

1. WSTEP

1.1. Przedmiot normy. Przedmiotem normy są szczegółowe warunki i sposób wykonywania pomiarów sztywnosci i wyznaczania wskazników sztywności statycznej wiertarek stojakowych.

1.2. Określenia

1.2.1. Wskaźnik sztywnosci statycznej wiertarki stojakowed - wartośc ilorazu przyrostu siły obciążającej wrzeciono działającej wzdłuż jego osi i przyrostu przemieszczenia względnego wrzeciennika i stołu wywołanego tym obciążeniem.
1.2.2. Wskaźnik sztywności statycznej określonego zespozu wiertarki stojakowei - wartość ilorazu przyroştu siły obciężającej wrzeciono działającej wzdłuż jego osi i przyrostu przemieszczenia zespołu wywołanego tym obciążeniem.

1.3. Oznaczenia

$j_{w k}$-Wskaźnik sztywności statycznej wiertarki stojakowej, $N / \mu m$ ($k G / \mu m)$,
$j_{w x}$ - wskaźnik sztywności wrzeciennika w kierunku x układu obrabiarki, $\mathrm{N} / \mu \mathrm{m}$ (kG/ رm),
$j_{w z}$ - wskaźnik sztywności wrzeciennika w kierunku z układu obrabiarki, N/ $\mu m(k G / \mu m)$,
$j_{k z}$ - wskaźnik sztywności stojaka wiertarki w kierunku z układu obrabiarki, $N / \mu m$ (kG/ (m),
$j_{s x}$ - wskaźnik sztywności stołu wiertarki W kierunku x układu obrabiarki, $N /$ um (kG/ $\mu \mathrm{m}$) ,
P - największa siła osiowa dopuszczalna według założeń konstruktora, N (kG),
$P_{\text {max }}$ - największa siła obciążająca w badaniach sztywności statycznej, N (kG),
ΔP - przyrost obciązenia, odpowiadający stopniowi siły obciążającej, N (kG),
K - przyjęta ilość stopni siły obciążającej
$f_{\text {max }}$ - przemieszczenia badanego zespółu pod działaniem maksymalnej siły obciążającej, $\mu \mathrm{m}$,
Δf - przyrost przemieszczenia, odpowiadający przyrostowi siły obciążającej, $\mu \mathrm{m}$,
$\Delta f_{w k}$ - przyrost przemieszczenia względnego wrzeciennika i stołu, w kierunku x układu obrabiarki, $\mu \mathrm{m}$,
$\Delta f_{w x}$ - przyrost przemieszczenia wrzeciennika w kierunku x układu obrabiarki, μm,
$\Delta f_{w z}$ - przyrost przemieszczenia wrzeciennika w kierunku z układu obrabiarki, μm,
$\Delta f_{k z}$ - przyrost przemieszczenia stojaka w kierunku z układu obrabiarki, um,
$\Delta f_{s x}$ - przyrost przemieszczenia stołu w kierunku x układu obrabiarki, μm.

1.4. Normy zwigzane

PN-72/M-02499 Nakiełki wewnętrzne 60°
PN-70/M-55012 Obrabiarki i narzędzia do obróbki
skrawaniem. Chwyty i gniazda ze stożkiem metrycznym i Morse' a
BN-73/1522-01 Obrabiarki do metali. Ogólne warunki pomiarów sztywności statycznej

2. ZASADY WYKONYWANIA POMIAROW

2.1. Zakres badań, Badaniom sztywności statycznej podlegaja zespoły: wrzeciennika, stołu i stojaka wiertarki.
2.2. Obciażenie zespozów. Badane zespoły obrabiarki obciąża się siłą osiową poprzez specjalny trzpień, skierowaną pod kątem 180° do kierunku posuwu roboczego narzędzia i leżącą wosi obrotu wrzeciona (rys. 1). Wpływ momentu skręcającego jest pomijany. Siła obcį̨żająca powinna być wywierana między wrzecionem a stołem wiertarkí.
2.3. Kierunki pomiaróm przemieszczeń. Przemieszczehia zespołów wrzeciennika i stołu mierzy się w kierunku działania siły obciążającej i w kierunku poziomym w płaszczyźnie równoległej do płaszczyzny przechodzącej przez oś wrzeciona i oś stojaka (rys. 1). W kierunku poziomym mierzy się także przemieszczenia stojaka.
(Dz. Norm. i Miar nr 20/1974 poz. 65.)

