Przemysław Golewski Tomasz Sadowski

Zagadnienia z zakresu Wytrzymałości Materiałów

Ćwiczenia projektowe

Politechnika Lubelska

Lublin 2016

Spis treści

	Wstęp	3
1.	Oznaczenia i znakowanie	4
2.	Podstawowe wzory wytrzymałościowe dla róż-	
	nych rodzajów obciążeń	5
3.	Prawo Hooke'a, liczba Poissona	6
4.	Rozwiązywanie zadań statycznie niewyznaczalnych	7
5.	Zagadnienie spiętrzenia naprężeń (wybrane przypadki)	8
6.	Momenty statyczne i momenty bezwładności pól	
	figur płaskich	9
7.	Wyznaczenie momentu dewiacyjnego Ixv dla kątownika	11
8.	Momenty bezwładności, dewiacji względem osi	
	centralnych (własnych) figur	12
9.	Naprężenia w belkach zginanych	14
10.	Metoda Clebscha	16
11.	Połączenia nitowe	18
12.	Połączenia klejowe	20
13.	Połączenia spawane	21
14.	Swobodne skręcanie prętów o przekrojach kołowych	23
15.	Swobodne skręcanie prętów o przekroju prostokątnym	24
16.	Swobodne skręcanie prętów cienkościennych	
	o przekrojach otwartych	25
17.	Swobodne skręcanie prętów cienkościennych	
	o przekrojach zamkniętych (wzory Bredta)	26
18.	Nacisk powierzchniowy. Wzory Bielajewa	27
19.	Zagadnienie wyboczenia	28
20.	Hipotezy wytężeniowe	31
21.	Mimośrodowe ściskanie	35
22.	Płaski (dwuosiowy) stan naprężenia	36
23.	Stan odkształcenia. Transformacja odkształceń	
	w punkcie	39

24.	Związki pomiędzy naprężeniami	
	i odkształceniami. Uogólnione prawo Hooke'a	40
25.	Mechanika pękania – pękanie kruche	41
26.	Twierdzenie Castigliana	43
27.	Twierdzenie (wzór) Maxwella-Mohra	44
28.	Równanie Laplace'a, naprężenia w zbiorniku	
	walcowym	45
29.	Naprężenia w sprężynach śrubowych	46
30.	Zagadnienie uderzenia	46
31.	Płyty kołowosymetryczne	47
32.	Naprężenia w rurze grubościennej	48
33.	Wpływ otworów kołowych na rozkład naprężeń	
	w tarczach (zagadnienie Kirscha)	48
34.	Siły niszczące nity zrywalne	49
35.	Przeliczanie jednostek naprężenia	50
36.	Wartości modułu Younga E i liczby Poissona v	
	dla niektórych materiałów	50
37.	Naprężenia dopuszczalne dla stali, staliwa i żeliwa	51
38.	Orientacyjne własności wytrzymałościowe	
	niektórych gatunków drewna	53
39.	Orientacyjne własności tworzyw termoplastycznych	54
40.	Litery greckie	54
41.	Tabele kształtowników	55
	Literatura	60

Wstęp

Celem niniejszego opracowania było zgromadzenie jak największej ilości zagadnień przedmiotu Wytrzymałości Materiałów w niewielkiej broszurze, która ma stanowić pomoc przy rozwiązywaniu zadań rachunkowych oraz ćwiczeń projektowych. Opracowanie zawiera gotowe wzory, wskazówki konstrukcyjne oraz tabele. Jednak, aby w pełni zrozumieć dane zagadnienie, należy sięgnąć do literatury, której bogata ilość została podana na końcu opracowania. Znajomość samych wzorów w żadnym stopniu nie gwarantuje sukcesu w rozwiązywaniu zadań. Ich duża różnorodność oraz powiązanie poszczególnych zagadnień sprawia, że konieczne jest samodzielne przerabianie zadań zarówno tych, które pojawiły się na ćwiczeniach jak i znajdujących się w obszernych zbiorach zadań.

1. Oznaczenia i znakowania

Naprężenia normalne będziemy oznaczać przez $\sigma,$ styczne przez $\tau.$

Indeks przy σ oznacza oś, do której naprężenie normalne jest równoległe. Przy τ wprowadzamy dwa indeksy: pierwszy oznacza do jakiej osi jest prostopadła płaszczyzna działania naprężenia stycznego, drugi zaś – do jakiej osi naprężenie to jest równoległe.

Jeżeli normalna zewnętrzna do elementarnego pola i naprężenie styczne, występujące na nim, skierowane są w kierunkach jednoznakowych (różnoznakowych) osi, to takie naprężenie styczne uważać będziemy za dodatnie (ujemne).

Na wszystkich ścianach elementu występuje dziewięć naprężeń:

- trzy normalne: σ_x , σ_y , σ_z ,

- sześć stycznych: τ_{xy} , τ_{yz} , τ_{zx} , τ_{yx} , τ_{zy} , τ_{xz} .

Te naprężenia nazywamy składowymi stanu naprężenia w danym punkcie.

2. Podstawowe wzory wytrzymałościowe dla różnych rodzajów obciążeń

Rodzaj obciążenia	Wzór ogólny
rozciąganie	$\sigma_r = \frac{F}{S} \le k_r$
ściskanie	$\sigma_c = \frac{F}{S} \leq k_c$
ścinanie	$\tau_t = \frac{F}{S} \le k_t$
zginanie	$\sigma_{g} = \frac{M_{g}}{W_{x}} \leq k_{g}$
skręcanie	$\tau_s = \frac{M_s}{W_0} \le k_s$
nacisk powierzchniowy	$p = \frac{F}{S} \le k_0$

gdzie:

F – siła [N],

S – pole przekroju [mm²],

Mg - moment gnący [Nm],

M_s – moment skręcający [Nm],

k - naprężenia dopuszczalne [MPa],

W_x – wskaźnik wytrzymałości przekroju na zginanie [mm³],

W₀ – wskaźnik wytrzymałości przekroju na skręcanie [mm³],

3. Prawo Hooke'a, liczba Poissona

odkształcenie podłużne $\varepsilon_{podt} = \frac{\Delta l}{l}$ $\Delta a = a_1 - a$ odkształcenie poprzeczne $\varepsilon_{poprz} = \frac{\Delta a}{a} = \frac{\Delta b}{b}$

Liczba Poissona
$$v = \left| \frac{\varepsilon_{poprz}}{\varepsilon_{podt}} \right|$$

4. Rozwiązywanie zadań statycznie niewyznaczalnych

Gdy przyjęta zmiana długości pręta jest zgodna z danymi oraz założonymi wpływami, to uzyskuje ona znak plus (+), w przypadku przeciwnym minus (-).

Na początku rozwiązania zadania zakładamy przypuszczalne odkształcenie układu oraz zakładamy siły, wraz z kierunkami i zwrotami.

Gdy efekty działania poszczególnych założonych sił (tzn. odkształcenia wywołane przez nie) są zgodne z założonymi odkształceniami, to otrzymują one znak (+). Gdy zadane wpływy (siły, zmiany temperatury, błędy montażowe) wywołują odkształcenia zgodne z założonymi, to odkształcenia te uzyskują znak dodatni. W przeciwnych przypadkach, składowe odkształceń otrzymują znak minus (-).

Jeśli założyliśmy **wydłużenie pręta**, to odkształcenie uzyskuje znak

(+) gdy:	(-) gdy:
 siła w pręcie jest rozciągająca, 	 siła w pręcie jest ściskająca,
 pręt uległ ogrzaniu, 	 pręt uległ oziębieniu,
 pręt wykonano za długi 	 pręt wykonano za krótki.

Jeżeli założyliśmy **skrócenie pręta**, to odkształcenie uzyska znak

(+) gdy:	(-) gdy:
 siła w pręcie jest ściskająca, 	- siła w pręcie jest rozciągająca,
 pręt uległ oziębieniu, 	 pręt uległ ogrzaniu,
 pręt wykonano za krótki, 	 pręt wykonano za długi.

5. Zagadnienie spiętrzenia naprężeń (wybrane przypadki)

 $\sigma_{\max} = K_t \cdot \sigma_{nom}$

D/d	В	а
2,00	1,100	-0,321
1,50	1,077	-0,296
1,15	1,014	-0,239
1,05	0,998	-0,138
1,01	0,977	-0,107

6. Momenty statyczne i momenty bezwładności pól figur płaskich

Momenty statyczne: $S_x = \int_A y dA$ $S_y = \int_A x dA$ Położenie środka ciężkości: $x_0 = \frac{S_y}{A}$ $y_0 = \frac{S_x}{A}$

Momenty bezwładności: $I_x = \int y^2 dA$ $I_y = \int x^2 dA$ Promienie bezwładności:

$$i_x = \sqrt{\frac{I_x}{A}}$$
 $i_y = \sqrt{\frac{I_y}{A}}$

Dewiacyjny moment bezwładności, moment odśrodkowy lub moment zboczenia:

$$I_{xy} = \int_{A} xy dA$$

Biegunowy moment bezwładności:

$$I_0 = \int_A \rho^2 dA \quad \text{lub} \quad I_0 = I_x + I_y$$

Równoległe przesunięcie osi, twierdzenie Steinera

W przypadku gdy początek układu współrzędnych x₀, y₀ jest środkiem ciężkości figury:

$$I_x = I_{x0} + a^2 A$$
$$I_y = I_{y0} + b^2 A$$
$$I_{xy} = I_{x0y0} + abA$$

Zależności pomiędzy momentami bezwładności i monetami dewiacji względem osi obróconych.

$$I_{x1} = 0.5(I_x + I_y) + 0.5(I_x - I_y)\cos 2\alpha - I_{xy}\sin 2\alpha$$

$$I_{y1} = 0.5(I_x + I_y) - 0.5(I_x - I_y)\cos 2\alpha + I_{xy}\sin 2\alpha$$

$$I_{x1y1} = 0.5(I_x - I_y)\sin 2\alpha + I_{xy}\cos 2\alpha$$

Główne osie bezwładności, główne momenty bezwładności:

$$I_{1} = I_{\max} = 0.5(I_{x} + I_{y}) + 0.5\sqrt{(I_{x} - I_{y})^{2} + 4I_{xy}^{2}} \qquad y$$

$$I_{2} = I_{\min} = 0.5(I_{x} + I_{y}) - 0.5\sqrt{(I_{x} - I_{y})^{2} + 4I_{xy}^{2}}$$

$$Ig \alpha_{gt} = -\frac{2I_{xy}}{I_{x} - I_{y}}$$

W zorientowaniu się co do położenia osi głównych pomocne są następujące wskazówki:

