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Chapter 1
Introduction

In this text, solid bodies are assumed continuous and the molecular structure
of materials is neglected. We assume that the matter of a body can be indefinitely
divisible and accept the idea of an infinitesimal volume of the body as well as the
notion of a particle so that the we can make use of the mathematical calculus.

Under the mechanical (applied surface traction, body forces) and thermal
(heating, cooling) interactions, a body deforms. Internal forces will be produced
between the parts of this body. The intensity of the internal forces will be called
stress. The amount of deformation that a body undergoes is described by strain.
When the stresses are small and removed, the body will revert to its original shape.
This behaviour is called elasticity.

A larger stress may cause plastic deformation. After a body undergoes plastic
deformation, it will not revert to its original shape when the stress is removed. This
phenomena is called plasticity.

Theory of Elasticity and Plasticity tries to explain the mechanical and geo-
metrical changes of the body under interactions. Since deformable solids are special
cases of continuous media, and since this is the first time the students of our faculty
have deal with the subject, we will present in details the governing equations for the
study of deformation and stress of a continuous material.

In Chapter 2, we will give a brief introduction to tensor calculus because
tensors (and especially tensors of second order [9]) are constantly used in mechanics
of continuous media. We are already familiar with the notion of scalars and vectors.
A scalar is a quantity with magnitude only. Examples of scalars are temperature,
time, mass...They are completely defined by only one value, e.g. degrees, seconds,
kilograms...A free vector is a quantity with magnitude and direction. Examples of
vectors are velocity, force, acceleration...they can be defined in a system of coordinate
by three values, for example, three components on the axes which together specify
both magnitude and directions. Tensors of second order, like strain, stress...are

not familiar |7]. Stress which will be discussed in this course is not encountered in
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everyday life. It has nine components, six of which are independent and their values
depend on the considered point and orientation relative to a set of reference axes.
At a particular orientation, six components become zero and stress has only three
principal components. These factors make stress difficult to understand without a
deep consideration. Chapter 2 shows that scalars, vectors and tensors of second
order belong to the same family of quantities: the tensors.

Kinematics is presented in Chapter 3. It is a study of the geometric changes or
deformation in a body, without the consideration of forces causing the deformation.
This is only a geometrical problem, no physical principle is involved. We’ll start
with the notion of motion, displacement then a measure of deformation: a strain
tensor. We will study the strain-displacement relations and relations between their
rates. Chapter 4 is dedicated for the study of stress state in a body under loadings.

The governing equations for the study of deformation and stress of a body are
the global laws presented in Chapter 5. These principles common to all media (such
as conservation of mass; the balance of linear momentum, moment of momentum,
and energy; and the entropy inequality law) are applied. Kinetics is the study of the
static or dynamic equilibrium of forces and moments acting on a body. Thermody-
namic principles are concerned with the conservation of energy and relations among
heat, mechanical work, and thermodynamic properties of the body. First, we will
derive these laws in an integral form, formulated for a finite volume of material in
the continuum. Next, we will present the field equations for particles at every point
of the studied field.

The relations between stress and strain for a specific material are called con-
stitutive relations. We will derive the constitutive relation for elastic bodies in
Chapter 6 and for elastic-plastic bodies in Chapter 7. Obtained system of equations
will be applied to solve some practical engineering problems.

Several own or cited illustrative examples and exercise problems aim to test
and extend the understanding of concepts presented.

The authors of this text have been working together during their stay in
the years eighty of last century in the Institute of Technological Researches of the
Polish Academy of Sciences, and during the stay of the first author from 2002 to
2012 at the Faculty of Civil Engineering and Architecture of the Lublin University
of Technology.
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Chapter 2
The use of tensors

The tensors (mostly tensors of second order) play a very important role in
continuum mechanics. All laws of continuum mechanics must be formulated in terms
of these quantities that are independent of coordinates. In this chapter we give a

brief summary of tensor calculus.

2.1 Index notation

(a) In a three-dimensional space, frequently we denote the axes of the cartesian
coordinate systems as x,y, z and the unit vectors as i, j, k. For future convenience,
it is useful to abbreviate them by using a single component with a generalized index,

SO we write xq, To, T3 O
x; (i=1,2,3) (2.1)

and we can denote the unit vectors for example as e; (i = 1,2, 3).

Also, the homogeneous linear function can be defined as
3
a171 + axTy + azry = Z AT, = 0 (2.2)
i=1

where a,, (m = 1,2,3) are constants. The set of variables a;, x; ... that have only
one index is called object of order one, and ay, as,az or x1,xs, x5 ... are called its
components. In this case the index i ranges from 1 to the dimension of the related
space, and during this course the indices have mainly values 1,2 and 3.

(b) The homogeneous quadratic function has the form

a11<l’1)2 + A12X1T2 + 13173 + a91T2T1 + CLQQ(.TQ)Q + a23x2x3+ (23)

3
2
+CL31£C3(L’1 -+ a32X3T2 -+ a33($3) = E A Ly = 0

m,n=1
where a,,, are constants. The coefficients of this function have 2 indices. We will

call them objects of order two. Each object of order two has 3% = 9 components.
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(c) In the same way we can define the objects of order three and four as
ijk, Ajjrl (2.4)

which have 3 and 4 indices respectively. Object of order three (in three-dimensional
space) has 3% = 27 components and object of order four - 3* = 81 components.
Object a, which has no index is called object of order zero. It has 3° = 1

component.

2.2 Summation convention

In the expressions (2.2) and (2.3) we can eliminate the use of the summa-
tion symbol Y by adopting the following convention: If an index occurs precisely
twice in a term of an expression, then it will be understood that we have the sum-
mation with respect to that index over its range (in this case from 1 to 3). Now the

expressions (2.2) and (2.3) can be rewritten as follows

An index that is summed over is called a dummy indez. Again, this index itself can

be freely chosen because of the fact that the particular letter used is not important:
Ty = Q;T; = a;T; etc. (2.6)

An index that is not summed over is called a free index which can take any value
from the set of numbers 1,2 and 3. Note that the free index appearing in every term

of an equation must be the same. Hence the equation a; = by has no meaning.

2.3 Some operations
(a) Addition and substraction - defined only for objects of the same order
Qi + bij = Cij, a; + bz = C; ete.

(b) Multiplication - can be applied for objects of any order. Multiplication of an

object of order m by an object of order n yields object of order m + n
Cijht = Qijb,  Cij = a;b;

(c) Contraction: Consider object of order four A;;y;, a set of 81 components. Giving
two indexes the same letter, say by replacing the j by ¢, will result in A;;;. Con-
traction reduces the order of the object by 2, so this object now has only two free

indices (k and [), a set of 9 components, each being the sum of three of the original
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components Ajix = Ar1x + Aook + Assrr (the summation convention applied). This
set now is an object of order two. As another example, B;; is the contraction of the
object B;; with

Bi; = Bi1 + By + Bss

which now is a scalar called the trace of B;;.

2.4 Some special objects

Symmetry and anti-symmetry
a;; = a;; — symmetry object (6 independent components)
a;; = —aj; — anti-symmetry object (only 3 independent components
because ay; = ag = agz = 0)
Aiji = Ajii = Arij = —Aigg = —Agji = —Ajir, absolute anti-symmetry object
of order three.

Such object has only one independent component Ajps. All others are equal to
+A1a3 or —Aj93 whether or not the indices permute like 1,2, 3. Whenever the values
of any two indices coincide, A;;;, vanishes, for example Ay = Ags3 = 0.

Absolute anti-symmetry object for it Aj93 = +1 is called the permutation

symbol and is defined by
eijk: (27)

€123 = 1, €931 = 1, €913 = —1 etc.

The Kronecker delta

L i
by=13 (2.8)
0 if i#

Note that because of the summation convention
Okk = 011 + 022 + 033 = 3

It is easy to verify that A;;0;, = Aj.
We give without proof the following theorem and lemmas concerning the

permutation symbol €;;; and the Kronecker deltar d,,,:

Theorem 1
€ijk€mnp = 6im6jn5kp + 5in5jp5km + 6ip5jm5kn_ (29)

_5im6jp5kn - 5ip6jn5km - 5in6jm6kp

The project: "Building an ecological Europe - Master programs in English for students of Civil Engineering’
financed by Norwegian funds and domestic funds



"Building an ecological Europe - Master programs in English for students of Civil Engineering”

Lemma 1 Replacing p =k in (2.9) we have
€ijk€mnk = 52m5]n - 5in5jm

Lemma 2 Nezxt, putting j =n in (2.10):

€Eink€Emnk — 25@ (211)
Problem 1 Prove that if A;; is an symmetric object, and B;j;- anti-symmetric
object with respect to the indices i,7, which means A;; = Aji, Bijx = —Bjir, then
AijBijk: =0.
Solution:

1 1 1 1 1 1
AijBiji, = Aij <§ Bijk + B Bz’jk) = Ay (5 Bijk — B Bjik) =35 AijBijk_§ AjiBjir, =

1 1

We have used in the second term the symmetry of A;; = Aj, then changed the
dummy indices ¢ — j; 7 — 1.

2.5 Determinant

The determinant is defined as

ail; aiz as

A= det]aij\ = | G921 Q29 23
31 daz2 0ass
A = a11a2033 + A12G23a31 + Q13021032 — A31022013 — Q1103203 — (21012033 (2-12)
or
A= €ijk A31A 5203
The right side of this expression is an absolute anti-symmetric object with respect
to the indices 1,2, 3:
€ijk Ai1Q520k3 = —€ijk Bi20510L3 etc.
hence we can rewrite (2.12) in the form
Emnp D = €ijk Qi QijnCkp (2.13)

Multiplying the above expression by €., using (2.11), after putting m = ¢ in it, we

get
1
A= 6 €ijk €Emnp AimAjnAkp (214)
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2.6 Coordinate system and vector algebra

Consider a cartesian coordinate system x; in the three dimensional space
with the unit vectors on these axes e;, (i = 1,2,3). We distinguish two kinds of
coordinate systems: the right-handed and the left-handed presented on the Figure

2.1. In this course, we use only right-handed coordinate system.

__/
right-handed

Xy

Figure 2.1: Right-handed and left-handed coordinate system

Let a be any vector. The decomposition of the vector a on the axes x; will
be:

a=a; +a; +ag =ae; + ases + azez = q;e; (2.15)

where a; are components of a. Let b be another vector, b = bger. The scalar

product of vectors a and b is defined as

a-b =|a||b| cosa (2.16)

where |a| = /a2 + a2+ a2 = Vamm = 1/8;;0;a; stands for the absolute length of
the vector a, and a is the angle between the two vectors a and b measured in the
plane containing them. From the equation (2.16) we see that if either of the vectors
is a unit vector, the scalar product gives the projected length of the other vector in

the direction of the unit vector. Hence the scalar product e;-e; is 1 if 2 = j and 0
if © # j:

b
1%y .
a

Figure 2.2: Scalar (dot) product
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Since the scalar product of vectors is distributive:
a- b = (aie,-) . (bjej) = aibj(ei . ej) = 6,fja,-bj = a,fb,- (218)

The vector product (also called the cross product) of two vectors a and b is the
vector ¢ = a X b satisfying the following three conditions:

1. Its absolute value is equal to the area of the parallelogram spanned by the
vectors a and b (see Fig. (2.3)); i.e.,

lc| = |a] |b| sina = S. (2.19)

2. It is perpendicular to the plane of the parallelogram; i.e., ¢ L aand ¢ L b.
3. The vectors a, b, and ¢ form a right-handed coordinate system: i.e., the
vector ¢ points to the side from which the sense of the shortest rotation from a to

b is counterclockwise.

Figure 2.3: The vector product

Using the permutation symbols the three components of the product vector
can be written as follows:
Ci = €ijk Qj bk (220)
Remark: If vectors a and b are collinear, then the parallelogram OADB is degen-
erate and should be assigned the zero area. Hence the cross product of collinear
vectors is defined as the zero vector.
The scalar triple product (also called the mixed or box product) is defined as

the dot product of one of the vectors with the cross product of the other two.

a; as asg
a- (b X C) = b1 b2 b3 = €ijk Q4 b]' Ck (2.21)
C31 C2 C3

Geometrically, the scalar triple product is the (signed) volume of the parallelepiped
defined by the three vectors given. If the scalar triple product is equal to zero, then
the three vectors a,b and c are coplanar, since the "parallelepiped" defined by them
would be flat and have no volume. When a, b and ¢ make a right-handed coordinate

system, the scalar triple product is positive.
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2.7 Transformation of coordinates

The values of the components of a vector depend on the chosen coordinate
system. Often we have to reorient the coordinate system, and the components of
the vector change. Suppose that {e;, es, e3} and {€], e}, e,} are unit vectors of two
right-handed rectangular Cartesian coordinate system. It is clear that in this case
triad {ey, ez, €3} can be made to coincide with triad {e}, €}, €5} through a rigid body
rotation. Denote the values of the components of the vector a in these triads by

ai, as, asz and al, aj, ay respectively. Since the vector is the same, we have:
- AN
a = a;e; = a;e; (2.22)

Multiplying both sides of the above relation respectively by e or e}, taking into
account (2.17) we obtain:

ayp = aidik = (e; . ek)a; (2.23)
and

ay, = ;0 = (e; - €))a; (2.24)

Denoting the cosine of the angle between € and e; by Q;, we have respectively
from (2.23) and (2.24):

ap = ija;- (225)
and

In matrix notation the equations (2.26) are

Q

a/1 Qu Q12 (s 1
al2 Qa1 Q2 Q2 2 (2-27)
a’g Qs Q32 @33 as

Q

Here (a)’ denotes the matrix of vector a with respect to the primed basis €, and
(a) denotes the matrix of the same vector with respect to the unprimed basis €.
Equations (2.26) represent the transformation law relating the components of the
same vector with respect to different Cartesian unit bases. From the definition of

Q)jr we can write
e; = Qjrer, QjiQjr = QijQrj = i (2.28)
and as a result of the geometrical interpretation of the vector trip product of the
triad e
det Q;; = +1 (2.29)
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Figure 2.4: Transformation of coordinates

I

’
ey

3d

Figure 2.5: For Problem 2

Problem 2 Let the basic €] be obtained by rotating the basis e; about the es axis by

30°, as shown in Figure (2.5). In this figure, e3 and €y coincide. Find the Q;;

Solution:

We can obtain the transformation matrix in two ways:

1. Using the definition of Q;;, we have
Q11 = cos(e},e;) =cos30° = +/3/2
Q12 = cos(e},ey) =cos60° =1/2

Qi3 = cos(e},es) =cos90’ =0

33 = cos(eh, e3) =cos0’ =1
33

2. It is easier to simply look at Figure(2.5) and decompose each of the e;-

into its components in the e; directions, i.e.,
ef = cos30%; + cos60%; + 0 - es = (V3/2)é + (1/2)é
e, = —cos60%; + cos30%,+0-e3 = —(1/2)e; + (V/3/2)e,

The project: "Butlding an ecological Europe - Master programs in English for students of Civil Engineering”
financed by Norwegian funds and domestic funds
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Thus, we have:
Vv3/2 1/2 0
Qi =1 —-1/2 V3/2 0
0 0 1

2.8 Definition of Cartesian Tensors

We have proved that a vector is completely defined by its three components.
When we know the components of a vector in the z; coordinate system, then the new
components of such a vector can be calculated using the relation (2.26). Similarly,
let the coordinates of point P on the figure (2.4) be z; on the unprimed coordinate

system and z}, in the primed system. Then:
), = QT and Ty, = QurT; (2.30)
It follows that

oz,  Ox;
Qi = 5, = oz,

(2.31)

The transformation (2.26) is valid for any kind of vectors: radius vector, force,
velocity etc. and we shall adopt it as the definition of a vector, thus replacing the
traditional definition of vector as a quantity possessing direction and magnitude.
The basic reason is that it can be easily generalized to more complicated physical

quantity called tensors.

set of representation

air (a;', €] )
bl set of bases

pair (aij €i)

Figure 2.6: Illustration of tensor of rank two

Definition 1 The pair (a, ex) determines a zero-order cartesian tensor (or a scalar)

if the object a is unaffected by the transformation of coordinate system (2.28).

The project: “"Building an ecological Europe - Master programs in English for students of Civil Engineering"
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Definition 2 The pair (A;, ex) determines a first order cartesian tensor (or a vec-

tor) if under the transformation of unit vectors (2.28) object A; has the new values

Definition 3 A pair (A;j,e;) determines a cartesian tensor of order two if under
the transformation of unit vectors (2.28) the object A;; transforms into the new

values

The pairs (Aij,er) and (Aj;, ;) represent the same second order tensor. A;; are

177
the values of this tensor in a coordinate system ey, while Aj; are values in a new

coordinate system €.

In matrix notation, the equation (2.33) is:

Alll A/12 A/13 Qll QIQ Q13 All Al? AIS Qll Q21 Q31

A,21 A/22 A/23 = QQl Q22 Q23 A21 A22 A23 Q12 Q22 Q32

Agl AgQ AgS QBl Q32 QBS A31 ASQ A33 QlS Q23 QBS
(2.34)

Definition 4 The pair (A; k,ex) determines a tensor of n-order if under the trans-

formation of unit vectors (2.28) the object A,y transforms to
Al = Qjiee-Qmr Ai i (2.35)
both A; ;. and A;m have n free indices.

Tensors, whose components are the same in all coordinate systems, are called isotropic

tensors [9]. The permutation symbol is an example of cartesian isotropic tensor of

order three, and Kronecker delta is an isotropic Cartesian tensor of second order.
Tensors will be denoted by bold-case letters. We use the summation con-

vention and the following notations, with suitable extensions for tensors of other

order.
1 <> 0y, — the identity tensor (2.36)
(K)kl = Ay — transpose of A (2.37)
Al inverse of A — (AlklAlm = Okm) (2.38)
AB — AuBin of Apmn By (2.39)
A ®B — A;B, — the tensor product (2.40)
A-B — A.B, or Ay, By, = trace (Aé) (2.41)
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Now we can rewrite for example the relations between (2.32) and (2.33):

A'=QA A is a tensor of first order, vector (2.42)

T
A'=QAQ A is a tensor of second order (2.43)

We need to distinguish tensor of second order T from its matrix of repre-
sentation 7;; in some coordinate system e;. Using the notation (2.40), the tensor

product of two vector u and v is a tensor w with component w;; = u; v;. In matrix

form:
w11 W2 W13 U U1 UV2 U3
Wo1 Wog Wa3 = U2 (v1 vg v3) = UgV1  UgV2 UV3 (2-44)
W31 W32 W33 us u3v; U3V U3v3

The product tensorial e; ® e; of two unit vectors makes a basis for tensors of

second order. The components of them are for example

1 00 010
(er@e))=|[ 00 0 |; (er@ey)=10 0 0 (2.45)
000 0 00
Thus we can write:
T = E]‘ (ez- & ej) (246)
The tensor product has a following property for three vectors a, b, c:
(a®b)c=a(b-c) = (abjc;) (2.47)
From (2.47) and (2.46) we have:
(T ek) = ,I;j (ei X ej) €, = T;jei 5jk = Ek €e; (248)
Multiplying both sides of (2.48) scalar with e,, we obtain:
€y - (T ek) =€y - (,I'zk ei) - 5mz Ek - ka (249)

or Ty = €5, - (Teg). This formula is valid with respect to any bases used, for
example:

‘r=¢, - (Te)) (2.50)

mk —

and is very convenient in case when we only want to calculate some special compo-

nents of a tensor with respect to some chosen bases.
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2.9 Gradient of the scalar field. Normal vector to

the surface

Suppose that a scalar f is defined over a region of three-dimensional space
z; (1 =1,2,3). The equation
f(zi) =0 (2.51)
defines a surface in this space. Then vector

of
8272"

called the gradient of f, is normal to this surface at point x;.

The length of this vector can be calculate by

of | _ (95 or\?
Bxi n 8xk ﬁxk
Then the unit normal vector is as follows
of
ni= — 0% (2.52)

af af \?
(52 4%)

From now, we use the following notation for partial derivation:

of 0?A
=f;; ——— =A; 2.53
8331' f’ 8@ aZL’k itk ( )
The expression (2.52) now has the form
n; = f—l (2.54)
(frfr)?
Problem 3 Find the unit normal vector of the surface with equation:
f=aqxi—c=0, ay=ay=a3=1, c= const
Solution:
Calculate the partial derivations of f
of
Ji= o = a
then
a;
n;, = 1
(aray)?
When a; =ays =a3 =1
1 3
n1:n2:n3:—:\/_ (255)

V3 3

n- e = cos(n,ey) =

Sl
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2.10 Invariants of a symmetric tensor of second or-

der. Principal directions

Consider a symmetric tensor of second order T, whose representation on
bases e; is a symmetric matrix T}, = Tj;. Let n; be the components on bases e; of a
unit vector n. This vector determines a direction in the space. We are now looking

for a special direction n;, so that the multiplication Tj;n, is parallel to n;:
Tn=Tn = Tyn,=Tn; (2.56)
where T is a coefficient of proportionality. The above relation can be rewriten as:
(Ti, — Toi;) g = 0 with n;m; =1 (2.57)
In long form:

(Tll — T)m + Tlgng + T137’Lg =0 (258)
Toyng + (The — T)ng +Togng = 0
T31n1 + T32n2 + (ng — T)?”Lg =0

Equations (2.58) are a system of linear homogeneous equations in nq,ny and ns.
Obviously, a solution for this system is ny = ny = nz = 0. This is known as the trivial
solution. To find the nontrivial solutions, we note that a system of homogeneous,
linear equations admits a nontrivial solution only if the determinant of its coefficients
vanishes. That is,

det|Ti — Tou| =0 (2.59)

Expanding the determinant using (2.14) results in a cubic equation in 7.
T LT+ I1,T — I, =0 (2.60)
Equation (2.60) is called the characteristic equation of T, where

I = Ty =T+ T+ 153

1 1 1
11, = 5 €ijr €Elmr T Tgm = 5 (5il5jm - 5im5lj) T Tgm = 5 (Tz‘iTmm - Tmil?’nal)
_ Ty T Ty T3 T3z Ty
Tor T T3y T33 Tiz Tny
) Ty T Tis
I, = G ik Eimn TuTjw Ty = det|Tyj| = | Toy Too Ths
T3y T3 Tz3

The values I, I1,,111, are called the basic invariants of the tensor T. They are

independent. Every other invariants of the tensor T can be expressed in terms of
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the basic invariants. For example, in plasticity one frequently uses the so-called

octahedral invariant, defined as follows

e E— 3 1

It can be shown that when T is symmetric, the equation (2.60) has three real roots,

denoted by T4, Ts, T5. Having these roots, we can obtain from the equations (2.57)

three directions ng»i)
Ty, T3, T5 are called principal values of the tensor T and the corresponding vec-
(i)
J
directions are mutually perpendicular

(1 = 1,2,3), corresponding to the three roots. The numbers

tors n;’ are called the principal directions of the tensor T. These three principal

n® . n® = 5.,

A right-handed coordinate system can be oriented to line up with the principal
directions of the tensor T and we call it the principal axis system. By definition
Tn = T'n then using (2.50):

Ty =nW . (TnW) =n® . 7in® =1y

T3 =n® . (Tn®) = n® . T;n® = Ty

Ty, =n® . (Tn®) =n® . 1,n® =0...
Then the representation of T in this coordinate system is

Ty =1y, Toy =Ty, T3 = Ts; Ty =0 fori # k

A plane, its normal makes equal angles with each axis of the principal axes system

is called the octahedral plane.