Za dodatnie zwroty przemieszozeń prayjmuje sie odpowiednio zwrot działania sily obciążającej oraz w kierunku poziomym zwrot od wrzeciona ku prowadnicom.
2.4. Bazy pomiarowe, Bazą pomiarowez do przemieszozen zespolu wrzeciennika są prowadnice stojaka oraz stol wiertarki. Baza pomiarowa do pomiaru przemieszczen stolu są prowadnice stolu wiertarki. Przemieszozenia stojaka mierzy sie z baz niezależnyoh.

3. OPRZYRZADOWANIE POMIAROWE

3.1. Urzadzenia obciażajace, Obciążenie badanego zespołu wywiera się za pomoca urządzeń 0 dowolnef konstrukcji, umożliwiających obciązenie siła P_{x}, działająea w kierunku zgodnym z podanym w 2.2, przyłozona do powierzchni specjalnego trzpienia mocowanego w gnieździe wrzeciona. Urządzenia obciązajq̨ce powinny spezniać wymagania określone w BN-73/1522-01.
3.2. Przyrzady do pomiaru przemieszczeń 1 ich uchwyty powinny spelniac wymagania okreslone w BN-73/1522-01.
3.3. Trzpienie, Zespoly należy obciązad poprzez specjalny trzpień mocowany w gnieździe wrzeciona. Wymiary ozésci roboczej trzpienia podano na rys. 2. Część uchwytowa powinna zapewnić bezpośrednie osadzenie trzpienia w gniezdzie wrzeciona. Hiedopuszczalne jest stosowanie tulei redukcyjnych. Pozostałe wymagania wg BN-73/1522-01.

4. PRZYGOTOWANIE OBRABIARKI DO BADAN
4.1. Wymagania ogólne, Wiertarika poddawana pomiarom sztywności powinna spełniać wymagania BN-73/ 1522-01.
4.2. Położenie zespozów obrabiarki w czasie badań Każdorazowo przed pomiarami wazystkie przesuwane zespoly obrabiarki (stól roboczy i wrzeciennik) ustawia się w położeniu pomiaru, nadająo im ruch postępowy o zwrocie przeciwnym do zwrotu działania obciązenia. Do wykonania pomiaru nalezy:

- wrzeciennik 1 stóz ustawic na wysokośc $2 / 3$ maksymalnego przesuwu od dolnego pozozenia,
- tuleję wrzeciona należy wysunąć z korpusu wrzeciennika na długosé równą srednicy zewnętrznej tulei.

Zamocowanie badanych zespołów, a więo wrzeciennika na prowadnicach stołu roboczego, należy wkonywac bez stosowania dodatkowych przedłúaczy do kluczy i dźwigni, jeżeli instrukcje obsługi nie przewiduje ich zastosowania. W przypadku braku moz liwosci spełnienia powyższych warunkow, wszystkie wprowadzone zmiany należy podac w protokole pomiarowym.

5. PRZEPROWADZANIE BADAN

5.1. Określenie wielkości najwiekszego obciezenia. Wielkosć największego obciążenia nalézy prayjmowac według tablicy.

Wielkosć charakterystyczna	Wielkoś wiertarki			
	25	40	63	
Największa	w N	15000	25000	35000
Wartost sily	w kG	1500	2500	3500

5.2. Obciȧ̇enie zespozów

5.2.1. Obciȧ̇anie korpusu wrzeciennika i stoja= ką Korpus wrzeciennika i stojak należy obciążać poprzez trzpień mocowany w gnieździe wrzeciona. Punkt przyłożenia, kierunek 1 płaszczyzna działania siły obciążąacej powinny być zgodne z 2.2.
2.2.2. Obciázenie stoku. Należy zachować warunki obciązenia jak dla wrzeciennika wg 5.2.1,przyjmując, ze zwrot siły obciążającej jest przeciwny do podanego na rys. 1.
5.2.3. Zakres obciażenia i pomiar przemieszozeń, Dobór zakresu obciązenia oraz pomiar przemieszczeń nalez̀y przeprowadzic zgodnie z wymaganiami BN-73/1522-01.

