part loses

an amount dS1 = −dQ/T1, while the entropy of the second part gains an amount

dS2 = dQ/T2. The entropy of body in this process must be

dS = dQ

(
1

T2

− 1

T1

)
= dQ

T1 − T2

T1 T2

> 0

following from the second law of thermodynamics, from this we must have T1 > T2

because T1 > 0 and T2 > 0.

From (5.31) we get the global form of the second law of thermodynamics:

d

dt

∫
V

%s dV +

∫
S

q · n
T

dS ≥ 0 (5.32)

Evaluating the material derivative in the �rst term, we have∫
V

(% ṡ+ %̇ s+ % sdivv) dV +

∫
S

q · n
T

dS ≥ 0

∫
V

% ṡ dV +

∫
V

s (%̇+ % divv) dV +

∫
S

q · n
T

dS ≥ 0

The second term vanishes according to the equation of continuity, then:∫
V

%ṡ dV +

∫
S

q · n
T

dS ≥ 0

By using the Gauss theorem, we obtain:∫
V

%ṡ dV +

∫
V

div
(q

T

)
dV ≥ 0 (5.33)
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because V is arbitrary, then we have the local form of the second law of thermody-

namic:

%ṡ+ div
(q

T

)
= %ṡ+

(qi
T

)
,i
≥ 0

%ṡ+
1

T
qi , i −

1

T 2
qi T, i ≥ 0 (5.34)

In Cartesian coordinate system, equation (5.34) reads:

%
ds

dt
+

1

T

(
∂q1

∂x1

+
∂q2

∂x2

+
∂q3

∂x3

)
− 1

T 2

(
q1
∂T

∂x1

+ q2
∂T

∂x2

+ q3
∂T

∂x3

)
≥ 0

We can write (5.34) in the absolute form:

%ṡ+
1

T
divq− 1

T 2
q · gradT ≥ 0 (5.35)

If deformation is reversible (e.g., thermoelastic deformation), the entropy

production rate dS(i) is equal to zero (see (5.30))

dS = dS(e) =
dQ

T
(5.36)

which means that the rate of entropy change is due to heat transfer only, and from

this we have:

% T ṡ = −divq (5.37)

Combining the �rst law of thermodynamic (5.25) and (5.37) for reversible process,

we have:

u̇ =
1

%
σij Dij + T ṡ (5.38)

We adopt the Fourier law for heat �ow:

q = −k gradT (5.39)

where k is the coe�cient of heat conduction (with dimension [k] = [J/(mK s)], K

is symbol of degree kelvin). Here k > 0 because heat �ows always in the direction

from the hot to the cold region.

We have another relation relating the quantities appearring in this chapter.

Multiplying the temperature change by the mass and speci�c heat capacities of the

substances gives a value for the energy given o� or absorbed during the process.

Let cv be the speci�c heat at constant strain (with dimension [c] = [J/(kg K)]), the

calorimetric equation reads:

− divq = % cv Ṫ (5.40)

All equations obtained from Chapters 3, 4 and 5 are grouped in the following

table:
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Mechanics of continuous media Unknowns Number Number

- - of unknowns of equations

Kinematics u̇i = vi ui, vi 6 3

Kinematics εij = 1/2(ui, j + uj, i) εij 6 6

Kinematics Dij = 1/2(vi, j + vj, i) Dij 6 6

Continuity %̇+ % vi, i = 0 % 1 1

Kinetics σij, j + % bi = % v̇i σij 6 3

Thermodynamics %u̇ = σij Dij − qi, i u, qi 4 1

Thermodynamics %ṡ+
1

T
qi , i −

1

T 2
qi T, i ≥ 0 s, T 2 1

Fourier law qi = −k T, i 3

Calorimetry −qi, i = % cv Ṫ 1

31 unknowns, 25 equations 31 25

Constitutive eqns σij = fij(εkl, T ) 6

31 unknowns, 31 equations 31 31

We have studied kinetics of deformation, the state of stress and basic laws of contin-

uum mechanics and obtained a system of 25 equations for 31 unknowns. All these relations

are valid for every continuum because in derivations we didn't mention any material. The

25 equations obtained are not su�cient to describe the response of speci�c material in

loadings, because we know from the experience that e.g. the response of rubber is di�erent

than that of steel in tension test (see e.g. section (3.10)). Moreover, under di�erent con-

ditions of loading, the responses of the same material are also di�erent. We need to �nd 6

more equations to close the system of equations in this table. They relate the stress and

strain pole and depend on speci�c material:

σij = fij (εkl) (5.41)

These equations are called constitutive equations or physical equations. They describe the

response of speci�c material on external loadings. We will discuss them in next chapters.
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This relation is known as Hooke's law. The slope E of the line OA is called the modulus

of elasticity or Young's modulus. Since the strain is a dimensionless quantity, the modulus

E has the same units like the stress σ. Typical value of E for steel is around 200GPa.

When stress is smaller than the value of stress at point A, the strain caused dis-

appears when load is removed. The material is said to behave elastically. When a body

deforms elastically under a load, it will revert to its original shape as soon as the load is

removed. The stress at point A is called the elastic limit.

Note: We recall that the stress obtained by dividing the load P by the undeformed cross sectional

area S0 does not represent the true stress σ = P/S(t). Also, instead of using the original value l0,

some scientists use the successive values of l to get the true strain. But because elastic strains are

small, it does not matter whether the relations are expressed in terms of any strain measures (see

Section 3.10) and stress measure (see Section 4.7).

In all engineering materials, the elongation produced by P is accompanied by a

contraction in any transverse direction. If the bar is of circular cross section with an initial

diameter d0, then under some conditions, it will remain circular with diameter d. Let

εd = ∆d/d be the lateral strain, then if the strain is small, the ratio:∣∣∣∣ lateral strainaxial strain

∣∣∣∣ = const (6.2)

or

ν = −ε
d

ε
(6.3)

This value is called Poisson's ratio. For steel, the typical value of ν is 0.25.

We have considered only a specimen cut out from a block of material. If the value

of Young's modulus E and Poisson's ratio ν depend on the orientation of the specimen,

the material is called anisotropic with respect to elastic properties. Otherwise, when

the specimens cut at di�erent orientations at a small region of the block have the same

properties, we say that in this small region, the material is called isotropic. When E and ν

vary from point to point considered, the material is imhomogeneous, otherwise the material

is said to be homogeneous.

Consider a homogeneous rod AB of uniform cross section (see Figure 6.2a), laying

freely on a smooth horizontal surface. If the temperature of the rod is raised by ∆T , the

rod elongates by an amount δT , which is proportional to both the temperature change and

the length l, we have:

δT = α (∆T ) l (6.4)

where α is a constant characteristic of the material, called the coe�cient of thermal ex-

pansion, measured in [1/K], K is symbol of degree kelvil). A strain εT is associated with

δT :

εT = α∆T (6.5)

and this is called a thermal strain caused by the change of temperature in the rod [3]. In

this case, there is no stress associated with the thermal strain.
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in matrix form in an Cartesian system of coordinate Ox1 x2 x3 read:

σ11

σ22

σ33

σ12

σ23

σ31


=



C1111 C1122 C1133 C1112 C1123 C1131

C1122 C2222 C2233 C2212 C2223 C2231

C1133 C2233 C3333 C3312 C3323 C3331

C1112 C2212 C3312 C1212 C1223 C1231

C1123 C2223 C3323 C1223 C2323 C2331

C1131 C2231 C3331 C1231 C2331 C3131





ε11

ε22

ε33

2ε12

2ε23

2ε31


(6.11)

If in addition, we have a plane of material symmetry, e.g. Ox2 x3 then take the new system

of coordinates as follows:

x
′
1 = −x1, x

′
2 = x2, x

′
3 = x3 (6.12)

with the matrix (2.31) of the form:

Qij =

−1 0 0

0 1 0

0 0 1

 (6.13)

In the new system of coordinate, only the �rst component of vector of displacement (3.6)

changes its sign:

u
′
1 = −u1, u

′
2 = u2, u

′
3 = u3

Only these components of the strain tensor (3.56) change their signs: ε
′
21 = −ε21, ε

′
31 =

−ε31. For a linearly elastic material, material symmetry with respect to that plane requires

that the components of Cijkl in the equation (6.10) [8]

σij = Cijkl εkl

be exactly the same as in the equation:

σ′ij = C ′ijkl ε
′
kl

under the change of coordinate (6.12), thus:

C ′ijkl = Cijkl (6.14)

Following (2.35), the components C ′ijkl of tensor in the new system of coordinate are:

C ′ijkl = QimQjnQkpQlq Cmnpq (6.15)

then we obtain from (6.14) and (6.15):

Cijkl = QimQjnQkpQlq Cmnpq (6.16)

From this equation, we �nd that all Cijkl with an odd number of the subscript 1 are zero:

C1112 = C1113 = C2212 = C2213 = C3312 = C3313 = 0 (6.17)

The number of elastic constants are then reduced to 13.
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We give another proof by considering the stress tensor. With such change of the

coordinate system, the components σ33, σ22 and σ23 of the stress tensor remain unchanged.