Problem 4 Find the principal values and principal directions for the tensor

20 0
Tij=1 0 3 4
0 4 -3
Solution:
The characteristic equation gives
2-T 0 0
det|Ty, — Tow|=| 0 3-T 4 =(2-T)(T*-25)=0
0 4 —3-T
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Thus, there are three distinct eigenvalues, 71 = 2, T5 = 5 and T3 = —5.
For T} = 2, Eqgs. (2.58) gives

0ny =0; ny +4n3 = 0; 4ny — 5ngz = 0;

and we also have Eq. (2.57):

(n1)* + (n2)* + (n3)? = 1
Thus, ny = n3 = 0 and n; = %1 so that the eigenvector corresponding to \; = 2 is

nV = +e,
For T, = 5, we have
—3n1 =0; —2n9 4+ 4n3 = 0; 4ny — 8nz = 0;
thus (note the second and third equations are the same),
ny = 0; ny = 2ng;

and the unit eigenvectors corresponding to T, = 5 are

n® = j:% (2e2 + €3)
Similarly for 73 = —5, the unit eigenvectors are

n® = j:% (—eq + 2e3)
The right-handed principal axis system can be for example the triad: n® = ey,

1 . .
n® = NG (2e; + e3) and n®) = N (—eq + 2e3). In this triad, the representation

of tensor T is

2 0 O
05 0
0 0 =5
Problem 5 Given the tensor
2 00
Tij=10 20
00 3

Show that:

a) This tensor has the following principal values Ay = 3; Ay = A3 = 2 (obvi-
ously the ordering of the eigenvalues is arbitrary)

b) The principal direction corresponding to A\y = 3 is ‘ez and there are
actually infinitely many principal directions (any vector perpendicular to es) corre-

sponding to the double root.
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Problem 6 Given the tensor

2 0 0
T,=| 0 2 0
00 2

Show that:
a) This tensor has the triple roots Ty = Ty = T3 = 2.

b) Any direction is a principal direction.

2.11 The spherical and the deviatoric part of a ten-

sSor

Every tensor of second order can be divided into two parts: the spherical and

the deviatoric one.

T = % I 055 + i (2.63)
The spherical part of a tensor is defined as
1
3 I 055 (2.64)
and
by = Ty — % s (2.65)

is the deviatoric part of the tensor T. The deviator ¢;; has only 5 components

independent because its first invariant
Hence, deviator has only two non-zero basic invariants [1,, I11,.

Problem 7 Show that the octahedral invariant of the tensor Tj; is equal to the

octahedral invariant of his deviator t;;.

Solution:

Since I; = 0 then from (2.62) the octahedral invariant of the deviator is

V _I[[t \l tmi tim \/7\/ mi T o [ 6mz> < zm_3I 5zm>:
(2.67)
2 3
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2.12 The Gauss Theorem

We give without proof the Gauss Theorem. It asserts a remarkable connection
between surface integrals and volume integrals. If V is a volume bounded by the
closed surface S and A a vector field that possesses continuous derivatives (and is
singled valued in V). Divergence of the vector field A, denoted by divA is a scalar
defined by:

0A;  0Ay  0A3

divA = =A;; 2.68
v 8}(1 + an + 6X3 ’ ( )

The Gauss Theorem:
/divA dV = /A -ndS (2.69)
S

%
where n is the outward pointing unit normal vector to S. The integral in the right

side of (2.69) is called the fluz of the vector field A through the surface S. The
index form of (2.69) is

s A
we have used here the notation for partial derivation (2.53). Note that we may

extend this result to the case where A is a tensor field with the same proviso’s.

Problem 8 Prove that:
/x ‘ndS = /xml ds =3V (2.71)
S S

Solution:
A useful application of the Gauss theorem involves the computation of the

volume of a solid. Consider the integral

S

where x is the position vector and all other quantities have their meanings as above.

The divergence theorem states that

61'1 8:1;2 8x3 . o
/xmz dS = /x”d‘/ /(axl e 8x3> dV = /(1+1+1)dV—3V(Q.E.D.)
1%

For example, in the case of a ball (sphere) of radius R, x-n = |x||n|cos0° = R and

relation (2.69) gives
R/dS = RS =3V
S
The surface area of a sphere is S = 47 R?; 4w R3 = 3V, then V = (4/3)7 R3.
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Chapter 3

Strain

3.1 Deformation gradient and displacement

We look for a tool to describe the deformation of a solid. At time %y the solid
stands in an initial configuration Bp. In this configuration, a particle P is located
by its location vector X with components X; in a Cartesian coordinate system with
orthonormal basis e;. As time passes, the particles of this solid move to their relative
positions. At time ¢ the solid deforms and stands in the current configuration B.
The particle Py whose initial location vector was X can be located by its current

location vector X, point P. The components of X are z; = z;( Xy, t). We write:
x = x(X,t) or in index form z; = z;(X;, X, X3,1) (3.1)

Eq. (3.1) is said to define a motion for a solid; these equations describe the path

X
3| x
8 BO_ i_’nEili‘(»:orl'wmbn
/ N
‘ Py J9X N u+du -
A ONG
dx |
X | P |
\\,,, /
X mnmmé:m;---- X2
X4 . . Xy
« Figure 3.1:

1

line for every particle of the solid. We suppose that the transformation Fp <> P is

single value and continuous. It is necessary that Jacobian matrix

ox 81171;
J=|=I= 0 3.
axX |~ |ox;|” (32)
and we can find the inverse function of (3.1)
X = X(x,t) or in index form X; = X;(zq,xs, z3,1) (3.3)
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Consider now in the initial configuration an infinitesimal vector dX, which links the
solid particle P, located at X to the nearby particle Qg located at X + dX. After
deformation dX becomes dx linking the same solid particles, which are now located
at P and @ as shown in Figure (3.1). Vectors dX and dx are material vectors
because they consist of the same solid particles. Vector dx can be obtained from
dX by differentiating (3.1). We obtain:

ox 8%
or 9
Ly

F is named deformation gradient transporting any material vector dX onto its de-
formed dx.
The vector u(X, t) is called the displacement of the particle whose initial and

current positions are Fy and P respectively:
u=x—X or UZ:Z‘L—XZ (36)

From Equations (3.5) and (3.6) the deformation gradient F can be expressed as a

function of the displacement vector u according to

ou au,

+ o e (3.7)

0X

3.2 Material and spatial description

When a solid is in motion, its properties like temperature, stress tensor (to be
defined in the next chapter) may change with time. We can describe these changes
by one of two ways:

1. Following the particles, i.e., we express these properties as functions of
the particles (identified by the material coordinates Xi; X5; X3 and time ¢. Such
a description is known as the material description. Other names for it are the
Lagrangian description and the reference description.

2. Observing the changes at fixed locations, i.e., we express theses properties
as functions of fixed position z1; xo; x3 and time t. Such a description is known as a
spatial description or Eulerian description. The spatial coordinates x; of a particle
at any time ¢ are related to the material coordinates X; of the particle by Eq. of
motion (3.1). That is, if the motion is known, one description can be obtained from
the other.

Note that in spatial description, what is described (or measured) is the change
of quantities at a fixed location as a function of time because spatial positions are

occupied by different particles at different times.
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Problem 9 Given the function of motion in Lagrangean description:

r = X1+CLX2
9 = X, (3.8)
r3 = X3

Find the spatial description, the strain tensors and the displacement in Lagrangian

and Eulerian descriptions.

Solution:

The inverse equations of (3.8) give the spatial description:

X, = x1— axy
X2 = I9 (39)
X3 = I3
The Jacobian matrix is:
1 a O
J=10 11 (3.10)
0 01

Then we find the Lagrangian strain tensor:

L/ oe 8 0 a/2 0
z;, Ox;
E = - : Ly = 2 3.11
0O 0 O
and the Eulerian strain tensor:
1 09X, 0X 0 e/2 0
= G- s ) = 2 —a2/2 3.12
ik ) < J axj 83%) CL/ a / 0 ( )
0 0 0

The displacement in Lagrangian and Eulerian descriptions:

Uy = aXy Uy = axr2
Uus = 0 Us = 0

Problem 10 Given the function of motion in Lagrangian description:

r1 = X1 -+ XQ(@t — 1)
To = X1(6_t — 1) + X5
Trs —= X3

Find the inverse function and the Lagrangian u(X,t) and Eulerian u(x,t) displace-

ment functions.
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Answer: P
X, — —x1 + zo(e — 1)
1—et —et
X, — zi(et —1) — a9
1 —et —et
X3 = I3

Uz = 0
- + Jfg(et - 1)
= 1—et —et
B (et — 1) —
t2 = 2 1—et —et
us = 0

3.3 Measure of deformation. Strain tensor

Deformation induces changes in the length of material vectors and the angle
they form. Calculate the square of length of material vector dX at time t; and

vector dx at time ¢:
|PoQo|* = dS? = dX} + dX2 + dX2 = dX;dX; = 6, dX;dXy = dX -dX (3.14)

PQ|? = ds* = da? + da? + da? = daidr; = dx - dx 3.15
1 2 3
and using (3.5) we have:

ds* — dS? = ax X 9%, dXy — 05 dX;dXy = 2 B, dX;dX; = dX (2E) dX
J
(3.16)
where: | /s 8 .
Z; Z;
Ejp ==~ L~ == (FTF -1 3.17
w9 (an 0X,, Jk) 5 ) (8.17)

Tensor E is called Lagrangian or Green’s strain tensor (functions of lagrangian co-
ordinates X). The superscript symbol ”7” denotes the transpose tensor. Tensor E
is symmetric.
In terms of displacement vector, we can write:
ou,; 0x;
0X;  0X;

— Ok (3.18)

and Eq (3.17) now takes the form:

E. _1 an i 8uk i 8uz 8uz
T \0x, T 0X; | 8X; 0X,

(3.19)
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or
1
E = B (gradu + grad"u 4 grad"u - gradu) (3.20)

where gradu is a second-order tensor known as the displacement gradient. The

matrix of gradu with respect to rectangular Cartesian coordinates X is:

(Bul ou, 6u1\

X, 09X, 00X,
. . 8u2 8u2 6u2 .
gradu = oX, X, 9Xs (3.21)

8u3 all,g Bu;:,
\ 39X, 39X, 9X, )

When using the Eulerian coordinate, we have the symmetric Eulerian strain tensor,
functions of spatial coordinates x:

. 1 (Buj ou, Oy, Bu,)

A — 3.22
ik 2 6.’13]; 8:cj 61‘]‘ Bxk ( )

3.4 Geometrical meaning of the components of the

strain tensor

Xs
R, R
d82 d52 Q
ds;
p dS, Q % P
o o

Figure 3.2:

Calculate the unit elongation (i.e., increase in length per unit original length)

of PQ:
IPQ| — [PoQo| _ ds —dS

|PoQo| dS
When Apg > 0 we have elongation, and when Apg < 0 - reduction. Denoting by
v; = dX;/dS. we have

(ds —dS)(ds +dS) _ (ds —dS)(ds —dS +2dS) o, WX Xy
dsds - dS dsS TSR 4S dS

(3.24)

and
/\pQ(/\pQ + 2) =2 E;pv; 1 (32'—))
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Consider an element dS laying on OX; in the initial configuration, then v; = 4,
(11 = 1,15 =v3 =0). From (3.25):

)\11(/\11 + 2) =2FEn = /\11 =+v14+2F; -1 (326)

hence the unit elongation of element dS = dX; that was in the X direction in the
reference state depends on component F1j.
Let PyQo and PyRy be two unit vectors perpendicular to each other that were

on the direction X; and X in the reference state, see Figure (3.2):
PoQo || X1, Apg=Xu; v =(1,0,0), v =4y

PoRo || Xao Apr=Aw; v*=(0,1,0), v} =20y

Vi Yi T s
Because
LX, = dr Oui 5. ax
Ti = U i i= | 3y i
oX, k k
then
ou s,
v = —8Xk ’ dX; = Ou; + 0; %@
i ds F\ox, T ") ds ds
or
(30
8Xk ik 8ul 1%
= 2 2 dX, = ,
g ds k (an * 5”“) )

Due to motion, FPy@Qy and PyRy become P(Q) and PR respectively. Let the angle
between the two deformed vectors P() and PR be denoted by ¢7,:

2E
1+ 2E71)(1 4 2E%)

(3.27)

1/(*1) -1/(*2) = COS Py = \/(

so the change of the angle between two vectors that were on the directions X; and
X5 in the initial state, depends on Ei1, Fas and Ei».
Hence, six components of the strain tensor E;; describe the deformation of

the body. When E;; = 0, then Apg = 0 and ¢* = 0 = there are no deformations.

Problem 11 Given the following displacement components [2]:
uy = kX3 ug =uz =0 (3.28)

(a) Sketch the deformed shape of the unit square OAyBoCy shown in Fig-
ure 3.5.

(b) Calculate the Lagrangian strain tensor.

(¢) Find the angle between deformed vectors (i.e., dx, and dxs) of the mate-
rial elements dX1 and dXsq, which were at the point C.
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X2
k
X, A dx,
G| o B B
./ o,
.eE
e‘ X1
0 A, A

Figure 3.3:

Solution:

a) For particle O the initial coordinate X; = 0,Xy = 0,X3 = 0. From
Eq. (3.28) u; = us = ug = 0, so this particle is not displaced. The particle A is
also not displaced because X1 = 1, Xy = 0,X3 = 0. For the material line CpBo;
X2 = L;up = kjup = ug = 0, the line is displaced by k units to the right. For the
material line OCy and AgBy, u; = kX2;uy = ug = 0, each line becomes parabolic
in shape. Thus, the deformed shape is given by OABC shown in Figure 3.3.

b) Using (3.20) we obtain:

0 kX, 0
Eij - kX2 2k2X22 0
0 0 0

¢) At point C for X; = 0; Xy = 1; X3 = 0 tensor strain has the form

0 k£ O
E;=1|k 2% 0
0 0 O

For the element dX;. the unit elongation is Ey; = 0. For the element dX5. the unit
elongation is Egs = 2k?. As Ej =k, from the Eq. (3.27):

cos @ty = 2FE5 - 2k
2T 04 2En)( + 2Bn) VIt 4R

Since the strain tensor E is symmetric, there exists at least three mutually
perpendicular principal directions ni;ng;ng with respect to which the matrix of Ej;

is diagonal (see Section 2.10). That is,

E, 0 0
Ez'j — 0 E2 0
0 0 Ej

Geometrically, this means that infinitesimal line elements in the directions of nj;ns;ng

remain mutually perpendicular after deformation. The unit elongations along the
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principal directions (i.e., Ey; Ea; E3) are the principal values of E, or principal
strains. The principal strains are to be found from the characteristic equation of
E (see (2.60)), i.e.,

B —I,E?+1I,E—1IIl,=0 (3.29)

where (see Eq.(2.61))

I, = FEn+ Ey+ Ess

FE FE FE FE E E
I, - 1 Eie 22 Liag 33 Ly (3.30)
Ey Ea Esy  Esg Es By
En Eip Eis
Ill;, = | Ey FEy Es
Es1 Esy Esg

The coefficients I; 11, and 111, are called the principal invariants of the strain

tensor.

3.5 Material derivative. Velocity

The time rate of change of a quantity (such as temperature or velocity or
stress tensor) of a material particle is known as a material derivative. We shall
denote the material derivative by a dot over this quantity. For example, if the
displacement is a function of Lagrangian coordinates u = u(X,t). For fixed X,

that means for a particular particle, the velocity is the time partial derivation:

V1= —a“gj’ ) (3.31)

When a spatial description of the displacement is used, we have u = u(x,t), where
x;, the coordinates of the present positions of material particles at time ¢ are related

to the material coordinates by the known motion z; = x;( X1, Xo, X3,t). Then,

. Ou(x,t) N ou(x,t) dx

v=1u g o dt (3.32)
or in index form:
_ Oug(x,t)  Ouy daxy, _ Ou(x,t)  Ou
VST Ton ar YT T ot T ox (3:33)

In the same way we can calculate the material derivative of other quantities. For

example, acceleration a is the material derivative of velocity in Eulerian coordinates:

. Ov(x,t) N ov(x,t)

a=v=—p Y (3.34)
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Problem 12 Given the displacement field (3.13) where a = sint:

u = (sint)Xs uy = (sint)xq
Uy = 0 Uy =
Uz = 0 Uz =

Find the velocity.

Solution:
In initial coordinates v; = —, then:

ot

v; = (cost)Xy
Vg = 0

'U3:O

and we calculate the material derivative in spatial coordinates:

v = (cost)zy + t2vy
Vg = 0
V3 = 0

From these equations we obtain:

v; = (cost)zy
Vg =

V3 =

Problem 13 The motion of a continuum is given in the form [2]:
r1 = X1 + ktXo; 2o = (1 + kt) Xo; 23 = X3
If the temperature field is giwen by the spatial description
T = a(x; + z2)

then:

(3.35)

(3.36)

(3.37)

(3.38)

(3.39)

(3.40)

(a) Find the material description of temperature and (b) obtain the velocity

and the rate of change of temperature for particular material particles and express

the answer in both a material and a spatial description.

Solution:

(a) Substituting Eq. (3.39) into Eq. (3.40), we obtain the material description

for the temperature,

T = a[X; + ktXy + (1 + kt) Xo] = Xy + a(l + 2kt) X,

(3.41)
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(b) From Eq. (3.39)
Since the displacement is given in Lagrangian coordinates, the velocity is the

partial derivative par rapport t:
V1 = k?XQ, Vg = k’)(g7 V3 = 0 (342)

and the rate of change of temperature in Lagrangian coordinates:

T = 20kX, (3.43)
From equations (3.39) we obtain:
L2
Xy = 3.44
T 14kt (3.49)

By putting (3.44) in (3.42) and (3.43) we have the spatial description for velocity

and rate of temperature:

T2

U1 = U2 1+k’t7v3
T =2ak
Tkt

Although the Eulerian temperature field is independent of time, we observe the

change in time of temperature of each particle, because it moves in space.

3.6 The rate of deformation tensor

Calculate the material derivative of the material element dx. From (3.4)-(3.5)

we have: 5
b
dx = - dX =FdX 4
X= 2% (3.45)
then:
(dx) = dv =FdX = FF!dx (3.46)
or
dv = gradv dx (3.47)
where 9
\%
d — —_— -4
gradv = = (3.48)

This leads to the definition of velocity gradient:

L = gradv = FF! (3.49)
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In Cartesian coordinates:

(gradv);; =

c%l 8’1)1 81)1
axl 8x2 8x3
8?]2 (91)2 81)2
Oxry Oxy Oxs
87)3 @1}3 81)3
3x1 8m2 8x3

Decomposing L into symmetry and antisymmetry parts:

1

D = — (L + L") = the rate of deformation tensor

2
1

Q= 3 (L — L") = the spin tensor

With respect to Cartesian rectangular system of coordinates:

9
81’1
1 1 8?)2
Dy =5 (vij+ua) = | 5 (8_:701
L (Ovs
2 8$1
0
1 1 8’1)1
Qij =5 (vig—via) = | —3 <a—:)32 — 5
L (0w Ov
2 8.733

81)1

Oy

)
)

8’01

O3

81)2
81’1

)
)

3113
81’1

1
2

(

1
2

(

31}1

Ers

81)2

Oy

81}2

8353

O\ 1 (0n
8x1 2 81’3
L (0
2 8x3
] s
6x3 6x3
8@2 1 (91)1
8%1 2 81'3
l 01)2
2 8x3
(%3
8$2) 0

(3.50)

(3.51)

(3.52)

)
)

(3.53)

dus >
)

(3.54)

87)3

oy

81)3

Ers

61’1

81)3
81’2

Tensor D is called rate of deformation tensor and describes the rate of change of

length and the rate of change of direction of the material element dx, while the spin

tensor € only rotates this element (without changing its length).

3.7 Infinitesimal deformation

Assume that:

8Ui
0X;

<1

(3.55)
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then from (3.6) 0/0x; ~ 0/0X;, the current and the initial configurations can

eventually be merged x; ~ X;. The Lagrangian and Eulerian strain tensors coincide:

Eij ~ Ez’j >~y = 5 <31L‘] + 81:2) (356)

In Cartesian system of coordinate:

Ou L Oupy L (0w Ous
0, 2 \0xy Oz 2 \O0xs Ox
. 1 GUQ 8u1 GUQ 1 8u2 8'&3
A 2 <8x1 + 8952) 8.772 2 (81:3 * 8x2> (357)
L(Ous 0w\ 1 (Ous, Oup Ous
2 8$1 81’3 2 833'2 8$3 833'3

Tensor € is known as the infinitesimal strain tensor. Components €11, €99 and e33

are called normal strains, while ¢;; (i # j) are called shear strains.
8ui

u.
——|, then when

J J
the infinitesimal strain tensor |¢;;| < 1. On the other hand, when |e¢;;| are very

Since €;; has the same order of magnitude as < 1,

small, for example in the case of movement of rigid body |e;;| = 0, BXl can have
J
any order of magnitude.
The antisymmetric tensor
1 8ul 8uj
i = — — 3.58
wij 2 (83:] 8-772 ) ( )

is known as the infinitesimal rotation tensor.

Note: We can write the equations (3.22) in the form:

1 Ou; Oup = Ou; Ou, B 1
s = 2 (c%k dx; * Oz 3xk> BN (835 + wis) (Eni — i)

so Ej, = €j; only when €, and wj;, are infinitesimal.
Problem 14 Let us consider the finite rotation of a bar (see Figure 3.4). We have:

X = Recos ¥y x = Rcos (v + 1)
Y = Rsin v y = Rsin (0 + Jy)

The displacement vector in material description:
w(X,Y)=2—X = Rcos(¥ + ) — Rcost)g = X (cost — 1) — Ysind

v(X,)Y)=y—Y = Xsind+Y (cosd — 1)
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Yy
(x.y)

] (XY)

Figure 3.4:

The infinitesimal strain tensor has the form:

gz = cosV —1
Eyy = cost —1

Exy = 0

and cannot describe the rigid rotation of the bar properly (there are no deformations
here, but €5 = €4y # 0). If we calculate the Lagrangean tensor of deformation, then
we see that it is equal zero, for example:

Ju ou\? v \ 2
) S —— 1/2 — -
v +(1/2) 0X + 0X

0X

This is important in the case of deformation of bars or shells, when deformations

are small while the angle of rotation is finite.