5.3. Punkt pomiaru przemieszczeń

5.3.1. Punkty pomiarowe przemieszczeń korpusu mrzeciennika. Przemieszczenia korpusu wrzeciennika mierzy się w kierunku poziomym (kierunek z układu obrabiarki) 1 w kierunku pionowym (kierunek x układu obrabiarki), przy czym punkt przyłożenia końcówki pomiarowej czujnika powinien znajdowac sief w przypadku pomiaru w kierunku z-50 mm od dolnej powierzchni korpusu wrzeciennika w jego osi (punkt $2 z$ na rys. 1), natomiast w przypadku pomiaru w kierunku x punkt pomiarowy znajduje sie w dolnej scianie korpusu wrzeciennika w pzaszczyznie rownoległej do płaszczyzny prowadnic i przechodzącej przez ós wrzeciona (punkt $1 x$ na rys.1).

Pomiary przemieszczeń wrzeciennika w kierunku x odbywaja się równolegle do bazy pomiarowej, związanej z prowadnicami wrzeciennika i stokem wiertarki. W przypadku koniecznosci przesunięcia punktów pomiarowych w inne od założonych położenie, należy to zanotować w protokole pomiarowym.
5.3.2. Punkty pomiarowe przemieszczeń stojakae Przemieszczenia stojaka obrabiarki mierzy się w kierunku z ukiadu obrabiarki, na prawej prowadnicy wrzeciennika w odległości 50 mm od górnego jej końca w osi symetril prowadnicy (punkt $4 z$ na rys. 1). Pomiar przemieszczen mykonuje się z baz pomiarowych niezaleźnych.
5.3.3. Punkty pomiarowe przemieszczeń stozue Przemieszczenia stołu mierzy się w kierunku x układu obrabiarki z baz pomiarowych zwięzanych z prowadnicami stołu, przy czym punkt przyłozenia końcówki pomiarowef czujnika powinien znajdować się na krawędzi przecięcia się płaszczyzny stołu i płaszczyzny przechodzącej przez oś wrzeciona w kierunku y układu obrabiarki (punkt $3 x$ na rys. 1), w odległości 10 mm od lewego lub prawego lrzogu stozu.

6. PRZEDSTAWIENIE WYNIKOW POMIAROW PRZEMIESZCZEA

Wyniki pomiarów przemieszozeń winny byc opracowane zgodnie z zaleceniami $\mathrm{BN}-73 / 1522-01$.

7. WYZNACZENIE WSKAŹNTKOW SZTYWNOSCI STATYCZNEJ

2.1. Postanowienia ogólne, Wskazniki sztywności statycznej wyznacza się zgodnie z BN-73/1522-01 p. 4.4 dla kierunku pomiaru przemieszczeń x oraz dla kierunku z zgodnie z 2.3. niniejszej normy.

Wskaźniki sztywności statycznej wyznaczone dla kierunku x są uznane za poḑstawowe, natomiast wskaźniki sztywności statycznej w kierunku zuznane są za pomocnicze.
2.2. Wskaźniki sztywności statycznei wiertarki kadłubowei. Zgodnie z 1.3.1 wyróżnia się wskaźnik sztywnosci układu wrzeciennik - stóz, wyznaczony w $N / \mu \mathrm{m}$ ($k G / \mu \mathrm{m}$) ze wzoru

$$
j_{w k}=\frac{\Delta P}{\Delta_{f_{w k}}}
$$

2.3. Wskaźniki sztywności statycznej zespozóve Zgodnie z 1.3.2 wyróżnia się wskaźniki:

- sztywności wrzeciennika wyznaczonej w $\mathrm{N} / \mu \mathrm{m}$ ($k G / \mu m$) ze wzorów:

$$
\begin{aligned}
j_{w x} & =\frac{\Delta P}{\Delta f_{w x}} \\
j_{w z} & =\frac{\Delta P}{\Delta f_{w z}}
\end{aligned}
$$

- sztywności stojaka wyznaczonej w $\mathrm{N} / \mu \mathrm{m}$ (kG/pm) ze wzoru

$$
j_{k z}=\frac{\Delta P}{\Delta f_{k z}}
$$

- sztywności stołu, wyznaczonej w N/ wm ($k G / \mu \mathrm{m}$) ze wzoru

$$
j_{s x}=\frac{\Delta P}{\Delta f_{s x}}
$$

