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From the Preface:  

We present to the readers the second volume of the series „Probability in Action”. The motivation 
to launch this series was presented in the first volume and has not since changed. In view of the 
good reception of the first publication, the second is written in the same style. The main aim 
is the presentation in book form of the current research of scientists at the Lublin University of 
Technology (some chapters have co-authors from other cooperating academic institutions) in 
the field of probability theory and its applications. Another objective is an offer and an invitation 
to collaboration to a very broad group of specialists representing pure and applied mathematics, 
mathematical biology, statistics, engineering, economy and social sciences.

From the Review: 

The monograph considered is the sequel to the one titled Probability in Action published 
recently by the same publisher. Like its predecessor, the actual monograph comprises  
a number of articles (nine altogether) written by different authors and dealing with  
various problems of modern probability and its far going applications. I have found that 
it can be interesting to a substantial number of specialists… 

                                                                                                       Prof. dr hab. J. Kozicki
                                                            Institute of Mathematics, UMCS 
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Preface

We present to the readers the second volume of the series �Probability
in Action�. The motivation to launch this series was presented in the
�rst volume and has not since changed. In view of the good reception of
the �rst publication, the second is written in the same style. The main
aim is the presentation in book form of the current research of scientists at
the Lublin University of Technology (some chapters have co-authors from
other cooperating academic institutions) in the �eld of probability theory
and its applications. Another objective is an o�er and an invitation to
collaboration to a very broad group of specialists representing pure and
applied mathematics, mathematical biology, statistics, engineering, economy
and social sciences.

The book is organized as a series of nine research articles.

Zbigniew A. �agodowski



Averaging discrete-time signals

having �nite energy

Tadeusz Banek1, August Zapaªa2

Abstract

The general method for averaging functionals of any discrete−time
signals having �nite energy is presented. The method uses Banach's
general concept of the Lebesgue integration in abstract spaces, which is
restricted here to the separable Hilbert space. The described method
allows us to evaluate any characteristic which can be expressed as
a function of data. In addition to the integral representation we of-
fer a numerical Monte Carlo type integration procedure which is of
independent interest.

1. Introduction

Assuming that signals emitted by a �nite number of sources have �nite total
energy in any bounded time interval, we propose an averaging procedure
based on Banach's concept of the Lebesgue integral in abstract spaces [1].
More precisely, we are going to use a particular variant of Banach's theory,
namely those which is connected with integration in the in�nite dimensional
separable Hilbert space, i.e. the space

`2 =

{
x = (x1, x2, ...) ∈ R∞ :

∞∑
n=1

x2
n <∞

}
,

of all sequences of real numbers having sum of squares �nite. By Sn (r) we
denote the set

Sn (r) =

{
x = (x1, x2, ..., xn, 0, ...) ∈ `2 :

n∑
k=1

x2
k ≤ r2

}
⊂ `2,

1Lublin Technical University, Faculty of Management, Nadbystrzycka 38A, 20-618
Lublin, Poland, Polish Air Force Academy, Aeronautics Faculty, Department of Avionics
and Control Systems, e-mail: kenabt@gmail.com

2The John Paul II Catholic University of Lublin, Faculty of Mathematics, IT and
Landscape Architecture, e-mail: azapala@kul.pl
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and put

S (r) =
⋃
n≥1

Sn (r) =

{
x ∈ `2 :

∞∑
n=1

x2
n ≤ r2

}
⊂ `2.

According to Banach's [1] Theorem 1, the most general non-negative lin-
ear functional F de�ned on the linear set C of real-valued, bounded, Borel
measurable functions Φ on the space S (r), satisfying additional conditions
(i)�(ii) of Banach's paper, is of the form

F (Φ) = lim
n→∞

Fn (Φ) ,

Fn (Φ) =

∫
Sn(r)

Φ (x1, ..., xn, 0, ...) dx1...dxn

2nr
√(

r2 − x2
1

)
· ... ·

[
r2 −

(
x2

1 + ...+ x2
n−1

)] ,
where Φ : S (r) ⊂ `2 → R is a bounded, Borel measurable function of in�-
nite number of variables. The mentioned functional F possesses analogous
properties as the Lebesgue integral, thus it is called functional integral, or
in short L-integral. Having in mind applications in physics, S (r) may be in-
terpreted as the set of �ows or impulses with a �nite energy, which stimulate
the behaviour of the observed object and exert in�uence on its numerical
characteristic Φ, and a fortiori � on F (Φ). To illustrate the wide spectrum
of all the possible forms of Φ we consider a few examples.

Example 1.1. Let Φ (x) = P (|x|2), x ∈ S (r), where P is a real-valued poly-
nomial, and |·|2 is the norm of `2. More generally, if Φ (x) : S(r)→ R is Borel
measurable and |Φ (x)| is bounded from above by a polynomial P (|x|2),
then the Banach L-integral F (Φ) is well-de�ned. In particular, for func-
tions of the form Φ (x) = sin (P (|x|2)) , cos (P (|x|2)) , arctan (P (|x|2)) ,
arccot (P (|x|2)) etc., the Banach L-integral F (Φ) can be considered.

Example 1.2. Since for each real-valued polynomial P we have |P (y)| ≤
m <∞ for all 0 ≤ y ≤ r, where 0 < m <∞ denotes a constant, the Banach
integrals for Φ (x) = exp {±P (|x|2)} , Φ (x) = log [1 + |P (|x|2)|] etc., are
de�ned as well.

Example 1.3. Let L (x) =
∑∞

k=1 x
2
i(k) be a lacunary series of x = (x1, x2, ...)

in `2, where 1 ≤ i (1) < i (2) < ... is an arbitrary but �xed sequence of in-
creasing indices. Then clearly L (x) ≤ |x|22 , therefore all the above examples
with polynomial P (|x|2) replaced by P (L (x)) provide bounded, Borel map-
pings on S (r) for which the Banach functional integrals are well-de�ned.

Example 1.4. Notice that if x ∈ S (r), then |xk| ≤ r for all k ≥ 1.
Moreover, the projection `2 3 x → xk ∈ R is a continuous function of
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x ∈ `2, and so Borel-measurable. Hence it follows that mappings of the
form fk1(x) = sup

{
xi1(j), 1 ≤ j ≤ k1

}
, gk2(x) = sup

{∣∣xi2(j)

∣∣ , 1 ≤ j ≤ k1

}
,

hk3(x) = inf
{
xi3(j), 1 ≤ j ≤ k3

}
, lk4(x) = inf

{∣∣xi4(j)

∣∣ , 1 ≤ j ≤ k4

}
,

f∞(x) = sup
{
xi5(k), k ≥ 1

}
, g∞(x) = sup

{∣∣xi6(k)

∣∣ , k ≥ 1
}
, h∞(x) =

inf{xi7(k), k ≥ 1}, or l∞(x) = inf
{∣∣xi8(k)

∣∣ , k ≥ 1
}
, are bounded and Borel-

measurable on S (r). Therefore compositions of any bounded Borel function
Ψ : [−r, r]s → R, 1 ≤ s <∞, with the last mappings, as well as with xi(k),
|x|2 and L (x) , i.e. maps of the form

Ψ
(
fk1 , gk2 , hk3 , lk4 , f∞, g∞, h∞, l∞, |·|2 , L (·) , πi(1), πi(2), ..., πi(r)

)
(x),

where πi(k)(x) = xi(k), s = r + 10, are also admissible integrands for the
Banach L-integral.

To describe more precisely everyday life practical applications of the
developed here general theory, we sketch some situations when it may be
useful.

1. Consider some electrical equipment battery, e.g. laptop, tablet, video
camera, smartphone, mobile telephone, GPS etc. Usually the battery needs
to be fully recharged when it is quite �at, but sometimes (in random cases)
the process of recharging starts before the battery is entirely discharged,
and sometimes (in other cases) the process of recharging is not �nished as
it should be. In such cases the total capacity of the battery is reduced, but
the downfall does not change linearly, i.e. we may expect that the remaining
part of unattainable capacity after recharging (= sn) is smaller than the sum
of unattainable capacity before this process (= sn−1) and unused capacity
(= | ± xn|); see the pictures below.

-

sn−1 xn

�

sn−1 −xn

sn

In other words, one may expect that

sn ≈
√
s2
n−1 + x2

n ≤ sn−1 + | ± xn|.
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In this model the quantity
(∑n

i=1 x
2
i

)1/2
expresses the unattainable capacity

of the battery and when it assumes the maximal possible value r, the battery
becames unusable. Notice that the limit point x = limn

∑n
i=1 xiei ∈ `2 of

this process represents the whole history of life of the battery.

2. Suppose that a PC is used by a couple of people and the private
�les written on the hard disk by one or the other person are denoted by
signs +,� resp. The �les cannot be written linearly one after another, so
that the total capacity occupied by a �nite number n of �les is greater than
the sum | ± x1| + | ± x2| + ... + | ± xn| of their sizes | ± xi|. When one
performs the backup of the hard disk, say on a DVD-ROM, then the �les
are compressed in such a way that they occupy less capacity then the sum
of their sizes. Thus we may expect that the total capacity of n �les written
on a DVD-ROM is equal to

sn ≈
√
x2

1 + x2
2 + ...+ x2

n ≤ | ± x1|+ | ± x2|+ ...+ | ± xn|.

Now when the quantity sn attains the capacity r of the DVD-ROM, the
DVD-ROM is full, the backup is stopped and the DVD-ROM should be
changed.

Although our study is well-founded to macroscopic situations, it may
be also used for the description and analysis of some phenomena in nuclear
physics.

3. Recall that the main ideas of quantum mechanics are the following:
the possible (pure) states of a quantum mechanical system (e.g. a particle)
are represented by some unit vectors of a complex separable Hilbert space
(H, ‖·‖), called state space, well de�ned up to a complex constant c, |c| = 1
� the phase factor; physical properties of the system are described by means
of wave functions x(u, t) of the position u ∈ R3 and time t ∈ R, taking values
in H, such that for a �xed t, ‖x (u, t)‖2 is a probability density satisfying
condition: the probability that the particle in the state x can be found in
a region ∆ ⊂ R3 at the moment of time t is equal to

P [x, u ∈ ∆] =

∫
∆

‖x (u, t)‖2 du;

each physical quantity, say b, is associated with a (Hermitian) linear operator
B acting on H, and all the possible values of b are certain eigenvalues of B.
Moreover, if x is expanded in the CONS {ei} consisted of eigenvectors of
B, then the process of measurement of it can give merely the value of some
coe�cient xi with probability |xi|2 in the series expansion

x =

∞∑
i=1

xiei,
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and then the wave function reduces to xiei. In the presented below approach
we consider only a real Hilbert space H = `2 and we are not interested at all
in quantization, thus it is a sort of simpli�cation of the quantum mechanics
theory, but on the other hand, contrary to postulates of quantum mechanics
where coe�cients xi of vectors x ∈ H are assumed to be constant (for �xed
t), we consider xi, i ≥ 1, as random variables. Furthermore, taking r = 1
we introduce normalization which entails that

∞∑
ni=1

x2
i = 1,

i.e.
{
x2
i , i ≥ 1

}
is a discrete probability distribution with probability 1. The

last condition is consistent with requirements of quantum mechanics. Hence
our considerations can also shed light on the properties of quantum mechan-
ical systems. More precisely, if the procedure of measurements enables us
to obtain consecutive values of coe�cients xi, treated as experimental data
of random variables for the �ow of homogeneous particles, then one is able
to approximate x, and in consequence � the expected value of any bounded
numerical characteristic Φ(x) = Φ (x1, x2, ...) of the wave function x. There-
fore one may expect that in such a way the physical quantities like energy,
momentum or position of the particle would be estimated (with accuracy
which is admissible by Heisenberg's uncertainty principle).

As is clearly visible from the above examples, Φ may have a complicated
form, hence analytic integration is rarely possible. Therefore in most situ-
ations we have to approximate the proper value of F (Φ). The �rst step in
this direction requires an approximation of F (Φ) by means of Fn (Φ).

2. Approximation of the Banach functional

integral with increasing dimension of the space

From the general theory developed in Banach's paper [1] we know that
F (Φ) = limn→∞ Fn (Φ) , but for many practical reasons the most important
is the rate in this convergence. Under some realistic restrictions we are able
to estimate the rate of convergence of Fn (Φ) to F (Φ). Since Φ is a bounded
function of x = (x1, x2, ...) ∈ S (r) ⊂ `2, where

∑∞
n=1 x

2
n ≤ r2 < ∞, it is

natural to demand that there can be found a constant 0 < C < ∞, such
that

|Φ (x1, ..., xn−1, xn, 0, ...)− Φ (x1, ..., xn−1, 0, ...)| ≤ C · x2
n (2.1)

for all su�ciently large n ≥ nC . Obviously, the constant C in (2.1) may be
dependent on r, thus for an arbitrary upper bound that can be expressed
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in terms of |xn|β , β > 0, we can always write |xn|β ≤ rβ−2 · x2
n when

2 < β < ∞. On the other hand, if 0 < β < 2, then one can estimate from
above the integral of |xn|β by the integral of x2

n using the Hölder inequality.
Thus the assumption (2.1) is in fact quite natural.

Lemma 2.1. If Φ (x1, ..., xn, 0, ...) = x2
n, then we have

M2
n (r) :=

∫
Sn(r)

x2
n dx1...dxn

2nr
√(

r2 − x2
1

)
· ... ·

[
r2 −

(
x2

1 + ...+ x2
n−1

)] =
r2 · 2n−1

3n
.

Proof. Substitute xi = ryi for i = 1, 2, ..., n, and note that for n > 1,

M2
n (r) =

∫
Sn(1)

r2y2
n

2n
√(

1− y2
1

)
· ... ·

[
1−

(
y2

1 + ...+ y2
n−1

)]dy1...dyn =

= r2

∫
Sn−1(1)

1

2n
√(

1− y2
1

)
· ... ·

[
1−

(
y2

1 + ...+ y2
n−1

)] ·

·

2

√
1−(y21+...+y2n−1)∫

0

y2
ndyn

 dy1dy2...dyn−1 =

= r2

∫
Sn−1(1)

y3
n

3

∣∣∣∣
√

1−(y21+...+y2n−1)

0

dy1dy2...dyn−1

2n−1
√(

1− y2
1

)
· ... ·

[
1−

(
y2

1 + ...+ y2
n−1

)] =

= r2

∫
Sn−1(1)

[
1−

(
y2

1 + ...+ y2
n−1

)]
dy1dy2...dyn−1

3 · 2n−1
√(

1− y2
1

)
· ... ·

[
1−

(
y2

1 + ...+ y2
n−2

)] =

=
r2

3

{
1−

(
M2

1 (1) +M2
2 (1) + ...+M2

n−1 (1)
)}
.

Furthermore,

M2
1 (r) =

r∫
−r

x2
1

2r
dx1 =

x3
1

3 · 2r

∣∣∣∣r
−r

=
r2

3
,

thus

M2
2 (1) =

1

3

{
1−M2

1 (1)
}

=
1

3
· 2

3
,
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and, by induction,

M2
k (1) =

1

3

{
1−

(
1

3
+

2

32
+ ...+

2k−2

3k−1

)}
=

1

3

{
1− 1

3
· 1− (2/3)k−1

1− 2/3

}
=

2k−1

3k
.

Hence

M2
n (r) =

r2

3

{
1−

(
M2

1 (1) +M2
2 (1) + ...+M2

n−1 (1)
)}

=

=
r2

3

{
1−

(
1

3
+

2

32
+ ...+

2n−2

3n−1

)}
=
r2 · 2n−1

3n
,

which concludes the proof.

Theorem 2.2. Under the assumption (2.1) we have

|F (Φ)− Fn (Φ)| ≤ C · r
2 · 2n

3n
.

Proof. Notice �rst that

|Φ (x1, ..., xn, ..., xn+N , 0, ...)− Φ (x1, ..., xn, 0, ...)| ≤ C·
(
x2
n+1 + ...+ x2

n+N

)
.

Therefore

|Fn+N (Φ)− Fn (Φ)| ≤ C ·
(
M2
n+1 (r) + ...+M2

n+N (r)
)
≤

≤ C · r
2

3

(
2n

3n
+ ...+

2n+N−1

3n+N−1

)
= C · r

2

3
· 2n

3n

(
1− (2/3)N

1− (2/3)

)
.

Passing to the limit as N →∞ we obtain

|F (Φ)− Fn (Φ)| = lim
N→∞

|Fn+N (Φ)− Fn (Φ)| ≤

≤ lim
N→∞

C · r
2

3
· 2n

3n

(
1− (2/3)N

1− (2/3)

)
= C · r2 · 2n

3n
,

which entails the desired estimate.
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3. Random walk in the ball

As the �rst step, choose a random point x1 = X1 (ω) from S1 (r) = [−r, r],
where the interval [−r, r] is equipped with the uniform distribution. De-
note by l2 (x1) a segment of the line orthogonal to the 1-dimensional sphere
S1 (r) = [−r, r], which is a chord of S2 (r) that passes by the point x1. At
the second step select randomly a point x2 = X2 (ω) from l2 (x1) according
to the uniform distribution on it. Being at x2, �nd a segment l3 (x2) or-
thogonal to the plane spanned by l2 (x1) and S1 (r) and crossing l2 (x1)
at x2, such that l3 (x2) is a chord of S3 (r). Choose randomly a point
x3 = X3 (ω) according to the uniform distribution on l3 (x2), etc. The
sequence (x1, ..., xn) = (X1 (ω) , ..., Xn (ω)) is then a random vector and the
probability density function corresponding to this sample is given by the
formula

gn (x1, ..., xn) =
1lSn(r) (x1, ..., xn)

2nr
√(

r2 − x2
1

)
· ... ·

[
r2 −

(
x2

1 + ...+ x2
n−1

)] ,
i.e. it is the same mapping as the one de�ning the Banach L-integral. To
check that gn (x1, ..., xn) is in fact a probability density it is enough to show
that

In :=

∫
Sn(r)

dx1...dxn

2nr
√(

r2 − x2
1

)
· ... ·

[
r2 −

(
x2

1 + ...+ x2
n−1

)] = 1

for an arbitrary n ≥ 1. Indeed,

In+1 =

∫
Sn(r)

[
1
2

∫√
(r2−x21−...−x2n)

−
√

(r2−x21−...−x2n)
dxn+1

]
dx1...dxn

2nr
√(

r2 − x2
1

)
· ... ·

[
r2 −

(
x2

1 + ...+ x2
n

)] =

= In = ... = I1 =

∫ r

−r

1

2r
dx1 = 1.

Denote by X1, ..., Xn a random sequence having realization x1, ..., xn, i.e.
having probability density gn (x1, ..., xn) as in the Banach functional integral.
Observe that in this context the considered above quantities M2

n (r) are
equal to the second moments of r.v's Xn. On the basis of the presented
argumentation we obtain immediately the following result.
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Proposition 3.1. The Banach functional Fn (Φ) that approximates L-integral
is equal to∫

Sn(r)

Φn (x1, ..., xn)
dx1...dxn

2nr
√(

r2 − x2
1

)
· ... ·

[
r2 −

(
x2

1 + ...+ x2
n−1

)]
= ERW [Φn (X1, ..., Xn)] ,

where Φn is the restriction of Φ to Sn (r) , and the expectation ERW is taken

with respect to the measure PRW induced by the random walk X1, ..., Xn on

Sn (r).

Proof. The proof is obvious, so the details are omitted.

In the next sections we show how to compute the Banach functional
integral using random walk on the space Sn (r), i.e. we demonstrate the
power of the above Proposition 3.1.

4. Monte Carlo integration

Since x1, ..., xn is a sample of X1, ..., Xn, it is natural to expect that

Fn (Φn) =

∫
Sn(r)

Φn (x1, ..., xn)
dx1...dxn

2nr
√(

r2 − x2
1

)
...
(
r2 − x2

1 − ...− x2
n−1

)
≈ 1

N

N∑
i=1

Φn (x1 (i) , ..., xn (i)) ,

where x1 (i) , ..., xn (i) is the i-th sample ofX1, ..., Xn. Such a method follows
from the general theory of Monte Carlo integration, cf. e.g. [2], and on the
other hand � it is a straightforward consequence of the law of large numbers.
This is also justi�ed by the following theorem.

Proposition 4.1. Let Xn = col (X1, ..., Xn), and let Xn (1) , ..., Xn (N), be
a collection of N− identical copies of Xn. Then

PRW

[∣∣∣∣∣ 1

N

N∑
i=1

Φn (Xn (i))− Fn (Φn)

∣∣∣∣∣ > ε

]
≤ Var [Φn (Xn)]

Nε2
,

and

PRW

[∣∣∣∣∣ 1

N

N∑
i=1

Φn (Xn (i))− Fn (Φn)

∣∣∣∣∣ > ε

]
≤

≤ 1

N3ε4
ERW [Φn (Xn)− Fn (Φn)]4 +

6

N2ε4
{Var [Φn (Xn)]}2 .
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Proof. The �rst assertion follows by an application of Chebyshev's inequal-
ity, since

ERW

[
1

N

N∑
i=1

Φn (Xn (i))

]
=

1

N

N∑
i=1

ERW [Φn (Xn (i))] = ERW [Φn (Xn)]

= Fn (Φn) ,

and in addition

Var

[
1

N

N∑
i=1

Φn (Xn (i))

]
= ERW

[
1

N

N∑
i=1

[Φn (Xn (i))− ERWΦn (Xn)]

]2

=
1

N2

N∑
i=1

N∑
j=1

ERW [Φn (Xn (i))− ERWΦn (Xn)]

· [Φn (Xn (j))− ERWΦn (Xn)] =

=
1

N2

N∑
i=1

ERW [Φn (Xn (i))− ERWΦn (Xn)]2 =

=
1

N2
·N · ERW [Φn (Xn)− Fn (Φn)]2 =

1

N
Var [Φn (Xn)] .

To obtain the second statement we apply Markov's inequality with pa-
rameter p = 4, which gives

PRW

[∣∣∣∣∣ 1

N

N∑
i=1

Φn (Xn (i))− Fn (Φn)

∣∣∣∣∣ > ε

]
≤

≤ 1

ε4
ERW

[
1

N

N∑
i=1

[Φn (Xn (i))− ERWΦn (Xn)]

]4

=

=
1

N4ε4

N∑
i,j,k,l=1

ERW [Φn (Xn (i))− ERWΦn (Xn)]

· [Φn (Xn (j))− ERWΦn (Xn)] ·
·ERW [Φn (Xn (k))− ERWΦn (Xn)]

· [Φn (Xn (l))− ERWΦn (Xn)] .
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This equals

1

N4ε4

N∑
i=1

ERW [Φn (Xn (i))− ERWΦn (Xn)]4 +

+
6

N4ε4

N∑
i,j=1
i 6=j

ERW [Φn (Xn (i))− ERWΦn (Xn)]2

· [Φn (Xn (j))− ERWΦn (Xn)]2 .

Moreover,

N∑
i=1

ERW [Φn (Xn (i))− ERWΦn (Xn)]4 = N · ERW [Φn (Xn)− Fn (Φn)]4 ,

and for i 6= j, the r.v's [Φn (Xn (i))− ERWΦn (Xn)]2 and [Φn (Xn (j)) −
ERWΦn (Xn)]2 are independent, thus

N∑
i,j=1
i 6=j

ERW [Φn (Xn (i))− ERWΦn (Xn)]2 [Φn (Xn (j))− ERWΦn (Xn)]2

=
N∑

i,j=1
i 6=j

ERW [Φn (Xn (i))− ERWΦn (Xn)]2

ERW [Φn (Xn (j))− ERWΦn (Xn)]2 =

= N (N − 1)
{
ERW [Φn (Xn)− ERWΦn (Xn)]2

}2

=
(
N2 −N

)
{Var [Φn (Xn)]}2 .

The last conclusion of Proposition 4.1 is an immediate consequence of the
above arguments.

Corollary 4.2. If Φn is bounded, say |Φn| ≤ c <∞, then we have

1

N

N∑
i=1

Φn (Xn (i))→ Fn (Φn) a.s. and in L2 as N →∞;

in particular, for each ε > 0,

PRW

[∣∣∣∣∣ 1

N

N∑
i=1

Φn (Xn (i))− Fn (Φn)

∣∣∣∣∣ > ε

]
≤ 16c4

N3ε4
+

6 · 16c4

N2ε4
→ 0

as N →∞.
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Proof. Clearly, Fn (Φn) = ERWΦn (Xn) , thus |Φn (Xn)− ERWΦn (Xn)| ≤
2c, and consequently Var [Φn (Xn)] ≤ 4c2 and ERW [Φn (Xn)− Fn (Φn)]4 ≤
16c4. Hence and from Proposition 4.1 the assertion of Corollary 4.2 easily
follows; namely, a.s. convergence is a consequence of the estimate: for every
�xed ε > 0,

PRW

 ⋃
N≥M

{∣∣∣∣∣ 1

N

N∑
i=1

Φn (Xn (i))− Fn (Φn)

∣∣∣∣∣ > ε

}
≤
∑
N≥M

(
16c4

N3ε4
+

6 · 16c4

N2ε4

)
→ 0

as M →∞, cf. [3], p. 151, and the inequality

ERW

[
1

N

N∑
i=1

Φn (Xn (i))− Fn (Φn)

]2

= Var

[
1

N

N∑
i=1

Φn (Xn (i))

]

=
1

N
Var [Φn (Xn)] ≤ 4c2

N

derived in the proof of Proposition 4.1 implies evidently convergence in L2.

Although the last Corollary justi�es the approach based on the ran-
dom walk on Sn (r)-space in Monte Carlo simulation of the proper value for
Fn (Φn), it remains an open question how this random walk can be simu-
lated by computer equipped with a generator of (pseudo)random numbers
equally distributed on [0, 1].

5. Distributional mapping

In this section we are going to demonstrate how the random walk Xn on the
Sn (r)-space can be simulated by computer.

Suppose Wn = col (W1, ...,Wn) is a sequence of i.i.d. random variables
with uniform density on [0, 1]. We are looking for a smooth mapping f :
[0, 1]n → Rn, such that

f (Wn)
D
= Xn,

where
D
= means distributional equality. In oter words, we seek for f satisfying

condition
F ◦ f = G,

where F , G are cumulative distribution functions of Xn and Wn resp.
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Theorem 5.1. The smooth mapping f : [0, 1]n → Rn, satisfying condition

f (Wn)
D
= Xn, is given by the formula

f1 (w1, ..., wn) = r (2w1 − 1) ,

f2 (w1, ..., wn) = (2w2 − 1)
√
r2 − r2 (2w1 − 1)2,

...

fn (w1, ..., wn) = (2wn − 1)

√
r2 −

[
r2 (2w1 − 1)2 + ...+ r2 (2wn−1 − 1)2

]
.

Proof. We have to check that the random vector f (Wn) has the desired
distribution. To this end, note �rst that the map f restricted to [0, 1]n is
1 to 1, and the inverse mapping f−1 =

(
f−1

1 , ..., f−1
n

)
to f can be easily

derived step by step, namely

w1 = f−1
1 (x1, ..., xn) =

(x1/r + 1)

2
,

w2 = f−1
2 (x1, ..., xn) =

x2

2
√
r2 − x2

1

+
1

2
,

...

wn = f−1
n (x1, ..., xn) =

xn

2
√
r2 −

(
x2

1 + ...+ x2
n−1

) +
1

2
.

Therefore the Jacobian of f−1 is equal to

Jf−1 (x) =
1

2r
· 1

2
√
r2 − x2

1

· ... · 1

2
√
r2 −

(
x2

1 + ...+ x2
n−1

) .
Since Wn is distributed uniformly on [0, 1]n, by the Jacobi change of vari-
ables formula we obtain

∫
[0,1]n

Φn (f1 (w1, ..., wn) , ..., fn (w1, ..., wn)) dw1...dwn =

=

∫
f−1([0,1]n)

Φn (x1, ..., xn)
∣∣Jf−1 (x)

∣∣ dx1...dxn =

=

∫
Sn(r)

Φn (x1, ..., xn)
dx1...dxn

2nr
√(

r2 − x2
1

)
· ... ·

[
r2 −

(
x2

1 + ...+ x2
n−1

)] .
In this way Theorem 5.1 is proved.
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Corollary 5.2. Let Wn = col (W1, ...,Wn) be a random vector with the uni-

form distribution on [0, 1]n, and let Xn = col (X1, ..., Xn) be the random

walk on Sn (r) , i.e. a r. v. which has distribution concentrated on Sn (r) ac-
cording to the same density gn (x1, ..., xn) as in the Banach L-integral. Then
the mapping f de�ned in the last Theorem transforms computer's drawing

of (pseudo)random numbers (w1, ..., wn) := wn taken from [0, 1] into the

simulated values (x1, ..., xn) = Xn (ω) of the random walk on Sn (r). Con-

sequently, given any bounded Borel-measurable mapping Φ : S (r) → R, the
approximated value for the Banach integral Fn (Φn) is equal to

1

N

N∑
i=1

Φn (Xn (i)) =
1

N

N∑
i=1

Φn (f1 (wn (i)) , ..., fn (wn (i))) ,

where Φn denotes the restriction of Φ to Sn (r) , and wn (i) is the i-th com-

puter sample of (pseudo)random numbers (w1, ..., wn) . Furthermore, the er-

ror of approximation of Fn (Φn) by the above value exceeds ε > 0 with prob-

ability less than
16c4

N3ε4
+

6 · 16c4

N2ε4
.

Combining the above Corollary with the previously given Theorem 2.2
and Corollary 4.2 we obtain �nally the following result.

Corollary 5.3. Let Φ : S (r) → R be a bounded, i.e. |Φ| ≤ c < ∞, Borel-

measurable mapping satisfying condition (2.1), let {εn, n ≥ 1} be a sequence

of positive numbers such that 0 <
2c

N
4
√

1 + 6N2 < εn, and let F (Φ) denote

the Banach L-integral. Then with probability greater than 1− 16c4

N3ε4
n

+
6 · 16c4

N2ε4
n

we have for su�ciently large n ≥ nC ,∣∣∣∣∣F (Φ)− 1

N

N∑
i=1

Φn (f1 (wn (i)) , ..., fn (wn (i)))

∣∣∣∣∣ ≤ C · r2 · 2n

3n
+ εn , (5.1)

where f = (f1, ..., fn) : [0, 1]n → Rn is the smooth mapping speci�ed in

Theorem 5.1, Φn is the restriction of Φ to Sn (r) , and wn (i) is the i-th
computer sample of (pseudo)random numbers (w1, ..., wn) drawn according

to the uniform distribution from the interval [0, 1].

Proof. As we know from Theorem 2.2, |F (Φ)− Fn (Φ)| ≤ C · r2 · (2/3)n

for all su�ciently large n ≥ nC . Therefore, on account of Corollary 4.2, we
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conclude that

PRW
[∣∣∣∣∣F (Φ)− 1

N

N∑
i=1

Φn (f1 (wn (i)) , ..., fn (wn (i)))

∣∣∣∣∣ > C · r
2 · 2n

3n
+ εn

]
≤

≤ PRW
[
|F (Φ)− Fn (Φ)| > C · r

2 · 2n

3n

]
+ PRW

[∣∣∣∣∣Fn (Φ)− 1

N

N∑
i=1

Φn (f1 (wn (i)) , ..., fn (wn (i)))

∣∣∣∣∣ > εn

]

≤ 0 +
16c4

N3ε4
n

+
6 · 16c4

N2ε4
n

,

whenever n ≥ nC is su�ciently large.

