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Preface

We present to the readers the second volume of the series “Probability
in Action”. The motivation to launch this series was presented in the
first volume and has not since changed. In view of the good reception of
the first publication, the second is written in the same style. The main
aim is the presentation in book form of the current research of scientists at
the Lublin University of Technology (some chapters have co-authors from
other cooperating academic institutions) in the field of probability theory
and its applications. Another objective is an offer and an invitation to
collaboration to a very broad group of specialists representing pure and
applied mathematics, mathematical biology, statistics, engineering, economy
and social sciences.
The book is organized as a series of nine research articles.

Zbigniew A. Lagodowski



Averaging discrete-time signals
having finite energy

Tadeusz Banek!, August Zapala?

Abstract

The general method for averaging functionals of any discrete—time
signals having finite energy is presented. The method uses Banach’s
general concept of the Lebesgue integration in abstract spaces, which is
restricted here to the separable Hilbert space. The described method
allows us to evaluate any characteristic which can be expressed as
a function of data. In addition to the integral representation we of-
fer a numerical Monte Carlo type integration procedure which is of
independent interest.

1. Introduction

Assuming that signals emitted by a finite number of sources have finite total
energy in any bounded time interval, we propose an averaging procedure
based on Banach’s concept of the Lebesgue integral in abstract spaces [1].
More precisely, we are going to use a particular variant of Banach’s theory,
namely those which is connected with integration in the infinite dimensional
separable Hilbert space, i.e. the space

2 = {x: (x1,x2,...) € R : Zm% < oo},

n=1

of all sequences of real numbers having sum of squares finite. By S, () we
denote the set

n
Sy (r) =<z = (x1,29, ..., 7,,0,...) € £*: Zx% <r?h ci?
k=1

'Lublin Technical University, Faculty of Management, Nadbystrzycka 38A, 20-618
Lublin, Poland, Polish Air Force Academy, Aeronautics Faculty, Department of Avionics
and Control Systems, e-mail: kenabt@gmail.com

2The John Paul II Catholic University of Lublin, Faculty of Mathematics, IT and
Landscape Architecture, e-mail: azapala@kul.pl
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and put
S(r)=1J S ()= {1‘652:2%%<7‘2} c 2.
n>1 n=1

According to Banach’s [1|] Theorem 1, the most general non-negative lin-
ear functional F' defined on the linear set € of real-valued, bounded, Borel
measurable functions ® on the space S (r), satisfying additional conditions
(i)—(ii) of Banach’s paper, is of the form

F(®) — lim F,(®),
¢ (z1,..., 20,0, ...)dzy...dzy

R@ = 2 [ —a3) o [1? — (2 4 ot a2 )

Sn(r)

9

where ® : S (r) C £2 — R is a bounded, Borel measurable function of infi-
nite number of variables. The mentioned functional F' possesses analogous
properties as the Lebesgue integral, thus it is called functional integral, or
in short £-integral. Having in mind applications in physics, S (r) may be in-
terpreted as the set of flows or impulses with a finite energy, which stimulate
the behaviour of the observed object and exert influence on its numerical
characteristic ®, and a fortiori — on F (®). To illustrate the wide spectrum
of all the possible forms of ® we consider a few examples.

Example 1.1. Let ® (x) = P (|z|,), z € S (r), where P is a real-valued poly-
nomial, and |-|, is the norm of £2. More generally, if ® (z) : S(r) — R is Borel
measurable and |® (x)| is bounded from above by a polynomial P (|zl,),
then the Banach £-integral F'(®) is well-defined. In particular, for func-
tions of the form @ (x) = sin (P (|z|y)), cos (P (|z|,)), arctan (P (|z|y)),
arccot (P (|z],)) etc., the Banach £-integral F' (®) can be considered.

Example 1.2. Since for each real-valued polynomial P we have |P (y)| <
m < oo for all 0 < y <, where 0 < m < oo denotes a constant, the Banach
integrals for ® (z) = exp{£P (|z|,)}, ®(x) = log [l + |P (|z],)|] etc., are
defined as well.

Example 1.3. Let L (z) = > ;2 x?(k) be alacunary series of x = (21, x2, ...)
in ¢2, where 1 < i (1) < i(2) < ... is an arbitrary but fixed sequence of in-
creasing indices. Then clearly L () < |z|3, therefore all the above examples
with polynomial P (|z|,) replaced by P (L (x)) provide bounded, Borel map-
pings on S (r) for which the Banach functional integrals are well-defined.

Example 1.4. Notice that if z € S(r), then |zgx| < r for all & > 1.
Moreover, the projection 2 > x — x3, € R is a continuous function of
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x € (%, and so Borel-measurable. Hence it follows that mappings of the
form fy, (x) = sup {mil(j), 1<5< /{:1}, Gk, () = sup{ Tiyy|>, 1 <5< k:l},
hkg(l’) = inf {l’ig(j), 1 §j < k)g}, lk4(:c) = inf{ mi4(j) 3 1< j < k4},
foo(z) = sup {xis(k‘)’k > 1}a goo(z) = sup {‘zze(k)’ k= 1}7 hoo(x) =
inf{z;, k), k > 1}, or loo(z) = inf{‘xis(k) .k > 1}, are bounded and Borel-
measurable on S (). Therefore compositions of any bounded Borel function
U [—r,7]” = R, 1<s < oo, with the last mappings, as well as with z;(k),
|z|, and L (z), i.e. maps of the form

v (fk’png? hkga lk47 Joos Goos Noos loos HQ , L () y (1) T4(2) "'77ri(r)) ($),

where ;) (x) = Tit), s = r + 10, are also admissible integrands for the
Banach £-integral.

To describe more precisely everyday life practical applications of the
developed here general theory, we sketch some situations when it may be
useful.

1. Consider some electrical equipment battery, e.g. laptop, tablet, video
camera, smartphone, mobile telephone, GPS etc. Usually the battery needs
to be fully recharged when it is quite flat, but sometimes (in random cases)
the process of recharging starts before the battery is entirely discharged,
and sometimes (in other cases) the process of recharging is not finished as
it should be. In such cases the total capacity of the battery is reduced, but
the downfall does not change linearly, i.e. we may expect that the remaining
part of unattainable capacity after recharging (= s,) is smaller than the sum
of unattainable capacity before this process (= s,—1) and unused capacity
(= | & zn]|); see the pictures below.

Sp—1 Tn

Sn—1 -y

Sn

In other words, one may expect that

Sp )82 1+ 12 < syt |
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In this model the quantity (Z?:l xf) 1/2 expresses the unattainable capacity
of the battery and when it assumes the maximal possible value r, the battery
becames unusable. Notice that the limit point z = lim,, Z?zl xie; € 02 of

this process represents the whole history of life of the battery.

2. Suppose that a PC is used by a couple of people and the private
files written on the hard disk by one or the other person are denoted by
signs +,— resp. The files cannot be written linearly one after another, so
that the total capacity occupied by a finite number n of files is greater than
the sum | &+ z1| + | £ 2| + ... + | £ x| of their sizes | £ x;|. When one
performs the backup of the hard disk, say on a DVD-ROM, then the files
are compressed in such a way that they occupy less capacity then the sum
of their sizes. Thus we may expect that the total capacity of n files written
on a DVD-ROM is equal to

Y R R T RN O Faa ]

Now when the quantity s, attains the capacity r of the DVD-ROM, the
DVD-ROM is full, the backup is stopped and the DVD-ROM should be
changed.

Although our study is well-founded to macroscopic situations, it may
be also used for the description and analysis of some phenomena in nuclear
physics.

3. Recall that the main ideas of quantum mechanics are the following:
the possible (pure) states of a quantum mechanical system (e.g. a particle)
are represented by some unit vectors of a complex separable Hilbert space
(H,||]|), called state space, well defined up to a complex constant ¢, |c| =1
— the phase factor; physical properties of the system are described by means
of wave functions x(u, t) of the position u € R? and time ¢ € R, taking values
in H, such that for a fixed ¢, ||« (u,t)||* is a probability density satisfying
condition: the probability that the particle in the state z can be found in
a region A C R? at the moment of time ¢ is equal to

Ploue &)= [ o) du
A

each physical quantity, say b, is associated with a (Hermitian) linear operator
B acting on H, and all the possible values of b are certain eigenvalues of B.
Moreover, if z is expanded in the CONS {e;} consisted of eigenvectors of
B, then the process of measurement of it can give merely the value of some
coefficient z; with probability |2;|? in the series expansion

o0
x = § xieq,
i=1
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and then the wave function reduces to x;e;. In the presented below approach
we consider only a real Hilbert space H = ¢% and we are not interested at all
in quantization, thus it is a sort of simplification of the quantum mechanics
theory, but on the other hand, contrary to postulates of quantum mechanics
where coefficients x; of vectors x € H are assumed to be constant (for fixed
t), we consider x;, i > 1, as random variables. Furthermore, taking r = 1
we introduce normalization which entails that

[e.9]

Z xf =1,

ni=1
ie. {3312,2 > 1} is a discrete probability distribution with probability 1. The
last condition is consistent with requirements of quantum mechanics. Hence
our considerations can also shed light on the properties of quantum mechan-
ical systems. More precisely, if the procedure of measurements enables us
to obtain consecutive values of coefficients x;, treated as experimental data
of random variables for the flow of homogeneous particles, then one is able
to approximate x, and in consequence — the expected value of any bounded
numerical characteristic ®(z) = ® (x1, x2, ...) of the wave function z. There-
fore one may expect that in such a way the physical quantities like energy,
momentum or position of the particle would be estimated (with accuracy
which is admissible by Heisenberg’s uncertainty principle).

As is clearly visible from the above examples, ® may have a complicated
form, hence analytic integration is rarely possible. Therefore in most situ-
ations we have to approximate the proper value of F'(®). The first step in
this direction requires an approximation of F'(®) by means of F,, ().

2. Approximation of the Banach functional
integral with increasing dimension of the space

From the general theory developed in Banach’s paper [1] we know that
F (®) = lim,,—,o0 Fy, (P), but for many practical reasons the most important
is the rate in this convergence. Under some realistic restrictions we are able
to estimate the rate of convergence of F), (®) to F' (®). Since ® is a bounded
function of x = (71,72,...) € S(r) C €2, where > °° 22 < 1?2 < o0, it is
natural to demand that there can be found a constant 0 < C' < oo, such
that

|® (21, ..., Tn_1,Tn,0,...) = ® (21, ..., Tp_1,0,...)| < C -2 (2.1)

for all sufficiently large n > nec. Obviously, the constant C in (2.1) may be
dependent on r, thus for an arbitrary upper bound that can be expressed
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in terms of |z,/°, 8 > 0, we can always write |z,/° < 7772 . 22 when
2 < B < 00. On the other hand, if 0 < 8 < 2, then one can estimate from
above the integral of |z,|” by the integral of 22 using the Hélder inequality.
Thus the assumption (2.1) is in fact quite natural.

Lemma 2.1. If ® (21,...,2,,0,...) = 22, then we have

M’Z (7“) = / ZL’% d-ﬁUldxn _ T2 A 2n71 '
w2 el - @)

Proof. Substitute x; = ry; for i = 1,2, ...,n, and note that for n > 1,

20 _ r*ys N
Mn (T) - dyldyn -
s 2 (=90 o = (G + 93]

— 2 / 1 ‘
Sp_1(1) 2"\/(1—yf) v (L= (4 2]
1= (y3+-+v2_y)

2 / y2dyy, | dyidysa..dy,—1 =
0

1= (y3+.+y2_,)
dyrdys...dy, 1

/ 2n= 1 1—y1> wo (L= (W + )]
_ / 1= (i+. +yi )] dpdys...dy,
Sn @ 3.2n— 1 1—y1)-...- 1= (y2+ ... +y2,)]

= ? {1 — (MP (1) + M5 (1) + ...+ M2 (1))}

Furthermore,
,
x? 3 | r?
1 (r) or T 3 or 3’
T
thus 1 9
M? {1 - Mm? — .=
2 { 1 ( )} 3 3 )
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and, by induction,

M;?(l)Z;{l—(;+;+...+§j_j>}:;{1_;_1—1(_2/23/):_1}

2k—1
G
Hence
2 r? 2 2 2
M (r) = 5 {1 = (MF (1) + M5 (1) + .+ My (1) } =
7,2 92 2n72 7,2 27171
:3{ N <3+32+ "+3n—1>}: g
which concludes the proof. O

Theorem 2.2. Under the assumption (2.1) we have

T2‘2n
F@) - F@) <
Proof. Notice first that
[P (1, ey Tiy eeey T N, 0y o) — @ (21, ooy T, 0, 00| < C-(ZL’,QH_I + ..+ ZL‘?H_N) .

Therefore

Foin (®) = Fy (@) < O (M2 () + o+ M2y (1) <

r2 (2n gntN-1 r2 on (1 (2/3)Y
<Cro (oo todooe | =C o | 20 |
¢y <3nJr +3n+N1> “3 3n<1—(2/3)

Passing to the limit as N — oo we obtain

[F (®) = Fo (®)] = Jim [Fu (8) = Fy ()] <

r2oon (1 (2/3)Y , 2"
< 1 RS R St S (e L2
S gm ¢ 3n(1—(2/3) Cortgn

which entails the desired estimate. O
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3. Random walk in the ball

As the first step, choose a random point z1 = X; (w) from S; (r) = [-r, 7],
where the interval [—r,r| is equipped with the uniform distribution. De-
note by ls (1) a segment of the line orthogonal to the 1-dimensional sphere
Sy (r) = [=r,r], which is a chord of Sy (r) that passes by the point x;. At
the second step select randomly a point x9 = Xo (w) from Iy (z1) according
to the uniform distribution on it. Being at xo, find a segment I3 (x2) or-
thogonal to the plane spanned by I3 (x1) and Sp(r) and crossing ls (z1)
at x9, such that I3 (x2) is a chord of S3(r). Choose randomly a point

= X3 (w) according to the uniform distribution on I3 (x3), etc. The
sequence (21, ...,xn) = (X1 (), ..., X (w)) is then a random vector and the
probability density function corresponding to this sample is given by the
formula

]lsn(T) (1‘17 7':671)
N (e R T R )

i.e. it is the same mapping as the one defining the Banach £-integral. To
check that g, (x1,...,x,) is in fact a probability density it is enough to show
that

In (X1, .y xy) =

dzy...dz,
I, = / =1
2”7"\/(7’2 — x%) R [7’2 — (x% 4+ .+ x%fl)]

Sn(r)
for an arbitrary n > 1. Indeed,
[ / \/T;xl—xdﬂﬁnﬂl dxy...dry

In+1 -
s 2o (2 =) [~ ()]

"1
= In__[l_/ —da;lzl.

_r 2r

Denote by Xi,..., X,, a random sequence having realization x1, ..., Ty, i.e.
having probability density gy, (z1, ..., ) as in the Banach functional integral.
Observe that in this context the considered above quantities M2 (r) are
equal to the second moments of r.v’'s X,. On the basis of the presented
argumentation we obtain immediately the following result.
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Proposition 3.1. The Banach functional F, (®) that approzimates L-integral
18 equal to

dxl...dxn

D, (21, ..., Tp)
/ rr )P )

Sn(r)
= ERW [(bn (Xla ey Xﬂ)} ’

where Oy, is the restriction of ® to Sy, (r), and the expectation Egw is taken
with respect to the measure Pry induced by the random walk X1, ..., X, on
Sy (7).

Proof. The proof is obvious, so the details are omitted. O

In the next sections we show how to compute the Banach functional
integral using random walk on the space S, (r), i.e. we demonstrate the
power of the above Proposition 3.1.

4. Monte Carlo integration

Since 1, ..., Ty is a sample of X1, ..., X,,, it is natural to expect that

F, (®,) = / D, (1, ..., Tp)
n(r) 2”7“\/(7“2 — 1:%) (r2 — 33% — m%fl)

d:El...dxn

2
=
A

3
E)
8
3

where z1 (i) , ..., zy, () is the i-th sample of X7, ..., X;;. Such a method follows
from the general theory of Monte Carlo integration, cf. e.g. [2], and on the
other hand — it is a straightforward consequence of the law of large numbers.
This is also justified by the following theorem.

Proposition 4.1. Let X" = col (X1, ..., Xy), and let X" (1),..., X" (N), be
a collection of N— identical copies of X™. Then

_ Var[@, (X))

> € _—N€2 s

LN
Prw ”N Z D, (X" (7)) — F (Pn)
i1

and
N
1=

S, (X7 (0) — Fo (@)
1

1
P —
RW[N

'i _
1 n 4
< WERW [(I)n (X ) - Fn ((I)n>] +
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Proof. The first assertion follows by an application of Chebyshev’s inequal-
ity, since

Erw

N N
Var |~ 3" @, (X" ()| = Epw % S (@0 (X7 (3)) — By (X))
1z:lN N =1
LSS B B, (X7 (1) By, (X7
i=1 j=1

[ @n (X7 (7)) — Erw @p (X)) =

N
= 7 O B [0 (X" (1) — Eray b, (X)) =

= % N -Erw [@n (X") = Fp (®0)]) = %Var (@, (X™)].

To obtain the second statement we apply Markov’s inequality with pa-
rameter p = 4, which gives
> 8] <

1 1 Y !
S Erw [N > (@, (X" (i) — Egip®,, (X”)]] _

1 N
PRW ”N Z (I)n (Xn (Z)) - Fn ((I)n)
i=1

IN

N
1 .
T N > Egw [®4 (X" (i) — Erw®s (X™)]
igel=1

(@ (X" (4)) — Erw @, (X™)] -
Erw [@n (X" (k) — Epw @5 (X™)]
[@n (X (1) — Epw @5, (X™)].
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This equals
;N
it O B [Bn (X" (1) — B @ (X)) +
i=1

N
+ N%& > Erw [@n (X" (i) — Egw @, (X))
7,7=1
i
®n (X" () — Erw®, (X™)]2.

Moreover,
N
> Erw [0 (X" (1) = Erw®n (X™)]' = N - Egw [@, (X") — F, (®0)]"
=1

and for i # j, the r.v’s [®, (X" (i) — Egw®, (X™))? and [®, (X™ (j)) —
Erw @, (X™)]? are independent, thus

N
Z Erw [®n (X" (i) — Erw ®n (X)) [0 (X7 (§)) — Erw @y (X))
z,i];é:jl
N
= Z Erw [ (X" (i) — Epw @ (X™))?
z;;];é:jl
Erw [®n (X" () — Egw @y (X™))? =
- N(N-1) {ERW @, (X™) — Ep @y, (X”)]2}2
= (N? = N) {Var [&, (X")]}*.

The last conclusion of Proposition 4.1 is an immediate consequence of the
above arguments. O

Corollary 4.2. If ®,, is bounded, say |®,| < ¢ < 0o, then we have
1 N

N Z(I)” (X" (1)) = F,, (®,) a.s. and in L* as N — oo;
i=1

in particular, for each € > 0,

L
Prw ”N Z D, (X (4)) — Fr (Pn)
=1

- 16¢*  6-16¢*
- € _]\7354+ N2e4

as N — oco.
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Proof. Clearly, F,, (®,,) = Erw®,, (X"), thus |, (X") — Egw®, (X")| <
2¢, and consequently Var [®,, (X™)] < 4¢? and Egyy [®,, (X") — F, (®,)]* <
16¢*. Hence and from Proposition 4.1 the assertion of Corollary 4.2 easily
follows; namely, a.s. convergence is a consequence of the estimate: for every

fixed € > 0,
. }

P U{

N>M

N
1 .
N Z @, (X (Z)) - Fy ((I)n)
=1
16¢*  6-16¢*
= N3g4 * N2e 0
N>M

as M — oo, cf. |3], p. 151, and the inequality
2

Erw = Var

1 N
N Z(I)n (Xn (Z)) - Fn (q)n)
i=1

derived in the proof of Proposition 4.1 implies evidently convergence in L?.
O

Although the last Corollary justifies the approach based on the ran-
dom walk on S, (r)-space in Monte Carlo simulation of the proper value for
F, (®,), it remains an open question how this random walk can be simu-
lated by computer equipped with a generator of (pseudo)random numbers
equally distributed on [0, 1].

5. Distributional mapping

In this section we are going to demonstrate how the random walk X™ on the
Sy (r)-space can be simulated by computer.

Suppose W™ = col (W1, ...,W,)) is a sequence of i.i.d. random variables
with uniform density on [0,1]. We are looking for a smooth mapping f :
[0,1]" — R™, such that

fovm 2 xm,

where 2 means distributional equality. In oter words, we seek for f satisfying
condition

Fof=4aG,

where F', G are cumulative distribution functions of X™ and W™ resp.
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Theorem 5.1. The smooth mapping f : [0,1]" — R", satisfying condition
fwm) L X", is given by the formula

f1(wy, ey wy) =7 (2w — 1),

fo (w1 ey wy) = (22 — 1) /12 12 (201 — 1)?,

I (w1, oy wy) = (2w, — 1) \/7“2 — [r2 2wy — 12 + ...+ 72 (2w,_1 — 1)?].

Proof. We have to check that the random vector f(W™) has the desired
distribution. To this end, note first that the map f restricted to [0,1]" is
1 to 1, and the inverse mapping f~! = (fl_l,...,fgl) to f can be easily
derived step by step, namely

(x1/r+1)
5
_ T 1

2\/r? —a3 2

wy = f1_1 (T1, ey Tpy) =

Wy = f2_1 (X1 ey p)

T 1
wy = frl(T1, . xn) = L + =,

2\/r2 — (m% 4+ ..+ x%_l)

Therefore the Jacobian of f~! is equal to

1 1 1

2 2/ 2\/7«2—(x%+...+w%_1).

Since W™ is distributed uniformly on [0,1]", by the Jacobi change of vari-
ables formula we obtain

I~ (x)

/[ | D, (f1 (Wi, ooy Wp) ooy fro (W1, ey wy)) dwy...dwy, =
0,1]™

= / P, (:cl,...,:cn)‘Jf_l (:c)‘dxl...d@l:

FH(0]™)
/ By (20, ) dzy...dzy, |
Sn(r) 2\ /(12— 2d) o [r2 = (a3 + 422 y)]

In this way Theorem 5.1 is proved. O
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Corollary 5.2. Let W™ = col (W1, ..., W,,) be a random vector with the uni-
form distribution on [0,1]", and let X™ = col(Xy, ..., X,,) be the random
walk on Sy, (1), i.e. a r.v. which has distribution concentrated on Sy, (1) ac-
cording to the same density gy, (1, ..., Tyn) as in the Banach L£-integral. Then
the mapping f defined in the last Theorem transforms computer’s drawing
of (pseudo)random numbers (wi,...,w,) = w" taken from [0,1] into the
simulated values (x1,...,x,) = X™ (w) of the random walk on S, (r). Con-
sequently, given any bounded Borel-measurable mapping ® : S (r) — R, the
approzimated value for the Banach integral F, (®,) is equal to

N N
1 , 1 . .
N Y (X" (D) = N D u (fr (W™ (@) s f (" (0)))
i=1 i=1
where ®,, denotes the restriction of ® to S, (r), and w" (i) is the i-th com-
puter sample of (pseudo)random numbers (wy, ..., wy) . Furthermore, the er-
ror of approzimation of F,, (®,) by the above value exceeds € > 0 with prob-
16¢* 6 16¢*

ability less than

N3gt * N2gd -

Combining the above Corollary with the previously given Theorem 2.2
and Corollary 4.2 we obtain finally the following result.

Corollary 5.3. Let ® : S(r) — R be a bounded, i.e. |®| < ¢ < oo, Borel-
measurable mapping satisfying condition (2.1), let {ep,n > 1} be a sequence

2
of positive numbers such that 0 < Nc V14 6N2 < e, and let F (®) denote
16¢* 6 16¢*

the Banach £-integral. Then with probability greater than 1 — —— 4+ ———
N3gt ~ N2gb

we have for sufficiently large n > ng,

7,2_ n

N
@) = 3 @0 (i @ @), 0 @) <028 ey )
i=1

where f = (f1,..., fn) : [0,1]" — R" is the smooth mapping specified in
Theorem 5.1, ®,, is the restriction of ® to S, (r), and w" (i) is the i-th
computer sample of (pseudo)random numbers (w1, ...,wy,) drawn according
to the uniform distribution from the interval [0, 1].

Proof. As we know from Theorem 2.2, |F (®) — F, (®)| < C -7?-(2/3)"
for all sufficiently large n > n¢o. Therefore, on account of Corollary 4.2, we
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conclude that

T‘2- n
P || (8) = 5 000 (1 0" (@) o (0" )| > € 755 | <
=1 r2 o
< P 1P (@) - £, (@) > 0 2

+PRW

N
Fo(®) = < S @0 (i (0" () o f (0" ()
=1

<04 16¢*  6-16¢4
- N3et N2t

. ]

whenever n > n¢ is sufficiently large. O

Evidently, the sequence of numbers €, = &, (N) should be chosen here
in such a way that

16¢*  6-16¢*

1>
N3gt + N2ed

—0 as N,n — oo,

thus we propose the following procedure. Choose first &, for instance ¢, =
C-7?.2"/3", so that the right-hand side of (5.1) is less than 2C - r%.2"/3",
next fix n > ne to obtain the desired accuracy of approximation in (5.1),
and then select N so large that the probability

16¢*  6-16¢*

1—
N3gt ~ N2ei

is sufficiently close to 1.
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Lord Kelvin’s method of images
approach to the Rotenberg model

Adam Gregosiewicz'

Abstract

We study a mathematical model of cell populations dynamics pro-
posed by M. Rotenberg [14] and investigated by M. Boulanouar [7].
Here, a cell is characterized by her maturity and speed of maturation.
The growth of cell populations is described by a partial differential
equation with a boundary condition. We use semigroup theory ap-
proach and apply Lord Kelvin’s method of images to give a new proof
that the model is well posed.