- jeśli $I_x\!\!>\!\!I_y$ to α_{gi} jest kątem między osią x i osią $I_{max},$

- jeśli $J_x < I_y$ to α_{gt} jest kątem między osią x i osią I_{min}

7. Wyznaczenie momentu dewiacyjnego I_{xv} dla kątownika

W tablicach, do projektowania konstrukcji stalowych, nie są podane wartości momentów dewiacyjnych, których znajomość jest nieodzowna do wyznaczenia głównych centralnych momentów bezwładności oraz kierunków głównych, dla rozpatrywanego przekroju złożonego. W celu wyznaczenia momentu dewiacyjnego skorzystamy ze wzorów na główne momenty bezwładności i po odjęciu ich stronami uzyskamy:

$$I_1 - I_2 = 2\sqrt{\left(\frac{I_x - I_y}{2}\right)^2 + {I_{xy}}^2}$$

W tablicach, do projektowania konstrukcji stalowych, kierunek maksymalnego momentu bezwładności oznaczony jest przez ξ , natomiast kierunek minimalnego momentu bezwładności oznaczony jest przez η . Uwzględniając to i przekształcając otrzymamy wzór:

Znak momentu dewiacyjnego zależy od położenia kątownika nierównoramiennego w stosunku do układu osi centralnych *xy*. W rozpatrywanym przypadku w pierwszej i trzeciej ćwiartce układu współrzędnych, w których iloczyn współrzędnych $x \cdot y$ jest dodatni, znajduje się większa część pola figury (na powyższym rysunku są to ciemniejsze fragmenty figury).

8. Momenty bezwładności, dewiacji, względem osi centralnych (własnych) figur

$$J_{x_1} = \frac{a \cdot h^3}{12} \quad J_{x_2} = \frac{h \cdot a^3}{12}$$
$$D_{x_1 x_2} = 0, \text{ ponieważ osie } x_1, x_2$$
są osiami symetrii prostokąta

$$J_{x_1} = \frac{b \cdot h^3}{36} \qquad J_{x_2} = \frac{h \cdot b^3}{36}$$
$$D_{x_1 x_2} = -\frac{b^2 h^2}{72}$$

Znak we wzorze na dewiację zależy od położenia trójkąta tzn. czy więcej jest obszarów w trójkącie, w których iloczyn współrzędnych $x_1 \cdot x_2$ jest (+) czy w których iloczyn $x_1 \cdot x_2$ jest (-).

3)

- dla 1) i 4) $D_{x_1x_2} = -0.0165 \cdot R^4$
- dla 2) i 3) $D_{x_1x_2} = +0.0165 \cdot R^4$

9. Naprężenia w belkach zginanych

Naprężenia normalne w dowolnym włóknie A odległym o y od osi obojętnej, obliczamy ze wzoru: $\sigma_A = \frac{M_g \cdot y}{I_z}$

gdzie: M_g – moment zginający w danym przekroju poprzecznym, y – odległość punktu A od osi obojętnej, I_z – moment bezwładności przekroju poprzecznego względem osi obojętnej.

Naprężenia σ przyjmują wartości ekstremalne σ_1 , σ_2 w skrajnych włóknach.

$$\sigma_{1} = \frac{M_{s}}{I_{z}} \cdot h_{1} = \frac{M}{W_{1}} \qquad \sigma_{2} = -\frac{M_{s}}{I_{z}} \cdot h_{2} = -\frac{M}{W_{2}}$$
przy
czym

$$W_{1} = \frac{I_{z}}{h_{1}} \quad W_{2} = \frac{I_{z}}{h_{2}} \qquad są wskaźnikami wytrzyma-
łości przekroju na zginanie.$$

Naprężenia styczne w warstewkach belki równoległych do warstwy obojętnej obliczamy ze wzoru (wzór Żurawskiego):

$$\tau_{yx} = \frac{T \cdot S_z^{y-y}}{I_z \cdot b_{(y)}}$$

gdzie:

- T siła poprzeczna w danym przekroju poprzecznym belki,
- τ_{yx} średnie naprężenia styczne w przekrojach belki równoległych do warstwy obojętnej (zerowej),
- I_z moment bezwładności przekroju poprzecznego względem osi obojętnej,
- S_z moment statyczny względem osi obojętnej tej części przekroju poprzecznego, która zawarta jest między współrzędnymi y i y_{max} odmierzanymi od osi obojętnej pokrywającej się z osią z,
- b_(y) szerokość przekroju poprzecznego belki na poziomie określonym współrzędną y.

10. Metoda Clebscha

Wyznaczanie przemieszczeń w belkach zginanych – metoda całkowania różniczkowego linii ugięcia.

Równanie różniczkowe linii ugięcia belki o stałej sztywności, poddanej czystemu $EI\frac{d^2y}{dx^2} = M(x)$ zginaniu (T=0) ma postać:

y $\frac{d^2y}{dx^2} < 0$ M<0 $\frac{d^2y}{dx^2} > 0$ M<0 $\frac{d^2y}{dx^2} > 0$ M>0 x

Całkując powyższe równanie wyznaczymy funkcję kąta przekrojów poprzecznych

$$EI\frac{dy}{dx} = EI \cdot \varphi = \int M(x)dx + C$$

Po ponownym scałkowaniu otrzymujemy równanie linii ugięcia $EI = \int \left[\int M(x) dx \right] dx + Cx + D$

C i D są stałymi całkowania, które można wyznaczyć z warunków brzegowych oraz z warunku ciągłości osi odkształconej.

Warunki brzegowe dla belek prostych $y_{A=0}$ $y_{B=0}$ $y_{B=0}$ $y_{B=0}$ $y_{A=0}$

<u>Reguły przy zapisywaniu wyrażenia na moment zginający</u> <u>i przy jego całkowaniu:</u>

- 1. Początek układu współrzędnych przyjmujemy w jednym z końców belki.
- Jeżeli obciążenia ciągłe kończy się w określonym punkcie belki, konieczne jest przedłużenie go do końca belki z jednoczesnym dodaniem równoważnego obciążenia ze zwrotem przeciwnym.

Funkcję M(x) zapisuje się od razu dla całej belki w ten sposób, by można było zaznaczyć, gdzie kończy się wyrażenie określające moment zginający w danym przedziale (w dalszej części czynimy to za pomocą kresek pionowych z odpowiednimi indeksami). Przy obliczaniu ugięcia lub kąta obrotu w danym przekroju **wykorzystujemy równanie tylko do kreski** oznaczającej koniec przedziału, w którym znajduje się ten przekrój.

3. Jeżeli a_i są współrzędnymi punktów przyłożenia sił skupionych P_i lub początków obciążenia ciągłego q_i to w wyrażeniach na M(x) typu P_i(x-a_i) lub $q_i \frac{(x-a_i)^2}{2}$ nie

należy rozwijać, przy całkowaniu, wyrażeń w nawiasie. Całkowanie prowadzi się wg. schematu

$$\int (x - a_i)^n dx = \frac{(x - a_i)^{n+1}}{n+1} + C$$

Moment skupiony M całkujemy względem zmiennej (x-a_i), gdzie a_i jest współrzędną punktu przyłożenia M. Stąd też w funkcji M(x) wyraz ten zapisujemy w postaci M(x-a_i)⁰.

4. Stałe całkowania umieszczamy na początku prawej strony równań dla kąta obrotu i ugięcia belki.

11. Połączenia nitowe

- n liczba nitów,
- m liczba przekrojów ścinanych w nicie
- n' liczba nitów w obliczanym, niebezpiecznym przekroju blachy
- 1) Warunek na ścinanie nitów
- 2) Warunek na naciski powierzchniowe
- Warunek na rozciąganie płaskowników w przekroju niebezpiecznym, osłabionym otworami na nity
- Ft przekrój poprzeczny nita,
- F_d przekrój średnicowy nita,
- Fr przekrój osłabiony otworami na nity

$$\tau_t = \frac{P}{n \cdot m \cdot F_t} = \frac{P}{n \cdot m \cdot \frac{\pi d^2}{4}} \le k_t$$

$$\sigma_d = \frac{P}{n \cdot F_d} = \frac{P}{n \cdot d \cdot g} \le k_d$$

$$\sigma_r = \frac{P}{F_r} = \frac{P}{b \cdot g - n! \cdot d \cdot g} \le k_r$$

Kształtowanie połączeń nitowych

Wymiar			Symbol wymiaru	Wartość wymiaru
podziałka	poł	. zakładkowe		(3 - 5) d
pouziaika	poł	. nakładkowe	ι	(4 – 7) d
odległość rzędów nitów			а	(0,6 – 0,8)t lub (2 – 3)d
odl. skrajnych nitów		blach	e	(1,5 – 2,5) d
od krawędzi		nakładek	e ₁	(1,5 – 2,5) d
odl. krawędzi ścięć od osi nitów			e ₂	(1,5 – 2) d

Wskazówki konstrukcyjne:

- grubość nakładek jednostronnych powinna wynosić g_n>1,1g, zaś każdej nakładki dwustronnej g_n>0,65g; przy spełnieniu tego założenia można nie sprawdzać wytrzymałości nakładek na rozciąganie;
- w najbardziej obciążonym przekroju blachy, tzn. w skrajnym rzędzie nitów, należy umieszczać – w miarę możliwości – tylko 1 nit, co umożliwia zminimalizowanie osłabienia blachy;
- zgodnie z PN w szwach wielorzędowych stosuje się maksymalnie 5 rzędów nitów lub 5 nitów (w kierunku działania obciążenia);
- każdy element mocuje się co najmniej dwoma nitami;
- naroża pasów i nakładek ścina się ukośnie w celu uniknięcia ich odginania oraz powstawania szczelin sprzyjających korozji.