Evidently, the sequence of numbers εn = εn (N) should be chosen here
in such a way that

1 >
16c4

N3ε4
n

+
6 · 16c4

N2ε4
n

→ 0 as N,n→∞,

thus we propose the following procedure. Choose �rst εn, for instance εn =
C · r2 · 2n/3n, so that the right-hand side of (5.1) is less than 2C · r2 · 2n/3n,
next �x n ≥ nC to obtain the desired accuracy of approximation in (5.1),
and then select N so large that the probability

1− 16c4

N3ε4
n

+
6 · 16c4

N2ε4
n

is su�ciently close to 1.
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Lord Kelvin's method of images

approach to the Rotenberg model

Adam Gregosiewicz1

Abstract

We study a mathematical model of cell populations dynamics pro-
posed by M. Rotenberg [14] and investigated by M. Boulanouar [7].
Here, a cell is characterized by her maturity and speed of maturation.
The growth of cell populations is described by a partial di�erential
equation with a boundary condition. We use semigroup theory ap-
proach and apply Lord Kelvin's method of images to give a new proof
that the model is well posed.

1. Introduction

In the Rotenberg model of cell populations dynamics [14] a cell is charac-
terized by two variables, its maturity and speed of maturation. We assume
that the maturity is a real number x that belongs to the interval I = (0, 1)
and speed of maturation v belongs to a set V = (a, b), where a and b are
non-negative real numbers such that a < b < +∞. The growth of the cell's
population density is governed by the partial di�erential equation

∂f

∂t
= −v∂f

∂x
, (1.1)

where f = f(x, v, t), t > 0, is the cell's density at (x, v) at time t. In this
model a cell is born at x = 0 and dies at x = 1, and the boundary condition

vf(0, v, t) = p

∫
V
wk(1, w)f(1, w, t) dw

1Lublin University of Technology, Nadbystrzycka 38A, 20-618 Lublin, Poland, e-mail:
a.gregosiewicz@pollub.pl
Keywords: Method of images, Strongly continuous semigroup, Cell population dynam-

ics, Partial di�erential equations.
The author's research was partly supported by Polish National Science Centre grant

2014/15/N/ST1/03110.
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describes the reproduction rule. Here k satis�es∫
V
k(v, w) dw = 1 (1.2)

for any v ∈ V , and k(v, w) is the probability density of daughter velocity,
conditional on v being the velocity of the mother. Furthermore, it is assumed
that p > 0 is the average number of viable daughters per mitosis. However
(see [7]), it may be also important to consider the case when a cell degenerate
in the sense that its daughters inherit mother's velocity. Such behaviour is
described by

f(0, v, t) = qf(1, v, t),

where q > 0 is the average number of viable daughters per mitosis. There-
fore, we combine this two cases and assume that the reproduction rule is
characterized by the boundary condition

vf(0, v, t) = p

∫
V
wk(1, w)f(1, w, t) dw + qvf(1, v, t), v ∈ V. (1.3)

It is also biologically interesting when V ⊂ (a, b) is a discrete set, that is
cells mature only at certain (at most countably many) velocities. In this
case (1.2) becomes ∑

w∈V
k(v, w) = 1

with the boundary condition

vf(0, v, t) = p
∑
w∈V

wk(1, w)f(1, w, t) + qvf(1, v, t), v ∈ V.

Well-posedness of the (generalized) Rotenberg model may by equiva-
lently rephrase in the semigroup theory. Roughly speaking, see [11, II.1.2],
the model (1.1)-(1.3) is well-posed if and only if the operator

f 7→ −v∂f
∂x

with domain related to (1.3) is the generator of a strongly continuous semi-
group.

In this paper we give a new proof of the generation theorem of Boulanouar
[7, Theorem 2.2, Theorem 3.1]. To this end we use Lord Kelvin's method of
images. For detailed introduction to the method of images see [3], and [2,
4, 5, 6, 8, 10, 12, 13, 15] for some examples. As a by-product we obtain an
explicit formula for the semigroup related to Rotenberg model.
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2. Notations

In this section we recall some basic preliminaries and introduce notations.
Given ω ∈ R we de�ne a function eω : R → R by the formula eω(x) = eωx,
x ∈ R. Let I be an open set of real numbers. Moreover, let V ⊂ R and ν be
a measure on V . Then for Ω = I × V we de�ne L1(Ω, µω) to be the space
of absolutely integrable real functions with respect to the measure

µω(dx,dv) = eω
(
v−1(x− 1)

)
dx ν(dv),

where dx is the Lebesgue measures on I. That is, f : Ω → R belongs to
L1(Ω, µω) if and only if

‖f‖L1(Ω,µω) :=

∫
V

∫
I

eω
(
v−1(x− 1)

)
|f(x, v)| dx ν(dv) < +∞.

Then L1(Ω, µω) is a Banach space with the norm ‖ · ‖L1(Ω,µω). Let also

W 1(Ω) be the space of functions f ∈ L1(Ω, µω) such that given v ∈ V we
have f(·, v) ∈ W 1,1(I, dx), where W 1,1(I, dx) is the Sobolev space of abso-
lutely continuous functions on I such that D1f is a member of L1(Ω, µω).
Here D1f is the partial derivative of f with respect to the �rst variable,
that is D1f(x, v) = ∂/∂xf(x, v). Furthermore, if ω = 0, then we denote the
spaces L1(Ω, µ0) by L1(Ω) and W 1(Ω, µ0) by W 1(Ω).

3. Generation theorem

As in the introduction, let I = (0, 1) and given a, b ∈ R such that 0 6 a < b
let (V,V, ν) be a measure space where V ⊂ (a, b). As we said before, most
interesting cases from a biological point of view would be when V equals
(a, b) or is its �nite subset, and ν is the Lebesgue measure or the counting
measure on V , respectively. However, we do not need to assume that and
can work in an abstract setup.

Let k : V × V → [0,+∞) be a measurable, non-negative real function
such that ∫

V
k(v, w) ν(dw) = 1, v ∈ V. (3.1)

Then for Ω = I×V , see Figure 1, we consider the operator A in L1(Ω) given
by

Af(x, v) = −vD1f(x, v), (x, v) ∈ Ω, (3.2)

with the domain D(A) composed of functions f ∈ W 1(Ω) satisfying a the
boundary condition

vf(0, v) = p

∫
V
wk(w, v)f(1, w) ν(dw) + qvf(1, v), v ∈ V, (3.3)
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0 1

a

b
Ω

(a) Continuous case.

0 1

a

b

Ω

(b) Discrete case.

Figure 1: The set Ω.

where p, q are non-negative real numbers such that p+ q > 0.

Theorem 3.1. The operator A generates a strongly continuous semigroup

in L1(Ω).

Formula (3.2) indicates that for �xed v ∈ V a desired semigroup should
resemble a translation semigroup. Hence, we would like to de�ne {T (t), t >
0} in L1(Ω) by

T (t)f(x, v) = f̃(x− tv, v), (x, v) ∈ Ω, t > 0, f ∈ L1(Ω), (3.4)

where f̃ is a measurable function de�ned on Ω̃ = (−∞, 1)× V . Since T (0)f
should equals f , it follows that f̃ must be an extension of f . Moreover,
because a semigroup leave its domain invariant, given f ∈ L1(Ω) we are
looking for f̃ : Ω̃→ R such that

(E1) the restriction of f̃ to Ω equals f , that is f̃|Ω = f ,

(E2) if f ∈ D(A), then T (t)f̃ given by (3.4) belongs to D(A) for t > 0.

Let f ∈ D(A). In particular, (E2) implies that f̃ must be chosen in
such a way that T (t)f given by (3.4) satis�es the boundary condition (3.3).
Hence, we must have

vf̃(−tv, v) = p

∫
V
wk(w, v)f̃(1− tw,w) ν(dw) + qvf̃(1− tv, v),
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where v ∈ V, t > 0. If we denote x = −tv, x 6 0, v ∈ V , this may be
rewritten as

f̃(x, v) = pv−1

∫
V
wk(w, v)f̃(1 + xwv−1, w) ν(dw) + qf̃(1 + x, v). (3.5)

Let i > 1 be a non-negative integer and set

Ωi = {(x, v) ∈ R2 : v ∈ V, −ivb−1 < x 6 −(i− 1)vb−1},

see Figure 2.

0 1−1−2−3−4

a

b

c

ΩΩ1Ω2Ω3Ω4

Figure 2: The set Ωi, where c = ab−1.

For w ∈ V it follows that (x, v) ∈ Ωj , j > 1, implies (1 + xwv−1, w) ∈⋃j−1
i=0 Ωi, where by convention Ω0 = Ω. Therefore, we may de�ne f̃ by

induction. Having de�ned it on
⋃j
i=0 Ωi, j > 0, for (x, v) ∈ Ωj+1 we let

f̃(x, v) be given by (3.5). This shows that if f̃ : Ω̃ → R satisfying (E1)
and (E2) exists, then it is uniquely determined.

De�nition 3.2. Given f ∈ L1(Ω) we denote by f̃ : Ω̃ → R its unique
extension satisfying

f̃(x, v) =

{
f(x, v), x > 0,
p
v

∫
V wk(w, v)f̃(1 + xwv , w) ν(dw) + qf̃(1 + x, v), x 6 0,

almost everywhere and call it the boundary extension of f .

It is worth noting that we do not assume that f belongs to D(A) in order
to de�ne f̃ . However, what is crucial, boundary extensions of functions from
the domain of A posses important property which we describe in Lemma 3.4.
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Lemma 3.3. Let

ω > max(b log(p+ q), 0). (3.6)

Then for f ∈ L1(Ω) the boundary extension f̃ belongs to L1(Ω̃, µω) and

‖f̃‖L1(Ω̃,µω) 6Mω‖f‖L1(Ω), (3.7)

where Mω = (1− Cω)−1 and Cω = (p+ q)e−ωb
−1
.

Proof. Let ω > 0, f ∈ L1(Ω, µ) and f̃ be its extension. For i > 1, v ∈ V , we
denote

Ωi,v = {x ∈ R : − ivb−1 < x 6 −(i− 1)vb−1}.

It follows that∫
Ωi

|f̃ |µω =

∫
V

∫
Ωi,v

eωv
−1(x−1)|f̃(x, v)| dx ν(dv)

= p

∫
V

∫
V

w

v
k(w, v)

∫
Ωi,v

e
ω
v

(x−1)|f̃(1 + x
w

v
,w)|dx ν(dw) ν(dv)

+ q

∫
V

∫
Ωi,v

eωv
−1(x−1)|f̃(1 + x, v)|dx ν(dv).

Changing variables leads to∫
Ωi

|f̃ |µω = p

∫
V

∫
V
k(w, v)

∫
1+Ωi,w

eωw
−1(x−1)e−ωv

−1 |f̃(x,w)|dx ν(dw) ν(dv)

+ q

∫
V

∫
1+Ωi,v

eωv
−1(x−1)e−ωv

−1 |f̃(x, v)| dx ν(dv),

(3.8)

where 1 + Ωi,w is the algebraic sum {1} + Ωi,w. Since e−ωv
−1
< e−ωb

−1
for

(x, v) ∈ Ωi, i > 1, using (3.1) it follows that∫
Ωi

|f̃ |µω 6 Cω
∫

1+Ωi

|f̃ |µω, (3.9)

where 1 + Ωi = {(1 + x, v) ∈ R2 : (x, v) ∈ Ωi}. Furthermore, we have

j⋃
i=1

(1 + Ωi) ⊂
j−1⋃
i=0

Ωi, j > 1,

see Figure 3. Combining this with (3.9), we obtain∫
⋃j
i=0 Ωi

|f̃ |µω = Dω +

∫
⋃j
i=1 Ωi

|f̃ |µω 6 ‖f‖L1(Ω,µω) + Cω

∫
⋃j−1
i=0 Ωi

|f̃ |µω.
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0 1−1−2−3−4

Figure 3: The set
⋃4
i=1(1 + Ωi) is colored blue.

Hence the inductive argument shows that∫
⋃j
i=0 Ωi

|f̃ |µω 6 ‖f‖L1(Ω,µω)

j∑
i=0

Ciω. (3.10)

By (3.6) we have Cω < 1, hence the last sum converges as j → +∞, and∫
Ω̃
|f̃ |µω0 < Mω‖f‖L1(Ω,µω).

Finally, since eωv
−1(x−1) < 1 for (x, v) ∈ Ω̃, it follows that

‖f‖L1(Ω,µω) 6 ‖f‖L1(Ω),

which proves (3.7).

In view of Lemma 3.3 let here and subsequently �x ω > max(b log(p +
q), 0). The set Y of all boundary extensions f̃ of f ∈ L1(Ω) is a subspace of
L1(Ω̃, µω). Hence we may de�ne the extension operator

E : L1(Ω)→ Y ↪→ L1(Ω̃, µω), Ef = f̃ .

which by (3.7) is bounded with

‖E‖L1(Ω)→L1(Ω̃,µω) 6Mω.
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Moreover, E is one-to-one since Ef = 0 implies 0 = f̃|Ω = f . Therefore
E is an isomorphism of L1(Ω) and Y, and of course E−1 is the restriction
operator, that is E−1 = R, where Rf = f|Ω, and hence

‖E−1‖L1(Ω̃,µω)→L1(Ω) = 1.

Let now {T̃ (t), t > 0} be the family of operators in L1(Ω̃, µω) given by

T̃ (t)f(x, v) = f(x− tv, v), (x, v) ∈ Ω̃, t > 0, f ∈ L1(Ω̃, µω).

It is easy to show that {T̃ (t), t > 0} is a strongly continuous semigroup and
its generator Ã is given by

Ãf(x, v) = −vD1f(x, v), (x, v) ∈ Ω̃, f ∈ L1(Ω̃, µω),

with domain D(Ã) = W 1(Ω̃, µω).

Lemma 3.4. Given f ∈ L1(Ω) we have f ∈ D(A) if and only if f̃ ∈ D(Ã).

Proof. Assume that f̃ ∈ D(Ã). Then of course f = f̃|Ω ∈ W 1(Ω). Given

v ∈ V , by the continuity of f̃(·, v) and (3.5) we have

f(0, v) = f̃(0, v) = lim
x→0−

f̃(x, v) = pv−1

∫
V
wk(w, v)f̃(1, w) ν(dw) + qf̃(1, v)

= pv−1

∫
V
wk(w, v)f(1, w) ν(dw) + qf(1, v)

by the Lebesgue dominated convergence theorem. This shows that f satis-
�es (3.3), and hence f ∈ D(A).

On the other hand, let f ∈ D(A) and �x v ∈ V . For j > 0 denote
Γj,v =

⋃j
i=0 Ωi,v. We have f̃ ∈ W 1(Γ0,v). Assume now that f̃ ∈ W 1(Γj,v)

for some j > 0. Then for x ∈ Ωj+1,v by the Fubini theorem and (3.3) we
have∫ x

0
D1f̃(y, v) dy = pv−1

∫
V
wk(w, v)wv−1

∫ x

0
D1f̃(1 + ywv−1, w) dy ν(dw)

+ q

∫ x

0
D1f̃(1 + y, v)

= pv−1

∫
V
wk(w, v)f̃(1 + x

w

v
,w) dy ν(dw) + qf̃(1 + x, v)

− pv−1

∫
V
wk(w, v)f̃(1, w) dy ν(dw)− qf̃(1, v)

= f̃(x, v)− f̃(0, v).

This proves that f̃ ∈ W 1(Γj+1,v). Using the induction argument it follows
that f̃ ∈W 1(Ω̃) = D(Ã).
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Lemma 3.5. The space Y is invariant for the semigroup {T̃ (t), t > 0}.

Proof. Let f ∈ L1(Ω) and f̃ ∈ Y be its boundary extension. By (3.5) we
have

T̃ (t)f̃(x, v) = pv−1

∫
V
wk(w, v)f̃(1+xwv−1−tw,w) ν(dw)+qf̃(1+x−tv, v),

for x < tv and (x, v) ∈ Ω̃. Hence T̃ (t)f̃ is the extension of g ∈ L1(Ω), where
g(x, v) = f̃(x− tv, v), (x, v) ∈ Ω.

Proof of Theorem 3.1. By Lemma 3.5 the part ÃY of Ã in Y generates the
strongly continuous semigroup {T̃Y(t), t > 0} in Y given by

T̃Y(t)f̃(x, v) = f̃(x− tv, v), t > 0, (x, v) ∈ Ω, f ∈ Y; (3.11)

see e.g. [9, Corollary II.2.3]. This proves that {T (t), t > 0}, where

T (t) = RT̃Y(t)E, (3.12)

is a strongly continuous semigroup in L1(Ω) similar to {T̃Y(t), t > 0}, see
e.g. [1, 7.4.22]. Moreover, its generator is the operator RÃYE and with
domain RD(Ã). However,

RÃYEf(x, v) = −vD1f(x, v) = Af(x, v), (x, v) ∈ Ω,

and by Lemma 3.4 it follows that RD(Ã) = D(A), which completes the
proof.

As in the proof of Theorem 3.1 denote by {T (t), t > 0} the semigroup
generated by A. Then by (3.12) we have

T (t)f(x, v) = f̃(x− tv), t > 0, (x, v) ∈ Ω, f ∈ L1(Ω),

as conjectured in (3.4).

Lemma 3.6. We have

‖T (t)‖L1(Ω)→L1(Ω) = max(1, p+ q)

for 0 < t < b−1.

Proof. Fix 0 < t < b−1. Then

‖T (t)f‖L1(Ω) =

∫
V

∫ 1

tv
f(x− tv, v) dx ν(dv) +

∫
V

∫ tv

0
f̃(x− tv, v) dx ν(dv).
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The �rst term on the right-hand side equals
∫
V

∫ 1−tv
0 f(x, v) dx ν(dv). More-

over, since for x ∈ (0, tv) it follows that (x− tv, v) ∈ Ω1, we obtain∫ tv

0
f̃(x− tv, v) dx = pv−1

∫
V
wk(w, v)

∫ tv

0
f(1 + xwv−1 − tw,w) dx ν(dw)

+ q

∫ tv

0
f(1 + x− tv, v) dx

= p

∫
V
k(w, v)

∫ 1

1−tw
f(x,w) dx ν(dw)

+ q

∫ 1

1−tv
f(x, v) dx.

Hence, by the Fubini theorem and (3.1) we get∫
V

∫ tv

0
f̃(x− tv, v) dx ν(dv) = (p+ q)

∫
V

∫ 1

1−tv
f(x, v) dx ν(dv),

which proves that

‖T (t)f‖L1(Ω) =

∫
V

∫ 1−tv

0
f(x, v) dx ν(dv)

+ (p+ q)

∫
V

∫ 1

1−tv
f(x, v) dx ν(dv).

(3.13)

Finally, if 1 > p+ q, then we set

g = 1{(x,v) : 0<x<1−tv, v∈V },

and if conversely 1 < p+ q, then we set

g = 1{(x,v) : 1−tv<x<1, v∈V }.

By (3.13) it follows that

‖T (t)g‖L1(Ω) = max(1, p+ q)‖g‖L1(Ω),

which completes the proof.

By Lemma 3.6 it is easy to prove the following result.

Corollary 3.7. Given t > 0 we have

‖T (t)‖L1(Ω)→L1(Ω) 6 max(1, p+ q)[tb]+1,

where [tb] is the greatest integer smaller then or equal to tb.
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Di�erences between optimal routes

for linear quadratic problems with

�xed and optimally stopped horizon

Edward Kozªowski1

Abstract

The routing problem of linear system to hit the target is investi-
gated in this paper. The classical linear quadratic control problem was
replaced by the problem of determining the optimal trajectory (way,
track, path). The general aim consists of minimization of composite
cost function, which depends on route (as a set of landmarks) and
horizon. To illustrate the in�uence of horizon a numerical examples
are included.

1. Introduction

The di�erent engineering applications of stochastic systems (e.g. control,
navigation, stabilization, cost minimization, identi�cation etc.) are widely
presented in literature (see e.g. [2], [3], [4], [5], [13], [15], [19], [20]). In
many cases these systems must be controlled to perfect perform the aim.
Unfortunately to exactly achieve the goal �rst we must determine the control
laws for systems. Sometimes, in order to achieve the goal the system should
be moved after a certain path (trajectory). In this case the problem depends
on determining the optimal trajectory.

The task presented in this paper consists of determining the optimal path
on which the system achieves the lowest total costs, wich is a sum of costs
of changes, energetic costs of controls and losses associated with not hitting
the target. This task for �xed horizon was considered in [6]. Additionally
it was proved, that the horizon has a large in�uence to total cost (see e.g.
[5], [14], [15], [16], [17]). The construction of control laws for �xed horizon
is usually presented in literature (see e.g. [1], [9], [10]). The problem arises

1Lublin University of Technology, Department of Quantitative Methods, Nadbystrzycka
38, 20-618 Lublin, Poland, e-mail: e.kozlovski@pollub.pl
2010 Mathematics Subject Classi�cation. Primary 93E20, 60G40; Secondary 93E95,

90C20.
Keywords: optimal trajectory, optimal control, linear quadratic routing problem, Snell

envelope.
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when the horizon is unknown. Which of horizons is optimal? The control
with optimal stopping is presented in the works [11], [12], [21].

The goal of this paper is determining the optimal trajectory (path, route
as a set of landmarks) and horizon. The controlled stochastic system (object,
robot) should move after this optimal route and must be stopped before
reaching the biggest possible horizon to perfect hit the target. To determine
the optimal trajectory and stopping moment (optimal horizon) the idea of
dynamic programming was employed.

The paper is organized as follows. In section II the linear quadratic con-
trol problem is converted to linear quadratic routing problem. The solution
of the routing problem with the �xed horizon is given in section III. Section
IV provides the solution of linear quadratic routing problem with the opti-
mally stopped horizon. The numerical simulations shown that to achieve the
aim sometimes the system must be stopped earlier than the biggest possible
horizon.

2. Exchange the LQC problem to LQR problem

In this part the linear quadratic control (LQC) problem with �xed horizon
will be replaced by a linear quadratic routing (LQR) problem. As we shall
see later, this problems are dual.

Let (Ω,F , P ) be a complete probability space. Suppose that w1, w2, ...
are independent n-dimensional random vectors on this space, with normal
N(0, In) distribution. We assume that all the above-mentioned objects are
stochastically independent. Let the stochastic linear system be described by
a state equation

yi+1 = Ayi +Bui + σwi+1 (2.1)

where i = 0, ..., N − 1, yi ∈ Rn, B ∈ Rn×k, σ ∈ Rn×n and an ini-
tial state is ‖y0‖ < ∞. On (Ω,F , P ) we de�ne a family of sub-σ-�elds
Yj = σ {yi : i = 0, 1, ..., j}. The matrices ‖A‖ <∞, ‖B‖ <∞ and ‖σ‖ <∞,
where ‖·‖ denotes a matrix norm as ‖A‖ = max

‖x‖61
‖Ax‖ (the system (2.1)

is Boundary Input Boundary Output stable). The vector uj ∈ Rl is Yj-
measurableand called a control action. Let u = (u0, u1, ..., uN−1) is an ad-
missible control and the class of admissible controls is denoted by U . The
task depends on remove the stochastic system (2.1) from initial state y0 to
the target ξ, which is unknown to the controller, and has apiori a normal
distribution N (m,Q).

The classical aim of control consists in optimization of performance cri-
terion. Let the objective function represents total costs. The total cost
is composed of costs of changes α ‖yi+1 − yi‖2, energetic costs of controls
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β ‖ui‖2 for i = 0, ..., N − 1 and cost (loss) associated with not hitting the
point (target) γ ‖yN − ξ‖2, where α, β, γ > 0. For the linear quadratic con-
trol problem with �xed horizon the aim of control is to minimize the total
cost. Thus the task is to �nd

inf
u∈U

E

{
N−1∑
i=0

(
α ‖yi+1 − yi‖2 + β ‖ui‖2

)
+ γ ‖yN − ξ‖2

}
. (2.2)

LetN denote the biggest possible horizon of control and τ : Ω −→ {0, 1, ..., N}
be a Markov moment. The class of Markov moments will be denoted by T.
The linear quadratic control problem with optimally stopped horizon can be
presented as

inf
(y,τ)∈Y×T

E

{
τ−1∑
i=0

(
α ‖yi+1 − yi‖2 + β ‖ui‖2

)
+ γ ‖yτ − ξ‖2

}
. (2.3)

We see, that the system should be carried out (controlled) at the cheapest
cost. On the other hand to move the system (2.1) from y0 to target ξ, we
need to determine an optimal route (set of landmarks). To determine the
route we create the substitute task.

Let det
(
BTB

)
6= 0. When we want to move the system (2.1) from state

yi to yi+1, i = 0, 1, ..., N − 1 then the control has a form

ui = Kyi+1 − Lyi +Mwi+1, (2.4)

where
K =

(
BTB

)−1
BT , L = KA, M = −Kσ.

Let y = (y0, y1, ..., yN−1) mean an route (path, trajectory) and Y denote the
class of admissible routs. For a �xed horizon the task (2.2) may be replaced
by

inf
y∈Y

E

(N−1∑
i=0

(
α ‖yi+1 − yi‖2 + β ‖Kyi+1 − Lyi +Mwi+1‖2

)
+ γ ‖yN − ξ‖2

)
.

(2.5)
The main aim is determining the optimal route y∗ by solution the task (2.5).
A direct solution of task (2.2) gives us the explicit formula of the optimal
control, but the solution of task (2.5) gives the optimal trajectory.

The problem of determining the optimal route for random horizon can
be presented in the following form

inf
(y,τ)∈Y×T

E

(τ−1∑
i=0

(
α ‖yi+1 − yi‖2 + β ‖Kyi+1 − Lyi +Mwi+1‖2

)
+ γ ‖yτ − ξ‖2

)
.

(2.6)
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3. Solution LQR problem for a �xed horizon

Below the method of determining the optimal route for system (2.1) with
�xed horizon N will be presented. First we will determine the optimal path
for the case, where the target is known. Next the obtained result will be
modifyed for the case, where the target is random. To satisfy the aim (to
move the system (2.1) from y0 to point ξ) the system (2.1) should moved
along the path y0, y1, ..., yN . We determine this path by solving a task (2.5).
As result we obtain a set of points (marks) y = (y0, ..., yN−1) for which the
in�mum is attained. The theorem below shows how determine the optimal
path where the target ξ is known. Let

H = αI + βKTL, D = αI + βKTK, C = αI + βLTL

and Fj = σ (ξ) ∨ Yj .

Theorem 3.1. Let

ΦN
j = C −HT

(
ΦN
j+1 +D

)−1
H, (3.1)

ΨN
j = HT

(
ΦN
j+1D

)−1
ΨN
j+1, (3.2)

ΥN
j = ΥN

j+1 −
(
ΨN
j+1

)T (
ΦN
j+1D

)−1
ΨN
j+1, (3.3)

ZNj = ZNj+1 + tr
((
βMTM + ΦN

j+1 +D
)
σσT

)
. (3.4)

where ΦN
N = ΨN

N = ΥN
N = γI, ZNN = 0 and I is an identity matrix. If

det
(

ΦN
j+1 +D

)
6= 0 for j = 0, 1, ..., N − 1, then the optimal state (mark,

position) for the time j + 1 based on information available to time j is

E (yj+1| Fj) =
(
ΦN
j+1 +D

)−1 (
Hyj + ΨN

j+1ξ
)

(3.5)

and

inf
y∈Y

E

(
N−1∑
i=0

(
α ‖yi+1 − yi‖2 + β ‖Kyi+1 − Lyi +Mwi+1‖2

)
+γ ‖yN − ξ‖2

)
= WN

0 (ξ, y0) , (3.6)

where

WN
N (ξ, yN ) = γ ‖yN − ξ‖2 , (3.7)

WN
j (ξ, yj) = yTj ΦN

j yj − 2yTj ΨN
j ξ + ξTΥN

j ξ + ZNj . (3.8)
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Proof. First we de�ne the Bellman function (see e.g. [8]). At the time N
the value of Bellman function WN

N (ξ, yN ) is given by (3.7), but at the times
i = 0, 1, 2, ..., N − 1 is de�ned as

WN
i (ξ, yi) = min

yi+1

E
{
α ‖yi+1 − yi‖2

+β ‖Kyi+1 − Lyi +Mwi+1‖2 +Wi+1 (ξ, yi+1)
∣∣∣Fi} .(3.9)

for j = 0, 1, ..., N − 1. From (3.9) for the time N − 1 we have

WN
N−1 (ξ, yN−1) = min

yN
E
{
yTN
(
αI + ΦN

N + βKTK
)
yN

+ yTN−1

(
αI + βLTL

)
yN−1

− 2yTN
((
αI + βKTL

)
yN−1 + ΨN

Nξ
)

+ ξTΥN
Nξ + βwTNM

TMwN
∣∣ FN−1

}
= min

yN

{
E
(
yTN
∣∣ FN−1

) (
ΦN
N +D

)
E
(
yN
∣∣ FN−1

)
+ yTN−1CyN−1

− 2E
(
yTN
∣∣ FN−1

) (
HyN−1 + ΨN

Nξ
)

+ ξTΥN
Nξ + tr

((
βMTM + ΦN

N +D
)
σσT

)}
.

The expected optimal state (position, mark) at time N based on information
available to time N − 1 is

E (yN | FN−1) =
(
ΦN
N +D

)−1 (
HyN−1 + γΨN

Nξ
)
.

The value of Bellman function of time N − 1 is equal

WN
N−1 (ξ, yN−1) = yTN−1ΦN

N−1yN−1 − 2yTN−1ΨN
N−1ξ + ξTΥN

N−1ξ + ZNN−1,

where

ΦN
N−1 = C −HT

(
ΦN
N +D

)−1
H,

ΨN
N−1 = HT

(
ΦN
N +D

)−1
ΨN
N ,

ΥN
N−1 = ΥN

N −
(
ΨN
N

)T (
ΦN
N +D

)−1
ΨN
N ,

ZNN−1 = tr
((
βMTM + ΦN

N +D
)
σσT

)
.
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Let us assume, that equation (3.8) is true for i+1. From (3.8)-(3.9) and the
properties of condition expectation we have

WN
j (ξ, yj) = min

yj+1

E
{
α ‖yj+1 − yj‖2 + β ‖Kyj+1 − Lyj +Mwj+1‖2

+ yTj+1ΦN
j+1yj+1 + yTj+1ΨN

j+1ξ + ξTΥN
j+1ξ + ZNj+1

∣∣Fj}
= min

yj+1

{
E
(
yTj+1

∣∣Fj) (ΦN
j+1 +D

)
E (yj+1| Fj) + yTj Cyj + ξTΥN

j+1ξ

−2E
(
yTj+1

∣∣Fj) (Hyj + ΨN
j+1ξ

)
+ tr

((
βMTM + ΦN

j+1 +D
)
σσT

)
+ ZNj+1

Thus, the expected optimal state (position) at time j + 1 is

E (yj+1| Fj) =
(
ΦN
j+1 +D

)−1 (
Hyj + ΨN

j+1ξ
)

and the value of the Bellman function at time j is equal

WN
j (ξ, yj) = −

(
Hyj + ΨN

j+1ξ
) (

ΦN
j+1 +D

)−1 (
Hyj + ΨN

j+1ξ
)

+yTj Cyj + ξTΥN
j+1ξ + ZNj+1 + tr

((
βMTM + ΦN

j+1 +D
)
σσT

)
= yTj ΦN

j yj − 2yTj ΨN
j ξ + ξTΥN

j ξ + ZNj ,

where ΦN
j ,Ψ

N
j ,Υ

N
j , Z

N
j are given by (3.1)�(3.4).

