$\begin{gathered} \text { ZMECHANIZOWANY } \\ \text { SPRZET } \\ \text { GOSPODARSTWA } \\ \text { DOMOWEGO } \end{gathered}$	NORMA BRANZOWA	BN-86
	Domowe maszyny do szycia Chwytacze stebnowe wahadłowe kompletne z centralnym położeniem szpulki Wymagania i badania	4944-02
		$\underset{\text { Zamiast }}{\text { BN-76/4944-02 }}$
		Grupa katalagowa 0464

1. WSTEP

1.1. Przedmiot normy. Przedmiotem normy są wymagania i badania chwytaczy stębnowych wahadłowych kompletnych (z bębenkiem i szpulką) stosowanych w domowych maszynach do szycia.
1.2. Terminologia - wg PN-85/P-67021.
1.3. Podział i oznaczenie - wg BN-62/1870-01.

2. WYMAGANIA

2.1. Główne wymiary

2.1.1. Chwytacze - wg rys. 1.

Rys. 1
2.1.2. Bębenek - wg rys. 2.

BN-86/4944-02-2

Rys. 2
1 - korpus bębenka, 2 - skrzydełko, 3 - zasuwka, 4 - sprężyna napinająca, 5 - wkręt regulacyjny, 6 - kołek
2.1.3. Spulki - wg rys. 3.
2.2. Materiał. Na części składowe chwytacza kompletnego zaleca się stosowanie następujących gatunków materiałów:
chwytacz - stal 55 wg PN-75/H-84019,
korpus bębenka - stal A10x wg PN-73/H-84026, zasuwka - stal 10 wg PN-75/H-84019,
skrzydełko - stal 45 wg PN-75/H-84019,
wkręt regulacyjny - stal A10x wg PN-75/H-84019, kołek - stal 45 wg PN-73/H-84019,
sprężyna napinająca - stal 50HS wg PN-74/ H-84032,
szpulka - tworzywo sztuczne z grupy kopolimerów styrenu.
(Dz. Norm. i Miar nr 6/1987, poz. 16)

Rys. 3
Dopuszcza się stosowanie innych materiałów zapewniających właściwe parametry chwytaczy kompletnych.
2.3. Wykonanie. Chwytacze kompletne powinny być wykonane zgodnie z podstawowymi wymiarami i tolerancjami podanymi na rys. 1, 2, 3. Chropowatość powierzchni - wg 2.5. Części składowe chwytacza kompletnego powinny ze sobą współpracować prawidłowo i niezawodnie.
2.4. Twardość. Chwytacz, korpus bębenka i poszczególne czę̧ści bębenka oraz wkręty powinny być ulepszane cieplnie lub nawęglane i ulepszane cieplnie.

Twardość poszczególnych części oraz elementów chwytacza kompletnego powinna po odpowiedniej obróbce termicznej osiągać następujące wartości:

2.5. Chropowatość powierzchni. Wartości liczbowe parametru chropowatości R_{a} - wg PN-73/M-04251 poszczególnych części i elementów chwytacza kompletnego powinny wynosić:

- dla powierzchni stykających się z przebiegającą nicią $0,16-0,04 \mu \mathrm{~m}$,
- dla powierzchni współpracujących obrotowo 0,63 $\mu \mathrm{m}$,
- dla pozostałych powierzchni $10-2,5 \mu \mathrm{~m}$.

Elementy stykające się z przebiegającą nicią powinny być wykończone tak, aby nie uszkadzały nici w czasie szycia.
2.6. Powłoki ochronne. Chwytacz, korpus bębenka, zasuwka i skrzydełko powinny być pokryte powłokami chromowymi zwykłymi $\mathrm{Fe} / \mathrm{Cr}$ r o minimalnej grubości $5 \mu \mathrm{~m}$. Sprężynę napinającą zaleca się zabezpieczyć powłoką niklową $\mathrm{Fe} / \mathrm{Ni} 5 \mathrm{p}$ wg PN-83/H-97006.

Powłoki powinny wykazywać taką przyczepność, aby w wyniku badania nie występowały odwarstwienia,
złuszczenia i pęcherze. Powłoki chromowe i niklowe powinny mieć odcień jednolity, bez nalotów i takich wad jak: odpryski, wżery, przypalenia, zadrapania, narosty, mikrospękania lub miejsca nie pokryte.

Dopuszcza się brak pokrycia powierzchni w miejscach zetknięcia z wieszakiem stosowanym do zawieszania części w czasie pokrywania oraz w otworach przelotowych i nieprzelotowych, przy czym brak pokrycia nie może dotyczyć powierzchni współpracujących i stykających się z przebiegającą nicią.
2.7. Jakość szycia. Chwytacze kompletne powinny być tak wykonane i wykończone, aby zapewniały uzyskiwanie prawidłowych ściegów, w warunkach szycia podanych w p. 4.3.8.
2.8. Trwałość chwytaczy kompletnych powinna wynosić co najmniej 1000 h pracy w warunkach badania wg 4.3.9.