1. Introduction

In the Rotenberg model of cell populations dynamics [14] a cell is charac-
terized by two variables, its maturity and speed of maturation. We assume
that the maturity is a real number x that belongs to the interval I = (0,1)
and speed of maturation v belongs to a set V' = (a,b), where a and b are
non-negative real numbers such that a < b < +00. The growth of the cell’s
population density is governed by the partial differential equation

of __ 9f
ot~ oz

where f = f(z,v,t), t > 0, is the cell’s density at (z,v) at time ¢. In this
model a cell is born at z = 0 and dies at z = 1, and the boundary condition

(1.1)

00,00 = p [ wk(L.w)f(1,w.1) du
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describes the reproduction rule. Here k satisfies

/ kE(v,w)dw =1 (1.2)
1%

for any v € V, and k(v,w) is the probability density of daughter velocity,
conditional on v being the velocity of the mother. Furthermore, it is assumed
that p > 0 is the average number of viable daughters per mitosis. However
(see |7]), it may be also important to consider the case when a cell degenerate
in the sense that its daughters inherit mother’s velocity. Such behaviour is
described by

f(0,0,8) = qf(1,0,1),

where ¢ > 0 is the average number of viable daughters per mitosis. There-
fore, we combine this two cases and assume that the reproduction rule is
characterized by the boundary condition

vf(0,v,t) :p/vwk:(l,w)f(l,w,t) dw + quf(1,v,t), veV. (L3)

It is also biologically interesting when V' C (a,b) is a discrete set, that is
cells mature only at certain (at most countably many) velocities. In this

case (1.2) becomes
Z k(v,w) =1
weV

with the boundary condition

f(0,v,t) prkzlw (Lw,t) + quf(l,v,t), veV.
wevV

Well-posedness of the (generalized) Rotenberg model may by equiva-
lently rephrase in the semigroup theory. Roughly speaking, see [11, I1.1.2],
the model (1.1)-(1.3) is well-posed if and only if the operator

of

fH—U%

with domain related to (1.3) is the generator of a strongly continuous semi-
group.

In this paper we give a new proof of the generation theorem of Boulanouar
|7, Theorem 2.2, Theorem 3.1|. To this end we use Lord Kelvin’s method of
images. For detailed introduction to the method of images see [3], and [2,
4,5, 6,8, 10, 12, 13, 15] for some examples. As a by-product we obtain an
explicit formula for the semigroup related to Rotenberg model.
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2. Notations

In this section we recall some basic preliminaries and introduce notations.
Given w € R we define a function e, : R — R by the formula e, (z) = e,
x € R. Let I be an open set of real numbers. Moreover, let V' C R and v be
a measure on V. Then for Q = I x V we define L'(Q, u,) to be the space
of absolutely integrable real functions with respect to the measure

po(dz, dv) = e, (v (z — 1)) dz v(dv),

where dz is the Lebesgue measures on I. That is, f: @ — R belongs to
LY (2, p) if and only if

= [, [ eulo™ @ = 1)IF 0] dv(an) < 4o

Then L'(€, 1) is a Banach space with the norm || - 1 (). Let also
WL(Q) be the space of functions f € L'(Q, uy,) such that given v € V we
have f(-,v) € WY(I,dz), where W1 (I,dx) is the Sobolev space of abso-
lutely continuous functions on I such that Dif is a member of L*($, p,).
Here D f is the partial derivative of f with respect to the first variable,
that is Dy f(x,v) = 0/0x f(x,v). Furthermore, if w = 0, then we denote the
spaces LY(, o) by L'(Q) and W(€, po) by W(Q).

3. Generation theorem

As in the introduction, let I = (0,1) and given a,b € R such that 0 < a < b
let (V,V,v) be a measure space where V C (a,b). As we said before, most
interesting cases from a biological point of view would be when V equals
(a,b) or is its finite subset, and v is the Lebesgue measure or the counting
measure on V', respectively. However, we do not need to assume that and
can work in an abstract setup.

Let k: V x V — [0,+00) be a measurable, non-negative real function
such that

/ k(v,w)v(dw) =1, veV. (3.1)
\%4
Then for Q = I x V, see Figure 1, we consider the operator A in L'(Q) given

by
Af(z,v) = —vD; f(z,v), (x,v) € 9, (3.2)

with the domain D(A) composed of functions f € W1(Q) satisfying a the
boundary condition

vf(0,v) = p/v wk(w,v) f(1,w) v(dw) + quf(1,v), velV, (3.3)
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r Q2

2\2
£\%

0 1 0 1
(a) Continuous case. (b) Discrete case.

Figure 1: The set Q.

where p, ¢ are non-negative real numbers such that p + ¢ > 0.

Theorem 3.1. The operator A generates a strongly continuous semigroup

in LY(Q).

Formula (3.2) indicates that for fixed v € V' a desired semigroup should
resemble a translation semigroup. Hence, we would like to define {T'(t), t >
0} in LY(Q) by

T(t)f(z,v) = f(z — tv,v), (z,0) €Q, t >0, fe LY(Q), (3.4)

where f is a measurable function defined on Q = (—oc0,1) x V. Since T(0) f
should equals f, it follows that f must be an extension of f. Moreover,
because a semigroup leave its domain invariant, given f € L'(Q) we are
looking for f: Q — R such that

(E1) the restriction of f to Q equals f, that is fIQ =T,

(E2) if f € D(A), then T(t)f given by (3.4) belongs to D(A) for ¢t > 0.

Let f € D(A). In particular, (E2) implies that f must be chosen in
such a way that T'(t) f given by (3.4) satisfies the boundary condition (3.3).
Hence, we must have

vf(—tv,v) = p/vwk(w, ) f(1 — tw, w) v(dw) + quf(1 — tv,v),
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where v € V, t > 0. If we denote x = —tv, x < 0, v € V, this may be
rewritten as

f(z,v) =pv! / wk(w,v) f(1 + zwv™! w) v(dw) + ¢f (1 +z,v).  (3.5)
\%4

Let ¢ > 1 be a non-negative integer and set

Qi ={(z,v) eR?*:v eV, —ivb ' <o < —(i—1wb 1},

see Figure 2.

Figure 2: The set €;, where ¢ = ab™ .

For w € V it follows that (z,v) € Q;, 7 > 1, implies (1 + zwv™,w) €
U{;& Q;, where by convention €y = . Therefore, we may define f by
induction. Having defined it on ngo Qi, j 20, for (z,v) € Q41 we let
f(x,v) be given by (3.5). This shows that if f: Q — R satisfying (E1)
and (E2) exists, then it is uniquely determined.

Definition 3.2. Given f € L!'(Q) we denote by f: Q — R its unique
extension satisfying

f( ) f(.%', U)a T > 07
T,v) = - -

B Ly wk(w,v) f(1+ 2%, w) v(dw) + ¢f(1+z,v), 2 <0,
almost everywhere and call it the boundary extension of f.

It is worth noting that we do not assume that f belongs to D(A) in order
to define f. However, what is crucial, boundary extensions of functions from
the domain of A posses important property which we describe in Lemma 3.4.
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Lemma 3.3. Let

w > max(blog(p + ¢q),0). (3.6)
Then for f € L' () the boundary extension f belongs to LY, ) and
1l oy < Mol Flls o, (37)

where My, = (1 — Cu)~Y and Cyy = (p+ q)e 0"

Proof. Let w >0, f € L'(Q, ) and f be its extension. Fori > 1, v € V, we
denote
Qio={reR: —ivb ' <a<—(i—1)vb '}

It follows that

/Qilfuw :// ™ =D (20| d v(dlv)

—p/ / —k(w,v / e%(z*1)|f(1+xg,w)\dxl/(dw) v(dv)
Vv Qo v
+q// e“’”il(f‘_l)|f(1—l—x,v)|dxu(dv).
|4 Qi,v

Changing variables leads to

7 _ ww N (z—1) ~wvT | F
/Q 1l = /V /V k(w, ) /+Q e~ | (ar, w) | da v(duw) v(dv)

+ Q/ / e D™ F(g )| da v(dw),
\% +sz
(3.8)

where 1+ €, ,, is the algebraic sum {1} + €; . Since e~ < emwb T for
(z,v) € Q4,7 > 1, using (3.1) it follows that

flie < C, Fltheos .
/Q 1l < /Hﬂilf\u (5.9)

where 1+ Q; = {(1+ z,v) € R?: (z,v) € Q;}. Furthermore, we have

J Jj—1
Ua+ayclJ =1,
=1 =0

see Figure 3. Combining this with (3.9), we obtain

[ =o€ Wl 0 [ 17l

=05 i=1 Sl
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Figure 3: The set U?Zl(l + Q;) is colored blue.

Hence the inductive argument shows that
[ 1l < Ul D G (3.10)
ngo Qi =0

By (3.6) we have C,, < 1, hence the last sum converges as j — 400, and

/Q Flrtos < Mol s

Finally, since e @=1) < 1 for (z,v) € Q, it follows that

1l ey < 1Ly
which proves (3.7). O

In view of Lemma 3.3 let here and subsequently fix w > max(blog(p +
q),0). The set Y of all boundary extensions f of f € L'() is a subspace of
LY(2, p,). Hence we may define the extension operator

E:L'Q) =Y — LY, u), Ef=F.
which by (3.7) is bounded with

1Bl 2 (@)1 ) S Moo
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Moreover, E is one-to-one since Ef = 0 implies 0 = f\ﬂ = f. Therefore
E is an isomorphism of L'(Q) and Y, and of course E~! is the restriction
operator, that is E~! = R, where Rf = i, and hence

1B @y i) = 1
Let now {T'(t), t > 0} be the family of operators in L*(2, 11,,) given by
T(t)f(5,0) = (o —to,0),  (5,0) €Q, £30, f € LD, ).

It is easy to show that {T'(t), t > 0} is a strongly continuous semigroup and
its generator A is given by

Af(xvv) = —vD f(z,v), (z,v) € Qa fe Ll(QaMw)y
with domain D(A) = W(Q, ).
Lemma 3.4. Given f € L'(Q) we have f € D(A) if and only if f € D(A).

Proof. Assume that f € D(A). Then of course f = flﬂ € W1(Q). Given
v € V, by the continuity of f(-,v) and (3.5) we have

£(0,0) = f(0,v) = lim f(x,v) :pvl/vwk(w,v)f(l,w) v(dw) +qf(1,v)

z—0~
=pv! /Vwk:(w,v)f(l,w) v(dw) +qf(1,v)

by the Lebesgue dominated convergence theorem. This shows that f satis-
fies (3.3), and hence f € D(A).

On the other hand, let f € D(A) and fix v € V. For j > 0 denote
Ly = ngo Q; . We have fe Wl(Foﬂ,). Assume now that f € Wl(I‘j,v)
for some j > 0. Then for z € Q;;1, by the Fubini theorem and (3.3) we
have

/xle(y,v) dy—pvl/ wk(w, v)wy ™! /xle(l—l—ywvl,w)dyu(dw)
0 1% 0
D7
+q [ Dif+u
ot [ wkw,0) 1+ 2" w) dyv(du) + of(1+2.0)
Vv v
oot [ whlw,0)f(1,0) dyp(du) - af(1,0)
1%

= f(l‘,l)) - f(o’v)'

This proves that fe Wl (I'j4+1,0)- Using the induction argument it follows
that f € W(Q) = D(A). O
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Lemma 3.5. The space Y is invariant for the semigroup {T(t), t > 0}.

Proof. Let f € L'(Q) and f € Y be its boundary extension. By (3.5) we
have

T(t)f(z,v) = pv~? /V wk(w,v) f (142w~ —tw, w) v(dw)+qf (1+z—tv,v),

for # < tv and (z,v) € Q. Hence T(t)f is the extension of g € L'(Q), where

g(z,v) = f(x — tv,v), (z,v) € Q. O

Proof of Theorem 3.1. By Lemma 3.5 the part Ay of A in Y generates the
strongly continuous semigroup {7y (t), t > 0} in Y given by
Ty (t) f(z,v) = f(x —tv,v), t>0, (z,v) €Q, feY; (3.11)
see e.g. |9, Corollary I1.2.3]. This proves that {T'(¢), ¢t > 0}, where
T(t) = RTy()E, (3.12)

is a strongly continuous semigroup in L'(£2) similar to {Ty(f), t > 0}, see
e.g. |1, 7.4.22]. Moreover, its generator is the operator RAyE and with

domain RD(A). However,
RziyEf(l‘,’U) :—Ule(.’E,U) :Af($,U), ((L‘,’U) er

and by Lemma 3.4 it follows that RD(A) = D(A), which completes the
proof. O

As in the proof of Theorem 3.1 denote by {T'(t), t > 0} the semigroup
generated by A. Then by (3.12) we have

T(t)f(x,v) = f(z — tv), t>0, (r,v) €Q, feLYN),
as conjectured in (3.4).
Lemma 3.6. We have
1T 1()— 11 () = max(1,p+q)
for0<t<bl.

Proof. Fix 0 <t < b~!. Then

||T(t)f]L1(Q):/V/t:f(x—tv,v)dxy(dv)+/V/Otvf(x—tv,v)dx1/(dv).
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The first term on the right-hand side equals [}, |, . f(z,v)dzv(dv). More-
over, since for x € (0,tv) it follows that (z — tv v) € 1, we obtain

tv tv

flz —tv,v)dz =pv ! / wk(w, v) f(1+ zwo™! — tw, w) dz v(dw)
0 \%4 0
tv

+4q fA+z—tv,v)dx
0

:p/v k(w, v) /11tw (e, w) do v(dw)

1
+q f(z,v)dx.
1—tv

Hence, by the Fubini theorem and (3.1) we get

tv 1
/ f(z —tv,v)dzv(dv) = (p+q) / f(z,v)dzv(dv),
vV Jo V J1l-tv

which proves that

1—tv
Ty = [ [ S0 devia)

(3.13)
+ (p+q)/v - f(z,v)dzv(dv).

Finally, if 1 > p + q, then we set

9= ]l{(x,v): 0<z<l—tv, vEV}>

and if conversely 1 < p + ¢, then we set

9= L{(zp): 1-tv<a<1, veV}-

By (3.13) it follows that

IT®)gll 1) = max(1,p + gl L1 (o)
which completes the proof. ]
By Lemma 3.6 it is easy to prove the following result.

Corollary 3.7. Given t > 0 we have

HT(t)”Ll(Q)HLl(Q) < maX(l’p —+ q)[tb]‘H7

where [tb] is the greatest integer smaller then or equal to tb.
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Differences between optimal routes
for linear quadratic problems with
fixed and optimally stopped horizon

Edward Kozlowski!

Abstract

The routing problem of linear system to hit the target is investi-
gated in this paper. The classical linear quadratic control problem was
replaced by the problem of determining the optimal trajectory (way,
track, path). The general aim consists of minimization of composite
cost function, which depends on route (as a set of landmarks) and
horizon. To illustrate the influence of horizon a numerical examples
are included.

1. Introduction

The different engineering applications of stochastic systems (e.g. control,
navigation, stabilization, cost minimization, identification etc.) are widely
presented in literature (see e.g. [2], [3], [4], [5], [13], [15], |19], [20]). In
many cases these systems must be controlled to perfect perform the aim.
Unfortunately to exactly achieve the goal first we must determine the control
laws for systems. Sometimes, in order to achieve the goal the system should
be moved after a certain path (trajectory). In this case the problem depends
on determining the optimal trajectory.

The task presented in this paper consists of determining the optimal path
on which the system achieves the lowest total costs, wich is a sum of costs
of changes, energetic costs of controls and losses associated with not hitting
the target. This task for fixed horizon was considered in [6]. Additionally
it was proved, that the horizon has a large influence to total cost (see e.g.
[5], [14], [15], [16], [17]). The construction of control laws for fixed horizon
is usually presented in literature (see e.g. [1], [9], [10]). The problem arises

'Lublin University of Technology, Department of Quantitative Methods, Nadbystrzycka
38, 20-618 Lublin, Poland, e-mail: e.kozlovski@pollub.pl

2010 Mathematics Subject Classification. Primary 93E20, 60G40; Secondary 93E95,
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Keywords: optimal trajectory, optimal control, linear quadratic routing problem, Snell
envelope.
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when the horizon is unknown. Which of horizons is optimal? The control
with optimal stopping is presented in the works [11], [12], [21].

The goal of this paper is determining the optimal trajectory (path, route
as a set of landmarks) and horizon. The controlled stochastic system (object,
robot) should move after this optimal route and must be stopped before
reaching the biggest possible horizon to perfect hit the target. To determine
the optimal trajectory and stopping moment (optimal horizon) the idea of
dynamic programming was employed.

The paper is organized as follows. In section II the linear quadratic con-
trol problem is converted to linear quadratic routing problem. The solution
of the routing problem with the fixed horizon is given in section III. Section
IV provides the solution of linear quadratic routing problem with the opti-
mally stopped horizon. The numerical simulations shown that to achieve the
aim sometimes the system must be stopped earlier than the biggest possible
horizon.

2. Exchange the LQC problem to LQR problem

In this part the linear quadratic control (LQC) problem with fixed horizon
will be replaced by a linear quadratic routing (LQR) problem. As we shall
see later, this problems are dual.

Let (92, F, P) be a complete probability space. Suppose that wy, ws, ...
are independent n-dimensional random vectors on this space, with normal
N(0, I,) distribution. We assume that all the above-mentioned objects are
stochastically independent. Let the stochastic linear system be described by
a state equation

Yir1 = Ay; + Bu; + owipq (2.1)

where i = 0,..,.N —1, 55 € R*, B € R™*, ¢ € R™" and an ini-
tial state is ||yo|| < oo. On (Q,F,P) we define a family of sub-o-fields
Yj=0{yi:i=0,1,...,j}. Thematrices ||A|| < oo, || B|| < oo and ||o|| < oo,

where ||-|| denotes a matrix norm as ||A|| = HIIl”aX ||Az| (the system (2.1)
z||<1

is Boundary Input Boundary Output stable). The vector u; € Rl is YVj-
measurableand called a control action. Let u = (ug,u1,...,uny—1) is an ad-
missible control and the class of admissible controls is denoted by U. The
task depends on remove the stochastic system (2.1) from initial state yg to
the target &, which is unknown to the controller, and has apiori a normal
distribution N (m, Q).

The classical aim of control consists in optimization of performance cri-
terion. Let the objective function represents total costs. The total cost
is composed of costs of changes a||yis1 — yil|?, energetic costs of controls
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B |Jug||* for i = 0,..., N — 1 and cost (loss) associated with not hitting the
point (target) v |lyn — &||, where a, 8,7 > 0. For the linear quadratic con-
trol problem with fixed horizon the aim of control is to minimize the total
cost. Thus the task is to find

N-1

inf { S (allyier = will* + 8 wal®) + v lyn — 5||2} BENCE)
i=0

Let N denote the biggest possible horizon of control and 7 : Q@ — {0,1,..., N}

be a Markov moment. The class of Markov moments will be denoted by T.

The linear quadratic control problem with optimally stopped horizon can be

presented as

T—1
inf E {Z (rllyiss = will* + 8 all®) + 7 llyr —§|2}. (2.3)

(y,7)EYXT —o

We see, that the system should be carried out (controlled) at the cheapest
cost. On the other hand to move the system (2.1) from g to target &, we
need to determine an optimal route (set of landmarks). To determine the
route we create the substitute task.

Let det (BT B) # 0. When we want to move the system (2.1) from state
y; to yir1, 1 =0,1,..., N — 1 then the control has a form

u; = Kyjy1 — Ly; + Mw;11, (24)

where .
K= (B'B) BY, L=KA, M =-Ko.

Let y = (0,91, .--, yN—1) mean an route (path, trajectory) and Y denote the
class of admissible routs. For a fixed horizon the task (2.2) may be replaced
by

N-1
;?£E<Z (a lyisr = will® + B Kyir1 — Ly + Mwi+1H2> +7llyn — 5!2)
=0

(2.5)
The main aim is determining the optimal route y* by solution the task (2.5).
A direct solution of task (2.2) gives us the explicit formula of the optimal
control, but the solution of task (2.5) gives the optimal trajectory.
The problem of determining the optimal route for random horizon can
be presented in the following form

T—1
inf E(Z (llyiss =il + 811 Kyirs = Lys + Muwisa )
(y,7)EYXT =0 (2 6)

. —51\2)
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3. Solution LQR problem for a fixed horizon

Below the method of determining the optimal route for system (2.1) with
fixed horizon N will be presented. First we will determine the optimal path
for the case, where the target is known. Next the obtained result will be
modifyed for the case, where the target is random. To satisfy the aim (to
move the system (2.1) from yp to point &) the system (2.1) should moved
along the path yo, y1, ..., ynv. We determine this path by solving a task (2.5).
As result we obtain a set of points (marks) y = (yo, ..., ynv—1) for which the
infimum is attained. The theorem below shows how determine the optimal
path where the target £ is known. Let

H=aol+BK"L, D=al + K"K, C =al + BLTL
and F; =0 (§) VY.

Theorem 3.1. Let

¥ = ¢-HT (@), +D) 'H, (3.1)
R 52)
T = - () (@) v, (33)
zN = ZN,+tr (BMTM + @Y, + D) oo”). (3.4)

where @% = \IJ% = T% = ~I, Z]]\\[] = 0 and I is an identity matriz. If
det (@ﬁl + D) # 0 for j = 0,1,...,N — 1, then the optimal state (mark,
position) for the time j+ 1 based on information available to time j is

E(yjl Fj) = ((I);\—fi-l + D)_l (Hy; + \II?—[H&) (3.5)
and
ey 2 2
nf B (g (04 1yit1 — yill” + BIIKYir1 — Ly; + Mwi|| )
7 llyn = €I7) = WeY (€ 0) (3.6)
where
WR (&yn) = vlyw —€I1%, (3.7)

WN(&y) = yloNy — 2yl olNe + rNe+ ZN, (3.8)
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Proof. First we define the Bellman function (see e.g. [8]). At the time N
the value of Bellman function W4 (£, yn) is given by (3.7), but at the times
1=20,1,2,...,N — 1 is defined as

WY (& y:) = minE {a yis1 — vill?
Yi+1
+B1Kyit1 — Ly; + Mwiia || + Wiy (&, yi-i-l)‘ ]:i}(3-9)
for j=0,1,...., N — 1. From (3.9) for the time N — 1 we have
W1 (& yn—1) = min E{yy (ol + @) + BK"K) yn

+ %y (ol + BLTL) yn
— 2% ((af + BETL) yn_1 + UNE)
+TNE+ BuyMTMwy | Fn-1}

= min{E (yy | Fn-1) (23 + D) E (yn | Fn-1)
+yn-—1Cyn1
= 2B (yn | Fx-1) (Hyn-1 + ¥¢)

+0rNe +tr ((BMTM + @Y + D) oo™ }.

The expected optimal state (position, mark) at time N based on information
available to time N — 1 is

-1
E(yn|Fn-1) = (2N + D)~ (Hyn-1+y¥N¢E).
The value of Bellman function of time N — 1 is equal

WJ]\\fll (& yn—1) = yjj\ﬂfflq’%fWN—l - 2y]7\}71\11%715 + fTT%Aﬁ + Z]]tf[fh

where
®N_, = C-H" (®N+D) ' H,
v, = HT (@¥+D) ' vy,
TN, = YN (ed)" (@Y + D) wf,

ZN_y = tr((BM"M + @Y + D) oo™).
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Let us assume, that equation (3.8) is true for i+ 1. From (3.8)-(3.9) and the
properties of condition expectation we have

W (& y;) = gninE {a lys41 = ylI* + Bl Kyj11 — Ly; + Mwjp ||
+ y]+1(1)]+1y]+1 + y]+1‘1’g+15 + §TT3+15 +7Z +1| Fi}
— min (B (4] 55) (851 + D) B spual 79+ 47 Coy + €71 i
J
—2B (yj1| F5) (Hy; + 9508) +tr (BMTM + @Yy + D) oo™) + 2%,

Thus, the expected optimal state (position) at time j + 1 is

E (yj1| Fj) = (@, + D)™ (Hy, + Y, ¢)

and the value of the Bellman function at time j is equal

WY (& y;) = — (Hy; + ‘I’J+15) (@ + D) (Hy; + 97 41€)
TC?JJ + fTT]Hf +Z +1 +tr ((ﬂMTM + @JJrl + D) O'O'T)
=y y; — 2] WY E+ YN E+ 2,

N gyN vN 7N H
where ©%, W, T3, Z5 are given by (3.1)—(3.4). O

Remark 3.2. The equation (3.5) gives the formula (recipe, rule) how to
determine the optimal route (state- or landmarks) for time j+1 if the system
(2.1) to time j traveled the way (path, track) o, ....,y;. Additionally, from
formulas (3.1)—(3.4) we have
k_ &N
Cj =Dy

kE _ N k _ ~N k _ N
k—j)’ ‘I’j = qjN—(k:—j)? Tj - TN—(k—j) and Zj - ZN—(k—j)

for 0 < j < k < N. Hence from formula (3.8) we obtain

W]k (67 y) = W]]\yf(kf]) (S’ y> ’

where £,y e R and 0 < j <k < N.