The geometrical interpretation of components of the infinitesimal strain and
rotation tensors are presented in figure (3.5) in two-dimensional case. In this case,

the relations (3.26) and (3.27) take the forms:
Al = €11 A2 = € (3.59)

that means €17 and €23 describe the changes in length per unit of length in the
directions of the coordinate axes x; and Ty respectively. The decrease in angle
between the positive directions of the two coordinate line elements is described by

the component £12:
cos Py = 2¢19 (3.60)

and the rotation as the rigid body is described wjs.
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du due
0= x Fax,
u ! du;
0%, i X2
du dw
'E 2812 = ax2+ X,
FL au,
.axl aXz
du, du
o 200, =3_Xj_- 9IX,
2y, 3w
3, Ix,

Figure 3.5: Geometrical interpretation of € and w

3.8 Principal directions of the infinitesimal strain

tensor

Tensor € is a symmetric tensor of order two. We can find the principal

directions from the equations:

e I+ 1le—11I.=0 (3.62)
where:
I. = e
IIE = 1/2( Ei€j5 — SijEji) (363)

IIIE = detsij = (1/6) eijk emnp €im Ejn Ekp

From the characteristic equation (3.62) we find three principal strains €1, €9, £€5. We
can show that the first scalar invariant of the infinitesimal strain tensor has a simple
geometric meaning. Consider a rectangular parallelepiped based on three material
fibers along the principal directions of tensor €. Let dS1,dS2 and dSs be the boxes
before deformation, so the volume is dVy = dS;dS3dS;. These boxes have been
elongated and have the lengths (1 + £1)dSy, (1 + £2)dSy and (1 + £3)dS;. so the
volume after deformations is dV = (14 &1) (1 4+ &3) (1 + £3) dS;dS2dSs. Then

av —dVy

v, ~ J. = g = divu (3.64)
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It means that the first scalar invariant of the infinitesimal strain tensor is equal to

the unit volume change known as the dilatation. In Cartesian coordinates:

Yy B 8111 8112 0u3
I. = divu = %, + 7%, + s (3.65)

It is often useful to extract the deviatoric part (see (2.65)) accounting for the
material distortion only, from the deformation tensor €. The resulting tensor e is

the deviatoric strain tensor, expressed by

1

e=e— ;L1 (3.66)
or in index form: .
eij = gij — g Ekk 61’]’ (367)

The strain deviator e;; relates to the change in shape, while g, relates to the volume

change of the element.

3.9 The compatibility equations for the infinitesi-

mal strain tensor

Six components of the infinitesimal strain tensor ¢;; depend on three com-
ponents of the displacement vector u; (3.56), so we have six functions to find three
functions u;, then in general, we can not find a single-valued solution. Hence, the
components of the strain tensor must satisfy some conditions. They are called com-
patibility conditions or compatibility equations.

1. From (3.57), calculate the following derivatives:

82811 . (93u1
03 1073
82822 . 83u2
02 023014
82612 83U1 83U2

2 =
011014 01073 + 023015

then we obtain:
82611 82622 o 82512

(9x§ 8$f B 8x18x2

This relation says that given the elongations of two elements perpendicular each

other, then the change of angle between them is not arbitrary. Two similar equations

are obtained in the same way for other directions.
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2. By calculating the derivatives of shear strains:

5 derg 0%uy N 0%us
81'3 N 8x28x3 81'181'3
9 @ _ 821@ 1 82u3
0r; 0x30x;  0x901
9 % 82U3 X 82u1
0T 0r10r9  0x3019
we obtain :
0 _6823 X 8631 X 8512 —9 83u1 o 82611
81’1 81’1 axz 8.7)3 B 8x16x28x3 N 8x28x3

This relation says that when we know the angle changes of three elements that are
perpendicular to each other, then the elongations can not be arbitrary. Similar pro-

cedure can be followed and finally we obtain the six strain compatibility equations:

(92511 82622 . 82612
8ZE% 6m% N al’l 8:102
82522 02833 a2523
— = = 2—F 3.68
03 O3 Oxy O3 (3.68)
82833 82811 82831
0x? 3 Oxs 011
0 _8523 i 8831 i 6512 . 82611
8:761 81‘1 0:1:2 8273 N 0x28$3
0 8523 _ 8831 i 8812 . 82822
al’g 8:161 8.T2 8553 N 81’38331
0 8823 4 8831 _ 8812 L 82833
8:{;;3 8951 81'2 8553 N 81'18332

The above equations can be written in the following form using the permutation
symbol (2.7)

€phi €mjk Ekihj = 0 (3.69)
where we have used the notation for partial derivation (2.53):
D%y
€kihj — W
or in the form
Rijkl = €ijkl + €kij — Eiljk — Ejk,it = 0 (3.70)

The object R;ju generally has 3* = 81 components, but only six non-zero compo-
nents (the equation (3.68)) because of some symmetry (symmetry of the infinitesimal

strain tensor, the partial derivations etc.).
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3.10 Other strain tensors

Consider a cylindrical bar which has a uniform cross section S throughout
its length [ under uniaxial tension test (see figure (3.6)). Suppose the total load
on the end of a bar is P. The cross section area and the length before loading are
respectively So and lp. To describe the change of the form of the bar, we can use a
measure called the stretch ratio or extension ratio. 1t is defined as the ratio between

the final length ! and the initial length lo:

S(t)

P(t)

Figure 3.6: Uniaxial tension

A= — (3.71)
lo

The stretch ratio is used in the analysis of materials that exhibit large deformations,
such as rubber, elastomers, which can sustain stretch ratios of A = 2,3, ... before
they fail ([1]). On the other hand, traditional engineering materials, such as concrete
or steel, fail at much lower stretch ratios 0,999 < A < 1,001. To avoid the problem
of significant digits in calculation, we take another measure of strain as function of
this stretch ratio:

e=f()  f(1)=0,f(1)=1 (3.72)
where f is any function satisfying conditions f(1) = 0 and f'(1) = 1. The first
condition f(1) = 0 is obvious, the second condition f (1) = 1 assures that in case
of infinitesimal strain, all these measures are equal to the engineering strain (3.75).
Also for assuring one-to-one correspondence we take f monotonic, e.g. satisfying

condition f' >0 for A > 0. The Taylor expansion of this function is:

af 1 2 & f o
For example, following function used by Hill satisfies all above conditions
A1
e(n) =f(A) =—5— (3.74)

2n
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where n can take any value. Figure (3.7) shows some curves for different value of n:

€(n)

=1 n=112

Figure 3.7:

The case when n = 1/2 gives us the Cauchy strain or engineering strain

[—1
= (3.75)
lo
When n = 1 we have the Green measure of strain (3.17), n = —1 corresponds to the
Euler strain tensor (3.22). When n — 0
0) = li i AL 3.76
e()_nll)r(l)e(n)_n% 5,  — o (3.76)

we obtain the logarithmic strain, also called true strain or Hencky strain.
In general three-dimensional case, the deformation gradient F (3.5) can be

decomposed into two parts:

F=RU (3.77)

where U is a symmetric tensor and R is a proper orthogonal tensor (with detR = 1).

The decomposition (3.77) is unique and called polar decomposition. Tensor U is

known as the stretch tensor and relates to the deformation gradient by:
U2 =F’F (3.78)

Tensor U is a symmetric tensor of second order, hence it has three principal direc-
tions N;. From (3.78) tensor U is positive definite, so its three principal values U;
are positive. In case of uniaxial tension, the principal value Uy is exactly the stretch
ratio A (3.71). Once U is obtained we can calculate R by the relation R = FU™!
and the Hill's family of strain measure takes the form:

1

o (U™ —1)N; ® N; (3.79)
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Equations (3.70) are the representation of tensor E(n) on principal axis of the stretch
tensor U. The meaning of each E(n) for every value of n is the same as mentioned

before.
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Chapter 4

Stress

4.1 Introduction
Continuous distribution of material in a volume is defined by a function

known as density o
dm

av
Then the mass of body M is:

M:/dm:/vng (4.2)

When p = const, the body is homogeneous, then M = pV.

0= (4.1)

Figure 4.1: Body (mass) force

In the previous chapter we have studied the kinematics of bodies without
considering of the forces causing the motion. There are two kinds of forces, namely
body (mass) and surface forces, acting on bodies. The body (mass) forces are
those that act on throughout a volume (mass) (for example: gravity, inertial forces,
magnetic forces etc.). Surface forces are those that act on a surface, separating parts
of the body.

Let the infinitesimal body force dP acts on the element of infinitesimal mass

dm and of infinitesimal volume dV. The mass force is defined as:

dp .
b=— (4.3)
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and the body force is defined as a density of force and thus has units of newtons per

cubic meter [N/m?]:

dP
b* = — 1
i (4.4)
By using (4.1) we have:
b* =pb (4.5)

Problem 15 Culculate the body (mass) force in gravity field.

Solution: In gravity field dP = dmg. Here g is the gravity acceleration |g| =

9,81m/s%, then the mass force is b = g and the body force b* = og.

4.2 Internal forces. Vector of stress

Consider a body shown in Figure (4.2). Imagine a surface such as S which
passes through an arbitrary internal point M and has a normal unit vector n. The
surface divides the body into two parts. The interactions between these two parts
have the character of surface forces and we call them internal forces. Considering
the lower part as a free body, let AP be a resultant force acting on a small area AS
on surface S containing M. We define the stress vector (from upper part to lower

part) at the point M as the limit:

/

Figure 4.2: Vector of stress

AP
™ — 1im = ,
™= Algll»o AS (4.6)

Thus stress is defined as the intensity of force at a point. It has, as expected, units
of newtons per square meter [N/m?]. When upper portion is considered as a free

body, following Newton’a law of action and reaction, we shall have the stress vector
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T at the same point on the same surface equal and opposite to that given by
Eq (4.6), that is:
T(n) — ) (4.7)

In general, vector of stress is non-collinear with the unit normal vector n.

Figure 4.3: Normal stress and shear stress

™ =0, 471, (4.8)

It can be decomposed into o, called normal stress and 7T, called shear stress. A
normal stress (compressive or tensile) is one in which the force is normal to the area
on which it acts. With a shear stress, the force is parallel to the area on which it
acts. We have:

0, =T®™ .n=T"n, (4.9)

and for shear stress:

7 =/ T® . T® — (g,)? (4.10)

4.3 Stress state. Cauchy’s theorem. Stress tensor

We can imagine many such surfaces which pass through the point M and
divide the body into two parts. For each surface, we have a unit normal vector
n and the corresponding stress vector. Since there are an infinite number of cuts
through the point M, we shall have an infinite number of vectors of stress, which
are in general different from each other. When we know all these vectors, we say
that we know the stress state at the point M.

Is it possible to know all these vectors of stress? The answer is yes, as we
can see this fact in following theorem called Cauchy’s theorem.

Let a small tetrahedron be isolated from the body with the point M as one

of its vertices. The size of the tetrahedron will be made to approach zero volume
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Figure 4.4:

in a way that in the limit, the inclined plane ABC' will pass through the point
M. The unit outward normal to the face MCB is —e;. The stress vector on this
face is denoted by T~ and the force on it is T7° AS; where AS; is the area of
MCB. Similarly, the forces acting on faces M AC, MAB and ABC are respectively
T2 AS;, T=°3 AS3 and T™ AS. Simple geometry reveals that:

1 1 1
ASl = 5 A.’EQ Al’g; ASQ = 5 A:I?g ACL’l; ASg = §A$1 AiBQ (4.11)

Now we calculate the area of the oblique face ABC, and for this purpose we define
two convenient vectors AB, AC that define the oblique surface element. Using the

properties of the vector product (see (2.19)) we have:
1
ASn:§AB x AC (4.12)
In terms of the intercepts and unit base vectors, this becomes

1
ASn = 3 (—Azie; + Azges) X (—Azie; + Azxzes) = (4.13)

1
= 5 (A$2A$3 e + Ail?gA.’l?l ey + Al‘lAfL'g e3)

Thus, from (4.11) and (4.13)
ASn=AS;e;, = AS;=AS(n-e;)=ASn; (4.14)
Writing the Newton’s second law for the tetrahedron, now we have:
Z F=T"AS+T 2AS+T *AS;+T"AS + (Am)b = (Am)a (4.15)

where the mass of the tetrahedron Am = (density)(volume), b is any mass force
(see (4.3)) acting on the tetrahedron and a is the acceleration. Since the volume of
the tetrahedron equals to (1/6) Azy Aza Azg thus, it is proportional to the product
of three infinitesimal lengths, then when the size of the tetrahedron approaches zero

the acceleration and the mass force terms will approach zero faster than the first
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three terms in equation (4.15) where the stress vectors are multiplied by the areas

(the product of two infinitesimal lengths), we obtain:
T AS, + T2 AS, + T AS; + T*AS =0 (4.16)

Using (4.15) AS; = ASn;, (i = 1,2,3) we have:

T n +T ny+T Sng+T*=0 (4.17)
But from the law of action and reaction

Tet — _ei, T2 — _Te2, T~ — _Tes

then equations (4.17) becomes:

T" =T ny + T nyg + T® ng =T n, (4.18)

Equation (4.18) represents the Cauchy’s theorem. It says that when we know
three vectors of stress T®!, T°, T for the three mutually perpendicular area ele-
ments whose normals are eq, ey, e3, then we know the vector of stress for any plane
with unit outward vector n, and thus we knows the stress state in the point M.

Decompose the stress vectors T€!, T2, T on axes:

TS = 011€1 +012€2 + 013€3
T = 091 €1 + 099 €2 + 093 €3 (419)
T = o31e +o3e;+033€;3

Since T*' is the vector of stress acting on the plane whose outward normal is ey,
then oy is its normal component and o159, 013 are its shear components. In the same
way we have the normal and shear component on others planes. This suggests the
definition of a stress tensor o:

T"=on = T"=o;n; (4.20)

1
and the matrix representation of stress tensor o in the bases e, e, e3 is:

011 O12 013
021 021 023 (4-21)

031 032 033

Note that for each stress components o;; the first index ¢ indicates the plane on
which the stress component acts, and the second index indicates the direction of the
component. For example o5 is the stress component acting on the direction e; on

the plane whose outward normal is e;. Both 015 and o043 are shearing stresses acting
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XSA

Figure 4.5: Stress tensor

on the same plane with outward normal eq, thus the resultant shearing stress on
this plane is given by:

T1=012€2+013€3

and the magnitude of this is \/0% + 0%;. Note also that some authors use the other
convention: first index indicates the direction and the second index indicates the
plane, but these differences in meaning regarding the shear components disappear
because the stress tensor is symmetric as we can show later using the principle of
moment of momentum (see (5.20)). Equation (4.20) can be rewritten somewhat
more conventionally as

T =on = 1" =o0in; (4.22)

At this place we can see the crucial difference between force and stress. As shown in
figure (4.6) when we decompose the force F then F,, = F'cos a, but if we calculate for
example the normal stress, then 0, = o cos? a because both the force and area are
revolved in this second case. This is the key for understanding stress components.
Remember also that in figure (4.5) we use the familiar symbol of vector to denote the
stresses, but they are not vectors and can not be added by the rule of a parallelogram

as in the case of forces.

4.4 Principal stresses

Since stress tensor is a symmetric tensor of second order (see Section (2.10)),
there exist at least three mutually perpendicular principal directions. The planes
having these directions as their normals are called principal directions, on these
planes the stress vectors are normal to them (i.e. no shearing stresses). These

normal stresses are known as principal stresses. Principal stresses and principal
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S,= S/ cosa

c,= E/S":ocosza

F.=Fcosa F,=Fcosa

Fn=Fcosa

F, =Fsina

Figure 4.6:
directions can be found from Equations (2.57)
(Uz‘k — U(S,;k) ng =0 with n;n; =1 (—123)

From (4.23) we can also calculate the principal stresses by the characteristic equation

of tensor o (see (2.59)):

det|0ik — Udikl =0 (—124)
or
o —Io*+ 11,0 —11I,=0 (4.25)
where
I, = o011 +02+033
oy O Oy O 033 O
I, — 11 012 n 22 093 n 33 031 (4.26)
021 022 032 033 013 011

011 012 013
I, = 021 022 023

031 O32 033

are the principal scalar invariants of the stress tensor. The equation (4.25) has three

real roots, denoted by 01, 02,03. They are principal stresses.

Problem 16 The stress tensor at a certain point of a body is given by [2]:

(M Pa) (4.27)

N O
o ot O
= O N
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1. Find the stress vector, its magnitude, magnitude of normal stress, shear
stress and the angle between this vector on the plane passing through the point having
the unit normal n = (2/3)e; + (—2/3)ex + (—1/3)es.

2. Find the principal stresses and principal directions.

3. If
1
e/l = § (281 + 262 + eg)
and
, 1
€ = E (e1 —e2)
find o1,.
Solution:
1. The stress vector is obtained from the equation (4.20) as:
70 2 2/3 4
(T")=10 5 0 -2/3 | =1 —-10/3
2 0 4 -1/3 0
or

T" = 4e; — (10/3)e,

The magnitude of this vector is

T = /(4)2 + (—10/3)% = v/244/3 M Pa
The magnitude of the normal stress simply is:
lon| =T -n=(4)(2/3) + (—10/3)(—=2/3) + (0)(—1/3) = 44/9 M Pa

The magnitude of the shear stress is:

170 = VIT?2 — |0, 2 = \/(244/9 — (44/9)2 = /260/9 M Pa
The cosine of angle ¥ between vectors T™ and n:

cos?t) = | ~0.94; 9 ~ 20°

T
2. From Eqs (4.24)
(7—0) 0 2
0 (5—o0) 0 =(T—0)b—0)d—0)—4(5—-0)=0
2 0 (4—o0)

B—-0)l(7T-0)4-0)—-4]=0

we find the principal stresses 07 = 8,09 = 5,03 = 3 (M Pa).
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For o1 = 8 we have from (4.23):

(7—8)n1+0-ny+2n3 =
0-ny+(5b—8)na+0-n3

2n1 4+ 0-ny+ (4 —8)ng =

(n1)? + (n2)® + (n3)? =

_ o O O

From the second equation we have ny, = 0, the first and third equation gives n; =
2n3. Putting these values to the forth equation we find ng = il/\/g, then we have
the first principal direction n®" = (£2/y/5)e; + (£1/v/5)es. For oy = 5:

(7T—=5)n14+0-ny+2n3 =
0-n1+(5—5)ny+0-ng
2n1 +0-ny+ (4 —5)ng

(n1)? + (n2)? + (n3)* =

_ o O O

2n1 4+ 2n3 =

0 =

2ny —n3 =

(n1)? + (n2)* + (n3)? =

_ o O O

then n; = ng = 0, ny = +1 and n® = (£1)e,. Similarly for o5 = 3 we find
n® = (£1/V5)e; + (F2/v5)es.

The three principal directions are mutually perpendicular, we can check this
by calculating the scalar product n® - n¥) = 0 for i # j.

Taking for example three vectors n® = (2/v/5)e; + (1/v5)es, n® = 1,
n® = (=1/V5)e; + (2/v5)es. They form a right-handed system of coordinate
because the triple product of them is positive (equals to 1) (see (2.21)). In this

coordinate system, the stress tensor has a simple form:

o O
o ot O
w O O

where six components are equal to zero.

3. To find the primed component we use (2.50) 77, = €} - (T €}):

2 1/v2 7/V2
0 —1/V2 | =(2/3,2/3,1) | =5/v2 | =
4

7
T, =(2/3, 2/3, 1) | 0
2 0 7/V?2

o ot O

2
= —5 M Pa

3v2
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4.5 Decomposition of the stress tensor

Stress tensor can be decomposed into two parts as in Section (2.11). Denote

by p the mean normal stress (or hydrostatic pressure):

1 1
P = §(011+022+<733) = §[J (4.28)
Tensor pd;; represents hydrostatic tension:
p 0 0
0 poO (4.29)
00 p
then the deviatoric stress tensor is defined by
1
Sij = 0ij = POij = 0ij — 5 1s 0y (4.30)
or
S11 S12 S13 011 —DP 012 013
Sij = | S21 S22 Sa3 | = 021 O —pP  Oo3 (4.31)
S31 532 S33 031 032 033 — P

Subtracting a constant normal stress in all directions will not change the principal
directions, so the principal directions are the same for the deviatoric stress tensor

as for the original stress tensor. We can also find them from the equations:

(sij —s6;5)n; =0 (4.32)
here the characteristic equation has the form:
s —Il,s—11I,=0 (4.33)
where the invariants of the deviatoric stress tensor are:
I, = sy
I, = 1 Sij Sji (4.34)
2
111, = 1 Sij Sjk Ski = det(s;5)

3

A state which the mean normal stress s; = 0 is called pure shear. Denoting by s1, so

and s3 the principal values of deviatoric stress tensor, we also have:

Iy = s1+s3+s3=0
IIS = (8152 + So83 + 8351> <435>
ITI, = 518983
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Also the invariants of the deviatoric stress tensor can be calculated in terms of

principal values of the stress tensor o1, 09, 03:

I, =0

=2 (I7=311,) = ~[(01=02)"+ (02— 03)" + (03 — 01)7] (4.36)

D~

1
3

1
I, = > (213 —91,11,+271II,)

Thus, any stress state o;; can be decomposed into two stress state, one of which is
pure shear s;; and the other is hydrostatic tension pd;;. The deviatoric stress tensor
plays a very important role in the stress-strain relationship discussed later in this

course.

4.6 Principal shear stresses

Suppose that x1, xo, x3 are principal axes. The normal to a plane is n; and

the normal stress o, on this plane given by (4.22):
On = 0jN;N; = 0L N; + gan + 0313 (4.37)

where o041, 09, 03 are principal stresses. Then the shear stress on this plane 7, is
given by (4.10)

(72)? = (0111)* + (02m2)* + (03n3)* — 02 = (01 11)* + (02 n2)* + (0313)°— (4.38)

—(oyn] + o9 n3 + o3n3)

For known values of 01, 09, 03, equation (4.38) is an equation of n;. Calculating the
extremum of this function, it follows that the maximum shear stress is one half the
largest difference between any two of the principal stresses and occurs on an area
element whose unit normal makes an angle of 45° with each of the corresponding

principal axes. The quantities

1 1 1
Mm=—|01—03|, == |03—01|, 3=—=|01 — 0O 4.39
1 2!1 3), T2 2|3 il 73 2|1 2| (4.39)
are called principal shear stresses. The largest numerical value of the principal shears
is called the mazimum shear stress. For o1 > o9 > 03, then 7,4, = (1/2) |07 — 03]

OF Tiar = Max (71, T2, 73).
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4.7 Other stress tensors

The stress tensor discussed above is called the Cauchy’s stress tensor. It is
defined as the ratio of actual force on the deformed area.

Consider now the body at two configurations: a reference (undeformed) and
an actual (deformed) configuration under the transformation (3.1). Let the density
in the reference configuration be go. the body force - bg, the undeformed area - dS.
In the actual configuration we denote the density by g, the body force by b and the
deformed area by ds. Let N be the unit normal of dS, while n is the unit normal of

ds. We can show that

reference
configuration

actual
configuration

Figure 4.7:

J = detF
by = Jb
0 (4.40)
o0 = Jo

nds = JNFTd4S

where J is the Jacobian (3.2), F is deformation gradient in (3.5). We have different
definitions of stress:

a‘n-limE 4.41
" ds—0 ds (4.41)

= the Cauchy’s stress tensor o

. dP o
SN = dlsu_?o das (4.42)
= the first Piola-Kirchoff stress tensor S = Jo F~T
. Fldp _

= the second Piola-Kirchoff stress tensor w = JFleF-T

Physical interpretation of different stress tensors

* Components of the Cauchy’s stress tensor o are densities of actual force acting

on deformed area.
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« Components of the first Piola-Kirchhoff stress tensor (nominal stress tensor) S

are densities of actual force acting on undeformed area.

x There are no simple interpretations for the components of the second Piola-

Kirchhoff stress tensor.