Remark 3.2. The equation (3.5) gives the formula (recipe, rule) how to
determine the optimal route (state- or landmarks) for time j+1 if the system
(2.1) to time j traveled the way (path, track) y0, ...., yj . Additionally, from
formulas (3.1)�(3.4) we have

Φk
j = ΦN

N−(k−j), Ψk
j = ΨN

N−(k−j), Υk
j = ΥN

N−(k−j) and Z
k
j = ZNN−(k−j)

for 0 6 j 6 k 6 N . Hence from formula (3.8) we obtain

W k
j (ξ, y) = WN

N−(k−j) (ξ, y) ,

where ξ, y ∈ Rn and 0 6 j 6 k 6 N .

Below the recipies (law) of optimal route determinig will be presented for
the case, where the target is unknown. Let the target ξ is random and has
a normal distribution N (m,Q). For j = 0, 1, ..., N −1 the expected optimal
state (mark, position) for the time j + 1 based on information available to
time j is

E (yj+1| Yj) = E (E (yj+1| Fj)| Yj) =
(
ΦN
j+1 +D

)−1 (
Hyj + ΨN

j+1m
)

(3.10)
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and from (3.6) we have, that the expected cost of control of system (2.1)after
time j is equal

V N
j (yj) = E

(
WN
j (ξ, yj)

∣∣Yj) = (3.11)

= yTj ΦN
j yj + yTj ΨN

j m+mTΥN
j m+ ZNj + tr

(
ΥN
j Q
)
,

where ΦN
j ,Ψ

N
j ,Υ

N
j , Z

N
j are given by (3.1)�(3.4). The value tr

(
ΥN
j Q
)
de-

notes the cost of ignorance of target but the value ZNj presents the cost
of eliminating external disturbances for the system (2.1) which will be con-
trolled at moments from j to N .

Remark 3.3. Let us assume, that for the case with known target the aim
is equal m ∈ Rn but for the case with unknown target the aim is random
vector ξ with normal distribution N (m,Q), where Eξ = m. The additional
cost connected with ignorance of aim is a di�erence between total cost in
case where target is unknown and total cost in case where target is known.
Thus this cost is equal

V N
0 (y0)−WN

0 (m, y0) = tr
(
ΥN

0 Q
)
.

Remark 3.4. When the optimal route for the linear system (2.1) is known
(planned), then from (2.4) the expected control conditioned on σ−�eld Yj
is

E (uj | Yj) = −
(
BTB

)−1
BT (E (yj+1| Yj)−Ayj)

= K
(
ΦN
j+1 +D

)−1 (
Hyj + ΨN

j+1ξ
)
− Lyj . (3.12)

Example 3.5. The linear system with state equation (2.1) must be moved
from initial state y0 = (90; 50) to known and unknown targets. We assume
that the parameters α, β, γ are equal 0.1, 0.5, 1 accordingly and

Q =

[
2.2 0.3
0.4 1.9

]
, A =

[
1 0
0 1

]
, B =

[
1.2 0.1
0.5 2

]
, σ =

[
0.5 0
0 0.2

]
.

For case with known target the aim is m = (10; 20), but for case with un-
known target the aim is a random vectorξ with normal distributionN (m,Q).
Let us determine the optimal routes for �xed horizons N = 20.

The �gure (1)a presents the optimal planned trajectories. We see, that
the sets of landmarks E (yj | F0) and E (yj | Y0), j = 0, 1, ..., N for cases with
�xed and random targets are identical, because Eξ = m. This marks are
uniformly distributed along trajektory which connects the points y0 and m.
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Figure 1: The optimal planned trajectory and expected total costs.

The �gure (1)b presents the expected value of objective function WN
N−t (y0)

(the horizon of control is equal N − (N − t) = t) for 0 6 t 6 N . We see, if
the horizon of control is increasing then the expected value of cost of control
is decreasing.

The �gure (2)a presents the costs connected with ignorance of target
tr
(
ΥN
N−tQ

)
for 0 6 t 6 N . This costs are decreasing while the horizon

of control t is increasing. The �gure (2)b presents the costs of eliminating
external disturbances ZNN−t which increase with increasing horizon t.

4. Optimal route determining for stopped horizon

Sometimes if we stop the system (2.1) earlier than �xed horizon we may
obtain the better result. Thus, independently from the optimal route de-
termining it should also appoint a moment of stopping the system. The
optimal stopping rules (see e.g. [21]) will be employed to determine the mo-
ment when the system (2.1) must be stopped. The theorem below presents
how to determine the optimal route and moment.

Let τ : Ω −→ {0, 1, ..., N} be a Markov moment in view of σ−�eld
Y = (Yj)06j6N . We determine the optimal route by solving a task (2.6) and
we obtain a set of admissible points (marks) y = (y0, ..., yτ ) for which the
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Figure 2: The additional costs of control.

in�mum is attained. From (3.9) we have

V j
k (yk) = inf

yk+1,...,yj
E

(
j−1∑
i=k

(
α ‖yi+1 − yi‖2

+β ‖Kyi+1 − Lyi +Mwi+1‖2
)

+ γ ‖yj − ξ‖2
∣∣∣Yk) , (4.1)

where 0 6 k 6 j 6 N . From above we can present task (2.6) in the following
form

inf
τ∈T

V τ
0 (y0) . (4.2)

Theorem 4.1. Let the stochastic system be described by equation (2.1). The

optimal solution of task (2.6) is:

a. the optimal stopping moment of controlled system (2.1)

τ∗ = min

{
0 6 k 6 N : V k

k (yk) = min
k6j6N

V j
k (yk)

}
, (4.3)

where V j
k (yk) , 0 6 k 6 j 6 N is given by (3.11);

b. if k ∈ {0, 1, ..., N − 1} is not a stopping moment and det
(

Φj
k+1 +D

)
6= 0

for 0 6 k 6 j 6 N , then the optimal state (mark, position) at the time k+1
is

E (yk+1| Yk) =
(
Φt
k+1 +D

)−1 (
Hyk + Ψt

k+1E (ξ| Yk)
)
, (4.4)
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where moment t ∈ {k + 1, ..., N} is determined as

t = min

{
k + 1 6 j 6 N : V j

k (yk) = min
k<s6N

V s
k (yk)

}
and Φt

k+1 is given by (3.1).

Proof. Let us consider the task of optimal stopping in class T (N,N). Thus
we may only stop the system (2.1), thus the stopping moment τ0 = N and
the Bellman's function is equal

ṼN (yN ) = V N
N (yN ) = γE ‖yN − ξ‖2 .

In the class T (N − 1, N) we may stop the system (2.1) at N − 1 or control
the system (2.1) optimally to moment N . If we stop the system (2.1) at
moment N − 1 then we have only heredity cost γE ‖yN−1 − ξ‖2. If we
control the system (2.1) at time N − 1 and next we will stop this system at
time N , than we have the costs of transformation and control

E
(
α ‖yN − yN−1‖2 + β ‖KyN − LyN−1 +MwN‖2

∣∣∣YN−1

)
and expected heredity cost γE

(
‖yN − ξ‖2

∣∣∣YN−1

)
. Thus, if we will stop the

system (2.1) at moment N then We will incur the total cost V N
N−1 (yN−1)

(see theorem 1). The optimal cost in class T (N − 1, N) is

ṼN−1 (yN−1) = min
{
γE ‖yN−1 − ξ‖2 , V N

N−1 (yN−1)
}

and the optimal stopping moment is

τ1 =

{
N − 1, if ṼN−1 (yN−1) = γE ‖yN−1 − ξ‖2 ,
τ0, if ṼN−1 (yN−1) > γE ‖yN−1 − ξ‖2 .

If N −1 is not a stopping moment, then we control the system (2.1) and the
expected optimal state at time N is

E (yN | YN−1) =
(
ΦN
N +D

)−1 (
HyN−1 + ΨN

NE (ξ| YN−1)
)
.

Similarly we consider for classes T (N − 2, N) , ..., T (0, N) = T . In the class
T (k,N) , 0 6 k 6 N−1 we may stop the system (2.1) at time k or optimally
control the system (2.1) to possible times k+ 1, ..., N . If we stop the system

(2.1) then we accept the cost of heredity γE
(
‖yk − ξ‖2

∣∣∣Yk−1

)
only. If at

time k we control the system (2.1) we have the costs of transformation and
controls. The optimal total cost in class T (k,N) is

Ṽk (yk) = min
{
γE
(
‖yk − ξ‖2

∣∣∣Yk−1

)
, V k+1

k (yk) , ..., V
N
k (yk)

}
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Figure 3: The optimal route with optimal stopping moment.

and the optimal stopping moment in class T (k,N) is

τk =

 k, if Ṽk (yk) = γE
(
‖yk − ξ‖2

∣∣∣Yk−1

)
,

τk−1, if Ṽk (yk) > γE
(
‖yk − ξ‖2

∣∣∣Yk−1

)
.

If k is not a stopping moment, then the system (2.1) must be shifted from
state yk to expected optimal state

E (yk+1| Yk) =
(
Φt
k+1 +D

)−1 (
Hyk + Ψt

k+1E (ξ| Yk)
)
.

where t = min
{
k < t 6 N : Ṽk (yk) = V t

k (yk)
}
. From theory of optimal

stopping rules (see e.g. [21]) the Markov moment given by

τ∗ = min
{

0 6 k 6 N : γE
(
‖yk − ξ‖2

∣∣∣Yk−1

)
= Ṽk (yk)

}
is an optimal stopping moment, what proves the assertion.

Remark 4.2. If γ = 0 then form theorem 4.1 the system (2.1) must be
controlled to the end of �xed horizon.

Example 4.3. The linear system is de�ned by the state equation (2.1) and
must be moved from initial state y0 = (90; 50) to the random target ξ. We
assume, that the parameters α, β, γ and the matrices Q,A,B, σ are the same
as in example 1.

Figure 3a shows the simulation of trajectory of stochastic system (2.1).
The �gure 3b presents the realization Ṽk (yk) (curve with mark 'cross') and
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γE
(
‖yk − ξ‖2

∣∣∣Yk) (curve with mark 'square') for 0 6 k 6 N . In this pic-

ture we see, that for the moment τ∗ = 14 the lowest expected cost Ṽτ∗ (yτ∗)

is identical as heredity cost γE
(
‖yτ∗ − ξ‖2

∣∣∣Yτ∗). From above the moment

τ∗ = 14 is an optimal moment of stopping. Comparing the �gures 1a and
3a we see, that optimal paths for �xed and optimally stopped horizon are
completely di�erent. For �xed horizon the system (2.1) is moved uniformly
along trajectory form initial state y0 to target ξ. For optimally stopped
horizon the system (2.1) is more moved at the beginning but slowly moved
at the end of horizon.

5. Conclusion

The problem presented in this article depends on determining the optimal
path (trajectory) to perfect track the target. To realise this aim the linear
quadratic control problem was converted to the linear quadratic routing
problem. The laws of detemining the optimal route and optimal horizon were
given. The examples presented above show, that the horizon has a signi�cant
in�uence to result of realization of aim.

The extension of presented results can be used, for example, to the source
seeking problem, the navigation planning, the perfect tracking etc.
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Asymptotics of the products of sums

of independent and non-identically

distributed random variables

Tomasz Krajka1, Przemysªaw Matuªa2, Habib Naderi3

Abstract

We study weak convergence of products of sums of independent
and non-identically distributed random variables. Some examples con-
cerning the rate of convergence are also presented in this setting.

1. Introduction

Let (Xn)n∈N be a sequence of i.i.d., positive and square�integrable random
variables with mean µ, variance σ2 and coe�cient of variation γ = σ/µ.
The study of the limiting behavior of products of sums Sn =

∑n
k=1Xk

originated in the paper of Arnold and Villaseñor [1], who proved the following
convergence of sums of record values based on a sequence of i.i.d. standard
exponential r.v.'s∑n

i=1 logSi − n log n+ n√
2n

d−→ N (0, 1) as n→∞, (1.1)

here and in the sequel N
(
µ, σ2

)
denotes the normal variable with mean µ

and variance σ2. Let us observe that∑n
i=1 logSi − n log n+ n√

2n
= log

(∏n
i=1 Si · en

nn

) 1√
2n
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and by applying the Stirling formula

lim
n→∞

n!√
2πnnne−n

= 1

and

lim
n→∞

(
1√
2πn

) 1√
2n

= 1

we see that (1.1) is equivalent to(
n∏
i=1

Si
i

) 1√
n

d−→ exp (N (0, 2)) as n→∞

Rempaªa and Wesoªowski [16] found that this result has deeper meaning and
proved that if (Xn)n∈N is a sequence of i.i.d. positive and square�integrable
random variables, then(∏n

i=1 Si
n!µn

) 1
γ
√
n d−→ exp (N (0, 2)) , as n→∞. (1.2)

This result was extended and generalized by several authors. Let us
brie�y recall some of these results. Natural directions for generalizations of
(1.2) is relaxing the assumption of independence by considering sequences of
dependent r.v.'s, considering r.v.'s which are non-identically distributed or
weakening the moment requirement i.e. square-integrability of r.v.'s. The
other interesting questions are the rate of convergence in (1.2) and functional
or almost sure version of this result. Randomly indexed and self-normalized
products were investigated as well. In recent years also large deviation and
precise asymptotics were studied.

Qi [15] and Lu and Qi [8] relaxed the assumption of square integrability
of the r.v.'s and considered sequences belonging to the domain of attraction
of a stable law with index greater or equal to 1. They obtained analogous
results to (1.2) with the stable law in the limit. This direction of research
in the functional version carried on Kosi«ski in [4]. The convergence in the
space D[0, 1] of processes constructed from products of sums for the �rst
time were studied by Zhang and Huang [19] and later for non-identically
distributed r.v.'s by Matuªa and St�epie« [10, 13]. The non-i.i.d. case con-
sidered also Krajka and Rychlik [6] even in the randomly indexed setting.
The so-called almost sure version of the central limit theorem focused the
attraction of many researchers in the context of products of sums, let us only
mention Gonchigdanzan [3] and Matuªa and St�epie« [12]. There are only
two papers devoted to the study of the rate of convergence in (1.2), these
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are results of Matuªa and St�epie« [11] and Krajka and Rychlik [5]. Depen-
dent r.v.'s such as positively or negatively dependent, mixing sequences were
studied for example in [12], [20] and [18]. A general approach to dependent
sequences via strong approximation was discussed in [9]. Among the most
recent results let us mention the paper of Tan [17] on precise asymptotics
and Zhu [21] on large deviation for products of sums.

The goal of our paper is to generalize (1.2) to the case of independent
but non-identically distributed r.v.'s and to combine the results of [6], [10]
and [13] into one theorem.

For a sequence (Xn)n∈N be a sequence of independent, and square�
integrable random variables de�ned on some probability space (Ω,F, P ) ,
let us introduce the following notation:

µn = EXn, τ
2
n = Var(Xn), Sn =

n∑
k=1

Xk, σ
2
n = Var(Sn) =

n∑
k=1

τ2
k , for n ∈ N.

The main results concerning weak convergence will be stated and proved in
Section 2, in Section 3 we quote a result concerning the rate of convergence
and in Section 4 we present some illustrative examples.

2. Weak convergence

In what follows (an)n∈N∪{0} is an increasing sequence such that a0 = 0 and
limn→∞ an =∞.

Theorem 2.1. Let (Xn)n∈N be a sequence of independent and square-integrable

r.v.'s and (αi,n)16i6n,n∈N an array of positive numbers. Assume that the fol-

lowing conditions are satis�ed:

Xn − EXn > an−1 − an, almost surely for all n ∈ N, (2.1)

∞∑
i=1

E |Xi − EXi|p

api
<∞, for some p ∈ (0, 2〉 , (2.2)

n∑
i=1

αi,n
a2
i

σ2
i → 0, as n→∞, (2.3)

n∑
i=1

(Ani )2 τ2
i → σ2, as n→∞, for some σ > 0, (2.4)

where Ani =
∑n

k=i
αk,n
ak
,

for any i0 ∈ N, max
16i6i0

αi,n → 0, as n→∞, (2.5)
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lim
n→∞

n∑
i=1

(Ani )2 E (Xi − EXi)
2 I [Ani |Xi − EXi| > ε] = 0, for any ε > 0.

(2.6)
Then

Tn :=

n∏
i=1

(
Si − ESi

ai
+ 1

)αi,n
d−→ exp

(
N (0, σ2)

)
, as n→∞. (2.7)

Proof. We essentially follow the lines of [10] and [13] and apply the expansion
of the logarithm

log(1 + x) = x+R(x), for |x| 6 1/2, where |R(x)| 6 2x2

to prove that

log Tn =
n∑
i=1

αi,n
ai

(Si − ESi) +An (2.8)

with An
P−→ 0.

Let us put Ci = (Si − ESi) /ai. From (2.1) we have Ci + 1 > 0 almost
surely and therefore we easily get

log

(
Si − ESi

ai
+ 1

)
= log (Ci + 1)

= Ci +R(Ci)I [|Ci| 6 1/2] + (log (Ci + 1)− Ci) I [|Ci| > 1/2] .

Thus

log Tn =

n∑
i=1

αi,n log (Ci + 1) =

=

n∑
i=1

αi,nCi +

n∑
i=1

αi,nR(Ci)I [|Ci| 6 1/2]

+

n∑
i=1

αi,n (log (Ci + 1)− Ci) I [|Ci| > 1/2]

=

n∑
i=1

αi,n
ai

(Si − ESi) +A′n +A′′n , say.

Let us observe that

E
∣∣A′n∣∣ 6 2

n∑
i=1

αi,nE
(
Si − ESi

ai

)2

= 2
n∑
i=1

αi,n
σ2
i

a2
i

→ 0
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by assumption (2.3). By (2.2) the strong law of large numbers holds (see
[14]) i.e. Cn → 0 almost surely. Thus, for almost all ω ∈ Ω, there exists
i0(ω) such that for all i > i0(ω) there holds I [|Ci| > 1/2] = 0. Since that

A′′n =

i0∑
i=1

αi,n (log (Ci + 1)− Ci) I [|Ci| > 1/2]

6 max
16i6i0

ai,n

i0∑
i=1

(log (Ci + 1)− Ci) I [|Ci| > 1/2]→ 0

by (2.5). It means that A′′n → 0 almost surely and (2.8) is proved.
It remains to prove that

Zn :=
n∑
i=1

αi,n
ai

(Si − ESi)
d−→ N

(
0, σ2

)
.

Let us introduce a triangle array of r.v.'s independent in each row

Yi,n = Ani (Xi − EXi) , 1 6 i 6 n, n ∈ N.

Then

Zn =
n∑
i=1

Yi,n

and EYi,n = 0, Var (Yi,n) = (Ani )2 τ2
i . By assumption (2.4)

Var (Zn) =
n∑
i=1

(Ani )2 τ2
i → σ2

and the conclusion follows from (2.6) and the Lindeberg's theorem for tri-
angle arrays of independent random variables (see Theorem 27.2 in [2]).

Remark 2.2. Obviously (2.6) holds if the following Lyapunov's condition is
satis�ed for some δ > 0

lim
n→∞

n∑
i=1

(Ani )2+δ E |Xi − EXi|2+δ = 0. (2.9)

Remark 2.3. It is quite natural to use the normalization ai = ESi. In this
case (2.1) is equivalent to Xn > 0 almost surely and we have a simple form
of the factors Si−ESi

ai
+ 1 = Si

ESi .

In the case αi,n = βn i.e. when αi,n does not depend on i, we get Theorem
2.1 of [6] (the part concerning nonrandom number of factors in the product).
In this case (2.5) is satis�ed provided 0 < βn → 0. Let us recall this result
as a corollary.
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Corollary 2.4. Let (Xn)n∈N be a sequence of independent and square-

integrable r.v.'s and 0 < αi,n = βn → 0 as n → ∞. If (2.1)�(2.4) and

(2.6) are satis�ed, then(
n∏
i=1

(
Si − ESi

ai
+ 1

))βn
d−→ exp

(
N (0, σ2)

)
, as n→∞. (2.10)

In [10] the weak convergence of the normalized products of the form n∏
i=1

(
Si
ESi

) τ2i+1ESi
σ2
i


1/σn

was studied, i.e. the weights αi,n =
τ2i+1ESi
σ2
i σn

and normalization ai = ESi were
used in this case. This problem was generalized in [13], where the following
weights were considered

αi,n = f

(
σ2
i

σ2
n

)
τ2
i ESi
σ3
n

.

We shall show that the one-dimensional case of [10] and [13] can be derived
from our Theorem 2.1. We shall consider the family of nonnegative functions
f : [0, 1]→ R+ which are continuously di�erentiable on (0, 1] and satisfy∫ 1

0

(∫ 1

x
f(y)dy

)2

dx <∞,∫ 1

0
f(x)
√
xdx <∞, (2.11)

f(x)x3/2 → 0, as x→ 0+.

Corollary 2.5. Let (Xn)n∈N be a sequence of independent, positive and

square-integrable r.v.'s and the function f satis�es (2.11). Assume that

∞∑
i=1

τ2
i

(ESi)2 <∞ and ESn →∞, as n→∞ (2.12)

and

lim
n→∞

1

σ2
n

n∑
i=1

E (Xi − EXi)
2 I [|Xi − EXi| > εσn] = 0, for all ε > 0. (2.13)

Then
n∏
i=1

(
Si
ESi

)αi,n
d−→ exp

(
N (0, σ2)

)
, as n→∞, (2.14)

where αk,n = f
(
σ2
k
σ2
n

)
τ2kESk
σ3
n

and σ2 =
∫ 1

0

(∫ 1
x f(y)dy

)2
dx
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Proof. We shall verify that the assumptions of Theorem 2.1 are satis�ed.
From the positivity of the random variables and the choice ai = ESi (2.1)
follows, (2.2) is (2.12) for p = 2. Under conditions (2.11) imposed on f , the
convergence in (2.3) was proved in formula (21) in [13]. From Lindeberg's
condition (2.13) the Feller condition follows

lim
n→∞

max
16i6n

τ2
i

σ2
n

= 0 (2.15)

and (2.4) may be considered as an integral sum

n∑
i=1

(Ani )2 τ2
i =

n∑
i=1

(
n∑
k=i

f

(
σ2
k

σ2
n

)
τ2
k

σ2
n

)2
τ2
i

σ2
n

→
∫ 1

0

(∫ 1

x
f(y)dy

)2

dx = σ2.

Since αk,n = f
(
σ2
k
σ2
n

)(
σ2
k
σ2
n

)3/2 τ2kESk
σ3
k

, we see that (2.5) is a consequence of

continuity of f and convergence f(x)x3/2 → 0.
It remains to prove that the classical Lindeberg's condition (2.13) im-

plies (2.6). Let us de�ne mn(t) = max
{
i : σ2

i 6 tσ
2
n

}
and observe that

limn→∞ σ
2
mn(t)/σ

2
n = limn→∞ σ

2
mn(t)+1/σ

2
n = t (see also (21) in [10]). For

given ε > 0 we can �nd δ > 0 such that
∫ δ

0

(∫ 1
x f(y)dy

)2
dx < ε and by

continuity of f on the closed interval 〈δ, 1〉 the following integral is �nite
η :=

∫ 1
δ f(x)dx <∞. Let us split the sum in (2.6) into two parts

n∑
i=1

(Ani )2 E (Xi − EXi)
2 I [Ani |Xi − EXi| > ε]

=

mn(δ)∑
i=1

(Ani )2 E (Xi − EXi)
2 I [Ani |Xi − EXi| > ε]

+
n∑

i=mn(δ)+1

(Ani )2 E (Xi − EXi)
2 I [Ani |Xi − EXi| > ε]

6
mn(δ)∑
i=1

(Ani )2 τ2
i

+
n∑
i=1

(
Anmn(δ)+1

)2
E (Xi − EXi)

2 I
[
Anmn(δ)+1 |Xi − EXi| > ε

]
.

We have

mn(δ)∑
i=1

(Ani )2 τ2
i =

mn(δ)∑
i=1

(
n∑
k=i

f

(
σ2
k

σ2
n

)
τ2
k

σ2
n

)2
τ2
i

σ2
n

→
∫ δ

0

(∫ 1

x
f(y)dy

)2

dx,
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thus for su�ciently large n we get
∑mn(δ)

i=1 (Ani )2 τ2
i < 2ε.

Furthermore
∑n

k=mn(δ)+1 f
(
σ2
k
σ2
n

)
τ2k
σ2
n
→

∫ 1
δ f(x)dx, therefore for su�-

ciently large n we get
∑n

k=mn(δ)+1 f
(
σ2
k
σ2
n

)
τ2k
σ2
n
< 2η and in consequence

Anmn(δ)+1 =

n∑
k=mn(δ)+1

f

(
σ2
k

σ2
n

)
τ2
k

σ3
n

<
2η

σn
.

Thus, for su�ciently large n, we get

n∑
i=1

(Ani )2 E (Xi − EXi)
2 I [Ani |Xi − EXi| > ε]

6 2ε+
4η2

σ2
n

n∑
i=1

E (Xi − EXi)
2 I [|Xi − EXi| > σnε/2η]

and (2.6) follows.

Another approach to non-identically distributed r.v.'s is to normalize
them by their expectations i.e. by consideringX ′k = Xk/EXk. Then Var (X ′k) =
γ2
k , where γk = τk/EXk is the coe�cient of variation of Xk. Furthermore we
put S′n =

∑n
k=1X

′
k and Γ2

n = Var (S′n) =
∑n

k=1 γ
2
k . Under this notation we

have the following corollary to our main Theorem 2.1.

Corollary 2.6. Let (Xn)n∈N be a sequence of independent, positive and

square-integrable r.v.'s satisfying the following conditions.

∞∑
k=1

γ2
k

k2
<∞, (2.16)

lim
n→∞

1

Γ2
n

n∑
i=1

E
(
Xi

EXi
− 1

)2

I
[∣∣∣∣ Xi

EXi
− 1

∣∣∣∣ > εΓn] = 0, for all ε > 0, (2.17)

Γn →∞, as n→∞. (2.18)

Then (
n∏
i=1

S′i
i

)1/Γn
d−→ exp (N (0, 2)) , as n→∞. (2.19)

Proof. We apply Theorem 2.1 to the r.v.'s X ′k = Xk/EXk with an = n.
From (2.16) we get (2.2), furthermore by Kronecker's lemma

1

n2

n∑
k=1

γ2
k =

(
Γn
n

)2

→ 0. (2.20)
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In our case (2.3) takes the form

1

Γn

n∑
i=1

Γ2
i

i2
→ 0. (2.21)

By applying the summation by parts formula (or by changing the order of
summation) we get

1

Γn

n∑
i=1

Γ2
i

i2
6

const

Γn

n∑
i=1

γ2
i

i
.

In view of (2.18) we can apply the Stolz theorem∑n+1
i=1

γ2i
i −

∑n
i=1

γ2i
i

Γn+1 − Γn
=

γ2
n+1

n+ 1
· Γn+1 + Γn

Γ2
n+1 − Γ2

n

=
Γn+1 + Γn
n+ 1

→ 0

by (2.20), thus (2.21) follows. From the Lindeberg's condition (2.17) follows
the Feller condition for the sequence (X ′n)n∈N i.e.

max
16i6n

γ2
i

Γ2
n

→ 0.

Therefore we can handle with (2.4) as with an integral sum

n∑
i=1

(
n∑
k=i

1

Γn · k

)2

γ2
i =

n∑
i=1

(
n∑
k=i

1
k
n

· 1

n

)2
γ2
i

Γ2
n

→

→
∫ 1

0

(∫ 1

x

1

y
dy

)2

dx = 2.

The condition (2.5) is obvious, while (2.6) follows from the Lindeberg's con-
dition (2.17) similarly as in the proof of Corollary 2.5.

3. Rate of convergence

In what follows we shall write bn ∼ an if there exist some constants 0 < c1 6
c2 <∞ such that

c1an 6 bn 6 c2an.

Let us quote Theorem 3.1 of [7] which estimates upper bound of the speed
of convergence in Theorem 2.1 in case when αi,n is dependent on n only, and
the limiting distribution is eN (0,1). This result is an extension of the paper
[5].
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Theorem 3.1. Let (Xn)n∈N be a sequence of independent random variables,

such that EXn = µn, E(Xn − µn)2 = τ2
n, n > 1. Let (an)n∈N∪{0} be a non-

decreasing and divergent to in�nity sequence of positive reals (with a0 = 0 )

such that an+1

an
= O(1), as n→∞. For any k > 1, δ > 0 let us denote

ϕk(δ) = P [Xk − µk 6 (δ − 1)(ak − ak−1)].

Moreover let (γn)n∈N be a positive sequence and Ank =
∑n

i=k
1
ai
. If for some

2 < r 6 3, E|Xn|r <∞, n > 1, and

arn
Ln + σrn

∞∑
j=n

E|Xj |r + σrj+1 − σrj
arj

= O(1), as n→∞,

as well as

E|Xn+1|r + σrn+1 − σrn
Ln + σrn

· 1

(an+1/an)r − 1
= O(1),

and Ln+σrn
arn

↓ 0, as n→∞, where

Ln =

n∑
j=1

E|Xj |r, σ2
n =

n∑
j=1

τ2
j .

Then, for any sequence of positive reals δn, and m ∈ N, 1 6 m < n, we have

∆n := sup
x∈R

∣∣∣∣∣P
[(

n∏
k=1

Sk − ESk + ak
ak

)γn
< x

]
− P [exp(N (0, 1)) < x]

∣∣∣∣∣
6 C

Lm + σrm
arm

+ γ
1
2
n

(
n∑

k=m+1

σ2
k

a2
k

) 1
2

(3.1)

+ψn,m(δn) + κm(δn) +
|max{%n, %−1

n } − 1|√
2πe

+

∑n
j=1(Anj )rE|Xj |r

(
∑n

k=1(Ank)2τ2
k )

r
2

}
,

where %n = γn

√
Var(

∑n
k=1A

n
k(Xk)), Xn = Xn − µn, n > 1, and

ψn,m(δn) =
γ

1
2
n

1 ∧ δn

(
m∑
k=1

σ2
k

a2
k

) 1
2

,

κm(δn) = 1−
m∏
k=1

(1− ϕk(δn)) 6
m∑
k=1

ϕk(δn).
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Moreover if Xn − µn > an−1 − an almost surely for n > 1, and δn be any

sequence of positive reals and t be the largest natural number such that at <
δn, then

ψn,m(δn) = γ
1
2
n

(
m∧t∑
k=1

σ2
k

a2
k

+

m∑
k=t+1

σ2
k

δn
I[t < m]

) 1
2

κm(δn) = P [X1 6 δn + µ1 − a1].