Then we have for the component σ′33 = σ33:

σ
′
33 = C1133ε

′
11 + C2233ε

′
22 + C3333ε

′
33 + 2C3312ε

′
12 + 2C3323ε

′
23 + C3331ε

′
31

σ
′
33 = C1133ε11 + C2233ε22 + C3333ε33 − 2C3312ε12 + 2C3323ε23 − 2C3331ε31

while in the "old" system:

σ33 = C1133ε11 + C2233ε22 + C3333ε33 + 2C3312ε12 + 2C3323ε23 + C3331ε31

From σ
′
33 = σ33, we have C3312 = C3331 = 0. Similarly we can show (6.17).

Hence, in this case the number of elastic constants is reduced to 13:

σ11

σ22

σ33

σ12

σ23

σ31


=



C1111 C1122 C1133 0 C1123 0

C2222 C2233 0 C2223 0

C3333 0 C3323 0

C1212 0 C1231

(symmetry) C2323 0

C3131





ε11

ε22

ε33

2ε12

2ε23

2ε31


(6.18)

Further, if there is a second plane of elastic symmetry orthogonal to the �rst, then this

second plane of symmetry also implies the symmetry about the third orthogonal plane.

The material is then called orthotropic, and thus the number of independent constants for

a linear elastic orthotropic material is 9:

σ11

σ22

σ33

σ12

σ23

σ31


=



C1111 C1122 C1133 0 0 0

C2222 C2233 0 0 0

C3333 0 0 0

C1212 0 0

(symmetry) C2323 0

C3131





ε11

ε22

ε33

2ε12

2ε23

2ε31


(6.19)

For an isotropic material, the elastic constants must be the same for all directions and (6.10)

now becomes: 

σ11

σ22

σ33

σ12

σ23

σ31


=



λ+ 2µ λ λ 0 0 0

λ λ+ 2µ λ 0 0 0

λ λ λ+ 2µ 0 0 0

0 0 0 µ 0 0

0 0 0 0 µ 0

0 0 0 0 0 µ





ε11

ε22

ε33

2ε12

2ε23

2ε31


(6.20)

Thus, there are only two independent constants λ and µ, called Lame's constants. Since

the strain is dimensionless, λ and µ have the same dimensions as the stress tensor. They
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can be determined from simple tests corresponding to simple states of stress. We can write

tensor Cijkl in the index form:

Cijkl = λδijδkl + µ(δikδjl + δilδjk) (6.21)

and the Hooke's law (6.6) for a linear isotropic elastic material becomes:

σij = λ εkkδij + 2µ εij (6.22)

Applying i = j in (6.22) we obtain a relation for the �rst invariant of strain tensor (3.63)

Iε = εkk in terms of the �rst invariant of Cauchy's stress tensor (4.26) Iσ = σkk:

εkk =
σkk

3λ+ 2µ
(6.23)

Substituting this result into (6.22) and solving for εij we have the inverse relation:

εij =
1

2µ

(
σij −

λ

3λ+ 2µ
δij σkk

)
(6.24)

Equations (6.22) and (6.24) are the constitutive equations for a linearly elastic isotropic

material. These equations have an important consequence: for an isotropic material, the

principal directions of stress and strain tensors coincide. We can use this fact to derive the

Hooke's law in an engineering way as follows.

If uniaxial tension is applied (see (6.1) and (6.2)) in the x1-direction, the tensile

strain is ε11 = σ11/E and causes lateral strains ε22 = ε33 = −ν/ε11, where ν is Poisson

number. Consider the strain, ε11, produced by a general stress state, σ11, σ22, σ33. The

stress, σ11, causes a contribution ε11 = σ11/E. The stresses σ22, σ33 then cause lateral

contractions ε11 = νσ22/E and ε11 = νσ33/E. Since the stress-strain relation is linear,

then superposition holds:

ε11 =
1

E
[σ11 − ν (σ22 + σ33)] (6.25)

Similarly, for a pure shear test we see that shear strains are a�ected only by the corre-

sponding shear stress, so

σ12 = 2Gε12 (6.26)

where G is also a material constant called the shear modulus. From equations (6.20) we

have σ12 = 2µ ε12, then:

G = µ (6.27)
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Similar expressions apply for all directions:

ε11 =
1

E
[σ11 − ν (σ22 + σ33)]

ε22 =
1

E
[σ22 − ν (σ33 + σ11)]

ε33 =
1

E
[σ33 − ν (σ11 + σ22)]

ε12 =
σ12

2G

ε23 =
σ23

2G

ε31 =
σ31

2G

(6.28)

For an isotropic material, the constants λ, G = µ, E and ν are not all independent.

Considering a state of simple tension, only σ11 = σ, all other σij = 0, then

from (6.24) and (6.28),

E =
σ11

ε11
=
µ (3λ+ 2µ)

λ+ µ
(6.29)

and the Poisson's ratio:

ν = −ε22

ε11
= −ε22

ε11
=

λ

2 (λ+ µ)
(6.30)

Another elastic constant, the bulk modulus, K, is de�ned by the relation between the

volume strain and the mean stress. From (6.23) it follows that:

K =
σmm
εkk

= λ+
2

3
µ (6.31)

Any of the �ve elastic constants E, ν, λ, µ = G, or K can be expressed in terms of

two others as in the following table :

µ, ν ν, λ µ, λ K, λ µ, E

λ
2µ ν

1− 2 ν
- - -

µ (E − 2 ν)

3µ− E
µ -

λ (1− 2 ν)

2 ν
-

3

2
(K − λ) -

ν - -
λ

2 (λ+ µ)

λ

3K − λ
E − 2µ

2µ

E 2µ (1 + ν)
λ (1 + ν) (1− 2 ν)

ν

µ (3λ+ 2µ)

λ+ µ

9K (K − λ)

3K − λ
-

K
2µ (1 + ν)

3 (1− 2 ν)

λ (1 + ν)

3 ν
λ+

2

3
µ -

µE

3 (3µ− E)
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µ, K ν, E ν,K K, E

λ K − 2

3
µ

E ν

(1 + ν) (1− 2 ν)

3K ν

1 + ν

3K (3K − E)

9K − E

µ -
E

2 (1 + ν)

3K (1− 2 ν)

2 (1 + ν)

3KE

9K − E
ν

3K − 2µ

2 (3K + µ)
- -

3K − E
6K

E
9K µ

3K + µ
- 3K (1− 2 ν) -

K -
E

3 (1− 2 ν)
- -

The equations (6.16) now can be represented in compact form as:

εij =
1

E
[ (1 + ν)σij − ν σkk δij ] (6.32)

and the reverse relation is:

σij =
E

1 + ν

[
εij +

ν

1− 2ν
εkk δij

]
(6.33)

Substituting the decomposition of strain (3.67) and stress (4.30) in spherical and

deviatoric parts into equation (6.33) we �nd:

sij =
E

1 + ν
eij = 2Geij (6.34)

and

σm =
σkk
3

= K εkk (6.35)

where σm is called the mean normal stress. Hence, the distortion eij is produced by the

deviator of stress sij , while the volume change εkk is produced by the mean normal stress

σm. The equations (6.34) and (6.35) are independent each of other.

In the general case, the elastic strain per unit volume for small deformations is (see

(6.9)):

U =
1

2
σij εij =

1

2

(
sij +

1

3
σkk δij

) (
eij +

1

3
εmm δij

)
(6.36)

or

U =
1

2
sijeij +

1

6
σkkεmm (6.37)

The �rst part is the elastic strain energy of shape changes:

U (1) =
1

2
sijeij =

1

2
sij

sij
2G

=
IIs
2G

=
1 + ν

E
IIs (6.38)

and second part is the elastic strain energy of volumes:

U (2) =
1

6
σkk εmm =

1

6
Iσ Iε =

I2
σ

18K
=

1− 2ν

6E
I2
σ (6.39)

Taking into account the the contribution of temperature, we assume that the strain

tensor is a sum of two terms:

εij = ε
(σ)
ij + ε

(T )
ij (6.40)
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where w is the de�ection, M is the bending moment, E the modulus of eleasticity, and

J the moment of inertia of the cross section about its neutral axis. The last term is the

in�uence of temperature. Assume, for example, that T2 − T1 = T0 x,
d2w

dx2
=
αT0

h
x, then

by integration we obtain w =
T0α

6h
x3 + C1x + C2, the constants C1 and C2 can be found

from the boundary conditions w = 0 for x = 0 and for x = l.