12. Połączenia klejowe

Maksymalne obciążenie (także odkształcenie względne części 1) występuje w punkcie A i stopniowo malejąc osiąga w punkcie B wartość równą zeru.

Dla blach z tych samych materiałów ($E_1=E_2$), przy jednakowych szerokościach ($b_1=b_2$) i równych grubościach ($g_1=g_2$) naprężenia tnące wyznaczamy ze wzoru:

$$\tau_{\max} = K \tau_{sr}$$

gdzie: $\tau_{sr} = \frac{Q}{bl}$ jest średnim naprężeniem tnącym, natomiast

K współczynnikiem spiętrzenia naprężeń.

współczynnik m

$$m = \sqrt{\frac{G}{a} \left(\frac{1}{g_1 E_1} + \frac{1}{g_2 E_2}\right)}$$

Przykładowe dane materiałowe w [MPa] (Hysol 3430):

Е	k _r	k _c	k _t *	k _t **
3210	36	65	22	3

 * stal węglowa poddana obróbce strumieniowo-ściernej
 ** GRP (żywica poliestrowa wzmocniona włóknem szklanym)

13. Połączenia spawane

Spoiny czołowe

Wymiary spoin czołowych przyjmuje się równe przekrojowi geometrycznemu części spawanej o mniejszym przekroju.

Początek i koniec długości spoiny, czyli tzw. kratery, są najsłabszymi miejscami w spoinie, zatem uwzględniając długość dwóch kraterów, przyjmuje się rzeczywistą długość spoiny: l = b - 2a

Warunek wytrzymałościowy przyjmie postać: σ_r

$$\sigma_r = \frac{P}{g \cdot l} \le k_r$$

Spoiny czołowe mogą być także wykonane jako ukośne w celu lepszego wykorzystania materiału blach.

Wartość tych naprężeń wyznaczamy ze wzorów:

$$\sigma_r = \frac{N}{g \cdot l} = \frac{P}{b \cdot g} \cos^2 \varphi \le k_r \qquad \tau_i = \frac{T}{g \cdot l} = \frac{1}{2} \frac{F}{b \cdot g} \sin 2\varphi \le k_i$$

Spoiny pachwinowe

Spoiny pachwinowe stosuje się przy łączeniu części konstrukcji nie leżących w jednej płaszczyźnie, przy czym uważamy, że spoiny takie mają w przybliżeniu kształt graniastosłupów trójkątnych.

Z rysunku wynika, że $a = \frac{g}{\sqrt{2}} \approx 0.7g$

W rozpatrywanym przypadku warunek wytrzymałościowy przyjmie postać:

$$\tau = \frac{P}{2al} \le k_t$$

Naprężenia dopuszczalne

Mniejszą wartość spoin uwzględnia się w obliczeniach przez obniżenie wartości naprężeń dopuszczalnych przyjmowanych dla materiału części łączonych

 $k'=z \cdot k$

k - naprężenia dopuszczalne dla materiału części łączonych,

k' - naprężenia dopuszczalne dla spoiny,

z – współczynnik wytrzymałości spoiny

spoiny	rodzaj obciążenia	Z
czołowa	rozciąganie	0,8
	ściskanie	1,0
	zginanie	0,9
	ścinanie	0,65
pachwinowa	wszystkie rodzaje obciążeń	0,65

14. Swobodne skręcanie prętów o przekrojach kołowych

 ϕ – względny kąt skręcenia,

γ – kąt odkształcenia postaciowego

W przekrojach skręcanych prętów występują tylko naprężenia styczne τ , których wartość jest proporcjonalna do odległości r punktu przekroju od osi pręta.

Maksymalne naprężenia występują we włóknach skrajnych. Warunek wytrzymałościowy ma postać:

$$\tau_{\max} = \frac{M_s}{W_0} \le k_s$$

 $\tau_r = \frac{M_s \cdot r}{I_o}$

 $W_0 = \frac{I_0}{r_{\text{max}}}$ W_o – wskaźnik wytrzymałości przekroju na skręcanie [mm³], I_0 – biegunowy moment bezwładności [mm⁴]

Wartość względnego kąta skręcenia zależy od obciążenia i sztyw- $\varphi = \frac{M_s}{G \cdot I_0} \left[\frac{rad}{m} \right] \qquad \varphi = \frac{M_s \cdot l}{G \cdot I_0} [rad]$ ności pręta

1 – długość pręta, G – moduł Kirchoffa

Wartość kąta skręcenia może być ograniczona wymaganiami konstrukcyjnymi: $\phi_{max} \le \phi_{dop}$

15. Swobodne skręcanie prętów o przekroju prostokątnym

Największe naprężenia styczne występują w połowie dłuższego boku i wyrażają się wzorem

$$\tau_{\max} = \frac{M_s}{W_s}$$

 $W_{\rm s} = \alpha \cdot a \cdot b^2$, W_s – zastępczy wskaźnik wytrzymałości

Kąt skręcenia:
$$\varphi = \frac{M_s}{I_s \cdot G} \left[\frac{rad}{m} \right] \qquad \varphi = \frac{M_s \cdot I}{I_s \cdot G} [rad]$$

 I_s – zastępczy biegunowy moment $I_s = \beta \cdot a \cdot b^3$

Naprężenia w połowie krótszego boku $au = \gamma \cdot \tau_{max}$ określone są wzorem:

 $\alpha,\,\beta,\,\gamma$ odczytujemy z tabeli w zależności od stosunku długości boków

a/b	α	β	γ
1	0,208	0,141	1
1,5	1,5 0,231 0,196		0,859
2	0,246	0,229	0,795
2,5	0,258	0,249	0,774
3	0,267	0,263	0,753
4	0,282	0,281	0,745
6	0,299		0,743
8	0,3	0,742	
10	0,3	0,742	
∞	0,3	0,742	

16. Swobodne skręcanie prętów cienkościennych o przekrojach otwartych

Im mniejszy jest promień krzywizny w narożach wewnętrznych, tym większy jest poziom naprężeń lokalnych. Aby ich uniknąć należy zaokrąglić przejścia pomiędzy poszczególnymi segmentami.

Maksymalne naprężenia:

$$\tau_{\max} = \frac{M_s \delta_{\max}}{I_s} \qquad I_s = \frac{1}{3} \sum_{i=1}^n s_i \delta_i^3$$

 δ_{max} – jest największą grubością segmentu prostokątnego w obrębie przekroju,

Is – zastępczy biegunowy moment.

Kąt skręcenia:
$$\varphi = \frac{M_s}{I_s \cdot G} \left[\frac{rad}{m} \right] \qquad \varphi = \frac{M_s \cdot I}{I_s \cdot G} [rad]$$

W celu lepszego przybliżenia wartości I_s dla całego przekroju, wprowadza się dodatkowy współczynnik λ .

$$I_s = \frac{\lambda}{3} \sum_{i=1}^n s_i \delta_i^3$$

 $\lambda = 1 - k$ ątownik, $\lambda = 1, 2 - dwuteownik,$ $\lambda = 1, 3 - teownik,$ $\lambda = 1, 12 - ceownik$

17. Swobodne skręcanie prętów cienkościennych o przekrojach zamkniętych (wzory Bredta)

A₀ – jest całkowitym polem obszaru zawartego w obrębie linii środkowej profilu cienkościennego,

 δ_{min} – jest najmniejszą grubością pręta.

Maksymalne naprężenia -

$$\tau_{\rm max} = \frac{M_s}{2 \cdot A_0 \cdot \delta_{\rm min}}$$

Kąt skręcenia – $\varphi = \frac{M_s}{4 \cdot G \cdot A_0^2} \int_s \frac{ds}{\delta} \left[\frac{rad}{m} \right]$

dla δ =const. – $\varphi = \frac{M_s \cdot s}{4 \cdot G \cdot A_0^2 \cdot \delta} \begin{bmatrix} rad \\ m \end{bmatrix}$ s – długość linii środkowej

18. Nacisk powierzchniowy. Wzory Bielajewa

- P siła dociskająca,
- E moduł Younga,
- l długość powierzchni styku.

19. Zagadnienie wyboczenia

1. Wyboczenie sprężyste - wzór Eulera.

$$P_{kr} = \frac{\pi^2 E I_{\min}}{l_w^2} \quad , \quad \sigma_{kr} = \frac{\pi^2 E}{s^2} \quad , \quad s = \frac{l_w}{i_{\min}}$$

gdzie:

Pkr – siła krytyczna [N],

σ_{kr} – naprężenia krytyczne [MPa],

E – moduł Younga [GPa],

- I_{min} minimalny moment bezwładności przekroju poprzecznego pręta [cm⁴],
- s smukłość [-],
- lw długość wyboczeniowa [m],
- imin minimalny promień bezwładności przekroju [cm].

Długość wyboczeniowa – jest to długość półfali sinusoidy jaką tworzy oś pręta po odkształceniu i jest zależna od sposobu zamocowania pręta.

Zakres stosowalności wzoru Eulera - smukłość graniczna.

$$s > s_{gr} = \pi \sqrt{\frac{E}{R_H}}$$

R_H – granica stosowalności prawa Hooke'a [MPa].

Dla stali konstrukcyjnej, dla której E=210GPa i granica proporcjonalności 200MPa – 300MPa otrzymamy s_{gr} =100 – 80.

2. Wyboczenie sprężysto plastyczne (gdy s<sgr).

a) wzór Tetmajera – Jasińskiego:

$$\sigma_{kr} = a - bs$$

a, b - stałe wzoru Tetmajera - Jasińskiego.

$$a = R_e$$
 , $b = \frac{R_e - R_H}{s_{gr}}$,

Re – granica plastyczności [MPa].

b) wzór Johnsona - Ostenfelda:

$$\sigma_{kr} = a - bs^2$$

a, b - stałe wzoru Johnsona - Ostenfelda.

$$a = R_e$$
 , $b = \frac{R_H}{\pi^2} \cdot \frac{R_e - R_H}{E}$.

Dla prętów krótkich, o smukłościach mniejszych od 25, obliczeń na wyboczenie nie przeprowadza się stosując warunek wytrzymałości na ściskanie. 3. Obliczenia techniczne na wyboczenie.