We shall apply this theorem to estimate the speed of convergence in some
examples of sequences of non-identically distributed independent random
variables. In Section 4 we shall show that the above conditions may easily
be veri�ed in some special situations.

Remark 3.2. This theorem is an estimation of the rate of weak convergence
to the limiting distribution eN (0,1). In the case of convergence to the distri-

bution eN(0,σ2), the speed of convergence will be the same. It is easy to see
that as we take γ′n = γn

σ , then we get

sup
x∈R

∣∣∣∣∣P
[(

n∏
k=1

Sk − ESk + ak
ak

)γn
< x

]
− P [exp(N

(
0, σ2

)
) < x]

∣∣∣∣∣ =

sup
x∈R

∣∣∣∣∣∣P
( n∏

k=1

Sk − ESk + ak
ak

)γ′n
< x

1
σ

− P [exp(N (0, 1)) < x
1
σ ]

∣∣∣∣∣∣ .
4. Examples

In the examples given below C > 0 denotes a constant which may be di�erent
in the consecutive inequalities.

At the beginning we shall modify the Example 4.2 of [6]. We shall
use shifted Poisson distribution in order to have (2.1) satis�ed with sharp
inequality (in [6] weak inequality was used what makes a technical problem
in the de�nition of the product and its logarithm when Ci + 1 = 0). Such
example was also considered in [13].

Example 4.1. Let (ξk)k∈N be a sequence of independent r.v.'s with Poisson
distribution ξk ∼ Po(k). We de�ne Xk = ξk + 1, then Xk > 1 almost surely,
furthermore

EXk = k + 1,

τ2
k = Var(Xk) = k,

ESn = 2 + . . .+ (n+ 1) = n(n+ 3)/2,

σ2
n = Var(Sn) = 1 + . . .+ n = n(n+ 1)/2,

E (Xk − EXk)
4 = E (ξk − Eξk)4 = 3k2 + k.
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We shall illustrate how Corollary 2.4 works with ai = ESi and αi,n = 1√
logn

.

Clearly (2.1) holds by Remark 2.3 and (2.2) is satis�ed with p = 2.Moreover

n∑
i=1

αi,n
a2
i

σ2
i =

1√
log n

n∑
i=1

2(i+ 1)

i(i+ 3)2
→ 0, as n→∞

and we have (2.3). Now let us observe that

1

i+ 3
− 1

n+ 3
=

∫ n

i

dx

(x+ 3)2
6

n∑
k=i

1

k(k + 3)

6
1

i(i+ 3)
+

∫ n

i

dx

x2
6

1

i2
+

1

i
− 1

n

therefore

n∑
i=1

(Ani )2 τ2
i =

1

log n

n∑
i=1

(
n∑
k=i

2

k(k + 3)

)2

i→ 4, as n→∞.

It remains to check the Lyapunov condition (2.9) with δ = 2

n∑
i=1

(Ani )4 E (Xi − EXi)
4 6

16

log2 n

n∑
i=1

1

i4
(
3i2 + i

)
→ 0, as n→∞.

Thus we have proved that(
n∏
i=1

(
2Si

i(i+ 3)

))1/
√

logn
d−→ exp (N (0, 4)) , as n→∞. (4.1)

Now, using Theorem 3.1, we shall estimate the rate of convergence in (4.1).
According to Remark 3.2 we take γ′n = γn

2 = 1
2
√

logn
. For r = 3 we have

E|Xk|3 ∼ k
3
2 , and in consequence Ln ∼ n

5
2 . Let us check the assumptions:

an+1

an
=

(n+ 1)(n+ 4)

n(n+ 3)
= O(1),

arn
Ln + σrn

∞∑
j=n

E|Xj |r + σrj+1 − σrj
arj

∼ n3(n+ 3)3

√
n

5
+
√
n(n+ 1)

3

∞∑
j=n

√
j

3
+
√

(j + 1)(j + 2)
3 −

√
j(j + 1)

3

(j(j + 3))3

∼ n3
∞∑
j=n

√
j

3
+ j2

j6
∼ n3

∞∑
j=n

1

j4
= O(1),
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E|Xn+1|r + σrn+1 − σrn
Ln + σrn

· 1

(an+1/an)r − 1

∼
n

3
2 +

√
(n+ 1)(n+ 2)

3 −
√
n(n+ 1)

3

n
5
2 +

√
n(n+ 1)

3 · 1

(1 + 2n+4
n2+3n

)3 − 1
= O(1),

Ln + σrn
arn

∼
n5/2 +

(
n(n+1)

2

)3/2

n3(n+3)3

8

↓ 0.

Thus the assumptions of Theorem 3.1 are satis�ed. Now we shall estimate
all summands in (3.1):

Lm + σrm
arm

6
8

m3
,

γ
1
2
n

(
n∑

k=m+1

σ2
k

a2
k

) 1
2

6 C
1

4
√

log n

(
n∑

k=m+1

2k(k + 1)

k2(k + 3)2

) 1
2

6 C
1

4
√

log n

(
n∑

k=m+1

1

k2

) 1
2

6 C
1

4
√

log n
√
m

ψn,m(δn) =
1

4
√

log n
· 1

δn ∧ 1

(
m∑
k=1

σ2
k

a2
k

) 1
2

6 C
1

4
√

log nδn
, for δn < 1,

κm(δn) 6
m∑
k=1

ϕk(δn) =
m∑
k=1

P [Xk − k − 1 6 (δn − 1)(k + 1)]

=
m∑
k=1

P [Xk 6 δn(k + 1)] = 0,
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if δn(k + 1) < 1, and in consequence δn <
1

m+1 6
1

k+1 .

%n = γ′n

√√√√Var

(
n∑
k=1

AnkXk

)
=

1

2
√

log n

(
n∑
k=1

(Ank)2EX2
k

) 1
2

=
1

2
√

log n

 n∑
k=1

(
n∑
i=k

2

i(i+ 3)

)2

k

 1
2

=
1

2
√

log n

 n∑
k=1

(
2

3

n∑
i=k

(
1

i
− 1

i+ 3

))2

k

 1
2

=
1

3
√

log n

( n∑
k=1

k

(
1

k
+

1

k + 1
+

1

k + 2
− 1

n+ 1
− 1

n+ 2
− 1

n+ 3

)2) 1
2

6 1 +
C√
log n

,

if C > 0.Otherwise we use the inequality 1
1− C√

logn

6 1+ 2C√
logn

, for su�ciently

large n. In consequence

|max{%n, %−1
n }|√

2πe
6

C√
log n

∑n
k=1(Ank)3E|Xk|r

(
∑n

k=1(Ank)2τ2
k )

3
2

=

∑n
k=1 k

(
1
k + 1

k+1 + 1
k+2 −

1
n+1 −

1
n+2 −

1
n+3

)3

(∑n
k=1 k

(
1
k + 1

k+1 + 1
k+2 −

1
n+1 −

1
n+2 −

1
n+3

)2) 3
2

6
C

(
√

log n)3
.

Finally we have

∆n = sup
x∈R

∣∣∣∣∣∣P
( n∏

k=1

Sk − ESk + ak
ak

)γ′n
< x

− P [exp(N (0, 1)) < x]

∣∣∣∣∣∣
6 C

(
8

m3
+

1
4
√

log n
√
m

+
1

4
√

log nδn
+

1√
log n

+
1

(log n)
3
2

)

6 C

(
8

m3
+

1
4
√

log nδn

)
,

and δn <
1

m+1 . Taking δn = 1
m+2 , we have

∆n 6 C

(
8

m3
+
m+ 2
4
√

log n

)
,
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minimizing this bound with m = 16
√

log n and δn = 1
16√logn

, we get

∆n 6
C

(log n)3/16
.

To complete the applications of Corollary 2.4 we present an example
where di�erent normalization than ai = ESi is used.

Example 4.2. Consider a sequence (Xk)k∈N of i.i.d. standard exponential
r.v.'s i.e. Xk ∼ Exp(1). In this case

EXk = 1, τ2
k = 1, E (Xk − EXk)

4 = 9, ESn = n, σ2
n = n.

We take ai = i
√
i and αi,n = 1√

logn
. Let us observe that EXn+an−1−an =

1 + (n − 1)3/2 − n3/2 6 0, thus (2.1) is satis�ed. Furthermore (2.2) holds
with p = 2, also (2.3) is easily veri�ed. Similarly as in the previous example
we check that (2.4) takes the form

1

log n

n∑
i=1

(
n∑
k=i

1

k
√
k

)2

−→ 4.

To verify the Lyapunov's condition (2.9) observe that

(Ani )4 =

(
n∑
k=i

1
√

log nk
√
k

)4

6
1

log2 n
· const

i2
.

Thus from Corollary 2.4 we get(
n∏
i=1

(
Si

i
√
i
− 1√

i
+ 1

))1/
√

logn
d−→ exp (N (0, 4)) , as n→∞. (4.2)

It may be compared with the classical result of Arnold, Villaseñor, Rem-
paªa and Wesoªowski (1.2)(

n∏
i=1

(
Si
i

))1/
√
n

d−→ exp (N (0, 2)) , as n→∞.

For another comparison let us also recall Example 3 of [13] which can be also
derived from our Corollary 2.5 with the function f(x) = xp where p > −3/2.
We have the following extension of the above convergence(

n∏
i=1

(
Si
i

)(i/n)p+1)1/
√
n

d−→ exp

(
N
(

0,
2

(p+ 2) (2p+ 3)

))
, as n→∞.
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Now we shall estimate the rate of convergence in (4.2). We take γ′n =
γn/2 = 1

2
√

logn
. For r = 3 we have E|Xk|3 = 12

e − 2 and obviously Ln ∼ n.

At �rst let us check the assumptions of Theorem 3.1 :

an+1

an
= O(1),

arn
Ln + σrn

∞∑
j=n

E|Xj |r + σrj+1 − σrj
arj

∼ n
9
2

n+ n
3
2

∞∑
j=n

C + (j + 1)
3
2 − j

3
2

j
9
2

∼ n
9
2

n
3
2

∞∑
j=n

C +
√
j

j
9
2

= O(1).

It is easy to see that
(
an+1

an

)3
− 1 ∼ 1

n , therefore

E|Xn+1|r + σrn+1 − σrn
Ln + σrn

· 1

(an+1/an)r − 1
=
C + (n+ 1)

3
2 − n

3
2

Cn+ n
3
2

· n = O(1),

Ln + σrn
arn

∼ n+ n
3
2

n
9
2

↓ 0.

So the assumptions of Theorem 3.1 are veri�ed. Now we shall estimate all
summands in (3.1):

Lm + σrm
arm

6
C

m3
,

γ
1
2
n

(
n∑

k=m+1

σ2
k

a2
k

) 1
2

=
1

4
√

log n

(
n∑

k=m+1

1

k2

) 1
2

6 C
1

4
√

log n
√
m
,

ψn,m(δn) =
1

4
√

log n
· 1

δn ∧ 1

(
m∑
k=1

1

k2

) 1
2

6 C
1

4
√

log nδn
, for δn < 1,

κm(δn) 6
m∑
k=1

ϕk(δn) =
m∑
k=1

P [Xk − 1 6 (δn − 1)(k
3
2 − (k − 1)

3
2 )]

= P [X1 6 δn] = 1− e−δn 6 δn,
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if δn <
2
√

2−2
2
√

2−1
, as 1− e−x 6 x.

%n = γ′n

√√√√Var

(
n∑
k=1

AnkXk

)
=

1

2
√

log n

(
n∑
k=1

(Ank)2EX2
k

) 1
2

=
1

2
√

log n

 n∑
k=1

(
n∑
i=k

1

i
3
2

)2
 1

2

∼ 1

2
√

log n

(
n∑
k=1

(
2√
k

)2
) 1

2

∼ 1

2
√

log n

(
1

4
log n+ C

) 1
2

∼ 1 +
C√
log n

,

if C > 0.Otherwise we use the inequality 1
1− C√

logn

6 1+ 2C√
logn

, for su�ciently

large n. In consequence

|max{%n, %−1
n }|√

2πe
6

C√
log n

∑n
j=1(Anj )3E|Xj |r

(
∑n

k=1(Ank)2τ2
k )

3
2

=
C
∑n

j=1(Anj )3

(
∑n

k=1(Ank)2)
3
2

= C

∑n
j=1(

∑n
i=j

1
i
√
i
)3

(
∑n

k=1(
∑n

i=k
1
i
√
i
)2)

3
2

∼

∑n
j=1

1
j
√
j

(
∑n

k=1
1
k )

3
2

∼ 1

log n
√

log n
.

Finally we have

∆n = sup
x∈R

∣∣∣∣∣∣P
( n∏

k=1

Sk − ESk + ak
ak

)γ′n
< x

− P [exp(N (0, 1)) < x]

∣∣∣∣∣∣
6 C

(
1

m3
+

1
4
√

log n
√
m

+
1

4
√

log nδn
+ δn +

1√
log n

+
1

(log n)
3
2

)

6 C

(
1

m3
+

1
4
√

log nδn
+ δn

)
.

Taking m = 12
√

log n we have

∆n 6 C

(
1

4
√

log nδn
+ δn

)
minimizing this bound with δn = 1

8√logn
, �nally we get

∆n 6 C
1

(log n)1/8
.
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In the next example we consider random variables which take also nega-
tive values and such that the obtained convergence result cannot be deduced
neither form [6] nor [13].

Example 4.3. Let (Xk)k∈N be a sequence of independent r.v.'s such that

P
(
Xn = ±n

2

)
=

1

2

for each n ∈ N. In this case

EXk = 0, τ2
k =

k2

4
, EX4

k =
k4

16
, ESn = 0 and σ2

n =
n(n+ 1)(2n+ 1)

24
.

We shall apply our Theorem 2.1 with αi,n = i
n
√
n
and ai = i2. Since EXn +

an−1−an = −2n+ 1, then (2.1) is satis�ed, (2.2) holds with p = 2 and (2.3)
takes the form

n∑
i=1

αi,n
a2
i

σ2
i =

1

n
√
n

n∑
i=1

(i+ 1) (2i+ 1)

24i2
6

1

n
√
n

n∑
i=1

2i · 3i
24i2

=
1

4
√
n
→ 0.

To calculate the limiting variance σ2 in (2.4) observe that

n∑
i=1

(Ani )2 τ2
i =

1

n3

n∑
i=1

(
n∑
k=i

1

k

)2
i2

4
=

1

4

n∑
i=1

(
n∑
k=i

1
k
n

· 1

n

)2(
i

n

)2 1

n

→ 1

4

∫ 1

0

(∫ 1

x

1

y
dy

)2

x2dx =
1

4

∫ 1

0
x2 ln2 xdx =

1

54
.

The assumption (2.5) is easily veri�ed and it remains to prove (2.6) by
checking the Lyapunov condition with δ = 2. We have

n∑
i=1

(Ani )4 EX4
i

=
1

n6

n∑
i=1

(
n∑
k=i

1

k

)4
i4

16
=

1

16n

n∑
i=1

(
n∑
k=i

1
k
n

· 1

n

)4(
i

n

)4 1

n
→ 0

since
∑n

i=1

(∑n
k=i

1
k
n

· 1
n

)4 (
i
n

)4 1
n →

∫ 1
0 x

4 ln4 xdx = 24
3125 . Finally by The-

orem 2.1 we get(
n∏
i=1

(
Si
i2

+ 1

)i)1/n
√
n

d−→ exp

(
N
(

0,
1

54

))
, as n→∞.
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To present the applicability of our results let us �nally consider an ex-
ample with non-identically uniformly distributed r.v.s.

Example 4.4. Let (Xk)k∈N be a sequence of independent r.v.'s with uniform
distribution on the interval (0, k〉 i.e. Xk ∼ U (0, k). Hence

EXk =
k

2
, τ2

k =
k2

12
, E (Xk − EXk)

4 =
k4

80
,

ESn =
n(n+ 1)

4
and σ2

n =
n(n+ 1)(2n+ 1)

72
.

At �rst we take ai = ESi and αi,n = 1√
n
. The conditions (2.1)-(2.3) and

(2.5) are easily veri�ed. We check (2.4)

n∑
i=1

(Ani )2 τ2
i =

n∑
i=1

(
4√
n

n∑
k=i

1

k(k + 1)

)2 i2

12

=
4

3n

n∑
i=1

(
1

i
− 1

n+ 1

)2

i2 =
4

3n

n∑
i=1

(
1− 2i

n+ 1
+

i2

(n+ 1)2

)
=

4

3n
· n(2n+ 1)

6(n+ 1)
→ 4

9
.

Lyapunov's condition reads as follows

n∑
i=1

(Ani )4 E (Xi − EXi)
4 =

n∑
i=1

(
4√
n

n∑
k=i

1

k(k + 1)

)4
i4

80

=
16

5n2

n∑
i=1

(
1

i
− 1

n+ 1

)4

i4 6
16

5n
→ 0.

Thus we get(
n∏
i=1

4Si
i(i+ 1)

)1/
√
n

d−→ exp

(
N
(

0,
4

9

))
, as n→∞. (4.3)

Another choice of normalizing constants is ai = ESi and αi,n =
τ2i ESi
σ2
i σn

.

This case was described in Corollary 2.5 with f(x) = 1/x. The limiting
distribution is then exp (N (0, 2)). This normalization may be simpli�ed
according to our Theorem 2.1, we take ai = i2 and αi,n = i

n
√
n
as in the

Example 4.3. We have EXn + an−1 − an = −3
2n + 1 < 0, thus (2.1) holds.

We check (2.4)

n∑
i=1

(Ani )2 τ2
i =

1

n3

n∑
i=1

(
n∑
k=i

1

k

)2
i2

12
→ 1

12

∫ 1

0
x2 ln2 xdx =

1

162
.
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The other conditions are veri�ed similarly and we get(
n∏
i=1

(
Si − i(i+ 1)/4

i2
+ 1

)i)1/n
√
n

d−→ exp

(
N
(

0,
1

162

))
, as n→∞.

Now we shall estimate the rate of convergence in (4.3). We take γ′n = 3γn
2 =

3
2
√
n
. For r = 3 we have E|Xk|3 = k3

32 and in consequence Ln ∼ n4. At �rst

we check the assumptions of Theorem 3.1:

an+1

an
=

(n+ 1)(n+ 2)

n(n+ 1)
= O(1),

arn
Ln + σrn

∞∑
j=n

E|Xj |r + σrj+1 − σrj
arj

∼ n3(n+ 1)3

n4 + n
9
2

∞∑
j=n

j3 + (j + 1)
9
2 − j

9
2

(j(j + 1))3
∼ n6

n
9
2

∞∑
j=n

j3 + j
7
2

j6

∼ n
3
2

∞∑
j=n

1

j
5
2

= O(1),

E|Xn+1|r + σrn+1 − σrn
Ln + σrn

· 1

(an+1/an)r − 1
∼ n3 + (n+ 1)

9
2 − n

9
2

n4 + n
9
2

·

· 1

(1 + 2
n)3 − 1

∼ n3 + n
7
2

n4 + n
9
2

· 1
1
n + 1

n2 + 1
n3

= O(1),

Ln + σrn
arn

6 C
n4 + n

9
2

n3(n+ 1)3
6 C

n
9
2

n6
6

C

n
√
n
↓ 0.

The assumptions of Theorem 3.1 are satis�ed. Now we shall estimate all
summands in (3.1):

Lm + σrm
arm

6
C

m
√
m
,

γ
1
2
n

(
n∑

k=m+1

σ2
k

a2
k

) 1
2

6 C
1
4
√
n

(
n∑

k=m+1

k(k + 1)(2k + 1)

k2(k + 1)2

) 1
2

6 C
1
4
√
n

(
n∑

k=m+1

1

k

) 1
2

6 C

√
log n
4
√
n
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ψn,m(δn) =
1
4
√
n
· 1

δn ∧ 1

(
m∑
k=1

1

k

) 1
2

6 C
1

4
√
nδn

√
logm, for δn < 1,

κm(δn) 6
m∑
k=1

ϕk(δn) =
m∑
k=1

P

[
Xk −

k

2
6 (δn − 1)

k

2

]

=
m∑
k=1

P

[
Xk 6 δn

k

2

]
=
mδn

2
,

%n = γ′n

√√√√Var(

n∑
k=1

AnkXk) =
3

2
√
n

(
n∑
k=1

(Ank)2EX2
k

) 1
2

=
3

2
√
n

 n∑
k=1

(
n∑
i=k

4

i(i+ 1)

)2
k2

12

 1
2

=
3

2
√
n

(
n∑
k=1

(
4

(
1

k
− 1

n+ 1

))2 k2

12

) 1
2

6 1 +
C√
n
,

if C > 0. Otherwise we use the inequality 1
1− C√

n

6 1 + 2C√
n
, for su�ciently

large n and in consequence

|max{%n, %−1
n }|√

2πe
6

C√
n∑n

j=1(Anj )3E|Xj |r

(
∑n

k=1(Ank)2τ2
k )

3
2

=

∑n
j=1(4(1

j −
1

n+1))3 j3

32

(
∑n

k=1(4( 1
k −

1
n+1))2 k2

12 )
3
2

=
2
∑n

j=1(1− 3j
n+1 + 3j2

(n+1)2
− j3

(n+1)3
)

(
∑n

k=1(1− 2k
n+1 + k2

(n+1)2
)1

3)
3
2

6
C√
n
.

Finally we have

∆n = sup
x∈R

∣∣∣∣∣∣P
( n∏

k=1

Sk − ESk + ak
ak

)γ′n
< x

− P [exp(N (0, 1)) < x]

∣∣∣∣∣∣
6 C

(
1

m
√
m

+

√
log n
4
√
n

+

√
logm
4
√
nδn

+
mδn

2
+

1√
n

)
6 C

(
1

m
√
m

+

√
log n
4
√
n

+

√
logm
4
√
nδn

+
mδn

2

)
.
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Minimizing this bound with m = 16
√
n and δn = 2

m
5
2
, we get

∆n 6 C

√
log n

n3/32
.
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Characterization of certain

distributions by transformed kth
record values

Iwona Malinowska1

Abstract

In this paper, we give the characterization of the general class of
continuous distributions based on independent transforms kth lower
and upper record values. Speci�c distributions considered as partic-
ular cases of the general class of distributions are inverse exponen-
tial, inverse Weibull, inverse Pareto, negative exponential, negative
Weibull, negative Pareto, negative power, Gumbel, Exponentiated-
Weibull, Burr X, lognormal, Chen distribution.

1. Introduction

Let {Xn, n > 1} be a sequence of independent identically distributed (i.i.d.)
random variables with cumulative distribution function (cdf) F (x) and prob-
ability density function (pdf) f(x). The jth order statistic of a sample
(X1, ..., Xn) is denoted by Xj:n. For a �xed k > 1 we de�ne the sequence
Lk(n), n ≥ 1, of kth lower record times of {Xn, n > 1} as follows:

Lk (1) = 1, Lk (n+ 1) = min
{
j > Lk(n) : Xk:Lk(n)+k−1 > Xk:j+k−1

}
,

n > 1. The sequence {Z(k)
n , n > 1} with Z

(k)
n = Xk:Lk(n)+k−1, n ≥ 1, is

called the sequence of kth lower record values of {Xn, n > 1}. Note that

1Department of Mathematics, Lublin University of Technology, Nadbystrzycka 38a, 20-
618 Lublin, Poland, e-mail: i.malinowska@pollub.pl
2010 Mathematics Subject Classi�cation. 62F10, 62F15, 62J99.
Keywords: kth record values, characterization, inverse exponential distribution, in-

verse Weibull distribution, inverse Pareto distribution, negative exponential distribution,
negative Weibull distribution, negative Pareto distribution, negative power distribution,
Gumbel distribution, Exponentiated-Weibull distribution, lognormal distribution, Burr X
distribution.
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Z
(k)
1 = max{X1, ..., Xk} and Z

(1)
n = XL(n), n > 1, are lower record values.

It is known that

f
Z

(k)
1 ,...,Z

(k)
n

(z1, z2, ...zn) = kn (F (zn))k−1 f(zn)
n−1∏
i=1

f(zi)

F (zi)
, z1 > ... > zn,

(1.1)

(cf. [14]). Hence the pdf of Z
(k)
n and (Z

(k)
m , Z

(k)
n ), m < n, are as follows:

f
Z

(k)
n

(x) =
kn

(n− 1)!
(H(x))n−1(F (x))k−1f(x), n > 1, (1.2)

f
Z

(k)
m ,Z

(k)
n

(x, y) =
kn

(m− 1)!(n−m− 1)!

(
H(y)−H(x)

)n−m−1

· (H(x))m−1h(x)(F (y))k−1f(y), x > y, n > 2, (1.3)

respectively, where H(·) = − ln(F (·)) and h(·) = −H ′(·).
Now we recall the de�nition of k th upper record values. With the above

notation, for a �xed k > 1 we de�ne the sequence Uk(n), n ≥ 1, of kth upper
record times of {Xn, n > 1} as follows:

Uk(1) = 1, Uk(n+ 1) = min
{
j > Uk(n) : Xj:j+k−1 > XUk(n):Uk(n)+k−1

}
,

n > 1. The sequence {Y (k)
n , n > 1} with Y

(k)
n = XUk(n):Uk(n)+k−1, n ≥

1, is called the sequence of kth upper record values of {Xn, n > 1} (cf.

Dziubdziela and Kopoci«ski [8]). Note that Y
(k)

1 = min{X1, ..., Xk}, and
Y

(1)
n = XU(n), n > 1, with U(n) = min

{
j > U(n− 1) : Xj > XU(n−1)

}
are

upper record values . It is known that joint pdf of Y
(k)

1 , . . . , Y
(k)
n are given

by

f
Y

(k)
1 ,...,Y

(k)
n

(x1, . . . , xn)

=

k
n
n−1∏
i=1

f(xi)

1− F (xi)
(1− F (xn))k−1f(xn), x1 < . . . < xn,

0, else.

Hence the pdf of Y
(k)
n and (Y

(k)
m , Y

(k)
n ), m < n, are as follows:

f
Y

(k)
n

(x) =
kn

(n− 1)!
(H(x))n−1(1− F (x))k−1f(x), n > 1,

f
Y

(k)
m ,Y

(k)
n

(x, y) =
kn

(m− 1)!(n−m− 1)!

(
H(y)−H(x)

)n−m−1

· (H(x))m−1h(x)(1− F (y))k−1f(y), x > y, n > 2,
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respectively, where H(·) = − ln(1− F (·)) and h(·) = H ′(·).
Record values and associated statistics are of great importance in sev-

eral real-life problems involving weather, economic and sport date. The
formal study of record values started with Chandler [5] and has now spread
in various directions. The properties of record values have been extensively
studied in the literature. In particular, the problem of characterizing a distri-
bution in terms of record values is an important problem which has recently
attracted the attention of many researchers. Various characterization of dis-
tribution based on record values have been discussed by many authors e.g.
Ahsanullah [2] and Arnold et al. [3], Balakrishnan [4] and Nevzorov [13],
Dembi«ska and Wesoªowski [7], Pawlas and Szynal [14], Malinowska and
Szynal [11].

The aim of this article is to provide a characterization of general class
of distribution by using the suitable transformations of kth records in a se-
quence of independent, identically distributed random variables.This paper
generalized results obtained by Juhás and Skrivánková [9].

2. Main results

Theorem 2.1. Let {Xn}∞n=1 be a sequence of i.i.d. random variables with

absolutely continuous distribution function F (x) on (a, b). Moreover, let g :
(a, b) → (0,∞) be a di�erentiable function with g′(x) < 0 for all x ∈ (a, b)
and lim

x→a+
g(x) =∞, lim

x→b−
g(x) = 0. Then the distribution of X1, X2, ... is of

the form

F (x) = e−cg(x), c > 0, x ∈ (a, b)

if and only if random variables

g(Z(k)
n ) and g(Z

(k)
n+1)− g(Z(k)

n ), n > 1

are pairwise independent.

Remark

From assumptions of Theorem 2.1 we have the following facts: function g is
injection and lim

x→∞
g−1(x) = a, lim

x→0+
g−1(x) = b.

Proof. Suppose that F (x) = e−cg(x), x ∈ (a, b), c > 0.
Then f(x) = −cg′(x)e−cg(x), H(x) = cg(x) and h(x) = −cg′(x). It is clear
from (1.3) that

f
Z

(k)
n , Z

(k)
n+1

(x, y) =
kn+1

Γ(n)
[cg(x)]n−1 c2g′(x)g′(y) · e−ckg(y), x, y ∈ (a, b).
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Consider the transformation

t :

(
Z

(k)
n

Z
(k)
n+1

)
−→

(
g(Z

(k)
n )

g(Z
(k)
n+1)− g(Z

(k)
n )

)
=

(
U

V

)
;

τ :

(
U

V

)
−→

(
g−1(U)

g−1(U + V )

)
.

(2.1)

This transformation has the determinate of the form

Dτ = (g−1)′(u)(g−1)′(u+ v). (2.2)

Then the pdf of (U, V ) is as follows:

fU,V (u, v) =
kn+1

Γ(n)

[
H(g−1(u))

]n−1
h(g−1(u))

[
F (g−1(u+ v))

]
h(g−1(u+ v))|(g−1)′(u)(g−1)′(u+ v)|

=
(k · c)n+1

Γ(n)
un−1e−ck(u+v), u > 0, v > 0, c > 0.

In view of (1.2) we have

f
Z

(k)
n

(x) = − kn

Γ(n)
(cg(x))n−1e−ckg(x)cg′(x), x ∈ (a, b); c > 0

so the pdf of U = g(Z
(k)
n ) is given by formula

fU (u) =
kncn

Γ(n)
un−1e−cku, u > 0, c > 0. (2.3)

Integrating the joint pdf fU,V (u, v) according to u we obtain pdf of V

fV (v) = kce−ckv, v > 0. (2.4)

In the view of (2.3) and (2.4), we can notice that fU,V (u, v) = fU (u) · fV (v).
So U and V are independent random variables. The necessary condition is
proved.

In order to prove su�cient condition we assume, that random variable U
and V are independent. Consider the transformation (2.1) with determinant
(2.2). Then the joint pdf of U and V can be written in general form

fU,V (u, v) =
kn+1

Γ(n)

[
H(g−1(u))

]n−1
h(g−1(u))

[
F (g−1(u+ v))

]
· h(g−1(u+ v))|(g−1)′(u)(g−1)′(u+ v)|.
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We know that U = g(Z
(k)
n ) thus for its density function holds

fU (u) =
kn

Γ(n)

[
H(g−1(u))

]n−1
h(g−1(u))

[
F (g−1(u))

]k |(g−1)′(u)|, u > 0.