Below the recipies (law) of optimal route determinig will be presented for
the case, where the target is unknown. Let the target £ is random and has
a normal distribution N (m, Q). For j = 0,1, ..., N —1 the expected optimal
state (mark, position) for the time j + 1 based on information available to
time j is

E(yj41|Y)) = E(E (yj+1] F)|Y;) = (2}, + D)~ (Hijr‘I’j]\frlﬂ(%) |
3.10



Differences between optimal routes for linear quadratic problems 39

and from (3.6) we have, that the expected cost of control of system (2.1)after
time j is equal

ViV (y) = E(WN (& y)|Y)) = (3.11)
= yl oYy +yl Ym+m Y m+ Z) +tr (YVQ)

where (I>§V, \Ilév, Tév,ZjN are given by (3.1)—(3.4). The value tr (Ty@) de-

notes the cost of ignorance of target but the value ZJN presents the cost
of eliminating external disturbances for the system (2.1) which will be con-
trolled at moments from j to N.

Remark 3.3. Let us assume, that for the case with known target the aim
is equal m € R"but for the case with unknown target the aim is random
vector £ with normal distribution N (m, @), where E{ = m. The additional
cost connected with ignorance of aim is a difference between total cost in
case where target is unknown and total cost in case where target is known.
Thus this cost is equal

Vo' (yo) — W' (m,yo) = tr (Y('Q) -

Remark 3.4. When the optimal route for the linear system (2.1) is known
(planned), then from (2.4) the expected control conditioned on o—field Y,

1S

E(u|Y;) = —(B"B)" BT (E(yj11]Y;) — Ayy)
— K (N, + D)7 (Hy+ 9N, - Ly;.  (3.12)

Example 3.5. The linear system with state equation (2.1) must be moved
from initial state yo = (90;50) to known and unknown targets. We assume
that the parameters «, 8,7 are equal 0.1, 0.5, 1 accordingly and

2.2 0.3 10 1.2 0.1 05 0
Q‘[OA 1.9}’ A_{o 1}’3_[0.5 2 ]’”‘{ 0 0.2]'
For case with known target the aim is m = (10;20), but for case with un-
known target the aim is a random vector{ with normal distribution N (m, Q).
Let us determine the optimal routes for fixed horizons N = 20.

The figure (1)a presents the optimal planned trajectories. We see, that
the sets of landmarks E (y;| Fo) and E (y;| Vo), 7 = 0,1, ..., N for cases with

fixed and random targets are identical, because £¢ = m. This marks are
uniformly distributed along trajektory which connects the points yg and m.
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Figure 1: The optimal planned trajectory and expected total costs.

The figure (1)b presents the expected value of objective function W, (yo)
(the horizon of control is equal N — (N —t) =t) for 0 < ¢t < N. We see, if
the horizon of control is increasing then the expected value of cost of control
is decreasing.

The figure (2)a presents the costs connected with ignorance of target
tr (T%_tQ) for 0 < t < N. This costs are decreasing while the horizon
of control ¢ is increasing. The figure (2)b presents the costs of eliminating
external disturbances Z]J\\,f_t which increase with increasing horizon t¢.

4. Optimal route determining for stopped horizon

Sometimes if we stop the system (2.1) earlier than fixed horizon we may
obtain the better result. Thus, independently from the optimal route de-
termining it should also appoint a moment of stopping the system. The
optimal stopping rules (see e.g. [21]) will be employed to determine the mo-
ment when the system (2.1) must be stopped. The theorem below presents
how to determine the optimal route and moment.

Let 7 : Q@ — {0,1,..., N} be a Markov moment in view of o—field
Y =(Vj)ocj<n- We determine the optimal route by solving a task (2.6) and
we obtain a set of admissible points (marks) y = (yo, ..., yr) for which the
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Figure 2: The additional costs of control.

infimum is attained. From (3.9) we have

-1
Vily) = inf E (Z (04 yi+1 — will?

Ye+15---Y5 i—k
B Kyi1 — Lys + Muwia|*) + ]y — €2| %) , (4.1)

where 0 < k < j < N. From above we can present task (2.6) in the following
form

inf Vi (vo) - (4.2)

Theorem 4.1. Let the stochastic system be described by equation (2.1). The
optimal solution of task (2.6) is:
a. the optimal stopping moment of controlled system (2.1)

7% = min {O <kSN: VI (yg) = kg}lgnNVk] (yk)} , (4.3)
where ij (yr), 0 < k < j < N is given by (3.11);
b. ifk € {0,1,...., N — 1} is not a stopping moment and det <<I>i+1 + D) #0

for 0 < k < j < N, then the optimal state (mark, position) at the time k+1
18

E(yka| Vi) = (®hr + D) (Hyp + Vo E(E| VW), (44)
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where moment t € {k+1,..., N} is determined as

t—min{k—i—l <J <NV (ww) = min V¢ (yk)}
R

and @}, is given by (8.1).

Proof. Let us consider the task of optimal stopping in class 7 (N, N). Thus
we may only stop the system (2.1), thus the stopping moment 79 = N and
the Bellman’s function is equal

Vv (yn) = V& (yn) = vE |lyn — €|

In the class 7 (N — 1, N) we may stop the system (2.1) at N — 1 or control
the system (2.1) optimally to moment N. If we stop the system (2.1) at
moment N — 1 then we have only heredity cost vE ||lyny—1 — §||2. If we
control the system (2.1) at time N — 1 and next we will stop this system at
time N, than we have the costs of transformation and control

E (04 lyn — yn—1]* + B Kyn — Lyn—1 + MwNHZ‘ yN—l)

yN_1>. Thus, if we will stop the

system (2.1) at moment N then We will incur the total cost Vi | (yn—1)
(see theorem 1). The optimal cost in class 7 (N — 1, N) is

and expected heredity cost yF ( lyn — €|

. ) 5
VN-1(yn-1) = min {’YE lyn—1 = &1 Vals (yN—l)}
and the optimal stopping moment is

S { N—1, if Vy1(ynv-1) =7E lyn—1 — 5”27
0, i Vo1 (yn—1) > VE lyn-1 — €17

If N —1 is not a stopping moment, then we control the system (2.1) and the
expected optimal state at time N is

E (yn|Yn-1) = (O§ + D)_1 (Hyn-1+YNE (€| Yn-1)) -

Similarly we consider for classes 7 (N —2,N),...,7 (0, N) = 7. In the class
T (k,N),0 <k < N—1wemay stop the system (2.1) at time k or optimally
control the system (2.1) to possible times k+1, ..., N. If we stop the system
(2.1) then we accept the cost of heredity vE (Hyk —£? y,H) only. If at

time k we control the system (2.1) we have the costs of transformation and
controls. The optimal total cost in class T (k, N) is

Vi () = min {72 (llge = €17 Vi)V () o VY ()}
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Figure 3: The optimal route with optimal stopping moment.

and the optimal stopping moment in class 7 (k, N) is

i ke i Vi (k) = 7B (llye — €I1P| Ve-1) s
TR i Vi (k) > VE (Nl — €11° [ Ve

If k£ is not a stopping moment, then the system (2.1) must be shifted from
state yr to expected optimal state

E(yeea| Vi) = (®hr + D) (Hyp + Vi E (€] V1)) -

where t = min {kz <t<N:Vi(y) =V (yk)} From theory of optimal
stopping rules (see e.g. [21]) the Markov moment given by

™ = min{O <k<N:yE (Hyk — §H2‘ yk_l) =V (yk)}
is an optimal stopping moment, what proves the assertion. O

Remark 4.2. If v = 0 then form theorem 4.1 the system (2.1) must be
controlled to the end of fixed horizon.

Example 4.3. The linear system is defined by the state equation (2.1) and
must be moved from initial state yo = (90;50) to the random target £&. We
assume, that the parameters «;, 3, and the matrices ), A, B, o are the same
as in example 1.

Figure 3a shows the simulation of trajectory of stochastic system (2.1).
The figure 3b presents the realization Vj, (y) (curve with mark ’cross’) and
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~E <Hyk — 5”2’ yk) (curve with mark ’square’) for 0 < k < N. In this pic-
ture we see, that for the moment 7* = 14 the lowest expected cost Vix (yr+)
is identical as heredity cost vE (HyT* - {HQ‘ y7*>. From above the moment
7" = 14 is an optimal moment of stopping. Comparing the figures la and
3a we see, that optimal paths for fixed and optimally stopped horizon are
completely different. For fixed horizon the system (2.1) is moved uniformly
along trajectory form initial state yg to target £&. For optimally stopped

horizon the system (2.1) is more moved at the beginning but slowly moved
at the end of horizon.

5. Conclusion

The problem presented in this article depends on determining the optimal
path (trajectory) to perfect track the target. To realise this aim the linear
quadratic control problem was converted to the linear quadratic routing
problem. The laws of detemining the optimal route and optimal horizon were
given. The examples presented above show, that the horizon has a significant
influence to result of realization of aim.

The extension of presented results can be used, for example, to the source
seeking problem, the navigation planning, the perfect tracking etc.
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Asymptotics of the products of sums
of independent and non-identically
distributed random variables

Tomasz Krajka', Przemystaw Matuta?, Habib Naderi®

Abstract

We study weak convergence of products of sums of independent
and non-identically distributed random variables. Some examples con-
cerning the rate of convergence are also presented in this setting.

1. Introduction

Let (X,),en be a sequence of i.i.d., positive and square-integrable random
variables with mean p, variance o2 and coefficient of variation v = o/u.
The study of the limiting behavior of products of sums S, = > ;_; Xj
originated in the paper of Arnold and Villasenior [1], who proved the following
convergence of sums of record values based on a sequence of i.i.d. standard
exponential r.v.’s

? logS; —nl
iz log 5 —nlogn 4 n i>j\/'(0, 1) as n — oo, (1.1)
V2n

here and in the sequel N/ (u, 02) denotes the normal variable with mean p
and variance o2. Let us observe that

> i logS; —nlogn+n g (1—[?151671)“1271
Van o

!Lublin University of Technology, ul. Nadbystrzycka 38d, 20-618 Lublin, Poland, e-
mail: t.krajka@pollub.pl

2Marie Curie-Sktodowska University, pl. M.C.-Sklodowskiej 1, 20-031 Lublin, Poland,
e-mail: matula@hektor.umes.lublin.pl

3Faculty of Mathematics, University of Sistan and Baluchestan, Zahedan, Iran, e-mail:
h_naderisp@math.usb.ac.ir

2010 Mathematics Subject Classification. Primary 60F05, 60G50 ; Secondary 60F15.

Keywords: independent random variables, products of sums, central limit theorem.




Asymptotics of the products of sums 47

and by applying the Stirling formula

|
lim ————— — 1

n—00 \/2nnte "

and

in (5=) " =1

im | —— =
n—oo 27Tn

we see that (1.1) is equivalent to

1

(ﬁ&'@)ﬁ i>exp(/\/‘(0,2)) as m — 0o

: 2
=1

Rempata and Wesotowski [16] found that this result has deeper meaning and
proved that if (X;,), oy is a sequence of i.i.d. positive and square-integrable
random variables, then

n 1
<1_['L':1’SZ> v, exp (N (0,2)), as n — oo. (1.2)
nip™

This result was extended and generalized by several authors. Let us
briefly recall some of these results. Natural directions for generalizations of
(1.2) is relaxing the assumption of independence by considering sequences of
dependent r.v.’s, considering r.v.’s which are non-identically distributed or
weakening the moment requirement i.e. square-integrability of r.v.’s. The
other interesting questions are the rate of convergence in (1.2) and functional
or almost sure version of this result. Randomly indexed and self-normalized
products were investigated as well. In recent years also large deviation and
precise asymptotics were studied.

Qi [15] and Lu and Qi [8] relaxed the assumption of square integrability
of the r.v.’s and considered sequences belonging to the domain of attraction
of a stable law with index greater or equal to 1. They obtained analogous
results to (1.2) with the stable law in the limit. This direction of research
in the functional version carried on Kosiriski in [4]. The convergence in the
space D|0, 1] of processes constructed from products of sums for the first
time were studied by Zhang and Huang [19] and later for non-identically
distributed r.v.’s by Matuta and Stepient [10, 13]. The non-i.i.d. case con-
sidered also Krajka and Rychlik [6] even in the randomly indexed setting.
The so-called almost sure version of the central limit theorem focused the
attraction of many researchers in the context of products of sums, let us only
mention Gonchigdanzan [3] and Matuta and Stepien [12|. There are only
two papers devoted to the study of the rate of convergence in (1.2), these
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are results of Matula and Stepien [11] and Krajka and Rychlik [5]. Depen-
dent r.v.’s such as positively or negatively dependent, mixing sequences were
studied for example in [12], |20] and [18]. A general approach to dependent
sequences via strong approximation was discussed in [9]. Among the most
recent results let us mention the paper of Tan [17] on precise asymptotics
and Zhu [21] on large deviation for products of sums.

The goal of our paper is to generalize (1.2) to the case of independent
but non-identically distributed r.v.’s and to combine the results of [6], [10]
and [13] into one theorem.

For a sequence (X,),.y be a sequence of independent, and square-
integrable random variables defined on some probability space (2,5, P),
let us introduce the following notation:

wn = EX,, 7' = Var(X,,), ”_ZX’“ an—Var ZTk, for n € N.
k=1

The main results concerning weak convergence will be stated and proved in
Section 2, in Section 3 we quote a result concerning the rate of convergence
and in Section 4 we present some illustrative examples.

2. Weak convergence

In what follows (an),enugoy is an increasing sequence such that ag = 0 and
lim,, o0 an, = 00.

Theorem 2.1. Let (X,),, oy be a sequence of independent and square-integrable
r.v.’s and (aivn)Kign neny 01 array of positive numbers. Assume that the fol-
lowing conditions are satisfied:

X, —EX, > a1 — an, almost surely for alln € N, (2.1)
o0
E|X; - EX;P
Z |Z—pz| < oo, for somep € (0,2), (2.2)
i=1 @
"o
Z Z’Qnaiz — 0, asn — oo, (2.3)
i1 %
n
Z (AN 72 = 62, as n — oo, for some o > 0, (2.4)
i=1
where AT =>"7_. a:];";
for any ip € N, max o;, — 0, as n — oo, (2.5)

1<e<0
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lim > (ANPE(X; —EX)?I[A} |X; —EXi| > ] =0, for any e > 0.
=1
(2.6)
Then

a;

T, := H <SZ_ESz + 1) LR exp (N(O,UQ)) , s m — 00. (2.7)
=1

Proof. We essentially follow the lines of [10] and [13] and apply the expansion
of the logarithm
log(1 4+ z) =z + R(x), for |z| <1/2, where |R(z)| < 22°

to prove that

(S; —ES;) + Ay, (2.8)

n
log T, = Z az,‘n
i=1
with A, -5 0.
Let us put C; = (S; —ES;) /a;. From (2.1) we have C; +1 > 0 almost
surely and therefore we easily get

E
log (SS + 1) =log (C; + 1)

)

— Gy + R(C)I[ICH] < 1/2] + (log (C: + 1) — G L[|C| > 1/2).

Thus

logT, = Zam log (C; +1) =
i=1

= Zamc +Zam 1[C;] < 1/2]

+Zai,n (log (Ci +1) — G) I[|Ci| > 1/2]
i=1
. Qi / "
= Z (Si —ES;) + A, + A, , sa

i1

Let us observe that

E|A,| 2Zam (SES> f2Zam 2—>0
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by assumption (2.3). By (2.2) the strong law of large numbers holds (see
[14]) i.e. C,, — 0 almost surely. Thus, for almost all w € €2, there exists
ip(w) such that for all i > ip(w) there holds I[|C;| > 1/2] = 0. Since that

0
Al = ) i (log (Ci + 1) — C)T(|Ci| > 1/2]
=1
0
< max aip » (log (Ci+1) — C)I[|Ci| > 1/2] 0

1<i<io :
=1

by (2.5). It means that A — 0 almost surely and (2.8) is proved.
It remains to prove that

Zn = Z Yim (Sz - ESz) i) N (0, 0'2) .

i Y
Let us introduce a triangle array of r.v.’s independent in each row
Yin =47 (X; —EX;), 1<i<n, neN.
Then

n
Zn - Z Y;,n
i=1
and EY;,, = 0, Var (Y;,,) = (A7)* 72. By assumption (2.4)

Var (Zn) = Y _(A7)* 17 = o”
=1

and the conclusion follows from (2.6) and the Lindeberg’s theorem for tri-
angle arrays of independent random variables (see Theorem 27.2 in |2|). O

Remark 2.2. Obviously (2.6) holds if the following Lyapunov’s condition is
satisfied for some § > 0

n
lim Y (AP E|X; — EX[*T =o0. (2.9)
n—oo
i=1
Remark 2.3. It is quite natural to use the normalization a; = ES;. In this
case (2.1) is equivalent to X,, > 0 almost surely and we have a simple form

S;—ES; _ S5
of the factors T +1= £S -

In the case a; , = By i.e. when o, does not depend on 7, we get Theorem
2.1 of [6] (the part concerning nonrandom number of factors in the product).
In this case (2.5) is satisfied provided 0 < 3, — 0. Let us recall this result
as a corollary.
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Corollary 2.4. Let (X,),cy be a sequence of independent and square-
integrable r.v.’s and 0 < o, = B, — 0 as n — oo. If (2.1)-(2.4) and
(2.6) are satisfied, then

n Bn
(H (‘S’_ES’ + 1>> i) exp (_/\/'(07 02)) , as n — o0. (2.10)
=1

a;

In [10] the weak convergence of the normalized products of the form

" 2, |ES; 1/on
I(z5) ~
: ES;
=1
. . . T7:2+1ES,L' . .
was studied, i.e. the weights «; ,, = 5 and normalization a; = ES; were
7' n

used in this case. This problem was generalized in [13], where the following

weights were considered
2\ 2
o\ 77ES;
Qin=f (;) Lt

3
On On

We shall show that the one-dimensional case of |[10] and [13]| can be derived
from our Theorem 2.1. We shall consider the family of nonnegative functions
f:10,1] — R* which are continuously differentiable on (0, 1] and satisfy

/01 (/:f(y)dy>2dx<oo,

/1 f(x)Vxdr < oo, (2.11)
0
f(@)2%? =0, as 2 — 0F.

Corollary 2.5. Let (X,),cy be a sequence of independent, positive and
square-integrable r.v.’s and the function [ satisfies (2.11). Assume that
0 2

Z (ET;) < oo and ES,, = 00, as n — oo (2.12)
i=1 i
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Proof. We shall verify that the assumptions of Theorem 2.1 are satisfied.
From the positivity of the random variables and the choice a; = ES; (2.1)
follows, (2.2) is (2.12) for p = 2. Under conditions (2.11) imposed on f, the
convergence in (2.3) was proved in formula (21) in [13]. From Lindeberg’s
condition (2.13) the Feller condition follows

72
lim max & =0 (2.15)

n—0o0 IKisn 0y,
and (2.4) may be considered as an integral sum

f:(A” _Z<Zf(0:>:;> T?L%/ (/f dy> dr = o”.

=1

: 2 2\3/2 125 :
Since ag, = f (Z—’g) (Z—’g) T’“03 * we see that (2.5) is a consequence of
n n k

continuity of f and convergence f(z)z%? — 0.

It remains to prove that the classical Lindeberg’s condition (2.13) im-
plies (2 6) Let us define mn(t) = max{i o7 < to2} and observe that
hmn%ooa /0’ = limy 00 02, (t)+1/0 =t (see also (21) in [10]). For

given ¢ > 0 we can find § > 0 such that fo (fx fly dy) dr < ¢ and by

contmulty of f on the closed interval (4,1) the following integral is finite
n:i= f(s x)dx < oo. Let us split the sum in (2.6) into two parts

(AP)’E (X; — EX;)*T[A} |X; — EXy| > ]
i—1
M (

5)
= ) (ANPEX —EX)’T[A} |Xi —EXy| > €]
=1

+ ). (AD)’E(X: —EX)’I[A7|X; — EXi| > €]
i=mn(8)+1
mn(9)

N
N
3

We have

ma (8) ) mn(8) / n o2\ 72 272 s 1 2
A2 22 %k \ Tk | T / du) d
=32 (S0(B)E) o [ ([ o) s

=1
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thus for sufficiently large n we get Zm"(6 (A”)2 2 < 2.
2 2
Furthermore Y77 5.1 f (0—2) ;’5 — f s f(z)dz, therefore for suffi-

2
ciently large n we get Zzzmn(é) uf (Z—’g) —% < 2n and in consequence

3 ox\ T _ 21
n JE—
M= > F(E)E<2
k=mn(0)+1
Thus, for sufficiently large n, we get
n
3 (ANPE (X — EX)?TA} |Xi — EX)| > €]
i=1
iz Z (Xi — EX;)’1[|X; — EX;| > o /2]
n i=1

and (2.6) follows. O

Another approach to non-identically distributed r.v.’s is to normalize
them by their expectationsi.e. by considering X; = X;/EX},. Then Var (X}) =
'y,%, where v, = 71, /EX}, is the coefficient of variation of X}. Furthermore we
put S, =Y r_, X} and I'2 = Var (S/,) = >_j_; v2. Under this notation we
have the following corollary to our main Theorem 2.1.

Corollary 2.6. Let (X,),cy be a sequence of independent, positive and
square-integrable r.v.’s satisfying the following conditions.

o 2
7
> k—’; < o0, (2.16)
k=1
1l X; 2T X
'rzll—EgoF%;E (EXZ- - 1) I HEXz - 1' > €Fn:| =0, for alle >0, (2.17)
Iy, — o0, asn — oo. (2.18)
Then
g /Tn
<H Z) s exp (N(0,2)), as n — oo. (2.19)
i
i=1

Proof. We apply Theorem 2.1 to the r.v.s X; = X;/EX}; with a, = n.
From (2.16) we get (2.2), furthermore by Kronecker’s lemma

1<, [(Th)?
k=1
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In our case (2.3) takes the form

n

1 r?
T > - 0. (2.21)
=1

By applying the summation by parts formula (or by changing the order of
summation) we get

1 < I'?  const 2L 2

il Ti Ji

r, ; 2 " T, Zl i

In view of (2.18) we can apply the Stolz theorem

1 42 2
2?21 772 _E?:l VTZ — 7721—1—1 'Fn-i-l +Iy _ 11n-i-1 +Iy =0

Tpit— Dy n+1 T2, -T2 n+1

by (2.20), thus (2.21) follows. From the Lindeberg’s condition (2.17) follows

the Feller condition for the sequence (X)), o i-e.

2
max Ji — 0.

1<i<n T2

Therefore we can handle with (2.4) as with an integral sum

n n 1 2 ) n n 1 1 27742
>, an,k o= Zg'g rz

=1 \k=i i=1 \k=i

1 1q 2
— / (/ dy) dxr = 2.
0 z Y

The condition (2.5) is obvious, while (2.6) follows from the Lindeberg’s con-
dition (2.17) similarly as in the proof of Corollary 2.5. O

3. Rate of convergence

In what follows we shall write b,, ~ a,, if there exist some constants 0 < ¢; <
co < oo such that
c1an < by < c2ap.

Let us quote Theorem 3.1 of [7] which estimates upper bound of the speed
of convergence in Theorem 2.1 in case when «; ,, is dependent on n only, and
the limiting distribution is N1 This result is an extension of the paper

[5]
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Theorem 3.1. Let (X,), oy be a sequence of independent random variables,
such that EX,, = i, E(X, — un)? =72, n > 1. Let (an)neNU{O} be a non-
decreasing and divergent to infinity sequence of positive reals (with ag =0 )
such that CLZ—:l =O0(1), asn — oo. For any k > 1, 0 > 0 let us denote

or(8) = P[Xy — . < (6 — 1) (ag, — ap_1)].

Moreover let (Vn),cn be a positive sequence and A} =3 7", o+ Af for some
2<r<3,EX,"<oo,n>1, and

r * E|X;[" 407, — o
O X R = 0(1), as n — oo,
Ly + ot 4 aj
j=n
as well as
E‘Y’ﬂ'ﬁ‘l’?ﬂ + 0-17;+1 — 0-17; . 1 _ 0(1)
Ly + o7, (ant1/an)" —1 ’
and L”+U” 10, as n — oo, where

n
= SRR =Y
7=1

Then, for any sequence of positive reals §,, and m € N, 1 < m < n, we have

n Tn
S, — ES,
(H kk+“k> <
a

k=1

A, :=sup|P

z€R

— Plexp(N (0,1)) < z]

1

L r 1 n 2\ 2
<C ”mw( 3 "k) (3.1)

ar a
m k=m+1 k

+tnm(0n) + £m(dn) +

| max{o,, 0 '} — 1 n Z?:1(A?)TE|YJ|T }
2me (Choi(Ap2m) |

where o, = ’Yn\/Vf%I“(ZZ:l AZ(Y;C)), X=X, — ptin,n =1, and

N |=

1
2
n

_ 0t (s
Ynan(9n) = 5 (Z %) ,

k=1

[\

m

Km(6n) =1 — H(l — (6 Z‘Pk

k=1 k=1
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Moreover if X, — pbn, > apn—1 — an almost surely for n > 1, and 6, be any
sequence of positive reals and t be the largest natural number such that a; <
On, then

Sl

mAt 0_2 m 02 %
wn,m(én) = (Z 715 + Z Tkﬂ[t < m])

=1 % = O
/‘@m(é‘n) = P[Xl < Op + H1 — al]-

We shall apply this theorem to estimate the speed of convergence in some
examples of sequences of non-identically distributed independent random
variables. In Section 4 we shall show that the above conditions may easily
be verified in some special situations.

Remark 3.2. This theorem is an estimation of the rate of weak convergence
to the limiting distribution ¢V(®1), In the case of convergence to the distri-
N(O,U2)

bution e , the speed of convergence will be the same. It is easy to see
__ On

that as we take v, = 12, then we get

- .
S, — ES
sup | P (HW) <

zeR | \k=1

n Tn
sup | P (H m) <azo| - Plexp(N (0,1)) < x%] )

a
z€R k=1 k

— Plexp(N (0,02)) <z]| =

4. Examples

In the examples given below C' > 0 denotes a constant which may be different
in the consecutive inequalities.