These stress tensors are the generalized forces conjugated with generalized measures

of deformation D, F and E, because of:
oc-D=S-F==n-E (4.44)
In case of infinitesimal strain: F = (1 + gradu), detF ~ (1 4 divu) then

oc~S~m (4.45)
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Chapter 5

Conservation Laws

5.1 Introduction

We know already how to calculate the material derivative (time rate change)
of a quantity of a material particle presented in section (3.5). Now we want to
calculate the time rate change dI/dt of a physical quantity (like density, energy,
momentum...) relating to a material volume element V' in motion. At an instant of
time ¢, a body occupies a regular region V of space with boundary S. Examine now
integral of the type:

= / M(x,t)dV (5.1)
V(¢)
where M (x,t) is a function of spatial coordinate x and time ¢. The volume V is

also a function of t. Since this integral is taken over a fixed amount of mass (i.e.,

Figure 5.1:

material), we may interchange the order of differentiation and integration. This
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leads to:

i d [ d [ dM(x,t) d
=== /M(x,t)dv_/EM(X,t)dV—/TdVJF/ M = (dV)

V() V() V() V(t)
(5.2)

The material derivative of M similarly as in (3.33), (3.34), and the rate of change

of a volume element integral can be shown basing on (3.64):

d
AV = (div) v
then 4 oM
% = / [(W + gradM : V) + MleV} av (53)
v

Denoting the material derivative of M by

. oM oM oM
we obtain: y
- / M(x,t)dV = / (M + M divv) dV (5.5)
V(t) 1%

Also, using the Gauss (divergence) theorem (2.69) for the last two terms in (5.4) to
obtain another form of the rate, showing the contribution of particles in regions (1),
(2), (3) on figure 5.1:

d oM
a/M(X,t)dV—/Ed‘/—{—/M(V-n)dS (5.6)
Vi(t) 14 S

All global conservation laws have the following form:

%/M(x,t) dvz/de+/gdS (5.7)

V(t) S

where functions M, f are defined on V', while g is defined on S.

5.2 Conservation of mass. Continuity equation

If we follow a volume V' of material through its motion, its volume and density
may change, but its total mass will remain unchanged. Taking M = p in (5.6), the

integral [ odV is now the mass of the body. In this case in relation (5.7) functions

0
f =g = 0. Because of the mass conservation, we have:

d
= 0dV =0 5.8
i |, ° (5.8)
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Since this is valid for every region V', then locally we have
0+ odivv =0 (5.9)

This equation is the equation of conversation of mass, also called equation of conti-

nuity. In Cartesian coordinate system, the equations read:

do 0o o) 0o Ouvi  Ovy  Oug\
ot "m0 T ony 3”3+ (axl +8x2+8x3> =0

(5.10)

For an incompressible material, the material derivative of the density is zero, then

the equation of continuity reads:

. . c%l 81;2 81}3 o
divv = 9, + o, + e 0 (5.11)

In problems of statics, the equation of continuity is identically satisfied.

5.3 Conservation of momentum. Equation of mo-
tion

Each particle of the body must satisty the Newton’s equation of motion, and
for the whole body, we must have the conservation of momentum. Let function M
in (5.6) be the momentum: M = pv where v is the particle velocity. The left-hand
side of (5.6) now is the rate of momentum, then the right-hand side must be sum of
forces acting on the body, namely body and surface forces, hence f = ob, g = T™.
The global conversation law of momentum reads:

d

o ovdV = / obdV + / T™ S (5.12)

\% \%4 S

where S is the bounding surface of the region in question. Applying (5.3) for material

derivative and using (4.22) for T(™ we obtain:
d(ov) . _
o (ov)divv|dV = [ obdV + [ (on)dS (5.13)
v v S

where o is the Cauchy stress tensor, n is the outward pointing unit normal to S.
Use the Gauss theorem (2.69) for the last term:

/[QV+QV+(QV)diV(V)—Qb—diVO’]dV:() (5.14)
v

then

/ (0+ odivv)v+ov—pb—dive | dV =0
14 0
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Following the equation of continuity (5.9): 9+odivv = 0 we can rewrite the equation

in the form:

/(diva+gb—QV)dV:O (5.15)
14

Because V' is arbitrary, we obtain from (5.15) the local form for momentum conver-

sation:

dive + ob = pv (5.16)

This equation is called the equation of motion. If the acceleration vanishes, then

equation (5.16) reduces to the equilibrium equation:
dive + ob =10 (5.17)

In Cartesian coordinate system, the equation (5.16) reads:

(

doy 0012 Oois .
b, =
0, + 0xs + 03 toh v
0o 0099 3023 .
by = 5.18
oo T oy T m, T2 00y (5.18)
0o 003y Ooss .
be =
\ 81’1 + 8332 + (9.7}3 +Q 3 ovs

5.4 Conservation of moment of momentum. Sym-

metry of Cauchy’s stress tensor

Let now M = r X ov be the moment of momentum about a reference origin of
the Cartesian coordinate O, where we denote by r the radius vector that represents
the position of a point in space. Now f =r x ob, ¢ = r x T™ are moment of
body and surface force about origin O. The global law of conversation of moment

of momentum reads:
d
a/rxgvdvz/rxglodv+/r><T<”>ds (5.19)
v v S

Introducing Cauchy’s formula T(™ = o n into the last integral, we have:

%/rxgvd‘/:/rxdeV+/rx(an)dS
“

v S
Using (2.20) we write this expression in the index form:

d
E/eijkxjgvde:/eijkxjgbkd\/—i-/eijkxj(akpnp) dS

\%4 14 S
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Transforming the last integral into a volume integral by Gauss’s theorem:

d
p / €ijk T 0 VpdV = / €ijk Tj 0bp AV + / €ijk [Tp(Thp) + Tj Okpp| AV

1% v 1%
Following the same procedure as for the momentum: evaluating the material deriva-
tive according to (5.5), because V' is arbitrary then the expression under the integral

must be zero:
€ijk Tj OVpT€ijk Tj 0 Vkt+€iji Tj 0 Vp+€ijk Tj 0 Vi Umnym = €ijie Tj 0 bit€iji Ojp OlpT€ijiks Tj Okpp

The first term equals to zero, because this is the vector product of vectors v and

0V; 0, Orp = 0yj. Hence this equation becomes:
—€ijk Tj O Uk — €3k Lj 0 U — €ijk Tj O Uk Upm + €ijis T 0 by + €ij Okj + €iji Tj Opppp =0

or
€ijk Tj (Thkpp + 0bk — 00k) — €k Tj Vi (0 + 0 Vmym) + €iji Okj = 0

The terms in brackets vanish by the equation of motion (5.16) and equation of

continuity (5.9), this equation is reduced to
€ijk0kj = 0

ie.
Ojk = Okj (520)

5.5 Conservation of energy. The first law of Ther-

modynamics

In continuum mechanics, a deforming body is considered as a thermodynamic
system. The motion of a body must be governed by the law of conservation of energy
(the first law of thermodynamics). This law relates the mechanical work done on
the system and the heat transferred into the system to the change in total energy of
the system. Let u be the specific internal energy (per unit mass), then the function
M = o(u+1/2v-v) in equation (5.7) now is the sum of internal and kinetic energy
of the volume element, f = pob-v is the rate of work of body forces, and g = g, + ¢o.
The function g; = T™ - v is the rate of external surface forces done on body while
go = —q - n gives the rate of heat flow by conduction across the surface S. Here q
is a vector whose magnitude gives the rate of heat flow by conduction across a unit
area. Vector q is called the heat fluz, measured by [q] = [J/m? s].

First law of thermodynamics states that in any process the total energy of the

system is conserved. Total change of the sum of internal dU/dt and kinetic energies
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dC/dt of a system is equal to the the rate of work d'W/dt done on and the rate of
heat d'Q/dt transferred into a system (see figure 5.2). We use the "prime" because

d'W and d'Q are inexact, while dU and dC' are exact differentials. The global form

of the first law reads:

% g(u+%v-v)dV:/Qb-vdV+/T(")~VdS—/q-ndS (5.21)
v

dE _ dC W aQ
— 4 — +
at i dt dt

The minus sign in the last term is because n is unit outer normal to S therefore

Figure 5.2:

—q - n represents inflow. Introducing Cauchy’s formula 77" = 0;;n; and writing
in (5.21) index form:

% Q(U‘l‘%vivi) dV:/gbividV+/Uijnjv,vdS—/qin,-dS (522)
v v % g

Transforming the last two integrals into a volume integral by Gauss’s theorem:

d 1
% 1% (’U, — 5 V; 'Ui) dV = / le V; dV+ /Jij,j V; dV —+ /JU U'i,j dV — /qi,i dV
Vv Vv \%4 | v

(5.23)
Following the same procedure as for the momentum: evaluating the material deriva-
tive according to (5.5), because V is arbitrary then the expression under the integral
must be zero:

L .1 1
ou+ ou—+ pv; v; + 5 o0v; v; + p(u+ Evi Vi)Umm = 0b; Vi + 045 j Vi + 04 Vi j — Qi

Tensor ;5 is symmetric, so

1
(0ijvij + 05ivj;) = 035 3 (vij + ;) = 03 Dy

1
0ij Vij = 5 (03 Vi + 03 Vig) = 5
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where D;; is the rate of deformation tensor defined in (3.53). A little calculation
yields:

) ) . 1 )
o+ u(9 4+ 0Vmm) + i (00; — 0b; — 0455) + 5 0; V(0 + 0Vmm) = 045 Dij — Qi

The terms in brackets vanish by the equation of motion (5.16) and equation of

continuity (5.9), this equation is reduced to
Qu = Jij Dij — Qi,i (524)

or in absolute form:
ou=0-D—divq (5.25)

This is the energy equation in the deformed configuration.

5.6 Second Law of Thermodynamics:

Clausius-Duhem Inequality

The first law of thermodynamics is a statement of the energy balance, which
applies regardless of the direction in which the energy conversion between work and
heat is assumed to occur. In real thermodynamic process we always have dissipation.
The quantity of energy is conserved but an amount of it transforms into heat to the
surrounding and can not be recovered. The second law of thermodynamics imposes
restrictions on possible directions of thermodynamic processes. Work can be changed
to heat, but the reverse process is impossible because of the inherent loss of usable
heat when work is done, e.g. heat produced by friction of the system.

A state function, called the entropy of the system, is introduced as a measure

of useful energy. We postulate that there exist two functions:
e Absolute temperature 7" (7' > 0)

e Entropy S, or specific entropy s

It means that the entropy is additive:

S = /QSdV (5.26)
v

The entropy can change by interaction of the system with its surroundings through
the heat transfer dS(©), and by irreversible changes dS® that take place inside the
system:

dS = ds'® 4+ ds® (5.27)
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where: 10
as© — 2
S T (5.28)
and
ds® >0 dS® =0 only for reversible processes (5.29)
The inequality:
dS® = ds —dsS'® > 0 (5.30)

is a statement of the second law of thermodynamics for irreversible processes. Hence

for any process:

Z_ 2 > (5.31)

Inequality (5.31) is known as the Clausius - Duhem inequality.

A simple example: why the heat flows always in the direction from the hot
to the cold part of the body? Consider a body like a system of two parts with
temperatures 77 and 75 respectively. In the heat flow process, some quantity d@) of
heat flows from the first to the second part, then the entropy of the first part loses
an amount dS; = —dQ /T, while the entropy of the second part gains an amount
dSs = dQ/T;. The entropy of body in this process must be

1 1

dS:dQ(E—ﬁ):dQ

Ty =T,
T3

>0

following from the second law of thermodynamics, from this we must have 77 > T,
because 17 > 0 and 15 > 0.

From (5.31) we get the global form of the second law of thermodynamics:

dt

d .
2 osdv + / qT—“ds >0 (5.32)
\%4 S

Evaluating the material derivative in the first term, we have

/(Qé—i—gs—kgsdivv)dv—i—/q;TndSZO
1% S

/ QédV—l—/ S(@+Qdivv)dv+/¥d5 >0
v 1% s
The second term vanishes according to the equation of continuity, then:

/Qde+/LT“dszo

\%4 S

By using the Gauss theorem, we obtain:

/gs dv + /div (%) dv >0 (5.33)

\%4 \%
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because V' is arbitrary, then we have the local form of the second law of thermody-

namic:
. . q . qi
div(3) =ei+(7), 20
oS + div T 0S + 7). =
4 1 L 7> 0 (5.34)
0s TQZ,Z T2 qi , 1 .

In Cartesian coordinate system, equation (5.34) reads:

ds 1 (0q1 0Oqa 0Ogs 1 oT oT oT
- >
(81‘1 + 8372 + 8373 T2 N 8x1 * © (91:2 + 3 8373 - 0

ey T

We can write (5.34) in the absolute form:

1 1
0$ + T divq — 72 4 gradT >0 (5.35)
If deformation is reversible (e.g., thermoelastic deformation), the entropy

production rate dS® is equal to zero (see (5.30))

dS = ds®® = ? (5.36)

which means that the rate of entropy change is due to heat transfer only, and from
this we have:
0Ts = —divq (5.37)

Combining the first law of thermodynamic (5.25) and (5.37) for reversible process,
we have: .
U= — Oij Dij + Ts (538)
0

We adopt the Fourier law for heat flow:
q=—kgradT (5.39)

where k is the coefficient of heat conduction (with dimension [k] = [J/(m K s)], K
is symbol of degree kelvin). Here k > 0 because heat flows always in the direction
from the hot to the cold region.

We have another relation relating the quantities appearring in this chapter.
Multiplying the temperature change by the mass and specific heat capacities of the
substances gives a value for the energy given off or absorbed during the process.
Let ¢, be the specific heat at constant strain (with dimension [¢] = [J/(kg K)]), the
calorimetric equation reads:

—divq=90¢,T (5.40)

All equations obtained from Chapters 3, 4 and 5 are grouped in the following
table:
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Mechanics of continuous media Unknowns Number Number
- - of unknowns | of equations

Kinematics U; = U; Uj, Vj 6 3
Kinematics gij = 1/2(us,j + uj4) €ij 6 6
Kinematics Dij = 1/2(v;, j + vj,4) D;; 6 6
Continuity o0+ov ;=0 0 1 1
Kinetics 0ij,; +0bi = 0v; Oij 6 3
Thermodynamics ot =0y Dij — qi U, q; 4 1
Thermodynamics | 0§ + %qlz — % ¢T ;>0 s, T 2 1
Fourier law g =—kT; 3
Calorimetry —Qii =0Cy T 1

31 unknowns, 25 equations 31 25
Constitutive eqns oij = fij(er, T) ‘ 6

31 unknowns, 31 equations 31 31

We have studied kinetics of deformation, the state of stress and basic laws of contin-
uum mechanics and obtained a system of 25 equations for 31 unknowns. All these relations
are valid for every continuum because in derivations we didn’t mention any material. The
25 equations obtained are not sufficient to describe the response of specific material in
loadings, because we know from the experience that e.g. the response of rubber is different
than that of steel in tension test (see e.g. section (3.10)). Moreover, under different con-
ditions of loading, the responses of the same material are also different. We need to find 6
more equations to close the system of equations in this table. They relate the stress and

strain pole and depend on specific material:
oij = fij (€xt) (5.41)

These equations are called constitutive equations or physical equations. They describe the

response of specific material on external loadings. We will discuss them in next chapters.
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Chapter 6

Linear Elasticity

6.1 Uniaxial Case

From a block of material we cut out a cylindrical test specimen in figure (6.1).
We apply a load P on ends, the bar elongates and an elongation Al = [ — Iy can be
measured. We can have a plot of magnitude of P of the load again its elongation. Such
diagram contains useful information for the bar under consideration, but depends on the
cross section S and the length [, then can not be directly used to predict, for example, the

deformation of another bar with the same material but having different dimensions. So

It)
lo Al
~— 0  Ti——
R \— \ P(t)
S(t) q, 4
load / stress

v

elongation / strain

Figure 6.1: Uniaxial tension

we may plot the stress 0 = P/Sp (where Sp is the undeformed cross section area) against
the strain Al/lp (I is the initial length) and obtain a characteristic curve of the material.
It does not then depend on the dimensions of the specimen. This curve is called a stress-
strain diagram. When strain is small, the initial portion of the diagram OA is a line: the

stress o is directly proportional to the strain €, and we may write:

oc=EFE¢ (6.1)

The project: "Building an ecological Europe - Master programs in English for students of Civil Engineering”
financed by Norwegian funds and domestic funds

65



"Building an ecological Europe - Master programs in English for students of Civil Engineering”

This relation is known as Hooke’s law. The slope E of the line OA is called the modulus
of elasticity or Young’s modulus. Since the strain is a dimensionless quantity, the modulus
FE has the same units like the stress o. Typical value of E for steel is around 200G Pa.
When stress is smaller than the value of stress at point A, the strain caused dis-
appears when load is removed. The material is said to behave elastically. When a body
deforms elastically under a load, it will revert to its original shape as soon as the load is

removed. The stress at point A is called the elastic limit.

Note: We recall that the stress obtained by dividing the load P by the undeformed cross sectional
area Sy does not represent the true stress o = P/S(t). Also, instead of using the original value lo,
some scientists use the successive values of [ to get the true strain. But because elastic strains are
small, it does not matter whether the relations are expressed in terms of any strain measures (see

Section 3.10) and stress measure (see Section 4.7).

In all engineering materials, the elongation produced by P is accompanied by a
contraction in any transverse direction. If the bar is of circular cross section with an initial
diameter dp, then under some conditions, it will remain circular with diameter d. Let
e = Ad/d be the lateral strain, then if the strain is small, the ratio:

lateral strai
a e‘ra S r;?un — const (6.2)
axial strain
or J
€
vV=—— 6.3
: (63)

This value is called Poisson’s ratio. For steel, the typical value of v is 0.25.

We have considered only a specimen cut out from a block of material. If the value
of Young’s modulus F and Poisson’s ratio v depend on the orientation of the specimen,
the material is called anisotropic with respect to elastic properties. Otherwise, when
the specimens cut at different orientations at a small region of the block have the same
properties, we say that in this small region, the material is called isotropic. When E and v
vary from point to point considered, the material is s#mhomogeneous, otherwise the material
is said to be homogeneous.

Consider a homogeneous rod AB of uniform cross section (see Figure 6.2a), laying
freely on a smooth horizontal surface. If the temperature of the rod is raised by AT, the
rod elongates by an amount d7, which is proportional to both the temperature change and
the length [, we have:

or = a(AT)1 (6.4)

where « is a constant characteristic of the material, called the coefficient of thermal ex-

T

pansion, measured in [1/K], K is symbol of degree kelvil). A strain e’ is associated with

6T
el =a AT (6.5)

and this is called a thermal strain caused by the change of temperature in the rod [3]. In

this case, there is no stress associated with the thermal strain.
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a)

b)

Figure 6.2: Problems with change of temperature

Let’s now assume that the same rod AB is placed between two fixed supports like
in figure 6.2b. If we raise the temperature by AT, the rod can not elongate because of the
restraints, the elongation o7 = 0, then el = 0. However, the supports will act on the rod
and a state of stress o7 is created in the rod.

Note: From Hooke’s law, 0 = EeT = Ea AT. For steel, e.g. with E = 280M Pa, AT = 100K,

the stress is
280 x 10 x 10~ x 100 = 280k Pa

so this is comparable with mechanical loading in practice. The elongation is then Al = a ATl

We'll now introduce another important concept of strain energy. Consider a rod of
length 1 and uniform cross section S. One end of the rod is attached to a fixed support,
and the other end is subjected to a slowly increasing axial load P. The work U done by

the load P as the rod elongates by a small amount dz is:
dU = Pdzx (6.6)

The expression obtained is equal to the element area of width dz on Figure 6.3. The work

U done by the load as the rod undergoes a deformation z is thus:

U= / Pdz (6.7)
0

This work results in the increase of some energy called the strain energy accumu-
lated in the rod, so by definition strain energy = U. Dividing the strain energy by the

volume V' = S of the rod, using 0zz = P/S, dz/l = €4q:

Exz
strain energy density = / Opz AEp (6.8)
0
In elasticity Ozz = E €gq:
€.

. _ I _E, 1 5 1
strain energy density = Opgdeps = — €20 = ——= 020 = = Ozz €ax (6.9)

0 2 2FE 2

In the next section we study elastic behavior of homogeneous isotropic materials,

the temperature dependence of elasticity, and thermal expansion.
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il s
i . =
i I Py
I ! I
L 1
dx
P
T
Figure 6.3:
6.2 General Derivation
A natural generalization of (6.1) is:
Uij = Cijkl Ekl (6.1())

We assume that the stress depends only on the strain and not on the history of that strain
and this relation is linear. Also, the deformations are small, so we can use the infinitesimal
tensor of strain €;5. When the Cjji are material constants, the material is said to be
linearly elastic. Equations (6.10) imply that there exists an initial stress-free state and
they are known as the generalized Hooke’s law.

In general, the fourth-order tensor Cijiz has 3* = 81 components. It has however

the following properties:
o Cjjri = Cjirr since the Cauchy stress tensor is symmetric 05 = 0j;
e Cjjir = Cjipg since the strain tensor is symmetric € = &
e For an elastic material, it can be shown that we have also the reciprocal symmetry

#U U
aé‘ijaé‘kl - 8ek,65ij

Cijkl = Cklij since

in (6.36)

, U is the elastic strain energy defined later

As a result, the number of independent constants of Cjj; is reduced to 21. Equations (6.10)
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in matrix form in an Cartesian system of coordinate O x1 z2 x3 read:

o11 Ci111 Criz2 Crizz Criie Chries Cris €11

0922 Cr12 C2222 C233 (212 (2223 C231 €92

o33 | _ Cr133 C2233 C3333 C3312 C3323 (3331 €33 (6.11)
012 Ci112 C2212 C3312 Cr212 Chrzes Chasy | | 2612 .
093 Cr123 C2223 C3323 Ch2o3 (2323 Cossy | | 2e23

031 Cr131 C2231 C3331 Ci231 Ca2s3zr Cz131/ \2¢€31

If in addition, we have a plane of material symmetry, e.g. O x2 x3 then take the new system
of coordinates as follows:

Ty = —T1, Ty = X9, Ty=a3 (6.12)
with the matrix (2.31) of the form:

-1

Qij = (6.13)

S = O
= o O

0
0
In the new system of coordinate, only the first component of vector of displacement (3.6)

changes its sign:

/ ’ /
ul — —Ul, U2 — U2, U3 = us

Only these components of the strain tensor (3.56) change their signs: 5/21 = —e91, 5;31 =
—eg1. For a linearly elastic material, material symmetry with respect to that plane requires

that the components of Cjji,; in the equation (6.10) [8]
0ij = Cijki €kl
be exactly the same as in the equation:
Ugj = ijkl €l
under the change of coordinate (6.12), thus:
Ciji = Cijui (6.14)

Following (2.35), the components C’{jkl of tensor in the new system of coordinate are:
ikt = Qim Qjn Qip Qig Cranpg (6.15)
then we obtain from (6.14) and (6.15):
Cijkl = Qim Qjn Qrp Qg Crnpg (6.16)
From this equation, we find that all Cjj; with an odd number of the subscript 1 are zero:
Ci112 = Cr113 = Ca212 = Ca213 = C3312 = C3313 = 0 (6.17)

The number of elastic constants are then reduced to 13.
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We give another proof by considering the stress tensor. With such change of the

coordinate system, the components o33, o292 and ga3 of the stress tensor remain unchanged.