Because U and V are independent then the density of V is

fV (v) = k

[
F (g−1(u+ v))

]k−1

[F (g−1(u))]k
f(g−1(u+ v))|(g−1)′(u+ v)|. (2.5)

In order to obtain the FV (v∗) we integrate equation (2.5)∫ v∗

0
fV (v)dv = k

∫ v∗

0

[
F (g−1(u+ v))

]k−1

[F (g−1(u))]k
f(g−1(u+ v))

|(g−1)′(u+ v)|dv

=
−k

[F (g−1(u))]k

∫ v∗

0

[
F (g−1(u+ v))

]k−1
f(g−1(u+ v))

(g−1)′(u+ v)dv(
substituting

t = g−1(u+ v)

)
=

−k
[F (g−1(u))]k

∫ g−1(u+v∗)

g−1(u)
[F (t)]k−1f(t)dt

=
1

[F (g−1(u))]k

([
F (g−1(u))

]k − [F (g−1(u+ v∗))
]k)

.

Consider the limit case where u → 0+ so g−1(u) → b and F (g−1(u)) → 1.
Then

FV (v∗) = 1−
[
F (g−1(v∗))

]k
and it holds[

F (g−1(v∗))
]k · [F (g−1(u))

]k
=
[
F (g−1(u+ v∗))

]k
, v∗ > 0, u > 0.

Denote F1(x) = F (g−1(x)), x > 0, then

[F1(v∗)]k · [F1((u)]k = [F1(u+ v∗)]k . (2.6)

The equation (2.6) is equivalent to

F1(v∗) · F1(u) = F1(u+ v∗). (2.7)

Nontrivial solution of the equation (2.7) is F1(x) = ecx (Cauchy functional
equation) (cf. [1]) where c is an arbitrary constant and F (x) = ecg(x). Since
F is distribution function, we have F (x) = e−cg(x), where c > 0. Thus the
proof is �nished. �
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Remark

Interval (a, b) which is mentioned in Theorem 2.1 can have also one of the
following forms: (a,∞), (−∞, b) or (−∞,∞).

Examples

Many of distributions can be characterized by the suitable choice of function
g and interval (a, b). Some of them are presented below.

(i) Let NExp(λ, ν) denote the negative exponential distribution with

F (x) = exp (λ(x− ν)) , x < ν; λ > 0, ν ∈ R. (2.8)

If we take g(x) = −1
c (λ(x− ν)) , c > 0, x ∈ (−∞, ν), λ > 0, ν ∈ R,

then the independence of variables

−1

c

(
λ(Z(k)

n − ν)
)
, −λ

c

(
Z

(k)
n+1 − Z

(k)
n )
)

characterizes NExp(λ, ν) distribution.

(ii) Let IExp(θ) denote the inverse exponential distribution with

F (x) = exp (−θ/x) , x > 0; θ > 0, (cf. Klugman et al. [10]). (2.9)

If we take g(x) = 1
c
θ
x , c > 0, x ∈ (0,∞), θ > 0, then the independence

of variables

θ

c

(
Z(k)
n

)−1
,

θ

c

((
Z

(k)
n+1

)−1
−
(
Z(k)
n

)−1
)

characterizes IE(θ) distribution.

(iii) Let NPar(θ, ν , δ) denote the negative Pareto distribution with

F (x) =

(
δ − ν
δ − x

)θ
, x < ν; θ > 0, ν, δ ∈ R, ν < δ. (2.10)

If we take g(x) = −1
c ln

(
δ−ν
δ−x

)θ
, c > 0, x ∈ (−∞, ν), θ > 0, ν, δ ∈

R, ν < δ, then the independence of variables

−θ
c

ln

(
δ − ν
δ − Z(k)

n

)
,

θ

c
ln

(
δ − Z(k)

n+1

δ − Z(k)
n

)

characterizes NPar(θ, ν , δ) distribution.
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(iv) Let NPow(θ, α , β) denote the inverse power distribution with

F (x) =

(
x− α
β − α

)θ
, α < x < β; θ > 0, α, β ∈ R, α < β. (2.11)

If we take g(x) = −1
c ln

(
x−α
β−α

)θ
, c > 0, x ∈ (α, β); θ > 0, α, β ∈

R, α < β, then the independence of

−θ
c

ln

(
Z

(k)
n − α
β − α

)
, −θ

c
ln

(
Z

(k)
n+1 − α

Z
(k)
n − α

)

characterizes NPow(θ, α , β) distribution.

(v) Let Gum(β, γ) denote the Gumbel distribution with

F (x) = exp
[
−e−β(x−γ)

]
, x ∈ R; β > 0, γ ∈ R. (2.12)

If we take g(x) = 1
c exp[−β (x− γ)], c > 0, x ∈ (−∞,∞); β > 0, γ ∈

R, then the independence of variables

1

c
exp

(
−β(Z(k)

n − γ)
)

and
θ

c

[
exp

(
−β(Z

(k)
n+1 − γ)

)
− exp

(
−β(Z(k)

n − γ)
)]

characterizes Gum(β, γ) distribution.

(vi) Let Fre(θ, δ, µ) denote the Fréchet distribution with

F (x) = exp

(
−
(
δ − µ
x− µ

)θ)
, x > µ; θ > 0, µ, δ ∈ R, µ < δ. (2.13)

If we take g(x) = 1
c

(
δ−µ
x−µ

)θ
, c > 0, x ∈ (µ,∞); θ > 0, µ, δ ∈ R, µ <

δ, then the independence of variables

1

c

(
δ − µ

Z
(k)
n − µ

)θ
,

1

c

( δ − µ
Z

(k)
n+1 − µ

)θ
−

(
δ − µ

Z
(k)
n − µ

)θ
characterizes Fre(θ, δ, µ) distribution.
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(vii) Let NWeib(θ, µ, γ) denote the negative Weibull distribution with

F (x) = exp

(
−
(
µ− x
µ− γ

)θ)
, x < µ; θ > 0, µ, γ ∈ R, µ > γ.

(2.14)

If we take g(x) = 1
c

(
µ−x
µ−γ

)θ
, c > 0, x ∈ (−∞, µ); θ > 0, µ, γ ∈ R,

mu > γ, then the independence of variables

1

c

(
µ− Z(k)

n

µ− γ

)θ
,

1

c

(µ− Z(k)
n+1

µ− γ

)θ
−

(
µ− Z(k)

n

µ− γ

)θ
characterizes NWeib(θ, µ, γ) distribution.

(viii) Let IWeib(θ, τ) denote the Inverse Weibull distribution with

F (x) = exp

(
−
(
θ

x

)τ)
, x > 0; θ > 0, τ > 0, (2.15)

(cf. Klugman et al. [10]). If we take g(x) = 1
c

(
θ
x

)τ
, c > 0, x ∈

(0,∞); θ > 0, τ > 0, then the independence of variables

1

c

(
θ

Z
(k)
n

)τ
,

θτ

c

[(
Z

(k)
n+1

)−τ
−
(
Z(k)
n

)−τ]
characterizes IWeib(θ, τ) distribution.

(ix) Let ExpWeib(θ, α) denote the Exponentiated-Weibull distribution with

F (x) = (1− exp (−xα))θ , x > 0; θ > 0, α > 0, (2.16)

(cf. Manal and Fathy [12]). If we take g(x) = −1
c ln (1− exp(−xα))θ ,

c > 0, x ∈ (0,∞); θ > 0, α > 0, then the independence of variables

−θ
c

(
ln
(

1− exp
(
−(Z(k)

n

)α))
,
−θ
c

ln

1− exp

(
−
(
Z

(k)
n+1

)−α)
1− exp

(
−
(
Z

(k)
n

)−α)


characterizes ExpWeib(θ, α) distribution.

(x) Let BuX(θ) denote the Burr X distribution with

F (x) =
(
1− exp

(
−x2

))θ
, x ∈ R; θ > 0. (2.17)
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If we take g(x) = − θ
c ln

(
1− exp(−x2)

)θ
, c > 0, x ∈ (−∞,∞); θ > 0,

then the independence of variables

−θ
c

(
ln

(
1− exp

(
−(Z(k)

n

)2
))

,
−θ
c

ln

1− exp

(
−
(
Z

(k)
n+1

)2
)

1− exp

(
−
(
Z

(k)
n

)2
)


characterizes BuX(θ) distribution.

(xi) Let LogNor(µ, γ) denote the lognormal distribution with

F (x) = Φ

(
lnx− µ

σ

)
, x ∈ (0,∞); µ ∈ R, σ > 0. (2.18)

If we take g(x) = −1
c ln Φ

(
lnx−µ
σ

)
, c > 0, x ∈ (0,∞); µ ∈ R, σ > 0

then the independence of variables

−1

c
ln Φ

(
lnZ

(k)
n − µ
σ

)
,

1

c
ln

 Φ

(
lnZ

(k)
n −µ
σ

)
Φ

(
lnZ

(k)
n+1−µ
σ

)


characterizes LogNor(µ, δ) distribution.

(xii) Let Chen(λ, β) denote the Chen distribution with

F (x) = 1− exp
(
λ(1− exβ )

)
, x > 0; λ > 0, β > 0, (cf. Chen [6]).

(2.19)

If we take g(x) = −1
c ln

(
1− exp

(
λ(1− exβ )

))
, c > 0, x ∈ (0,∞);

λ > 0, β > 0, then the independence of

−1

c
ln
(

1− exp
(
λ(1− e(Z

(k)
n )β )

))
,

1

c
ln

 1− exp
(
λ(1− e(Z

(k)
n )β )

)
1− exp

(
λ(1− e(Z

(k)
n+1)β )

)


characterizes Chen(λ, β) distribution.
In case β = 1 we give characterization for Gompertz distribution.

Theorem 2.2. Let {Xn}∞n=1 be a sequence of i.i.d. random variable with

absolutely continuous distribution function F (x) on (a, b). Moreover, let
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g : (a, b)→ (0,∞) be a di�erentiable function with g′(x) < 0 for all x ∈ (a, b)
and lim

x→a+
g(x) =∞, lim

x→b−
g(x) = 0. Then the distribution of X1, X2, ... is of

the form

F (x) = e−cg(x), c > 0, x ∈ (a, b)

if and only if random variables

g(Z
(k)
1 ), g(Z

(k)
2 )− g(Z

(k)
1 ), .... , g(Z(k)

n )− g(Z
(k)
n−1), n > 2

are independent.

Proof. Suppose that F (x) = e−cg(x), x ∈ (a, b), c > 0, then the joint

pdf of Z
(k)
1 , ....Z

(k)
n given by (1.1) takes the form

f
Z

(k)
1 ,...,Z

(k)
n

(z1, z2, ...zn) = kn(−c)ne−kcg(x)
n∏
i=1

g′(zi), z1 > ... > zn.

Now we consider the transformation

t :


Z

(k)
1

Z
(k)
2
...

Z
(k)
n

 −→


g(Z
(k)
1 )

g(Z
(k)
2 )− g(Z

(k)
1 )

...

g(Z
(k)
n )− g(Z

(k)
n−1)

 =


U1

U2
...
Un

 ;

τ :


U1

U2
...
Un

 −→


g−1(U1)
g−1(U1 + U2)

...
g−1(U1 + ...+ Un)

 .

(2.20)

This transformation has the determinate of the form

Dτ = (g−1)′(u1)(g−1)′(u1 + u2)...(g−1)′(u1 + ...+ um).

Since the joint pdf of U1, .....Un is given by

fU1,U2,....,Un(u1, u2, ..., un) = kn(c)ne−ck(u1+...+u2), u1 > 0, ... un > 0, c > 0.

and the marginal probability density functions are as follow

fU1(u1) = kce−cku1 , fU2(u2) = kce−cku2 , ..., fUn(un) = kce−ckun .

Thus U1, ..., Un are independent random variables. The necessary condition
is proved.
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Assume now that variable U1, ...Un are independent. Consider the transfor-
mation given by (2.20). Then we get

fUn(un) = −k[F (g−1(u1 + u2 + ...+ un))]k−1

[F (g−1(u1 + u2 + ...+ un−1))]k

f(g−1(u1 + u2 + ...+ un))(g−1)′(u1 + u2 + ...+ un).

(2.21)

By integration of (2.21) we obtain that

FUn(un∗) =−
∫ un∗

0

k[F (g−1(u1 + u2 + ...+ un))]k−1

[F (g−1(u1 + u2 + ...+ un−1))]k
f(g−1(u1 + ...+ un))

· (g−1)′(u1 + u2 + ...+ un)dun

=
[F (g−1(u1 + u2 + ...+ un−1))]k − [F (g−1(u1 + u2 + ...+ un−1 + un∗))]

k

[F (g−1(u1 + u2 + ...+ un−1))]k
.

Limit cases u1 → 0+, u2 → 0+, ... un−1 → 0+, lead to the same func-
tional equation as in proof of the Theorem 2.1. So cumulative distribution
function has the form F (x) = e−cg(x), c > 0. �

Similar characterizations can be given in terms of the kth upper record
values.

Theorem 2.3. Let {Xn}∞n=1 be a sequence of i.i.d. random variable with

absolutely continuous distribution function F (x) on (a, b). Moreover, let

g : (a, b)→ (0,∞) be a di�erentiable function with g′(x) > 0 for all x ∈ (a, b)
and lim

x→a+
g(x) = 0, lim

x→b−
g(x) =∞. Then the distribution of X1, X2, ... is of

the form

F (x) = 1− e−cg(x), c > 0, x ∈ (a, b)

if and only if random variables

g(Y (k)
n ) and g(Y

(k)
n+1)− g(Y (k)

n ), n > 1

are pairwise independent.

The use of Theorem 2.3 is illustrated by the following examples.
Examples

(i) Let g(x) = −1
c ln

[
1− eλ(x−ν)

]
, c > 0, x ∈ (−∞, ν), λ > 0, ν ∈ R. The

independence of variables

−1

c
ln
[
1− exp

(
λ(Y (k)

n − ν)
)]
,

1

c
ln

 1− exp
(
λ(Y

(k)
n − ν)

)
1− exp

(
λ(Y

(k)
n+1 − ν)

)
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characterizes NExp(λ, ν) distribution given by (2.8).

(ii) Let g(x) = −1
c ln

[
1− e−( θx)

]
, c > 0, x ∈ (0,∞), θ > 0. The indepen-

dence of variables

−1

c
ln

[
1− exp

(
− θ

Y
(k)
n

)]
,

1

c
ln

 1− exp
(
− θ

Y
(k)
n

)
1− exp

(
− θ

Y
(k)
n+1

)


then characterizes IExp(θ) distribution given by (2.9).

(iii) Let g(x) = −1
c ln

[
1−

(
x−α
β−α

)θ]
, c > 0, x ∈ (α, β), θ > 0, α, β ∈

R, α < β. The independence of variables

−1

c
ln

1−

(
Y

(k)
n − α
β − α

)θ , 1

c
ln

 (β − α)θ −
(
Y

(k)
n − α

)θ
(β − α)θ −

(
Y

(k)
n+1 − α

)θ


characterizes NPow(θ, α, β) distribution given by (2.11).

(iv) Let g(x) = −1
c ln

[
1−

(
δ−ν
δ−x

)θ]
, c > 0, x ∈ (−∞, ν), R, ν < δ, θ > 0.

The independence of variables

−1

c
ln

1−

(
δ − ν

δ − Y (k)
n

)θ , 1

c
ln

 1−
(

δ−ν
δ−Y (k)

n

)θ
1−

(
δ−ν

δ−Y (k)
n+1

)θ
 .

characterizes NPar(θ, ν, δ) distribution given by (2.10).

(v) Let g(x) = −1
c ln

[
1− e−e−β(x−γ)

]
, c > 0, x ∈ R, β > 0, γ ∈ R. The

independence of variables

−1

c
ln
[
1− exp

(
−e−β(Y

(k)
n −γ)

)]
,

1

c
ln

 1− exp
(
−e−β(Y

(k)
n −γ)

)
1− exp

(
−e−β(Y

(k)
n+1−γ)

)


characterizes Gum(β, γ) distribution given by (2.12).
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(vi) Let g(x) = −1
c ln

[
1− exp

(
−
(
δ−µ
x−µ

)θ)]
, c > 0, x ∈ (µ,∞); θ >

0, µ, δ ∈ R, µ < δ. The independence of variables

−1

c
ln

[
1− exp

(
−
(

δ − µ
Y

(k)
n − µ

)θ)]
,

1

c
ln


[1− exp

(
−
(

δ−µ
Y

(k)
n −µ

)θ)

[1− exp

(
−
(

δ−µ
Y

(k)
n+1−µ

)θ)


characterizes Fréchet distribution given by (2.13).

(vii) Let g(x) = −1
c ln

[
1− exp

(
−
(
µ−x
µ−γ

)θ)]
, c > 0, x ∈ (−∞, µ); θ >

0, µ, γ ∈ R, µ > γ. The independence of variables

−1

c
ln

[
1−exp

−(µ− Y (k)
n

µ− γ

)θ], 1

c
ln


[1− exp

(
−
(
µ−Y (k)

n
µ−γ

)θ)

[1− exp

(
−
(
µ−Y (k)

n+1

µ−γ

)θ)


characterizes NWeib(θ, µ, γ) distribution given by (2.14).

(viii) Let g(x) = −1
c ln

[
1− exp

(
−
(
θ
x

)τ)]
, c > 0, x ∈ (0,∞); θ > 0, τ > 0.

The independence of variables

−1

c
ln

[
1− exp

(
−

(
θ

Y
(k)
n

)τ)]
,

1

c
ln

 1− exp
(
−
(

θ

Y
(k)
n

)τ)
1− exp

(
−
(

θ

Y
(k)
n+1

)τ)


characterizes IWeib(θ, τ) distribution given by (2.15).

(ix) Let g(x) = −1
c ln

[
1− (1− exp (−xα))θ

]
, c > 0, x ∈ (0,∞); θ >

0, α > 0. The independence of variables

−1

c
ln

[
1−

(
1− exp

(
−
(
Y (k)
n

)α))θ]
,

and

1

c
ln

 1−
(

1− exp
(
−
(
Y

(k)
n

)α))θ
1−

(
1− exp

(
−
(
Y

(k)
n+1

)α))θ


characterizes ExpWeib(θ, α) distribution given by (2.16).
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(x) Let g(x) = −1
c ln

[
1−

(
1− exp

(
−x2

))θ]
, c > 0, x ∈ (0,∞); θ > 0.

The independence of variables

−1

c
ln

[
1−

(
1− exp

(
−
(
Y (k)
n

)2
))θ]

,

and

1

c
ln


1−

(
1− exp

(
−
(
Y

(k)
n

)2
))θ

1−
(

1− exp

(
−
(
Y

(k)
n+1

)2
))θ


characterizes BuX(θ) distribution given by (2.17).

(xi) Let g(x) = −1
c ln

[
1− Φ

(
lnx−µ
σ

)]
, c > 0, x ∈ (0,∞); µ ∈ R, σ > 0.

The independence of variables

−1

c
ln

[
1− Φ

(
lnY

(k)
n − µ
σ

)]
,

1

c
ln

 1− Φ

(
lnY

(k)
n −µ
σ

)
1− Φ

(
lnY

(k)
n+1−µ
σ

)


characterises LogNor(µ, δ) distribution given by (2.18).

(xii) Let g(x) = −λ
c

[
1− exβ

]
, c > 0, x ∈ (0,∞); λ > 0, β > 0. The

independence of variables

−λ
c

[
1− eY

(k)
n

β
]
,

λ

c

[
exp(Y

(k)
n+1

β
)− exp(Y (k)

n

β
)

]
characterizes Chen(λ, β) distribution given by (2.19).

Theorem 2.4. Let {Xn}∞n=1 be a sequence of i.i.d. random variable with

absolutely continuous distribution function F (x) on (a, b). Moreover, let

g : (a, b)→ (0,∞) be a di�erentiable function with g′(x) > 0 for all x ∈ (a, b)
and lim

x→a+
g(x) = 0, lim

x→b−
g(x) =∞. Then the distribution of X1, X2, ... is of

the form

F (x) = 1− e−cg(x), c > 0, x ∈ (a, b)

if and only if random variables

g(Y
(k)

1 ), g(Y
(k)

2 )− g(Y
(k)

1 ) , ..., g(Y (k)
n )− g(Y

(k)
n−1), n > 2

are independent.
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Remark

Above Theorems are generalizations of the results given in [9].

Acknowledgements. The author is grateful to referee for useful com-
ments which improved the presentation of the paper.
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The Schreier-Sims algorithm and

random permutations

Ernest Nieznaj1

Abstract

We show in a collection of examples how to generate a random
element of a subgroup of the group of permutations. We apply to
this the Schreier-Sims algorithm that is based on the Otto Schreier
theorem.

1. Introduction

Suppose that G is a subgroup of Sn generated by a set of permutations W ,
i.e. G = 〈W 〉 where W ⊂ Sn. The goal of this paper is to show how to
choose at random an element of G. In two cases this problem is quite easy to
solve and one uses only general facts about permutations, see Section 2. In
the �rst case if W consists of all transpositions then 〈W 〉 = Sn and Lemma
2.4 holds. In the second case if W is the set of all 3-cycles then 〈W 〉 = An,
see Lemma 2.7.

In general however we have to use the Otto Schreier theorem, see The-
orem 4.1 in Section 4. The main result of this article is Theorem 4.4. In
Section 5 we study in detail several examples. Section 3 is a short introduc-
tion to Section 4.

2. Preliminaries

We give a brief summary of the group of permutations. Let X be a �nite
set. By Sym(X) we denote a group of all permutations of X. In particular,
when X = {1, 2, . . . , n} we write Sn. It is clear that |Sn| = n! for n > 1. The
identity of Sn we denote by I, i.e. I(i) = i for i = 1, . . . , n. The composition
of α, β ∈ Sn we de�ne by

(α ◦ β)(i) = (αβ)(i) = β(α(i)), i = 1, . . . , n.
1Department of Mathematics, Technical University of Lublin, Nadbystrzycka 38A, 20-

618 Lublin, Poland, e-mail: e.nieznaj@pollub.pl
2010 Mathematics Subject Classi�cation. Primary 20B30, 20B35; Secondary 20B40.
Keywords: The Schreier-Sims algorithm, permutation groups, strong generators.
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This left-to-right de�nition of composition of functions is more convenient
for permutations than right-to-left de�nition in calculus. Hence for

α =

 1 2 . . . n
α(1) α(2) . . . α(n)

 , β =

 1 2 . . . n
β(1) β(2) . . . β(n)

 ,

we have

αβ =

 1 2 . . . n
β(α(1)) β(α(2)) . . . β(α(n))

 .

The inverse to α is gven by

α−1 =

α(1) α(2) . . . α(n)
1 2 . . . n

 .

Clearly (αβ)−1 = β−1α−1 and by induction (α1 . . . αn)−1 = α−1
n . . . α−1

1 ,
n > 3.

De�nition 2.1. Let X = {1, . . . , n} and α ∈ Sn. We de�ne

Fix(α) := {i ∈ X : α(i) = i}, Act(α) := {i ∈ X : α(i) 6= i}.

Clearly Fix(α) is a set of �xed points of α. Act(α) is also called the support
of α and denoted by supp(α).

Observe that |Fix(α)| 6 n − 2 or |Fix(α)| = n. Since |Act(α)| =
n− |Fix(α)| then |Act(α)| = 0 or 2 6 |Act(α)| 6 n.

De�nition 2.2. Let A = {i1, . . . , ik} be a subset of X and α ∈ Sn. If
α(i1) = i2, α(i2) = i3,. . ., α(ik) = i1 and α(i) = i for i ∈ X\A then α is
called a k-cycle. A 2-cycle is usually referred to as a transposition.

Every permutation may by written as a product of disjoint cycles, see
e.g. [1], [4], [6]. In the example below we show how to do it. Recall that
α, β ∈ Sn are disjoint or independent if Act(α) ∩Act(β) = ∅.

Example 2.3. Let us consider the permutation

α =

1 2 3 4 5 6 7 8 9 10 11 12
3 2 4 8 12 11 7 1 10 5 6 9


We have α(1) = 3, α(3) = 4, α(4) = 8 and α(8) = 1. We write this cycle
in the form (1, 3, 4, 8). Since α(2) = 2 so 2 is a �xed point of α. Next we
have α(5) = 12, α(12) = 9, α(9) = 10 and α(10) = 5. Finally α(6) = 12
and α(12) = 6. Therefore we write α as (1, 3, 4, 8)(5, 12, 9, 10)(6, 11).
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A k-cycle can be written as follows

(i1, i2, . . . , ik) = (i1, i2)(i1, i3) . . . (i1, ik−1)(i1, ik), k > 2. (2.1)

We conclude from (2.1) that every α ∈ Sn can be written as a product of
transpositions, that is Sn = 〈{(i, j) : i, j ∈ {1, 2, . . . , n}}〉, n > 2. However
this can be done in many ways, e.g.

(2, 4, 5) = (2, 4)(2, 5) = (1, 3)(1, 2)(1, 4)(3, 5)(1, 5)(2, 4).

Observe that (i1, i2)2 = I and in consequence (i1, i2)−1 = (i1, i2).

Lemma 2.4. Every α ∈ Sn can be written uniquely as the product

α = α2α3 . . . αn, αi ∈ Li, (2.2)

where Li = {(1, i), (2, i), . . . , (i− 1, i), I}, i = 2, 3, . . . , n.

Note that |Li| = i and Li ∩Lj = I for i 6= j. The proof of Lemma 2.4 is
in the Appendix. In the example below we outline its idea.

Example 2.5. Let α = (2, 7, 4, 5, 3)(1, 8, 6) ∈ S8. We will explain in detail
how to write α in the form (2.2). Since α(8) = 6 we multiply α by (6, 8) ∈ L8

and get
α · (6, 8) = (2, 7, 4, 5, 3)(1, 6),

with 8 ∈ Fix(α · (6, 8)). Now we take 7 and see that (α · (6, 8))(7) = 4.
Multiplying this permutation by (4, 7) ∈ L7 we obtain

α · (6, 8)(4, 7) = (2, 4, 5, 3)(1, 6).

In this moment {7, 8} ∈ Fix(α · (6, 8)(4, 7)). We repeat this procedure
until the identity appears on the right hand side of an equation. After
computation we have

α · (6, 8)(4, 7)(1, 6)(3, 5)(3, 4)(2, 3) = I,

and in consequence α = (2, 3)(3, 4)(3, 5)(1, 6)(4, 7)(6, 8). Hence α2 = I,
α3 = (2, 3), α4 = (3, 4), α5 = (3, 5), α6 = (1, 6), α7 = (4, 7) and α8 = (6, 8).

One can use Lemma 2.4 to generate a random element of Sn. Namely,
from every Li we choose independently a transposition with probability 1/i
for i = 2, . . . , n. Then multiplying those transpositions as in (2.2) we obtain
a random permutation. The probability of getting a particular permutation
equals

p =

n∏
i=2

1

|Li|
=

n∏
i=2

1

i
=

1

n!
=

1

|Sn|
.
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(1, 2)

I

(1, 3)

(2, 3)

I

(1, 4)

(2, 4)

(3, 4)

I

(1, 5)

(2, 5)

(3, 5)

(4, 5)

I

(1, 6)

(2, 6)

(3, 6)

(4, 6)

(5, 6)

I

(1, 7)

(2, 7)

(3, 7)

(4, 7)

(5, 7)

(6, 7)

I

(1, 8)

(2, 8)

(3, 8)

(4, 8)

(5, 8)

(6, 8)

(7, 8)

I

Figure 1: The procedure for generating a random permutation from S8, see
Example 2.1.

As we have already mentioned an element of Sn can be written as a product
of transpositions in di�erent ways. However one may prove that the num-
ber of transpositions which occur is either always even or always odd, see
Chapter 6, [1]. Therefore α ∈ Sn is called an even permutation if it can be
expressed as the product of even number of transpositions. Similarly α ∈ Sn
is called an odd permutation if it is not an even permutation.

The subset of even permutations in Sn forms a subgroup of order n!/2
and is called the alternating group denoted by An (or Alt(X) for a general
set), see Theorem 6.4, [1].

Our question is: how to generate a random permutation from An? First
observe that by (2.1) a 3-cycle is an even permutation and An is generated
by all 3-cycles, i.e.

An = 〈{(i, j, k) : i, j, k ∈ {1, 2, . . . , n}}〉, n > 3.

Indeed, we have 
(i, j)(i, j) = I,
(i, j)(i, k) = (i, j, k)
(i, j)(k, l) = (i, j, k)(k, i, l).

For example the commutator [α, β] := αβα−1β−1 is always an even permu-
tation for any α, β ∈ Sn.



The Schreier-Sims algorithm and random permutations 88

(4, 6, 5)

(4, 5, 6)

I

(3, 6, 4)

(3, 5, 6)

(3, 4, 5)

I

(2, 6, 3)

(2, 5, 6)

(2, 4, 5)

(2, 3, 4)

I

(1, 6, 2)

(1, 5, 6)

(1, 4, 5)

(1, 3, 4)

(1, 2, 3)

I

Figure 2: The procedure for generating a random permutation from A6, see
Example 2.8.

Example 2.6. If α = (1, 9, 2, 3, 8, 5)(4, 6) then

α = (1, 9)(1, 2)(1, 3)(1, 8)(1, 5)(4, 6) = (1, 9, 2)(1, 3, 8)(1, 5, 4)(4, 1, 6).

On the other hand, e.g. α = (1, 4, 5)(2, 4, 9)(5, 6, 8)(3, 8, 4).

Lemma 2.7. Every α ∈ An can be written uniquely as the product

α = αn−2αn−3 . . . α1, αi ∈ Ki, (2.3)

where

Ki = {(i, i+ 1, i+ 2), (i, i+ 2, i+ 3), . . . , (i, n− 1, n), (i, n, i+ 1), I},

i = 1, . . . , n− 2.

Note that |Ki| = n − i + 1 and Ki ∩ Kj = I for i 6= j. The proof of
Lemma 2.7 is explained in the Appendix.

Example 2.8. Let α = (1, 3, 2, 4)(5, 6) ∈ A6. We begin with 1. Since
α(1) = 3 we multiply α by (1, 4, 3) = (1, 3, 4)−1, where (1, 3, 4) ∈ K4. We
have α · (1, 4, 3) = (2, 3)(5, 6), with 1 ∈ Fix(α · (1, 4, 3)). After several steps
we obtain

α · (1, 4, 3)(2, 4, 3)(3, 5, 4)(4, 6, 5) = I,

and as a consequence of this

α = [(1, 4, 3)(2, 4, 3)(3, 5, 4)(4, 6, 5)]−1 = (4, 5, 6)(3, 4, 5)(2, 3, 4)(1, 3, 4).
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Choosing at random αn−2 ∈ Kn−2, . . ., α1 ∈ K1 and multiplying them
as in (2.3) we will get an even permutation with probability

p =

n−2∏
i=1

1

|Ki|
=

n−2∏
i=1

1

n− i+ 1
=

2

n!
=

1

|An|
.

3. Group actions, orbits and stabilizers

LetG andH be groups. A function ϕ : G→ H is said to be a homomorphism
if ϕ(ab) = ϕ(a)ϕ(b) for all a, b ∈ G. If ϕ is also a bijection then it is called
an isomorphism. Denote neutral element in G and H by eG, eH respectively.
The kernel of ϕ, de�ned by Ker(ϕ) := {a ∈ G : ϕ(a) = eG} is a normal
subgroup of G, see Theorem 16.1, [1].