At the beginning we shall modify the Example 4.2 of [6]. We shall
use shifted Poisson distribution in order to have (2.1) satisfied with sharp
inequality (in [6] weak inequality was used what makes a technical problem
in the definition of the product and its logarithm when C; + 1 = 0). Such
example was also considered in [13].

Example 4.1. Let ({),cy be a sequence of independent r.v.’s with Poisson
distribution & ~ Po(k). We define X = & + 1, then X > 1 almost surely,
furthermore

EX, = k41,

7 = Var(Xy) =k,

ES, = 2+...+(n+1)=n(n+3)/2,
= Var(S,)=1+...+n=n(n+1)/2,
E(Xy —EXp)! = E(&%—E&)' = 3k2 + k.

+
o +.

3N
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; ; - . R |
We shall illustrate how Corollary 2.4 works with a; = ES; and o, = Ton

Clearly (2.1) holds by Remark 2.3 and (2.2) is satisfied with p = 2. Moreover

2(i+1)

— Qi
Z a? o = \/lognz (i+3)?

=1

and we have (2.3). Now let us observe that

— 0, asn — o0

i3 nts T S @I k)
S ! +?/nd@«<1 1 1
= i(i 4 3) P 27 n
therefore
" 2
n\2 2 .
;(Az) Ti = lognz(zkk+3> i— 4, as n — oo.

It remains to check the Lyapunov condition (2.9) with 6 = 2

n

;(A?)4E(Xi—EX,-)4 10267@2; ! (3i% +14) — 0, as n — oo.

Thus we have proved that

m(2s))

Now, using Theorem 3.1, we shall estimate the rate of convergence in (4.1).
For r = 3 we have

5 exp (N(0,4)), as n — oo. (4.1)

According to Remark 3.2 we take v, = 4t = 2\/11)@~

P 3 5
E|[X.|? ~ k2, and in consequence L, ~ n2. Let us check the assumptions:

any1 _ (n+1)(n+4) o),

an  n(n+3)
a, i EIX|" + 0541 — 0f
Ly + ol 4 a’
Jj=n J
Bn+3° AV VGADGF2) -G+

R
Vit + /1) = (0 +3))?
00 =3 .9 00
3 Vit 3 L
n Z 6 ~n ZF_
j=n j=n
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E|Xp1|"+ 0l ) —ob _ 1
L, + o}, (ans1/an)" —1
Nn%+\/(n+1)(n+2)3—\/n(n+1)3. 1 _0(1)
ns + n(n + 1)3 1+ 327:'—3%1)3 -1 ’

n(n+1)) /2
L, + o), ”5/2+< 2 ) L0

r ~ n3(n+3)3
al x
Thus the assumptions of Theorem 3.1 are satisfied. Now we shall estimate

all summands in (3.1):

[un
Jun

Sol=

z”: AR < o ! " 2%k(k+1) )2
L5 a? = T Ylogn L5 k2(k +3)2
1

1
D (60) = —— L }m:"z el s <1
n.m\9n) = : ) X 3 T On )
’ Viogn o, A1 a2 V1og noy,

Fm(0n) < Y @r(6n) = P[Xp—k = 1< (6p — 1)(k+1)]



Asymptotics of the products of sums 59

1

n L 1 n — 9 2
n =Ty | Vi g ArXy | = AM2EX
o (k;1 ’ k) 2vlogn (k o ’

Il

[\V]

ol =
o

3

[~]=
_

Wl N ﬁ'
T 3
>
7 N

S|

|

-~

+ |~

w
N——
N~

N
[ I

k=
o En:’“ b, 1 1 1 \%\?
-~ 3y/logn E k+1 k+2 n4+1 n+2 n+3

k=1
< 1+ ¢
h Viogn’
if C' > 0. Otherwise we use the inequality L — <1+ \/7 for sufficiently

x/logn
large n. In consequence

max{g,.0,'} _ C

V2me Viogn

Id 3
g A Bl X g _|_ 1 1 1

DT (S ++****>)
C
< (Viogap

Finally we have

nS, —ESy+a) "
A, =sup |P (Hkkk> < x| — Plexp(WV(0,1)) < z]

a
z€R k=1 k

8 1 1 1 1
<C|l—
<m3 * V1ogny/m * V1og no, * Vlogn T (log n)§>

<C 4§,_+ AAA;LAA,
h m3  Ylognd, )’

and 0, <m—Jrl Taking 5n—m+2,we have
8 m + 2
AL C|—=+——,
" <m3 + \4/logn>
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minimizing this bound with m = /logn and §,, = ﬁ@, we get

C
nS T 3716
(log n)3/16

To complete the applications of Corollary 2.4 we present an example
where different normalization than a; = ES; is used.

Example 4.2. Consider a sequence (Xy), oy of i.i.d. standard exponential
r.v.’s i.e. Xi ~ Exp(1). In this case

EX,=1, 2 =1, E(X; —EX;)* =9, ES, =n, 02 =n.

We take a; = ivi and o, = \/lgﬂ‘ Let us observe that EX,, + a,,—1 —a, =

1+ (n—1)%2 —n%2 <0, thus (2.1) is satisfied. Furthermore (2.2) holds
with p = 2, also (2.3) is easily verified. Similarly as in the previous example
we check that (2.4) takes the form

oS 1)
lognz<zm> — 4.

i=1 \k=i

To verify the Lyapunov’s condition (2.9) observe that

n 4
1 1 const
A? 4= E — | < —— ——.
(A7) <kz Vlog nkw/%) log?n 2

Thus from Corollary 2.4 we get

<lj <zSz - \}% i 1)

It may be compared with the classical result of Arnold, Villasenor, Rem-
pata and Wesotowski (1.2)

(ﬂ <S)> o L5 exp (N(0,2)), as n — oco.

]
=1

1//ogm
) 5 exp (N(0,4)), asn — co.  (4.2)

For another comparison let us also recall Example 3 of [13] which can be also
derived from our Corollary 2.5 with the function f(z) = 2P where p > —3/2.
We have the following extension of the above convergence

n (i/n)erl 1/vn
H Si LN exp(N (0 2 as n — oo.
L\ "pt+2)(2p+3)))]
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Now We shall estimate the rate of convergence in (4.2). We take ), =
/2 = 2\/17 For r = 3 we have E[X;|> = 12 — 2 and obviously L, ~ n.
At first let us check the assumptions of T heorem 3.1:

Ap+41 — O(l),

Gn

G, i E|X;|" + 0, — 0
L, + a’;

j—n i

Q
33

l\')\w

nt A C A (j

3
n2

j:n ‘:TL

3
It is easy to see that (a”“) -1~ %, therefore

an

3
2

L,+o" (an+1/an)" — 1 Cn + n2

-n=0(1),

Nl

Ly+o0, n+n

r 9
ap, n2

10.

So the assumptions of Theorem 3.1 are verified. Now we shall estimate all
summands in (3.1):

Ly,+o, C
37
ar, m

1 1
(£3) s (£8) ccmton
o W a? |  logn 114:2 Vlog ny/m
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if 6, < gg:?, asl—e* <.

n

1
on = Ay | Var [ 3 A%y ) = n (AP)’EX, 2
" — k 2v/logn p
1

n n 2\ 2 n
1 1
a 2¢/logn ; (zk ZS) ~ 2¢/logn (kzl

1
1 1 2 C
~ —logn+C| ~1+ )
2v/logn <4 & > Jlogn
. . . . 1 20 .
if C' > 0. Otherwise we use the inequality o <1+ Togn? for sufficiently

large n. In consequence

max{on, 05"} _ C
V2me = Vlogn

i AR Oy S )
(Cp_y (Ap)2r2) (Cha (AP (Thn (T 292
Z?ﬂﬁ N 1

(Cpoy $)z lognylogn:

Finally we have

!

e A
A, = sup|P (H kakk> < x| — Plexp(NV (0,1)) < «]
zeR k1 k

1 1 1 1 1
< C|— on
<m3 * Viogny/m * V1og no, Tont Viogn * (logn)§>
1 1
< C|—=4+—=—+6 ]
<m3 * v/log néy, * >

Taking m = Y/logn we have

1
A, LC|——+4,
<\4/10g nop, + >

minimizing this bound with 6, = w——, finally we get

logn’
1

Ap < Cri—rpg.
(logn)'/8



Asymptotics of the products of sums 63

In the next example we consider random variables which take also nega-
tive values and such that the obtained convergence result cannot be deduced
neither form [6] nor [13].

Example 4.3. Let (Xj),cy be a sequence of independent r.v.’s such that

Pn=s3)-!

for each n € N. In this case

k? k* 1)(2n+1
EXy =0, 7 = 7 BXp = 7, ES, = 0 and 02 = " T 2)51’” )

We shall apply our Theorem 2.1 with «; , = n%/ﬁ and a; = 2. Since EX,, +
ap—1—an = —2n+1, then (2.1) is satisfied, (2.2) holds with p = 2 and (2.3)
takes the form

n

52— (t+1)(2i+1) 2031 1
= < = —> 0.
Z a2 7 nf Z 2442 n\f Z 2442

=1 "t

To calculate the limiting variance o2 in (2.4) observe that

2 2
" T e 1) 2 11 1 i\?1
2 At = n32<zk> 4:4Z<Zk‘n> OF

=1 i=1 \k=t i=1 \k=i n

1t N 1! 1
— / / “dy | 2%dz = / 2?In?xde = —.
4 0 z Y 4 0 54

The assumption (2.5) is easily verified and it remains to prove (2.6) by
checking the Lyapunov condition with § = 2. We have

n

> (ANEX]

=1

4 4
_12”:"1 IR By (N | ¢41_>0
 nb < k] 16  16n < «k p n) n

i=1 \k=i i=1 \k n

=1

4
since >7 <ZZ:1’ + i) (4)'L 5 [ 2 Intede = 524 . Finally by The-

orem 2.1 we get

n S, i 1/ny/n 1
<H(7;—|—1>> i>exp<./\/'<0,54>>,aLS'n—>oo.
1
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To present the applicability of our results let us finally consider an ex-
ample with non-identically uniformly distributed r.v.s.

Example 4.4. Let (X}),cy be a sequence of independent r.v.’s with uniform
distribution on the interval (0, k) i.e. X ~ U (0, k). Hence

koo, K Lk
EXk- = 5, Tk = E, E(Xk —EXk) = %,
ES, — n(n4—i— 1) and 0721 _ n(n + 17)§2n+ 1).

At first we take a; = ES; and oy, = ﬁ The conditions (2.1)-(2.3) and
(2.5) are easily verified. We check (2.4)

2

n . n 4 n 1 22
Swrd =3 (E )

i=1 i=1

4 /1 1 \?, 42”: L% i2
= — _—— T = — —_

3n=\i n+l 3n & n+1 (n+4+1)2

4 ni2n+1) 4

=— = 5 .
3n 6(n+1) 9

Lyapunov’s condition reads as follows

4
2 DB G -EX)T = Z<n k(k+1)> 0

i=1 prt p
16 ¢~ (1 1 \', 16
B n?;<z_n+1> it<g, 0
Thus we get
moas VY A
(]_;[1 G+ 1)> — exp <J\/ <0, 9)) , as n — oo. (4.3)
Another choice of normalizing constants is a; = ES; and «;, = 7;2215?

This case was described in Corollary 2.5 with f(z) = 1/z. The limizting
distribution is then exp (N (0,2)). This normalization may be simplified
according to our Theorem 2.1, we take a; = i2 and iy = nli\/ﬁ as in the

Example 4.3. We have EX,, + a,_1 — ay = —%n + 1 < 0, thus (2.1) holds.
We check (2.4)

n

2
1 & | i2 1 1 1
2: n\2 _2 § § 21,2 —

=1 i=1 \k=i
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The other conditions are verified similarly and we get

N
(S —i(i41)/4 A 1
H S S e Yy | —exp (N [0,— ) |, asn — oo.
, i2 162
i=1
Now we shall estimate the rate of convergence in (4.3). We take v/, = 3% =
%. For r = 3 we have E|X|® = g—; and in consequence L, ~ n%. At first

we check the assumptions of Theorem 3.1:

a1 (n+1)(n+2)

= =0(1),
an n(n+1) (1)
L, + o}, = aj
n3<n+1>3i33+<j+1>3—33 Nnﬁzfﬂ'%
. . 3 9 46
nt+n2 T GG +1) nz = J
oo
1
j=nJ?
E|Xps1|"+o0hy —oh 1 n3—|—(n+1)% —n3
Ly, + 0! (ant1/an)” —1 nt 4 ns
7
1 n3 +n2 1
2)3 ~ s 111 =00
(I+2P-1 npignz 5+5+55
L, + oy, nt+ni n? C
L 10.

ar m3(n+1)3 T " nb T onyn
The assumptions of Theorem 3.1 are satisfied. Now we shall estimate all
summands in (3.1):

n 9\ n 3
o 1 k(k+1)(2k +1)
K < i
(5.8) < owml( X a
1 - 1 ? <C\/logn
. k

ISP
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if C > 0.

logm

WMS i MS
J’

I

vl 5,

\.3

on = JV&r S ApX,) = 235 (Z(A;g)%ﬁ:xi) 2

k=1

2 3
3 (<~ 4 k2
h 2\/7€(k1 (iz];z'(wrl)) 12)
c

3
N

< 1+

1

n 2792\ 2

(4 <11:_ 1 1>) ]f2>
Pt n+

%7

<1+ \2/—%, for sufficiently

large n and in consequence

~
2me n

max{o,. 02"}l _ C

SjaADEIK S5 4G — )
<zzzl<An>272>z (S G - 2rn)

n '3
22]':1(1 - 1 + (n+1) - (n+1)3) C
. g ond S U
(Ek:l( )35)2

n+1 + (n+1)2/3

Finally we have

n Tn
A, =sup |P (H Sk_ESk_Fak) < z| — Plexp(NV (0,1)) < «]

a
z€R k=1 k

< 1 +\/logn+\/logm+m5n 1)

mym | Yn e | 2 m
1 Viegn +logm  md,
(mﬁ* v e, T2 )

C

C
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Minimizing this bound with m = %¥/n and §, =

2

m

, we get

[

Viogn
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Characterization of certain
distributions by transformed kth
record values

Iwona Malinowska!

Abstract

In this paper, we give the characterization of the general class of
continuous distributions based on independent transforms kth lower
and upper record values. Specific distributions considered as partic-
ular cases of the general class of distributions are inverse exponen-
tial, inverse Weibull, inverse Pareto, negative exponential, negative
Weibull, negative Pareto, negative power, Gumbel, Exponentiated-
Weibull, Burr X, lognormal, Chen distribution.

1. Introduction

Let {X,,, n > 1} be a sequence of independent identically distributed (i.i.d.)
random variables with cumulative distribution function (cdf) F'(z) and prob-
ability density function (pdf) f(z). The jth order statistic of a sample
(X1, ..., Xp) is denoted by Xj.,. For a fixed k > 1 we define the sequence
Li(n), n > 1, of kth lower record times of {X,, n > 1} as follows:

Ly (1) =1, L (n+1) =min {j > Lp(n) : Xp.p, () 4h-1 > Xpejrh—1} 5
n > 1. The sequence {Z,(Lk),n > 1} with ch) = Xi:Ly(n)+h—1, M > 1, is
called the sequence of kth lower record values of {X,, n > 1}. Note that

! Department of Mathematics, Lublin University of Technology, Nadbystrzycka 38a, 20-
618 Lublin, Poland, e-mail: i.malinowska@pollub.pl
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verse Weibull distribution, inverse Pareto distribution, negative exponential distribution,
negative Weibull distribution, negative Pareto distribution, negative power distribution,
Gumbel distribution, Exponentiated-Weibull distribution, lognormal distribution, Burr X
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Z}k) = max{X1,..., X;} and Z7(11) = Xr(n), n = 1, are lower record values.
It is known that

n—1
_ 2
fzg’“),...,zfl’“)(zl’z% wzn) = k" (F(zn))k ! f(zn) 11 {7((zi))’ 21> > 2,
(1.1)
(cf. [14]). Hence the pdf of Z,(Lk) and (Z,(Ylf), Z,(Lk)), m < n, are as follows:
k" n—1 k—1
[y (@) = i 1)!(1{(96)) (F(2)* f(z), n=>1, (1.2)

L n—m—1
m—1l(n—m—1)! (H(y) B H(x))
S(H()™ (@) (Fy)* f(y), e >y, n>2, (1.3)

respectively, where H(-) = —In(F(+)) and h(-) = —H'(-).

Now we recall the definition of k th upper record values. With the above
notation, for a fixed k > 1 we define the sequence Ug(n), n > 1, of kth upper
record times of {X,,, n > 1} as follows:

fpm g (@, y) = (

Ur(1) =1, Ug(n+1)=min{j > Up(n) : Xjjtr—1 > X0, (n):0p(n)+h—1 »

n > 1. The sequence {Yn(k),n > 1} with Yék) = XUy (n):Up(n)+h=1, N =
1, is called the sequence of kth upper record values of {X,, n > 1} (cf.
Dziubdziela and Kopociniski [8]). Note that Yl(k) = min{ Xy, ..., X}, and
Vi = Xy, 2 1, with U(n) = min {j > U(n — 1) : X; > Xpy(,_1)} are

upper record values . It is known that joint pdf of Yl(k), . ,Y,fk) are given
by
fyw, _yw (@ )
n—1 T
E™ 11 M(l — F(z ) f(xn), 21<...<Tn,

= =1 1— F(xz)
0, else.
Hence the pdf of erk) and (Yn(lk), Y,Sk)), m < n, are as follows:
kn
(n—1)!

fyw (@) = (H(@)" 'L = F@)" ' f(x), n>1,

m— 1)!(51 m—1)! () —H(@)""

(H(2))™ h(z)(1 = Fy)" fy), @ >y, n>2,

fyw v (2,9) =1
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respectively, where H(-) = —In(1 — F(-)) and h(-) = H'(-).

Record values and associated statistics are of great importance in sev-
eral real-life problems involving weather, economic and sport date. The
formal study of record values started with Chandler [5] and has now spread
in various directions. The properties of record values have been extensively
studied in the literature. In particular, the problem of characterizing a distri-
bution in terms of record values is an important problem which has recently
attracted the attention of many researchers. Various characterization of dis-
tribution based on record values have been discussed by many authors e.g.
Ahsanullah [2] and Arnold et al. [3], Balakrishnan [4] and Nevzorov [13],
Dembiriska and Wesotowski [7|, Pawlas and Szynal [14], Malinowska and
Szynal [11].

The aim of this article is to provide a characterization of general class
of distribution by using the suitable transformations of kth records in a se-
quence of independent, identically distributed random variables.This paper
generalized results obtained by Juhés and Skrivankova [9].

2.  Main results

Theorem 2.1. Let {X,,}°2, be a sequence of i.i.d. random variables with
absolutely continuous distribution function F(x) on (a,b). Moreover, let g :
(a,b) — (0,00) be a differentiable function with ¢'(x) < 0 for all x € (a,b)
and xl_lgl+ g(x) = oo, xli)r?_ g(x) = 0. Then the distribution of X1, X, ... is of

the form
F(z)=e 9% ¢>0, 2 € (a,b)

if and only if random variables
9(2) and 9(2,1)y) = 9(ZP), n > 1

are pairwise independent.

Remark
From assumptions of Theorem 2.1 we have the following facts: function g is
injection and lim g~'(z) = a, lim g~ '(x) =b.
T—00 z—0t

Proof. Suppose that F(z) = e 9% z € (a,b), ¢ > 0.
Then f(z) = —cg'(z)e~9%) H(z) = cg(x) and h(z) = —cg'(z). It is clear
from (1.3) that

kn+1

To,20,(09) = Ty

! ) [cg(a:)]"_l ' (2)d (y) - e ko) z,y € (a,b).
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Consider the transformation

t‘<§§1>_%<m2$ff%zzﬁa):<g>; (2.1)

()= ()

This transformation has the determinate of the form

Dr = (g7 1) (u)(g™") (u+v). (2.2)
Then the pdf of (U, V) is as follows:

firartu,0) = s [ )] g™ @) [Flo™ (a-+0)]

(g™ (u+v))l(g™) (W)(g™") (u+ )|

(k ) C)n+l n—1_—ck(u+v)
I'(n)

-1

, u>0,v>0,c>0.

In view of (1.2) we have

n

Fyo () =~ (egl@)" e MW eg/(2), @ € (a,b); ¢ >0

so the pdf of U = g(Z,(lk)) is given by formula

fu(u) = mu"_le_dw, u>0,c>0. (2.3)

Integrating the joint pdf fy v (u,v) according to u we obtain pdf of V
fv(w) = kee v, v > 0. (2.4)

In the view of (2.3) and (2.4), we can notice that fyy(u,v) = fu(u)- fy(v).
So U and V are independent random variables. The necessary condition is
proved.

In order to prove sufficient condition we assume, that random variable U
and V are independent. Consider the transformation (2.1) with determinant
(2.2). Then the joint pdf of U and V' can be written in general form

fnt1 1 1 . 1
() = s ™ )] Al @) [Flo™" (u+ 0))]

g™ A+ 0) (g7 (W) (g™ (w ).
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We know that U = g(Z,, Z¢ )) thus for its density function holds

k

[H(g™ ()] Alg™ () [Fla™* (w)]" [(g7") (w)], u > 0.

Because U and V' are independent then the density of V is

[F(g~ (u+ )]

[P (g~ (u))]*

In order to obtain the Fy/(v*) we integrate equation (2.5)

c o — v [Fg 1(u+v))] Syt
| fowao=k [ s fa )

[t
—k

P @) /0 [Flo (o))" f (g™ (utv))

fv(v) =k Flg™ u+o))l(g™) (u+o)l. (2.5)

v)|dv

*

(97" (u+v)dv

substituting \ —k g~ (utv*) -
<t =g Hu+ v)) - / [F()]" f(t)dt

Consider the limit case where u — 0% so ¢g7!(u) — b and F(g~(u)) — 1.

Then
k

Fy(v*) =1—[F(g~'(v"))]
and it holds

[Flg™ WD) - [Flg™ ()]
Denote Fy(z) = F(g~'(z)),z > 0, then

[P - [Py ()" = [Fu(u+07)]" (2.6)

g = [F(g_l(u—i—v*))]k, v* >0, u>0.

The equation (2.6) is equivalent to
Fi(v*) - Fi(u) = Fi(u+v"). (2.7)

Nontrivial solution of the equation (2.7) is Fi(x) = e (Cauchy functional
equation) (cf. [1]) where ¢ is an arbitrary constant and F(z) = e®(®), Since
F is distribution function, we have F(z) = e~ where ¢ > 0. Thus the
proof is finished. [J
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Remark
Interval (a,b) which is mentioned in Theorem 2.1 can have also one of the
following forms: (a,0), (—o0,b) or (—oo, 00).

Examples
Many of distributions can be characterized by the suitable choice of function
g and interval (a,b). Some of them are presented below.

(1)

(iii)

Let NExp(A, v) denote the negative exponential distribution with
F(z)=exp(AMz —v)), z<vr;A>0,vcR. (2.8)

If we take g(z) = —1 (AN(z —v)), ¢ >0, z € (—o0,v), A > 0,v € R,
then the independence of variables

— (MaP -0, -2 (28 - 2)

characterizes NExp(\, v) distribution.
Let IExp(0) denote the inverse exponential distribution with
F(z) =exp(—=6/z), x>0;60 >0, (cf. Klugman et al. [10]). (2.9)

If we take g(z) = 12 ¢ >0, z € (0,00), 6 > 0, then the independence
of variables

P (@) - (@))
characterizes TE(#) distribution.

Let NPar(0,v,d) denote the negative Pareto distribution with

5— o\
F($)=<6Z> , z<v;0>0,v,0 e R, v <. (2.10)

0
If we take g(x) = —%111(2:—;) ,c>0,x € (—oo,v), 0 >0,v,d €

R, v < 0§, then the independence of variables

0 §—v o (6-2%),
¢ \s- 24 c \6-28

characterizes NPar(6, v, §) distribution.
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(iv)

(vi)

Let NPow(0, o, 3) denote the inverse power distribution with

0
F(:v)z(é_z), a<z<p;0>0,a,feR, a<p (211)

B—a
R, a < 3, then the independence of

o (2 _q o (7% —a
S P (e o Y S
c B -« c A

characterizes NPow (0, a, ) distribution.

0
If we take g(z) = {m(%a) Le>0,z€ (0,8):0>0,a,8 €

Let Gum(f, ) denote the Gumbel distribution with
F(x) =exp [—e_ﬂ(x_”} , eR; B3>0, v€R. (2.12)

If we take g(z) = %exp[—ﬁ (x—7)],¢c>0,z € (—00,0); B>0,v¢€
R, then the independence of variables

% exp (*B(Zq(f) — v))

and

g [exp (—B(Zgi)l - v)) —exp (—B(fo) - 7))}

C

characterizes Gum(f, ) distribution.