Metoda ta pozwala przeprowadzić obliczenia tak, jak na ściskanie, uwzględniając wyboczenie współczynnikiem β.

$$\frac{P}{A} \leq \beta \cdot k_{a}$$

β oznacza współczynnik proporcjonalności mniejszy od jedności i zależny od smukłości pręta i rodzaju materiału. Wartość tego współczynnika podaje tabela (wyciąg z normy).

Smukłość	S235JR	C50	Drewno	Żeliwo
s				
0	1,00	1,00	1,00	1,00
10	0,98	0,98	0,99	0,97
20	0,95	0,95	0,97	0,91
30	0,92	0,92	0,93	0,81
40	0,89	0,88	0,87	0,69
50	0,85	0,83	0,80	0,57
60	0,80	0,77	0,71	0,44
70	0,74	0,69	0,60	0,34
80	0,68	0,60	0,48	0,26
90	0,62	0,50	0,38	0,20
100	0,55	0,41	0,31	0,16
110	0,48	0,35	0,25	
120	0,42	0,30	0,22	
130	0,37	0,26	0,18	
140	0,32	0,23	0,16	
150	0,28	0,20	0,14	
160	0,25	0,18	0,12	
170	0,22	0,16	0,11	
180	0,20	0,14	0,10	
190	0,18	0,12	0,09	
200	0,16	0,11	0,08	
210	0,14	0,10	0,07	
220	0,13	0,09		

20. Hipotezy wytężeniowe

1. Hipoteza Galileusza, Clebscha, Rankine'a [oextr]

Miarą wytężenia materiału jest największa wartość naprężenia normalnego.

$$\max\left(\sigma_{I}, -\frac{\sigma_{III}}{z}\right) \le k_{r} \qquad \text{gdzie} \qquad z = \frac{k_{c}}{k_{r}}$$

Hipoteza ta nie uwzględnia wpływu pozostałych dwóch naprężeń głównych, przez co na ogół nie jest zgodna z doświadczeniem. Znajduje ona jednak zastosowanie w praktyce inżynierskiej, w szczególnych przypadkach stanu naprężenia, dla niektórych gatunków żeliwa.

2. Hipoteza Coulomba-Tresci-Guesta [τ_{max}]

Miarą wytężenia materiału jest największe naprężenie ścinające: $\sigma_{I} - \sigma_{III} \leq k_{r}$

Praktyczne zastosowanie odnosi się wyłącznie do materiałów sprężysto-plastycznych (ciągliwych), do których należą przede wszystkim stal konstrukcyjna i metale kolorowe oraz ich stopy. Hipoteza ta nie może być jednak stosowana do materiałów kruchych, jak żeliwo, kamień, cegła, beton itp.

3. Hipoteza Saint-Venanta [ɛ_{extr}]

Miarą wytężenia materiału jest największe odkształcenie podłużne:

$$\sigma_{I} - \nu (\sigma_{II} + \sigma_{III}) \leq k_{r} \quad , \quad - [\sigma_{III} - \nu (\sigma_{I} + \sigma_{II})] \leq k_{c}$$

Hipoteza ta może być stosowana wyłącznie do materiałów kruchych, jak np. żeliwo maszynowe i staliwo.

4. Hipoteza Hubera-Misesa-Hencky'ego [φ_f]

Miarą wytężenia materiału jest krańcowa wartość energii odkształcenia postaciowego.

a) w układzie kierunków dowolnych

$$\frac{1}{\sqrt{2}}\sqrt{(\sigma_{x} - \sigma_{y})^{2} + (\sigma_{y} - \sigma_{z})^{2} + (\sigma_{z} - \sigma_{x})^{2} + 6(\tau_{xy}^{2} + \tau_{yz}^{2} + \tau_{zx}^{2})} \le k_{r}$$

b) w układzie kierunków głównych

$$\frac{1}{\sqrt{2}}\sqrt{(\boldsymbol{\sigma}_1-\boldsymbol{\sigma}_2)^2+(\boldsymbol{\sigma}_2-\boldsymbol{\sigma}_3)^2+(\boldsymbol{\sigma}_3-\boldsymbol{\sigma}_1)^2} \leq k_r$$

Hipoteza ta ma zastosowanie do materiałów sprężystoplastycznych.

5. Hipoteza Burzyńskiego $[\omega_1, \omega_2]$

Miarą wytężenia materiału jest suma energii postaciowej i pewnej części energii objętościowej. Udział procentowy tej ostatniej zależy od stanu naprężenia i właściwości indywidualnych materiału:

- a) w zakresie I: $-\sqrt{2} \le \frac{\omega_2}{\omega_1} \le 0$ $\frac{3}{\sqrt{2}} \frac{\omega_2}{z} \le k_r$
- b) w zakresie II: $-\sqrt{2} \ge \frac{\omega_2}{\omega_1} \ge -\infty$ oraz $+\sqrt{2} \le \frac{\omega_2}{\omega_1} \le +\infty$

$$\frac{3}{2\sqrt{2}}\frac{z+1}{z}\omega_2 + \frac{3}{2}\frac{(z-1)}{z}\omega_1 \le k_r$$

c) w zakresie III: $0 \le \frac{\omega_2}{\omega_1} \le +\sqrt{2}$

$$\frac{3}{\sqrt{2}}\frac{\omega_2}{z} + 3\frac{z-1}{z}\omega_1 \le k_r$$

Oczywiście warunki te należy odpowiednio rozpisać, wyrażając ogólnie oba niezmienniki przez składowe stanu naprężenia np. za pomocą wzorów:

$$\omega_{1} = \frac{1}{3} (\sigma_{x} + \sigma_{y} + \sigma_{z})$$

$$\omega_{2} = \frac{1}{3} \sqrt{(\sigma_{x} - \sigma_{y})^{2} + (\sigma_{y} - \sigma_{z})^{2} + (\sigma_{z} - \sigma_{x})^{2} + 6(\tau_{xy}^{2} + \tau_{yz}^{2} + \tau_{zx}^{2})}$$

Hipoteza ta ma zastosowanie zarówno dla materiałów sprężysto – plastycznych jak i kruchych. Szczególnie ważny technicznie jest przypadek **płaskiego** stanu naprężenia, określony następującymi parametrami:

 $\tau_{zx} = \tau_{zy} = \sigma_z = \sigma_y = 0$, $\sigma_x = \sigma \neq 0$, $\tau_{xy} = \tau \neq 0$ Taki stan naprężenia występuje dla: zginania ze ścinaniem oraz zginania ze skręcaniem. Warunki bezpieczeństwa zapiszemy w postaci:

1. Według hipotezy Galileusza, Clebscha, Rankine'a $[\sigma_{extr}]$:

$$\frac{\sigma}{2} + \frac{1}{2}\sqrt{\sigma^2 + 4\tau^2} \le k_r \qquad -\frac{\sigma}{2} + \frac{1}{2}\sqrt{\sigma^2 + 4\tau^2} \le k_c$$

2. Według hipotezy Coulomba – Tresci – Guesta $[\tau_{\max}]$: $\sqrt{\sigma^2 + 4\tau^2} \le k_r$

3. Według hipotezy Saint - Venanta [$\varepsilon_{\text{extr}}$]: $\frac{1-\nu}{2}\sigma + \frac{1+\nu}{2}\sqrt{\sigma^2 + 4\tau^2} \le k_r \qquad -\frac{1-\nu}{2}\sigma + \frac{1+\nu}{2}\sqrt{\sigma^2 + 4\tau^2} \le k_c$

4. Według hipotezy Hubera – Misesa – Hencky'ego $[\phi_f]$: $\sqrt{\sigma^2 + 3\tau^2} \le k_r$

5. Według hipotezy Burzyńskiego [ω_1, ω_2]: $\frac{z+1}{2z}\sqrt{\sigma^2+3\tau^2}+\frac{z-1}{2z}\sigma \le k_r$

21. Mimośrodowe ściskanie

Wykorzystując zasadę superpozycji obliczamy naprężenia wypadkowe jako sumę algebraiczną naprężeń od wymienionych obciążeń:

$$\sigma = \frac{P}{A} + \frac{M_y \cdot x}{I_y} + \frac{M_x \cdot y}{I_x} \qquad \qquad \text{gdzie:} \\ M_y = P \cdot e_x \,, \ M_x = P \cdot e_y$$

 x, y – współrzędne dowolnego punktu w obrębie przekroju poprzecznego pręta.

Osie x oraz y – są głównymi centralnymi osiami bezwładności przekroju.

W powyższym wzorze, jeżeli będziemy przestrzegać ustaleń umowy znakowania sił podłużnych (plus dla siły rozciągającej, minus dla ściskającej) oraz tego, że (e_x, e_y) i (x, y) oznaczają współrzędne punktów, w przyjętym układzie odniesienia, to znaki naprężeń będą zgodne z ich umową znakowania.

Dla przypadku jak na rysunku otrzymamy:

$$\sigma = -\frac{P}{A} - \frac{M_y \cdot x}{I_y} - \frac{M_x \cdot y}{I_x}$$

22. Płaski (dwuosiowy) stan naprężenia

Płaskim lub dwuosiowym stanem naprężenia, nazywamy taki stan, w którym wszystkie składowe stanu naprężenia w jednym kierunku znikają.

$$\sigma_{\alpha} = \frac{1}{2} (\sigma_x + \sigma_y) + \frac{1}{2} (\sigma_x - \sigma_y) \cos 2\alpha - \tau_{xy} \sin 2\alpha$$
$$\sigma_{\beta} = \sigma_{\alpha + \frac{\pi}{2}} = \frac{1}{2} (\sigma_x + \sigma_y) - \frac{1}{2} (\sigma_x - \sigma_y) \cos 2\alpha + \tau_{xy} \sin 2\alpha$$
$$\tau_{\alpha} = \frac{1}{2} (\sigma_x - \sigma_y) \sin 2\alpha + \tau_{xy} \cos 2\alpha$$

Naprężenia główne w płaskim stanie naprężenia

Naprężenia główne, w danym punkcie, to ekstremalne wartości naprężeń normalnych w nim występujących. Działają one na dwóch do siebie prostopadłych płaszczyznach przekroju (płaszczyznach głównych), na których naprężenia styczne są równe zeru. $tg2\alpha_{1} = \frac{-2\tau_{xy}}{\sigma_{x} - \sigma_{y}}$

 α_1 – kąt jaki tworzy płaszczyzna, w której działają maksymalne lub minimalne naprężenia normalne z osiami podstawowego układu współrzędnych x i y.

$$\sigma_{1,2} = \sigma_{\max,\min} = \frac{\sigma_x + \sigma_y}{2} \pm \sqrt{\left(\frac{\sigma_x - \sigma_y}{2}\right)^2 + \tau_{xy}^2}$$

Dodatni zwrot naprężenia ścinającego jest zgodny z kierunkiem wskazówek zegara względem środka elementu.