3. PAKOWANIE, PRZECHOWYWANIE I TRANSPORT

3.1. Konserwacja. Chwytacze kompletne powinny być zabezpieczone przed korozja tłuszczami obojętnymi. Chwytacze przeznaczone do zbytu należy owinąć dodatkowo papierem antykorozyjnym wg PN-76/P-50450.
3.2. Opakowanie jednostkowe. Chwytacze kompletne przeznaczone do zbytu powinny być pakowane w opakowania jednostkowe z tworzywa sztucznego lub w pudełka tekturowe, o wymiarach przystosowanych do wielkości wyrobu. Przy stosowaniu opakowania jednostkowego z tworzywa sztucznego eliminuje się stosowanie papieru antykorozyjnego.

Na opakowaniu jednostkowym lub nadruku firmowym należy umieścić co najmniej następujące dane:

- oznaczenie chwytacza wg 1.3,
- nazwę lub znak wytwórni,
- rok produkcji.
3.3. Opakowanie zbiorcze. Chwytacze kompletne w opakowaniach jednostkowych przeznaczone do zbytu powinny być pakowane w opakowania zbiorcze w ilości nie większej niż 800 sztuk. Opakowania zbiorcze powinny stanowić skrzynie drewniane lub drewniano-pilśniowe.

Na opakowaniu zbiorczym należy umieścić co najmniej następujące dane:

- oznaczenie chwytaczy wg 1.3,
- nazwę lub znak wytwórni,
- ilość sztuk chwytaczy,
- dopuszczalną liczbę warstw w czasie składowania i transportu.
3.4. Przechowywanie. Zakonserwowane i zapakowane co najmniej w opakowania jednostkowe chwytacze kompletne powinny być przechowywane w zamkniętych i suchych pomieszczeniach, z dala od materiałów sprzyjających korozji i źródeł intensywnie wydzielających ciepło. Przechowywanie chwytaczy kompletnych bez konserwacji i opakowania jest niedopuszczalne.
3.5. Transport. Chwytacze kompletne w opakowaniach zbiorczych należy przewozić suchymi i krytymi środkami transportu.

4. BADANIA

4.1. Program badań

4.1.1. Badania pełne są wykonywane w celu wyczerpującej oceny w następujących wypadkach:

- przy ocenie nowej konstrukcji, albo w przypadku wprowadzenia zmian konstrukcyjnych, materiałowych lub technologicznych mogących mieć wpływ na jakość chwytacza kompletnego,
- przy okresowej kontroli produkcji, która powinna odbywać się nie rzadziej niż 1 raz w roku,
- przy wznowieniu produkcji po przerwie trwającej dłużej niż pół roku.
4.1.2. Badania niepełne. Badaniom niepełnym należy poddać:
- przy bieżącej kontroli produkcji - każdy chwytacz kompletny,
- przy badaniach poprzedzających odbiór partii próbkę chwytaczy kompletnych wg 4.2.2.
4.1.3. Zakres badań oraz zalecana kolejność badań - wg tablicy.
- mało istotna - tablica lp. 1 negatywne wyniki oględzin.

4.2.4. Wadliwość dopuszczalna W_{2}

- dla wad istotnych maksimum 1,5\%,
- dla wad mało istotnych maksimum 2,5\%.
4.2.5. Wybór i stosowanie planów badania. Plan badania jednostopniowy - kontrola normalna wg tabl. 2-A, obostrzona wg tabl. 2-B i ulgowa wg tabl. 2-C PN-79/N-03021. Warunki przejścia z jednego rodzaju kontroli na inny wg $\mathrm{PN}-79 / \mathrm{N}-03021$ p. 2.4.
4.3. Opis badań
4.3.1. Oględziny zewnętrzne należy przeprowadzić nie uzbrojonym okiem z odległości $0,3 \mathrm{~m} \mathrm{w}$ świetle rozproszonym o natężeniu światła 300 lux lub za pomoca lupy powiększającej $5 \times$. Oględziny za pomocą lupy należy przeprowadzić w przypadku, gdy oględziny zewnętrzne okiem nieuzbrojonym nasuwają wątpliwości odbioru.

Podczas oględzin zewnętrznych należy sprawdzić:

- prawidłowość współdziałania poszczególnych elementów,
- konserwację i pakowanie na zgodność z wymaganiami 3.1, 3.2,
- wygląd powłok ochronnych na zgodność z wymaganiami 2.6.