Let Fre(0, 0, ) denote the Fréchet distribution with

]
F(x):exp< (5 M> ),x>u;0>0,u,5€R,u<5. (2.13)

T —p

(4
If we take g(z) = 1(5_“) ,e>0,2 € (u,00);0 >0, u,0 € R, pu <

c\z—p
d, then the independence of variables

0 0 0
1 0—p 1 0—p _ 0—
c\z —u) e Z,(fgl — i Z$¥ —

characterizes Fre(6, ¢, u) distribution.
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(vii) Let NWeib (6, i, v) denote the negative Weibull distribution with

0
FQﬂ—@W(—(Z_i>>, x<p;0>0 pyeR, p>n.

(2.14)
0
If we take g(x) = %(%) ,c> 0,z € (—oo,u); 0 >0, u,v € R,
mu > 7y, then the independence of variables
0 0 0
1 w2 1 n— 2, B w— 2z
c\ n—7v ) ¢ ="y =y
characterizes NWeib(6, u, ) distribution.
(viii) Let IWeib(@, 7) denote the Inverse Weibull distribution with
H T
F(:L'):exp<—(> >, x>0;0>0,17>0, (2.15)
x

(cf. Klugman et al. [10]). If we take g(z) = 1 (Q)T, c >0z €

c \x

(0,00); @ > 0, 7 > 0, then the independence of variables

(m) - Flem) )]
characterizes IWeib(6, ) distribution.
(ix) Let ExpWeib(6, o) denote the Exponentiated-Weibull distribution with
F(z)=(1—exp(—z®)’, 2>0;0>0,a>0, (2.16)

(cf. Manal and Fathy [12]). If we take g(z) = —1n (1 — exp(—a®))?,
¢>0,z€(0,00); >0, a>0, then the independence of variables

e (- (29)
Lo (). <(<<>>>>

characterizes ExpWeib(6, «) distribution.

(x) Let BuX(6) denote the Burr X distribution with

F(z) = (1 —exp (—xQ))e, reR;0>0. (2.17)
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If we take g(x) = —gln (1- exp(—xz))e, ¢>0,z € (—00,00); 8 >0,
then the independence of variables
2
1—exp (— (Z(k) >
2 —_ n+1
0 <ln (1 — exp (—(Z(k)) >> ) -0 In
c

¢ ' 1—exp (— (Z,(Lk)>2>

N—

characterizes BuX(6) distribution.

(xi) Let LogNor(u, v) denote the lognormal distribution with
lnz —
F(w)zﬂD(MU “), r€(0,00); pER, 0>0.  (218)

If we take g(z) = —%lnq)(l”;“),c> 0,z € (0,00); peR,0>0

g
then the independence of variables

an(k)flLL
(k) _ q’(’; >
—11nq><an” “), T
C

(k)
o C InZ —u
(b n+1

characterizes LogNor(u, ¢) distribution.

(xii) Let Chen(A, 8) denote the Chen distribution with

F(z)=1—exp ()\(1 - ewﬂ)) , 2>0;A>0,5>0, (cf. Chen[6]).
(2.19)
If we take g(z) = —1ln (1 — exp ()\(1 — e“ﬁ))> , ¢ >0,z € (0,00);
A >0, 8 >0, then the independence of

1 — exp (A1 — 27
_% In (1 TP (A(l a e(z;k))ﬂ))) ’ éln 1 —exp <</\(1 - e(zﬁ’ﬁl)ﬁ%

characterizes Chen(\, 3) distribution.
In case 8 = 1 we give characterization for Gompertz distribution.

Theorem 2.2. Let {X,,}°2 be a sequence of i.i.d. random variable with
absolutely continuous distribution function F(x) on (a,b). Moreover, let
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g: (a,b) — (0,00) be a differentiable function with ¢'(x) < 0 for all x € (a,b)
and lim+ g(z) = oo, hril g(x) = 0. Then the distribution of X1, Xo, ... is of
Tr—ra r—0—
the form
Fz) =e 9% ¢>0, 2 € (a,b)

if and only if random variables
k k k k
9(2"), 9(2) = g(2), e g(Z21) — g(ZE ), > 2

are independent.

Proof. Suppose that F(z) = e=%9*) z € (a,b), ¢ > 0, then the joint
pdf of Z{k), o ZP given by (1.1) takes the form

o) = k(=) e k@ TT o (2 > 2
fz§k)7m’Z7(Lk)(Zl,22, Zn) (—c)"e il_Ilg (21), 2z1>..>z2
Now we consider the transformation
k k
Z%k; (lfg)(Z£ )) (k) U
" Zs N 9(22 ) - Q(Zl ) _ Uz
.k k . k ,
Z\P 9(Z) = g(2)) Un (2.20)
U1 g '(U)
U, g_l(Ul + Us)
T ) — }
U, g_l(U1+...+Un)

This transformation has the determinate of the form
Dr = (g (u1)(g™") (w1 +u2)e (g7 (w1 + oo + ).
Since the joint pdf of Uy, .....U, is given by
foi U, Un (U1, U2, .y up) = k:”(c)”e_Ck("ﬁ'““Q), uy >0, ...up, >0,¢c>0.
and the marginal probability density functions are as follow
fo(uy) = kee™* | fu (up) = kee™ %2 fu (un) = kee™Fun,

Thus Uy, ..., U, are independent random variables. The necessary condition
is proved.
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Assume now that variable Uy, ...U, are independent. Consider the transfor-
mation given by (2.20). Then we get

CR[F(g (w4 ug £ )]

[F(g= (u1 +ug + ... + tUp— 1))] (2.21)
Flg M ur +ug + o+ un)) (97" (ur 2 + o+ up).

fUn (un) =

By integration of (2.21) we obtain that

R Un* E[F (g (uy +ug + .. +un)))FE ) )
Fy, (up+) = /0 [F(g (w1 + 12+ + 1)) flo™ (ua + ... +up))

(7Y (u1 + ug + ...+ up)duy
[F(g  (uy +ug + oo + un_1))]F = [F(g7 (ur + ug + oo 4+ U1 + up»))]”
[F(g~ (u1 + ug + .. + up—1))]* )
Limit cases u; — 0%, ug — 0%, ...up,_1 — 07, lead to the same func-

tional equation as in proof of the Theorem 2.1. So cumulative distribution
function has the form F(z) = e=9®) ¢ > 0. O

Similar characterizations can be given in terms of the kth upper record
values.

Theorem 2.3. Let {X,,}°2 be a sequence of i.i.d. random variable with

absolutely continuous distribution function F(x) on (a,b). Moreover, let

g: (a,b) = (0,00) be a differentiable function with g’'(x) > 0 for all x € (a,b)

and hm g(x) =0, hril g(x) = 0o. Then the distribution of X1, Xo, ... is of
z—b—

z—at

the form
Flz)=1—e"9®) >0, z € (a,b)

if and only if random variables

gV, and oY) = g(v, M), n > 1

are pairwise independent.

The use of Theorem 2.3 is illustrated by the following examples.
Examples

(i) Let g(z) = —1In[1 - e)‘("”_”)] ,c>0,z € (—o0,v), A >0,ve€R.The
independence of variables

1—exp )\(Yn(k) —v)
_% In [1 — exp (A(Yn(k) - ”)ﬂ ’ éln 1 — exp <(A(Y,§i)1 - ”)%
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(iii)

(iv)

characterizes NExp(, v) distribution given by (2.8).

1 —(2) .
Let g(x) = —<In|1—e"\=/|, c>0, x € (0,00), 6§ > 0. The indepen-
dence of variables

1—exp (— ?k)>
—lln [1 — exp (—9>] , 1ln Yn
c

k)
Y ¢ 9
1 —exp < Y,E ?1 )

(
n
then characterizes IExp(6) distribution given by (2.9).

B—a
R, o < . The independence of variables

(k) 0 —a)f — (v~ )
(45
(8-a) - (v o)

0
Let g(z) = —%ln {1— (w) },c >0,z € (a,),0 > 0, 0,08 €

characterizes NPow(6, «, 3) distribution given by (2.11).

0
Letg(x)z—iln[l—(?"é) ],c>0,x€(—oo,1/),R,y<5,0>O.

The independence of variables

% 1— d—v 0
1 0—v 1 s_y®
—~In{1-——] |, =l n L
¢ 5_YTE ) ¢ 1— o—v >

(k)
=Y,

characterizes NPar(6, v, §) distribution given by (2.10).

Let g(z) = —%ln [1 - e_efﬁ(mﬂ)] ,c>0,z e R, >0,v€R. The
independence of variables

1—exp|(— —5(Y75k)—7)>
1 (k) 1 p ( ¢
——1In {1 — exp (—e_fB(Y"k MY))] , —In 3

& & 1 —exp (_e—ﬁ(ym-l_’Y))

characterizes Gum(f3, ) distribution given by (2.12).



Characterization of certain distributions 81

(vi)

(vii)

(viii)

[4
Let g(z) = —1In [1exp( (2:—‘;) )],c > 0,z € (p,00); 6 >

0, 4,6 € R, u < 8. The independence of variables

6
_ [1—exp <— g >>
_im[l—eXP(_((SMM)e)} %m [1—exp (‘ <;6i)1“2>0>

characterizes Fréchet distribution given by (2.13).

n=

A
Let g(z) = —1In [1—exp <— (ﬂ) > ,c >0,z € (—oo,pu); 0 >
0, 4,7 € R, u > 7. The independence of variables

r 0
(k)
o [1 —exp —<”fn >
1 M—Yrgk) 1 ( =
——In|l—-exp | — | ———— , —In
¢ B

c )\ ¢
H‘_Yn+l
[1 —exp (— (u—'y ) )

characterizes NWeib(0, p, ) distribution given by (2.14).

Let g(z) = —%ln [1 — exp (— (Q)T)} ,c>0,2€(0,00);0>0,7>0.

€T
The independence of variables

el

characterizes IWeib(6, ) distribution given by (2.15).

Let g(z) = —iIn [1—(1—exp(—:1:a))9}, c >0,z € (0,00); 6 >
0, a > 0. The independence of variables

i fi- (1-en (- (v9)))].

L 1- (1 —exp (_ <Y’§k))a))i_
- (1-ew (- (Yffi)l)a>) |

characterizes ExpWeib(6, a) distribution given by (2.16).

and
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(x) Let g(z) = —%ln [1 — (1 — exp (—wz))a} ,c> 0,z € (0,00); 0 > 0.
The independence of variables

el

| (oo Wt))?
(0]

characterizes BuX(6) distribution given by (2.17).

and

(e

(xi) Let g(z) = —1In [1 - (l”_”)] ,c>0,z€(0,00); pe R, o>0.
The independence of variables

lnY(k)f,u
(k) - ("U )
1—<I><IHY" “)] I

k
: e ()
g

characterises LogNor(u, 0) distribution given by (2.18).

——1In
c

(xii) Let g(z) = —2 [1—6#’} Le> 0,z € (0,00); A > 0,3 > 0. The
independence of variables

A (k)8 A k) B B
21— Y, - Y() _ Y(k)
[ e } c[exp< D7) = exp(v )

characterizes Chen(\, 3) distribution given by (2.19).

Theorem 2.4. Let {X,,}7°, be a sequence of i.i.d. random variable with
absolutely continuous distribution function F(x) on (a,b). Moreover, let
g : (a,b) — (0,00) be a differentiable function with ¢'(x) > 0 for all x € (a,b)
and xlﬂfﬁ g(x) =0, xliri{ g(x) = co. Then the distribution of X1, X, ... is of

the form
Flz)=1—e"9®) ¢>0, z € (a,b)

if and only if random variables
k k k k
gi™), g(v3) = g s gV ) = () m > 2

are independent.
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Remark

Above Theorems are generalizations of the results given in [9].

Acknowledgements. The author is grateful to referee for useful com-

ments which improved the presentation of the paper.
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The Schreier-Sims algorithm and
random permutations

Ernest Nieznaj'

Abstract

We show in a collection of examples how to generate a random
element of a subgroup of the group of permutations. We apply to
this the Schreier-Sims algorithm that is based on the Otto Schreier
theorem.

1. Introduction

Suppose that G is a subgroup of S, generated by a set of permutations W,
ie. G = (W) where W C S,,. The goal of this paper is to show how to
choose at random an element of G. In two cases this problem is quite easy to
solve and one uses only general facts about permutations, see Section 2. In
the first case if W consists of all transpositions then (W) = S,, and Lemma
2.4 holds. In the second case if W is the set of all 3-cycles then (W) = A,
see Lemma 2.7.

In general however we have to use the Otto Schreier theorem, see The-
orem 4.1 in Section 4. The main result of this article is Theorem 4.4. In
Section 5 we study in detail several examples. Section 3 is a short introduc-
tion to Section 4.

2. Preliminaries

We give a brief summary of the group of permutations. Let X be a finite
set. By Sym(X) we denote a group of all permutations of X. In particular,
when X = {1,2,...,n} we write S,. It is clear that |S,| = n! for n > 1. The
identity of S,, we denote by I,i.e. I(i) =i fori=1,...,n. The composition
of a, 8 € S,, we define by

(a0 p)(i) = (af)(i) = Bla(i), i=1,...,n.

!Department of Mathematics, Technical University of Lublin, Nadbystrzycka 38A, 20-
618 Lublin, Poland, e-mail: e.nieznaj@pollub.pl

2010 Mathematics Subject Classification. Primary 20B30, 20B35; Secondary 20B40.
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This left-to-right definition of composition of functions is more convenient
for permutations than right-to-left definition in calculus. Hence for

S R BT P |
we have

1 2 n
of = [/J’(a(l)) Ba(2) ... ﬁ(a(n))]'

The inverse to « is gven by

= ()

Clearly (a3)~! = p~'a~! and by induction (a1...0,) ! =
n > 3.

Definition 2.1. Let X = {1,...,n} and a € S,,. We define
Fiz(a):={ie X :a(i) =i}, Act(a):={ic X :a(i)#i}.

Clearly Fliz(a) is a set of fixed points of a. Act(«) is also called the support
of av and denoted by supp(c).

Observe that |Fiz(a)] < n — 2 or |Fiz(a)| = n. Since |Act(a)| =
n — |Fiz(a)| then |Act(a)| = 0 or 2 < |Act(a)| < n.

Definition 2.2. Let A = {i1,...,ix} be a subset of X and o € S,,. If
a(iy) = ig, aia) = i3,..., a(ix) = i1 and «a(i) =i for i € X\A then « is
called a k-cycle. A 2-cycle is usually referred to as a transposition.

Every permutation may by written as a product of disjoint cycles, see
e.g. [1], [4], [6]. In the example below we show how to do it. Recall that
a, 8 € S, are disjoint or independent if Act(a) N Act(8) = 0.

Example 2.3. Let us consider the permutation

(1234 5 6 78 9 10 11 12
132481211 7110 5 6 9

We have a(1) = 3, a(3) =4, a(4) = 8 and «(8) = 1. We write this cycle
in the form (1,3,4,8). Since «(2) = 2 so 2 is a fixed point of a. Next we
have a(5) = 12, a(12) = 9, «(9) = 10 and «(10) = 5. Finally «(6) = 12
and «(12) = 6. Therefore we write « as (1,3,4,8)(5,12,9,10)(6, 11).
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A k-cycle can be written as follows
(11,42, ... yix) = (i1,92)(i1,73) - .. (91, 0%—1) (11, 0k), Kk = 2. (2.1)

We conclude from (2.1) that every a € S, can be written as a product of
transpositions, that is S, = ({(i,7) : i,7 € {1,2,...,n}}), n > 2. However
this can be done in many ways, e.g.

(2,4,5) = (2,4)(2,5) = (1,3)(1,2)(1,4)(3,5)(1,5)(2,4).
Observe that (i1,i2)? = I and in consequence (i1,i3) " = (i1, i2).
Lemma 2.4. Fvery a € S, can be written uniquely as the product
o= aa03...0p, o € L;, (2.2)
where L = {(1,4),(2,1),...,(i —1,1),1}, i =2,3,...,n.

Note that |L;| =i and L; N L; = I for i # j. The proof of Lemma 2.4 is
in the Appendix. In the example below we outline its idea.

Example 2.5. Let o = (2,7,4,5,3)(1,8,6) € Sg. We will explain in detail
how to write « in the form (2.2). Since a(8) = 6 we multiply « by (6,8) € Lg
and get

a-(6,8) = (2,7,4,5,3)(1,6),

with 8 € Fiz(a - (6,8)). Now we take 7 and see that (« - (6,8))(7) = 4.
Multiplying this permutation by (4,7) € L7 we obtain

a-(6,8)(4,7) = (2,4,5,3)(1,6).

In this moment {7,8} € Fiz(a - (6,8)(4,7)). We repeat this procedure
until the identity appears on the right hand side of an equation. After
computation we have

Q- (6a 8)(47 7)(1a 6)<37 5)<3a 4)<27 3) = Ia
and in consequence a = (2,3)(3,4)(3,5)(1,6)(4,7)(6,8). Hence ay = I,
ag = (2,3), ag = (3,4), a5 = (3,5), ag = (1,6), a7 = (4,7) and ag = (6, 8).

One can use Lemma 2.4 to generate a random element of S,,. Namely,
from every L; we choose independently a transposition with probability 1/i
for i = 2,...,n. Then multiplying those transpositions as in (2.2) we obtain
a random permutation. The probability of getting a particular permutation
equals
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I
I
I (7,8)
I (6,7)
I (5,6) (6,8)
I (4,5) (5,7) /
I 3,4 4,6 5,8
— \(273)/’( )\‘(3,5) 0 (4,7) >
(1,2) (2,4) (3,6) (4,8)
(1,3) (2,5) (3,7)
(1,4) (2,6) (3,8)
(1,5) (2,7)
(1,6) (2,8)
(1,7)
(1,8)

Figure 1: The procedure for generating a random permutation from Sg, see
Example 2.1.

As we have already mentioned an element of S, can be written as a product
of transpositions in different ways. However one may prove that the num-
ber of transpositions which occur is either always even or always odd, see
Chapter 6, [1]. Therefore a € Sy, is called an even permutation if it can be
expressed as the product of even number of transpositions. Similarly a € S,
is called an odd permutation if it is not an even permutation.

The subset of even permutations in S, forms a subgroup of order n!/2
and is called the alternating group denoted by A,, (or Alt(X) for a general
set), see Theorem 6.4, [1].

Our question is: how to generate a random permutation from A, 7 First
observe that by (2.1) a 3-cycle is an even permutation and A,, is generated
by all 3-cycles, i.e.

Ap = {(i,7,k) s 1,5,k € {1,2,...,n}}), n=>3.

Indeed, we have

(i,5)(i,7)
(2,7) (i, k) = (@ ji k)
(1, 7)(k, 1) = (i, 5, k) (K, 3, 1).
For example the commutator [, 8] := aBa~157! is always an even permu-
tation for any «, 8 € S,.
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I
! ( )
I 1,2,3
1 @39
3,4,5 1,3,4
— > (4,560 42 (2,4,5) A
(3,5,6) (1,4,5)
(4,6,5) (2,5,6)
- (1,6,2)

Figure 2: The procedure for generating a random permutation from Ag, see
Example 2.8.

Example 2.6. If « = (1,9,2,3,8,5)(4,6) then
a=(1,9)(1,2)(1,3)(1,8)(1,5)(4,6) = (1,9,2)(1,3,8)(1,5,4)(4,1,6).
On the other hand, e.g. o = (1,4,5)(2,4,9)(5,6,8)(3,8,4).
Lemma 2.7. Every o € A, can be written uniquely as the product
Q= Qp_o0n_3...01, «; €K;, (2.3)
where

K;={(i,i+1,i+2),(,i+2,i+3),...,(i,n—1,n),(i,n,i+1),1},

Note that |K;| = n—i+ 1 and K; N K; = I for i # j. The proof of
Lemma 2.7 is explained in the Appendix.

Example 2.8. Let a = (1,3,2,4)(5,6) € Ag. We begin with 1. Since
a(1) = 3 we multiply a by (1,4,3) = (1,3,4)~!, where (1,3,4) € K;. We
have - (1,4,3) = (2,3)(5,6), with 1 € Fiz(a-(1,4,3)). After several steps
we obtain

a-(1,4,3)(2,4,3)(3,5,4)(4,6,5) = I,

and as a consequence of this

o =[(1,4,3)(2,4,3)(3,5,4)(4,6,5)] "' = (4,5,6)(3,4,5)(2,3,4)(1,3,4).
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Choosing at random ay—9 € Ky—9, ..., @1 € K1 and multiplying them
as in (2.3) we will get an even permutation with probability

n—2 n—2

1 1 2 1
b= K,-!_Hn—y;ﬂ_ﬁ_mny

=1 ‘ =1

3. Group actions, orbits and stabilizers

Let G and H be groups. A function ¢ : G — H is said to be a homomorphism
if p(ab) = ¢(a)p(b) for all a,b € G. If ¢ is also a bijection then it is called
an isomorphism. Denote neutral element in G and H by eq, e respectively.
The kernel of ¢, defined by Ker(yp) := {a € G : ¢(a) = e} is a normal
subgroup of G, see Theorem 16.1, [1].

Definition 3.1. An action of a group G on a set X is a homomorphism
from G to Sym(X). That is ¢ : G — Sym(X) satisfies

(1) 906 = Ia
(11) Pgh = PgPhs Y9, hed.
If G = {g1,...,9,} then by G(z) or ¥ we denote the orbit of z € X,

le.

G(z) == z¢ = {661 (), 095(2), - ., g, (@) }-
We have X = [Ji~, O; and O; N O; =0, i # j. We say that an action ¢ is
faithful it Ker(p) = {eg}.

Definition 3.2. A group G acting on a set X is said to be transitive on X
if 2 = X for every z € X.

Example 3.3. Let G = {e,a,b,ab} be a Klein group and X a set con-
taining six elements x1,...,2z¢. For example X may be a set of vertices of
a hexagon. Define ¢ : G — Sym(X) by: ¢ = I, ¢q = (x2,24)(x3,6),
wp = (z1,75) (23, x6) and pap = (1, x5)(x2, z4). Clearly ¢ is faithful. There
are three orbits of this action: O1 = {z1, 25}, O2 = {x2, x4}, O3 = {3, 26}
hence G is not transitive. Define the second action ¢ : G — Sym(X) by:
Ve = I, g = b = (x1,25), and therefore 1., = I. We have Ker(y) =
{I,ab}. There are 5 orbits of this action: O; = {z1,25}, O2 = {z2},
03 = {333}, 04 = {1‘4}, (95 = {zvﬁ}

Definition 3.4. Let A be a subset of X. The pointwise stabilizer of A in
G is

Gy ={9€G:g(x)=aforalzc A}
and the setwise stabilizer of A in G is Gay := {g € G : g(A) = A}
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Obviously G4y C Gray. If A = {x} then G,y = G, and we denote
this subset of G by G,. For A = {z1,..., 24} we will also denote by G, . 4,
the pointwise stabilizer of A.

Remark 3.5. Both G4) and Gyyy are subgroups of G and one can prove
that G/ 4) is a normal subgroup of G 4;, see e.g. [6].

Example 3.6. Let X = {1,2,3,4,5,6,7} and G = (a), where
a=(1,4,5,2)(3,6,7).

Since a'? = I then G is isomorphic to a cyclic group of order 12. For

A ={1,5} we have G(4) = (o) = {I,a*, 0%}, with o = (3,6,7). Observe
that G(4) = G(p), where B = {1,2,4,5}. Since o* = (1,5)(2,4)(3,7,6) then
Giay = (a®) ={I,a% a* a’ a8 al%}.

.
O G ® @ ¢ @ @ ¢
Figure 3: The illustration of Example 3.6.

The connection between orbits and stabilizers of elements of X is formu-
lated in the following theorem.

Theorem 3.7 (Theorem 1.4A, [2]|). Suppose that G is a group acting on a set
X and v1,79 € X. Ifzo = @g4(x1), then Gy, = 9gGryg ' and |G : G| = 27|
for x € X. Hence if G is finite then

G| = 2% - |G|, VzeX. (3.1)

4. The Schreier-Sims algorithm

If H is a subgroup of a group G and a is an arbitrary element of G then
the set aH = {ah : h € H} is called a left coset of H. Similarly , the set
Ha = {ha: h € H} is called a right coset of H. A set of consisting of right
cosets (or left cosets) of H forms a partition of G, see e.g. [1], [4]. Since
a € Ha we call a the representative of Ha. Suppose that G may be written
in the form

G=HaiUHayU...UHa,

where a; = e and Ha;NHaj = 0 for i # j. Then the set T' = {a1,...,a,} is
called a right transversal for G mod H or a set of right coset representatives
for H in G. If H and T are given then

g:=HgNnT, gea. (4.1)
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The Schreier-Sims algorithm is based on the following Schreier theorem, see
for example [2] or [7].

Theorem 4.1 (Theorem 3.6.A, [2]). Let H be a subgroup of a finite group
G and let T be a set of right coset representatives for H in G. Assume
additionally that I € T. If W is a set of generators of G, then

V= {tw(lw) :w e W,t € T} (4.2)
is a set of generators for H.

Remark 4.2. Note that |V| = |W|-|T| so V is usually a large set. However
in many cases it may be reduced to much smaller set, see for example the
chapter devoted to the Schreier-Sims algorithm in |7].

Definition 4.3. A subset B = {z1,z2,...,24} of X is a base for G if

Now we are in a position to describe the algorithm.

In the first step let G = (W). Choose x; € X that lies in the support of
some element of W. Then compute the orbit O of 1 and the set of right
coset representatives 1) for G,,. Using W, 171 and Theorem 4.1 one can
compute a set V; of generators of G;,. Then try to reduce V; to a smaller
set.

Next take G, and V; and repeat this procedure from the first step
until, for some d > 1 we get G, .., = I. As a result we obtain a chain of
stabilizers

GDGy ODGu 2D ... DG, 0y =1,

a set of transversals 71, ..., Ty and orbits Oy, ..., 4. Note that |O;| = |T;],

i=1,...,d. From (3.1) we conclude that |G| = Hle |O;].