Then we have for the component o4 = o33:

/ ! / / / / !
033 = C1133611 + (2233699 + C3333633 + 203312619 + 203323693 + C333163;

!
033 = Cri133e11 + Ca233e22 + C3333633 — 203312612 + 203323623 — 203331631

while in the "old" system:

o33 = Clizze1r + Caaszenn + Cs3zzess + 20331212 + 2C3323623 + C3331€31

From 053 = 033, we have (3312 = C333; = 0. Similarly we can show (6.17).

Hence, in this case the number of elastic constants is reduced to 13:

011
022
033
012

023

031

Ciin

Cii22 C1133
Ca222 C2233
C3333

(symmetry)

0
0
0

Cr212

Ch123

U223

C3323
0

Ca323

Ci231

C3131

0
0
0

0

€11

€22

€33
2612
2523

2e31

(6.18)

Further, if there is a second plane of elastic symmetry orthogonal to the first, then this

second plane of symmetry also implies the symmetry about the third orthogonal plane.

The material is then called orthotropic, and thus the number of independent constants for

a linear elastic orthotropic material is 9:

011
022
033
012

023

031

Ciin

Cri22 C1133
Ca222 C2233
C3333

(symmetry)

0
0
0

Ci212

o o O

0

Ca323

C3131

o O o O

0

€11

€22

€33
2e12
2623

2e31

(6.19)

For an isotropic material, the elastic constants must be the same for all directions and (6.10)

now becomes:

011
022
033
012

023

031

o O T O o o
SO T O o o o

o o o O O

L

€11
€22
€33
2512
2523

2531

(6.20)

Thus, there are only two independent constants A and u, called Lame’s constants. Since

the strain is dimensionless, A and g have the same dimensions as the stress tensor. They
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can be determined from simple tests corresponding to simple states of stress. We can write

tensor Cjjx; in the index form:
Cijrr = Nijop + (01 + diadjn) (6.21)
and the Hooke’s law (6.6) for a linear isotropic elastic material becomes:
0 = Nepk0ij + 2p € (6.22)

Applying i = j in (6.22) we obtain a relation for the first invariant of strain tensor (3.63)
I. = €, in terms of the first invariant of Cauchy’s stress tensor (4.26) I, = ogy:

Okk

L — 6.23
3A+2pu ( )

Ekk

Substituting this result into (6.22) and solving for €;; we have the inverse relation:

1 A
= — i — ————— 04 6.24
Eij 2% (U] 3N+ 20 6Zj Ukk) ( )

Equations (6.22) and (6.24) are the constitutive equations for a linearly elastic isotropic
material. These equations have an important consequence: for an isotropic material, the
principal directions of stress and strain tensors coincide. We can use this fact to derive the
Hooke’s law in an engineering way as follows.

If uniaxial tension is applied (see (6.1) and (6.2)) in the xi-direction, the tensile
strain is €11 = 011 /F and causes lateral strains g9y = £33 = —v/e11, where v is Poisson
number. Consider the strain, 11, produced by a general stress state, 011,099, 033. The
stress, 011, causes a contribution €13 = o11/E. The stresses 092, 033 then cause lateral
contractions €17 = vogy/E and €17 = voss/E. Since the stress-strain relation is linear,
then superposition holds:

€11 = % [011 — v (022 + 033)] (6.25)
Similarly, for a pure shear test we see that shear strains are affected only by the corre-
sponding shear stress, so

012 = 2G€12 (6.26)

where G is also a material constant called the shear modulus. From equations (6.20) we
have 012 = 2 ue19, then:
G=nu (6.27)
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Similar expressions apply for all directions:

1

o= 5 [o11 — v (022 + 033)]
1
€22 = bl (022 — v (033 + 011)]
1
&3 = 4 (033 — v (011 + 022)]
(6.28)
£ — g
12 Xe
con — 28
23 Xe
I3 — g
31 Xe

For an isotropic material, the constants A\, G = u, E and v are not all independent.
Considering a state of simple tension, only o117 = o, all other o;; = 0, then

from (6.24) and (6.28),
po o _ HBA+2p)

6.29
€11 A+ ( )

and the Poisson’s ratio:

€92 €22 A
e A 6.30
€11 eln 2(A+p) (6.30)

Another elastic constant, the bulk modulus, K, is defined by the relation between the

volume strain and the mean stress. From (6.23) it follows that:

=+ (6.31)

Any of the five elastic constants F, v, A, 4 = G, or K can be expressed in terms of

two others as in the following table :

’ \ [y V \ v, A \ s A \ K, A \ p, B \
N 2pv ] ] ] w(E—2v)
1-2vp ( ) 3u—F
A(l-2v 3
ml — : g KX :
X ) E—24
Y ) ) 20+ 1) 3K — A 21
AI4+v)A=2v) | u(BA+2p) [ 9K (K —N)
E 2u§1+1/§ (V | T ¥ e ;
2pu(l+v A14+v ukE
SEEED) 3v AtgH ) 3Bu—B)
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| wE | v, E | vE | K, E |
2 1) K KGBK_E
N K-2, v 3Kv 3K (3 )
3 14+v)(1-2v) 1+v 9K - F
1) 3K (1-20) 3KE
a ) 2(1+v) 2(1+v) 9K - F
3K — 24 SK—E
, | SE—2p ] ] SK-L
23K + 1) 6K
9K i
| K . 3K (1-2 .
SK+p - ( V)
K - = - -
3(1-2v)

The equations (6.16) now can be represented in compact form as:

1
eij = 5 [(L+v)0oij —vow,dij] (6.32)
and the reverse relation is:
FE v
T = T, |F T T2, Sk Oij (6.33)

Substituting the decomposition of strain (3.67) and stress (4.30) in spherical and

deviatoric parts into equation (6.33) we find:

E
Sij = 71 T ez‘j = 2G€ij (6.34)
and
Okk
Om = ? = K egy, (6.35)

where oy, is called the mean normal stress. Hence, the distortion e;; is produced by the
deviator of stress s;;, while the volume change ey, is produced by the mean normal stress
om. The equations (6.34) and (6.35) are independent each of other.

In the general case, the elastic strain per unit volume for small deformations is (see

(6.9)):

1 1 1 1
U = 5 Uij Eij = 5 (Sij + g Okl 51]) (eij + g Emm 513) (6.36)
or
1 1
U= 5 Sijeij + 6 OkkEmm (6.37)

The first part is the elastic strain energy of shape changes:

1 1 Sij IIS_l—I-V

U(l) = 5 sijeij = 5 Sij @ - ﬁ — E, IIs (638)
and second part is the elastic strain energy of volumes:
1 1 2 1-2v

Taking into account the the contribution of temperature, we assume that the strain
tensor is a sum of two terms:

€ij = 82(;-7) + &?g) (6.40)
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where:
(o)
- Eij

(T)
- eij

- strain produced by stress pole.
- strain produced by temperature.

For an isotropic material, the Hooke’s law is:

e = Lo A 5o
Y 2u \Y 0 3x+2u Y (6.41)
) .-

&) = a(T —Ty)d;

ij
where a is the coefficient of thermal expansion which appeared in (6.4). The constitutive

equations in thermo-elastics read:

1 A
€ij = ﬂ (Uij — mdij O'kk) + a(T — To )dij
(6.42)

05 = /\(L'j Ekk + 2/1: Eij — (3/\ + 2;1,) a(S,-j (T — T())

Let us consider a simple case of temperature influence on a rod

s a(T, - Tp) dx

T4 \BD/

T Ja W2
‘h/2
_
2 Nom,-T)dx
T1 h

[ 1
—_ T —_—
| To> Ty

Figure 6.4: Temperature influence on construction

Problem 17 For a road on figure (6.4), the temperature of the upper surface of the rod
is T1, and on the bottomn is T, with T > T1. Assume that the temperature distribution is
linear. Find the differential equation for the deflection of the rod.

Solution:

. - . . T+ Ts .
From the assumption of linear distribution of temperature: T, = 5 drawing

the free-body diagram of the portion of the rod, we find that the elongation: Al = a (T —

T+ T
To)l=a (%) [, then:

hdp = a (T — Tp) dr — a (T1 — To) dx

dp _  (L—-T)
dx h
The differential equation for elastic curve of the rod is:
d2‘lU o M (T2 — Tl)

7oy e R — (6.43)
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where w is the deflection, M is the bending moment, E the modulus of eleasticity, and

J the moment of inertia of the cross section about its neutral axis. Tc‘i}%e last t%gm is the
w (e ¥}

influence of temperature. Assume, for example, that 1o — T7 = Ty =, = x, then
x
Too
by integration we obtain w = g—h 22+ Cix + C5, the constants C7 and C5 can be found

from the boundary conditions w = 0 for x = 0 and for x =[.

6.3 Equations of the Infinitesimal Theory of Elas-
ticity
From Chapter 5, we know that for elastic process the rate of entropy change is due
to heat transfer only (5.37):

0Ts = —divq = —q;,; (6.44)
or 5 5
s 5
T|(=—c¢ij+ =T =—q 6.45
o7 (gecis+ g ) =~ (6.45)
In thermodynamics these relations can be shown:
0s
722
“='or
0s o _} 80’@
aﬁij N 1Y oT
where ¢, is the specific heat at constant strain introduced in (5.40). Then, equation (6.45)
gives:
doij . .
-T a—j’j gijtocT =—ay; (6.46)
From (6.42):
O+
a;_,] = *(3)\ + 2#) « 52’]’

and from the Fourier law for heat flow (5.39):
—qi,i = —kT ;= —-kTuT

hence equation (6.46) can be rewritten as:

kT =o0c, T+ BN+ 2u) aTép (6.47)
T 0T 0°T

where T';; = 0 5 + 0 5 + 0 5 is the Laplace operator. The equation (6.47) shows the
’ Oxy  Ox3  Oxz

coupling thermomechanical effects

Finally, we obtain the following system of equations:

Linear Thermoelasticity Number of eqns
Kinematics gij = 1/2(us, 5 + uj,5) 6
Continuity o+ou; ;=0 1
Equation of motion 034, + 0b; = 0; 3
Coupling effects kAT = oc, T+ (BN +2u) T egy, 1
Hooke’s Law oij = Nijepk + 2pei; — (BA+2u) a by (T — To) 6
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This is a system of 17 equations for 17 unknowns: o, u;, €5, 0 and T'. We also
have to satisfy the initial and boundary conditions.
If on the boundary of a body some distributive forces 3 are applied, the we call

them the surface traction. The vector of stress inside a body is defined by the Cauchy

Figure 6.5: Boundary conditions
formula (4.22), then by continuity, at the boundary, we have:
Y¥=0on (6.48)

Equation (6.48) is called the stress boundary condition. In Cartesian coordinate system,

this equation is:

31 = ouni+oi12ne+oi13ng
Yo = 09111+ 02202 + 023n3 (6.49)
Y3 = 0311M1+ 032n2 + 033N3

In many problems of elasticity, the boundary conditions are such that only on one part of
the boundary Sy the surface traction is specified and on another part Sy displacements

are specified (see Figure (6.5)).

6.4 Equations of the Infinitesimal Theory of Isother-
mal Elasticity

Consider the isothermal case, where the temperature T' = const and when motions
of particles are small: every particle is in a small neighborhood of the initial state, the
spacial and initial coordinate coincide z; = X; ( see (3.6)) and the magnitude of components

Ou;/0x; is also small. Then the velocity (see Section 3.5):

du; Ou; Ou; Ou; Ou; Ou;
v; = 1':( z) +v] — + vy — + vg — "’( 1.) (6.50)
zi — fized zi — fized

dt ot o1, o1 drs  \ ot

because v; is also small. Similarly for the acceleration:

d%u;  dv; (6211,,-)
Gi=—7=—=|—F25 (6.51)
a2 dt M ) oo fized
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Everything discussed below is subjected to this assumption of linearization.

From (3.64) the relation between the differential volumes in the initial and actual

configurations is

dV = (1 —exr) dVo

(6.52)

then the conservation of mass (equation of continuity) now is dm = o dVh = 0 dV (g and

o are the density in the initial and actual states respectively) reads:
0= €0
(1 + Ekk)

or using the Taylor’s expansion we have approximately:

o~ (1 —exx) 00

Neglecting the quantities of small orders, equation of motion (5.16) now becomes:

J0oj 0%u;
b; =
oz, +000; = 00 o2
where g b; is the component of body force per unit volume, or:
80‘11 80'12 80'13 i by — 82’&1
8m1 8902 8m3 Qo1 = 00 8t2
80’21 80'22 80’23 + by — (‘92u2
ox1 O0xa 0x3 Q% = & ot?
6031 8032 6033 + by — 8QU3
dx1 | Omy | Oms TN T 97
These three equations with 6 kinematic relations:
1 811,, + 8uj
Cii = =
K 2 8xj a(L'Z
. 1 (0w O
8’&1 P— ﬂ ﬂ
€11 = 87;31’ €12 5 (8372 + 8x1>
811,2 c 1 aUQ + 8u3
Cop = —22. N B B Mdiat)
22 8332 ’ 23 2 8333 8952
£33 = 8US' 1 (0Oug n ouq
= 4 €31 = = | =—+ —
0x3 31 2 \ dx1 Ors

and six equations obtained from the Hooke’s law, e.g. of the form (6.22)

o11 = A(e1r +eao+e33) +2uen
099 = A(€11 + €22 + €33) + 2 €92
o33 = A(e11 + €22 +€33) + 2133
o12 = 2uer
023 = 21€23
031 = 24€E3

(6.53)

(6.54)

(6.55)

(6.56)

(6.57)

(6.58)

(6.59)
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make a system of 15 equations to find 15 unknowns: three components of displacements
u1, U9, Uz, six components of strain tensor €11, €22, £33, €12, €23, €31 and six components
of the stress tensor 011, 092, 033, 012, 023, 031. On the boundary, these functions must
satisfy the boundary conditions (e.g. (6.49) for stress) and compatibility equations for
strain (3.68):

82611 82822 . 82812
8.%'% 81‘% T Oz O
82522 82633 _ 82623 (6 60)
ox3 ox2 Oxo Ox3 '
82633 (92511 N 82531
63:% 8:6% T Qx3 01y

i _5523+3€31 +3512 N 32611
8:61 8$1 81‘2 a’L’g N 8x28x3

0 [(Oegz  Oesm +3812 D%y
81‘2 8.1,‘1 8.732 8x3 B 83338%1

0 <a€23 8831 8812> N 82833

(971‘3 8%1 8%2 B 81’3 8%18562

6.5 Navier’s equations

We can combine Eqs. (6.22), (6.55), and (6.57) to obtain the equations of motion
in terms of only the displacement components. Substituting the kinematic relation (6.57)
into the Hooke’s law (6.22):

1 1
Oij = A 5 (uk,k + uk,k) 5ij + 24 §(ui,j + 'LLjJ) (6.61)

Oij = A 045 + pruij + g

Introducing these relations into (6.55) we obtain:

8()\ukk5¢j+uuij+uuji) 0?u;
: ’ : bi = 00 =5 .62
8xi + e €0 ot? (6 0 )
Denoting by
8U1 8’&2 8U3
0 = = U= — + — + — 6.63
Exk Ukk i, 8:131 81:2 8{[)3 ( )
we have
Oty Cui | Fui | Fui oy gy L (6.64)
oz "H \ 022 " 022 T 922 ) TV T N o2 '
or in a compact form
. 0%u
(A + p) graddiva + pAu+ gg b = oo (6.65)

ot?
0? 0? 0?
Ox?  Ox3  0x3
as the Nawvier’s equations.

where A = is Laplace operator or Laplacian. These equations are known
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Equations (6.64) are a system of three equations to find three components uy, ug, us
of the displacement vector. Having u;, we calculate the components of strain tensor

by (6.58), then by the Hooke’s law we have the components of the stress tensor.

Problem 18 Find the Navier’s equation in one dimensional case uy = ui(x1,t), ug =
0, uz = 0 in the absence of body forces.
Solution: We have from (6.64):

89 82u1 82’&1

(>\+M)87$1 +p e =055

where 6 = Ouy/0x1, thus we get the simple wave equation:

82U1 9 82u1

=i (6.66)
ot? Ox?
with
A+2u
Ccl =
©0

6.6 The Beltrami-Michelle compatibility equations

In the previous section, we have chosen the displacement components u; as the
basic unknowns. In static problems of elasticity, it is more convenient to first find the

stress 0;; from the equation of equilibrium (see (6.55)):

L 4 00bi =0 (6.67)

Then from the Hooke’s law we calculate the components of the strain. The solution ob-
tained are not unique and we have to use the compatibility equation (6.60) to single out
the correct solution.

Thus putting the Hooke’s law (6.24) in compatibility equation (3.70), using (6.67)
we obtain six equations for components of stress, called the Beltrami-Michelle compatibility
equations.

We can also get these equations from the Navier’s equations for static case. Differ-

entiating (6.64) with respect to x;:
p(Au;) i+ A+ p)b 5 + (00bi) j =0 (6.68)
By changing index ¢ — j; 5 — 4, we get:
1(Aug) i+ A+ )05 + (20 bj),i = 0 (6.69)
Now add the equations (6.68) and (6.69):
2pleij + 2(A + )05 + [(ebi) j + (00 bj).i] = 0

Denote by © = opg, then from this equation and Hooke’s law we obtain:

2N+ 1) by
Aojj+ 20722 04 — o6 A Vo |
%5t o O T gn g0 A0 F o)+ (00by)al =0 (6.70)

This is the Beltrami-Michelle compatibility equations.
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6.7 Some simple problems

1. Uniazial extension

Consider a cylindrical bar of arbitrary cross-section, in which body forces are as-
sumed to be absent. The bar is under the action of equal and opposite normal traction’s
distributed uniformly at its two end faces and the lateral surface is free from any surface

traction (see figure 6.6):

Xy

[T
[T

Figure 6.6: Uniaxial extension

Intuitively, assume that the stress state in that bar is [8]:
011 =0, 022 =033 =012 =023 =031 =0 (6.71)

This state of stress satisfies of course the equation of equilibrium (6.67) with the absence
of volume forces b; = 0 because all stresses are either constant or zero. We check now the

bounding conditions for stress (6.49). For lateral surface, n = (0, na, ng):

0=31 = oy1ni1 +o1eng +o13n3=0.0+0.1n2 +0.n3
0=3%9 = 091n1 +029n2 + 09313 =0.0+ 0.1 + 0.n3
0=2%3 = 03111 +03n2+033n3 =0.71+0.n2 + 0.n3

That is, the traction-free condition on the lateral surface is satisfied.

For the ends 1 =1 or 1 =0, ( is the length of the bar): n = (%1, 0, 0):
to=3%1 = 011n1+012n2+013n3=U.(:|:1)+0.0+O.0
0=3%y = 021n1+022n2+023n3=0.(:|:1)+0.0+0.0
0=3%3 = 031n1+032n2+033n3=0.(:t1)+0.0+0.0

so the traction conditions are also satisfied.

From the Hooke’s law (6.32) we have the components of strain:

e = O
n =z

vo o
€22 = £33 =~ (6.72)

€12 = €3 =¢€31 =0
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Since all strain components are constants, the equations of compatibility are automatically

satisfied. From (6.58 ) we have:
6u1

Oz

Ouy
81'2

Ous
0x3
By integrating we obtain:

;

where f1, fo, f3 are integration functions.

SIS

g
—x1 + fi(x2, x3)

Uy = 15
Uy = —%$2+f2($3, x1)
uz = —%$3+f3($1’932)

Substituting (¢) in kinematic relations:

_ L (0w Oua gL (Oue Ousy g1 (Oug Oui
f12 7 2 <8J}2 + 8901) _O, =28 = 2 <8$3 + 8.%'2) _0’ 31 = 2 (8951 + 8903) =0
we get:
df1(z2, x3) Ofa(ws, 1)
01‘2 N a$1 N 91(1'3)
Ofa(ws, x1)  Ofs(x1, v2) g
Ofs(x1, z2)  Ofi(w2, x3)
8$1 a 3$3 - g3(a:2)

where g1(x3), g2(x1) and g3(x2) are integration functions. Integration of (ii) gives:

fi(za, v3) = g1(x3) 22 + ga(w3)

fo(zs, 1) = ga(z1) w3+ gs(z1) =

fa(x1, 22) = g3(z2) x1 + gs(x2) =
From (i4i):

g1(x3) = a1 x3 +b3; g3(v2) = —ai 2+ b,

From (iv) and (vi):

g2(x1) = —a1 x1 + b1, ge(x1) = —bsz1 + c2, gr(x3) = b1 a3+ 2

From (v), (vi) and (vii):

a; =0, gs(x2) = —b3xa 4¢3, go(x1) =bax1 +c3

—g3(z2) v3 + g5(72)
—g1(w3) 1 + gr(23)
—g2(w1) T2 + go(z1)

ga(x3) = —baxg+c1, gs(x2) =braa+c

(vit)

(viii)

(vi)
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Then:
g1(x3) = b3; ga(x1) = b1; g3(x2) = bo; ga(x3) = —ba w3 + c1; gs(x2) = bz xa + ¢4

g6(x1) = —b3 w1 + 25 gr(x3) = by w3 + 25 gg(w2) = —b1 @2 + ¢35 go(w1) = ba w1 +¢3

and:
fi(zo, z3) = bsaxo —baas+c (iz)
fo(zs, 1) = braz—bzzi +c2 (x)
f3(5517372) = —biaxo+byx1+c3 (:Cl)
so that:
o
up = — o1 +bzxre —byws+cy
FE
vo
Uy = —fl'2+b11'3—b31'1+62 (1‘22)
vo
uz = —f$3—blﬂ?2+bgw1+c3

Assume that the origin O on the end cross section is fixed: for x1 = o = x3 = 0, then
u; = uo = ug = 0. From the above relation we have ¢; = ¢o = ¢3 = 0. To prevent the
rotation of the bar, two arbitrary of the three infinitesimal elements dx1, dxs, dxs should
not rotate (see (3.60) and Figure 3.5). To prevent the rotation of the element dx; in the
plane z1 O zo from rotating toward the axe xo we need that dus/0x1 = 0; to prevent the
rotation of the element dxq in the plane z1 O x3 from rotating toward the axis x3 we need
Ous/0x1 = 0. Eliminating the possibility of rotation of the the element dzs in the plane
x9 O 3 toward the axis z3 we need dus/dxry = 0. Substituting this relations into (xii) we

find by = by = b3 = 0. Hence, the displacement vector has two parts. The first part

o
Uy = =
E
vo
U2 = ——F/ T2
E
vo
U3 = ——— I3
E

is corresponding to strain field (6.72) and the second part:

.

Uy = bgxog —boxs+ 1
ug = byxs—byx1+co
ug = —byaxo+bax1 +C3

represents a rigid body displacement field.
2. Uniazial case with body force

Consider now a bar with a length [ standing vertically in gravitational field.
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()
_/

| T dP = (dm)g

. / X

Figure 6.7:

From equation of equilibrium do33/8xr3 — pg = 0. On the upper end z3 = [ we
have 013 = 023 = 033 = 0. On lateral surface only o33 # 0, all other components of stress

equal zero. We find from equation of equilibrium:
o33 = —pg(l — x3) (6.73)

and all other o4; = 0.