Lp.	Rodzaj badań	Zakres badań		Wymagania wg	Opis badań wg
		pełnych	niepełnych		
1	2	3	4	5	6
1	Oględziny zewnętrzne	1.	\because	$\begin{aligned} & 2.3 \\ & 2.6 \\ & 3.1 \\ & 3.2 \end{aligned}$	4.3.1
2	Sprawdzenie głównych wymiarów	\%		$\begin{aligned} & 2.1 .1 \\ & 2.1 .2 \\ & 2.1 .3 \end{aligned}$	$4.3 .2$
3	Sprawdzenie materiałów	λ		2.2	4.3 .3
4	Sprawdzenie wykonania	\times		2.3	4.3.4
5	Sprawdzenie twardości	\times		2.4	4.3 .5
6	Sprawdzenie chropowatości powierzchni	\times	-	2.5	4.3.6
7	Sprawdzenie powłok ochronnych	\times		2.6	4.3 .7
8	Próba jakości szycia	\times	\times	2.7	4.3.8
9	Sprawdzenie trwałości	\times		2.8	4.3 .9

4.2. Kontrola jakości

4.2.1. Sposób pobierania próbek - sposobem losowym „na ślepo" wg PN-83/N-03010, p. 3.4.

4.2.2. Liczność próbki

a) Do badań pełnych należy pobrać próbkę wg 4.2.1, o liczbie odpowiadającej liczności partii przy poziomie kontroli specjalnym S_{1} wg PN-79/N-03021.
b) Do badań odbiorczych należy z każdej przedstawionej do odbioru partii pobrać próbkę wg 4.2.1, o liczbie odpowiadającej liczności partii przy poziomie kontroli II ogólnym wg PN-79/N-03021.

4.2.3. Klasyfikacja wad

- istotna - tablica lp. 8 negatywna próba jakości szycia,

Wynik oględzin należy uznać za dodatni, jeżeli spełnione są wymagania ww. punktów.
4.3.2. Sprawdzenie głównych wymiarów należy przeprowadzić za pomocą sprawdzianów lub odpowiednich uniwersalnych narzędzi mierniczych, zapewniających dokładność pomiaru odpowiednią do tolerancji wymiarów.
4.3.3. Sprawdzenie materiałów wykonuje się tylko w przypadkach spornych i mogą być to badania niszczące.
4.3.4. Sprawdzenia wykonania należy przeprowadzić poprzez sprawdzenie współpracy poszczególnych elementów. Wynik badania należy uznać za dodatni, jeżeli są spełnione wymagania podane w 2.3.
4.3.5. Sprawdzenie twardości należy przeprowadzić metodą Rockwella, zgodnie z PN-78/H-04355, zaś bębenka metodą Vickersa wg PN-78/H-04360. Wynik badania należy uznać za dodatni, jeżeli twardość odpowiada wartościom podanym w 2.4.
4.3.6. Sprawdzenie chropowatości powierzchni przeprowadza się przez porównanie z wzorcami gładkości, w przypadkach wątpliwych pomiar gładkości należy wykonywać za pomocą mikroskopu metodą Schmalza. Wynik badania należy uznać za dodatni, jeżeli chropowatość powierzchni odpowiada wymaganiom wg 2.5, a w czasie próby szycia wg 4.3.8 nie stwierdza się zrywania i strzępienia nici.
4.3.7. Sprawdzenie powłok ochronnych. Przyczepność powłoki sprawdzić wg PN-79/H-04607. Grubość powłoki sprawdzić wg PN-76/H-04623. Wynik próby należy uznać za dodatni, jeżeli spełnione są wymagania wg 2.6.
4.3.8. Próba jakości szycia w przypadku badań pełnych oraz badań niepełnych chwytaczy kompletnych przeznaczonych do zbytu, powinna być wykonywana na maszynie takiego modelu, do której jest przeznaczony chwytacz, na wszystkich rodzajach ściegów jakimi dysponuje maszyna, w zakresie całej bezstopniowej regulacji prędkości szycia, w warunkach szycia w zakresie doboru igły i nici do rodzaju zszywanego materiału, doboru stopki i płytki ściegowej do określonego rodzaju ściegu, regulacji docisku stopki, naprężenia nici, prowadzenia nici, prędkości szycia i parametrach ściegu, zgodnie z wytycznymi podanymi przez producenta maszyn w instrukcjach óbsługi, przy czym musi być zapewniony luz między sprężynką zabieraka, a zderzakiem chwytacza, pozwalający na swobodne przechodzenie nici górnej.

W przypadku bieżącej kontroli produkcji chwytaczy kompletnych i maszyn produkowanych przez jedną wytwórnię, próba jakości szycia chwytaczy pokrywa się z próbą jakości szycia maszyn kompletnych wg BN-84/ 4944-01/04 p. 4.4.2. Wynik próby należy uznać za dodatni, jeżeli w czasie szycia nie będzie występować zrywanie i strzępienie nici, a wiązanie ściegu będzie prawidłowe.
4.3.9. Sprawdzenie trwałości chwytaczy kompletnych przeprowadza się podczas sprawdzania trwałości maszyn, zgodnie z BN-84/4944-01/04 p. 4.4.10.