Theorem 4.4. Every g € G can be written uniquely as the product
g=tgtqg_1...tot1, t; €T, i=1,...,d. (43)

Proof. Let x1 be a first element of X for which g(z1) # z1. Denote zo =
g(x1). Since x9 € xlc then we can find, say t; € T1, such that ¢1(xz1) = x2.
Note that ¢; may be chosen in a unique way. Then observe that gtl_l(acl) =
T, l.e. x € Fia:(gtl_l). Now let z9 be a first element of X for which
gtl_l(xg) # 9, denote x3 = gti(x2) and continue this process described
above. After d steps we get

gty ot =1, (4.4)

that is just (4.3). O
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Remark 4.5. We have the solution to the following problem: how to get
a random permutation of G = (W)? Answer: choose at random ¢; €
Ty,...,tqg € T4 and multiply them as in (4.3). In this way we get an el-
ement of G with probability

d 1
p:Hm\
=1

_ﬁ 11
el (TR (€10

5. Examples

Example 5.1. Let X = {1,2,3,4,5,6} and consider
G=(xp), a=(1,2,3,4), B=(1,506,2). (5.1)

There is a very interesting method to prove that |G| = 120 and the problem
of computing |G| is in a way unique in the theory of permutations, see [8].
However we will not focus attention on this and we will use the Schreier-Sims
algorithm.

1
O—0—®

Figure 4: The generators of G given by (5.1).

We begin with an orbit of z; = 1 (we can choose z1 because x; € Act(a)):
1—1(1),1—2(a), 1 —3(a?),1 — 4(a?) and 1 — 5(8), 1 — 6(5%). Hence
O1 =19 ={1,2,3,4,5,6} and T} = {I,a,a?, 0>, 3, 8%}. Now we are ready
to apply (4.2). In our case H = Gy, V is denoted by V; and W = {«, }.
The set of Schreier generators of G is the following

Vi = {a(@ . AB) 0@, @) a*(@%) !, a2B(a7) ",
1), 0*B(a%B) ™, Ba(Fa) L, B(F) L, () 5(F) "}
Now we need to find the representatives: @ = a, B=p8a2=a% af =1
(because 1 — 1(af)), a® = o, a2 = o (note that &?S(1) = 3 = a*(1))
I=1p2=p% Ba= g (wehave fa(l) =5 = 5(1)), f*a = 7 (f?a(l) =
a(6) = 6 = B2(1)) and 33 = B3. For example a?B(a2B)~! = a?B(a?)~!

a?Ba?, because a=? = a?. We can reduce V] to the following set (that we
denote also by V1)

V1= {Oéﬁ,0526062,043504_3,506/8_1,520662} .
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We have: af = (2,3,4,5,6), a?pBa? = (3,5,6,4), a®pa=2 = (2,5,6,3),
BapB~t = (2,6,3,4) and BQQBQ = (3,4,6,5). We can finally reduce V; to
{a3Ba~3, Baf~!} because (2,6,3,4) - (2 5,6,3) = (2,3,4,5,6), (2,6,3,4)2 -
(2,5,6,3) = (3,5,6,4) and (3,4,6,5)3 = ( 5,6,4). So we have

G = (a1, B1), = (2,5,6,3),51 = (2,6,3,4),

with o = o?pa=3 = oz_lﬁa and B = Baﬁ_l. Additionaly |G| = 6|G1| by
(3.1).

© 5 @ &3

I\

Figure 5: The transversal T} and generators of G, see Example 5.1.

Now take e.g. 3 = 2. We have: 2 = I(2), 3 = 52(2), 4 = 8{(2), 5 =
a1(2), 6 = a2(2). Hence Oy = 261 = {2,3,4,5,6} and Ty = {I, 8%, 3}, a1,a3}.
The set of Schreier generators of Gy 2 is

Vo = {I, ar (@), Bi(B) " af () aaBi(aaBr) T ad(ed)
03B1(a361)7", Blaa (Bran) ™, B (BD) !, Bl (Blan) ™, 81BN '}

It is clear that a1 = aq, oz% = a? and 61 = B. Since a3(2) = 3, a1 51(2) = 5,
aiBi(2) = 3, ffen(2) =, fiai(2) =, B = I therefore a1 81 = a1, aifs = 7,

Biay = (%, B3ay = B}, Bt = I. This leads to
V2 = {alﬁlal_la 04%51_27 a%ﬁl_la B%ab B%alﬁl—:g}'

We have 04161041_ = alﬁl = fa; = (3 5,6,4) and ai”,@l ﬂlalﬂl =
(3,4,6,5). Observe that (3,4,6,5)% = (3,5,6,4) hence V3 is reduced to
(3,4,6,5). That is

G172 = <Oé2>, a9 = (3,4,6,5),
with ap = al_lﬁl_2 = 51_10451 = %2ap%. We have |G1| =
For x3 = 3 we have T3 = {I, s, a2, a3} and Oy = 2612 = {3.4,5,6}. In
fact GLQ = {I, (3, 4, 6, 5), (3, 6)(4, 5), (3, 5, 6, 4)} SO G172’3 =1 and ‘G172| =4.
In a consequence B = {1,2,3} and |G| =6-5-4 = 120. Now we can apply
Theorem 4.4. Taking for example t3 = (3,6)(4,5), t2 = (2,5,6,3) and
t1 = (1,2,3,4) we obtain

g =tstat1 = (3,4,6)(1,2,5) = B2aB?a ! Ba’

since t] = @, to = a1 = o~ 'fa and t3 = o3 = [2af.
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O @6 @0
o ; ~L
A

Figure 6: The transversal 75 and the generator of G s.
o3
© @ O—2—3
a2
& ©® @ &H—O—®
Figure 7: The transversal T3 and G123 = I.

Table 1: The summary of the Schreier-Sims algorithm applied to the group
given by (5.1).

group generators x orbit order

G a=(1,2,3,4) | 1 | 01 ={1,2,3,4,5,6} | |G| =6|Gq]
B =1(1,5,6,2)

G a1 =(2,5,6,3) | 2 | 02=1{2,3,4,5,6} | |Gi|=>5|G12]
B1=1(2,6,3,4)

Gi2 | a2 =(3,4,6,5) | 3 03 ={3,4,5,6} |Gi2| =4

G123 ag =1 - - |G1p3] =1

In the next example we discuss the membership problem.

Example 5.2. Let G be the group given by (5.1). Is it true that v =
(1,3,4) € G? We will use Table 2 to answer this question. For T we
have a - (1,3)(2,4) = (3,2,4). Next (3,2,4) - (2,6,3,4) = (3,6) for T> and
(3,6) - (3,6)(4,5) = (4,5) for T5. Therefore v ¢ G. In other words

a-(1,3)(2,4)(2,6,3,4)-(3,6)(4,5) = (4,5) # I,

S S eryt

see Theorem 4.4 and (4.4). Let 6 = (1,3,4)(2,6,5). Then § € G since we
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Table 2: Transversals from Example 5.1. Note that a1 = o 'fa, B =
Baf~ ! and ag = BPaf?.

Ty = T, = Ty =
I I I I I I
a | (1,2,3,4) 21(2,3)(4,6) | a2 | (3,4,6,5)
o® | (1,3)(2,4) | 87 | (2,4,3,6) | a3 | (3,5,6,4)
o? | (1,4,3,2) | a1 | (2,5,6,3) | a2 | (3,6)(4,5)
B (1,5,6,2) | of | (2,6)(3,5)
8% 1 (1,6)(2,5)
I
I
I (1,6)(275)
(2,6,3,5)
(3,6)(4,5) (1,5,6,2)
(2,5,6,3)
(3,5,6,4) (1,4,3,2)
(274)376)
(3,4,6,5) (1,3)(2,4)
(2,3)(4,6)
(1,2,3,4)

Figure 8: The procedure for generating a random permutation from G given
by (5.1). Note that |G| = 120 and the product of (3,6)(4,5), (2,5,6,3) and
(1,2,3,4) is (3,4,6)(1,2,5).

have
a-(1,3)(2,4)-(2,6)(3,5)-(3,6)(4,5) = 1.

€T~ 1 €T 1 e;—vr— 1
1 2 3

Note that &' = (1,3,4)(2,5,6) ¢ G. In fact 66’ = (1,4,3) = 42 and for this
reason it is not possible.
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Remark 5.3. If o and /8 are given by (5.1) then

(o, B) = (a2, B) = (a, B?). (5.2)

Obviously (a?,8) C (a,3). One can check that a = $2a2871a?5% hence
a € (a2, 3) which implies («, 8) C (a?, 8). This proves the first equality in
(5.2). The second follows from the fact that 8 = a?42a~152a2. For a group
(a2, B?) note that it is isomorphic to S3, i.e.

(02, 5%) = {I,a% 5% 0?5 f%a?, a*p%a}.
Example 5.4. Let X ={1,2,...,10} and G = («, 3,7, ) with
a=(1,6)(5,10), B =(2,7)(5,10), v = (3,8)(5,10), 6 = (4,9)(5,10).

Observe that G is a subgroup of Ay, since all its generators are even. Clearly
G does not act transitively on X. Calculations show that for 1 = 1 we have
T = {I,a}, O = {1,6} and G1 = (B,7,0). If x9 = 2 then Ty = {I,/B},
Oy = {2,7} and G112 = (7,9). Next we take 23 = 3 and get T3 = {[,~},
O3 = {3,8}. Moreover G123 = (0) = {I,0}. Finally for 24 = 4 we have
Ty ={I,6}, Oy = {4,9} and G234 = I. We conclude that |G| = 2 = 16.

— N

Figure 9: The procedure for generating a random permutation from the
group in Example 5.4.

1 I

T—>9

In the final example we consider a subgroup of a wreath product of
groups.

Example 5.5. Let X ={1,2,3,4,5,6,7,8} and
G={(a,p), a=1(1,6,3,8)(2,7,4,5), p=(1,2)(5,6). (5.3)

Note that G acts transitively on X. If we take 1 = 1 then O = X with
Ty = {I,B,0?, Ba?, Ba3, o, Ba, o}, since B(1) = 2, a?(1) = 3, ... , and
a?(1) = 8. Then we compute elements of V] (there are 16 elements in V; at
the beginning of calculations) and reduce to Vi = {(3,4)(7,8),(2,4)(6,8)}.
Therefore the stabilizer of x7 is as follows

Gl = <O‘1’51>7 Q] = (374)(77 8)’ /61 = (254)(6’8)7 (54)
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Table 3: The summary of the Schreier-Sims algorithm applied to the group
from Example 5.4.

group generators | x orbit order

G a, B,7,0 | 1| O ={1,6} |G| = 2|G4|
G By, 0 2 | O2={2,7} | |G1] =2|G1p
Gio v, 0 3 | 03=1{3,8} | |Gi2| =2|G123]
G123 0 4 | Oy ={4,9} |G1,2,3] =2
Gi234 I - - |G1234| =1

B—® @ G ®

/,@
-0 ® @ % ! R0

Figure 10: The generators of G given by (5.3).

with a1 = a?Ba?, B1 = (Ba)B(Ba)~t. For x5 = 3 we have Oy = {2,3,4}
and To = {a1f1,1,a1}. After computation we obtain Vo = {f1} and in
a consequence G113 = (f1). Therefore if 3 = 4 then G134 = I. Recall that
O3 = {2,4} and T3 = {I,1}. Summarizing, the base B = {1,3,4} and
|G| =8-3-2=148.

® ® OO ® G._O_®
@ @ 6@ @ @ 60

Figure 11: The generators of Gy given by (5.4).

Remark 5.6. If we consider the group G given by (5.3) as a subgroup of Sg
then its index in Sg is |Ss : G| = |Sg|/|G| = 8!/48 = 840. However G is
in fact a subgroup of Zy 1Sy, i.e. the wreath product of Zy by S4. Since
|Zo 1 Sq| = 4! - 2% = 384 then |(Z3 1 S4) : G| = 8. For more details about
wreath products see e.g. [3], [4].
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® G._®_® ® ® @ ®
@ @ @0 D @ ® @

Figure 12: The generator of G 3 and G134 = 1.

6. Appendix
To prove Lemma 2.4 and Lemma 2.7 we state the following the theorem.
Theorem 6.1 (Theorem 3.3A, [2|). Let G be a primitive subgroup of Sym(X).
(i) If G contains a 3-cycle, then Alt(X) C G.
(ii) If G contains a 2-cycle, then G = Sym(X).

The conclusions of Lemma 2.4 and Lemma 2.7 follow from Theorem 4.4
and Theorem 6.1. Namely, for S, the base is e.g. B={n,n—1,...,2} and

Ly, ..., Ly are transversals. For A,, we have e.g. B ={1,2,...,n— 2} and
Ki,...,K,_o are appropriate transversals.
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Examples in stochastic differential
equations

Ernest Nieznaj'

Abstract

This paper is a short overview of Gaussian and Markov processes,
especially those related to a Brownian motion and stochastic differen-
tial equations.

1. Preliminaries

We say that a real-valued random variable X has Gaussian distribution if
its density is

1 (z — p)?
flx) = WGXP{W}’ z € R,

with 4 € R and 02 > 0. We write X ~ N(u,0?). It is very well known that
EX = p and varX = 02. If 02 = 0 then we mean P(X = u) = 1. Similarly
a n-dimensional random vector (X7, ..., X,,) has Gaussian distribution if its
density is given by

_ 1 o d — Qij(wi —my)(x; —my)
flow ) = @ O 2, 20| |

where m; = EX“ Q = [Qij]a |Q‘ = det Q, Qi = COV(XZ',X]'), and Qij is
an algebraic complement of ¢;;, i,j = 1,...,n. Recall that cov(X;, X;) =
E(X; — m;)(X; — m; ) and varX = cov(X, X). In this paper we assume
that |Q| # 0. Let X ~ N(mj,0?) and Y ~ N(mg,03). If, in addition,
X and Y are independent then one may prove that X +Y ~ N(m; +
ma, 0% + 03), see e.g. [3], Chapter 5. Given X,Y we say that they are
uncorrelated if cov(X,Y) = 0. Recall that if X,Y are Gaussian then they

! Department of Mathematics, Technical University of Lublin, Nadbystrzycka 38, 20-618
Lublin, Poland, e-mail: e.nieznaj@pollub.pl

2010 Mathematics Subject Classification. Primary 60615, 60J25; Secondary 60J60.
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are independent if and only if cov(X,Y) = 0. For a random process X,
t € T, we denote m(t) = EX; and K (t1,t2) = cov(Xy,, Xy,) for all t,t1,t2 €
T. A stochastic process is said to be a Gaussian process if all its finite-
dimensional distributions are Gaussian. Equivalently X; is Gaussian if for
all real numbers ay,...,a, the random variable > " | a;X;, is Gaussian,
see [3], Chapter 5. Throughout the paper we assume that Wy, ¢ > 0, is
a standard Brownian motion, that is a Gaussian stochastic process with
EW, =0, K(t1,t2) = min{ty,t2} and continuous trajectories.

2. Gaussian and Markov processes

Example 2.1. Let X; = |Wy|,t > 0. Clearly X; is not Gaussian. We will
prove that X is a Markov process by showing that

9(@ns1lT1, . m0) = g(@ni1|Tn), (2.1)

where g(Tpi1|x1, ... 2n) = g(x1, ..o, 2nt1)/9(21, . .., 20) and g(x1, ..., zy)
is the density of (X ,...,X,) for 0 < ¢ < to < ... < t,. Since W, has
independent increments then it is a Markov process, and if B € B(R) we
have P(W;, € B|W;, = z1) = [5p(t,z1,22)dxy where

1 xo — 1)
p(t,xl,xg):\/fmexp{—uml)}, T2 € R, (2.2)

and t =ty — t1 > 0. Hence the density of (Wy,,..., Wy, ) is given by

n

flan,.mn) = [ [t — tioy, i1, 23)

=1

.

" 1 — (x; —xi—1)
i i—1
|| exp _,g EEE—
11\/ tftZ 1) { 21.1 t; —t;i1 }

with tg = 0,29 = 0. In particular for ¢; < ty the density of (W, Wy,) is

f(x1,22) = p(t1,0,21)p(te — t1, 21, 22)

_ 1 ox {_tQ"E% + tll‘% — 2t1x129 }
27T\/t1(t2 —tl) 2t1(t2 *tl) ’

where m = (0,0) and the covariance matrix equals

Q: COV(th,th) COV(th,Wtz):| _ |:t1 t1:|
COV(th,Wt2) COV(WtQ,Wtz) tl t2 '
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Let By,...,B, € B(Ry) and —B :={z € R: —z € B}. Then

P(|Wt1’ S Bl,...,|th’ S Bn)
Z P (th S (_1)lela .- 'ath € (_1)kan> )

(k1,....kn)
where the sum runs over all 0-1 sequences (ki, ..., ky), that is k; = 0 or 1 for
i =1,...,n. Note that there are 2" such sequences. Hence for z1,...,z, = 0
we have
g(x1, ... xn) = Z F((=D)Fzy, .. (=Dkrgy,)
(kh 7kn)
Z Hp — tioy, (—D)F i, (1) R).
(K1, kn)z 1
We will show that g(z1,...,2n11) = 9(nt1|Tn)g(x1, ..., Ty), where
9(@ni1lrn) = p(tnr1 — tn, Tn, Tng1) + p(tng1 — toy Tny, —Tng1)- (2.3)

In other words for any t; < to we have

(z2—x1) _(902+I1)2
¢ Aa—t) 1 ¢ 22—t | day.

]P)(XtQ (S B’th = ZL‘1)

bl

Suppose that n > 1 and let x,, = (z1,...,2), kn = (k1,..., k). Then

n+1
9xn1) = > [ plti = tioa, (= 1)F iy, (—1)kay)
kn+1 =1
= Z n+1 ]—)knxn) xn+1) +p(tn+1 —tn, (_1)1%37717 _xn—i-l)]Pn

with P, := [, p(ti—ti—1, (—D)ki—12; 4, (=1)¥x;). Clearly P, does depend
on k;-s and x;-s but we don’t need to write that explicitly. Hence g(x,,4+1) =
S1 + S9 where

S1 = [p(tn+1 — tny T,y wn+1) + p(tn—l—l — tp,y T,y _xn+1)] Z P,
(k'n—lao)

and

Sy = [p(thrl — tp, —Tn, l'n+1) + p(tn+1 —tp, — 1‘n+1 Z P,.
(kn 1, )
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The key observation is that

p(tu Tnyy xn—i—l) +p(t7 T,y _xn—i-l) = p(t7 —Tn, xn—i—l) +p(t7 —Tn, _In-‘rl))

see (2.2). Therefore we have
g(Xn+1) = [p(thrl —tn, Tp, $n+1) + p(thrl —tp, Ty, _$n+1)}g(xn>7

Z Pt > P—ZPn—gxn

n 1,0) ( n— 171)

We have just proved (2.1).

because

Example 2.2. Let X; = W72, t > 0. As in the previous example X; is not
a Gaussian process. However observe that for By, ..., B, € B(R) we have

P(W2 € By,...,W2 € B,) =P(|[Wy,| € \/Bi,...,|Wy,| € VBy),

where VB = {z € R : 22 € B} for B € B(R,). Therefore X; is a Markov
process because |Wy| is, see Example 2.1. Note that EW? = t and

E(WZWE) = E(Wy, Wi, )E(Wi,Wr,) + 2E(Wy, Wy, JE(Wi, W)
= tity + 2(minft, t})?,
hence K (t1,t2) = 2(min{ty,t2})%.
For Gaussian processes the condition (2.1) is equivalent to
K(t1,t3)K(to,t2) = K(t1,t2) K (to2, t3) (2.4)

for all t; < ty < t3, see e.g. [5]. For Gaussian Markov processes the covari-
ance function can be characterize in more explicit form. First we cite an
auxiliary lemma. The following is Lemma 5.1.8. in [3].

Lemma 2.3. Let p(t) and q(t) be positive functions on T C R with p(t)/q(t)
strictly increasing. Define

f pltalt), t<t
K(“’”)‘{Z@l)g(tf), <t (2:5)

and suppose that p and q are such that K(ti,t2) > 0 for all t1,to € T. Then
K(t1,t2) is a strictly positive definite function on T x T.
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Recall that a function K (t1,t2) defined on T'x T is a positive definite (or

non-negative definite) function, if for every n > 1 and all and ¢y,...,t, € T
n
Z aiajK(ti,tj) = 0 (2.6)
ij=1
for all real numbers ay,...,a,. We say that a positive definite function

K(t1,t2) is strictly positive definite if equality in (2.6) implies that a3 =
...=ay =0. The next is Lemma 5.1.9 in [3].

Lemma 2.4. Let T C R be an open or closed interval and let X;, t € T
be a mean zero Gaussian process with continuous strictly positive definite
covariance K (t1,t2). Then Xy is a Gaussian Markov process if and only if
K(t1,t2) can be expressed as in (2.5).

Example 2.5. Let X; = at+bWy, t > 0, where a,b € R and b # 0. Observe
that X; ~ N(at,b?) and Y. | a; Xy, ~ N(m, o) where m = a Y 1, a;t; and
o? = b*(>°I, a;)?. The covariance

K(tl, tQ) = bQE(th th) = b2 min{tl, tg},

clearly satisfies (2.4), so it is a Markov process. In fact increments of X, are
independent. Namely, if {; < 5 < t3 then

COV(XtQ - Xtuth - th) - bQE(Wt2 - th)(Wt3 - Wt2) =0,

because increments of W; are independent. For b = 1 from (2.2) we obtain

1 /e { (xQ—xl—at)Q}dx
X e —— .
V2rt JB P 2t 2

Example 2.6. Let T" > 0 and define

P(Xy, € B| Xy, = x1) =

t
Xt:a—Ff(b—a—WT)—FWt, t€<0,T>,

called the Brownian bridge. Observe that xg = a, xr = b and this is
a Gaussian process with m(t) = a + t(b — a)/T. The covariance function

given by
t1to

T
satisfies (2.4) therefore X; is also a Markov process. Indeed, for t; < to < t3
from (0,7") we have

Kt t) Kt ta) = (11— 3 (1 B) iy (1-2) (122
1,43 2,02) — 1 T 2 T — t1l2 T T

t1to tot3
=t — —= to — —= | = K(t1,t2)K (to,t3).
<1 T><2 T> (t1,t2) K (t2,t3)

K(tl,tg) == min{tl,tg} - 0 < tl,tQ < T, (27)
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Increments of X; are not independent but they are stationary, i.e.

to —t1)(t2 — t3)
T

COV(Xt2 — th,Xt3 — XtQ) = ( < 0,

for t1 < t9 < t3. As for Lemma 2.3 we have

[t (1-8), ti<t,
K(tth) N { to (1 - tTl)a t2 <t1a

hence p(t) =t, q(t) =1 — %, t € (0,T) in (2.5). The function

p(t) tT T2

qt) T—-t T—t

T, te(0,7),

is strictly increasing.

3. The Ornstein-Uhlenbeck process and fractional
Brownian motion

The stochastic process X;, t € T, is self-similar with index H > 0, if for
every a > 0 the processes X,; and a X; have the same finite dimensional
distributions. That means that for any n > 1, ¢1,...,t, € T and a > 0 the
distribution of (Xay,,-- -, Xat,) is the same as (e X;,,..., a7 X, ). Since
we multiply ¢ € T by any a > 0 it makes sense to take T =R, T' = (0, +00)
or T'= (0, 4+00).

Lemma 3.1 (Proposition 7.1.4, [6]). If X, t > 0, is self similar with index
H, then
Vi=e "X, teR,

is stationary. Conversely, if Yy, t € R s stationary, then
Xy =t"Yn, t>0,
is self similar with index H.

Observe that if a > 0 then E(Wy, Wey,) = min{at1, ato} = amin{t;, ta}
and E(y/aW, /aWy,) = amin{ti, ta}. Hence, because Brownian motion is
a Gaussian process it is self similar with H = 1/2.

Example 3.2. According to Lemma 3.1 the stochastic process

YV, =e PW,, teR, (3.1)
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is stationary with m(t) = 0 and
K(t1,to) = eali=t2l 4 4, e R (3.2)
It is also a Markov process since Y; is Gaussian and
K(t1,t3)K (ta, to) = 2371 = K (t),19) K (tg, t3) = e2 (21 ea(la~t2)

where t; < t5 < t3. One can also investigate Y; only for ¢t > 0. We will
construct the Ornstein-Uhlenbeck process in a different way. Since Yy ~
N(0,1) define

t
Y, =e 2 X + eét/ ez dW,, t>0, (3.3)
0

where Xy ~ N(0,1) is independent of the Brownian motion. Therefore }715 is
a Gaussian process with zero mean and the covariance function (3.2). Using

the integration by parts formula, see (3.6) below, we can write Y; as follows

N

v —=t 1 _—1¢ tls
Yi=e 2" Xo+ W, — e e2°Wyds, t = 0.
0

From the above we obtain
~ 1 1 g 1
dY; = —%efithdt + dWy — % [—;ef/ e2’Wds + Wt] dt
0
1 t
_ _1lleatx IS Py L
=—5 e o+ Wi —ge 2 e2°Wsds| dt + dW;
0
= —1Vidt + dW,.
Hence }N/t is the solution of dfft = —%)N/tdt + dW; with 170 = Xp.

Example 3.3. One can prove, see Lemma 2.10.8 in [6], that the function

Kg(ti,t2) = (|151|2H + [t2?H — |t — t2|2H) ,  t1,t2 € R,

N | —

satisfies (2.6) for H € (0,1). Therefore there exists a Gaussian process X,
t > 0, with zero mean and the covariance function Ky (¢, t2). This process is
called the fractional Brownian motion. For H = 1/2 it is in fact a Brownian
motion, since

_ t1+t2—|t1—t2|

(tl,tQ) = 9 = min{tl,tg}.