6.3 Equations of the In�nitesimal Theory of Elas-

ticity

From Chapter 5, we know that for elastic process the rate of entropy change is due

to heat transfer only (5.37):

% T ṡ = −divq = −qi, i (6.44)

or

% T

(
∂s

∂εij
˙εij +

∂s

∂T
Ṫ

)
= −qi, i (6.45)

In thermodynamics these relations can be shown:

cv = T
∂s

∂T

∂s

∂εij
= −1

%

∂σij
∂T

where cv is the speci�c heat at constant strain introduced in (5.40). Then, equation (6.45)

gives:

− T ∂σij
∂T

ε̇ij + % cc Ṫ = −ai,i (6.46)

From (6.42):
∂σij
∂T

= −(3λ+ 2µ)α δij

and from the Fourier law for heat �ow (5.39):

−qi, i = −k T, i = −k T,iiT

hence equation (6.46) can be rewritten as:

k T,ii = % cv Ṫ + (3λ+ 2µ)αT ε̇kk (6.47)

where T,ii =
∂2T

∂x2
1

+
∂2T

∂x2
2

+
∂2T

∂x2
3

is the Laplace operator. The equation (6.47) shows the

coupling thermomechanical e�ects

Finally, we obtain the following system of equations:

Linear Thermoelasticity Number of eqns

Kinematics εij = 1/2(ui, j + uj, i) 6

Continuity %̇+ % u̇i, i = 0 1

Equation of motion σij, j + % bi = % üi 3

Coupling e�ects k∆T = % cv Ṫ + (3λ+ 2µ)αT ε̇kk 1

Hooke's Law σij = λ δij εkk + 2µ εij − (3λ+ 2µ)α δij (T − T0) 6
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Everything discussed below is subjected to this assumption of linearization.

From (3.64) the relation between the di�erential volumes in the initial and actual

con�gurations is

dV = (1− εkk) dV0 (6.52)

then the conservation of mass (equation of continuity) now is dm = %0 dV0 = % dV (%0 and

% are the density in the initial and actual states respectively) reads:

% =
%0

(1 + εkk)
(6.53)

or using the Taylor's expansion we have approximately:

% ≈ (1− εkk) %0 (6.54)

Neglecting the quantities of small orders, equation of motion (5.16) now becomes:

∂σij
∂xj

+ %0 bi = %0
∂2ui
∂t2

(6.55)

where %0 bi is the component of body force per unit volume, or:

∂σ11

∂x1
+
∂σ12

∂x2
+
∂σ13

∂x3
+ %0 b1 = %0

∂2u1

∂t2

∂σ21

∂x1
+
∂σ22

∂x2
+
∂σ23

∂x3
+ %0 b2 = %0

∂2u2

∂t2

∂σ31

∂x1
+
∂σ32

∂x2
+
∂σ33

∂x3
+ %0 b1 = %0

∂2u3

∂t2

(6.56)

These three equations with 6 kinematic relations:

εij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
(6.57)

or

ε11 =
∂u1

∂x1
;

ε22 =
∂u2

∂x2
;

ε33 =
∂u3

∂x3
;

ε12 =
1

2

(
∂u1

∂x2
+
∂u2

∂x1

)

ε23 =
1

2

(
∂u2

∂x3
+
∂u3

∂x2

)

ε31 =
1

2

(
∂u3

∂x1
+
∂u1

∂x3

)
(6.58)

and six equations obtained from the Hooke's law, e.g. of the form (6.22)

σ11 = λ (ε11 + ε22 + ε33) + 2µ ε11

σ22 = λ (ε11 + ε22 + ε33) + 2µ ε22

σ33 = λ (ε11 + ε22 + ε33) + 2µ ε33

σ12 = 2µ ε12

σ23 = 2µ ε23

σ31 = 2µ ε31

(6.59)
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make a system of 15 equations to �nd 15 unknowns: three components of displacements

u1, u2, u3, six components of strain tensor ε11, ε22, ε33, ε12, ε23, ε31 and six components

of the stress tensor σ11, σ22, σ33, σ12, σ23, σ31. On the boundary, these functions must

satisfy the boundary conditions (e.g. (6.49) for stress) and compatibility equations for

strain (3.68):
∂2ε11

∂x2
2

+
∂2ε22

∂x2
1

= 2
∂2ε12

∂x1 ∂x2

∂2ε22

∂x2
3

+
∂2ε33

∂x2
2

= 2
∂2ε23

∂x2 ∂x3

∂2ε33

∂x2
1

+
∂2ε11

∂x2
3

= 2
∂2ε31

∂x3 ∂x1

(6.60)

∂

∂x1

(
−∂ε23

∂x1
+
∂ε31

∂x2
+
∂ε12

∂x3

)
=

∂2ε11

∂x2∂x3

∂

∂x2

(
∂ε23

∂x1
− ∂ε31

∂x2
+
∂ε12

∂x3

)
=

∂2ε22

∂x3∂x1

∂

∂x3

(
∂ε23

∂x1
+
∂ε31

∂x2
− ∂ε12

∂x3

)
=

∂2ε33

∂x1∂x2

6.5 Navier's equations

We can combine Eqs. (6.22), (6.55), and (6.57) to obtain the equations of motion

in terms of only the displacement components. Substituting the kinematic relation (6.57)

into the Hooke's law (6.22):

σij = λ
1

2
(uk,k + uk,k) δij + 2µ

1

2
(ui,j + uj,i) (6.61)

σij = λuk,k δij + µui,j + µuj,i

Introducing these relations into (6.55) we obtain:

∂(λuk,k δij + µui,j + µuj,i)

∂xi
+ %0 bi = %0

∂2ui
∂t2

(6.62)

Denoting by

θ = εkk = uk,k = ui,i =
∂u1

∂x1
+
∂u2

∂x2
+
∂u3

∂x3
(6.63)

we have

(λ+ µ)
∂θ

∂xi
+ µ

(
∂2ui
∂x2

1

+
∂2ui
∂x2

2

+
∂2ui
∂x2

3

)
+ %0 bi = %0

∂2ui
∂t2

(6.64)

or in a compact form

(λ+ µ) grad divu + µ∆u + %0 b = %0
∂2u

∂t2
(6.65)

where ∆ ≡ ∂2

∂x2
1

+
∂2

∂x2
2

+
∂2

∂x2
3

is Laplace operator or Laplacian. These equations are known

as the Navier's equations.
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Equations (6.64) are a system of three equations to �nd three components u1, u2, u3

of the displacement vector. Having ui, we calculate the components of strain tensor

by (6.58), then by the Hooke's law we have the components of the stress tensor.

Problem 18 Find the Navier's equation in one dimensional case u1 = u1(x1, t), u2 =

0, u3 = 0 in the absence of body forces.

Solution: We have from (6.64):

(λ+ µ)
∂θ

∂x1
+ µ

∂2u1

∂x2
1

= %0
∂2u1

∂t2

where θ = ∂u1/∂x1, thus we get the simple wave equation:

∂2u1

∂t2
= c2

1

∂2u1

∂x2
1

(6.66)

with

c1 =

√
λ+ 2µ

%0

6.6 The Beltrami-Michelle compatibility equations

In the previous section, we have chosen the displacement components ui as the

basic unknowns. In static problems of elasticity, it is more convenient to �rst �nd the

stress σij from the equation of equilibrium (see (6.55)):

∂σij
∂xj

+ %0 bi = 0 (6.67)

Then from the Hooke's law we calculate the components of the strain. The solution ob-

tained are not unique and we have to use the compatibility equation (6.60) to single out

the correct solution.

Thus putting the Hooke's law (6.24) in compatibility equation (3.70), using (6.67)

we obtain six equations for components of stress, called the Beltrami-Michelle compatibility

equations.

We can also get these equations from the Navier's equations for static case. Di�er-

entiating (6.64) with respect to xj :

µ(∆ui),j + (λ+ µ)θ,ij + (%0 bi),j = 0 (6.68)

By changing index i→ j; j → i, we get:

µ(∆uj),i + (λ+ µ)θ,ji + (%0 bj),i = 0 (6.69)

Now add the equations (6.68) and (6.69):

2µ∆εij + 2(λ+ µ)θ,ij + [(%bi),j + (%0 bj),i] = 0

Denote by Θ = σkk, then from this equation and Hooke's law we obtain:

∆σij +
2(λ+ µ)

3λ+ 2µ
Θ,ij −

λ

3λ+ 2µ
δij ∆Θ + [(%0 bi),j + (%0 bj),i] = 0 (6.70)

This is the Beltrami-Michelle compatibility equations.
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Since all strain components are constants, the equations of compatibility are automatically

satis�ed. From (6.58 ) we have:
∂u1

∂x1
=

σ

E

∂u2

∂x2
= −ν σ

E

∂u3

∂x3
= −ν σ

E

By integrating we obtain:

u1 =
σ

E
x1 + f1(x2, x3)

u2 = −ν σ
E

x2 + f2(x3, x1)

u3 = −ν σ
E

x3 + f3(x1, x2)

(i)

where f1, f2, f3 are integration functions. Substituting (i) in kinematic relations:

ε12 =
1

2

(
∂u1

∂x2
+
∂u2

∂x1

)
= 0 ; ε23 =

1

2

(
∂u2

∂x3
+
∂u3

∂x2

)
= 0 ; ε31 =

1

2

(
∂u3

∂x1
+
∂u1

∂x3

)
= 0

we get: 

∂f1(x2, x3)

∂x2
= −∂f2(x3, x1)

∂x1
= g1(x3)

∂f2(x3, x1)

∂x3
= −∂f3(x1, x2)

∂x2
= g2(x1)

∂f3(x1, x2)

∂x1
= −∂f1(x2, x3)

∂x3
= g3(x2)

(ii)

where g1(x3), g2(x1) and g3(x2) are integration functions. Integration of (ii) gives:

f1(x2, x3) = g1(x3)x2 + g4(x3) = −g3(x2)x3 + g5(x2) (iii)

f2(x3, x1) = g2(x1)x3 + g6(x1) = −g1(x3)x1 + g7(x3) (iv)

f3(x1, x2) = g3(x2)x1 + g8(x2) = −g2(x1)x2 + g9(x1) (v)

From (iii):

g1(x3) = a1 x3 + b3; g3(x2) = −a1 x2 + b2, g4(x3) = −b2 x3 + c1, g5(x2) = b1 x2 + c1 (vi)

From (iv) and (vi):

g2(x1) = −a1 x1 + b1, g6(x1) = −b3x1 + c2, g7(x3) = b1 x3 + c2 (vii)

From (v), (vi) and (vii):

a1 = 0, g8(x2) = −b3 x2 + c3, g9(x1) = b2 x1 + c3 (viii)
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Then:

g1(x3) = b3; g2(x1) = b1; g3(x2) = b2; g4(x3) = −b2 x3 + c1; g5(x2) = b3 x2 + c1

g6(x1) = −b3 x1 + c2; g7(x3) = b1 x3 + c2; g8(x2) = −b1 x2 + c3; g9(x1) = b2 x1 + c3

and:
f1(x2, x3) = b3 x2 − b2 x3 + c1 (ix)

f2(x3, x1) = b1 x3 − b3 x1 + c2 (x)

f3(x1, x2) = −b1 x2 + b2 x1 + c3 (xi)

so that: 

u1 =
σ

E
x1 + b3 x2 − b2 x3 + c1

u2 = −ν σ
E

x2 + b1 x3 − b3 x1 + c2

u3 = −ν σ
E

x3 − b1 x2 + b2 x1 + c3

(xii)

Assume that the origin O on the end cross section is �xed: for x1 = x2 = x3 = 0, then

u1 = u2 = u3 = 0. From the above relation we have c1 = c2 = c3 = 0. To prevent the

rotation of the bar, two arbitrary of the three in�nitesimal elements dx1, dx2, dx3 should

not rotate (see (3.60) and Figure 3.5). To prevent the rotation of the element dx1 in the

plane x1Ox2 from rotating toward the axe x2 we need that ∂u2/∂x1 = 0; to prevent the

rotation of the element dx1 in the plane x1Ox3 from rotating toward the axis x3 we need

∂u3/∂x1 = 0. Eliminating the possibility of rotation of the the element dx2 in the plane

x2Ox3 toward the axis x3 we need ∂u3/∂x2 = 0. Substituting this relations into (xii) we

�nd b1 = b2 = b3 = 0. Hence, the displacement vector has two parts. The �rst part

u1 =
σ

E
x1

u2 = −ν σ
E

x2

u3 = −ν σ
E

x3

is corresponding to strain �eld (6.72) and the second part:

u1 = b3 x2 − b2 x3 + c1

u2 = b1 x3 − b3 x1 + c2

u3 = −b1 x2 + b2 x1 + c3

represents a rigid body displacement �eld.

2. Uniaxial case with body force

Consider now a bar with a length l standing vertically in gravitational �eld.
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The twisting moment is given by:

Mt =

∫
S

(x1 σ32 − x2 σ31) dxdy = −
∫
S

(
x1

∂ϕ

∂x1
+ x2

∂ϕ

∂x2

)
dxdy = 2

∫
S
ϕdS (6.81)

In the case of elliptical bar the bounding function is (x1/a)2 + (x2/b)
2 = 1, where

a is major radius and b-minor radius. Taking function ϕ of the form:

ϕ = m

(
x2

1

a2
+
x2

2

b2
− 1

)
(6.82)

then on lateral bounding we have ϕ = 0. Substituting (6.82) into (6.80) we calculate m,

then:

ϕ = C
a2 b2

2 (a2 + b2)

(
x2

1

a2
+
x2

2

b2
− 1

)
(6.83)

The constant C we can be found from (6.81):

C = −2Mt (a2 + b2)

π a3 b3
(6.84)

and �nally:

ϕ = − Mt

π a b

(
x2

1

a2
+
x2

2

b2
− 1

)
(6.85)

Then stresses are obtained from (6.77):

σ13 = − 2Mt

π a b3
x2 ; σ23 =

2Mt

π a3 b
x1 (6.86)

The magnitude of shear stress on the cross-sectional plane is given by:

|τs| =
√
σ2

13 + σ2
23 =

2Mt

π a b

√
x2

1

a4
+
x2

2

b4
(6.87)

and it takes the maximal value of shear stress at point x1 = 0; x2 = b:

|τs|max =
2Mt

π a b2
(6.88)

Since σ11 = σ22 = σ33 = 0, then from the Hooke's law
∂u1

∂x1
=
∂u2

∂x2
=
∂u3

∂x3
= 0, also

we have σ12 = 0 then the kinematic relations (6.58) give:

2 ε12 =
∂u1

∂x2
+
∂u2

∂x1
= 0

2 ε13 =
∂u1

∂x3
+
∂u3

∂x1
=
σ13

µ

2 ε23 =
∂u2

∂x3
+
∂u3

∂x2
=
σ23

µ

(6.89)

Assume that u1 = −θ x2 x3, u2 = θ x1 x3 then the �rst equation in (6.89) is satis�ed

automatically. The second and the third equations have the form:

− θ x2 +
∂u3

∂x1
=
σ13

µ
; θ x1 +

∂u3

∂x2
=
σ23

µ
(6.90)
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or
∂u3

∂x1
=
σ13

µ
+ θ x2 ;

∂u3

∂x2
=
σ23

µ
− θ x1 (6.91)

Di�erentiating the second equation in (6.89) with respect to x2, the third equation there

par rapport x1, then subtracting, we obtain:

∂2u1

∂x2∂x3
− ∂2u2

∂x1∂x3
=

1

µ

(
∂σ13

∂x2
− ∂σ23

∂x1

)
(6.92)

When u1 = −θ x − 2x3, u2 = θ x1 x3, the left side of (6.92) is equal to 2 θ and the right

side when taking into account (6.77) is equal to (1/µ) ∆ϕ. From (6.92) we have:

− 2µ θ = C (6.93)

In case of elliptical bar:

θ =
Mt (a2 + b2)

π a3 b3 µ
(6.94)

Substituting (6.86), (6.94) into (6.91), after integrating we get:

u3 =
Mt (b2 − a2)

π a3 b3 µ
x1 x2 (6.95)

6.8 Plane stress and plane strain

6.8.1 Plane stress

The state of stress satisfying following conditions:

σ13 = σ23 = σ33 = 0; b3 = 0 (6.96)

is called the plane stress. A very thin plate, its faces perpendicular to the x3-axis, its

lateral surface subjected to tractions that are independent of x3, and its two end faces free

from any surface traction, is approximately in a state of plane stress (see Figure 6.9).

From the Hooke's law (6.28), since σ33 = 0 then:

ε33 = − ν
E

(σ11 + σ22) (6.97)



ε11 =
1

E
(σ11 − ν σ22)

ε22 =
1

E
(σ22 − ν σ11)

ε12 =
1 + ν

E
σ12

(6.98)
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6.8.3 Governing equations of Plane Elasticity

In this section we summarize the governing equations of plane elasticity, for both

plane stress and plane strain. The stress-strain relations can be rewritten as [2]:

εij =
1

2µ

(
σij −

3− κ
4

σkk δij

)
(i,j 1,2) (6.107)

where κ is the Kolosov constant de�ned by:

κ =


3− 4 ν for plane strain

3− ν
1 + ν

for plane stress

(6.108)

There are two Cauchy equations of equilibrium:
∂σ11

∂x1
+
∂σ12

∂x2
+ %b1 = 0

∂σ21

∂x1
+
∂σ22

∂x2
+ %b2 = 0

(6.109)

and one compatibility equation:

∂2ε11

∂x2
2

+
∂2ε22

∂x2
1

= 2
∂2ε12

∂x1∂x2
(6.110)

Using the compatibility equation, the Hooke's law and equations of equilibrium when there

are no body forces, we can show that:

∆(σ11 + σ22) = 0 (6.111)

where ∆ =
∂2

∂x2
1

+
∂2

∂x2
2

is the two-dimensional Laplacian operator.