From the Hooke’s law we get the strain field:
( v

€11 = €2 = Eeg(l—zs)
< _ _og(l—z3) 6.74
£33 E ( )
| €12 = €23 = €31 =0

Integrating in the same way as in previous example, the part of the displacement corre-

sponding to strain field is obtained as:
( v

u = & 0g(l — x3) 1
v g
{ ug = 5 09(l — x3) 2 (6.75)
ug = % [(:1:3)2 — 2l g + 1/(:1:21" + xg)]
\

Of course, any rigid body displacement field can be added to this without affecting the
strain and stress field of the problem as discussed before.

2. Torsion of a non-circular cylinder

For cross-sections other than circular, the cross-sections will not remain planar.
Assume that the component of the displacement ug does not depend on z3 and 011 = 019 =

022 = 033 = 0. With the absence of the body forces, the equation of equilibrium (6.67) is:

0013 0093 Oo13  Ooag
913 _ —0: -0 7
Ors " Oxs T Oz + Oz (6.76)
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The first and the second equation shows that 13 and 023 do not depend on 3, hence the

distribution of shear stresses is similar for all cross-sections. Let ¢ is a function such that:

1o} Oy

013 = a—;pz ; 023 = “ o, (6.77)

then the third equation of (6.76) satisfied automatically:

d%p B %p
3:3131'2 82261‘1

=0,

The Beltrami-Michelle compatibility equations (6.70) reduce to:

Figure 6.8:

o2 o2
Aoz = (8—1':1‘ + a—mg) 013 =0; Aoz =0 (6.78)

Substituting (6.77) into (6.78) we get:

o (8% 0% o (8% % ~
3 5] =0; 3 3 (6.79)
Ory \Ozf Oz3 Oxp \ Oxf Ox3
That means
Ap = C = const (6.80)

Now we check the boundary conditions. On lateral surface n = (n1, ng, 0) there is no

surface traction, then from (6.49):

o031m1 +032n2 =0

o drd

This condition using (6.77) can be rewritten as:
Op dxy n Op dza  dp
Or1 ds dry ds  ds
Then ¢ = const on the boundary. Without loss of generality, we can choose this constant

to be zero. Thus, to solve the problem of torsion we need to find a function ¢, which

satisfies (6.80) and is zero on the boundary.
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The twisting moment is given by:

M; = /($1 o392 — X9 031) drdy = —/ 1 6—@ + 9 a—(p dxdy = 2 / pdS  (6.81)
S S 6$1 81’2 S

In the case of elliptical bar the bounding function is (z1/a)? + (z2/b)? = 1, where

a is major radius and b-minor radius. Taking function ¢ of the form:

2 2
— Ty | o

w—m<ﬁ+w—> (6.82)

then on lateral bounding we have ¢ = 0. Substituting (6.82) into (6.80) we calculate m,

then:
a’b? 22zl
0 (g2 .
® C2(a2+b2) <a2+b2 > (6.83)

The constant C' we can be found from (6.81):

_2Mt (CL2 —|— b2)

= .84
c T (6.84)
and finally:
M; x% x%
L (2 6.85
4 Tab <a2 T (6.85)
Then stresses are obtained from (6.77):
oM, 2M
013 = mwg ; 023 = 7ra3bx1 (6.86)

The magnitude of shear stress on the cross-sectional plane is given by:

2 M; x% x%
7] =/ ol3 + 035 = —ab VNVt Tt (6.87)

and it takes the maximal value of shear stress at point 1 = 0; o = b:

9 M,

6.88
mab? ( )

’Ts‘ma:r =

0 0 0
Since 011 = 099 = 033 = 0, then from the Hooke’s law g guz U 0, also
61’1 61’2 61'3

we have 12 = 0 then the kinematic relations (6.58) give:

6U1 6'[1/2
2 = —+—=0
c12 6.%'2 + 8.%'1

8”&1 8’11,3 g13
2 = - —_— = — .
€13 8563 + 8:61 7 (6 89)

8’&2 8’LL3 J923
2 = — —|— _— = —
28 Ox3  Oxg I

Assume that u; = —6zo 23, us = 6z 23 then the first equation in (6.89) is satisfied

automatically. The second and the third equations have the form:

0 0
Gy B _TB gy 9N OB (6.90)
0x1 ,u 0xs L
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or

(9’U,3 013 8“3 723
BTy 22 =22 f 6.91
or1  p o Or2 o (6.91)

Differentiating the second equation in (6.89) with respect to x2, the third equation there

par rapport 1, then subtracting, we obtain:

0%uy 0%us 1 (8013 8023)

dredry  Or1dr3 (6.92)

81‘2 aIl

When uy = —0x — 2x3, ug = 0x1 x3, the left side of (6.92) is equal to 26 and the right
side when taking into account (6.77) is equal to (1/u) Ap. From (6.92) we have:

—2pub=0C_ (6.93)
In case of elliptical bar:
M; (a® + b%)
= —-——= .94
Tad b’ (6.94)

Substituting (6.86), (6.94) into (6.91), after integrating we get:

. Mt (b2 — a2)

uz =

Y x1 T (6.95)

6.8 Plane stress and plane strain

6.8.1 Plane stress

The state of stress satisfying following conditions:
0'1320'23:(7’33:0; bg =0 (6.96)

is called the plane stress. A very thin plate, its faces perpendicular to the z3-axis, its

lateral surface subjected to tractions that are independent of x3, and its two end faces free

from any surface traction, is approximately in a state of plane stress (see Figure 6.9).
From the Hooke’s law (6.28), since o33 = 0 then:

v

€33 = _E (0'11 + 0'22) (6.97)
( 1
€11 = E(UII_VO_QQ)
1
€22 = E(UQZ_VO'H) (6.98)
1+v
€12 = B 012
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Figure 6.9: Plane Stress

6.8.2 Plane strain

When the displacement vector satisfies conditions:
up = u1(z1,22); u2 = uz(x1,22); ug =0 (6.99)

the strain tensor can be calculated as:

1
eij = 5 (Ui +ujq) (6.100)
then 5 5 1 /o 5
_dw, o _ G _ 1 (% O
€11 = oz, €92 B2y €12 5 (3:1:2 + (9:1:1) (6.101)

We see that the components €11,€22,€12 do not depend on the coordinate z3, while com-
ponents €93 = €31,e33 = 0. Such state is called the plane strain. This state appears e.g.
in a prismatic bar that has a uniform cross-section with its normal in the axial direction,
which we take to be the x3 axis (see Figure 6.10). The cross-sections are perpendicular
to the lateral surface and parallel to the 129 plane. On its lateral surfaces, the surface
tractions are also uniform with respect to the axial direction and have no axial (i.e., x3)
components. Its two end faces (here £ = 0 and = = ) are prevented from axial displace-
ments but are free to move in other directions (e.g., constrained by frictionless planes).
The dilatation (3.64) has the form:

Buy B
e e (6.102)

= or T o2
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Figure 6.10: Plane Strain

The Hooke’s law is:

( 1+v v
€11 = E o111 — E(Un + 099 + 033)
1+v v
&2 = —p—O0n- (011 + 022 + 033)
1+v v
€3 = —p—0m-— L (011 + 022 + 033)
<
1+v
f12. = —p 01
1+v
€13 = —5 013
. . 1+VU
| 28 = T =

From (6.83) we have:

o33 = V(011 +022); 013 =023 =0

Substituting (6.104) into the third equation of (6.103):

( 1
€11 = E—1(011—V1022)
1
{ €92 = E_1(0'22_V10'11)
€12 = 1+ 012
\ El
where g
v
E;

= ———— l/1=
1—-v2’ 1-v

(6.103)

(6.104)

(6.105)

(6.106)

Comparing (6.105) and (6.98), we can say that from the mathematical point of view, there

is no difference between the plane stress and the plane strain.
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6.8.3 Governing equations of Plane Elasticity

In this section we summarize the governing equations of plane elasticity, for both

plane stress and plane strain. The stress-strain relations can be rewritten as [2]:
1 3—K .
€ij = ﬂ <Uij Ty Okk 5ij> (i,j 1,2) (6.107)

where « is the Kolosov constant defined by:

3 —4v for plane strain

K= (6.108)

3—v

1+v

There are two Cauchy equations of equilibrium:

for plane stress

80’11 80'12

—+—=—+0by =0
8331 + 81:2 + o1
(6.109)
Joy1 | 0oz
—+ —=——+0b2 = 0
al‘l 8 2 + o2
and one compatibility equation:
0? 0? 0?
L e (6.110)
Oxs Oxy 0x10x9

Using the compatibility equation, the Hooke’s law and equations of equilibrium when there

are no body forces, we can show that:

A(o11 +022) =0 (6.111)
0? 0?
where A = — + —— is the two-dimensional Laplacian operator.
Oxy  0xj

6.8.4 The Airy stress function

With the absence of body force, we have the following three equations for three

components of stress:

do11 | dop 0

8.731 81'2 a

dog1 | Ooag (6.112)
81'1 + 61’2 =0

A(Ull + 022) = 0

Let @ be a function with such properties:

oAk
011 = —%5
11 81‘%
a8
= 6.113
022 85[3% ( )
Foati
o = —
12 8$18$2
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Then ® satisfies the btharmonic equation:

o'e 0'® o0t®

AAD = 2 =
oxt * Ox30x3 * ox}

0 (6.114)

and is known as the Airy stress function. Any function that satisfies this biharmonic

equation (6.114) generates a possible solution for a plane elastic-static problem.

6.8.5 Resume

We give here a brief resume of stress and strain fields in plane elasticity:

Plane Stress Plane Strain
Stress 013 =023 =033 =0 o013 =023 =0
011,012,022 may have non zero values 011,012, 0922,033 may have non zero values
. € =€ = O € =€ = £, = O
Strain 13 23 13 23 33
€11,€12,€22,£€33 may have non zero values £11,£12,€22 may have non zero values

6.9 Solutions of plane problems in Cartesian coor-

dinates

The solution of plane problems when there are no body forces is reduced to the

integration of the biharmonic equation (6.114)

0*d 0*e 0*d
AAD = 2 =0 6.115
92t T2 522022 T oa (6.115)
with the boundary conditions (6.49):
o11n] +012n2 +0o13N3 = X (6.116)
O21M1 + 022 N2 + 023Nz = Yo

Solutions in form of polynomials are used widely to solve problems of beams [10]. First we

consider a polynomial of the second order:
A

d=22
2

where Ay, By and Cy are constant. It is easy to check that (6.117) satisfies (6.115). Then
from (6.113) we obtain:

C
(21)* + By vz + 5 (22)° (6.117)

Ak PRk oAk
—__ —=C =—— =A =———=-B 6.118
ax% 2, 022 ax% 2, 012 axl axQ 2 ( )

011 =

All three stresses are constant throughout the body and in the case of rectangular plate (Fig-
ure 6.11) we have a uniform tension (or compression depending on the sign of the constants)
and a uniform shear.

Consider now a stress function in the form of a polynomial of the third order:

A B C D
O3 = 3—32 (z1)° + 73 (21)? 2 + 73 1 (12)* + 73 (z2)° (6.119)

This also satisfies (6.103) for every constants Az, Bs, C3, D3 and we have the stress field:

o011 = Csx1 + D3xo; 099 = Agx1 + By ; 019 = —(ngl + 031’2) (6.120)
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When only D3 # 0 as in Figure 6.12 we obtain pure bending.
In Figure 6.13 we present the case in which all coefficients except B3 are equal
to zero. Along the side £2 = —h we have a uniform compressive stresses, along o = h:
uniform tensile stresses. The side ;7 = 0 is free of traction and shearing stresses are
distributed on z1 = L.
For the stress function in the form of a fourth order polynomial:
Ay

d, =
1713

B C D E
(z1)* + 3—42 (z1)%z2 + 74 (z1)%(z2)? + ﬁ z1(z2)® + ﬁ (z2)*  (6.121)

then by substituting (6.121)into equation (6.115), we find that (6.115) is satisfied only

when:

Ey=—(2C1+ Ay) (6.122)
The stress field calculated from (6.113) is:
o011 = Cy(z1)? + Dyziz9 — (2C1 + Ag)(22)?
099 Ay (1:1)2 + Bixix9 + Cyt (1:2)2 (6.123)
g12 = —(34/2) (.’El)2 — 204 Ir1ro — (D4/2) (1:2)2

Figure (6.14) presents the distribution of stresses on bounding of a rectangular plate, when
only Dy # 0, the stress field is follows:

011 = Dyzi70
Oy = 0 (6.124)
o2 = —(D4/2) (z2)?

and we have uniformly distributions of shearing stresses on 2 = +h. On the two ends

1 = 0 and =7 = [ shearing forces are distributed according to the parabolic law. Normal
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traction on the end = = [ is linear, on the end = = 0 is equal to zero. Consider a stress
function in a form of a polynomial of the fifth order:

As

A @) @) + 4% @ @) + (6125)

Csy
z1)® + ($1)4SE2 +—

©5 = 3.2

E5 F 5
+m11( )+ﬂ( 2)

Equation (6.115) is satisfied only when the following relations are satisfied:

Ey = —(205 -+ 3A5) ; Fs = —(1/3)(35 + 2D5) (6.126)

now the stress field is:

g1 = (05/3) (II)S -+ D5 (171)21?2 — (205 -+ 3A5) fl,‘l(l‘Q — (1/3)(35 -+ 2D5) (IQ)
022 = As(71)®+ Bs (z1)%z2 + Cs 71(72)? + (D5/3) (z2)*

o12 = —(1/3)Bs (21)® — Cs (z1)*z2 — Dsz1(z2)? + (1/3)(2Cs + 345) (22)*
(6.127)

Hence, only coefficients As, Bs, Cs and Ds are arbitrary. In a special case when only

IR SR IR AN AR AR AR A’

h ':x
" -,

I #&&%&&lm,
D>0 '

Figure 6.15:
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D5 # 0, then the stress field is:

o1 = Ds[(z1)%z2 —2/3(z2)?]
092 = (1/3)Ds(z2)? (6.128)
012 = —Dsz1(z2)?

and the distribution of normal forces is presented on Figure 6.15 while the distribution of

shear forces is on Figure 6.16. Since the differential equation (6.115) is linear, then sum of

—_ . = e = =

=
—

=
[—

-— . e w a -

D>0

Figure 6.16:

its several solutions is also a solution. We can use the superposition method to find new

solutions of (6.115).

6.9.1 Solution by Polynomials

Consider a narrow rectangular beam with unit width on Figure 6.17. The beam
is supported at two ends and is bending by a uniform load of intensity g. The boundary
conditions are:

- at upper edge r2 = —h, n= (0, —1):
012 =0, 02 =—¢ (6.129)
- at lower edge 2 = h, n = (0,1):
o12=0, 022 =0 (6.130)
- at £ = %I, n = (£1,0). The strict boundary conditions (6.116) are:
011 =0, o2 =39 (6.131)

Using the stress functions in form of a polynomial, we get the exact solution only in the
case when the surface forces are exactly as given before. We often use in solving problem
of elasticity the so-called Saint Venant’s principle. It says that the effect of the change in
the boundary condition to a statically equivalent condition is local; that is, the solutions
obtained with the two sets of boundary conditions are approximately the same at points
sufficiently far from the points where the elasticity boundary conditions are replaced with
statically equivalent boundary conditions. At a distance larger than the characteristic
dimension of the portion mentioned, the stress distribution is the same whether the body
is loaded as before. This statement can be applied to practically any type of load. In

Figure 6.18, the value of normal stress at distance greater than b is nearly uniform.
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T 0 n Tm

Figure 6.17:

) T

Figure 6.18: Saint Venant’s principle

We should keep in mind two important points when applying this principle [3]: 1.
The actual loading and the loading used to compute the stress must be statically equivalent,
and 2. Stresses can not be computed in this manner in the immediate vicinity of the points
of application of the loads. In our problem, use of the Saint Venant’s principe gives the

approximate conditions on the ends = = £l of rectangular plate:
h h h
/ 019 dx9 = Fql, / o11dxy =0, / 011 29dxy =0 (6]_32)
_h —h —h

The last two conditions in (6.132) state that there are no longitudinal forces and bending
moment at the end of the plate.
We will build now step by step a biharmonic stress function for our problem. We

know already from the problem of bending of beam in the course of Strength of Material:

q(l2 — :1:%) To

g1l = o7

(6.133)

I g2 42

g12 = 27 Ty

where J = 2h®/3 is the moment of inertia of the cross-section (with unit width) with
respect to neutral axis. Then assume that:
o1l = AIQ+B$% o

) (6.134)
O12 = Cr1+D:l:11:2
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Since 011 = 0?°®/0x3:

0%®
W = AQZ'Q + Bﬂj%xQ
2
After integrating we obtain:
0P
92g = A:z:%/2 + Bm%x%/Q + fi(xy)
and now
x% 2 33%
‘I):A€+B$1F+f1($1)1‘2+f2($1) (6.135)

Calculating the derivative and comparing it with the second equation of (6.133)

0*® ) ,
then
D =-B; fi(z1) = —C2}/2+E
d
an xg 2x% o 2

The linear term Ex9 does not influence on stress, and our function (6.136) now is still not
biharmonic, so we add to it another function 1 (z1, z2) and we demand that AA® = 0, so
that:

a3 223 O 4
<I>:A€+Bx1€—§x1$2+Ex2+f(x1)+w(:c1,x2) (6.137)
From (6.137) we have:
0P / 0
pr = Bz123/3 — Cxyae + f (1) + a;i
9@ 0%y
— = Bz3/3-Czo+ f"(z1) + —
Ox? 2 Ox?
3P " 031
8737‘% = (=) + 8733513
0*e ot
= fv) bl
Oxt SE ) + oxt
0?P 92
— Brixr?—
83}181‘2 T le + 8x18x2
03P 031
= Bazi-C
0230wy 2 + O0x30wy
0o A
0z30x3 T2 0x20x3
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0®  _ 2 2,2 2 o

Froti Ax3/2 + Bxixs/2 — Cx1/2 + s

0*® 0%

871'% = A.leg + Bx%.’EQ + 671'%

93P D3

Z - — A4+ B4+ 2L

ox3 R ox3

o _ o

ory oyt
0o 0t® o' oty ot o'y

AAD = 2 = fIV) Z Y L 4B 9 YV Y _

Oxt * Ox30x3 * ox§ fr )+ Oxt AP 0x30x3 0z 0

Assume that fUV)(z1) = 0, we get the following equation for -

ol ol oMy
2 = —4B
Oxt * 0x20x3 * ox 2

The simplest solution of this equation is:

F H
%b:ﬂﬁ%@*'ml’g

By substituting this relation to ® and checking the relations between the constants for ®

to be a harmonic function we get

H=-4B-F
and finally the function:
o= %JT% + %az% T — %x%xz + Exo+ f(x1) + o1 riry — 4Bl;(—)F x5 (6.138)
which satisfies AA® = 0. The stress field can be calculated:
o1 = Axzg+ Bx%acg - AB+ F x%’
o012 = —Bxizi+ Cxy — %xi’ (6.139)
o999 = ?m% — Cxzo+ f'(x1) + gx%:cg
To find the constants in (6.139) we use the bounding conditions:
1. For the edge © — 2 = h, 092 = 0 for every x; then
§h3 —Ch+f”(:c)+§x%h=o
From this we have F' =0 and
f"(x)=L=Ch— Bh*/3 (6.140)
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then (6.139) is:

2B
11 = Azo+ Bm%xg — ? 1‘%
o12 = —Bxla:% + Cl’l
B
099 = E a;% — CQJQ + L

2. For x9 = —h, 092 = —¢q:
~Bh*/3+Ch+L=—q
then taking into account (6.139) we have 2L = —q or
L=-1 (6.141)
2
3. For x9 = +h, 012 = 0 for every xy:
—Bx1(£h)*+Cx1 =0
then C = Bh?. Equations (6.140) (6.141) yield a system of two equations for B and C'

{ Ch—B(h/3) = L=—(q/2)

C = Bh?
and we have: B = —ﬁ and C = —ﬁ and the relation for stress now is:
T 4R 4k '
(011 = Axo — (3¢/4h*)23xy + (q/2h3) 23
o12 = —(3q/4h3) (h2 — IE%) T1 (6142)
3 2h3
O99 = —(3q/4h3) <x32 —h? To + 3>

4. For x = %I it is easy to check:

h
/ o11dxe =0
—h

because o171 is a odd function. Moreover,

h
/ o12dxe = Fql/2
“h

The last condition in (6.132) gives an equation to find A:

h h
/ o011 Todxe = / [Axg — (3q/4h3)l2:z:2 + (q/2h3) a:g] Todxe =0
—h —h

then we find: 5 5
d 2 2

A= 2 (2_=2
4h3 (7 5h )
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and finally the stress field as follows:

3q
o= gy (1% = )z + (2/3)a3 — (2/5)h*x]
o1z = —(3g/4R3) (h* — 23) 21 (6.143)
3 3
099 = —(3q/4h3) (? — h2 T2 + 22)

By replacing the moment of inertia J = 2h3/3 in to (6.143) we rewrite it as:

2 2
q qre [ h
o = w[“Q‘ﬁ)”“J(;w)
o1z = —%(hQ—x%)azl (6.144)
3 3
(7 e 207
| o2 = 2J<3 h$2+3>

The second term in the first equation of (6.144) gives the correction for the solution of the

usual theory of bending represented by the first term. Remember that by using the Saint

Venant’s principle the above solution is not an exact solution at the ends of the beam.
We can then find strain using the Hooke’s law, then integrate (6.58) to obtain the

displacement.

6.9.2 Solution using Fourier series

A function f(x) defined on (xg;x¢ + L), fulfilling the following four conditions: (i)
the function must be periodic; (ii) it must be single-valued and continuous, except possibly
at a finite number of finite discontinuities; (iii) it must have only a finite number of maxima
and minima within one period L; (iv) the integral over one period of | f(x)| must converge,

may be expanded as a Fourier series:

fla) = % + i [an cos <2mLm) + by sin <2”2m"> ] (6.145)

where ag, a.,, by, are constants called the Fourier coefficients. These coefficients are anal-

ogous to those in a power series expansion. They are given by:

zo+L
ay, = % / F(x) cos (2’"Lm> da (6.146)
zo
2 [roth 2
by, = L/ f(zx) sin < ﬂzr:r) dx (6.147)
o

where xg is arbitrary but is often taken as 0 or —L/2.
We can use the double Fourier series containing trigonometric functions to solve
problems of narrow rectangular beams (see Figure 6.19), especially in the case of discon-

tinuous loadings.
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Consider first a stress function of the form:
(1, 72) = f(z2) sin(az) (6.148)

where @ = (nm/l), n is an integer and ! is the length of the beam. Substituting (6.148)

into (6.114) we get a linear differential equation:

a'f o d2f | 4
- 2 J——— = 0 . b
= e a3 + o f(z2) (6.149)

the general integral of this equation can be written in the form
f=(A1+ Az z2) exp (az2) + (As + Agx2) exp (—azxa) (6.150)
or in the form:
f = C1cosh(azxz) + Casinh(azz) + C3za cosh(azs) + Cyza sinh(azxs) (6.151)

where the constants A;, (i = 1,2,3,4) or C;, (i = 1,2,3,4) can be found from the bounding

conditions of the problem. The stress field is:
a)

,ﬁ“x R

b)
(IR NN
2 R | X A

Figure 6.19:

o1 = 227? = sin(az) {Cla2 cosh(azs) + Coa? sinh(axs)+
+ C3a [2sinh(azg) + azs cosh(axs)] + Cya [2 cosh(azz) + axg sinh(azs)]}
02 = ?;T? = —a?sin(az;) [C} cosh(azs) + C sinh(azs)+
+ C3zo cosh(azxz) + Cyzro sinh(azxy))
012 = —afjg;z = —acos(azy) {Crasinh(azy) + Coa cosh(azxz)+
+Cj [cosh(azz) + axgsinh(azg)] + Cy [sinh(azs) + azs cosh(azsz)]}

(6.152)

Similar solution can be obtained by supposing a stress function of the form:

®(zq1,29) = f(x2) cos(azxy) (6.153)
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From (6.152) we see that for £1 = 0 and 1 = [ we have 011 = 0; 012 # 0; ug = 0; u1 # 0
example for beams like on Figure 6.19a on roller supports. With stress function (6.153)
then when 1 = 0 and z1 = [ we have 011 # 0; 012 = 0; uz # 0; u; = 0, example for part
of a beam on Figure 6.19b. under symmetrical loadings.