K

1
2
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For H # % the increments of X; are not independent. Indeed, we have
cov(Xy, — Xoy, Xoy — Xpy) = 2 [(t5 — t1)* — (t5 — t2)*H — (t2 — 11)?7],
for 0 < t1 < t9 < t3. Define for fixed ¢; < t9 the function
fat) = (t—t)* —(t =) — (ta — 1), t>to.
Note that f(t2) = 0 and
fat)=2H [t —t1)*" 1 = (t —02)* 7], >t

If H > 1/2 then f};(t) > 0 and fg is strictly increasing. If H < 1/2 we have
fr(t) <0 and fg is decreasing. From the above we conclude that

>0, He(3,1)
cov(Xey — Xty, Xty — Xt,) : =0, H=13}
<0, He(0,3).
Hence X, is not a Markov process for H # %
Example 3.4. Let
Xy =Acos(t+¢), teR, (3.4)

where A is a random variable with density f(z) = xe*‘”2/2, x > 0, ¢ is

uniformly distributed on (0,27) and independent of A. We have EX; =
EA - Ecos(t + ¢) = 0 since

1 2w
Ecos(t+ ¢) = 27?/ cos(t+x)dr =0, teR.
0

The covariance K (t1,t2) = cos(ta — t1). Indeed, we have

K(t1,t2) = EX,X; = E(A?*)E[cos(t1 + ) cos(ta + )]
= E[cos(ta — t1) + cos(t1 + ta + 2¢)] = cos(ta — t1).

The crucial observation is that X; can be written in the form
X; = Xcost—Ysint, teR,

where X = Acosp, Y = Asin p. First we will prove that both X and Y has
a N(0,1) distribution. Furthermore from E(XY) = E(A%)E(sin ¢ cos¢) = 0
we conclude that X,Y are independent. Hence for all aq,...,a, € R the
random variable

n n n
Z a; X, =X Z ajcos(t;)) =Y Z a; sin(t;)
i=1 i=1 i=1
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has a normal distribution N(0,02), where
n n
o’ = (Z a; cos ti)2 + (Z a; sinti)z.
i=1 i=1

That means that X; is a Gaussian process and since
K(tl‘l-h,tg—l-h):K(tl,tg), VheR

it is also stationary. In particular (X3, ,..., Xy, ) has a normal distribution
with zero mean and the covariance function K(t;,t;) = cos(t; —t;), 4,5 =
1,...,n. What remains to show is that X ~ N(0,1). Observe that the
density of cos ¢ is

1 1
V=i veLh 3.5
fw=ca—a vty (3.5)
Indeed, for z € (—1,1) we have
F(z) = P(cos ¢ < z) = (2m — 22arccos z) _ | _ anceosa
g T

which proves (3.5). Since X is the product of two independent random
variables (i.e. A and cos ) its density equals

1 [ree 1 [ree
g(z) = / L ey == 222 — 22e7 2 dy

TS Va? - 22 ™ J)
+oo
= ie 2% Vieatdt = = e 2%, zeR.
2m 0 V2m

Hence X ~ N(0,1). Similarly we show that ¥ ~ N(0, 1).

M

Remark 3.5. Let Z = X -Y and X # 0. If X and Y are independent then
the density of Z is given by

o) = [ Al () oo

||
where fi is the density of X and fa the density of Y, see e.g. [5].

Example 3.6. Consider the following Gaussian processes

t t
Xt:/ Wids, Y;=tW;, Zt:/ sdW,, t>0.
0 0
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All of them are Gauss1an since each is a linear transformation of W;. For X;
we have mx (t fo EW, ds-Oand Kx(ti,t9) = t3+ t2(t2 t1), t1 < to.
Indeed from Kx(tl,tQ) = (fl 0 (WSIWSQ)d81d82 we get

t1 t1 t1 rt2
Kx(tl,tz) :/ / Sodsodsy —|—/ / s1ds1dss +/ / s1dsadsy
t1

= 15 + g1 + 511t — 1)

The function Kx(t1,t2) does not satisfy (2.4), so X; is not a Markov pro-
cess. For example Kx(1,3)Kx(2,2) = % and Kx(1,2)Kx(2,3) = %
Increments of X; are not stationary because

COV(Xt2 - Xt17Xt3 - th) = %(tQ - tl)(tQ + tl)(t3 - t?)’

where 0 < t; < to < t3. For Y; we have my(t) = 0 and the covariance
function equals

Ky(tl, tg) = tthE(th WtQ) = t1to min{tl, tg}.

For t1 < t9 < t3 we have Ky(tl,t3)Ky(t2,t2) = Ky(tl,tQ)Ky(tQ,tg) and
both those terms are equal to t3t3t3. Therefore Y; is a Markov process.
However the increments of Y; are not independent. If ¢; < to then E(Y;, —
Y )(Yy,) = t3(ta — t1). For Z; we have mz(t) = 0 and Kz(t1,t2) =

:1,) min{t3,¢3}. Note that Z; has independent increments, i.e.

E(Zt3 - Zt2)(Zt2 - Zt1) = %(t% - t:% - t% + t?) =0.

If t; <ty then P(Zy, € B|Zy, = x1) = [5p(t1, 21,2, x2)dxs, where

{_3@2—xg2

7r 1/2
p(t1, o1, ta,20) = (Z(t5 — ) exp ‘
(=) 26— 8)

}, x2 € R.

Therefore Z; is a non-homogeneous Markov process. In fact Z; = Y; — X;.
Using (3.6) we have

t t
/ sdWy = tW; — / Wsds, t = 0.
0 0

Remark 3.7. For stochastic integrals we have (see e.g. Theorem 4.5, [4]): if
a deterministic function f is continuous and of bounded variation on (0,¢)
then

/ ") = F(OW, / Wadr(s). (3.6)
0 0
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Table 1
PTocess W |[W4 W2 fg Wds | tW; f(f sdWy | e t2W
m(t) 0 z t 0 0 0 0
var X t| Q=2 | 22 | 183 t3 113 1
Gaussian | yes no 1o yes yes yes yes
Markov yes yes yes n0 yes yes yes
stationary | no no no no no no yes

4. Applications of Ito formula

Suppose that X; has the stochastic differential dX; = a(t)dt + b(t)dW; and
f(t,z) € C%([0,+00) x R). Then (see e.g. Theorem 4.2, [4])

df (£, X0) = [£1(6.X0) + a(0) (8, X0) + S0(0) £ (1, X)) dt
+ fo(t, X)b(t)dW;.

We will apply the above formula for computing expectations.
Example 4.1. Let dX; = a(t)dt + b(t)dWy, where a(t) and b(t) are deter-

ministic functions, i.e.

t t
X = / a(s)ds +/ b(s)dW,, t=0.
0 0

We have m(t) = EX; = fo s)ds since E fo s)dWs = 0. In a consequence

E(X; —m(t))?=E (/Ot b(s)dWs> (/Ot b(s’)dWs/> = /Ot b2 (s)ds,

where we used dWsdWy = §(s — §')ds. Now take f(t,z) = (x — m(¢))",
n > 2. Then by Ito formula we have
df (t, Xs) = [a(t)n(Xy — m(£)" " + 2b(t)*n(n — 1) (X, — m(t))" %] dt
+ b(t)n( Xy — m(t))"LdW;.

Denote Y; = Xy —m(t), and by the fact that the expectation of a stochastic
integral is zero we obtain

t t
EY;" = n/ a()EY;" ds + $n(n — 1)/ b (s)EY%ds, n>2,
0 0
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with EY; = 0. For a Brownian motion we have

AW} = In(n — YW/ 72dt + nW) 1dW,, n > 2,
and in consequence we get EW = In(n — 1) fg EW"2ds, n > 2. This
leads to

1-3-5-...-(2k—1)t, n=2k

EW: :{ 0, n=2k+1.

Example 4.2. Let f(z) = sinz. Then by Ito formula we have
t t
sin Wy = %/ sin(Ws)ds+/ cos(Ws)dWs.
0 0

Denote m(t) = E(sinW;), ¢t > 0. Then m/(t) = —3m(t) with m(0) = 0.
That gives m(t) =0, ¢t > 0. In a similar way we get E(cos W;) = exp(—t/2),
t>0.

Now take f(x) = sin?z. Then f’(z) = sin(2z), f"(x) = 2cos(2z) and

t t
sin® Wy = $(1 — cos(2W;)) :/ cos(2Ws)ds+/ sin(2Ws)dW.
0 0

Denote n(t) = Ecos(2W;), t > 0. The function n(t) satisfies n'(t) = —2n(t)
for ¢ > 0 with n(0) = 1. That implies n(t) = exp(—2t), ¢t > 0. Finally

Esin® W, = 2(1+e ), Ecos®W,=4(1—¢e"%), t>0.

5. Stochastic Equations

In this section we use the notation X; = (X}, X?) for 2-dimensional stochas-
tic processes. The following is the Exercise 5.8 from [4].

Example 5.1. Consider the equation

{ dX} = X2dt + adW} (5.1)

dX? = X}dt + BdW}?

where (W}, W2) is 2-dimensional Brownian motion. This means that W}
and W? are independent standard Brownian motions. We can write (5.1) in

the form
dX} 0 1] [Xx} a 0] [dw}
p— >
[de} [1 o] [XE i+l gl lawz| 120
_A —
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with given X} and X?2. We assume that «, 8 € R. According to e.g. [2], [4]
or [7] the solution of dX; = Adt + MdW, is given by

t
X, = e Xo + et / e SAMAW,, t>0. (5.2)
0

Using (6.5) we have

cosh(t) sinh(t)

!4 = sinh(t) - A+ cosh(t) - T = Lmhw cosh({)

| ter
Taking X¢ =0, Xg = 0 we get

t ¢
X} = a/ cosh(t — s)dW! + 5/ sinh(t — s)dW?2

0 0

and . .
X = a/ sinh(t — s)dW} + B/ cosh(t — s)dW?2.

0 0

With this initial condition X; is not stationary because e.g.

t t
var(X}) = E(X})? = oz2/0 cosh?(t — s)ds + 62/0 sinh?(t — s)ds
= % sinh(t) cosh(t) + 3 (a? — f?)t.

In addition

E(X} X}?) = (o* + 8% /t cosh(t — s) sinh(t — s)ds = ‘ii(cosh(%) —1).
0

6. Appendix

We will find the formula for eA* where A is a matrix
a b
A=y o

We assume that entries of A are real. First we will compute A™, n > 2. Let
w(\) be the characteristic polynomial of A, that is

b

a— M\
w()\)—det[ e d—)

] =X — (a+d)\+ ad — be. (6.2)

The roots of w(\) are

AM=r—p, X=r+p,
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where 7 = (a +d)/2, p = VA/2 and A = (a + d)? — 4D with D = ad — be.
Assume first that A > 0 and take n > 3. Then

where @, () is a polynomial and z,,y, € R. Then by the Cayley-Hamilton
theorem w(A) = ©, where O is a zero matrix. We conclude that A" = z, A+
ynl. Solving A} = zp A1 +Yn, Ay = xpAo+y, we find z, = (AT—A5)/(A1—A2)
and yp, = (ATA2 — ABA1)/(A2 — A1). In consequence
A — Ay — AP A ATA2 — AB A
2p 2p

-,

\
i

(6.4)

Hence we have

AZM v IZAnAQQpA2A1'tn'

n!
Note that
400 n
D5 —AT) - — = et — Mt = 2¢" sinh(pt)
n!
n=0
and similarly
400 n
Z()\’f)\g —A5A) - — = 2¢" [p cosh(pt) — rsinh(pt)].
n!
n=0

Finally we have

inh(pt
et = e”w - A+ e |cosh(pt) — r sinh(pt)| -1, A>0. (6.5)
p p

Now consider the case when A = 0. Then w()\) = (A — 7)? and in order to
compute z,, we differentiate both sides of (6.3)

nAE = (A =1r)2QL (\) + 20\ — 1) Qn(N) + 2.

Putting A = r to the above equation we find z,, = A\r"~! and from (6.3) we
get y, = (1 —n)r™. It is worth to mention that A" = nr" 1A + (1 — n)r"I,
n > 1. We have

‘ = ()"t L (rt)" = (rt)" !
A :I+Atz((n)_1)!+l Z::(n‘) _Ttg((nzl)!

n=1

=1+ Ate™ + I[(e"™ — 1) — rte"]

and finally
et =te" A+ (1—rt)e™ I, A=0. (6.6)
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Problem of multistage, strictly
positional games with delayed
information

Witold Rzymowski!, Tomasz Warowny?

Abstract

A differential game can be viewed as a certain limit of the appro-
priate sequence of discrete dynamic games. Proofs of the existence of
saddle points in differential games usually involve analogous facts con-
cerning discrete dynamical games [1], [2]. In majority of the articles
about differential games, authors assume that each player has complete
and up-to-date information about his own position and the position of
his opponent. In this paper we deal with discrete positional, dynamic,
games with a fixed duration and final pay-off functional. We assumed
that each player receives information about the position of his oppo-
nent with a certain delay. Consequently, both players have to apply
mixed, positional strategies. A problem concerning the existence of
saddle points, if a special case of mixed, positional strategies is in-
volved, is presented in the document. Pursuit games with the delay of
information received by one player were investigated by L.A Petrosian
in Differential Games of Pursuit [3]. Other differential games, with
incomplete information, were considered by E. Dockner and R. Isaacs
[4], [5]. The special case of a pursuit game with almost absolutely
incomplete information was solved by M.I. Zelikin [6].

1. Pure Strategies

Game Description

For every set Z, a symbol 22 denotes a family of all subsets of the set Z,
and, if Z # @, Fin Z denotes a family of all non-empty and finite subsets of

'Lublin University of Technology, Fundamental of Technology Faculty, Depart-
ment of Applied Mathematics, Nadbystrzycka 38D, 20-618 Lublin, Poland, e-mail:
w.rzymowski@pollub.pl

2Lublin University of Technology, Management Faculty, Department of Quantita-
tive Methods in Management, Nadbystrzycka 38D, 20-618 Lublin, Poland, e-masil:
t.warowny@pollub.pl

Keywords: Game theory, Multistage games, Local and global strategies.
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this set. For any non-empty sets A and B, AP means a set of all functions
f:A—B. (1.1)
Symbols N and 7Z stand for sets of all natural and integer number respec-

tively. We assume

n

No={0}UN=1{0,1,2,..}, R} =]]l0,0) (1.2)
k=1

and for all t € Ny
Zy={s€Z:s<t} (1.3)
Trajectories and sets of availability

Two players participate in a game: E — maximizer and P — minimizer.
Player E moves in a set X # @ and player P moves in a set Y # @. Game
dynamics is generated with a multifunction pair

F:X 25X gy 98y (1.4)

At an instant ¢ € Ny the players E and P take positions x € X and y € Y
respectively. At the following instant ¢ + 1 the player E can move to any
element of the set F(z) and the player P can move to any element of the
set G(y).

The initial position is set to (zo,y0) € X x Y. A symbol X (z¢) denotes
a set of all functions (sequences) ¢ € X0 meeting the criterion:

£(t) e F(e(t—1)), teN. (1.5)

Similarly, a symbol Y(yo) denotes a set of all functions (sequences) n € Yo
meeting the criterion:

n(t) e G(n(t—1)), teN. (1.6)

The set X (z0) is called the set of admissible trajectories of the player E
and the set Y(yp) is called the set of admissible trajectories of the player P.
For any (§,7n) € X(xo) X Y(yo) and all 7 € Z we define

g‘r] (t) = g(t)u Uz (t> = U(t)7 te (Z)ﬂ (17)

and assume

Xﬂ (1‘0) = {éﬂ FS X(x())}7 yﬂ (yo) = {777'] HY/BS y(yo)} (18)
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We establish a random initial position (zo,y0) € X x Y. For allt € Z
we define:

Xi(zo) =A{zo}, Yi(yo) ={wo}, if t <O, (1.9)
Xi(z0) = F(X¢-1(z0)), Ti(yo) = G(Yi-1(y0)), if ¢ >0, (1.10)
Xﬂ xo UXt x0), Yt] Z/O U Yi( yo (1.11)

s<t s<y

Delay of information

We presume that, at every instant ¢ € Ng, each of the players E and P
knows the initial position (xg,yo) and their current position z; € X;(z¢) and
Yyt € Yi(yo) consecutively. Additionally, at the instant ¢, player E receives
the information about the position of the player P with a delay «, hence
they know the position y;—q € Y;—o(yo) taken by P at ¢t —a. Likewise, at the
instant ¢, player P receives the information about the position of the player
E with the delay 3, hence they know the position x;_g € X;_g taken by E
at t — . On the basis of these pieces of information both players choose
their next position simultaneously.

ziy1 € F(x1) (player E),

(1.12)
yi+1 € G(yt) (player P).

Strictly positional, pure strategies

Let us specify a random initial position (xg,y9) € X x Y, delays «, 5 € Ny
and game duration N € N. Every function f : Xy _1)(w0) X Y y_17(y0) = X
fulfilling a condition:

(z,y) € Xn_11(z0) X YNn_17(%0) = f(z,y) € F(x) (1.13)

is called a strictly positional, pure strategy of the player E. The set of all
such strategies is denoted SpE*_(z0,y0). Every function g : Xy-11(z0) x
Y y_17(y0) — Y fulfilling a condition:

(z,y) € Xn_11(z0) X Yn_17(v0) = g(=,y) € G(y) (1.14)

is called a strictly positional, pure strategy of the player P. The set of all
such strategies is denoted S7” 5(300, Y0)

Note 1.1. For any (f,g) € SE”,(z0,90) X Sp” (w0, yo), there exist exactly
one pair

(§(f79)7n(f79)) c XN] (mo) X yN] (yo) (1.15)
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meeting a condition

(9 19y = (fF(nf9), g(eF9))) (1.16)

We say that the pair of trajectories (£(/:9),7(/9)) is determined (generated)
by the pair of strategies (f, g).

Game

The following conditions are given: N € N, the initial position (zo,yo)
and the function w : X x Y — R. For any pair of strategies (f,g) €
S;pfa(xo, Yo) X S;pfﬁ(xo, Yo) we maintain

w(ip,v) = wEI(N), PP (N)). (1.17)

The functional defined as w : S’ (2o, y0) ¥ Slsgpfﬁ(mo,yg) — R is called
a final pay-off functional. The arrangement

Gzl?g('vayOaN? w) = (SSEpfa(x(byO) X vapfﬁ(‘r()?yO)aN?w) (118)

is called a strictly positional, multistage game (N-stage game) with the
strictly positional, pure strategies, final pay-off functional w, initial position
(x0,y0) and the delay of information — « for the player E and (8 for the
player P.

Note 1.2. Every game Gipg(xo,yo, 1,w) is a matrix game.

Upper and lower value of a game

A strategy f € S (z0,y0) in the game G‘;pg(xg, Y0, N, w) provides a result
u to the player E if

def .
w = min w(f,g) =2 u. 1.19
oS gin (£ (119)

In such a case, we can write f > u. A number

V- = V_(Sz’pfa(x(]a y0)7 S;pfﬁ (%0, yO)? N7 w)

= max — w
FESF?  (z0,40) 5(f) (1.20)
= max min w(f,q)

fGSE P o (xo.yo) g€SE” 5(z0,0)

is called the lower value of the game G}(20, 30, N, w). The lower value V"~

is the maximum result which may be obtalned by the player E in a con-
sidered game. Since Sp7?, (xo,yo) is a finite set, then there exists such
5 e SPP (2o, y0) meeting f* = V.
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A strategy g € Sfjpfﬁ(xg,yo) provides the player P the result v in the
game GV (x0, yo, N, w) if

def
wp(g) = max w(f,g) <. (1.21)
( ) fesg? (zo,y0) ( )

Then, we can write ¢ < v. A number

vVt = VJr(SE‘pfa (LU(), y0)7 S;pfﬂ (xo’ y0)7 N, w)

= min w
1575 oy 7Y (1.22)
= min max  w(f,g)

9€SE 5 (woy0) FESH? , (x0,y0)

is called the upper value of the game Gzzjg(xo,yo, N,w). The upper value
V* is the minimum result which may be obtained by the player P in
a considered game. Since Sp” 5(%0,90) is a finite set, then there exist such
9" € Sp”5(20,yo) meeting g* < Y. Obviously, V= < V*.

Value of the game

If V- =V, then the number
V = V(SE’ (0, %0), SP¥ 5(x0,90), Nyw) = V= =V (1.23)

is called a value of the game G‘z’g(xo, yo, N,w). As both strategy sets are
finite

Vo =VT e 3(f,9%) € SEP(x0,50) X SEY 5(w0,90) (we(f*) = wp(g")).

The saddle point (solution of the game)

Every pair (f*,¢*) € Sp”, (20, y0) X Slsgpf’ﬁ(xo, yo) meeting a condition
we(f*) =wp(g") (1.25)

is called an equilibrium point or a solution of the game Gif g(mo, Yo, N, w).

Note 1.3. The game Gng(xo,yo, N,w) has, in most cases, no solution.

Example 1.4. Let X =Y ={0,1,2}, N =2 and F = G, where F : X —
2% be defined by the equation

T 0 1 2
F(z) | {0,1} | {0,2} | {1,2}
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The pay-off functional w : X x Y — R is defined using a table:

O = O
S W N N

QO = = e

For the initial position (xo,yo) = (0,0) we get

Xo(zo) = Yo(yo) = {0},
Xi(wo) = Y1(yo) = {0, 1},
Xa(z0) = Ya(yo) = {0, 1,2}, (1.26)
Xn-1)(z0) = Yn_1j(z0) = {0,1},
Xa(z0) = Va(yo) = {C1, (2, (3, Cu}
where
Cl = (07070)7C2 = (0707 1)7(3 = (07 170)7C4 = (Oa 17 2) (127)

Therefore, both players can move along four trajectories ;,¢ = 1,2, 3,4 only.
We are going to determine sets of strategies Sp”;, Sp~, for delays o = 1,
B = 0. Every strategy f € Sp¥, only depends on the first variable because

a=N —1. As a result

521?1 :{f17f27f37f4} (128)
where
0,y) (1,y)
J1 0 0
f2 0 2
/3 1 0
fa 1 2

The set Sf;lfo comprises 16 strategies:
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Notice that g12 = 2 < f1, thus the pair (f1, g12) is a saddle point of a con-
sidered game G (20, Yo, 2, w). Indeed,

W9 — ¢ j=1,2,3,..,16 (1.29)
and
nUeai2) — ¢4k =1,2,3,4. (1.30)
2. Mixed global strategies
Consider a game
G 5(xo,y0, N,w) = (SET(20,90), Sp~ 5(20, y0), N, w) (2.1)

and assume that

SE = Sz'pfa(xo’yo) = {f17f27 ceey fm}y (22)
Sp = S;pfg(fﬂo»yo) = {917927 >gn} (23)

The game Gng(:vo,yo,N,w) is equivalent to a matrix game G(Sg, Sp, M)
with sets of pure strategies Sg, Sp and a pay-off matrix

M = [w(fj, gr)]j=12,..m (2.4)
k=1,2,....,n
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Further, we assume:

P = P = (p17p27 7pm) S ]RT : Zp] =1 ) (25)
j=1
Q= {q = (q1,q2, - an) ERY 1> qi = 1} (2.6)
k=1
and, for any (p,q) € P x Q we define:
w(p,q) =YY piarw(fi gr). (2.7)
j—1 k=1

The matrix game G(P, Q, w) with mixed strategy sets P, @) and pay-off
functional w has a saddle point (p*,¢*) and a value V* = w(p*, ¢*) [7].
As far as the game G (20, yo, N, w) is concerned, we presume:

Szp‘_gzl(xo.yo) = P, (28)
S (20, 0) = Q. 2.9

w(p,q) = > > pigrw(EVo0) pliow)), (2.10)
G=1 k=1

Therefore, we obtain the game

Gipigm(x(h Yo, Na W) = (SEP_QZL(:L‘O’ yO) X S;Dp_ggl(xoy())a Na W) (211)

with a saddle point (p*,¢*) and a value V* = w(p*, ¢*).

In case the initial game Gilfg(ato.yo.N, w) is played multiple times, strate-
gies p € SEF"9(z0,y0) and q € S}S;.pfgg(xo,yg) can be interpreted as the fre-
quency of use of the pure strategies.

Example 2.1. A pair (f1, g12) is a saddle point of a game G7'7 (0, yo, 2, w)
from the example 1.4. Thus, the pair (p*,¢*) where

p*=(1,0,0,0),¢" = (0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0) (2.12)

is a saddle point of the game G'f(x0,%0,2,w). Clearly, the values of the
games G°PP and G*P"™9 are the same and equal to 2.
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3. Mixed local strategies

There exist another, more natural, way to derive mixed strategies. Once
again, consider the game Gipg(xo, Yo, N, w). Each pair

(z,y) € Xn_17(z0) X Yn_17(%0) (3.1)

is assigned a probability distribution D g(x,y) and D p(z,y). Assume that

F(z) ={x1,22,..,xm}, Gy) ={y1,Y2,sYn}, (3.2)

DE(JU,y) =3\P= (php?v apm) € RT : ij =1 ; (33)
j=1

Dp(z,y) = {q =(q1,92, -, qn) €RY : qu = 1} . (3.4)
k=1

The set Sg’fﬁ (20, yo) comprising all functions:
[ Xno1y(xo) X Yn_17(y0) — U Dp(z,y) (3.5)
(z,y)€Xn_17(20) XY n_17(¥0)

meeting the criterion:

(z,y) € Xy_17(z0) X Yn_17(%0) = f(z,y) € Dp(z,y) (3.6)

is the set of the strictly positional, mixed, local strategies of the player E.
The set Sfjpf}il (20, yo) comprising all functions:

g Xn_11(x0) X Yy_17(%0) = U Dp(z,y) (3.7
(z.y)€XN_17(z0) XY N _17(¥0)

meeting the criterion

(z,y) € Xn_11(z0) X Yy_17(%0) = g(x,y) € Dp(z,y) (3.8)

is the set of the strictly positional, mixed, local strategies of the player P.
The interpretation of the operation of the strategy f € SSEpanf(fL‘o, Yo) is

as follows: Suppose that, at the instant ¢ € {0,1,..., N — 1}, the player E is

located at the point z, and, at the instant ¢ — «, the player P was located

at the point y. Assume that

F(z) ={x1,22,....xm}, f(z,y) = (p1,D2, -, Pm)- (3.9)
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At the instant ¢ 41 the player E will be located at the point x; with a prob-
ability pj. The interpretation of how the strategy g € S;pfg(xo, yo) works is
similar.