6.8.4 The Airy stress function

With the absence of body force, we have the following three equations for three

components of stress: 

∂σ11

∂x1
+
∂σ12

∂x2
= 0

∂σ21

∂x1
+
∂σ22

∂x2
= 0

∆(σ11 + σ22) = 0

(6.112)

Let Φ be a function with such properties:

σ11 =
∂2Φ

∂x2
2

σ22 =
∂2Φ

∂x2
1

σ12 = − ∂2Φ

∂x1∂x2

(6.113)
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Then Φ satis�es the biharmonic equation:

∆∆Φ ≡ ∂4Φ

∂x4
1

+ 2
∂4Φ

∂x2
1∂x

2
2

+
∂4Φ

∂x4
2

= 0 (6.114)

and is known as the Airy stress function. Any function that satis�es this biharmonic

equation (6.114) generates a possible solution for a plane elastic-static problem.

6.8.5 Resume

We give here a brief resume of stress and strain �elds in plane elasticity:

Plane Stress Plane Strain

Stress
σ13 = σ23 = σ33 = 0

σ11, σ12, σ22 may have non zero values

σ13 = σ23 = 0

σ11, σ12, σ22, σ33 may have non zero values

Strain
ε13 = ε23 = 0

ε11, ε12, ε22, ε33 may have non zero values

ε13 = ε23 = ε33 = 0

ε11, ε12, ε22 may have non zero values

6.9 Solutions of plane problems in Cartesian coor-

dinates

The solution of plane problems when there are no body forces is reduced to the

integration of the biharmonic equation (6.114)

∆∆Φ ≡ ∂4Φ

∂x4
1

+ 2
∂4Φ

∂x2
1∂x

2
2

+
∂4Φ

∂x4
2

= 0 (6.115)

with the boundary conditions (6.49):

σ11 n1 + σ12 n2 + σ13 n3 = Σ1

σ21 n1 + σ22 n2 + σ23 n3 = Σ2

(6.116)

Solutions in form of polynomials are used widely to solve problems of beams [10]. First we

consider a polynomial of the second order:

Φ =
A2

2
(x1)2 +B2 x1 x2 +

C2

2
(x2)2 (6.117)

where A2, B2 and C2 are constant. It is easy to check that (6.117) satis�es (6.115). Then

from (6.113) we obtain:

σ11 =
∂2Φ

∂x2
2

= C2, σ22 =
∂2Φ

∂x2
1

= A2, σ12 = − ∂2Φ

∂x1 ∂x2
= −B2 (6.118)

All three stresses are constant throughout the body and in the case of rectangular plate (Fig-

ure 6.11) we have a uniform tension (or compression depending on the sign of the constants)

and a uniform shear.

Consider now a stress function in the form of a polynomial of the third order:

Φ3 =
A3

3 · 2
(x1)3 +

B3

2
(x1)2 x2 +

C3

2
x1 (x2)2 +

D3

3 · 2
(x2)3 (6.119)

This also satis�es (6.103) for every constants A3, B3, C3, D3 and we have the stress �eld:

σ11 = C3x1 +D3x2 ; σ22 = A3x1 +B3x2 ; σ12 = −(B3x1 + C3x2) (6.120)
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Since σ11 = ∂2Φ/∂x2
2:

∂2Φ

∂x2
2

= Ax2 +Bx2
1x2

After integrating we obtain:

∂Φ

∂x2
= Ax2

2/2 +Bx2
1x

2
2/2 + f1(x1)

and now

Φ = A
x3

2

6
+B x2

1

x3
2

6
+ f1(x1)x2 + f2(x1) (6.135)

Calculating the derivative and comparing it with the second equation of (6.133)

∂2Φ

∂x1∂x2
= Bx1x

2
2 + f

′
1(x1)⇒ −Bx1x

2
2 − f

′
1(x1) = Cx1 +Dx1x

2
2

then

D = −B; f1(x1) = −Cx2
1/2 + E

and

Φ = A
x3

2

6
+B x2

1

x3
2

6
− C

2
x2

1 x2 + Ex2 + f2(x1) (6.136)

The linear term Ex2 does not in�uence on stress, and our function (6.136) now is still not

biharmonic, so we add to it another function ψ(x1, x2) and we demand that ∆∆Φ = 0, so

that:

Φ = A
x3

2

6
+B x2

1

x3
2

6
− C

2
x2

1 x2 + Ex2 + f(x1) + ψ(x1, x2) (6.137)

From (6.137) we have:

∂Φ

∂x1
= Bx1x

3
2/3− Cx1x2 + f

′
(x1) +

∂ψ

∂x1

∂2Φ

∂x2
1

= Bx3
2/3− Cx2 + f ′′(x1) +

∂2ψ

∂x2
1

∂3Φ

∂x3
1

= f ′′′(x1) +
∂3ψ

∂x3
1

∂4Φ

∂x4
1

= f (IV )(x1) +
∂4ψ

∂x4
1

∂2Φ

∂x1∂x2
= Bx1x

2
2 − Cx1 +

∂2ψ

∂x1∂x2

∂3Φ

∂x2
1∂x2

= Bx2
2 − C +

∂3ψ

∂x2
1∂x2

∂4Φ

∂x2
1∂x

2
2

= 2Bx2 +
∂4ψ

∂x2
1∂x

2
2
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∂Φ

∂x2
= Ax2

2/2 +Bx2
1x

2
2/2− Cx2

1/2 +
∂ψ

∂x2

∂2Φ

∂x2
2

= Ax2 +Bx2
1x2 +

∂2ψ

∂x2
2

∂3Φ

∂x3
2

= A+Bx2 +
∂3ψ

∂x3
2

∂4Φ

∂x4
2

=
∂4ψ

∂y4

∆∆Φ ≡ ∂4Φ

∂x4
1

+ 2
∂4Φ

∂x2
1∂x

2
2

+
∂4Φ

∂x4
2

= f (IV )(x1) +
∂4ψ

∂x4
1

+ 4Bx2 + 2
∂4ψ

∂x2
1∂x

2
2

+
∂4ψ

∂x4
2

= 0

Assume that f (IV )(x1) = 0, we get the following equation for ψ:

∂4ψ

∂x4
1

+ 2
∂4ψ

∂x2
1∂x

2
2

+
∂4ψ

∂x4
2

= −4Bx2

The simplest solution of this equation is:

ψ =
F

24
x4

1x2 +
H

120
x5

2

By substituting this relation to Φ and checking the relations between the constants for Φ

to be a harmonic function we get

H = −4B − F

and �nally the function:

Φ =
A

6
x3

2 +
B

6
x2

1 x
3
2 −

C

2
x2

1x2 + Ex2 + f(x1) +
H

24
x4

1x2 −
4B + F

120
x5

2 (6.138)

which satis�es ∆∆Φ = 0. The stress �eld can be calculated:

σ11 = Ax2 +Bx2
1x2 −

4B + F

6
x3

2

σ12 = −Bx1x
2
2 + Cx1 −

F

6
x3

1

σ22 =
B

3
x3

2 − Cx2 + f ′′(x1) +
F

2
x2

1x2

(6.139)

To �nd the constants in (6.139) we use the bounding conditions:

1. For the edge x− 2 = h, σ22 = 0 for every x1 then

B

3
h3 − Ch+ f ′′(x) +

F

2
x2

1h = 0

From this we have F = 0 and

f ′′(x) ≡ L = Ch−Bh3/3 (6.140)

The project:"Building an ecological Europe - Master programs in English for students of Civil Engineering"

�nanced by Norwegian funds and domestic funds

96



"Building an ecological Europe - Master programs in English for students of Civil Engineering"

then (6.139) is: 

σ11 = Ax2 +Bx2
1x2 −

2B

3
x3

2

σ12 = −Bx1x
2
2 + Cx1

σ22 =
B

3
x3

2 − Cx2 + L

2. For x2 = −h, σ22 = −q:

−Bh3/3 + Ch+ L = −q

then taking into account (6.139) we have 2L = −q or

L = −q
2

(6.141)

3. For x2 = ±h, σ12 = 0 for every x1:

−Bx1(±h)2 + Cx1 = 0

then C = Bh2. Equations (6.140) (6.141) yield a system of two equations for B and C:{
Ch−B(h3/3) = L = −(q/2)

C = Bh2

and we have: B = − 3q

4h3
and C = − 3q

4h
and the relation for stress now is:



σ11 = Ax2 − (3q/4h3)x2
1x2 + (q/2h3)x3

2

σ12 = −(3q/4h3)
(
h2 − x2

2

)
x1

σ22 = −(3q/4h3)

(
x3

2

3
− h2 x2 +

2h3

3

) (6.142)