Poszczególne kroki służące skonstruowaniu koła Mohra dla elementu znajdującego się w płaskim stanie naprężenia są następujące:

- I. Zlokalizować środek C koła Mohra w punkcie o współrzędnych σ=σ_{śr}=(σ_x+σ_y)/2 (wzdłuż osi naprężeń normalnych) oraz τ=0. Dogodnie jest przyjąć, że σ_x>σ_v.
- 2. Zaznaczyć punkt A, będący punktem na okręgu reprezentującym płaszczyznę X elementu (α =0), odkładając σ = σ_x oraz τ = τ_{xy} .
- 3. Zaznaczyć punkt B, reprezentujący płaszczyznę Y elementu (α =90⁰). Współrzędnymi tego punktu są σ = σ_y oraz τ =- τ_{xy} ponieważ przy obrocie o α =90⁰ naprężeniem normalnym jest σ_y , a naprężenie styczne zmienia znak. Linia AB przechodzi przez środek C koła Mohra.

 Wykreślić koło ze środka C o promieniu równym odcinkowi CA.

Przykład. Dla płaskiego stanu naprężenia określonego przez: σ_x =80MPa, σ_y =-40MPa, τ_{xy} =-60MPa, τ_{yx} =60MPa, wyznaczyć analitycznie oraz wykreślnie: koło naprężeń, kierunki główne i naprężenia główne.

23. Stan odkształcenia. Transformacja odkształceń w punkcie

Równania transformacyjne dla odkształceń wyprowadzone dla PSO są również ważne dla przypadku gdy $\epsilon_z \neq 0$.

Równanie transformacyjne dla odkształcenia wzdłużnego w przypadku dwuwymiarowym ma postać:

$$\varepsilon_{\alpha} = \varepsilon_x \cos^2 \varphi + \varepsilon_y \sin^2 \varphi + \gamma_{xy} \sin \varphi \cos \varphi$$

lub po wykorzystaniu tożsamości trygonometrycznych

$$\varepsilon_{\alpha} = \frac{\varepsilon_x + \varepsilon_y}{2} + \frac{\varepsilon_x - \varepsilon_y}{2} \cos 2\varphi + \frac{\gamma_{xy}}{2} \sin 2\varphi$$

Równanie transformacyjne dla kąta odkształcenia postaciowego:

$$\frac{\gamma_{\alpha\beta}}{2} = -\frac{\varepsilon_x - \varepsilon_y}{2}\sin 2\varphi + \frac{\gamma_{xy}}{2}\cos 2\varphi$$

Odkształcenia główne występują we wzajemnie prostopadłych kierunkach $\tan 2\varphi_1 = \frac{\gamma_{xy}}{\varepsilon_x - \varepsilon_y}$

Wartości odkształceń głównych wyznaczamy z zależności:

$$\varepsilon_{1,2} = \varepsilon_{\max,\min} = \frac{\varepsilon_x + \varepsilon_y}{2} \pm \sqrt{\left(\frac{\varepsilon_x - \varepsilon_y}{2}\right)^2 + \left(\frac{\gamma_{xy}}{2}\right)}$$

Największy kąt odkształcenia postaciowego (w płaszczyźnie xy) jest określony zależnością:

$$\frac{\gamma_{\alpha\beta}}{2} = \sqrt{\left(\frac{\varepsilon_x - \varepsilon_y}{2}\right)^2 + \left(\frac{\gamma_{xy}}{2}\right)^2}$$

24. Związki pomiędzy naprężeniami i odkształceniami. Uogólnione prawo Hooke'a

Odkształcenia wzdłużne w poszczególnych kierunkach wyniosą:

$$\varepsilon_{x} = \frac{1}{E} \left[\sigma_{x} - \nu \left(\sigma_{y} + \sigma_{z} \right) \right] \qquad \varepsilon_{y} = \frac{1}{E} \left[\sigma_{y} - \nu \left(\sigma_{x} + \sigma_{z} \right) \right]$$
$$\varepsilon_{z} = \frac{1}{E} \left[\sigma_{z} - \nu \left(\sigma_{x} + \sigma_{y} \right) \right]$$

Po rozwiązaniu powyższego układu równań ze względu na odkształcenia otrzymamy:

$$\sigma_{x} = \frac{E}{(1+\nu)(1-2\nu)} [(1-\nu)\varepsilon_{x} + \nu(\varepsilon_{y} + \varepsilon_{z})]$$

$$\sigma_{y} = \frac{E}{(1+\nu)(1-2\nu)} [(1-\nu)\varepsilon_{y} + \nu(\varepsilon_{x} + \varepsilon_{z})]$$

$$\sigma_{z} = \frac{E}{(1+\nu)(1-2\nu)} [(1-\nu)\varepsilon_{z} + \nu(\varepsilon_{x} + \varepsilon_{y})]$$

W trójwymiarowym stanie naprężenia prawo Hooke'a dla ścinania można uogólnić do postaci:

$$\gamma_{xy} = \frac{\tau_{xy}}{G} , \quad \gamma_{yz} = \frac{\tau_{yz}}{G} , \quad \gamma_{zx} = \frac{\tau_{zx}}{G}$$

Dla płaskiego stanu naprężeń: $\sigma_z = 0$, $\tau_{zx} = \tau_{yz} = 0$ mamy:

$$\varepsilon_x = \frac{1}{E} (\sigma_x - \nu \sigma_y) \qquad \varepsilon_y = \frac{1}{E} (\sigma_y - \nu \sigma_x) \qquad \gamma_{xy} = \frac{\tau_{xy}}{G}$$

Po odwróceniu powyższego układu równań otrzymamy:

$$\sigma_{x} = \frac{E}{1 - v^{2}} (\varepsilon_{x} + v\varepsilon_{y}) \qquad \sigma_{y} = \frac{E}{1 - v^{2}} (\varepsilon_{y} + v\varepsilon_{x}) \qquad \tau_{xy} = \gamma_{xy} G$$

25. Mechanika pękania – pękanie kruche

Odporność na pękanie K_c:

$$K_{c} = \sigma_{kr} \sqrt{\pi l_{kr}} = \sqrt{2E\gamma_{kr}}$$

l_{kr} – krytyczna długość szczeliny,

 γ_{kr} – krytyczna energia powierzchniowa.

Odporność na pękanie K_c , spotykana również pod nazwą wytrzymałości na pękanie, jest charakterystyczną wielkością materiałową wyrażoną w MPa·m^{1/2}. Powszechnie używa się zapisu K_{Ic} , co oznacza odporność na pękanie w płaskim stanie odkształcenia w najczęściej spotykanym przypadku obciążenia, do którego odnosi się wskaźnik I.

Trzy podstawowe przypadki rozwoju pęknięć.

G – współczynnika wyzwalania energii potencjalnej, prędkością intensywności wyzwalania energii potencjalnej

PSO

$$G_c = (1 - v^2) \frac{K_c^2}{E}$$
 $G_c = \frac{K_c^2}{E} = 2\gamma_{kr} = \frac{\sigma_{kr}^2 \pi l_{kr}}{E}$

Metody liniowej mechaniki pękania nadają się przede wszystkim do oceny wytrzymałości dużych konstrukcji stalowych, urządzeń transportowych i energetycznych, zbiorników i rurociągów.

	ii ii	
Materiał	Re lub R02	K _{Ic}
	MPa	MPa·m ^{0,5}
Stal St3 normalizowana	240	25
Stal stopowa AISI 4340 (0,4% C, 0,7% Mn,		
0,8%Cr, 0,25% Mo, 1,9% Ni) ulepszona cieplnie	1500	38
Stal stopowa o 0,03% C, 0,2% Al., 8% Co, 5%		
Mo, 18% Ni, 0,6% Ti ulepszona cieplnie	2000	78
Stal 40HN ulepszona cieplnie	800	65
Stal na zbiorniki ciśnieniowe A533 (0,25% C, do		
1,5% Mn, do 0,7% Ni, do 0,6% Mo)	350	120
Stal reaktorowa A533B (USA)	480	210
Stal na zbiorniki ciśnieniowe A308B (USA)	465	120
Stal żaroodporna (0,02% C, 18% Ni)	1700	76
Stop aluminium AlCuMg	450	27
Stop aluminium AlZnMgCu	500	29
Stop tytanu Ti6Al4V	900	84

Orientacyjne wartości odporności na pękanie KIc

26. Twierdzenie Castigliana

Do obliczania odkształceń układów sprężystych można korzystać z twierdzenia Castigliana, wyrażającego związek między: całkowitą energią potencjalną układu V, uogólnioną siłą P_i oraz uogólnioną współrzędną ui w miejscu przyłożenia tej siły

$$\frac{\partial V}{\partial P_i} = u_i = \sum_{i=1}^n \int_{i_i} \frac{N_i}{E_i A_i} \frac{\partial N_i}{\partial P_i} ds_i + \sum_{i=1}^n \int_{i_i} \frac{\alpha_i T_i}{G_i A_i} \frac{\partial T_i}{\partial P_i} ds_i + \sum_{i=1}^n \int_{i_i} \frac{M_{s_i}}{E_i J_i} \frac{\partial M_{s_i}}{\partial P_i} ds_i + \sum_{i=1}^n \frac{M_{s_i}}{G_i J_{0_i}} \frac{\partial M_{s_i}}{\partial P_i} ds_i + \sum_{i=1}^n$$

Uogólnioną współrzędną odpowiadającą danej uogólnionej sile, nazywa się takie odkształcenie, które pomnożone przez tę siłę daje pracę tej siły.