Each pair of strategies (f,g) € Sprflof(:vo,yO) X S;pfg(xg,yo) generated
a distribution

f®g : Xny(20) x YNy (yo) — [0, 1], > (f®g)enm =1 (3.10)
(&mEXN] (0) X VN1 (Yo)

in a set Xn(w0) X Yn(yo). Each such a pair of strategies is assigned an
expected pay-off amount

w(f,g) = > (f ® 9)emw(&(IN),n(IN)). (3.11)
(&mEXN] (w0)x V1 (Yo)

ml

leading to the game GZI’)Z“(.%'(), Yo, N,w) = (S (z0, o) xS;pfg(xo, v0), N, w).
Note 3.1. Games

G (o, 90, N, w), G2 (0, y0, N, w) (3.12)

are not equivalent. The existence of a saddle point in the game

l
GZZ’?;” (l’o, Yo, N7 ’lU)

is an open problem. The following example is a sign of this statement.

Ezxample 3.2. In a game Gi{’é’(wo,yg,N, w) from the example 1.4, we use
a strictly positional, mixed, local strategy. In the other words, we consider
a game Gi??l(xo,yo,2,w).

Local distribution of the player E is defined as follows: we choose random

p = (p1,p2) € [0,1] x [0,1] (3.13)
and assume:
0 1 0 2
fp(ovo):fp(()?l) . 1 1_p1 ) fp(lao):fp(Ll) : D2 1_p2
(3.14)

Local distribution of the player P is defined in a following manner: we
choose random

q = (q1,92,43,q4) € [0,1] x [0,1] x [0, 1] x [0, 1] (3.15)
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and assume:

0 1 0 1
gq(o’ 0) : Q1 1 o ql ) gq(17 0) : q2 1 o q2 9
5 5 . 5 (3.16)
0,1): , 1,1):
94(0,1) g3 | 1—q3 9a(1,1) wul|l—q

A distribution f, ® g, inside the set {&1,&2,&3,84} % {m1,m2,m3,ma} is
given by

fp X 9q m 72
&1 Pigi pii(l —q1)
&2 pi(1—p1)gi p1(1 —p1)g (1 —q1)
&3 (1 —p1)p2q1g2 (1 —p1)p2g1(1 — g2)
€4 | (1—=p)(1=p2)argz | (1 —p1)(1 —p2)qi(l — qo)

fp ® g4 n3 N4
& Pl —q1)gs p2(1—q1)(1 — g3)
) pi(l—p1)(1 —q1)gs pi(l —p)(A—q)( —g3)
&3 (1 —p1)p2(l —q1)qa (1 —p)p2(1 —q1)(1 — qu)
§a | A=p)(A=p2)(1 —qu)ga | (1 =p1)(1 =p2)(1 —q1)(1 — qq)

A pay-off functional is expressed by the formula:

w(p, q) = w(p1, P2, 41, G2, 43) = W(fp, 9q)
= pi(dgi + (1 —q1) +4(1 — q1)gs + 2(1 — 1) (1 — g3))
+pi(L—p)(@f +a(1—q) + (1= g1)gs +3(1 — @) (1 — g3))
+ (I —p)p2(dqrge + 1 (1 — q2) +4(1 — q1)qa +2(1 — q1) (1 — qu))

4+ (1 —p1)(1 —p2)(0+3q1(1 — g2) + 0+ 0).
(3.17)

Regarding a saddle point, it is easy to prove that a function w(-, q) does
not have to be concave and a function w(p,-) does not have to be convex.
Therefore, the existence of a saddle point in the considered game is not
a result of a standard minimax theorems. Assume that

p=(p1,1), ¢=(q1,0,0,0), (3.18)
then

w(p, q) =

pz(:’)q% —q1+2) +p(1—p)(3—2q) + (1 - p1)(2 - q) (3.19)
1

PiBaE +a — 1) +p(l—q) —q +2.



Problem of multistage, strictly positional games 125
Note that:
v13—1
3q% +q1—-1<0&q € [O, 6> (3.20)
We set qo = \/%71 ~ 0.434258.
If ¢1 € [qo, 1], then
max w(pi,q1) = max w(pi,q1) = max{2 — q, 3q% —q1 +2}
p1€[0,1] p1€{0,1} (3.21)
=3¢} —q1 +2
and
min  w(p1,q1) = min (3q% -1 +2)= 3qg —qo+2
q1€[qo,1] q1€[qo,1] (3 22)
10 — /1 '
= 10-vI13 ~~ 2.131483.
3
Note that min (3q3 —q+2)=2for ¢ = %
q1€[0,1}
1 —1 )
If q1 € [0, g) then 0 < w’;%lﬁ < 1, hence:
max w(pi,q1) = w <C]1—1 q1>
pel0d] 23¢f + 1 — 1)’ (3.23)
12¢3 — 19¢? — 14q1 + 9 '
4(1 - q1 — 3q7)
We have
d —36q;+ — 24¢3 + 13¢% + 16¢; — 5
—h(q) = 1 1 L : (3.24)
dq1 41— q1 — 34¢7)

The only root of the polynomial —36q; — 24¢3 + 13¢? + 16¢; — 5 within the

range [0, %) is ¢ =~ 0.297747 3. Therefore,

min w(p1,q1) = h(q]) ~ 1.984 838
q1€[07%)

If ¢1 € [3,q0) then:

g —1
PYCYS Rt
2(3¢;{ +q1 — 1)

thus

max w(p1,q1) = w(l,q1) = 3¢5 — q1 + 2
ple[ovl}

(3.25)

(3.26)

(3.27)
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and )
min w(p1,q) =2 ,for ¢ == (3.28)
a1€[3,90] 3
Finally, the upper value of the game is given by
VT(q}) ~ 1.984838 (3.29)
and
q7 ~ 0.297 747 3. (3.30)

The lower value of the game can be determined in a following way. Sup-
pose that

w(pr,q1) = 3pia; + (T —p1 — Va1 — pi +p1 + 2 (3.31)

We may be notice that

pt —p1 —1 < 0whenp; €[0,1] (3.32)
and
1—pp — p? V29 +1
0< LI g pe (VIR (3.33)
6p3 14

Suppose pg = % ~ 0.456 083 1. If p; € [0, po], then

min w(p1,q1) = w(p1, 1) = Bp% + 1. (3.34)
QIE[Ozl]
and
max (3p% +1)= Bp% + 1~ 1.624 03566 (3.35)
P1€[0,po]

If p1 € (po, 1], then:

min w(p1,q1) = w <p1 W)
q1€[0,1] ’ ’ 6]9%

3.36
—13p} + 14p3 + 25p? — 2p; — 1 (3:36)
1
We have 5 .
d 14+p1+7p] —13p
dipl’l"(pl) = 6p§1 1 (337)

The only root of the polynomial 1+ p; + 7p} — 13p] within the range (po, 1]
is p} ~ 0.804 796 and g(pj) ~ 1.984 838. Finally, the lower value of the game
is given by:

V™ (p]) ~ 1.984838 (3.38)
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and
p] ~ 0.804 796 (3.39)

Notice (example 2.1) that this time games
Gi?§($07 Yo, 2) w)

and
l
Giﬁ;n ($07 Yo, 2> ’IU)

have distinct saddle points and distinct values.
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Identification of periodic components

Witold Rzymowski', Agnieszka Surowiec?

Abstract

The econometric model of life expectancy for men in Poland in
the age from 1 to 100 is considered. The purpose of the investigation
is identification of the periodic components in the sequences of the
residuals of this model. In the process of identifications the following
methods were used: the periodogram, the classical harmonic analysis
and the modified classical harmonic analysis. The results of these
methods are compared with the results of the deterministic models
with the predetermined periodic components.

1. Introduction

Life expectancy is the average number of years that a group of individuals
of age t is likely to live. In this work men are chosen for analysis.

Knowledge of this statistical measure of how long a person at a given age
may live is very important. Thanks to the knowledge of this measure you
can get a synthetic picture of the developments in the process of extinction
of the population of a certain age. This knowledge may be used for example
by policy makers. They usually consider life expectancy while deciding the
retirement plan, e.g. retirement age, minimal number of years spent working,
minimal pension etc. Therefore, life expectancy is one of the factors in
determining the standard of living. Knowledge of life expectancy is necessary
for insurance companies to determine the value of a life insurance policy.
Disparities in life expectancy are often cited as demonstrating the need for
better medical care or increased social support [9].

The present work is an attempt to find the econometric model with
periodic components of life expectancy P; for men in Poland in the age
from t = 1,...,100 and it presents the main problems connected with the
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a.surowiec@pollub.pl

Keywords: Life expectancy, harmonic analysis, Fibonacci numbers, periodogram.
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identification of these components. The analyzed time interval includes the
years 2000-2013. The data came from [8]. The methodology of calculation
these data are presented in [1], [5]. Life expectancy at age zero (¢t = 0) is
not considered in the paper. The model parameters are estimated according
to the Least Square Method. (LSM).

Because the correctness of the econometric model is usually verified by
the means of relative uncertainty of prognoses the aim of the present work
was to find the models with the least relative errors. Models with peri-
odic components usually can have small relative errors. Within the scope
of investigation in the identification of periodic components the following
times series methods are used: periodogram [2], [7], [4],, classical harmonic
analysis [6] and modified classical harmonic analysis. Also, to create the pe-
riodic components the numbers that are given in the work [6] and Fibonacci
numbers are used.

The starting point for the identification of periodic component in the
model of life expectancy for men in Poland P; in the age t = 1,...,100 in
years 2000 — 2013 is the sequence of the residuals in the following form:

Rt:Pt_f(t)v (11)

where f(t), t =1,...,100 is polynomial of degree p.
Identification of the periodic components in the model P; is the deter-
mination of such angles w; that maximal relative error:

5tmax = mtax |5t’7 (12)

of life expectancy model

Py = f(t) +

J

a
(o coswjt + B sinw;t) + &. (1.3)
=1
was the least. Relative error d; in the equation is given by the following
formula: R
P, - P,
5 = ——"1100% (1.4)
Py

where

Pi=f(t)+

J

q
(o coswjt + B sinwjt) . (1.5)
=1
The determination of degree p of polynomial f(t¢) is the first problem.
Unfortunately, the relative errors for all analyzed years for the polynomial
model of degree p = 1 established on the basis of time series methods [2] are

very big and the relative errors of parameters estimation in these models are



Identification of periodic components 130

Table 1. Maximal relative errors and maximal relative error parameters
estimation of models (1), (2) and (3) of life expectancy for men for years
2000-2013

model(1) model(2) model(3)

years a b a b a b

2000 | 454,527 1,885 | 25,798 23,924 | 19,191 0,439
2001 | 431,139 1,866 | 24,963 23,020 | 18,293 0,452
2002 | 450,624 1,831 | 23,486 15,827 | 14,409 0,444
2003 | 484,189 1,823 | 22,548 12,280 | 11,754 0,420
2004 | 463,461 1,806 | 19,648 18,047 | 12,758 0,363
2005 | 459,893 1,792 | 19,003 20,957 | 13,044 0,355
2006 | 443,540 1,784 | 14,861 20,799 | 9,532 0,329
2007 | 438,416 1,780 | 14,348 21,663 | 9,306 0,326
2008 | 443,061 1,752 | 12,853 15,700 | 6,369 0,327
2009 | 460,842 1,741 | 13,677 11,613 | 4,005 0,389
2010 | 430,176 1,722 | 13,396 11,108 | 3,724 0,407
2011 | 422,406 1,691 | 11,682 9,921 | 2,867 0,411
2012 | 419,002 1,689 | 12,403 8,457 | 3,502 0,463
2013 | 413,610 1,678 | 13,825 7,387 | 4,142 0,534

greater than 10%. The polynomial of degree p = 2 is not suitable either.
The following polynomial model, see [6]:

F(t) =0 +mt + 3t® (1.6)

comes in handy.

Only the results of testing the polynomials models for p =1 (1), p = 3
(2) and the results of testing model (1.6) (3) of the life expectancy for years
2000-2013 are shown in Table 1.

In Table 1 we present maximal relative errors d;,, (kolumn a) for models
(1), (2) and (3) and maximal relative errors relS, . (kolumn b) for these

Ymax
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models. We define relS.

“Ymax

by the following formula:

relS,, .. = maxrelS,,, (1.7)
K3

where relS,, is the relative estimation error of parameter ¢.

In model 1 the parameter v; has the biggest relative estimation error, in
model (2) v and in model (3) ~s.
2. Periodogram

Lets construct the periodogram [2| for the times series R;. For even number
of observation N = 100 (N = 2q, ¢ = 50), the following function:

N (.2 | 12 :
N o(a; +b5) forj=1,2..,9-1,
I(fj) { Naj? for ] =q. (21)

is the periodogram, where

N
2
aj:NZthoswjt,j21,2,---761—17 (2.2)
t=1
N
2
bj:NZRtsinwjt,j:1,2,~--7q—1a (2.3)
t=1
N
1
ag =~ >_(~1)'Re, (24)
t=1

We determine the maxima of periodogram. These maxima correspond
to such ¢, that the angles w; are conected with determined ¢ by the following
equation:

i
;= 21— 2.5
w T (2.5)

3. Harmonic analysis and modified harmonic
analysis

In harmonic analysis for times series of residuals R; we determine the mean
value R:

1 N
R=— 1
R N;Rt (3.1)
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and standard deviation o(R;):

1 N

o(Ry) = | v Rt—Ez- (3-2)
(R) = \| =g LR~ R

We set the following critical value connected with the standard deviation:

. . |N
K =3 EU(Rt). (3.3)

for the following coefficients

N

re(k) = > Ry cos(%T”t). (3.4)
t=1
N

ke(k) =) R sin (=) (3.5)
t=1

where k € [0, 5.

In classical harmonic analysis we determine the number ¢ of local ex-
trema, of functions k. and ks. The absolute value of these extrema must be
greater than critical value k*. We look for such k;, where ¢ = 1,2, ..., ¢ that
correspond to these extrema.

Similarly, we determine the number ¢ of local extrema of functions k.
and k4 that in the same way are connected with critical value £* in modified
harmonic analysis but in this method we look for such k;, wherei = 1,2, ..., q,
that correspond to zeroes of a function k; for extrema of function k. and
that correspond to zeroes of a function k. for extrema of function k4. The
angles w; are connected with determined k; by the following equation:

2k;m

4. Models with predetermined periodic
components

4.1. Polynomial model with 4 angles

In this section we test the model of life expectancy P for men in the age
from ¢t = 1,...,100 in Poland introduced in [6] with only 4 angles in the
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following form:

Py =0 +mt + st +

m T
+a cos(ﬁt) + b1 sm(ﬁt) +
m T
+ao cos(gt) + B2 sm(%t) + (4.1)
7r
in(—t
+83 sm(28 )+
m T
+oy cos(ﬁt) + B4 Sm(ﬁt) + &4

where f(t) is chosen polynomial given by equation (1.6).

4.2. Models with Fibonacci numbers

We can obtain the model with small relative errors by using only the periodic
components (without the polynomial).

In this section we define the model of life expectancy for men in Poland
by Fibonacci numbers. Lets w; = 2t for j = 1,2,..7 where Fji7 is

Fjir
(j + 7) Fibonacci number. Therefore we take the following Fibonacci
numbers: Fg = 21, Fg = 34, Flg = 55, F11 = 89, Flg = 144, F13 = 233,
Fy=377.
We consider only 7 angles because of simplicity of econometric model.
Therefore the analyzed model has the following form:

7
P = Z (aj coswjt + B sinw;t) + &. (4.2)
j=1

5. Results

The results presented in this work have been obtained by means of these
methods described in chapters above. These methods are to determine which
angles (periods) should enter the final models. To estimate the parameters
of constructed models the LSM is used. The effectiveness of these models is
tested by the relative error.

5.1. Results from the periodogram

The periodogram for all analyzed years 2000-2013 has the same shape. Max-
imum of all periodogram corresponds to ¢ = 2. It changes from 0,77 in year
2008 to 2.10 in year 2001. A sample periodogram is presented in Figure 1
for year 2013, for ¢ = 1,2, ..., 10.
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Because of the following models:

model (1):
Py =0 + vt + 3t + o cos(i—ot) + o sm(%t) + &4,
model (la):
Py =0 + it + 13t® + ay cos(%t) + &4,
model (1b):
Py =70 +mt + 73t + B sm(2 t) + et

50

are not very good (see Figure 2 and 3) we analyze the following models as
well:

model (2):
Py =0 +mt + st +
+ag cos(;—ot) + 51 sin(;—ot) +
+ag cos( 50 ) + B2 sm(%t) +
+agcos(3at) + Bysin(Er) + e,
model (3):

P =0 +mit + 3t +

+aq COS(%t) + b1 sm(%t) +

37 .3
+as cos(%t) + 33 sm(%t) + &4,

Periodogram for 2013 year

18
1.6
14
1.2

0.8
0.6
0.4 —

-0 ’_l | o | I —

1 2 3 4 5 6 7 8 9 10

Figure 1: Periodogram of life expectancy for year 2013 for ¢ = 1,2, ..., 10.
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model (4):
¢

50

us
—1

P, = vo 4+ vt +73t3 + a1 cos(—t) + /1 sin(50 ) + €.

Otmax

-
(3)

S | p—"" P (L —

Figure 2: Maximal relative errors for models (1), (1a), (1b), (2), (3) and (4)
in years 2000-2013.

model (1)
model (1)
model (2}
model (3)

ol ' [model (1a)

Figure 3: The map of the relative errors of parameters estimation for models
(1), (1a), (1b), (2) and (3) in years 2000-2013. Black square with integer
value of error is for the parameters errors greater than 10%.

The maximal relative errors and all relative errors of parameters estima-
tion of model (4) of P; are less than 10%. The relative errors of parameters
estimation v;, a1 and (57 in all analyzed models of P; are less than 10% too.
To this end we do not present them in Figure 3.
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5.2. Results from harmonic analysis and from the modified
harmonic analysis

Firstly we analyze the graphs of functions given by equation (3.4) and (3.5).
The sample of these graphs are presented in Figure 4. For years 2000 — 2005
and 2012 we can have 4 angles (see Figure 4 on left), for years 2006 — 2011
and 2013 we can have only 3 angles (see Figure 4 on right). Taking into
account the results presented in Figure 4 we can obtain different values of k;
in methods: the classical harmonic analysis and modified harmonic analysis.
These values of k; in equation (3.6) for models of life expectancy for men in
years 2000-2013 are presented in Table 2.

2000 2006

N A

Y AV

-10
-12

Figure 4: Graph of functions Cosinus and Sinus for 2000 and 2006 year

Therefore in this section we test 4 following models:

e classicald is the model with 4 angles obtained in classical harmonic
analysis.

e classical3 is the model with 3 angles obtained in classical harmonic
analysis.

e modified4 is the model with 4 angles obtained in modified harmonic
analysis.

e modified3 is the model with 3 angles obtained in modified harmonic
analysis.

The results of maximal relative errors for models with 3 and 4 angles in
classical and modified analysis in years 2000-2013 are presented in Figure
5). The results for 4 angles in years 2000 — 2005 are nearly the same.
In modified harmonic analysis the maximal relative errors are less than in
classical harmonic analysis in all years.

The maximal relative errors for the models with 4 angles are less then the
maximal relative errors for the corresponding models with 3 angles see Figure
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Table 2: Values of k; in equation (3.6) for the classical harmonic analysis
and for the modified harmonic analysis for models of life expectancy for men
in years 2000-2013

years classical method modified method

i 1 2 3 4 1 2 3 4
2000 | 1.774 1.365 2.151 3.241 | 1.756 1.186 2.281 3.247
2001 | 1.777 1.365 2.157 3.228 | 1.761 1.184 2.301 3.232
2002 | 1.731 1.299 2.131 3.169 | 1.715 1.102 2.324 3.159
2003 | 1.691 1.252 2.102 3.1 | 1.681 1.055 2.399 3.102
2004 | 1.777 1.34 2.188 3.091 | 1.771 1.144 2.542 3.06
2005 | 1.805 1.372 2.213 3.098 | 1.798 1.181 2.57 3.048
2006 | 1.86 1.396 2.344 — 1.86 1.195 2.873 —
2007 | 1.862 1.401 2.338 — | 1.859 1.202 2.853 —
2008 | 1.811 1.313 2.612 — 1.81 1.103 2.794 —
2009 | 1.719 1.238 2.366 — | 1.721 1.038 2.727 —
2010 | 1.708 1.235 2.252 — | 1.708 1.035 2.731 —
2011 | 1.675 1.206 2.305 — 1.68 1.011 2.698 —
2012 | 1.63 1.179 2.139 2.593 |1.638 0.99 2.735 —
2013 | 1.6 1.161 2.068 — |1.603 0.975 2.733 —

5. Nevertheless the relative errors of almost all parameters estimation for
the model with 4 angles are significantly greater than 10% (see Figures 6).
Both models (obtained in classical and modified harmonic analysis) with 3
angles work worse in years 2000 — 2005 than in years 2006 — 2013 (see Figure

5and 7).

5.3. Results for polynomial model with 4 predetermined

angles

In this section the results for deterministic model with predetermined angles
(see equation (4.1) are presented. The Figure 8 presents maximal relative
errors for this model. The values of this model in all analyzed years does
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—+—clasical4 —e—clasical 3 modified4  —8—meodified 3

Figure 5: Maximal relative errors for models with 3 and 4 angles in classical
and modified analysis in years 2000-2013.

years classical method for 4 angles modified method for 4 angles
3322171 3 [Elaslenl i [T

Figure 6: The map of the relative errors of parameters estimation for models
with 4 angles in years 2000-2013. Black square with integer value of error is
for the parameters errors greater than 10%.

yearsl clazsical method for 3 anglesl modified method for 3 angles

Figure 7: The map of the relative errors of parameters estimation for models
with 3 angles in years 2000-2013. Black square with integer value of error is
for the parameters errors greater than 10%.
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Otmax

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013

Figure 8: Relative errors for models of the life expectancy with 4 predeter-
mined angles in years 2000-2013.

not exceed 1% but the relative errors of the parameters estimation for this
model do not exceed 10% for only year 2002 (see Figure 9).

Figure 9: The map of the relative errors of parameters estimation for models
with 4 predetermined angles in years 2000-2013. Black square with integer
value of error is for the parameters errors greater than 10%.

5.4. Results for models with Fibonacci numbers

In this section 3 models with Fibonacci numbers are analyzed. In the model
(1) the following Fibonacci numbers are used: Fy — Fi3, in the model (2)
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the same Fibonacci numbers are used like in the model 1 but the component
cos(%—’;) is absent. In the model (3) the following Fibonacci numbers are
used: Fg — Fi4. The maximal relative errors of these models are presented
in Figure 10 and the map of relative errors of parameter estimation are
presented in Figure 11. The maximal relative errors of the model with 7
Fibonacci numbers are less than 0.5% see (Figure 10). This model is very
stable in all analyzed period 2000 — 2013 even though the relative errors
of almost all parameters estimation for this model are significantly greater
than 10% (see Figures 11. The model (1) are best in the period 2000 — 2005
than the model (2) and the model (2) are best in the period 2006 — 2013
than the model (1).

Sirmax (FB)

Figure 10: Relative errors of models of the life expectancy with Fibonacci
numbers in years 2000-2013.

muodel with Fibonacci numbers(1} model with Fibonacci numbers (2) model with Fibonacci numbers (3)
cos  sin | cos sin cos sin cos sin cos sincos sin cos | sin cos sin cos sin sin)cos sin cos sin cos sin cos  sin cos sin cos sin | cos sin
233 233 144 144/ 89 89 55 55 34 34233 233 144 144 89 89 55 377 377 233/ 233/ 144 144 B39 89
0 3 4

Figure 11: The map of the relative errors of parameters estimation in models
with Fibonacci numbers in years 2000-2013. Black square with integer value
of error is for the parameters errors greater than 10%.
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Conclusion

Because of “Fconometric model building is an art, as an art is to design
a building” [3] we tested many different methods of identification of the pe-
riodic components in the sequences of the residuals of the life expectancy
model for men in years 2000-2013. The methods described in section (2)
and (3): the periodogram, the classical harmonic analysis and the modified
harmonic analysis are based on times series theory [2], [7]. These models are
probabilistic models. The models described in section (4) are the determinis-
tic models that are not substantiated any theory. Nevertheless, the maximal
relative errors of these deterministic models are significantly less than the
maximal relative errors of probabilistic models. The models obtained by
means the periodogram are the worst (see Figure 2). The most accurate
model is the model with 7 Fibonacci numbers even though the relative errors
of almost all parameters estimation for this model are significantly greater
than 10% (see Figures 11). The maximal relative errors for model with
7 Fibonacci number are less than 0.5%. Furthermore, this model is stable
in all analyzed years (see Figure 10). The maximal relative errors for the
probabilistic models obtained in classical and modified harmonic analysis
are less than 0.5% as well, but these models exist only in 2000 — 2005 years
(see Figure 5). The relative errors of almost all parameters estimation for
this model are significantly greater than 10% (see Figures 6) as well.
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