De�nition 3.1. An action of a group G on a set X is a homomorphism
from G to Sym(X). That is ϕ : G→ Sym(X) satis�es

(i) ϕe = I,

(ii) ϕgh = ϕgϕh, g, h ∈ G.

If G = {g1, . . . , gn} then by G(x) or xG we denote the orbit of x ∈ X,
i.e.

G(x) := xG = {ϕg1(x), ϕg2(x), . . . , ϕgn(x)}.
We have X =

⋃m
i=1Oi and Oi ∩ Oj = ∅, i 6= j. We say that an action ϕ is

faithful if Ker(ϕ) = {eG}.

De�nition 3.2. A group G acting on a set X is said to be transitive on X
if xG = X for every x ∈ X.

Example 3.3. Let G = {e, a, b, ab} be a Klein group and X a set con-
taining six elements x1, . . . , x6. For example X may be a set of vertices of
a hexagon. De�ne ϕ : G → Sym(X) by: ϕe = I, ϕa = (x2, x4)(x3, x6),
ϕb = (x1, x5)(x3, x6) and ϕab = (x1, x5)(x2, x4). Clearly ϕ is faithful. There
are three orbits of this action: O1 = {x1, x5}, O2 = {x2, x4}, O3 = {x3, x6}
hence G is not transitive. De�ne the second action ψ : G → Sym(X) by:
ψe = I, ψa = ψb = (x1, x5), and therefore ψab = I. We have Ker(ψ) =
{I, ab}. There are 5 orbits of this action: O1 = {x1, x5}, O2 = {x2},
O3 = {x3}, O4 = {x4}, O5 = {x6}.

De�nition 3.4. Let A be a subset of X. The pointwise stabilizer of A in
G is

G(A) := {g ∈ G : g(x) = x for all x ∈ A}.
and the setwise stabilizer of A in G is G{A} := {g ∈ G : g(A) = A}.
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Obviously G(A) ⊂ G{A}. If A = {x} then G(x) = G{x} and we denote
this subset of G by Gx. For A = {x1, . . . , xd} we will also denote by Gx1,...,xd
the pointwise stabilizer of A.
Remark 3.5. Both G(A) and G{A} are subgroups of G and one can prove
that G(A) is a normal subgroup of G{A}, see e.g. [6].

Example 3.6. Let X = {1, 2, 3, 4, 5, 6, 7} and G = 〈α〉, where

α = (1, 4, 5, 2)(3, 6, 7).

Since α12 = I then G is isomorphic to a cyclic group of order 12. For
A = {1, 5} we have G(A) = 〈α4〉 = {I, α4, α8}, with α4 = (3, 6, 7). Observe
that G(A) = G(B), where B = {1, 2, 4, 5}. Since α2 = (1, 5)(2, 4)(3, 7, 6) then
G{A} = 〈α2〉 = {I, α2, α4, α6, α8, α10}.

1 2 3

4 5 6 7

1 2 3

4 5 6 7

1 2 3

4 5 6 7

Figure 3: The illustration of Example 3.6.

The connection between orbits and stabilizers of elements of X is formu-
lated in the following theorem.

Theorem 3.7 (Theorem 1.4A, [2]). Suppose that G is a group acting on a set

X and x1, x2 ∈ X. If x2 = ϕg(x1), then Gx1 = gGx2g
−1 and |G : Gx| = |xG|

for x ∈ X. Hence if G is �nite then

|G| = |xG| · |Gx|, ∀ x ∈ X. (3.1)

4. The Schreier-Sims algorithm

If H is a subgroup of a group G and a is an arbitrary element of G then
the set aH = {ah : h ∈ H} is called a left coset of H. Similarly , the set
Ha = {ha : h ∈ H} is called a right coset of H. A set of consisting of right
cosets (or left cosets) of H forms a partition of G, see e.g. [1], [4]. Since
a ∈ Ha we call a the representative of Ha. Suppose that G may be written
in the form

G = Ha1 ∪Ha2 ∪ . . . ∪Har
where a1 = e and Hai∩Haj = ∅ for i 6= j. Then the set T = {a1, . . . , ar} is
called a right transversal for G mod H or a set of right coset representatives
for H in G. If H and T are given then

g := Hg ∩ T, g ∈ G. (4.1)
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The Schreier-Sims algorithm is based on the following Schreier theorem, see
for example [2] or [7].

Theorem 4.1 (Theorem 3.6.A, [2]). Let H be a subgroup of a �nite group

G and let T be a set of right coset representatives for H in G. Assume

additionally that I ∈ T . If W is a set of generators of G, then

V := {tw(tw)−1 : w ∈W, t ∈ T} (4.2)

is a set of generators for H.

Remark 4.2. Note that |V | = |W | · |T | so V is usually a large set. However
in many cases it may be reduced to much smaller set, see for example the
chapter devoted to the Schreier-Sims algorithm in [7].

De�nition 4.3. A subset B = {x1, x2, . . . , xd} of X is a base for G if
G(B) = I.

Now we are in a position to describe the algorithm.
In the �rst step let G = 〈W 〉. Choose x1 ∈ X that lies in the support of

some element of W . Then compute the orbit O1 of x1 and the set of right
coset representatives T1 for Gx1 . Using W , T1 and Theorem 4.1 one can
compute a set V1 of generators of Gx1 . Then try to reduce V1 to a smaller
set.

Next take Gx1 and V1 and repeat this procedure from the �rst step
until, for some d > 1 we get Gx1,...,xd = I. As a result we obtain a chain of
stabilizers

G ⊃ Gx1 ⊃ Gx1,x2 ⊃ . . . ⊃ Gx1,...,xd = I,

a set of transversals T1, . . . , Td and orbits O1, . . . ,Od. Note that |Oi| = |Ti|,
i = 1, . . . , d. From (3.1) we conclude that |G| =

∏d
i=1 |Oi|.

Theorem 4.4. Every g ∈ G can be written uniquely as the product

g = tdtd−1 . . . t2t1, ti ∈ Ti, i = 1, . . . , d. (4.3)

Proof. Let x1 be a �rst element of X for which g(x1) 6= x1. Denote x2 =
g(x1). Since x2 ∈ xG1 then we can �nd, say t1 ∈ T1, such that t1(x1) = x2.
Note that t1 may be chosen in a unique way. Then observe that gt−1

1 (x1) =
x1, i.e. x1 ∈ Fix(gt−1

1 ). Now let x2 be a �rst element of X for which
gt−1

1 (x2) 6= x2, denote x3 = gt1(x2) and continue this process described
above. After d steps we get

gt−1
1 t−1

2 . . . t−1
d = I, (4.4)

that is just (4.3).
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Remark 4.5. We have the solution to the following problem: how to get
a random permutation of G = 〈W 〉? Answer: choose at random t1 ∈
T1, . . . , td ∈ Td and multiply them as in (4.3). In this way we get an el-
ement of G with probability

p =
d∏
i=1

1

|Ti|
=

d∏
i=1

1

|Oi|
=

1

|G|
.

5. Examples

Example 5.1. Let X = {1, 2, 3, 4, 5, 6} and consider

G = 〈α, β〉, α = (1, 2, 3, 4), β = (1, 5, 6, 2). (5.1)

There is a very interesting method to prove that |G| = 120 and the problem
of computing |G| is in a way unique in the theory of permutations, see [8].
However we will not focus attention on this and we will use the Schreier-Sims
algorithm.

1

2 3

45

6

1

2 3

45

6

Figure 4: The generators of G given by (5.1).

We begin with an orbit of x1 = 1 (we can choose x1 because x1 ∈ Act(α)):
1→ 1(I), 1→ 2(α), 1→ 3(α2), 1→ 4(α3) and 1→ 5(β), 1→ 6(β2). Hence
O1 = 1G = {1, 2, 3, 4, 5, 6} and T1 = {I, α, α2, α3, β, β2}. Now we are ready
to apply (4.2). In our case H = G1, V is denoted by V1 and W = {α, β}.
The set of Schreier generators of G1 is the following

V1 =
{
α(α)−1, β(β)−1, α2(α2)−1, αβ(αβ)−1, α3(α3)−1, α2β(α2β)−1,

I(I)−1, α3β(α3β)−1, βα(βα)−1, β2(β2)−1, β2α(β2α)−1, β3(β3)−1
}
.

Now we need to �nd the representatives: α = α, β = β, α2 = α2, αβ = I
(because 1 → 1(αβ)), α3 = α3, α2β = α2 (note that α2β(1) = 3 = α2(1)),
I = I, β2 = β2, βα = β (we have βα(1) = 5 = β(1)), β2α = β2 (β2α(1) =
α(6) = 6 = β2(1)) and β3 = β3. For example α2β(α2β)−1 = α2β(α2)−1 =
α2βα2, because α−2 = α2. We can reduce V1 to the following set (that we
denote also by V1)

V1 =
{
αβ, α2βα2, α3βα−3, βαβ−1, β2αβ2

}
.
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We have: αβ = (2, 3, 4, 5, 6), α2βα2 = (3, 5, 6, 4), α3βα−3 = (2, 5, 6, 3),
βαβ−1 = (2, 6, 3, 4) and β2αβ2 = (3, 4, 6, 5). We can �nally reduce V1 to
{α3βα−3, βαβ−1} because (2, 6, 3, 4) · (2, 5, 6, 3) = (2, 3, 4, 5, 6), (2, 6, 3, 4)2 ·
(2, 5, 6, 3) = (3, 5, 6, 4) and (3, 4, 6, 5)3 = (3, 5, 6, 4). So we have

G1 = 〈α1, β1〉, α1 = (2, 5, 6, 3), β1 = (2, 6, 3, 4),

with α1 = α3βα−3 = α−1βα and β1 = βαβ−1. Additionaly |G| = 6|G1| by
(3.1).

1

2 3

45

6

β

β2

α
α2

α3

1

2 3

45

6

1

2 3

45

6

Figure 5: The transversal T1 and generators of G1, see Example 5.1.

Now take e.g. x2 = 2. We have: 2 = I(2), 3 = β2
1(2), 4 = β3

1(2), 5 =
α1(2), 6 = α2

1(2). HenceO2 = 2G1 = {2, 3, 4, 5, 6} and T2 = {I, β2
1 , β

3
1 , α1, α

2
1}.

The set of Schreier generators of G1,2 is

V2 =
{
I, α1(α1)−1, β1(β1)−1, α2

1(α2
1)−1, α1β1(α1β1)−1, α3

1(α3
1)−1,

α2
1β1(α2

1β1)−1, β2
1α1(β2

1α1)−1, β3
1(β3

1)−1, β3
1α1(β3

1α1)−1, β4
1(β4

1)−1
}
.

It is clear that α1 = α1, α2
1 = α2

1 and β
3
1 = β3

1 . Since α
3
1(2) = 3, α1β1(2) = 5,

α2
1β1(2) = 3, β2

1α1(2) =, β3
1α1(2) =, β4

1 = I therefore α1β1 = α1, α2
1β1 = β2

1 ,

β2
1α1 = β2

1 , β
3
1α1 = β3

1 , β
4
1 = I. This leads to

V2 = {α1β1α
−1
1 , α3

1β
−2
1 , α2

1β
−1
1 , β2

1α1, β
3
1α1β

−3
1 }.

We have α1β1α
−1
1 = α2

1β
−1
1 = β2

1α1 = (3, 5, 6, 4) and α3
1β
−2
1 = β3

1α1β
−3
1 =

(3, 4, 6, 5). Observe that (3, 4, 6, 5)3 = (3, 5, 6, 4) hence V2 is reduced to
(3, 4, 6, 5). That is

G1,2 = 〈α2〉, α2 = (3, 4, 6, 5),

with α2 = α−1
1 β−2

1 = β−1
1 α1β1 = β2αβ2. We have |G1| = 5|G1,2|.

For x3 = 3 we have T3 = {I, α2, α
2
2, α

3
2} and O2 = 2G1,2 = {3, 4, 5, 6}. In

factG1,2 = {I, (3, 4, 6, 5), (3, 6)(4, 5), (3, 5, 6, 4)} soG1,2,3 = I and |G1,2| = 4.
In a consequence B = {1, 2, 3} and |G| = 6 · 5 · 4 = 120. Now we can apply
Theorem 4.4. Taking for example t3 = (3, 6)(4, 5), t2 = (2, 5, 6, 3) and
t1 = (1, 2, 3, 4) we obtain

g = t3t2t1 = (3, 4, 6)(1, 2, 5) = β2αβ2α−1βα2,

since t1 = α, t2 = α1 = α−1βα and t3 = α2
2 = β2αβ2.
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1
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45

6

α1

α2
1

β3
1

β2
1

1

2 3

45

6

Figure 6: The transversal T2 and the generator of G1,2.
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Figure 7: The transversal T3 and G1,2,3 = I.

Table 1: The summary of the Schreier-Sims algorithm applied to the group
given by (5.1).

group generators x orbit order

G α = (1, 2, 3, 4) 1 O1 = {1, 2, 3, 4, 5, 6} |G| = 6|G1|

β = (1, 5, 6, 2)

G1 α1 = (2, 5, 6, 3) 2 O2 = {2, 3, 4, 5, 6} |G1| = 5|G1,2|

β1 = (2, 6, 3, 4)

G1,2 α2 = (3, 4, 6, 5) 3 O3 = {3, 4, 5, 6} |G1,2| = 4

G1,2,3 α3 = I − − |G1,2,3| = 1

In the next example we discuss the membership problem.

Example 5.2. Let G be the group given by (5.1). Is it true that γ =
(1, 3, 4) ∈ G? We will use Table 2 to answer this question. For T1 we
have α · (1, 3)(2, 4) = (3, 2, 4). Next (3, 2, 4) · (2, 6, 3, 4) = (3, 6) for T2 and
(3, 6) · (3, 6)(4, 5) = (4, 5) for T3. Therefore γ /∈ G. In other words

α · (1, 3)(2, 4)︸ ︷︷ ︸
∈T−1

1

· (2, 6, 3, 4)︸ ︷︷ ︸
∈T−1

2

· (3, 6)(4, 5)︸ ︷︷ ︸
∈T−1

3

= (4, 5) 6= I,

see Theorem 4.4 and (4.4). Let δ = (1, 3, 4)(2, 6, 5). Then δ ∈ G since we
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Table 2: Transversals from Example 5.1. Note that α1 = α−1βα, β1 =
βαβ−1 and α2 = β2αβ2.

T1 = T2 = T3 =

I I I I I I

α (1, 2, 3, 4) β2
1 (2, 3)(4, 6) α2 (3, 4, 6, 5)

α2 (1, 3)(2, 4) β3
1 (2, 4, 3, 6) α3

2 (3, 5, 6, 4)

α3 (1, 4, 3, 2) α1 (2, 5, 6, 3) α2
2 (3, 6)(4, 5)

β (1, 5, 6, 2) α2
1 (2, 6)(3, 5)

β2 (1, 6)(2, 5)

I

(3, 6)(4, 5)

(3, 5, 6, 4)

(3, 4, 6, 5)

I

(2, 6, 3, 5)

(2, 5, 6, 3)

(2, 4, 3, 6)

(2, 3)(4, 6)

I

(1, 6)(2, 5)

(1, 5, 6, 2)

(1, 4, 3, 2)

(1, 3)(2, 4)

(1, 2, 3, 4)

Figure 8: The procedure for generating a random permutation from G given
by (5.1). Note that |G| = 120 and the product of (3, 6)(4, 5), (2, 5, 6, 3) and
(1, 2, 3, 4) is (3, 4, 6)(1, 2, 5).

have
α · (1, 3)(2, 4)︸ ︷︷ ︸

∈T−1
1

· (2, 6)(3, 5)︸ ︷︷ ︸
∈T−1

2

· (3, 6)(4, 5)︸ ︷︷ ︸
∈T−1

3

= I.

Note that δ′ = (1, 3, 4)(2, 5, 6) /∈ G. In fact δδ′ = (1, 4, 3) = γ2 and for this
reason it is not possible.
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Remark 5.3. If α and β are given by (5.1) then

〈α, β〉 = 〈α2, β〉 = 〈α, β2〉. (5.2)

Obviously 〈α2, β〉 ⊂ 〈α, β〉. One can check that α = β2α2β−1α2β2 hence
α ∈ 〈α2, β〉 which implies 〈α, β〉 ⊂ 〈α2, β〉. This proves the �rst equality in
(5.2). The second follows from the fact that β = α2β2α−1β2α2. For a group
〈α2, β2〉 note that it is isomorphic to S3, i.e.

〈α2, β2〉 = {I, α2, β2, α2β2, β2α2, α2β2α2}.

Example 5.4. Let X = {1, 2, . . . , 10} and G = 〈α, β, γ, δ〉 with

α = (1, 6)(5, 10), β = (2, 7)(5, 10), γ = (3, 8)(5, 10), δ = (4, 9)(5, 10).

Observe thatG is a subgroup of A10, since all its generators are even. Clearly
G does not act transitively on X. Calculations show that for x1 = 1 we have
T1 = {I, α}, O1 = {1, 6} and G1 = 〈β, γ, δ〉. If x2 = 2 then T2 = {I, β},
O2 = {2, 7} and G1,2 = 〈γ, δ〉. Next we take x3 = 3 and get T3 = {I, γ},
O3 = {3, 8}. Moreover G1,2,3 = 〈δ〉 = {I, δ}. Finally for x4 = 4 we have
T4 = {I, δ}, O4 = {4, 9} and G1,2,3,4 = I. We conclude that |G| = 24 = 16.

I

α

I

β

I

γ

I

δ

Figure 9: The procedure for generating a random permutation from the
group in Example 5.4.

In the �nal example we consider a subgroup of a wreath product of
groups.

Example 5.5. Let X = {1, 2, 3, 4, 5, 6, 7, 8} and

G = 〈α, β〉, α = (1, 6, 3, 8)(2, 7, 4, 5), β = (1, 2)(5, 6). (5.3)

Note that G acts transitively on X. If we take x1 = 1 then O1 = X with
T1 = {I, β, α2, βα2, βα3, α, βα, α3}, since β(1) = 2, α2(1) = 3, . . . , and
α3(1) = 8. Then we compute elements of V1 (there are 16 elements in V1 at
the beginning of calculations) and reduce to V1 = {(3, 4)(7, 8), (2, 4)(6, 8)}.
Therefore the stabilizer of x1 is as follows

G1 = 〈α1, β1〉, α1 = (3, 4)(7, 8), β1 = (2, 4)(6, 8), (5.4)
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Table 3: The summary of the Schreier-Sims algorithm applied to the group
from Example 5.4.

group generators x orbit order

G α, β, γ, δ 1 O1 = {1, 6} |G| = 2|G1|

G1 β, γ, δ 2 O2 = {2, 7} |G1| = 2|G1,2|

G1,2 γ, δ 3 O3 = {3, 8} |G1,2| = 2|G1,2,3|

G1,2,3 δ 4 O4 = {4, 9} |G1,2,3| = 2

G1,2,3,4 I − − |G1,2,3,4| = 1

1 2 3 4

5 6 7 8

1 2 3 4

5 6 7 8

Figure 10: The generators of G given by (5.3).

with α1 = α2βα2, β1 = (βα)β(βα)−1. For x2 = 3 we have O2 = {2, 3, 4}
and T2 = {α1β1, I, α1}. After computation we obtain V2 = {β1} and in
a consequence G1,3 = 〈β1〉. Therefore if x3 = 4 then G1,3,4 = I. Recall that
O3 = {2, 4} and T3 = {I, β1}. Summarizing, the base B = {1, 3, 4} and
|G| = 8 · 3 · 2 = 48.

1 2 3 4

5 6 7 8

1 2 3 4

5 6 7 8

Figure 11: The generators of G1 given by (5.4).

Remark 5.6. If we consider the group G given by (5.3) as a subgroup of S8

then its index in S8 is |S8 : G| = |S8|/|G| = 8!/48 = 840. However G is
in fact a subgroup of Z2 o S4, i.e. the wreath product of Z2 by S4. Since
|Z2 o S4| = 4! · 24 = 384 then |(Z2 o S4) : G| = 8. For more details about
wreath products see e.g. [3], [4].
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1 2 3 4

5 6 7 8

1 2 3 4

5 6 7 8

Figure 12: The generator of G1,3 and G1,3,4 = I.

6. Appendix

To prove Lemma 2.4 and Lemma 2.7 we state the following the theorem.

Theorem 6.1 (Theorem 3.3A, [2]). Let G be a primitive subgroup of Sym(X).

(i) If G contains a 3-cycle, then Alt(X) ⊂ G.

(ii) If G contains a 2-cycle, then G = Sym(X).

The conclusions of Lemma 2.4 and Lemma 2.7 follow from Theorem 4.4
and Theorem 6.1. Namely, for Sn the base is e.g. B = {n, n− 1, . . . , 2} and
Ln, . . . , L2 are transversals. For An we have e.g. B = {1, 2, . . . , n − 2} and
K1, . . . ,Kn−2 are appropriate transversals.
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Examples in stochastic di�erential

equations

Ernest Nieznaj1

Abstract

This paper is a short overview of Gaussian and Markov processes,
especially those related to a Brownian motion and stochastic di�eren-
tial equations.

1. Preliminaries

We say that a real-valued random variable X has Gaussian distribution if
its density is

f(x) =
1√

2πσ2
exp

{
−(x− µ)2

2σ2

}
, x ∈ R,

with µ ∈ R and σ2 > 0. We write X ∼ N(µ, σ2). It is very well known that
EX = µ and varX = σ2. If σ2 = 0 then we mean P(X = µ) = 1. Similarly
a n-dimensional random vector (X1, . . . , Xn) has Gaussian distribution if its
density is given by

f(x1, . . . , xn) =
1√

(2π)n|Q|
exp

−
n∑

i,j=1

Qij(xi −mi)(xj −mj)

2|Q|

 ,

where mi = EXi, Q = [qij ], |Q| = detQ, qij = cov(Xi, Xj), and Qij is
an algebraic complement of qij , i, j = 1, . . . , n. Recall that cov(Xi, Xj) =
E(Xi − mi)(Xj − mj) and varX = cov(X,X). In this paper we assume
that |Q| 6= 0. Let X ∼ N(m1, σ

2
1) and Y ∼ N(m2, σ

2
2). If, in addition,

X and Y are independent then one may prove that X + Y ∼ N(m1 +
m2, σ

2
1 + σ2

2), see e.g. [3], Chapter 5. Given X,Y we say that they are
uncorrelated if cov(X,Y ) = 0. Recall that if X,Y are Gaussian then they

1Department of Mathematics, Technical University of Lublin, Nadbystrzycka 38, 20-618
Lublin, Poland, e-mail: e.nieznaj@pollub.pl
2010 Mathematics Subject Classi�cation. Primary 60615, 60J25; Secondary 60J60.
Keywords: Gaussian processes, Markov processes, stochastic di�erential equations.
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are independent if and only if cov(X,Y ) = 0. For a random process Xt,
t ∈ T , we denote m(t) = EXt and K(t1, t2) = cov(Xt1 , Xt2) for all t, t1, t2 ∈
T . A stochastic process is said to be a Gaussian process if all its �nite-
dimensional distributions are Gaussian. Equivalently Xt is Gaussian if for
all real numbers a1, . . . , an the random variable

∑n
i=1 aiXti is Gaussian,

see [3], Chapter 5. Throughout the paper we assume that Wt, t > 0, is
a standard Brownian motion, that is a Gaussian stochastic process with
EWt = 0, K(t1, t2) = min{t1, t2} and continuous trajectories.

2. Gaussian and Markov processes

Example 2.1. Let Xt = |Wt|, t > 0. Clearly Xt is not Gaussian. We will
prove that Xt is a Markov process by showing that

g(xn+1|x1, . . . , xn) = g(xn+1|xn), (2.1)

where g(xn+1|x1, . . . , xn) := g(x1, . . . , xn+1)/g(x1, . . . , xn) and g(x1, . . . , xn)
is the density of (Xt1 , . . . , Xtn) for 0 < t1 < t2 < . . . < tn. Since Wt has
independent increments then it is a Markov process, and if B ∈ B(R) we
have P(Wt2 ∈ B|Wt1 = x1) =

∫
B p(t, x1, x2)dx2 where

p(t, x1, x2) =
1√
2πt

exp

{
−(x2 − x1)2

2t

}
, x2 ∈ R, (2.2)

and t = t2 − t1 > 0. Hence the density of (Wt1 , . . . ,Wtn) is given by

f(x1, . . . , xn) =
n∏
i=1

p(ti − ti−1, xi−1, xi)

=
n∏
i=1

1√
2π(ti − ti−1)

exp

{
−1

2

n∑
i=1

(xi − xi−1)2

ti − ti−1

}

with t0 = 0, x0 = 0. In particular for t1 < t2 the density of (Wt1 ,Wt2) is

f(x1, x2) = p(t1, 0, x1)p(t2 − t1, x1, x2)

=
1

2π
√
t1(t2 − t1)

exp

{
− t2x

2
1 + t1x

2
2 − 2t1x1x2

2t1(t2 − t1)

}
,

where m = (0, 0) and the covariance matrix equals

Q =

[
cov(Wt1 ,Wt1) cov(Wt1 ,Wt2)
cov(Wt1 ,Wt2) cov(Wt2 ,Wt2)

]
=

[
t1 t1
t1 t2

]
.
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Let B1, . . . , Bn ∈ B(R+) and −B := {x ∈ R : −x ∈ B}. Then

P (|Wt1 | ∈ B1, . . . , |Wtn | ∈ Bn)

=
∑

(k1,...,kn)

P
(
Wt1 ∈ (−1)k1B1, . . . ,Wtn ∈ (−1)knBn

)
,

where the sum runs over all 0-1 sequences (k1, . . . , kn), that is ki = 0 or 1 for
i = 1, . . . , n. Note that there are 2n such sequences. Hence for x1, . . . , xn > 0
we have

g(x1, . . . , xn) =
∑

(k1,...,kn)

f((−1)k1x1, . . . , (−1)knxn)

=
∑

(k1,...,kn)

n∏
i=1

p(ti − ti−1, (−1)ki−1xi−1, (−1)kixi).

We will show that g(x1, . . . , xn+1) = g(xn+1|xn)g(x1, . . . , xn), where

g(xn+1|xn) = p(tn+1 − tn, xn, xn+1) + p(tn+1 − tn, xn,−xn+1). (2.3)

In other words for any t1 < t2 we have

P(Xt2 ∈ B|Xt1 = x1) =
1√

2π(t2 − t1)

∫
B

[
e
− (x2−x1)2

2(t2−t1) + e
− (x2+x1)2

2(t2−t1)

]
dx2.

Suppose that n > 1 and let xn = (x1, . . . , xn), kn = (k1, . . . , kn). Then

g(xn+1) =
∑
kn+1

n+1∏
i=1

p(ti − ti−1, (−1)ki−1xi−1, (−1)kixi)

=
∑
kn

[p(tn+1 − tn, (−1)knxn, xn+1) + p(tn+1 − tn, (−1)knxn,−xn+1)]Pn

with Pn :=
∏n
i=1 p(ti−ti−1, (−1)ki−1xi−1, (−1)kixi). Clearly Pn does depend

on ki-s and xi-s but we don't need to write that explicitly. Hence g(xn+1) =
S1 + S2 where

S1 = [p(tn+1 − tn, xn, xn+1) + p(tn+1 − tn, xn,−xn+1)]
∑

(kn−1,0)

Pn

and

S2 = [p(tn+1 − tn,−xn, xn+1) + p(tn+1 − tn,−xn,−xn+1)]
∑

(kn−1,1)

Pn.



Examples in stochastic di�erential equations 102

The key observation is that

p(t, xn, xn+1) + p(t, xn,−xn+1) = p(t,−xn, xn+1) + p(t,−xn,−xn+1),

see (2.2). Therefore we have

g(xn+1) = [p(tn+1 − tn, xn, xn+1) + p(tn+1 − tn, xn,−xn+1)]g(xn),

because ∑
(kn−1,0)

Pn +
∑

(kn−1,1)

Pn =
∑
kn

Pn = g(xn).

We have just proved (2.1).

Example 2.2. Let Xt = W 2
t , t > 0. As in the previous example Xt is not

a Gaussian process. However observe that for B1, . . . , Bn ∈ B(R+) we have

P(W 2
t1 ∈ B1, . . . ,W

2
tn ∈ Bn) = P(|Wt1 | ∈

√
B1, . . . , |Wtn | ∈

√
Bn),

where
√
B = {x ∈ R : x2 ∈ B} for B ∈ B(R+). Therefore Xt is a Markov

process because |Wt| is, see Example 2.1. Note that EW 2
t = t and

E(W 2
t1W

2
t2) = E(Wt1Wt1)E(Wt2Wt2) + 2E(Wt1Wt2)E(Wt1Wt2)

= t1t2 + 2(min{t1, t2})2,

hence K(t1, t2) = 2(min{t1, t2})2.

For Gaussian processes the condition (2.1) is equivalent to

K(t1, t3)K(t2, t2) = K(t1, t2)K(t2, t3) (2.4)

for all t1 < t2 < t3, see e.g. [5]. For Gaussian Markov processes the covari-
ance function can be characterize in more explicit form. First we cite an
auxiliary lemma. The following is Lemma 5.1.8. in [3].

Lemma 2.3. Let p(t) and q(t) be positive functions on T ⊂ R with p(t)/q(t)
strictly increasing. De�ne

K(t1, t2) =

{
p(t1)q(t2), t1 6 t2
p(t2)q(t1), t2 < t1

(2.5)

and suppose that p and q are such that K(t1, t2) > 0 for all t1, t2 ∈ T . Then
K(t1, t2) is a strictly positive de�nite function on T × T .



Examples in stochastic di�erential equations 103

Recall that a function K(t1, t2) de�ned on T ×T is a positive de�nite (or
non-negative de�nite) function, if for every n > 1 and all and t1, . . . , tn ∈ T

n∑
i,j=1

aiajK(ti, tj) > 0 (2.6)

for all real numbers a1, . . . , an. We say that a positive de�nite function
K(t1, t2) is strictly positive de�nite if equality in (2.6) implies that a1 =
. . . = an = 0. The next is Lemma 5.1.9 in [3].

Lemma 2.4. Let T ⊂ R be an open or closed interval and let Xt, t ∈ T
be a mean zero Gaussian process with continuous strictly positive de�nite

covariance K(t1, t2). Then Xt is a Gaussian Markov process if and only if

K(t1, t2) can be expressed as in (2.5).

Example 2.5. Let Xt = at+bWt, t > 0, where a, b ∈ R and b 6= 0. Observe
that Xt ∼ N(at, b2) and

∑n
i=1 aiXti ∼ N(m,σ2) where m = a

∑n
i=1 aiti and

σ2 = b2(
∑n

i=1 ai)
2. The covariance

K(t1, t2) = b2E(Wt1Wt2) = b2 min{t1, t2},

clearly satis�es (2.4), so it is a Markov process. In fact increments of Xt are
independent. Namely, if t1 < t2 < t3 then

cov(Xt2 −Xt1 , Xt3 −Xt2) = b2E(Wt2 −Wt1)(Wt3 −Wt2) = 0,

because increments of Wt are independent. For b = 1 from (2.2) we obtain

P(Xt2 ∈ B|Xt1 = x1) =
1√
2πt

∫
B

exp

{
−(x2 − x1 − at)2

2t

}
dx2.