Aby wyznaczyć, na podstawie twierdzenia Castigliana, przemieszczenie w odpowiednim miejscu i kierunku musi w interesującym nas miejscu działać, odpowiadająca poszukiwanemu przemieszczeniu, **uogólniona siła**. Jeżeli brakuje takiej siły, należy:

- przyłożyć **fikcyjną siłę** dodatkową F_d , uwzględniając dodatkowe siły wewnętrzne przez nią spowodowane,
- obliczyć energię potencjalną,
- wykonać różniczkowanie,
- a następnie podstawić rzeczywistą jej wartość tzn. przyjąć $F_d=0$.

27. Twierdzenie (wzór) Maxwella-Mohra

Do obliczeń przemieszczeń można wykorzystać także twierdzenie Maxwella – Mohra, którego postać wynika z założenia, że $F_d=1$, wówczas ugięcie wynosi:

$$u_{i} = \sum_{i=1}^{n} \int_{I_{i}} \frac{N_{i} N_{i}^{'}}{E_{i} A_{i}} ds_{i} + \sum_{i=1}^{n} \frac{\alpha_{i} T_{i} T_{i}^{'}}{G_{i} A_{i}} ds_{i} + \sum_{i=1}^{n} \frac{M_{s_{i}} M_{s_{i}}^{'}}{E_{i} J_{i}} ds_{i} + \sum_{i=1}^{n} \frac{M_{s_{i}} M_{s_{i}}^{'}}{G_{i} J_{0_{i}}} ds_{i}$$

gdzie: N_i' , T_i' , M_{gi}' , M_{si}' – siły wewnętrzne w przedziale i-tym spowodowane działaniem odpowiedniej siły dodatkowej równej jedności.

Należy wyznaczyć więc przebiegi sił wewnętrznych dla rzeczywistego obciążenia i dla obciążenia odpowiednią siłą jednostkową oraz obliczyć powyższe całki (zwane całkami Maxwella – Mohra).

Wzór Maxwella-Mohra różni się od twierdzenia Castigliano jedynie tym, że pochodne:

$$\frac{\partial N_i}{\partial P_i}, \frac{\partial T_i}{\partial P_i}, \frac{\partial M_{gi}}{\partial P_i}, \frac{\partial M_{gi}}{\partial P_i}$$

zostały tu zinterpretowane jako siły wewnętrzne N_i' , T_i' , M_{gi}' , M_{si}' spowodowane przez siłę $F_d=1$, przyłożoną w punkcie, którego przemieszczenia poszukujemy.

28. Równanie Laplace'a, naprężenia w zbiorniku walcowym

- σ_1 naprężenia rozciągające w kierunku obwodowym,
- σ_2 naprężenia rozciągające w kierunku południkowym (wzdłużnym)
- t grubość ścianki zbiornika,
- ρ_1 , ρ_2 promienie krzywizn powłoki w kierunku obwodowym i południkowym w rozważanym punkcie,
- p ciśnienie wewnętrzne.

Równanie Laplace'a
$$\frac{\sigma_1}{\rho_1} + \frac{\sigma_2}{\rho_2} = \frac{p}{t}$$

Zbiornik walcowy

Naprężenia rozciągające obwodowe i wzdłużne w części walcowej zbiornika są równe

Naprężenia w części kulistej

Naprężenia zredukowane HMH

$$\sigma_{1} = \frac{p \cdot R}{t_{1}} \qquad \sigma_{2} = \frac{p \cdot R}{2t_{1}}$$
$$\sigma_{1}^{'} = \sigma_{2}^{'} = \frac{p \cdot R}{2t_{2}}$$
$$\sigma_{red} = \sqrt{\sigma_{1}^{2} + \sigma_{2}^{2} - \sigma_{1}\sigma_{2}}$$

R – promień zbiornika, $t_1,\,t_2$ – grubość ścianki części walcowej i kulistej.

29. Naprężenia w sprężynach śrubowych

Maksymalne naprężenia:

 $\tau_{\max} = \tau_M + \tau_T = \frac{8PD}{\pi d^3} + \frac{4P}{\pi d^2} = \frac{8PD}{\pi d^3} \left(1 + \frac{d}{2D}\right)$

Ugięcie sprężyny gdzie: P – osiowa siła obciążająca, $f = \frac{8 \cdot P \cdot D^3 \cdot n}{G \cdot d^4}$ D – średnica nawinięcia, d – średnica drutu, n – ilość zwoi, G – moduł Kirchoffa

30. Zagadnienie uderzenia

Przemieszczenie f_d , naprężenia normalne σ_d i styczne τ_d wywołane udarem:

$$f_d = K_d \cdot f_{st}$$
 $\sigma_d = K_d \cdot \sigma_{st}$ $\tau_d = K_d \cdot \tau_{st}$

 f_{st} , σ_{st} , τ_{st} – przemieszczenie statyczne, naprężenia normalne i styczne wywołane statycznym oddziaływaniem obciążenia.

31. Płyty kołowosymetryczne

Równanie różniczkowe powierzchni ugięcia płyty

$$\frac{d}{dr} \left[\frac{1}{r} \frac{d}{dr} (r\varphi) \right] = -\frac{T(r)}{D}$$

D – sztywność płytowa,

$$D = \frac{Eh^3}{12(1-v^2)}$$

Równanie dotyczy każdej płyty okrągłej, obciążonej osiowosymetrycznie, przy czym siłę tnącą T(r) przypadającą na jednostkę obwodu krążka o promieniu r, wyciętego w myśli ze środkowej części płyty, wyznaczamy z warunków równowagi danej płyty.

Dla małych ugięć -

$$\varphi = -\frac{dw}{dr}$$

Moment gnący promieniowy Mr-

$$M_r = D\left(\frac{d\varphi}{dr} + v\frac{\varphi}{r}\right)$$

Moment gnący styczny M_t-

$$M_{t} = D\left(\frac{\varphi}{r} + v\frac{d\varphi}{dr}\right)$$

Maksymalne wartości naprężeń -

$$\sigma_r^{\max} = \pm \frac{6M_r}{h^2} \quad \sigma_t^{\max} = \pm \frac{6M_t}{h^2}$$

32. Naprężenia w rurze grubościennej

$$\sigma_r = \frac{a^2 b^2 (p_0 - p_i)}{b^2 - a^2} \frac{1}{r^2} + \frac{p_i a^2 - p_0 b^2}{b^2 - a^2}$$
$$\sigma_{\vartheta} = -\frac{a^2 b^2 (p_0 - p_i)}{b^2 - a^2} \frac{1}{r^2} + \frac{p_i a^2 - p_0 b^2}{b^2 - a^2}$$

33. Wpływ otworów kołowych na rozkład naprężeń w tarczach (zagadnienie Kirscha)

$$\sigma_r = \frac{\sigma}{2} \left(1 - \frac{a^2}{r^2} \right) + \frac{\sigma}{2} \left(1 + \frac{3a^4}{r^4} - \frac{4a^2}{r^2} \right) \cos 2\vartheta$$

$$\sigma_{\vartheta} = \frac{\sigma}{2} \left(1 + \frac{a^2}{r^2} \right) - \frac{\sigma}{2} \left(1 + \frac{3a^4}{r^4} \right) \cos 2\vartheta$$

$$\tau_{r\vartheta} = -\frac{\sigma}{2} \left(1 - \frac{3a^4}{r^4} + \frac{2a^2}{r^2} \right) \sin 2\vartheta$$

 σ_r – naprężenia promieniowe, σ_{ϑ} – naprężenia obwodowe.

34. Siły niszczące nity zrywalne

Ofertę handlową nitów zrywalnych można uzyskać pod adresem: <u>http://carbonsteel.pl/oferta/nity-zrywalne/</u>

		<u> </u>	
średnica	zakres	siła niszcząca	siła niszcząca
[mm]	grubości	(rozciąganie)	(ścinanie)
	[mm]	[N]	[N]
2,4	0,5 – 9	440	350
3	2 - 15	880	640
3,2	0,5 – 15	950	680
3,4	0,5 – 17	1100	750
4	0,5 - 26,5	1850	1300
4,8	0,5 - 46	2950	2170
6	2 - 35	4350	2730
6,4	2 - 35	6190	3700
7,8	4 - 20	9600	6630

Nity zrywalne aluminiowe (Al Mg 3,5):

Nity zrywalne stalowe:

średnica	zakres	siła niszcząca	siła niszcząca
[mm]	grubości	(rozciąganie)	(ścinanie)
	[mm]	[N]	[N]
3	0,5 – 9	1240	980
3,2	0,5 – 9	1590	1220
4	0,5 - 26	2800	1900
4,8	0,5 - 26	3600	2800
6	4 - 25	5690	4850
6,4	4 - 25	6490	5160

	Ра	kPa	MPa	$\frac{kN}{cm^2}$	GPa
$\frac{N}{m^2}$	1	10-3	10-6	10-7	10-9
$\frac{kN}{m^2}$	10 ³	1	10-3	10-4	10-6
$\frac{N}{mm^2}$	10 ⁶	10 ³	1	10-1	10-3
$\frac{kN}{cm^2}$	10 ⁷	10^{4}	10	1	10-2
$\frac{kN}{mm^2}$	10 ⁹	10 ⁶	10 ³	10 ²	1

35. Przeliczanie jednostek naprężenia

36. Wartości modułu Younga E i liczby Poissona v dla niektórych materiałów

materiał	E [GPa]	ν[-]
guma	0,01 - 0,1	0,5
stop glinu (aluminium)	67 – 74	0,32 - 0,35
stal	200 - 210	0,25 - 0,3
żeliwo szare	60 - 140	0,23 - 0,27
beton	18 - 42	0,16-0,2
drewno dębowe wzdłuż wł.	11 – 12,5	0,045 - 0,065
szkło organiczne	1,9-2,8	0,34 - 0,27
szkło potasowe	60 - 65	0,16 - 0,18
wapień	20 - 70	0,2-0,3

37. Naprężenia dopuszczalne dla stali, staliwa i żeliwa

Znak stali	R _m min.	$R_m min.$ $R_e min.$		Naprężenia dopuszczalne [MPa]		
stary / nowy	[IVII a]	[IVII a]	kr	kg	ks	
StOS / S185	320	195	100	120	65	
St3S / S235JR	380	235	120	145	75	
St4S / S275	440	275	130	155	85	
St5 / E295	490	295	145	170	90	
St6 / E335	590	335	160	195	105	
St7 / E360	690	365	175	210	115	