4. For x = ±l it is easy to check: ∫ h

−h
σ11 dx2 = 0

because σ11 is a odd function. Moreover,∫ h

−h
σ12 dx2 = ∓ql/2

The last condition in (6.132) gives an equation to �nd A:∫ h

−h
σ11 x2dx2 =

∫ h

−h

[
Ax2 − (3q/4h3)l2x2 + (q/2h3)x3

2

]
x2dx2 = 0

then we �nd:

A =
3q

4h3
(l2 − 2

5
h2)
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and �nally the stress �eld as follows:

σ11 =
3q

4h3

[
(l2 − x2

1)x2 + (2/3)x3
2 − (2/5)h2x2

]
σ12 = −(3q/4h3)

(
h2 − x2

2

)
x1

σ22 = −(3q/4h3)

(
x3

2

3
− h2 x2 +

2h3

3

)
(6.143)

By replacing the moment of inertia J = 2h3/3 in to (6.143) we rewrite it as:

σ11 =
q

2J

[
(l2 − x2

1)x2

]
+
qx2

J

(
x2

2

3
− h2

5

)

σ12 = − q

2J

(
h2 − x2

2

)
x1

σ22 = − q

2J

(
x3

2

3
− h2 x2 +

2h3

3

)
(6.144)

The second term in the �rst equation of (6.144) gives the correction for the solution of the

usual theory of bending represented by the �rst term. Remember that by using the Saint

Venant's principle the above solution is not an exact solution at the ends of the beam.

We can then �nd strain using the Hooke's law, then integrate (6.58) to obtain the

displacement.

6.9.2 Solution using Fourier series

A function f(x) de�ned on (x0;x0 +L), ful�lling the following four conditions: (i)

the function must be periodic; (ii) it must be single-valued and continuous, except possibly

at a �nite number of �nite discontinuities; (iii) it must have only a �nite number of maxima

and minima within one period L; (iv) the integral over one period of |f(x)| must converge,
may be expanded as a Fourier series:

f(x) =
a0

2
+

∞∑
m=1

[
an cos

(
2mπx

L

)
+ bm sin

(
2mπx

L

)]
(6.145)

where a0, am, bm are constants called the Fourier coe�cients. These coe�cients are anal-

ogous to those in a power series expansion. They are given by:

am =
2

L

∫ x0+L

x0

f(x) cos

(
2mπx

L

)
dx (6.146)

bm =
2

L

∫ x0+L

x0

f(x) sin

(
2mπx

L

)
dx (6.147)

where x0 is arbitrary but is often taken as 0 or −L/2.
We can use the double Fourier series containing trigonometric functions to solve

problems of narrow rectangular beams (see Figure 6.19), especially in the case of discon-

tinuous loadings.
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then the coe�cients are given in the following table (for k = 1, 2, 3, 4):

akm bkm ckm dkm

ψ1m 1 −
sinh(mβ) cosh(mβ) +mβ

sinh2(mβ)− (mβ)2
−b1m −

sinh2(mβ)

sinh2(mβ)− (mβ)2

ψ2m 0 −
(mβ)2

sinh2(mβ)− (mβ)2

sinh2(mβ)

sinh2(mβ)− (mβ)2
−

sinh(mβ) cosh(mβ)−mβ
sinh2(mβ)− (mβ)2

ψ3m 0
mβ cosh(mβ) + sinh(mβ)

sinh2(mβ)− (mβ)2
−
mβ cosh(mβ) + sinh(mβ)

sinh2(mβ)− (mβ)2

mβ sinh(mβ)

sinh2(mβ)− (mβ)2

ψ4m 0 −
mβ sinh(mβ)

sinh2(mβ)− (mβ)2

mβ sinh(mβ)

sinh2(mβ)− (mβ)2
−
mβ cosh(mβ)− sinh(mβ)

sinh2(mβ)− (mβ)2

where:

c1m = −b1m; c2m = −d1m; c3m = −b3m; c4m = d3m = −b4m

We see from the table that these coe�cients can be calculated when we know only the

ratio h/l; they are independent from the loads. The advantage of this choice of coe�cients

is that the constants in (6.167) have simple interpretation:

Ym(0) = Ām; Y ′m(0) = B̄m; Ym(h) = C̄m; Y ′m(h) = D̄m (6.168)

In our problem only qu(x1) =
k

l2
(l − x1)x1, then the stress Airy's function is:

Φ(x1, x2) = −
∞∑
m=1

(
l

mπ

)2

Cm ψm(z) sin
mπx1

l

(
z =

mπx2

l

)
(6.169)

with

ψm(z) = bm sinh z + cmz cosh z + dmz sinh z (6.170)

In (6.170) the coe�cients bm, cm, dm are independent from the form of loads and equal to:

bm =
mβ coshmβ + sinhmβ

(sinhmβ)2 − (mβ)2

cm = −mβ coshmβ + sinhmβ

(sinhmβ)2 − (mβ)2

dm =
mβ sinhmβ

(sinhmβ)2 − (mβ)2

β =
πh

l

The constants Cm we can �nd from the expansion of function qu(x1) in Fourier

series. Using (6.145)-(6.147) we �nd

Cm = −2

l

∫ l

0
qu(x1) sin

mπx1

l
dx (6.171)

and we have:

Cm = − 32k

(mπ3)
for m 1,3,5... (6.172)

Hence:

σ11 = −
∞∑

m=1,3,5,...

Cmψ
′′
m(z) sin

mπx1

l

σ22 =

∞∑
m=1,3,5,...

Cmψm(z) sin
mπx1

l
(6.173)

σ12 =
∞∑

m=1,3,5,...

Cmψ
′
m(z) cos

mπx1

l
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where ψ′m and ψ
′′
m are derivatives of the �rst and second order of the function ψm(z)

in (6.170) in z:

ψ
′
m(z) = dm sinh z + dmz cosh z + cmz sinh z (6.174)

and

ψ
′′
m(z) = 2dm cosh z + cm sinh z + cmz cosh z + dmz sinh z (6.175)

Having the stress �eld, by using the Hooke's law, we obtain:

ε11 =
1

E
[σ11 − νσ22] = − 1

E

∞∑
m=1,3,5,...

Cm

[
ψ
′′
m(z) + νψm(z)

]
sin

mπx1

l

ε22 =
1

E
[σ22 − νσ11] =

1

E

∞∑
m=1,3,5,...

Cm

[
ψm(z) + νψ

′′
m(z)

]
sin

mπx1

l
(6.176)

ε12 =
1 + ν

E
σ12 =

1 + ν

E

∞∑
m=1,3,5,...

Cmψ
′
m(z) cos

mπx1

l

By integrating relations (6.176) and using the boundary conditions, we have the displace-

ment:

u1 =
l

Eπ

∞∑
m=1,3,5,...

1

m
Cm

[
ψ
′′
m(z) + νψm(z)

]
cos

mπx1

l

(6.177)

u2 =
l

Eπ

∞∑
m=1,3,5,...

1

m
Cm

[
Ψm(z) + νψ

′
m(z)

]
sin

mπx1

l

where

Ψm(z) = (bm − cm) cosh z − dm sinh z + dmz cosh z + cmz sinh z (6.178)

thus the problem is solved.

6.10 Solution in polar coordinates

Sometimes, for example in discussing the stress state in circular rings or disks,

it is more convenient to use polar coordinates (see Figure 6.23). The relations between

Cartesian and polar coordinates are:

x1 = r cosϑ , x2 = r sinϑ or r2 = x2
1 + x2

2 , ϑ = arctan
x2

x1
(6.179)

From (6.179) we have:

∂r

∂x1
=
x1

r
= cosϑ ;

∂r

∂x2
=
x2

r
= sinϑ

∂ϑ

∂x1
= −x2

r2
= −sinϑ

r
;
∂ϑ

∂x2
=
x1

r2
=

cosϑ

r

∂Φ

∂x1
=
∂Φ

∂r

∂r

∂x1
+
∂Φ

∂ϑ

∂ϑ

∂x1
=
∂Φ

∂r
cosϑ− 1

r

∂Φ

∂ϑ
sinϑ
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Solution:

The boundary conditions are:

σrr|r=a = −pi ; σrr|r=b = −po (6.189)

By substituting (6.189) into the �rst equation of (6.188) we can �nd the constants A and

C, then �nally we have the stress �eld:

σrr =
a2b2(po − pi)
b2 − a2

1

r2
+
pia

2 − pob2

b2 − a2

σϑϑ = −a
2b2(po − pi)
b2 − a2

1

r2
+
pia

2 − pob2

b2 − a2

(6.190)

In a particular case, when po = 0, the cylinder is subjected only to an internal pressure,

from (6.190) we have:

σrr =
pia

2

b2 − a2

(
1− b2

r2

)

σϑϑ =
pia

2

b2 − a2

(
1 +

b2

r2

) (6.191)

From this relation we see that the stress σϑϑ is always a tensile stress and gets the maximum

value at the inner surface of the cylinder. For thin-walled cylinder, b→ a, denoting b−a = t

then we have σϑϑ = pia/t.
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Chapter 7

Plasticity

7.1 One dimensional models

The characteristic stages of material behaviour for a ductile material can be illus-

trated by a typical stress-strain (or loading-elongation) relationship as shown in Figure

7.1 in a tension test. This highly nonlinear relationship can be roughly divided into �ve

intervals [5].