The biggest advantage of solutions using series with trigonometric functions is that:
it can be applied for problem with arbitrary distribution of loads on the upper and lower
edges of a beam (see figure 6.20). In this case e.g. of normal loadings we expand the upper

and lower loads as Fourier series (6.145):

q,
h
0 * X
| | | h
§jiikiaal
\_/ \ X2 ql
Figure 6.20:
_ = . [mmzy , mmzy -
qu—A0+mz=:1[Amsm( ] )+Amcos( ; )] (6.154)
B > . [mTTy , mmzy
q,—Bo+m2=:1[Bmsm( 7 )+Bmcos( ;i )] (6.155)
where we calculate the Fourier coefficients using (6.146) and (6.147) (here L = 2I):
1 l
AO = g/ qu(Il)dClIl (6156)
1
1 [t . /mmTy
Am = 7/ qu(z1) sm( 7 )dml (6.157)
-1
, 1/ MmmTy
A, = 7/ qu(z1) cos( i )da:l (6.158)
l
and Lo
By = 2 qi(z1)dz (6.159)
-1
1 [t . /mmxy
B, = 7/ qi(z1) sm( 7 )d:rl (6.160)
-1
, 1 [ mmnzy
B, = 7/ qi(z1) cos( ] )d:zl (6.161)
l
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In such way the loads are decomposed in uniform loads Ao, Bo which were discussed
. . . _ . (MmTTy mmTy
in previous section and the loads containing terms sin and cos ] . The
mmTy

stresses produced by terms Sin( 7 ) are obtained by summing up the terms given
mmzy
l

by (6.152). Similarly we get the the stresses produced by the terms COS( ) Then
we can apply the superposition principle.
In the general case of loading (see Figure 6.21), if we take only n terms, then the

stress function has the form:

2h X,

Figure 6.21:

o = % [Am cosh (m”?) + B, sinh (m””) +
—~ l l (6.162)

+ Cix9 cosh (m‘rlrzg) + D,,xo sinh ( msz)] sin ( m7;.’t1)

The expression (6.162) contains 4n constants Am, Bm, Cm, Dm (i = 1,2,3,4). We can find

them using the boundary conditions:

i S, S

oz? = %o 8110y ortz = .
ool o ) (6.163)
_— = M —_—_ = t ‘or =

o2 = % ' Togon, 4 lorm

As an example, consider the case (see Figure 6.22) when only:

k
qu(z1) = 2 (l—z1) 21 (6.164)

Let the stress function be:

® — i [Am cosh ("”;"”2) + B,,sinh ("””) +

m=1 mnzx m7lrx mnz (6.165)
+ Cnxo cosh( 7 2) + Dpzo sinh( ] 2)] sin( ] 1)
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K q,x,)

S
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Figure 6.22:

where Am, Bm,Cm, D are constants. They can be calculated directly from the condi-
tions (6.163). We present now a general, more convenient way to calculate them from the
conditions of loading on upper and lower edges.

Denote by z = mmza/l as a new argument, now when 2 = 0 then 2 = 0 and when

y = h then z = mf, with 8 = wh/l. Introduce also new functions:

Uim(2) = aimcoshz + by, sinh 2 + €1, 2 cosh 2 + diy, 2sinh 2
Yom(2) = agy coshz + by, sinh 2 + ¢5,, 2 cosh z + da,, 2sinh z (6.166)
Y3m(2) = asmcoshz + b, sinh 2 + ¢3, 2 cosh 2 + day, 2sinh z
Uam(2) = @y coshz + by, sinh 2 + ¢4, 2 cosh 2 + dy,, 2sinh z

and new constants Am, Bm, Cm, Dm so that:

Ym = Amd)lm(z) + Bm"/)Zm(z) + C_vm"r/JSm(Z) + Dm1/)4m(z) (6167)
now .
mmxTy
d = Yo (z2) sin
52 1o (2

The stress field is:

ay dz _ (mﬂ') dy
dz drs \ 1
edges £o = 0 and z9 = h.

o V! —
where Y,, =

We choose % so that the following expressions are satisfied:

Vim(0) =0 , ¥%1,,(00=0 , ¥,,(mB)=0 , 91, (mB)=0
Yam(0) =0 , ¥5,(0)=1 , You(mB)=0 , ¢, (mB)=0
Y3m(0) =0 , ¥3,(00=0 , Ygu(mB)=1 , ¥Yi,,(mB)=0
Vam(0) =0 , ¥3,,(0)=0 , Yam(mB)=0 , ¥},(mB)=1
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then the coefficients are given in the following table (for k = 1,2, 3,4):

Akm brm Chm dkm

1 sinh(mpg) cosh(mp) + mg b sinh? (mg)
Yim ~ sinh?(mB) — (mB)? o ~ Sinh? (mB) — (mB)?

0 _ (mB)? sinh?Z (m3) B sinh(mpg) cosh(mpB) — mpB
vam sinh?(mB) — (mB)2 sinh?(mB) — (mB)2 sinh? (mB) — (mfB)2

o mpB cosh(mp) + sinh(mpB) B mf3 cosh(mp) + sinh(mp3) mp sinh(mp3)
Yam S () — (mB)? Sinh2 (mB) — (mB)? Sinh2 (mB) — (mB)?

o B mp sinh(mpB) mp sinh(mp3) 7m[3 cosh(mpB) — sinh(mp)
Yam sinh2(mpB) — (mpB)?2 sinh2(mpB) — (mpB)?2 sinh2(mpB) — (mpB)?2

where:
Cim = —bim; C2m = —dim; C3m = —b3m; cam = d3zm = —bam

We see from the table that these coefficients can be calculated when we know only the
ratio h/l; they are independent from the loads. The advantage of this choice of coefficients

is that the constants in (6.167) have simple interpretation:

Yo (0) = Ap; Y (0) = By Yin(h) = Co; Y.(h) = D, (6.168)
k
In our problem only g, (x1) = 2 (I — 1) 21, then the stress Airy’s function is:
> 1 \?2 . mmx MY
(1, 22) = —n; <m7r> Crn ¥m(2) sin ;i (z = ) (6.169)
with
Ym(2) = by sinh z + ¢z cosh z + dy, 2 sinh 2 (6.170)
In (6.170) the coefficients by, ¢, dp, are independent from the form of loads and equal to:
b m/3 coshmf + sinh mf
™ T (simhmB)2 — (mB)?
o _mﬁ coshmf + sinhmpg
™S T simhmB)E — (mB)?
4 — mf sinh mf
™ T SmhmB) — (mB)?
wh
=T

The constants C), we can find from the expansion of function ¢,(x1) in Fourier
series. Using (6.145)-(6.147) we find

) l
Cm = _l/ qu(z1) sin mixld:v (6.171)
0
and we have: -
Chp = — form 1,35... (6.172)
(mm3)
Hence:
oy = - Z me;;(z) sin mre
m=1,3,5,...
022 = Y Coth(2) sin 2 (6.173)
l
m=1,3,5,...
mmT]

oo
/
o12 = E Cm,,(z) cos
m=1,3,5,...
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where ', and 1/);,,1 are derivatives of the first and second order of the function ¥, (2)
in (6.170) in z:

/7

¥, (2) = dpy sinh z + d, 2 cosh z + ¢z sinh 2 (6.174)

and

1"

Yy, (2) = 2dy, cosh z + ¢, sinh z + ¢,z cosh 2z + dy, 2z sinh 2 (6.175)

Having the stress field, by using the Hooke’s law, we obtain:

1 1 > " . mTmTx

fu = 5 [o11 — Vo] = E Z Cm [¢m(z) + w,bm(z)} sSin :

m=1,35,...

1 1 > " . mmxy

e = 3 lom—voul= % Con [m(2) + 15, (2)] sim (6.176)

m=135,...

1+v 1+v i c 1/}/ (2) mmwIry

€19 = o192 = z) cos

12 5 o E 2 mPm I

By integrating relations (6.176) and using the boundary conditions, we have the displace-

ment:
l > 1 " mnIy
u = m:§5 — Cm [¢m(z) —i—mﬁm(z)} cos
(6.177)
l > 1 / . mmxy
uz = g m:§5 - Cnm [\Ifm(z) +1/z/;m(z)] sin
where
V., (2) = (b, — ¢m) cosh z — dyy, sinh 2 + dyy, 2 cosh z + ¢,z sinh 2 (6.178)

thus the problem is solved.

6.10 Solution in polar coordinates

Sometimes, for example in discussing the stress state in circular rings or disks,
it is more convenient to use polar coordinates (see Figure 6.23). The relations between

Cartesian and polar coordinates are:

z1 =rcos?, ry =rsind or r* =% + 23 9 = arctan —2 (6.179)
1
From (6.179) we have:
or T or To .
ox1 v osv Oxs 71 s
@__E__sinﬁ ' 870_&_(:0519
dry  r2 r  Odrs 2 7
dry  Or Oy 09 dxp  Or r 0V

The project: "Building an ecological Europe - Master programs in English for students of Civil Engineering’
financed by Norwegian funds and domestic funds

104



"Building an ecological Europe - Master programs in English for students of Civil Engineering”

X 2
Gao G,
S,
A dr
de_— ‘)(
T
i \0 X

Figure 6.23: The polar coordinates system

2
o’e = (% cosﬂ—lisin19> (8_@ cosz?—la—ésin19> =

83:% r 0 or r OV
2P 9 2 9% 100 ., 2 09 8%2® sin? 9
=Wcos = 500 sm1900519+;§ sin ﬂ+ﬁ%smﬂcosz9+wr—2
2d 92 | 2 2 9% 1 0® 2 0P . 82® cos?
a—l‘%=wsm 0+;37‘619 smt?cosz?—i—;g Ccos 19—7‘—2% smﬂcosﬂ—}-WT

By adding the last two expressions we obtain the Laplace operator in polar coordinates:

a2q>+a2@_a2@+la_q>+i@
6:5% 6:1:% Cor2 r Or 1?2 992

The biharmonic equation AA® = 0 now takes the form:

82+1¢9+1 0?2 62(I>+18<I>+132<I’ B 6.180
or2  ror r2 092 or2 r or r2ov2) (6.180)
Then we can calculate the components of stress in polar coordinates:
109 4 1 5%®
I = T or T2 092
199 18% 9 (109 (6.181)
90 = 239  rord9  or \r ov .
oy — 5*d
9d = 6‘7'2

The equilibrium equations can be obtained by considering the equilibrium of a small ele-

ment on Figure 6.23, and take the forms:

00y l 00y Orr — 099
or r oY r

(6.182)
1 80'1919 80’,.19 20'”9
r OV or r

=0

When the stress distribution is symmetrical with respect to the axis through O and per-

pendicular to the plane £;0z9, then the shear stress 0,9 = 0 (see the second equation
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of (6.181)), and other components of stress are functions of r only and do not depend on

¥, the partial derivative is the ordinary derivative, then:

AAD = (d—2+li) (d?—@+l@) = d4<1>+gd3<1> —id2®+i@=0 (6.183)
dr? " rdr) \dr®? r dr dr* " r dr® %2 dr? 3 dr
This is an ordinary differential equation. Let’s find the solution in the form:
o =r" (6.184)
By substituting this into (6.183) we get the following equation for n:
nn—1)n-2)(n-3)+2n(n—1)(n—2)—n(n—1)+n=0 (6.185)

with the roots: n; = 0,n9 = 2, ng = ng = 1, the general integral of equation (6.183) is:
®=Alnr+ Brllnr+Cr?+D (6.186)
From this we calculate the stress components following (6.181):

Opr = %+B(1+21n'r)+20
T
o9 = 0 (6.187)

A
o9y = —2 + B(3+2Inr)+2C

If there is no hole at the origin O the constants A and B must be vanish, since otherwise
the components of stress become infinite when 7 — 0. If there is a hole at 7 = 0, the study

of displacement shows that B = 0, then the stress components now are:

A A
Orr = —5 +2C; 099 = —— +2C (6.188)
r r

Figure 6.24:

Problem 19 Find the stress field in a hollow cylinder of inner radius a and outer radius

b is subjected to an internal pressure pi; and an external pressure Po.
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Solution:

The boundary conditions are:

Urr|r=a = —Pi; Urr|r:b = —Po (6189)

By substituting (6.189) into the first equation of (6.188) we can find the constants A and
C, then finally we have the stress field:
a®0®(po—pi) 1 | pia® — pob®

Irr = b2 — a? ﬁ+ b2 — a2

(6.190)

_ a®PP(po—pi) 1| pia® — pob?
T =TT T ﬁ—i_ b2 — a2

In a particular case, when p, = 0, the cylinder is subjected only to an internal pressure,

from (6.190) we have:
pia® b?
o T g2 1= r2

2 2
pia b
T = g (1+r2>

From this relation we see that the stress oyy is always a tensile stress and gets the maximum

(6.191)

value at the inner surface of the cylinder. For thin-walled cylinder, b — a, denoting b—a =t

then we have oyy = p;a/t.
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Chapter 7

Plasticity

7.1 One dimensional models

The characteristic stages of material behaviour for a ductile material can be illus-
trated by a typical stress-strain (or loading-elongation) relationship as shown in Figure
7.1 in a tension test. This highly nonlinear relationship can be roughly divided into five
intervals [5].

Within the linear portion OA (called the proportional range), if the load is reduced
to zero (i.e., unloading), then the line OA is retraced back to O and the specimen has
exhibited an elasticity. Applying a load that is greater than A and then unloading, we
typically traverse OABH and find that there is a "permanent elongation” OH. Reapplica-
tion of the load from H indicates elastic behavior with the same slope as OA but with an
increased proportional limit. The material is said to have work-hardening. The unloading
on portion BH has the same slope. Hence, the plastic deformation does not affect elastic
properties of the material, so that the unloading slope (Young’s modulus E) remains the
same as before the plastic deformation took place. At an arbitrary stage of this elastic-
plastic deformation, the total strain is the sum of elastic (which still obeys Hooke’s law)
and plastic parts (¢ = e®+¢P). Next, we have a portion where the stress is constant and the
strain continually grows, the material has exhibited a perfect plasticity. After a maximum
of the stress strain curve, deformation localizes to form a neck.

Mathematical descriptions of complicated true stress-strain curves are thus needed.
With elastic deformation, the strains are proportional to the stress. This model is described

by the Hooke’s law presented in Chapter 6 (see Figure 7.2a):
oc=Fc¢ (7.1)

When the stress is increased beyond the initial yield limit Y, the material deforms plasti-
cally. By neglecting the hardening interval in Figure 7.1, we have a model elastic perfect

plastic material presented in Fig. 7.2b:

0:{ Eec for e<ey (7.2)

Y for e>ey
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Because the elastic part of the strain is usually much less than the plastic part, when it

will be neglected and we have a model of rigid perfect plastic material (see Figure 7.2d):
c=Y (7.3)

We see that a definite level of stress Y must be applied before any plastic deformation
occurs. As the stress is further increased, the amount of deformation increases, but in
general, not linearly. A simpler model for linear work-hardening is shown on Fig. 7.2c.
After plastic deformation starts, the total strain is the sum of the elastic strain and the
plastic strain. We denote next yield level by oy:

o = Fe for e<ey

] (7.4)
c—-Y = Ei(e—¢ey) for e>ey

7.2 Rheological Models

In classic elasticity, we assume that there is no time delay between application of a
force and the deformation that it causes. However, for many materials there is additional
time-dependent deformation that is recoverable. This is called wviscoelastic or anelastic
deformation. When a load is applied to a material, there is an instantaneous elastic
response but the deformation also increases with time. Anelastic strains in metals and
ceramics are usually small and are ignored, but in many polymers viscoelastic strains can
be very significant. During the deformation process, elastic materials store all energy
obtained, while anelastic material loses a part of energy because of dissipation. Its stress-
strain curve has a hysteresis loop. In practice, this kind of material can be used to make a
cover to prevent shock on goods. The other properties are relazation and creep (see Figure
7.3). Relaxation is the change of stress (unloading) when strain is constant. Creep is the
strain response under constant stress. This may be a very slow process, with very small

velocity and can last even few months.
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Figure 7.2: Mathematical approximations of the true stress-strain curve:
a)Elasticity; b) Elastic-Perfect Plasticity; ¢) Elastic-Plasticity with Linear Hard-
ening; d) Rigid Perfect Plasticity
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Figure 7.3:

Anelastic behavior can be modeled mathematically with structures constructed
from idealized elements representing elastic and viscous behavior. In these models the
stress o is replaced by the force @, and the strain € - by the displacement u of the applied
point. Dividing the force by the area, the displacement by a length, we have the relation
o= f(e).

A spring models a perfectly elastic solid (see Figure 7.4), the behavior of which is
described by 0 = E ¢, where FE is the elastic spring constant. A dashpot models a perfectly
viscous material. This model is related to the Newton’s law of viscous liquids. Its behavior
is described by 0 = né where 1 is the viscous dashpot constant, and the superposed dot
indicates time derivative. It is understood that the spring element responds instantly to a
stress, while the dashpot cannot respond instantly (because its response is rate dependent).

Series combination of a spring and a dashpot gives us the Mazwell model. When

elements are connected in series, each element carries the same amount of stress while the
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Figure 7.4:
strains are different in each element. We have:
o o
E=—=+4+— 7.5
E Ty (7.5)
or d .
n do -
o + —_—— = — f.()
E dt dt (7.6)

Consider the response of this model when € = const and o = const. We start with a test

€ = go = const, then € = 0 and we obtain from (7.5):

0’+0'
E 7

E
o= Cexp (—— t)
n

where C' - is an integration constant. To find it integrate the equation (7.5) from t = 0~

0=

After integrating, we get:

to a very small value t =T

g(t)—e(07) = %[a(’r) —o(07)]+ %Umean.'r
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Because of £(07) =0(07) =0, e(1) = €0, 0(T) = 00, so C = 09 = Eey, then:

=1
-1
~—

E
o = Egg exp (——t) (7.
n
Dividing (7.7) by €0 we get the so-called relazation function:
E
R(t) = E exp (—— t) (7.8)
n
The time tg = n/E is known as the relazation time. In this model, when t — 00, 0 = 0.

Consider the test 0 = 0g = const. From (7.5) we can get:

e(t) = (éw %) 0 (7.9)

Similar as in (7.8), dividing relation (7.9) by oo, we have the creep function:

P(t) = (% t+ %) (7.10)

The relaxation and creep curves for this model are shown in Figure 7.5. The relaxation

G (1) e

Eeg,

time time
Figure 7.5:

here is similar to that of the fluid Newton, while the creep does not complies with the
experiments.

The Kelvin-Voight element of Figure 7.4 consists of a linear elastic spring element
in parallel with a dashpot element. Each element carries now the same amount of strain.

Let 01 be the stress in the spring and o3 be the stress in the dashpot. Then:
o(t) = 01+ 02 = Ee(t) + né(t) (7.11)

In the same way, we find now the relaxation and the creep function for this model. With

the test € = const by integrating (7.11) from 0~ to 7

/ odt = Eedt + / nedt
- 0-

where

[: nédt = ne(t) —(07)] = neo
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Eedt =0
0-

From the geometrical interpretation of integral, the first integral is the area under the curve
o(t). It must have a finite value, otherwise the stress takes infinite value. By introducing
the Dirac function, which has the following property:
T
. d(t)ydt =1 (7.12)

then the initial condition can be written in the form:

o(t) = neod(t) (7.13)
then:
o(t) = Eeo + neod(t) (7.14)
and the relaxation function is:
R(t) =E +nd(t) (7.15)

that means with the presence of the dashpot, we get a relaxation without a delay .

3
c £ (1)
o,
Eg, E
tirr;e time

Figure 7.6:

Now for the test of constant stress o = g, we have the differential equation:

% - %s(t) +E(t) (7.16)

By integrating, we obtain:

g(t) = % + Cexp (—%t)

For t =0, € = g9, then C = —0¢/E and

oo [ E \]
t)y=— [1—exp(——t 7.17
e(t) E | e ( ” ) (7.17)
so the creep function is: i i
P(t) = L 1—ex E t 7.18
“E[ PR (7.18)

The relaxation and creep curves for the model Kenvil-Voight are shown in Figure 7.6.
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An elementary mechanical system describing the behaviour of plasticity is the
patina (see Figure 7.4e), which describe the appearance of the permanent deformation
if the loading is big enough, using Coulomb law of friction. If the first step of the per-
manent deformation does not evaluate during the loading, the behaviour is perfect plastic
and moreover, if the deformation between the flow is neglected, the model is rigid-perfect
plastic.

The association between a spring and a patina in series produces a elastic perfect
plastic behaviour (fig. 7.7) the system not being able to support a stress which’s absolute

value is bigger then oy.

Gy

:I Y L o

olasto-plastic model
Figure 7.7:

The spring, dashpot and patina can be combined, making different rheological
models. In the first two sections of this chapter, we have obtained the stress-strain relations
for the one-dimensional case. We go now to the formulation of constitutive equations that
describe elastic-plastic material response under multiaxial states of stress, similarly to how

from equation (6.1) we get the Hooke’s law of the form (6.22) for isotropic solids.

7.3 Elastic-Perfect Plastic Materials

From the first section we know that material is elastic until it reaches the yield
limit Y. When the stress is over such value, then the total strain in a plastic material can
be considered as the sum of the reversible elastic strain and the permanent plastic strain.
If the material does not admit changes of the permanent strain under constant stress, then
the material is called perfectly plastic, otherwise the material is called work-hardening. In
this section we study the elastic-perfect plastic material, where we assume that the yield
strengths in tension and compression are equal, which is consistent with the observation
for most materials. It means that we neglect in this section the Bauschinger effect, when
the compressive yield strengths are generally greater than the tensile yield strengths e.g.
for polymers. Next, we introduce a criterion for loading: from the point B on the stress-
strain curve for elastic-perfect plastic material on Figure 7.2, we can continue loading (go
to the point C) or have an unloading, when material behaviour is elastic. We go now to

the details.