Stal niestopowa konstrukcyjna ogólnego przeznaczenia:

Stal niestopowa do utwardzania powierzchniowego i ulepszania cieplnego (stan N – normalizowany):

Znak stali	R _m min.	$R_m \min$. $R_e \min$. [MPa]		Naprężenia dopuszczalne [MPa]		
stary / nowy	[IVII a]	[IVII a]	k _r	kg	ks	
10 / C10E	335	205	105	125	65	
15 / C15E	375	225	115	140	75	
20 / C22	410	245	125	150	80	
25 / C25	450	275	140	170	90	
35 / C35	530	315	155	185	100	
45 / C45	600	355	170	205	110	
55 / C55	650	380	185	225	120	

Stal niestopowa do utwardzania powierzchniowego i ulepszania cieplnego (stan H – nawęglanie i hartowanie):

Znak stali	R _m min.	R _e min. [MPa] [MPa]			szczalne
stary / nowy	[[111] a]	[[111] a]	kr	kg	ks
10 / C10E	410	245	125	150	80
15 / C15E	490	295	150	180	95
20 / C22	540	335	180	215	115

<u>Stal niestopowa do utwardzania powierzchniowego i ulepszania cieplnego (stan</u> <u>T – ulepszanie cieplne (hartowanie i wysokie odpuszczanie):</u>

Znak stali	R _m min.	R _e min.	min. MPal [MPa] [MPa]		
stary / nowy	[[111] a]	[[111] a]	k _r	kg	k _s
25 / C25	500	320	150	180	95
35 / C35	600	380	180	215	115
45 / C45	650	430	200	240	130
55 / C55	750	490	225	270	145

Staliwo węglowe konstrukcyjne:

Oznaczenie stare / powe	$R_m \min$. $R_e \min$. (MPa)		Naprężenia dopusz- czalne [MPa]		
stare / nowe	[wii a]	[wii a]	kr	kg	ks
L400 / 200-400	400	250	125	150	80
L450 / 230-450	450	260	130	155	83
L500 / 270-480	500	320	150	185	95
L600 / 360-600	600	360	170	205	110
L650 / 380-650	650	380	180	215	115

Żeliwo szare:

Oznaczenie	R _m min.	R _g śr.	Nap	rężenia ([M	dopuszc: Pa]	zalne
stare / nowe	[MPa]	[MPa]	k _r	kg	k _s	k _c
Zl 150 / EN-GJL-150	150	300	45	70	55	145
ZL 200 / EN-JIL1030	200	360	55	85	70	195
Zl 250 / EN-JIL1040	250	420	70	115	90	245
Z1 300 / EN-JIL1050	300	480	85	130	105	290
Z1 350 / EN-JIL1060	350	540	100	145	115	340

38. Orientacyjne własności wytrzymałościowe niektórych gatunków drewna

Gatunek	Średnia wytrzymałość [MPa]				
drewna	na ści	nanie	na rozc	iąganie	na zgina-
	wzdłuż	w poprzek	wzdłuż	w poprzek	nie
	włókien	włókien	włókien	włókien	
Akacja	59	13	148	4,3	120
Brzoza	43		137	7	125
Buk	53	9	135	7	105
Dąb	47	11	90	4	93
Grab	66		107		107
Jesion	47	11	104	7	99
Lipa	44	9,5	85		90
Olcha	40	6,5		2	85
Sosna	43,5	7,5	104	3	78
Topola	30	2,7	77		55
Wiąz	41	10	80	3,9	72

Podzaj tworzywa	Średnia wytrzymałość [MPa]			
Rouzaj tworzywa	na rozciąganie	na zginanie		
polietylen niskiej gęstości	10 - 32	7 - 10		
polietylen dużej gęstości	10 - 32	29 - 39		
PVC na płyty	49 - 59	78 - 118		
PVC na rury	49 - 59	78 - 118		
polistyren o własnościach	49	98		
przeciętnych				
polistyren wysokoudarowy	37	78,5		
kopolimer ABS	34 - 51	-		
poliamid PA6	39	49		
polimetakrylanmetylu	59 - 69	98 - 113		
poliwęglan tłoczywo podsta-	64	93		
wowe				
poliwęglan wzmocniony	98	206		

39. Orientacyjne własności tworzyw termoplastycznych

40. Litery greckie

Αα	alfa	Νv	ni
Ββδ	beta	Ξξ	ksi
Γγ	gamma	0 0	omikron
$\Delta \delta$	delta	Ππϖ	pi
Еεєэ	epsilon	Ρρϱρ	ro
Zζ	dzeta	Σσ	sigma
Ηη	eta	Ττ	tau
$\Theta \theta \Theta \vartheta$	teta	ΥυΥ	ipsilon
Ιιγ	jota	Φφφ	fi
Κκκ	kappa	Χχ	chi
Λλ	lambda	Ψψ	psi
Μμ	mi	Ωω	omega

41. Tabele kształtowników

KSZTAŁTOWNIKI ZAMKNIĘTE PROSTOKĄTNE WYKONANE NA GORĄCO

wg PN-EN 10210-2:2000

Wyróżnik	Wymiary			Pole	Mon	nenty	Wskaźniki	
oznaczenia				przekroju	bezwła	dności	wytrzymałości	
	h	b	t	Α	Ix	Iy	W _x	Wy
		[mm]		[cm ²]	[cr	n ⁴]	[01	n ³]
50x30x4	50	30		5,59	16,5	7,08	6,60	4,72
60x40x4	60	40		7,19	32,8	17,0	10,9	8,52
80x40x4	80	40	•	8,79	68,2	22,2	17,1	11,1
90x50x4	90	50		10,4	107	41,9	23,8	16,8
100x50x4	100	50		11,2	140	46,2	27,9	18,5
100x60x4	100	60		12,0	158	70,5	31,6	23,5
120x60x4	120	60	4	13,6	249	83,1	41,5	27,7
120x80x4	120	80		15,2	303	161	50,4	40,2
140x80x4	140	80		16,8	441	184	62,9	46,0
150x100x4	150	100		19,2	607	324	81,0	64,8
160x80x4	160	80		18,4	612	207	76,5	51,7
180x100x4	180	100		21,6	945	379	105	75,9
200x100x4	200	100		23,2	1223	416	122	83,2

CEOWNIKI ZWYKŁE

wg PN-86/H-93403, DIN 1026-1:2000

N1			Wymia	ry		Pole	Momenty		Wskaźniki	
ac						prze.	bezwła	małości		
uzC .	h	b _f	tw	t _f	e	Α	Ix	Iv	W _x	Wy
0		[n	nm]		[cm]	[cm ²]	[cn	1 ⁴]	[c1	n ³]
40	40	20	5,0	5,0	0,65	3,51	7,26	1,06	3,63	0,78
50	50	38	5,0	7,0	1,37	7,12	26,4	9,12	10,6	3,75
65	65	42	5,5	7,5	1,42	9,03	57,5	14,1	17,7	5,07
80	80	45	6,0	8,0	1,45	11,0	106	19,4	26,5	6,36
100	100	50	6,0	8,5	1,55	13,5	206	29,3	41,2	8,49
120	120	55	7,0	9,0	1,60	17,0	364	43,2	60,7	11,1
140	140	60	7,0	10,0	1,75	20,4	605	62,7	86,4	14,8
160	160	65	7,5	10,5	1,84	24,0	925	85,3	116	18,3
180	180	70	8,0	11,0	1,92	28,0	1350	114	150	22,4
200	200	75	8,5	11,5	2,01	32,2	1910	148	191	27,0
220	220	80	9,0	12,5	2,14	37,4	2690	197	245	33,6
240	240	85	9,5	13,0	2,23	42,3	3600	248	300	39,6
260	260	90	10,0	14,0	2,36	48,3	4820	317	371	47,7
280	280	95	10,0	15,0	2,53	53,3	6280	399	448	57,2
300	300	100	10,0	16,0	2,70	58,8	8030	495	535	67,8
320	320	100	14,0	17,5	2,60	75,8	10870	597	679	80,6
350	350	100	14,0	16,0	2,40	77,3	12840	570	734	75,0
380	380	102	13,5	16,0	2,38	80,4	15760	615	829	78,7
400	400	110	14,0	18,0	2,65	91,5	20350	846	1020	102,0

DWUTEOWNIKI ZWYKŁE

wg PN-91/H-93407, DIN 1025-1:1995

N	Wymiary				Pole	Mome	enty	Wskaźniki		
acz					prze.	bezwłac	Iności	wytrzymałości		
nzC .	h	b _f	tw	t _f	Α	Ix	Iv	W _x	Wy	
0		[n	ım]		$[cm^2]$	[cm	4]	[cr	n ³]	
80	80	42	3,9	5,9	7,57	77,8	6,29	19,5	3,00	
100	100	50	4,5	6,8	10,6	171	12,2	34,2	4,88	
120	120	58	5,1	7,7	14,2	328	21,5	54,7	7,41	
140	140	66	5,7	8,6	18,2	573	35,2	81,9	10,7	
160	160	74	6,3	9,5	22,8	935	54,7	117	14,8	
180	180	82	6,9	10,4	27,9	1450	81,3	161	19,8	
200	200	90	7,5	11,3	33,4	2140	117	214	26,0	
220	220	98	8,1	12,2	39,5	3060	162	278	33,1	
240	240	106	8,7	13,1	46,1	4250	221	354	41,7	
260	260	113	9,4	14,1	53,3	5740	288	442	51,0	
300	300	125	10,8	16,2	69,0	9800	451	653	72,2	
340	340	137	12,2	18,3	86,7	15700	674	923	98,4	
360	360	143	13,0	19,5	97,0	19610	818	1090	114	
400	400	155	14,4	21,6	118	29210	1160	1460	149	
450	450	170	16,2	24,3	147	45850	1730	2040	203	
500	500	185	18,0	27,0	179	68740	2480	2750	268	
550	550	200	19,0	30,0	212	99180	3490	3610	349	
600	600	215	21,6	32,4	254	139000	4670	4630	434	