Within the linear portion OA (called the proportional range), if the load is reduced

to zero (i.e., unloading), then the line OA is retraced back to O and the specimen has

exhibited an elasticity. Applying a load that is greater than A and then unloading, we

typically traverse OABH and �nd that there is a �permanent elongation� OH. Reapplica-

tion of the load from H indicates elastic behavior with the same slope as OA but with an

increased proportional limit. The material is said to have work-hardening. The unloading

on portion BH has the same slope. Hence, the plastic deformation does not a�ect elastic

properties of the material, so that the unloading slope (Young's modulus E) remains the

same as before the plastic deformation took place. At an arbitrary stage of this elastic-

plastic deformation, the total strain is the sum of elastic (which still obeys Hooke's law)

and plastic parts (ε = εe+εp). Next, we have a portion where the stress is constant and the

strain continually grows, the material has exhibited a perfect plasticity. After a maximum

of the stress strain curve, deformation localizes to form a neck.

Mathematical descriptions of complicated true stress-strain curves are thus needed.

With elastic deformation, the strains are proportional to the stress. This model is described

by the Hooke's law presented in Chapter 6 (see Figure 7.2a):

σ = E ε (7.1)

When the stress is increased beyond the initial yield limit Y , the material deforms plasti-

cally. By neglecting the hardening interval in Figure 7.1, we have a model elastic perfect

plastic material presented in Fig. 7.2b:

σ =

{
E ε for ε ≤ εY
Y for ε > εY

(7.2)
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where sij is the deviator of the stress tensor σ, then:

dσij = dsij +
1

3
dIσ δij (7.26)

we can write the increment of elastic strain in the form:

dεeij =
dsij
2G

+
dIσ
9K

δij (7.27)

where G = E/2(1 + ν) is the elastic shear modulus and K = E/3(1 − 2ν) is the bulk

modulus (see table 6.2). Introducing the concept of a plastic potential function g(σij),

which enables us to write the increment of the plastic �ow in the form:

dεpij = dλ
∂g

∂σij
(7.28)

where dλ is a positive scalar factor of proportionality, which is non-zero only when plastic

deformations occur. In the special case, when the plastic potential function and the yield

function coincide, f = g, we have:

dεpij = dλ
∂f

∂σij
(7.29)

The relation (7.29) is called then associated �ow rule because this is connected with the

yield function. Relation (7.28) with g 6= f is called the non-associated �ow rule. Us-

ing (2.52) we can conclude that the plastic increment dεpij has the direction of the normal

vector to the yield surface (see Figure 7.8).

7.3.2 Yield Functions

A yield criterion is a mathematical expression of the stress states that will cause

yielding or plastic �ow. The most general form of a yield criterion is

f(σ11, σ22, σ33, σ12, σ23, σ31) = f(σij) = C (7.30)

where C is a material constant. For an isotropic material this can be expressed in terms

of principal stresses:

f(σ1, σ2, σ3) = C (7.31)

where σ1, σ2, σ3 are the principal stresses, the roots of equation (4.25).

The simplest yield criterion is proposed by Tresca. It states that yielding will

occur when the largest shear stress reaches a critical value. The largest shear stress is

τmax = (σmax − σmin)/2 (see (4.39)), so the Tresca criterion can be expressed as

σmax − σmin = C (7.32)

Taking the convention that σ1 ≥ σ2 ≥ σ3, the equation (7.32) can be written as:

σ1 − σ3 = C (7.33)
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7.3.3 Incremental stress-strain relation

In view of (7.27) and (7.29) we have the complete stress-strain relation for an

elastic-perfect plastic material [4]:

dεij = dεeij + dεpij =
dsij
2G

+
dIσ
9K

δij + dλ
∂f

∂σij
(7.42)

where dλ is still unknown factor. In view of (7.19), (7.20) and (7.21), we have:

dλ

{
> 0 whenever f = 0 and df = 0

= 0 whenever f < 0 or f = 0 but df < 0
(7.43)

The relation df = 0 can be written as follows:

df =
∂f

∂σij
d σij = 0 (7.44)

and is known as the consistency condition. Substituting dsij from (7.42) into (7.26) we

have:

dσij = 2Gdεij −
2G

9K
dIσ δij − 2Gdλ

∂f

∂σij
+

1

3
dIσ δij (7.45)

Substituting (7.45) into (7.44):

2G
∂f

∂σij
dεij − 2Gdλ

∂f

∂σij

∂f

∂σij
+

(
1

3
− 2G

9K

)
dIσ

∂f

∂σij
δij = 0 (7.46)

With i = j, relation (7.42) gives:

dIσ = 3K

(
dεij − dλ

∂f

∂σij
δij

)
(7.47)

Substituting (7.47) into (7.46), we get a relation for dλ:

dλ =

∂f

∂σij
dεij +

3K − 2G

6G
dεkk

(
∂f

∂σij
δij

)
∂f

∂σij

∂f

∂σij
+

3K − 2G

6G

(
∂f

∂σij
δij

)2 (7.48)

In the case of The Huber-Mises criterion (see (7.38)):

f =
√
IIs =

√
1

2
sij sij = k (7.49)

We have:
∂f

∂σij
=
∂
√
IIs

∂σij
=

1

2
√
IIs

∂
√
IIs

∂σij
=

1

2
√
IIs

skl
∂skl
∂σij

(7.50)

Since skl = σkl − (1/3)σmm δkl (see (4.30)), then:

∂skl
∂σij

=
1

2
(δkiδlj + δkjδli) +

1

3
δmiδmj δkl =

∂skl
∂σij

=
1

2
(δkiδlj + δkjδli) +

1

3
δij δkl (7.51)

Substituting (7.51) into (7.50), one gets:

∂f

∂σij
=

1

2
√
IIs

skl

[
1

2
(δkiδlj + δkjδli) +

1

3
δij δkl

]
=

1

2
√
IIs

sij (7.52)
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Then since
∂f

∂σij
δij =

1

2
√
IIs

sij δij =
1

2
√
IIs

sii = 0, from (7.48) we obtain:

dλ =

∂f

∂σij
dεij

∂f

∂σij

∂f

∂σij

=

sij dεij

2
√
IIs

sij

2
√
IIs

sij

2
√
IIs

=
sij dεij
k

=
sij deij
k

(7.53)

Here deij is the increment of the deviatoric part of strain tensor, sij dεij = sij [deij +

(1/3) dεkk] δij = sij deij because of the �rst invariant of deviator of stress tensor sij δij =

skk = 0.

Substituting dλ (7.53) into (7.42), (7.45), we get the complete stress-strain relations:
dεij =

dsij
2G

+
dIσ
9K

δij +
smn demn

2k2
sij

dσij = 2Gdeij +Kdεkk δij −
Gsmndemn

2k2
sij

(7.54)

The product smndemn of two deviators of stress and strain is called the rate work

due to distortion. Decomposing the deviator of strain into elastic and plastic parts, we

get:

smndemn = smn(deemnde
p
mn) (7.55)

where for elastic part deemn = dsmn/2G (see (6.34)), then:

smndemn = smn(deemn + depmn) = (1/2G) smn dsmn + smnde
p
mn = smnde

p
mn (7.56)

because of smn dsmn = df = 0 on the yield surface. Substituting i = j into (7.54)) leads

to:

dεjj =
dIσ
3K

= dεejj (7.57)

then:

dεpjj = dεjj − dεejj = 0 (7.58)

so the increment of the plastic strain is incompressible.

Hence, the following speci�cations are valid for an elastic-perfect plastic material

obeying Huber-Mises criterion and �ow rule:

• The increment of mean stress and mean strain obey the Hooke's law at all time:

dσjj = 3K dεjj (7.59)

and no plastic volume change can occurs dεpjj = 0.

• The material is elastic satisfying the Hooke's law, meaning no change in increment

of plastic strain dεpij = 0 as long as
√
IIs < k.

• Yielding occurs when and only when
√
IIs = k,

dεpij =
smn demn

2k2
sij (7.60)

• States when
√
IIs > k can not exist for this material.
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purpose, we introduce the concepts of e�ective stress σe and e�ective strain εe . They are

de�ned as follows:

a) σe and εe reduce to σ and ε in tension test.

b) It is postulated that the strain hardening depends only on εe and there is a

unique relation:

σe = σe(εe) (7.62)

Because for a tension test σe and εe reduce to σ and ε (assumption a)), the σ-ε curve in

a tension test is also the σe − εe curve, so we can use the tension curve to predict the

stress-strain behavior under other forms of loading.