7.3.1 Ciriteria of loading and unloading

1. For elastic perfect plastic material, the behaviour is elastic until it reaches the

yield limit (Figure 7.1). A yield criterion is a mathematical expression of the stress states
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that will cause yielding or plastic flow
f(oi;) =k, (k= const) (7.19)

2. Then plastic deformation takes place. For the plastic flow to continue, the state

of stress must remain on yield surface. This is called the criterion for loading:

ij
3. When stresses are removed or where the stress intensity drops below the yield
value, we have the unloading:
of

df = ——do;; <0 7.21
f ao,zj 1] ( )
In nine-dimensional stress space, the equation (7.19) f(o;;) = 0 represents a hy-

persurface (see figure 7.8): For the elastic-perfect plastic material, the yield function is a

df
dcii bcij

loading

Figure 7.8:

fixed surface in stress space. Each point inside the surface represents an elastic state and
each point on the surface represents a plastic state.
During loading, both elastic and elastic strains occur, then the total strain incre-

ment is the sum of of elastic and plastic parts:
de;j = deg; + dsfj (7.22)
while during unloading, the material behaviour is only elastic, then:
deij = deg; (7.23)
The increment of elastic strain satisfies the Hooke’s law (see (6.32)):
deg; = % [((14v)doij —vdogk 6;5] = % [((1+4v)doi; —vdl,dij;] (7.24)

where Iy = 011 + 022 + 033 is the first invariant of the stress tensor ;5. It will be shown
later that plastic deformation causes no volume change, so it is more convenient to use the
deviator of stress in relations between stress and strain. Remember the decomposition of

this tensor (see (4.30)):

1
Oij = Sij + 3 I50;; (7.25)
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where s;; is the deviator of the stress tensor o, then:
1
doyj = dsij + 5 dI; 3y (7.26)

we can write the increment of elastic strain in the form:
dSZ‘j dIU

=96 T ok %

where G = E/2(1 + v) is the elastic shear modulus and K = E/3(1 — 2v) is the bulk

modulus (see table 6.2). Introducing the concept of a plastic potential function g(o;),

(7.27)

which enables us to write the increment of the plastic flow in the form:

Jg
0o;j

dsfj =d\ (7.28)
where d\ is a positive scalar factor of proportionality, which is non-zero only when plastic
deformations occur. In the special case, when the plastic potential function and the yield
function coincide, f = g, we have:

of

0o;j

d,sfj =d\ (7.29)
The relation (7.29) is called then associated flow rule because this is connected with the
yield function. Relation (7.28) with g # f is called the non-associated flow rule. Us-

p

ing (2.52) we can conclude that the plastic increment de;; has the direction of the normal

vector to the yield surface (see Figure 7.8).

7.3.2 Yield Functions

A yield criterion is a mathematical expression of the stress states that will cause

yielding or plastic flow. The most general form of a yield criterion is

f(o11,022,033,012,023,031) = f(045) =C (7.30)

where C is a material constant. For an isotropic material this can be expressed in terms
of principal stresses:
f(o1,09,03) =C (7.31)

where o1, 09, 03 are the principal stresses, the roots of equation (4.25).
The simplest yield criterion is proposed by Tresca. It states that yielding will
occur when the largest shear stress reaches a critical value. The largest shear stress is

Tmaz = (Tmaz — Omin)/2 (see (4.39)), so the Tresca criterion can be expressed as
Omaz — Omin = C (7.32)
Taking the convention that o1 > o9 > 03, the equation (7.32) can be written as:

o1 —o03=C (7.33)
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The constant C can be found by considering uniaxial tension. In this state o1 =Y, 09 =

03 =0, then C =YY is the tension yield strength, and the Tresca yield function is:
o1—03=Y (7.34)
For a state of pure shear 01 = —03 = k, 02 = 0 equation (7.34) gives 2k =Y so:
o1—o3=Y =2k (7.35)

where k is shear yield strength.
In Tresca yield function the effect of the intermediate principal stress 02 is neglected.

This is included in the Huber-Mises criterion:
(01— 02)% + (02 — 03)* + (03 — 01)* = 2Y? (7.36)

For a state of pure shear 01 = —03 = k, 02 = 0 equation (7.36) gives: (k)% + (0 — k)% +

(—k — k)2 =2Y?2, then:
[ (7.37)
= — ol
V3

Taking into account (4.34) and (4.36), we can also write:
1 Y
I, = §Sij8ij B %

where k means the yield stress in simple shear.

—k (7.38)

In case of plane stress, when o3 = 0, the criterion (7.9) is:
0240 —0100=Y? (7.39)
which is an ellipse in plane 01, 02 as in Figure: It can be shown that in this plane, the

)

Figure 7.9:

Tresca criterion is the hexagon inscribe in that ellipse.
This criterion can also be expressed in terms of stresses that are not principal

stresses in the form:
(011 — 022)% + (022 — 033)% + (033 — 011)* + 6 (032 + 033 + 0%;) = 2Y? (7.40)
The relation (7.40) in the case of plane stress is:

0} — 011022 + 03 + 303 =Y? (7.41)
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7.3.3 Incremental stress-strain relation

In view of (7.27) and (7.29) we have the complete stress-strain relation for an

elastic-perfect plastic material [4]:

ds; d of
deij = def; + dej; 2G] 513 +dX B0 (7.42)
where dA is still unknown factor. In view of (7.19), (7.20) and (7.21), we have:
I\ >0 whenever f=0 and df =0 (7.43)
=0 whenever f<0 or f=0 butdf <O
The relation df = 0 can be written as follows:
of
d, do;; = 44
f 60'1] g; J 0 (7 )

and is known as the consistency condition. Substituting ds;; from (7.42) into (7.26) we

ha'v(i.

dUij = 2Gd€ij —

Substituting (7.45) into (7.44):

of of of 1 2G of
2G ——dg;j — 2G d\ - ——|dl, 0;; =0 7.46
Oaij €ij 60’@‘ 80'@']' + (3 9K> 8 044 J ( )
With ¢ = j, relation (7.42) gives:
of
dl, = 3K (dem dA doi 5m> (7.47)
Substituting (7.47) into (7.46), we get a relation for dA:
0 3K —2G 0
f dEij+ dEkk <f 57,]>
. 80’1']' 6G 80'” (7 48)
of of L 3K - 2G (Of '
0oj 802] 6G 0oj %ij
In the case of The Huber-Mises criterion (see (7.38)):
1
f=VI;= §3ij3ij:k (7.49)

We have:
of _ oVII _ 1 oVII 1 0y

30’@' - 80’1‘3‘ - 2\/[[5 80'” 2\/[[ Skl 80'” (750)
Since sy = o — (1/3) Omm Okl (see (4.30)), then:
Os 1 Os 1 1
aa]:j- = 5 (Buidi + 0k;00) + 3 5m5m] S = 80’1:; = 5 (Bridi + 0rj0) + 5 01 0 (7.51)
Substituting (7.51) into (7.50), one gets:
of 1 1 1 1
= 8. .S iy p — i 59
(902] 5 VIT. Ski 5 (5].3%51] + 5@510 + 3 0ij Okt 5 VT, Sij (7.52)
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1 1
Then since 86(;}; 67/] = 9 \/m Sij (5” = ﬁ Sy = 0, from (748) we obtain:
8f de s Sij dEij
A\ — 80'2‘]‘ K . 211, S d&‘ij _ Sij deij (7 53)
—Of Of — __Sij S ko k '

9oy doy; 2L 2T,

Here de;; is the increment of the deviatoric part of strain tensor, s;;de;; = s;5 [dei; +
(1/3) degi] 6;5 = sij dei; because of the first invariant of deviator of stress tensor s;; d;; =
S = 0.

Substituting dA (7.53) into (7.42), (7.45), we get the complete stress-strain relations:

dsy; | dI, Smn d€mn
i = 5q Tor T T gp i
(7.54)
GSmndemTL
doyj = 2Gdei; + Kdeyy by — — 55 8ij

The product s,,pdenm,, of two deviators of stress and strain is called the rate work
due to distortion. Decomposing the deviator of strain into elastic and plastic parts, we
get:

Smnd€mn = Smn(de;,,,deb ) (7.55)

where for elastic part de$,,, = dsmn/2G (see (6.34)), then:
Smnd€mn = Smn(dey,,, +deb ) = (1/2G) spmn dSmn + Smndeb,,, = Smndeb,, (7.56)

because of Sy, dspn = df = 0 on the yield surface. Substituting ¢ = j into (7.54)) leads

to:
dej; = % = de5; (7.57)
then:
del; = dejj — def; = 0 (7.58)

so the increment of the plastic strain is incompressible.
Hence, the following specifications are valid for an elastic-perfect plastic material

obeying Huber-Mises criterion and flow rule:
e The increment of mean stress and mean strain obey the Hooke’s law at all time:
doj; = 3K dejj (7.59)
and no plastic volume change can occurs deé?j =0.

e The material is elastic satisfying the Hooke’s law, meaning no change in increment
: : po_
of plastic strain de;; = 0 as long as VII; < k.

e Yielding occurs when and only when /11 =k,

Smn demn

e States when /I, > k can not exist for this material.
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7.4 Effect of Strain Hardening on Yield Locus

For elastic perfect plastic materials presented in the last section, k is assumed
constant, and the yield locus is fixed in stress space. For work-hardening we have two main
models [6]. According to the isotropic hardening model, the effect of strain hardening is
simply to expand the yield locus without changing its shape. In the kinematic hardening
model, plastic deformation simply shifts the yield locus in the direction of the loading path

without changing its shape or size (see Figure 7.10).

&
e

isotropic hardening kinematic hardening

Figure 7.10:

Since now the yield locus is not fixed, then do;j; is directed outward from f (load-

ing) see Figure 7.11. To build a model of elastic plastic material with hardening we make

of

do, f/ b_cij

—
oading

Figure 7.11:

the following basic assumptions: 1) The existence of the initial yield surface and subsequent
loading surface; 2) The appropriate rule for describing the subsequent loading surfaces and
3) A flow rule to specify the stress-strain relation.

We go into the details, only for the case of isotropic hardening:

1. The yield locus (7.19) is the initial yield. Assuming a subsequent yield surface,
which depends on the stress, on history of loading represented by the plastic strain Ef] and

a hardening parameter k:
f = floij, €5, k) (7.61)
When f = 0 we have yield states, while f < 0 represents elastic states. On loading

paths other than uniaxial tension, we need to specify the hardening parameter k. For this
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purpose, we introduce the concepts of effective stress o, and effective strain ¢, . They are
defined as follows:
a) o and €, reduce to o and € in tension test.
b) It is postulated that the strain hardening depends only on &, and there is a
unique relation:
Oc = 0c(Ee) (7.62)

Because for a tension test o, and e, reduce to o and e (assumption a)), the o-¢ curve in
a tension test is also the o, — &, curve, so we can use the tension curve to predict the
stress-strain behavior under other forms of loading.

When o, reaches the current flow stress, plastic deformation will occur, for the

Huber-Mises criterion (7.36), the effective stress is:

1 2 2 211
O = ——= (01 —09)°+ (09 —03)° + (03 — 0 2 7.63
c= 7 (01 —02)" + (02 — 03)" + (03 — 01)7] (7.63)
In terms of non-principal stresses, then:
1 1
O = —= [(011 — 022)2 + (022 — 033)2 + (033 — 011)2 +6 (0%2 + 033 + Ugl)P (7.64)

V2
There are two definitions of effective plastic strain depending on the form of k. For
the strain hardening hypothesis, the function (7.61) takes the form:
floij,ely, k) = Foij,ef;) — k(eg) =0 (7.65)
where k is a monotonically increasing function, which depends only on the effective plastic
strain £ defined as:
de? = \[2/3de? el ; < = / de? (7.66)
In uniaxial loading £ = P, where £ is the total uniaxial plastic strain.
For work-hardening hypothesis, we assume that k is a function of total plastic work
WP defined as:
dWP = gedeb ; WP = /de (7.67)

For the Huber-Mises criterion, (7.67) and (7.66) are equal (see for example (7.92) and (7.93)).

2. There exists a plastic potential function g(crij,z—:p k) so that the plastic strain

i
could be derived from:
Jg

0oj

de?; = dA (7.68)

3. In plastic loading, both initial yield and subsequent stress states must satisfy
the yield function f(oy;, efj, k) =0:

f=0 and f+df=0 (7.69)

Hence, the consistency condition, which means that loading from a plastic state must lead

to another plastic state, applied:

df = aaf d o7

of

ok
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where the hardening parameter k is a function of plastic strain k = k(sfj)

4. The total increment of the strain is the sum of the elastic and plastic part:

deij = def; + dej);
where the increment of the elastic strain satisfies the Hooke’s law:
doij = Cijpy dejy
From (7.71,(7.72) and (7.28) we obtain:
doij = Ciipy (dery — deyy) = Chiyy (dskl — d)\>

Using (7.73), relation (7.70) takes the form:

of dg  Of Ok dg

. dg of _
doi Cijni <d€kl 8(7kl> + 85% dX D05, + ok 85% dA Boi; 0

then we have:

B (8f/80’1]) Ciejkl dEkl
h+ (0 [00mn) Cfinpq(99/90pq)
where h is so-called the hardening function defined by:

af 0Og of 0k Og

dX

Then the increment of plastic strain is given by:

deP. = d\ 89 — (af/aars) Cﬁskl dey 89
ij 9oij  h+ (0f00mn) Clrpe(09/00pg) Do

The stress-strain relations for an elastic-work hardening plastic solid are:

)

doij = (Cijy + Ciypy) de

where:

cP o =— Cljtu (0F/90vs) (99/otu) CF gy
ijkl h+ (0f /00 mn) Clrnpg (09/00,q)

(7.71)

(7.72)

(7.73)

(7.74)

(7.75)

(7.76)

(7.77)

(7.78)

(7.79)

In general Cf}kl #* C’fh.j because f # g. In the case when the plastic potential is the same

as the yield function f = g, the flow rule (7.77) is called associated flow rule, we have:

P _ Ciejtu (af/aars) (af/aO'tu) C:skl
ijkl h+ (8f/aO'mn) Cﬁpmpq (8f/80-pq)

The last tensor is symmetric.

(7.80)

Problem 20 Show that the relation (7.75) reduces to the relation (7.53) for an isotropic

elastic-perfect plastic material with associated flow rule.
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Solution: In this case from (7.76) we have h = 0 (the functions f and k£ do not depend

upon sfj). For isotropic material, from (6.21) we have:

ik = A0kt + p(0ikdj1 + 0udik) (7.81)
then: of o o
_— =\ 0; 20
P i zgkl Kl ( 5’0ij ) + 3%1

By substituting this relation into the relation (7.75) and using the relation between the
elastic moduli A = K — 24/3 (see Table 6.2), we get (7.53).
The isotropic-hardening rule assumes that the initial yield and subsequent loading

surface throughout the deformation process are defined by:
floij k) = F(oij) — k(eg) = 0 (7.82)

so the initial yield expand without changing the shape. Here k is a scalar function of
deformation history which defines the size of the current yield surface. It is a monotoni-
cally increasing function of a history parameter. This parameter can be taken to be the

generalized plastic strain (7.66):

dg 2 dg OJdg
de? 2/3del. de? d)\ dX =d\ 7.83
/ Cij @€ij = \/ 80” < 00@‘) 3 Ooij 00 ( )
or with the total plastic work (7.67):
AWP = o3y de?. = 5,3 d=P, = (dAN) 515 22 (7.84)
= 045 dey; = sijde;; = Sij Jo :

where s;; is the deviator of stress, because of the plastic incompressibility.

Problem 21 Calculate the hardening function h in (7.75) for elastic-strain plastic harden-

ing for an isotropic material satisfying the associated Huber-Mises flow rule f = /11s—k =

1
3 $ij sij — k in the case of linear hardening oy =Y + Ey et (Y is the initial yield value,

and oy is the actual yield value, see Figure 7.12).

Solution:
For the Huber-Mises yield criterion f = /IT; — k, we have k(ef) = oy (e£)/V/3,
where oy (£f) is the tensile yield stress. We can find this from the stress-strain curve in

tension (or compression). For linear hardening materials [5]:
oy =Y + E; 8{; (785)
here F is a material constant, then we have:
WP=|Y L E1el ) &b 7
= + 5 1€¢ | Ee ( 86)

Then )
oy =Y?+2F <Y+2Ele§) L =Y?+2E, WP (7.87)
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Figure 7.12:

We have:

of 0k 1 0oy  En 7 a8
koL~ V3oL V3 (7.88)
in the case where k is a function of the generalized plastic strain (7.66), and:
o Ok _ 1 Yoy __ Eu (7.89)
ok OWP  \BOWP  Boy o
in the case where k is a function of the total plastic work (7.67).
The increment of k can be written in different forms:
ok ok
dk dep = del = —— dW?P 7.¢
ae” U 9l oW (7.90)

By using (7.83), (7.84) the expression (7.76) for the hardening function h is:

_6f dg Bf Ok dg
86% do;; Ok Bep Do

__ﬁﬁ_ﬂﬁ\/?‘/ﬂﬂ (7.91)
- 65‘{7 aaij ok Be‘g 3 aUmn agmn .

_Bf dg _B_f ok .. dg
861’] adij ok owr ™Y aa,-]-

h

In this problem: g = f; 8f/0k = —1; (9f/(9€1?. = 0; (8f/00i;) = s8ij/2/IIs (see (7.52)).
By substituting (7.88) and (7.89) into (7.91) we have finally:

h:_ﬂa’“\f oF 9 _ \f _oF of =ﬂ\/§ Sij 85 _ By
Ok Ok 00 mn O0mn O0mn O0mn /3 V3V 2k 2k 3

(7.9
in the case where k is a function of the generalized plastic strain (7.66), and

8f ok Bf E1 6f E1 Sij Sij _ El 2](72 E1

ok OW? “7 90, Bay U 00y 3oy 2k 3oy 2k 3

(7.93)

in the case where k = oy/v/3 is a function of the total plastic work (7.67). Hence, in
the case of the Huber-Mises criterion, the two definitions of effective plastic strain lead to

identical results.

The project: “"Building an ecological Europe - Master programs in English for students of Civil Engineering"
financed by Norwegian funds and domestic funds

124



"Building an ecological Europe - Master programs in English for students of Civil Engineering”

Problem 22 Study plane bending of a rectangular cross-section beam made of a material

with elastic perfectly plastic behaviour (see Figure 7.13), in the elasto-plastic regime.

="

Figure 7.13:

Solution:

Considering the rectangular cross-section represented in Fig. 7.13, in this case the
neutral axis divides the cross-section in two equal parts, since the material behaviour is
the same for compressive and tensile stresses. In elastic bending, the distribution of the

normal stress in the cross section is linear:
Oze = —Mz/J (7.94)

where M is the bending moment, J is the inertia moment of the cross-section with respect

to the neutral axis.

a) b) c) d)
3 Y -Y -Y

Figure 7.14:

If the bending moment exceeds the value corresponding to the yielding strain in

the fibres farthest from the neutral axis (Fig. 7.14b):

_ Ybh?
6

My (7.95)
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which is the highest possible bending moment in the elastic phase, the fibres undergoing
more strain yield and the bar enters in the elasto-plastic regime (Fig. 7.14c). In the cross-
section there are elastic and plastic zones. The value of ¢ (with 2¢ being the height of
the part of the section still under elastic deformations) corresponding to M > Mt can be

found from the relation for bending moment:

h/2
/ ozbdz=M (7.96)
—h/2

In the plastic zones, 0 =Y and in the fibres which are still under elastic deformation, we

use (7.94) obtaining:
Yb

M = — (3h* —4c%) (7.97)
12
By making ¢ =01in (7.97) we get the yielding bending moment Mp, where yielding of the

entire cross-section takes place:
Y bh?

4
With bending moment M > Mp, the curvature of the bar may then be increased practically

M, = (7.98)

infinitely without any increase in the bending moment.

If the bar is unloaded after the maximum bending moment in the elastic phase is
exceeded, the internal stresses do not disappear totally, since the material behaves elasti-
cally in the unloading process (Fig.7.14e) and some residual deformation is left (see Fig.
7.14f) in the fibres where the yielding strain was exceeded (we have applied the superpo-
sition of a linear elastic diagram on the elasto-plastic diagram resulting from the loading
to obtain Fig. 7.14f).

Problem 23 Find a solution for a hollow cylinder of inner radius a and outer radius
b is subjected to an external traction p. The material is elastic-perfectly plastic with the

Huber-Mises criterion with yield value Y .

Solution:

Figure 7.15:

1. Elastic state (0 < p < pp)

When the magnitude of the traction is smaller than a value pp, now unknown:

0< Pe < Ppl (799)
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the material obeys Hooke’s law, the use of the general solution (6.190) with the outer

traction p, = —p leads to:
b2 p a?
Orr = m (1 - 7'_2) (1.1[)())
b2p a?

We observe that the radial component of the stress is always smaller than the tan-
gential component: 0 < 0, < ogy for every a < r < b. The latter is greatest at the

inner surface of the cylinder r = a.

. Elastic-plastic state (pp < P < Pmaz)

When p grows, as long as the state stress does not satisfy the yield criterion:
02 — 0099+ 035 =Y? (7.102)

anywhere in the cylinder, it is in elastic state. However, as p is increased beyond a

value p = ppi, yield is initiated. To find this value, substituting (7.100) and (7.101)

into (7.102), we find that:
1 2
’;,—"’ =3 (1 - %) (7.103)

and yield is initiated at the inner surface 7 = a and spreads toward the outer surface
r = b. Hence, when p,; < p, but still lower than a critical value Pmaz, both elastic
and plastic zone exist (see Figure 7.16). Denote by mp the boundary between elastic

and plastic zones.

Figure 7.16:

From equation (7.102) we have:

1
To0 = 5 (orr +/4Y2—302)) (7.104)

with the condition 4Y2 — 302, >0, or:

Orr 2

— <—==1,155
<=1, ()
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In plastic zone, material must obey the yield function (7.102) and the equation of

equilibrium, now in the form (see (6.182)):

doyy + Orr — 099 _

0 (7.105)

dr r

Substituting (7.104) into (7.105), and integrating we obtain:

2Y — rr
r==C 2 exp { —V/3 arctg \/ ¢ (7.106)
V3 (—Urr +/4Y?2 - 30%) 2Y + V30,

with condition

% <1 (x%)

The integration constant C can be found from the boundary condition o, = 0 at

r=a:

V3Y

then in the plastic zone, the component of stress o, is follows:

2Y 3 2Y — /3
r_ exp Q — V3 arctg ﬂ (7.108)
a —Opr +1/4Y2 — 302, 4 2Y + V30,

Having o, we can find the tangential component ogy in the plastic zone using the

a=C L exp (—\/garctg 1) then C = a vV3VY exp <\/iﬂ> (7.107)

relation (7.104). By continuity, the components of the stress must be equal in the
boundary r = r,;, then we have the following system of equations to find the value

of radial stress on the boundary between elastic and plastic zones ¢ and ry,;:

T'pl 2Y V3 2Y—\@q
- = expq —— — \/garctg —_—
a _q+1/4Y2—3q2 4 2Y+\/§q

1 PO’ —qry  b%(q—p)
§(Q+ \/4YQ_3‘12) = b2—r2lp . bQ_TQl
P P

(7.109)

3. Maximal load p = pimaz

When p reaches the value p;,qz, the plastic zone spreads to r = b, S0 0y = Prnasz at

rpi = b, we have a following equation to find pp,qq:

b 2Y \/gﬂ' 2Y — \/gpmax
- = expy ——— — V3 arctgf | —————
a —Pmax + \V 4Y2 - 3p2naz 4 2y + \/gpmax

(7.110)
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