KSZTAŁTOWNIKI ZAMKNIĘTE OKRĄGŁE

bez szwu wg PN-EN 10210:2:2000

Wymiary		Pole przekroju	Moment bezwładności	
D	t	А	Ι	
[m	m]	[cm ²]	[cm ⁴]	
42,4	5	5,87	10,5	
60,3	8	13,1	46	
82,5	10	22,8	152	
101,6	12,5	35	354	

TEOWNIKI RÓWNORAMIENNE WYSOKIE T

wg PN-EN 10055:1999

Oznaczenie			Wyı	niary	Pole	Mor	nenty		
Т							przekroju	bezwł	adności
	$h=b_f$ $t_w=t_f$ R R ₁ R ₂ e A I _x						Ix	I _v	
		[r	nm]			[cm]	[cm ²]	[cm ⁴]	
30	30	4	4	2	1	0,850	2,26	1,72	0,870
40	40	5	5	2	1	1,12	3,77	5,28	2,58
50	50	6	6	3	1,5	1,39	5,66	12,1	6,06
60	60	7	7	3,5	2	1,66	7,94	23,8	12,2

KĄTOWNIKI RÓWNORAMIENNE L

wg PN-EN 10056-1:2000

Oznacz.				Wyn	niary	Pole	M	Iomen	ty		
									bezwładności		
	а	t	R	R_1	e	W	v	Α	I _x =I _y	Iξ	Iη
		[m	m]			[cm]		[cm ²]		$[cm^4]$	
40x40x6	40	6	6	3	1,20	2,83	1,70	4,48	6,31	9,97	2,65
60x60x8	60	8	8	4	1,77	4,24	2,50	9,03	29,2	46,1	12,2
80x80x10	80	10	10	5	2,34	5,66	3,30	15,1	87,5	139	36,4
100x100x12	100	12	12	6	2,90	7,07	4,11	22,7	207	328	85,7

KSZTAŁTOWNIKI ZA-MKNIĘTE KWADRATOWE WYKONANE NA GORĄCO

wg PN-EN 10210-2:2000

Wyróżnik		Wyn	niary	Pole	Moment	
oznaczenia					przekroju	bezwładności
	b t R _o R _i		Α	I _x =I _y		
		[m	m]	[cm ²]	[cm ⁴]	
40x40x5	40	5	7,5	5	6,73	13,4
60x60x8	60	8	12	8	16	69,7
80x80x8	80	8	12	8	22,4	189
100x100x10	100	10	15	10	34,9	462

Literatura:

Podręczniki:

Wytrzymałość materiałów, Michał E. Niezgodziński, Tadeusz Niezgodziński,
2004, PWN,
Wytrzymałość materiałów, Jerzy Zielnica, 1996, wyd. Pol. Poz.
Wytrzymałość materiałów, Marek Zakrzewski, Jerzy Zawadzki, 1983, PWN,
Wytrzymałość materiałów, Przemysław Jastrzębski, Jerzy Mutermilch, Wiktor
Orłowski, 1974, Arkady,
Wytrzymałość materiałów, Zbigniew Brzoska, 1979, PWN,
Wytrzymałość materiałów, A. Jakubowicz, Z. Orłoś, 1972, WNT,
Wytrzymałość materiałów, Janina Gubrynowiczowa, 1968, PWN,
Wytrzymałość materiałów, M. M. Bielajew, 1956, wyd. MON,
Wytrzymałość materiałów, Adam Bodnar, 2004, wyd. Pol. Krak.
Wytrzymałość materiałów, Eugeniusz Bielewicz, Andrzej Chudzikiewicz, 1984,
wyd. Pol. Gd.
Statyka i wytrzymałość materiałów, Jerzy Rżysko, 1970, PWN,
Wytrzymałość materiałów oraz podstawy teorii sprężystości i plastyczności,
Janusz Walczak, 1973, PWN,
Stereomechanika techniczna, Maksymilian Tytus Huber, 1958, PWN,
Wytrzymałość materiałów, R. Kurowski, M. E. Niezgodziński, 1959, PWN,
Wytrzymałość materiałów, Stefan Piechnik, 1999, wyd. Pol. Krak.
Wytrzymałość materiałów dla wydziału włókienniczego, Jan Szmelter, 1966,
PWN,
Wytrzymałość materiałów, Zygmunt Konarzewski, 1971, wyd. Pol. Waw.
Wytrzymałość materiałów, Stefan Błażewski, 1954, PWT,
Wytrzymałość materiałów, Zenobiusz Klembowski, 1951, PZWS,
Krótki kurs wytrzymałości materiałów, Roman Bąk, 1991, wyd. Pol. Śl.
Wytrzymałość materiałów, Ryszard Łączkowski, 1996, wyd. Pol. Gd.
Nauka o Wytrzymałości materyałów, P. Stephan, tłum. niem. red. I. Radziszew- skiego, 1914,
Mechanika materiałów i konstrukcji, t. 1 i 2, Pr. zbior. Red. Marka Bijak-
Żochowskiego, 2013, wyd. Pol. Waw.

Zbiory zadań:

- Zbiór zadań z wytrzymałości materiałów, R. Kurowski, Z. Parszewski, 1962, PWN,
- Wytrzymałość materiałów, zarys teorii, przykłady, zadania, Praca zbiorowa pod redakcją K. Wrześniowskiego, 1985, wyd. Pol. Poz.
- Zbiór zadań z wytrzymałości materiałów, Ferdynand Twardosz, 1983, wyd. Pol. Poz.
- Zbiór zadań z wytrzymałości materiałów, Praca zbiorowa pod redakcją Krzysztofa Gołasia Jerzego Osińskiego, 2001, wyd. Pol. Waw.
- Zbiór zadań z wytrzymałości materiałów, Jan Grabowski, Anna Iwanczewska, 1997, wyd. Pol. Waw.
- Zbiór zadań z wytrzymałości materiałów, Michał Mateja, Marek Bartoszek, Jerzy Pilśniak, Piotr Szczepaniak, 2013, wyd. Pol. Śl.
- Wytrzymałość materiałów zbiór zadań, Marian Ostwald, 2012, wyd. Pol. Poz.
- Zbiór zadań z wytrzymałości materiałów, M. Banasiak, K. Grossman, M. Trombski, 2012, PWN,
- Zarys wytrzymałości materiałów z przykładami obliczeń, Pod redakcją Witolda Biały, 2007,
- Wytrzymałość materiałów przykłady i zadania, Jerzy Lipka, Henryk Głowacki, Maciej Mantorski, Jan Olszewski, 1973, wyd. Pol. Waw.
- Zbiór zadań z wytrzymałości materiałów, Ryszard Piskorski, Kazimierz Trębacki, 1985, wyd. Pol. Gd.
- Zbiór zadań ze statyki i wytrzymałości materiałów, Tadeusz Rajfert, Jerzy Rżysko, 1974, PWN,
- Zbiór zadań z wytrzymałości materiałów cz. 1 i 2, Janina Gubrynowiczowa, 1965,
- Wytrzymałość materiałów, przykłady i zadania, W. Orłowski, L. Słowański, 1963, Arkady,
- Metodyczny zbiór z wytrzymałości materiałów, Praca zbiorowa pod redakcją Walerego Szuścika i Jerzego Kuczyńskiego, 2000, wyd. Pol. Śl.
- Ćwiczenia z wybranych zagadnień wytrzymałości materiałów, Lech Jakliński, 1999, wyd. Pol. Waw.
- Zbiór zadań ze statyki z wytrzymałością materiałów, Jerzy Kowalski, 1971, wyd. Pol. Poz.
- Zbiór zadań z wytrzymałości materiałów, Praca zbiorowa pod redakcją Mariana Janusza, 1975, PWN,
- Zadania z podstaw kształtowania elementów konstrukcji, Cyprian Komorzycki, Przemysław Golewski, Tomasz Sadowski, 2011, wyd. Pol. Lub.

- Zbiór zadań z wytrzymałości materiałów, Praca zbiorowa pod redakcją Witolda Bogdaszewskiego, 1991, wyd. Pol Św.
- Zadania z wytrzymałości materiałów, Michał E. Niezgodziński, Tadeusz Niezgodziński, 2000, WNT,
- Wytrzymałość materiałów w zadaniach, Krzysztof Magnacki, Wacław Szyc, 1987, PWN,
- Wytrzymałość materiałów Ćw. część 1 i 2, Grażyna Anna Palczak, 1991 1993, wyd. Pol. Wr.
- Zbiór zadań z wytrzymałości materiałów i statyki, Wiesław Zach, 1965, wyd. Pol. Waw.

Zadania z teorii naprężeń, wyboczenia i drgań, Witold Wierzbicki, 1958, PWN,

- Zbiór zadań z wytrzymałości materiałów, Rainer Pietrasik, 1984, wyd. Ar. Wr.
- Zbiór zadań z mechaniki i wytrzymałości materiałów dla automatyków, E. Czogała, K. Respondek, B. Skalmierski, A. Talikowski, 1974, PWN,
- Zbiór zadań z wytrzymałości materiałów t. I i II, Danuta Albińska, Janusz Walczak, 1981, wyd. Pol. Kr.
- Zbiór zadań z wytrzymałości materiałów, Juliusz Bratborski, Jerzy Czarnecki, Włodzimierz Dębski, Andrzej Turno, 1952, PWN,

Pozostałe:

Historia wytrzymałości materiałów, S. P. Timoshenko, 1966, Arkady,

- Wzory wykresy i tablice wytrzymałościowe, M. E. Niezgodziński, T. Niezgodziński, 2012, WNT,
- Przykłady zadań z wytrzymałości materiałów z zastosowaniem programu Mathcad, Maciej Major, Izabela, Major, 2003, W. Pol. Cz.
- Wytrzymałość przemysłowych naczyń ciśnieniowych, Zenobiusz Klembowski, 1960, PWT,
- Tablice do projektowania konstrukcji metalowych, Władysław Bogucki, Mikołaj Żyburtowicz, 2005, Arkady,
- Kryteria wytrzymałościowe w stereomechanice technicznej, Maksymilian Tytus Huber, 1948, SIMP,