Example 2.6. Let T > 0 and de�ne

Xt = a+
t

T
(b− a−WT ) +Wt, t ∈ 〈0, T 〉,

called the Brownian bridge. Observe that x0 = a, xT = b and this is
a Gaussian process with m(t) = a + t(b − a)/T . The covariance function
given by

K(t1, t2) = min{t1, t2} −
t1t2
T
, 0 6 t1, t2 6 T, (2.7)

satis�es (2.4) therefore Xt is also a Markov process. Indeed, for t1 < t2 < t3
from (0, T ) we have

K(t1, t3)K(t2, t2) =

(
t1 −

t1t3
T

)(
t2 −

t22
T

)
= t1t2

(
1− t3

T

)(
1− t2

T

)
=

(
t1 −

t1t2
T

)(
t2 −

t2t3
T

)
= K(t1, t2)K(t2, t3).
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Increments of Xt are not independent but they are stationary, i.e.

cov(Xt2 −Xt1 , Xt3 −Xt2) =
(t2 − t1)(t2 − t3)

T
< 0,

for t1 < t2 < t3. As for Lemma 2.3 we have

K(t1, t2) =

{
t1
(
1− t2

T

)
, t1 6 t2,

t2
(
1− t1

T

)
, t2 < t1,

hence p(t) = t, q(t) = 1− t
T , t ∈ (0, T ) in (2.5). The function

p(t)

q(t)
=

tT

T − t
=

T 2

T − t
− T, t ∈ (0, T ),

is strictly increasing.

3. The Ornstein-Uhlenbeck process and fractional

Brownian motion

The stochastic process Xt, t ∈ T , is self-similar with index H > 0, if for
every a > 0 the processes Xat and a

HXt have the same �nite dimensional
distributions. That means that for any n > 1, t1, . . . , tn ∈ T and a > 0 the
distribution of (Xat1 , . . . , Xatn) is the same as (aHXt1 , . . . , a

HXtn). Since
we multiply t ∈ T by any a > 0 it makes sense to take T = R, T = (0,+∞)
or T = 〈0,+∞).

Lemma 3.1 (Proposition 7.1.4, [6]). If Xt, t > 0, is self similar with index

H, then

Yt = e−tHXet , t ∈ R,

is stationary. Conversely, if Yt, t ∈ R is stationary, then

Xt = tHYln t, t > 0,

is self similar with index H.

Observe that if a > 0 then E(Wat1Wat2) = min{at1, at2} = amin{t1, t2}
and E(

√
aWt1

√
aWt2) = amin{t1, t2}. Hence, because Brownian motion is

a Gaussian process it is self similar with H = 1/2.

Example 3.2. According to Lemma 3.1 the stochastic process

Yt = e−t/2Wet , t ∈ R, (3.1)
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is stationary with m(t) = 0 and

K(t1, t2) = e−
1
2
|t1−t2|, t1, t2 ∈ R. (3.2)

It is also a Markov process since Yt is Gaussian and

K(t1, t3)K(t2, t2) = e
1
2

(t3−t1) = K(t1, t2)K(t2, t3) = e
1
2

(t2−t1)e
1
2

(t3−t2),

where t1 < t2 < t3. One can also investigate Yt only for t > 0. We will
construct the Ornstein-Uhlenbeck process in a di�erent way. Since Y0 ∼
N(0, 1) de�ne

Ỹt = e−
1
2
tX0 + e−

1
2
t

∫ t

0
e

1
2
sdWs, t > 0, (3.3)

where X0 ∼ N(0, 1) is independent of the Brownian motion. Therefore Ỹt is
a Gaussian process with zero mean and the covariance function (3.2). Using
the integration by parts formula, see (3.6) below, we can write Ỹt as follows

Ỹt = e−
1
2
tX0 +Wt − 1

2e
− 1

2
t

∫ t

0
e

1
2
sWsds, t > 0.

From the above we obtain

dỸt = −1
2e
− 1

2
tX0dt+ dWt − 1

2

[
−1

2e
− 1

2
t

∫ t

0
e

1
2
sWsds+Wt

]
dt

= −1
2

[
e−

1
2 tX0 +Wt − 1

2e
− 1

2
t

∫ t

0
e

1
2
sWsds

]
dt+ dWt

= −1
2 Ỹtdt+ dWt.

Hence Ỹt is the solution of dỸt = −1
2 Ỹtdt+ dWt with Ỹ0 = X0.

Example 3.3. One can prove, see Lemma 2.10.8 in [6], that the function

KH(t1, t2) =
1

2

(
|t1|2H + |t2|2H − |t1 − t2|2H

)
, t1, t2 ∈ R,

satis�es (2.6) for H ∈ (0, 1). Therefore there exists a Gaussian process Xt,
t > 0, with zero mean and the covariance functionKH(t1, t2). This process is
called the fractional Brownian motion. For H = 1/2 it is in fact a Brownian
motion, since

K 1
2
(t1, t2) =

t1 + t2 − |t1 − t2|
2

= min{t1, t2}.
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For H 6= 1
2 the increments of Xt are not independent. Indeed, we have

cov(Xt2 −Xt1 , Xt3 −Xt2) = 1
2

[
(t3 − t1)2H − (t3 − t2)2H − (t2 − t1)2H

]
,

for 0 < t1 < t2 < t3. De�ne for �xed t1 < t2 the function

fH(t) = (t− t1)2H − (t− t2)2H − (t2 − t1)2, t > t2.

Note that f(t2) = 0 and

f ′H(t) = 2H
[
(t− t1)2H−1 − (t− t2)2H−1

]
, t > t2.

If H > 1/2 then f ′H(t) > 0 and fH is strictly increasing. If H < 1/2 we have
f ′H(t) < 0 and fH is decreasing. From the above we conclude that

cov(Xt2 −Xt1 , Xt3 −Xt2) :


> 0, H ∈ (1

2 , 1)
= 0, H = 1

2
< 0, H ∈ (0, 1

2).

Hence Xt is not a Markov process for H 6= 1
2 .

Example 3.4. Let
Xt = A cos(t+ ϕ), t ∈ R, (3.4)

where A is a random variable with density f(x) = xe−x
2/2, x > 0, ϕ is

uniformly distributed on 〈0, 2π) and independent of A. We have EXt =
EA · E cos(t+ ϕ) = 0 since

E cos(t+ ϕ) =
1

2π

∫ 2π

0
cos(t+ x)dx = 0, t ∈ R.

The covariance K(t1, t2) = cos(t2 − t1). Indeed, we have

K(t1, t2) = EXsXt = E(A2)E[cos(t1 + ϕ) cos(t2 + ϕ)]

= E[cos(t2 − t1) + cos(t1 + t2 + 2ϕ)] = cos(t2 − t1).

The crucial observation is that Xt can be written in the form

Xt = X cos t− Y sin t, t ∈ R,

where X = A cosϕ, Y = A sinϕ. First we will prove that both X and Y has
a N(0, 1) distribution. Furthermore from E(XY ) = E(A2)E(sinϕ cosϕ) = 0
we conclude that X,Y are independent. Hence for all a1, . . . , an ∈ R the
random variable

n∑
i=1

aiXti = X
n∑
i=1

ai cos(ti)− Y
n∑
i=1

ai sin(ti)
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has a normal distribution N(0, σ2), where

σ2 = (

n∑
i=1

ai cos ti)
2 + (

n∑
i=1

ai sin ti)
2.

That means that Xt is a Gaussian process and since

K(t1 + h, t2 + h) = K(t1, t2), ∀ h ∈ R

it is also stationary. In particular (Xt1 , . . . , Xtn) has a normal distribution
with zero mean and the covariance function K(ti, tj) = cos(ti − tj), i, j =
1, . . . , n. What remains to show is that X ∼ N(0, 1). Observe that the
density of cosϕ is

f(x) =
1

π

1√
1− x2

, x ∈ (−1, 1). (3.5)

Indeed, for x ∈ (−1, 1) we have

F (x) = P(cosϕ 6 x) =
(2π − 2 arccosx)

2π
= 1− arccosx

π
,

which proves (3.5). Since X is the product of two independent random
variables (i.e. A and cosϕ) its density equals

g(z) =
1

π

∫ +∞

|z|

x√
x2 − z2

e−
1
2
x2dx =

1

π

∫ +∞

|z|
x
√
x2 − z2e−

1
2
x2dx

=
1

2π
e−

1
2
z2
∫ +∞

0

√
te−

1
2
tdt =

1√
2π
e−

1
2
z2 , z ∈ R.

Hence X ∼ N(0, 1). Similarly we show that Y ∼ N(0, 1).

Remark 3.5. Let Z = X · Y and X 6= 0. If X and Y are independent then
the density of Z is given by

g(z) =

∫
R
f1(x)f2

( z
x

) 1

|x|
dx,

where f1 is the density of X and f2 the density of Y , see e.g. [5].

Example 3.6. Consider the following Gaussian processes

Xt =

∫ t

0
Wsds, Yt = tWt, Zt =

∫ t

0
sdWs, t > 0.
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All of them are Gaussian since each is a linear transformation of Wt. For Xt

we have mX(t) =
∫ t

0 EWsds = 0 and KX(t1, t2) = 1
3 t

3
1 + 1

2 t
2
1(t2− t1), t1 < t2.

Indeed from KX(t1, t2) =
∫ t1

0

∫ t2
0 E(Ws1Ws2)ds1ds2 we get

KX(t1, t2) =

∫ t1

0

∫ s1

0
s2ds2ds1 +

∫ t1

0

∫ s2

0
s1ds1ds2 +

∫ t1

0

∫ t2

t1

s1ds2ds1

= 1
6 t

3
1 + 1

6 t
3
1 + 1

2 t
2
1(t2 − t1).

The function KX(t1, t2) does not satisfy (2.4), so Xt is not a Markov pro-
cess. For example KX(1, 3)KX(2, 2) = 32

9 and KX(1, 2)KX(2, 3) = 35
9 .

Increments of Xt are not stationary because

cov(Xt2 −Xt1 , Xt3 −Xt2) = 1
2(t2 − t1)(t2 + t1)(t3 − t2),

where 0 6 t1 < t2 < t3. For Yt we have mY (t) = 0 and the covariance
function equals

KY (t1, t2) = t1t2E(Wt1Wt2) = t1t2 min{t1, t2}.

For t1 < t2 < t3 we have KY (t1, t3)KY (t2, t2) = KY (t1, t2)KY (t2, t3) and
both those terms are equal to t21t

3
2t3. Therefore Yt is a Markov process.

However the increments of Yt are not independent. If t1 < t2 then E(Yt2 −
Yt1)(Yt1) = t21(t2 − t1). For Zt we have mZ(t) = 0 and KZ(t1, t2) =
1
3 min{t31, t32}. Note that Zt has independent increments, i.e.

E(Zt3 − Zt2)(Zt2 − Zt1) = 1
3(t32 − t31 − t32 + t31) = 0.

If t1 < t2 then P(Zt2 ∈ B|Zt1 = x1) =
∫
B p(t1, x1, t2, x2)dx2, where

p(t1, x1, t2, x2) =
(

2π
3 (t32 − t31)

)−1/2
exp

{
−3(x2 − x1)2

2(t32 − t31)

}
, x2 ∈ R.

Therefore Zt is a non-homogeneous Markov process. In fact Zt = Yt −Xt.
Using (3.6) we have∫ t

0
sdWs = tWt −

∫ t

0
Wsds, t > 0.

Remark 3.7. For stochastic integrals we have (see e.g. Theorem 4.5, [4]): if
a deterministic function f is continuous and of bounded variation on 〈0, t〉
then ∫ t

0
f(s)dWs = f(t)Wt −

∫ t

0
Wsdf(s). (3.6)



Examples in stochastic di�erential equations 109

Table 1

process Wt |Wt| W 2
t

∫ t
0 Wsds tWt

∫ t
0 sdWs e−t/2Wet

m(t) 0
√

2t
π t 0 0 0 0

varXt t (1− 2
π )t 2t2 1

3 t
3 t3 1

3 t
3 1

Gaussian yes no no yes yes yes yes

Markov yes yes yes no yes yes yes

stationary no no no no no no yes

4. Applications of Ito formula

Suppose that Xt has the stochastic di�erential dXt = a(t)dt+ b(t)dWt and
f(t, x) ∈ C2([0,+∞)× R). Then (see e.g. Theorem 4.2, [4])

df(t,Xt) =
[
f ′t(t,Xt) + a(t)f ′x(t,Xt) + 1

2b
2(t)f ′′xx(t,Xt)

]
dt

+ f ′x(t,Xt)b(t)dWt.

We will apply the above formula for computing expectations.

Example 4.1. Let dXt = a(t)dt + b(t)dWt, where a(t) and b(t) are deter-
ministic functions, i.e.

Xt =

∫ t

0
a(s)ds+

∫ t

0
b(s)dWs, t > 0.

We have m(t) = EXt =
∫ t

0 a(s)ds since E
∫ t

0 b(s)dWs = 0. In a consequence

E(Xt −m(t))2 = E
(∫ t

0
b(s)dWs

)(∫ t

0
b(s′)dWs′

)
=

∫ t

0
b2(s)ds,

where we used dWsdWs′ = δ(s − s′)ds. Now take f(t, x) = (x − m(t))n,
n > 2. Then by Ito formula we have

df(t,Xt) =
[
a(t)n(Xt −m(t))n−1 + 1

2b(t)
2n(n− 1)(Xt −m(t))n−2

]
dt

+ b(t)n(Xt −m(t))n−1dWt.

Denote Yt = Xt−m(t), and by the fact that the expectation of a stochastic
integral is zero we obtain

EY n
t = n

∫ t

0
a(t)EY n−1

s ds+ 1
2n(n− 1)

∫ t

0
b2(s)EY n−2

s ds, n > 2,
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with EYt = 0. For a Brownian motion we have

dWn
t = 1

2n(n− 1)Wn−2
t dt+ nWn−1

t dWt, n > 2,

and in consequence we get EWn
t = 1

2n(n − 1)
∫ t

0 EWn−2
s ds, n > 2. This

leads to

EWn
t =

{
1 · 3 · 5 · . . . · (2k − 1)t, n = 2k
0, n = 2k + 1.

Example 4.2. Let f(x) = sinx. Then by Ito formula we have

sinWt = −1
2

∫ t

0
sin(Ws)ds+

∫ t

0
cos(Ws)dWs.

Denote m(t) = E(sinWt), t > 0. Then m′(t) = −1
2m(t) with m(0) = 0.

That gives m(t) = 0, t > 0. In a similar way we get E(cosWt) = exp(−t/2),
t > 0.

Now take f(x) = sin2 x. Then f ′(x) = sin(2x), f ′′(x) = 2 cos(2x) and

sin2Wt = 1
2(1− cos(2Wt)) =

∫ t

0
cos(2Ws)ds+

∫ t

0
sin(2Ws)dWs.

Denote n(t) = E cos(2Wt), t > 0. The function n(t) satis�es n′(t) = −2n(t)
for t > 0 with n(0) = 1. That implies n(t) = exp(−2t), t > 0. Finally

E sin2Wt = 1
2(1 + e−2t), E cos2Wt = 1

2(1− e−2t), t > 0.

5. Stochastic Equations

In this section we use the notation Xt = (X1
t , X

2
t ) for 2-dimensional stochas-

tic processes. The following is the Exercise 5.8 from [4].

Example 5.1. Consider the equation{
dX1

t = X2
t dt+ αdW 1

t

dX2
t = X1

t dt+ βdW 2
t

(5.1)

where (W 1
t ,W

2
t ) is 2-dimensional Brownian motion. This means that W 1

t

and W 2
t are independent standard Brownian motions. We can write (5.1) in

the form [
dX1

t

dX2
t

]
=

[
0 1
1 0

]
︸ ︷︷ ︸

=A

[
X1
t

X2
t

]
dt+

[
α 0
0 β

]
︸ ︷︷ ︸

=M

[
dW 1

t

dW 2
t

]
, t > 0,
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with given X1
0 and X2

0 . We assume that α, β ∈ R. According to e.g. [2], [4]
or [7] the solution of dXt = Adt+MdWt is given by

Xt = etAX0 + etA
∫ t

0
e−sAMdWs, t > 0. (5.2)

Using (6.5) we have

etA = sinh(t) ·A+ cosh(t) · I =

[
cosh(t) sinh(t)
sinh(t) cosh(t)

]
, t ∈ R.

Taking X1
0 = 0, X2

0 = 0 we get

X1
t = α

∫ t

0
cosh(t− s)dW 1

s + β

∫ t

0
sinh(t− s)dW 2

s

and

X2
t = α

∫ t

0
sinh(t− s)dW 1

s + β

∫ t

0
cosh(t− s)dW 2

s .

With this initial condition Xt is not stationary because e.g.

var(X1
t ) = E(X1

t )2 = α2

∫ t

0
cosh2(t− s)ds+ β2

∫ t

0
sinh2(t− s)ds

= α2+β2

2 sinh(t) cosh(t) + 1
2(α2 − β2)t.

In addition

E(X1
tX

2
t ) = (α2 + β2)

∫ t

0
cosh(t− s) sinh(t− s)ds = a2+b2

4 (cosh(2t)− 1).

6. Appendix

We will �nd the formula for eAt where A is a matrix

A =

[
a b
c d

]
. (6.1)

We assume that entries of A are real. First we will compute An, n > 2. Let
w(λ) be the characteristic polynomial of A, that is

w(λ) = det

[
a− λ b
c d− λ

]
= λ2 − (a+ d)λ+ ad− bc. (6.2)

The roots of w(λ) are

λ1 = r − p, λ2 = r + p,
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where r = (a+ d)/2, p =
√

∆/2 and ∆ = (a+ d)2 − 4D with D = ad− bc.
Assume �rst that ∆ > 0 and take n > 3. Then

λn = Qn(λ)w(λ) + xnλ+ yn, (6.3)

where Qn(λ) is a polynomial and xn, yn ∈ R. Then by the Cayley-Hamilton
theorem w(A) = Θ, where Θ is a zero matrix. We conclude that An = xnA+
ynI. Solving λ

n
1 = xnλ1+yn, λ

n
2 = xnλ2+yn we �nd xn = (λn1−λn2 )/(λ1−λ2)

and yn = (λn1λ2 − λn2λ1)/(λ2 − λ1). In consequence

An =
λn2 − λn1

2p
·A+

λn1λ2 − λn2λ1

2p
· I, n > 0. (6.4)

Hence we have

eAt = A
+∞∑
n=0

λn2 − λn1
2p

· t
n

n!
+ I

+∞∑
n=0

λn1λ2 − λn2λ1

2p
· t
n

n!
.

Note that
+∞∑
n=0

(λn2 − λn1 ) · t
n

n!
= eλ2t − eλ1t = 2ert sinh(pt)

and similarly

+∞∑
n=0

(λn1λ2 − λn2λ1) · t
n

n!
= 2ert [p cosh(pt)− r sinh(pt)] .

Finally we have

eAt = ert
sinh(pt)

p
·A+ ert

[
cosh(pt)− r

p
sinh(pt)

]
· I, ∆ > 0. (6.5)

Now consider the case when ∆ = 0. Then w(λ) = (λ − r)2 and in order to
compute xn we di�erentiate both sides of (6.3)

nλn−1 = (λ− r)2Q′n(λ) + 2(λ− r)Qn(λ) + xn.

Putting λ = r to the above equation we �nd xn = λrn−1 and from (6.3) we
get yn = (1− n)rn. It is worth to mention that An = nrn−1A+ (1− n)rnI,
n > 1. We have

eAt = I +At
∞∑
n=1

(rt)n−1

(n− 1)!
+ I

[ ∞∑
n=1

(rt)n

n!
− rt

∞∑
n=1

(rt)n−1

(n− 1)!

]
= I +Atert + I[(ert − 1)− rtert]

and �nally
eAt = tert ·A+ (1− rt)ert · I, ∆ = 0. (6.6)
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Problem of multistage, strictly

positional games with delayed

information

Witold Rzymowski1, Tomasz Warowny2

Abstract

A di�erential game can be viewed as a certain limit of the appro-
priate sequence of discrete dynamic games. Proofs of the existence of
saddle points in di�erential games usually involve analogous facts con-
cerning discrete dynamical games [1], [2]. In majority of the articles
about di�erential games, authors assume that each player has complete
and up-to-date information about his own position and the position of
his opponent. In this paper we deal with discrete positional, dynamic,
games with a �xed duration and �nal pay-o� functional. We assumed
that each player receives information about the position of his oppo-
nent with a certain delay. Consequently, both players have to apply
mixed, positional strategies. A problem concerning the existence of
saddle points, if a special case of mixed, positional strategies is in-
volved, is presented in the document. Pursuit games with the delay of
information received by one player were investigated by L.A Petrosian
in Di�erential Games of Pursuit [3]. Other di�erential games, with
incomplete information, were considered by E. Dockner and R. Isaacs
[4], [5]. The special case of a pursuit game with almost absolutely
incomplete information was solved by M.I. Zelikin [6].

1. Pure Strategies

Game Description

For every set Z, a symbol 2Z denotes a family of all subsets of the set Z,
and, if Z 6= ∅, FinZ denotes a family of all non-empty and �nite subsets of

1Lublin University of Technology, Fundamental of Technology Faculty, Depart-
ment of Applied Mathematics, Nadbystrzycka 38D, 20-618 Lublin, Poland, e-mail:
w.rzymowski@pollub.pl

2Lublin University of Technology, Management Faculty, Department of Quantita-
tive Methods in Management, Nadbystrzycka 38D, 20-618 Lublin, Poland, e-mail:
t.warowny@pollub.pl
Keywords: Game theory, Multistage games, Local and global strategies.
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this set. For any non-empty sets A and B, AB means a set of all functions

f : A→ B. (1.1)

Symbols N and Z stand for sets of all natural and integer number respec-
tively. We assume

N0 = {0} ∪ N = {0, 1, 2, ...}, Rn+ =

n∏
k=1

[0,∞) (1.2)

and for all t ∈ N0

Zte = {s ∈ Z : s 6 t} (1.3)

Trajectories and sets of availability

Two players participate in a game: E � maximizer and P � minimizer.
Player E moves in a set X 6= ∅ and player P moves in a set Y 6= ∅. Game
dynamics is generated with a multifunction pair

F : X → 2FinX , G : Y → 2FinY (1.4)

At an instant t ∈ N0 the players E and P take positions x ∈ X and y ∈ Y
respectively. At the following instant t + 1 the player E can move to any
element of the set F (x) and the player P can move to any element of the
set G(y).

The initial position is set to (x0, y0) ∈ X × Y . A symbol X (x0) denotes
a set of all functions (sequences) ξ ∈ XN0 meeting the criterion:

ξ(t) ∈ F (ξ(t− 1)), t ∈ N. (1.5)

Similarly, a symbol Y(y0) denotes a set of all functions (sequences) η ∈ Y N0

meeting the criterion:

η(t) ∈ G(η(t− 1)), t ∈ N. (1.6)

The set X (x0) is called the set of admissible trajectories of the player E
and the set Y(y0) is called the set of admissible trajectories of the player P.
For any (ξ, η) ∈ X (x0)× Y(y0) and all τ ∈ Z we de�ne

ξτe(t) = ξ(t), ητe(t) = η(t), t ∈ (Z)τe (1.7)

and assume

Xτe(x0) = {ξτe : ξ ∈ X (x0)}, Yτe(y0) = {ητe : η ∈ Y(y0)}. (1.8)
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We establish a random initial position (x0, y0) ∈ X × Y . For all t ∈ Z
we de�ne:

Xt(x0) = {x0}, Yt(y0) = {y0}, if t 6 0, (1.9)

Xt(x0) = F (Xt−1(x0)), Tt(y0) = G(Yt−1(y0)), if t > 0, (1.10)

Xte(x0) =
⋃
s6t

Xt(x0), Yte(y0) =
⋃
s6y

Yt(y0). (1.11)

Delay of information

We presume that, at every instant t ∈ N0, each of the players E and P

knows the initial position (x0, y0) and their current position xt ∈ Xt(x0) and
yt ∈ Yt(y0) consecutively. Additionally, at the instant t, player E receives
the information about the position of the player P with a delay α, hence
they know the position yt−a ∈ Yt−α(y0) taken by P at t−α. Likewise, at the
instant t, player P receives the information about the position of the player
E with the delay β, hence they know the position xt−β ∈ Xt−β taken by E
at t − β. On the basis of these pieces of information both players choose
their next position simultaneously.

xt+1 ∈ F (x1) (player E),

yt+1 ∈ G(yt) (player P).
(1.12)

Strictly positional, pure strategies

Let us specify a random initial position (x0, y0) ∈ X × Y , delays α, β ∈ N0

and game duration N ∈ N. Every function f : XN−1e(x0)×YN−1e(y0)→ X
ful�lling a condition:

(x, y) ∈ XN−1e(x0)×YN−1e(y0) =⇒ f(x, y) ∈ F (x) (1.13)

is called a strictly positional, pure strategy of the player E. The set of all
such strategies is denoted SsppE−α(x0, y0). Every function g : XN−1e(x0) ×
YN−1e(y0)→ Y ful�lling a condition:

(x, y) ∈ XN−1e(x0)×YN−1e(y0) =⇒ g(x, y) ∈ G(y) (1.14)

is called a strictly positional, pure strategy of the player P. The set of all
such strategies is denoted SsppP−β(x0, y0)

Note 1.1. For any (f, g) ∈ SsppE−α(x0, y0) × SsppP−β(x0, y0), there exist exactly
one pair

(ξ(f,g), η(f,g)) ∈ XNe(x0)× YNe(y0) (1.15)
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meeting a condition

(ξ(f,g), η(f,g)) = (f(η(f,g)), g(ξ(f,g))) (1.16)

We say that the pair of trajectories (ξ(f,g), η(f,g)) is determined (generated)
by the pair of strategies (f, g).

Game

The following conditions are given: N ∈ N, the initial position (x0, y0)
and the function w : X × Y → R. For any pair of strategies (f, g) ∈
SsppE−α(x0, y0)× SsppP−β(x0, y0) we maintain

w(ϕ, υ) = w(ξ(f,g)(N), η(f,g))(N)). (1.17)

The functional de�ned as w : SsppE−α(x0, y0) × SsppP−β(x0, y0) → R is called
a �nal pay-o� functional. The arrangement

Gsppα,β(x0, y0, N,w) = (SsppE−α(x0, y0)× SsppP−β(x0, y0), N,w) (1.18)

is called a strictly positional, multistage game (N -stage game) with the
strictly positional, pure strategies, �nal pay-o� functional w, initial position
(x0, y0) and the delay of information � α for the player E and β for the
player P.

Note 1.2. Every game Gsppα,β(x0, y0, 1, w) is a matrix game.

Upper and lower value of a game

A strategy f ∈ SsppE−α(x0, y0) in the game Gsppα,β(x0, y0, N,w) provides a result
u to the player E if

wE(f)
def
= min

g∈SsppP−β(x0,y0)
w(f, g) > u. (1.19)

In such a case, we can write f � u. A number

V − = V −(SsppE−α(x0, y0), SsppP−β(x0, y0), N,w)

= max
f∈SsppE−α(x0,y0)

wE(f)

= max
f∈SsppE−α(x0,y0)

min
g∈SsppP−β(x0,y0)

w(f, g)

(1.20)

is called the lower value of the game Gsppα,β(x0, y0, N,w). The lower value V −

is the maximum result which may be obtained by the player E in a con-
sidered game. Since SsppE−α(x0, y0) is a �nite set, then there exists such
f∗ ∈ SsppE−α(x0, y0) meeting f∗ � V −.
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A strategy g ∈ SsppP−β(x0, y0) provides the player P the result v in the

game Gsppα,β(x0, y0, N,w) if

wP (g)
def
= max

f∈SsppE−α(x0,y0)
w(f, g) 6 v. (1.21)

Then, we can write g � v. A number

V + = V +(SsppE−α(x0, y0), SsppP−β(x0, y0), N,w)

= min
g∈SP−βspp(x0,y0)

wP (g)

= min
g∈SsppP−β(x0,y0)

max
f∈SsppE−α(x0,y0)

w(f, g)

(1.22)

is called the upper value of the game Gsppα,β(x0, y0, N,w). The upper value

V + is the minimum result which may be obtained by the player P in
a considered game. Since SsppP−β(x0, y0) is a �nite set, then there exist such

g∗ ∈ SsppP−β(x0, y0) meeting g∗ � Y +. Obviously, V − 6 V +.

Value of the game

If V − = V +, then the number

V = V (SsppE−α(x0, y0), SsppP−β(x0, y0), N,w) = V − = V + (1.23)

is called a value of the game Gsppα,β(x0, y0, N,w). As both strategy sets are
�nite

V − = V + ⇔ ∃(f∗, g∗) ∈ SsppE−α(x0, y0)× SsppP−β(x0, y0)
(
wE(f∗) = wP (g∗)

)
.

(1.24)

The saddle point (solution of the game)

Every pair (f∗, g∗) ∈ SsppE−α(x0, y0)× SsppP−β(x0, y0) meeting a condition

wE(f∗) = wP (g∗) (1.25)

is called an equilibrium point or a solution of the game Gsppα,β(x0, y0, N,w).

Note 1.3. The game Gsppα,β(x0, y0, N,w) has, in most cases, no solution.