When σe reaches the current �ow stress, plastic deformation will occur, for the

Huber-Mises criterion (7.36), the e�ective stress is:

σe =
1√
2

[(σ1 − σ2)2 + (σ2 − σ3)2 + (σ3 − σ1)2]
1
2 (7.63)

In terms of non-principal stresses, then:

σe =
1√
2

[(σ11 − σ22)2 + (σ22 − σ33)2 + (σ33 − σ11)2 + 6 (σ2
12 + σ2

23 + σ2
31)]

1
2 (7.64)

There are two de�nitions of e�ective plastic strain depending on the form of k. For

the strain hardening hypothesis, the function (7.61) takes the form:

f(σij , ε
p
ij , k) = F (σij , ε

p
ij)− k(εpe) = 0 (7.65)

where k is a monotonically increasing function, which depends only on the e�ective plastic

strain εpe de�ned as:

dεpe =
√

2/3 dεpij dε
p
ij ; εpe =

∫
dεpe (7.66)

In uniaxial loading εpe = εp, where εp is the total uniaxial plastic strain.

For work-hardening hypothesis, we assume that k is a function of total plastic work

W p de�ned as:

dW p = σe dε
p
e ; W p =

∫
dW p (7.67)

For the Huber-Mises criterion, (7.67) and (7.66) are equal (see for example (7.92) and (7.93)).

2. There exists a plastic potential function g(σij , ε
p
ij , k) so that the plastic strain

could be derived from:

dεpij = dλ
∂g

∂σij
(7.68)

3. In plastic loading, both initial yield and subsequent stress states must satisfy

the yield function f(σij , ε
p
ij , k) = 0:

f = 0 and f + df = 0 (7.69)

Hence, the consistency condition, which means that loading from a plastic state must lead

to another plastic state, applied:

df =
∂f

∂σij
dσij +

∂f

∂εpij
dεpij +

∂f

∂k
dk = 0 (7.70)

The project:"Building an ecological Europe - Master programs in English for students of Civil Engineering"

�nanced by Norwegian funds and domestic funds

121



"Building an ecological Europe - Master programs in English for students of Civil Engineering"

where the hardening parameter k is a function of plastic strain k = k(εpij).

4. The total increment of the strain is the sum of the elastic and plastic part:

dεij = dεeij + dεpij (7.71)

where the increment of the elastic strain satis�es the Hooke's law:

dσij = Ceijkl dε
e
kl (7.72)

From (7.71,(7.72) and (7.28) we obtain:

dσij = Ceijkl (dεkl − dεekl) = Ceijkl

(
dεkl − dλ

∂g

∂σkl

)
(7.73)

Using (7.73), relation (7.70) takes the form:

∂f

∂σij
Ceijkl

(
dεkl −

∂g

∂σkl

)
+

∂f

∂εpij
dλ

∂g

∂σij
+
∂f

∂k

∂k

∂εpij
dλ

∂g

∂σij
= 0 (7.74)

then we have:

dλ =
(∂f/∂σij)C

e
ijkl dεkl

h+ (∂f/∂σmn)Cemnpq(∂g/∂σpq)
(7.75)

where h is so-called the hardening function de�ned by:

h = − ∂f

∂εpij

∂g

∂σij
− ∂f

∂k

∂k

∂εpij

∂g

∂σij
(7.76)

Then the increment of plastic strain is given by:

dεpij = dλ
∂g

∂σij
=

(∂f/∂σrs)C
e
rskl dεkl

h+ (∂f/∂σmn)Cemnpq(∂g/∂σpq)

∂g

∂σij
(7.77)

The stress-strain relations for an elastic-work hardening plastic solid are:

dσij = (Ceijkl + Cpijkl) dεkl (7.78)

where:

Cpijkl = −
Ceijtu (∂f/∂σrs) (∂g/∂σtu)Cerskl
h+ (∂f/∂σmn)Cemnpq (∂g/∂σpq)

(7.79)

In general Cpijkl 6= Cpklij because f 6= g. In the case when the plastic potential is the same

as the yield function f = g, the �ow rule (7.77) is called associated �ow rule, we have:

Cpijkl = −
Ceijtu (∂f/∂σrs) (∂f/∂σtu)Cerskl
h+ (∂f/∂σmn)Cemnpq (∂f/∂σpq)

(7.80)

The last tensor is symmetric.

Problem 20 Show that the relation (7.75) reduces to the relation (7.53) for an isotropic

elastic-perfect plastic material with associated �ow rule.
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Solution: In this case from (7.76) we have h = 0 (the functions f and k do not depend

upon εpij). For isotropic material, from (6.21) we have:

Ceijkl = λδijδkl + µ(δikδjl + δilδjk) (7.81)

then:
∂f

∂σij
Ceijkl = λδkl

(
∂f

∂σij
δij

)
+ 2µ

∂f

∂σkl

By substituting this relation into the relation (7.75) and using the relation between the

elastic moduli λ = K − 2µ/3 (see Table 6.2), we get (7.53).

The isotropic-hardening rule assumes that the initial yield and subsequent loading

surface throughout the deformation process are de�ned by:

f(σij , k) = F (σij)− k(εpe) = 0 (7.82)

so the initial yield expand without changing the shape. Here k is a scalar function of

deformation history which de�nes the size of the current yield surface. It is a monotoni-

cally increasing function of a history parameter. This parameter can be taken to be the

generalized plastic strain (7.66):

dεpe =
√

2/3 dεpij dε
p
ij =

√
2

3

(
dλ

∂g

∂σij

) (
dλ

∂g

∂σij

)
= dλ

√
2

3

∂g

∂σij

∂g

∂σij
(7.83)

or with the total plastic work (7.67):

dW p = σij dε
p
ij = sij dε

p
ij = (dλ) sij

∂g

∂σij
(7.84)

where sij is the deviator of stress, because of the plastic incompressibility.

Problem 21 Calculate the hardening function h in (7.75) for elastic-strain plastic harden-

ing for an isotropic material satisfying the associated Huber-Mises �ow rule f =
√
IIs−k =√

1

2
sij sij − k in the case of linear hardening σY = Y +E1 ε

p
e (Y is the initial yield value,

and σY is the actual yield value, see Figure 7.12).

Solution:

For the Huber-Mises yield criterion f =
√
IIs − k, we have k(εpe) = σY (εpe)/

√
3,

where σY (εpe) is the tensile yield stress. We can �nd this from the stress-strain curve in

tension (or compression). For linear hardening materials [5]:

σY = Y + E1 ε
p
e (7.85)

here E1 is a material constant, then we have:

W p =

(
Y +

1

2
E1 ε

p
e

)
εpe (7.86)

Then

σ2
Y = Y 2 + 2E1

(
Y +

1

2
E1 ε

p
e

)
εpe = Y 2 + 2E1W

p (7.87)
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In plastic zone, material must obey the yield function (7.102) and the equation of

equilibrium, now in the form (see (6.182)):

dσrr
dr

+
σrr − σϑϑ

r
= 0 (7.105)

Substituting (7.104) into (7.105), and integrating we obtain:

r = C
√√√√ 2
√

3
(
−σrr +

√
4Y 2 − 3σ2

rr

) exp

−√3 arctg

√
2Y −

√
3σrr

2Y +
√

3σrr

 (7.106)

with condition
σrr
Y

< 1 (∗∗)

The integration constant C can be found from the boundary condition σrr = 0 at

r = a :

a = C

√
1√
3Y

exp
(
−
√

3 arctg 1
)

then C = a
4
√

3
√
Y exp

(√
3π

4

)
(7.107)

then in the plastic zone, the component of stress σrr is follows:

r

a
=

√
2Y

−σrr +
√

4Y 2 − 3σ2
rr

exp


√

3π

4
−
√

3 arctg

√
2Y −

√
3σrr

2Y +
√

3σrr

 (7.108)

Having σrr, we can �nd the tangential component σϑϑ in the plastic zone using the

relation (7.104). By continuity, the components of the stress must be equal in the

boundary r = rpl, then we have the following system of equations to �nd the value

of radial stress on the boundary between elastic and plastic zones q and rpl:

rpl
a

=

√
2Y

−q +
√

4Y 2 − 3 q2
exp


√

3π

4
−
√

3 arctg

√
2Y −

√
3 q

2Y +
√

3 q


1

2

(
q +

√
4Y 2 − 3 q2

)
=

p b2 − q r2
pl

b2 − r2
pl

− b2(q − p)
b2 − r2

pl

(7.109)

3. Maximal load p = pmax

When p reaches the value pmax, the plastic zone spreads to r = b, so σrr = pmax at

rpl = b, we have a following equation to �nd pmax:

b

a
=

√
2Y

−pmax +
√

4Y 2 − 3 p2
max

exp


√

3π

4
−
√

3 arctg

√
2Y −

√
3 pmax

2Y +
√

3 pmax


(7.110)
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