Example 1.4. Let X = Y = {0, 1, 2}, N = 2 and F = G, where F : X →
2X , be de�ned by the equation

x 0 1 2

F (x) {0, 1} {0, 2} {1, 2}
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The pay-o� functional w : X × Y → R is de�ned using a table:

y

x

w(x, y) 0 1 2

0 4 1 2
1 1 1 3
2 0 3 0

For the initial position (x0, y0) = (0, 0) we get

X0(x0) = Y0(y0) = {0},
X1(x0) = Y1(y0) = {0, 1},
X2(x0) = Y2(y0) = {0, 1, 2},

XN−1|(x0) = YN−1|(x0) = {0, 1},
X2(x0) = Y2(y0) = {ζ1, ζ2, ζ3, ζ4}

(1.26)

where

ζ1 = (0, 0, 0), ζ2 = (0, 0, 1), ζ3 = (0, 1, 0), ζ4 = (0, 1, 2). (1.27)

Therefore, both players can move along four trajectories ζi, i = 1, 2, 3, 4 only.
We are going to determine sets of strategies SsppE−1, S

spp
P−0 for delays α = 1,

β = 0. Every strategy f ∈ SsppE−1 only depends on the �rst variable because
α = N − 1. As a result

SsppE−1 = {f1, f2, f3, f4} (1.28)

where

(0, y) (1, y)
f1 0 0
f2 0 2
f3 1 0
f4 1 2

The set SplpP−0 comprises 16 strategies:
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(0, 0) (1, 0) (0, 1) (1, 1)
g1 0 0 0 0
g2 0 0 0 2
g3 0 0 2 0
g4 0 0 2 2
g5 0 1 0 0
g6 0 1 0 2
g7 0 1 2 0
g8 0 1 2 2

(0, 0) (1, 0) (0, 1) (1, 1)
g9 1 0 0 0
g10 1 0 0 2
g11 1 0 2 0
g12 1 0 2 2
g13 1 1 0 0
g14 1 1 0 2
g15 1 1 2 0
g16 1 1 2 2

Notice that g12 � 2 � f1, thus the pair (f1, g12) is a saddle point of a con-
sidered game Gspp1,0 (x0, y0, 2, w). Indeed,

ξ(f1,gj) = ζ1 , j = 1, 2, 3, ..., 16 (1.29)

and
η(fk,g12) = ζ4 , k = 1, 2, 3, 4. (1.30)

2. Mixed global strategies

Consider a game

Gsppα,β(x0, y0, N,w) = (SsppE−α(x0, y0), SsppP−β(x0, y0), N,w) (2.1)

and assume that

SE = SsppE−α(x0, y0) = {f1, f2, ..., fm}, (2.2)

SP = SsppP−β(x0, y0) = {g1, g2, ..., gn}. (2.3)

The game Gsppα,β(x0, y0, N,w) is equivalent to a matrix game G(SE , SP ,M)
with sets of pure strategies SE , SP and a pay-o� matrix

M = [w(fj , gk)]j=1,2,...,m
k=1,2,...,n

(2.4)
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Further, we assume:

P =

p = (p1, p2, ..., pm) ∈ Rm+ :
m∑
j=1

pj = 1

 , (2.5)

Q =

{
q = (q1, q2, ..., qn) ∈ Rn+ :

n∑
k=1

qk = 1

}
(2.6)

and, for any (p, q) ∈ P ×Q we de�ne:

w(p, q) =

m∑
j−1

n∑
k=1

pjqkw(fi, gk). (2.7)

The matrix game G(P,Q,w) with mixed strategy sets P , Q and pay-o�
functional w has a saddle point (p∗, q∗) and a value V∗ = w(p∗, q∗) [7].

As far as the game Gsppα,β(x0, y0, N,w) is concerned, we presume:

SspgmE−α (x0.y0) = P, (2.8)

SspgmP−β (x0, y0) = Q, (2.9)

w(p, q) =
m∑
j=1

n∑
k=1

pjqkw(ξ(fi,gk), ηfi,gk)). (2.10)

Therefore, we obtain the game

Gspgmα,β (x0, y0, N,w) = (SspgmE−α (x0, y0)× SspgmP−β (x0.y0), N,w) (2.11)

with a saddle point (p∗, q∗) and a value V∗ = w(p∗, q∗).
In case the initial game Gsppα,β(x0.y0.N,w) is played multiple times, strate-

gies p ∈ SspmgE−α (x0, y0) and q ∈ SspmgP−β (x0, y0) can be interpreted as the fre-
quency of use of the pure strategies.

Example 2.1. A pair (f1, g12) is a saddle point of a game Gspp1,0 (x0, y0, 2, w)
from the example 1.4. Thus, the pair (p∗, q∗) where

p∗ = (1, 0, 0, 0), q∗ = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0) (2.12)

is a saddle point of the game Gspp1,0 (x0, y0, 2, w). Clearly, the values of the
games Gspp and Gspmg are the same and equal to 2.
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3. Mixed local strategies

There exist another, more natural, way to derive mixed strategies. Once
again, consider the game Gsppα,β(x0, y0, N,w). Each pair

(x, y) ∈ XN−1e(x0)×YN−1e(y0) (3.1)

is assigned a probability distribution DE(x, y) and DP (x, y). Assume that

F (x) = {x1, x2, ..., xm}, G(y) = {y1, y2, ..., yn}, (3.2)

DE(x, y) =

p = (p1, p2, ..., pm) ∈ Rm+ :

m∑
j=1

pj = 1

 , (3.3)

DP (x, y) =

{
q = (q1, q2, ..., qn) ∈ Rn+ :

n∑
k=1

qk = 1

}
. (3.4)

The set SspmlE−α(x0, y0) comprising all functions:

f : XN−1e(x0)×YN−1e(y0)→
⋃

(x,y)∈XN−1e(x0)×YN−1e(y0)

DE(x, y) (3.5)

meeting the criterion:

(x, y) ∈ XN−1e(x0)×YN−1e(y0) =⇒ f(x, y) ∈ DE(x, y) (3.6)

is the set of the strictly positional, mixed, local strategies of the player E.
The set SspmlP−β (x0, y0) comprising all functions:

g : XN−1e(x0)×YN−1e(y0)→
⋃

(x,y)∈XN−1e(x0)×YN−1e(y0)

DP (x, y) (3.7)

meeting the criterion

(x, y) ∈ XN−1e(x0)×YN−1e(y0) =⇒ g(x, y) ∈ DP (x, y) (3.8)

is the set of the strictly positional, mixed, local strategies of the player P.
The interpretation of the operation of the strategy f ∈ SspmlE−α(x0, y0) is

as follows: Suppose that, at the instant t ∈ {0, 1, ..., N − 1}, the player E is
located at the point x, and, at the instant t − α, the player P was located
at the point y. Assume that

F (x) = {x1, x2, ..., xm}, f(x, y) = (p1, p2, ..., pm). (3.9)
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At the instant t+1 the player E will be located at the point xj with a prob-

ability pj . The interpretation of how the strategy g ∈ SspmlP−β (x0, y0) works is
similar.

Each pair of strategies (f, g) ∈ SspmlE−α(x0, y0) × SspmlP−β (x0, y0) generated
a distribution

f⊗g : XNe(x0)×YNe(y0)→ [0, 1],
∑

(ξ,η)∈XNe(x0)×YNe(y0)

(f⊗g)(ξ,η) = 1 (3.10)

in a set XNe(x0) × YNe(y0). Each such a pair of strategies is assigned an
expected pay-o� amount

w(f, g) =
∑

(ξ,η)∈XNe(x0)×YNe(y0)

(f ⊗ g)(ξ,η)w(ξ(N), η(N)). (3.11)

leading to the gameGspmlα,β (x0, y0, N,w) = (SspmlE−α(x0, y0)×SspmlP−β (x0, y0), N,w).

Note 3.1. Games

Gspmlα,β (x0, y0, N,w), Gspmlα,β (x0, y0, N,w) (3.12)

are not equivalent. The existence of a saddle point in the game

Gspmlα,β (x0, y0, N,w)

is an open problem. The following example is a sign of this statement.

Example 3.2. In a game Gspp1,0 (x0, y0, N,w) from the example 1.4, we use
a strictly positional, mixed, local strategy. In the other words, we consider
a game Gspml1,0 (x0, y0, 2, w).

Local distribution of the player E is de�ned as follows: we choose random

p = (p1, p2) ∈ [0, 1]× [0, 1] (3.13)

and assume:

fp(0, 0) = fp(0, 1) :
0 1

p1 1− p1
, fp(1, 0) = fp(1, 1) :

0 2

p2 1− p2

(3.14)
Local distribution of the player P is de�ned in a following manner: we

choose random

q = (q1, q2, q3, q4) ∈ [0, 1]× [0, 1]× [0, 1]× [0, 1] (3.15)
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and assume:

gq(0, 0) :
0 1

q1 1− q1
, gq(1, 0) :

0 1

q2 1− q2
,

gq(0, 1) :
0 2

q3 1− q3
, gq(1, 1) :

0 2

q4 1− q4
.

(3.16)

A distribution fp ⊗ gq inside the set {ξ1, ξ2, ξ3, ξ4} × {η1, η2, η3, η4} is
given by

fp ⊗ gq η1 η2

ξ1 p2
1q

2
1 p2

1q1(1− q1)

ξ2 p1(1− p1)q2
1 p1(1− p1)q1(1− q1)

ξ3 (1− p1)p2q1q2 (1− p1)p2q1(1− q2)

ξ4 (1− p1)(1− p2)q1q2 (1− p1)(1− p2)q1(1− q2)

fp ⊗ gq η3 η4

ξ1 p2
1(1− q1)q3 p2

q(1− q1)(1− q3)

ξ2 p1(1− p1)(1− q1)q3 p1(1− p1)(1− q1)(1− q3)

ξ3 (1− p1)p2(1− q1)q4 (1− p1)p2(1− q1)(1− q4)

ξ4 (1− p1)(1− p2)(1− q1)q4 (1− p1)(1− p2)(1− q1)(1− q4)

A pay-o� functional is expressed by the formula:

w(p, q) = w(p1, p2, q1, q2, q3) = w(fp, gq)

= p2
1(4q2

1 + q1(1− q1) + 4(1− q1)q3 + 2(1− q1)(1− q3))

+ p1(1− p1)(q2
1 + q1(1− q1) + (1− q1)q3 + 3(1− q1)(1− q3))

+ (1− p1)p2(4q1q2 + q1(1− q2) + 4(1− q1)q4 + 2(1− q1)(1− q4))

+ (1− p1)(1− p2)(0 + 3q1(1− q2) + 0 + 0).

(3.17)

Regarding a saddle point, it is easy to prove that a function w(·, q) does
not have to be concave and a function w(p, ·) does not have to be convex.
Therefore, the existence of a saddle point in the considered game is not
a result of a standard minimax theorems. Assume that

p = (p1, 1), q = (q1, 0, 0, 0), (3.18)

then

w(p, q) = p2
1(3q2

1 − q1 + 2) + p1(1− p1)(3− 2q1) + (1− p1)(2− q1)

= p2
1(3q2

1 + q1 − 1) + p(1− q1)− q1 + 2.
(3.19)
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Note that:

3q2
1 + q1 − 1 < 0⇔ q1 ∈

[
0,

√
13− 1

6

)
(3.20)

We set q0 =
√

13−1
6 ≈ 0.434258.

If q1 ∈ [q0, 1], then

max
p1∈[0,1]

w(p1, q1) = max
p1∈{0,1}

w(p1, q1) = max{2− q1, 3q
2
1 − q1 + 2}

= 3q2
1 − q1 + 2

(3.21)

and

min
q1∈[q0,1]

w(p1, q1) = min
q1∈[q0,1]

(3q2
1 − q1 + 2) = 3q2

0 − q0 + 2

=
10−

√
13

3
≈ 2.131483.

(3.22)

Note that min
q1∈[0,1]

(3q2
q − q1 + 2) = 2 for q1 = 1

3

If q1 ∈ [0, 1
3) then 0 < q1−1

2(3q21−q1−1
< 1, hence:

max
p1∈[0,1]

w(p1, q1) = w

(
q1 − 1

2(3q2
1 + q1 − 1)

, q1

)
=

12q3
1 − 19q2

1 − 14q1 + 9

4(1− q1 − 3q2
1)

= h(q1)

(3.23)

We have

d

dq1
h(q1) =

−36q4
1 − 24q3

1 + 13q2
1 + 16q1 − 5

4(1− q1 − 3q2
1)2

. (3.24)

The only root of the polynomial −36q4
1 − 24q3

1 + 13q2
1 + 16q1 − 5 within the

range [0, 1
3) is q∗1 ≈ 0.297 747 3. Therefore,

min
q1∈[0, 1

3
)
w(p1, q1) = h(q∗1) ≈ 1.984 838 (3.25)

If q1 ∈
[

1
3 , q0

)
then:

q1 − 1

2(3q2
1 + q1 − 1)

> 1, (3.26)

thus
max
p1∈[0,1]

w(p1, q1) = w(1, q1) = 3q2
1 − q1 + 2 (3.27)



Problem of multistage, strictly positional games 126

and

min
q1∈[ 1

3
,q0]

w(p1, q1) = 2 , for q1 =
1

3
(3.28)

Finally, the upper value of the game is given by

V +(q∗1) ≈ 1.984 838 (3.29)

and
q∗1 ≈ 0.297 747 3. (3.30)

The lower value of the game can be determined in a following way. Sup-
pose that

w(p1, q1) = 3p2
1q

2
1 + (p2

1 − p1 − 1)q1 − p2
1 + p1 + 2 (3.31)

We may be notice that

p2
1 − p1 − 1 < 0 when p1 ∈ [0, 1] (3.32)

and

0 <
1− p1 − p2

1

6p2
1

< 1⇔ p1 ∈

(√
29 + 1

14
, 1

]
. (3.33)

Suppose p0 =
√

29+1
14 ≈ 0.456 083 1. If p1 ∈ [0, p0], then

min
q1∈[0,1]

w(p1, q1) = w(p1, 1) = 3p2
1 + 1. (3.34)

and
max

p1∈[0,p0]
(3p2

1 + 1) = 3p2
0 + 1 ≈ 1.624 035 66 (3.35)

If p1 ∈ (p0, 1], then:

min
q1∈[0,1]

w(p1, q1) = w

(
p1,

1 + p1 − p2
1

6p2
1

)
=
−13p4

1 + 14p3
1 + 25p2

1 − 2p1 − 1

12p2
1

= r(p1).

(3.36)

We have
d

dp1
r(p1) =

1 + p1 + 7p3
1 − 13p4

1

6p3
1

(3.37)

The only root of the polynomial 1 + p1 + 7p3
1− 13p4

1 within the range (p0, 1]
is p∗1 ≈ 0.804 796 and g(p∗1) ≈ 1.984 838. Finally, the lower value of the game
is given by:

V −(p∗1) ≈ 1.984 838 (3.38)
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and
p∗1 ≈ 0.804 796 (3.39)

Notice (example 2.1) that this time games

Gspp1,0 (x0, y0, 2, w)

and
Gspml1,0 (x0, y0, 2, w)

have distinct saddle points and distinct values.
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Identi�cation of periodic components

Witold Rzymowski1, Agnieszka Surowiec2

Abstract

The econometric model of life expectancy for men in Poland in
the age from 1 to 100 is considered. The purpose of the investigation
is identi�cation of the periodic components in the sequences of the
residuals of this model. In the process of identi�cations the following
methods were used: the periodogram, the classical harmonic analysis
and the modi�ed classical harmonic analysis. The results of these
methods are compared with the results of the deterministic models
with the predetermined periodic components.

1. Introduction

Life expectancy is the average number of years that a group of individuals
of age t is likely to live. In this work men are chosen for analysis.

Knowledge of this statistical measure of how long a person at a given age
may live is very important. Thanks to the knowledge of this measure you
can get a synthetic picture of the developments in the process of extinction
of the population of a certain age. This knowledge may be used for example
by policy makers. They usually consider life expectancy while deciding the
retirement plan, e.g. retirement age, minimal number of years spent working,
minimal pension etc. Therefore, life expectancy is one of the factors in
determining the standard of living. Knowledge of life expectancy is necessary
for insurance companies to determine the value of a life insurance policy.
Disparities in life expectancy are often cited as demonstrating the need for
better medical care or increased social support [9].

The present work is an attempt to �nd the econometric model with
periodic components of life expectancy Pt for men in Poland in the age
from t = 1, ..., 100 and it presents the main problems connected with the
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2Department of Quantitative Methods in Management, Faculty of Management,Lublin
University of Technology, Nadbystrzycka 38D, 20-618 Lublin, Poland, e-mail:
a.surowiec@pollub.pl
Keywords: Life expectancy, harmonic analysis, Fibonacci numbers, periodogram.
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identi�cation of these components. The analyzed time interval includes the
years 2000-2013. The data came from [8]. The methodology of calculation
these data are presented in [1], [5]. Life expectancy at age zero (t = 0) is
not considered in the paper. The model parameters are estimated according
to the Least Square Method. (LSM).

Because the correctness of the econometric model is usually veri�ed by
the means of relative uncertainty of prognoses the aim of the present work
was to �nd the models with the least relative errors. Models with peri-
odic components usually can have small relative errors. Within the scope
of investigation in the identi�cation of periodic components the following
times series methods are used: periodogram [2], [7], [4]� classical harmonic
analysis [6] and modi�ed classical harmonic analysis. Also, to create the pe-
riodic components the numbers that are given in the work [6] and Fibonacci
numbers are used.

The starting point for the identi�cation of periodic component in the
model of life expectancy for men in Poland Pt in the age t = 1, ..., 100 in
years 2000− 2013 is the sequence of the residuals in the following form:

Rt = Pt − f(t), (1.1)

where f(t), t = 1, ..., 100 is polynomial of degree p.
Identi�cation of the periodic components in the model Pt is the deter-

mination of such angles ωj that maximal relative error:

δtmax = max
t
|δt|, (1.2)

of life expectancy model

Pt = f(t) +

q∑
j=1

(αj cosωjt+ βj sinωjt) + εt. (1.3)

was the least. Relative error δt in the equation is given by the following
formula:

δt =
Pt − P̂t
Pt

100% (1.4)

where

P̂t = f(t) +

q∑
j=1

(αj cosωjt+ βj sinωjt) . (1.5)

The determination of degree p of polynomial f(t) is the �rst problem.
Unfortunately, the relative errors for all analyzed years for the polynomial
model of degree p = 1 established on the basis of time series methods [2] are
very big and the relative errors of parameters estimation in these models are
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Table 1: Maximal relative errors and maximal relative error parameters
estimation of models (1), (2) and (3) of life expectancy for men for years
2000-2013

model(1) model(2) model(3)

years a b a b a b

2000 454, 527 1, 885 25, 798 23, 924 19, 191 0, 439

2001 431, 139 1, 866 24, 963 23, 020 18, 293 0, 452

2002 450, 624 1, 831 23, 486 15, 827 14, 409 0, 444

2003 484, 189 1, 823 22, 548 12, 280 11, 754 0, 420

2004 463, 461 1, 806 19, 648 18, 047 12, 758 0, 363

2005 459, 893 1, 792 19, 003 20, 957 13, 044 0, 355

2006 443, 540 1, 784 14, 861 20, 799 9, 532 0, 329

2007 438, 416 1, 780 14, 348 21, 663 9, 306 0, 326

2008 443, 061 1, 752 12, 853 15, 700 6, 369 0, 327

2009 460, 842 1, 741 13, 677 11, 613 4, 005 0, 389

2010 430, 176 1, 722 13, 396 11, 108 3, 724 0, 407

2011 422, 406 1, 691 11, 682 9, 921 2, 867 0, 411

2012 419, 002 1, 689 12, 403 8, 457 3, 502 0, 463

2013 413, 610 1, 678 13, 825 7, 387 4, 142 0, 534

greater than 10%. The polynomial of degree p = 2 is not suitable either.
The following polynomial model, see [6]:

f(t) = γ0 + γ1t+ γ3t
3 (1.6)

comes in handy.
Only the results of testing the polynomials models for p = 1 (1), p = 3

(2) and the results of testing model (1.6) (3) of the life expectancy for years
2000-2013 are shown in Table 1.

In Table 1 we present maximal relative errors δtmax (kolumn a) for models
(1), (2) and (3) and maximal relative errors relSγmax(kolumn b) for these
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models. We de�ne relSγmax by the following formula:

relSγmax = max
i

relSγi , (1.7)

where relSγi is the relative estimation error of parameter i.
In model 1 the parameter γ1 has the biggest relative estimation error, in

model (2) γ2 and in model (3) γ3.

2. Periodogram

Lets construct the periodogram [2] for the times series Rt. For even number
of observation N = 100 (N = 2q, q = 50), the following function:

I(fj) =

{ N
2 (a2

j + b2j ) for j = 1, 2, ..., q − 1,

Na2
j for j = q.

(2.1)

is the periodogram, where

aj =
2

N

N∑
t=1

Rt cosωjt, j = 1, 2, . . . , q − 1, (2.2)

bj =
2

N

N∑
t=1

Rt sinωjt, j = 1, 2, . . . , q − 1, (2.3)

aq =
1

N

N∑
t=1

(−1)tRt, (2.4)

We determine the maxima of periodogram. These maxima correspond
to such i, that the angles ωi are conected with determined i by the following
equation:

ωi = 2π
i

N
. (2.5)

3. Harmonic analysis and modi�ed harmonic

analysis

In harmonic analysis for times series of residuals Rt we determine the mean
value R:

R =
1

N

N∑
t=1

Rt (3.1)



Identi�cation of periodic components 132

and standard deviation σ(Rt):

σ(Rt) =

√√√√ 1

N − 1

N∑
t=1

(Rt −Rt)2. (3.2)

We set the following critical value connected with the standard deviation:

κ∗ = 3

√
N

2
σ(Rt). (3.3)

for the following coe�cients

κc(k) =

N∑
t=1

Rt cos(
2kπ

n
t). (3.4)

κc(k) =
N∑
t=1

Rt sin(
2kπ

N
t). (3.5)

where k ∈ [0, N2 ].
In classical harmonic analysis we determine the number q of local ex-

trema of functions κc and κs. The absolute value of these extrema must be
greater than critical value κ∗. We look for such ki, where i = 1, 2, ..., q that
correspond to these extrema.

Similarly, we determine the number q of local extrema of functions κc
and κs that in the same way are connected with critical value κ∗ in modi�ed
harmonic analysis but in this method we look for such ki, where i = 1, 2, ..., q,
that correspond to zeroes of a function κs for extrema of function κc and
that correspond to zeroes of a function κc for extrema of function κs. The
angles ωi are connected with determined ki by the following equation:

ωi =
2kiπ

N
. (3.6)

4. Models with predetermined periodic

components

4.1. Polynomial model with 4 angles

In this section we test the model of life expectancy Pt for men in the age
from t = 1, ..., 100 in Poland introduced in [6] with only 4 angles in the
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following form:

Pt = γ0 + γ1t+ γ3t
3 +

+α1 cos(
π

42
t) + β1 sin(

π

42
t) +

+α2 cos(
π

35
t) + β2 sin(

π

35
t) +

+β3 sin(
π

28
t) +

+α4 cos(
π

21
t) + β4 sin(

π

21
t) + εt.

(4.1)

where f(t) is chosen polynomial given by equation (1.6).

4.2. Models with Fibonacci numbers

We can obtain the model with small relative errors by using only the periodic
components (without the polynomial).

In this section we de�ne the model of life expectancy for men in Poland
by Fibonacci numbers. Lets ωj = 2π

Fj+7
for j = 1, 2, ...7 where Fj+7 is

(j + 7)th Fibonacci number. Therefore we take the following Fibonacci
numbers: F8 = 21, F9 = 34, F10 = 55, F11 = 89, F12 = 144, F13 = 233,
F14 = 377.

We consider only 7 angles because of simplicity of econometric model.
Therefore the analyzed model has the following form:

Pt =

7∑
j=1

(αj cosωjt+ βj sinωjt) + εt. (4.2)

5. Results

The results presented in this work have been obtained by means of these
methods described in chapters above. These methods are to determine which
angles (periods) should enter the �nal models. To estimate the parameters
of constructed models the LSM is used. The e�ectiveness of these models is
tested by the relative error.

5.1. Results from the periodogram

The periodogram for all analyzed years 2000-2013 has the same shape. Max-
imum of all periodogram corresponds to i = 2. It changes from 0, 77 in year
2008 to 2.10 in year 2001. A sample periodogram is presented in Figure 1
for year 2013, for i = 1, 2, ..., 10.
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Because of the following models:
model (1):

Pt = γ0 + γ1t+ γ3t
3 + α2 cos(

2π

50
t) + β2 sin(

2π

50
t) + εt,

model (1a):

Pt = γ0 + γ1t+ γ3t
3 + α2 cos(

2π

50
t) + εt,

model (1b):

Pt = γ0 + γ1t+ γ3t
3 + β2 sin(

2π

50
t) + εt

are not very good (see Figure 2 and 3) we analyze the following models as
well:
model (2):

Pt = γ0 + γ1t+ γ3t
3 +

+α1 cos(
π

50
t) + β1 sin(

π

50
t) +

+α2 cos(
2π

50
t) + β2 sin(

2π

50
t) +

+α3 cos(
3π

50
t) + β3 sin(

3π

50
t) + εt,

model (3):

Pt = γ0 + γ1t+ γ3t
3 +

+α1 cos(
π

50
t) + β1 sin(

π

50
t) +

+α3 cos(
3π

50
t) + β3 sin(

3π

50
t) + εt,

Figure 1: Periodogram of life expectancy for year 2013 for i = 1, 2, ..., 10.
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model (4):

Pt = γ0 + γ1t+ γ3t
3 + α1 cos(

π

50
t) + β1 sin(

π

50
t) + εt.

Figure 2: Maximal relative errors for models (1), (1a), (1b), (2), (3) and (4)
in years 2000-2013.

Figure 3: The map of the relative errors of parameters estimation for models
(1), (1a), (1b), (2) and (3) in years 2000-2013. Black square with integer
value of error is for the parameters errors greater than 10%.

The maximal relative errors and all relative errors of parameters estima-
tion of model (4) of Pt are less than 10%. The relative errors of parameters
estimation γi, α1 and β1 in all analyzed models of Pt are less than 10% too.
To this end we do not present them in Figure 3.
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5.2. Results from harmonic analysis and from the modi�ed
harmonic analysis

Firstly we analyze the graphs of functions given by equation (3.4) and (3.5).
The sample of these graphs are presented in Figure 4. For years 2000−2005
and 2012 we can have 4 angles (see Figure 4 on left), for years 2006− 2011
and 2013 we can have only 3 angles (see Figure 4 on right). Taking into
account the results presented in Figure 4 we can obtain di�erent values of ki
in methods: the classical harmonic analysis and modi�ed harmonic analysis.
These values of ki in equation (3.6) for models of life expectancy for men in
years 2000-2013 are presented in Table 2.

Figure 4: Graph of functions Cosinus and Sinus for 2000 and 2006 year

Therefore in this section we test 4 following models:

• classical4 is the model with 4 angles obtained in classical harmonic
analysis.

• classical3 is the model with 3 angles obtained in classical harmonic
analysis.

• modified4 is the model with 4 angles obtained in modi�ed harmonic
analysis.

• modified3 is the model with 3 angles obtained in modi�ed harmonic
analysis.

The results of maximal relative errors for models with 3 and 4 angles in
classical and modi�ed analysis in years 2000-2013 are presented in Figure
5). The results for 4 angles in years 2000 − 2005 are nearly the same.
In modi�ed harmonic analysis the maximal relative errors are less than in
classical harmonic analysis in all years.

The maximal relative errors for the models with 4 angles are less then the
maximal relative errors for the corresponding models with 3 angles see Figure
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Table 2: Values of ki in equation (3.6) for the classical harmonic analysis
and for the modi�ed harmonic analysis for models of life expectancy for men
in years 2000-2013

years classical method modi�ed method

i 1 2 3 4 1 2 3 4

2000 1.774 1.365 2.151 3.241 1.756 1.186 2.281 3.247

2001 1.777 1.365 2.157 3.228 1.761 1.184 2.301 3.232

2002 1.731 1.299 2.131 3.169 1.715 1.102 2.324 3.159

2003 1.691 1.252 2.102 3.1 1.681 1.055 2.399 3.102

2004 1.777 1.34 2.188 3.091 1.771 1.144 2.542 3.06

2005 1.805 1.372 2.213 3.098 1.798 1.181 2.57 3.048

2006 1.86 1.396 2.344 − 1.86 1.195 2.873 −

2007 1.862 1.401 2.338 − 1.859 1.202 2.853 −

2008 1.811 1.313 2.612 − 1.81 1.103 2.794 −

2009 1.719 1.238 2.366 − 1.721 1.038 2.727 −

2010 1.708 1.235 2.252 − 1.708 1.035 2.731 −

2011 1.675 1.206 2.305 − 1.68 1.011 2.698 −

2012 1.63 1.179 2.139 2.593 1.638 0.99 2.735 −

2013 1.6 1.161 2.058 − 1.603 0.975 2.733 −

5. Nevertheless the relative errors of almost all parameters estimation for
the model with 4 angles are signi�cantly greater than 10% (see Figures 6).
Both models (obtained in classical and modi�ed harmonic analysis) with 3
angles work worse in years 2000−2005 than in years 2006−2013 (see Figure
5 and 7).

5.3. Results for polynomial model with 4 predetermined
angles

In this section the results for deterministic model with predetermined angles
(see equation (4.1) are presented. The Figure 8 presents maximal relative
errors for this model. The values of this model in all analyzed years does
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Figure 5: Maximal relative errors for models with 3 and 4 angles in classical
and modi�ed analysis in years 2000-2013.

Figure 6: The map of the relative errors of parameters estimation for models
with 4 angles in years 2000-2013. Black square with integer value of error is
for the parameters errors greater than 10%.

Figure 7: The map of the relative errors of parameters estimation for models
with 3 angles in years 2000-2013. Black square with integer value of error is
for the parameters errors greater than 10%.
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Figure 8: Relative errors for models of the life expectancy with 4 predeter-
mined angles in years 2000-2013.

not exceed 1% but the relative errors of the parameters estimation for this
model do not exceed 10% for only year 2002 (see Figure 9).

Figure 9: The map of the relative errors of parameters estimation for models
with 4 predetermined angles in years 2000-2013. Black square with integer
value of error is for the parameters errors greater than 10%.

5.4. Results for models with Fibonacci numbers

In this section 3 models with Fibonacci numbers are analyzed. In the model
(1) the following Fibonacci numbers are used: F9 − F13, in the model (2)
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the same Fibonacci numbers are used like in the model 1 but the component
cos(2π

F9
) is absent. In the model (3) the following Fibonacci numbers are

used: F8 − F14. The maximal relative errors of these models are presented
in Figure 10 and the map of relative errors of parameter estimation are
presented in Figure 11. The maximal relative errors of the model with 7
Fibonacci numbers are less than 0.5% see (Figure 10). This model is very
stable in all analyzed period 2000 − 2013 even though the relative errors
of almost all parameters estimation for this model are signi�cantly greater
than 10% (see Figures 11. The model (1) are best in the period 2000−2005
than the model (2) and the model (2) are best in the period 2006 − 2013
than the model (1).

Figure 10: Relative errors of models of the life expectancy with Fibonacci
numbers in years 2000-2013.

Figure 11: The map of the relative errors of parameters estimation in models
with Fibonacci numbers in years 2000-2013. Black square with integer value
of error is for the parameters errors greater than 10%.
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Conclusion

Because of �Econometric model building is an art, as an art is to design

a building� [3] we tested many di�erent methods of identi�cation of the pe-
riodic components in the sequences of the residuals of the life expectancy
model for men in years 2000-2013. The methods described in section (2)
and (3): the periodogram, the classical harmonic analysis and the modi�ed
harmonic analysis are based on times series theory [2], [7]. These models are
probabilistic models. The models described in section (4) are the determinis-
tic models that are not substantiated any theory. Nevertheless, the maximal
relative errors of these deterministic models are signi�cantly less than the
maximal relative errors of probabilistic models. The models obtained by
means the periodogram are the worst (see Figure 2). The most accurate
model is the model with 7 Fibonacci numbers even though the relative errors
of almost all parameters estimation for this model are signi�cantly greater
than 10% (see Figures 11). The maximal relative errors for model with
7 Fibonacci number are less than 0.5%. Furthermore, this model is stable
in all analyzed years (see Figure 10). The maximal relative errors for the
probabilistic models obtained in classical and modi�ed harmonic analysis
are less than 0.5% as well, but these models exist only in 2000− 2005 years
(see Figure 5). The relative errors of almost all parameters estimation for
this model are signi�cantly greater than 10% (see Figures 6) as well.
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