Ocena wyników badania - wg BN-84/4944-01 p. 4.4.10.4.

4.4. Ocena wyników badań

4.4.1. Ocena badań pełnych. Wyniki badań pełnych należy uznać za dodatnie, jeżeli wszystkie badane chwytacze kompletne przejdą z wynikiem dodatnim wszystkie badania wymienione w tablicy, kol. 3.
4.4.2. Ocena badań niepełnych. W przypadku bieżącej kontroli produkcji wynik badania należy uznać za dodatni, jeżeli każdy chwytacz kompletny przejdzie z wynikiem dodatnim próby wg tablicy, kol. 4.

W przypadku badań kontrolno-odbiorczych, wyniki badań należy uznać za dodatnie, jeżeli stwierdzona w wyniku tych badań liczba sztuk niedobrych w próbce nie przekroczy liczby kwalifikującej wg PN-79/ N-03021, dla wadliwości dopuszczalnych, określonych w p. 4.2.4.
4.5. Zaświadczenie producenta o wynikach badań pełnych. Na życzenie odbiorcy producent zobowiązany jest przedstawić wyniki ostatnio przeprowadzonych badań pełnych.

INFORMACJE DODATKOWE

1. Instytucja opracowujace normę - Zakłady Metalowe ŁUCZNIK im. Generała Waltera, Radom.
2. Istotne zmiany w stosunku do BN-76/4944-02
a) pozostawiono w normie jedną wersję wymiarową chwytacza kompletnego,
b) rozszerzono zakres postanowień dotyczących próby szycia i powłok ochronnych,
c) wprowadzono postanowienia dotyczące trwałości chwytaczy kompletnych.

3. Normy i dokumenty związane

PN-78/H-04355 Pomiar twardości metali sposobem Rockwella. Skala $\mathrm{A}, \mathrm{B}, \mathrm{C}$ i F
PN-78/H-04360 Pomiar twardości metali sposobem Vickersa przy obciążeniu 9,8 do 980 N (1 do 100 kG)
PN-79/H-04607 Ochrona pr<ed koro<ją. Elektrolityczne powłoki metalowe. Określanie przyczepności metodami jakościowymi
PN-76/H-04623 Ochrona przed korozją. Pomiar grubości powłok metalowych i konwersyjnych metodami nieniszczącymi
PN-75/H-84019 Stal węglowa konstrukcyjna wyższej jakości ogólnego przeznaczenia. Gatunki
PN-73/H-84026 Stal automatowa. Pręty, walcówka i drut. Wymagania i badania

PN-74/H-84032 Stal sprężynowa (resorowa). Gatunki
PN-83/H-97006 Ochrona przed korozją. Elektrolityczne powłoki niklowe, niklowo-chromowe i miedziowo-niklowo-chromowe na stali
PN-73/M-04251 Struktura geometryczna powierzchni. Chropowatość powierzchni. Określenia podstawowe i parametry
PN-83/N-03010 Statystyczna kontrola jakości. Losowy wybór jednostek produktu do próbki
PN-79/N-03021 Statystyczna kontrola jakości. Kontrola odbiorcza według oceny alternatywnej. Plany badania
PN-76/P-50450 Papiery i kartony antykorozyjne
PN-85/P-67021 Domowe maszyny do szycia. Chwytacze stębnowe wahadłowe z centralnym położeniem szpulki. Terminologia
BN-62/1870-01 Chwytacze maszyn szyjących. Zasady klasyfikacji
BN-84/4944-01/04 Elektryczne przyrządy powszechnego użytku. Domowe maszyny do szycia. Wymagania i badania uzupełniające oraz program badań
4. Zalecenia międzynarodowe i odpowiedniki w normach zagranicznych (odpowiedniki w zakresie głównych wymiarów)
CDPT 32.5/1969 Nahmaschinen Greifer, schwigend mit Fuhrungsbahn. Haúptabmessungen
TGL 45-12648/1976 Nahmaschinen Greifer, schwigend mit Fuhrungsbahn. Hauptabmessungen

UNI 3876 Macchine per cucire di uso domestico Navetta completa. Parti componenti e dimensioni di accoppiamento
5. Porównanie z zaleceniami CDPT 32.5/1969. Chwytacze kompletne wg niniejszej normy są zamienne z chwytaczami wg zalecenia CDPT 32.5/1969 i TGL 45-12648, pomimo nieznacznych różnic w zakresie podstawowych wymiarów niżej podanych:

chwytacz	CDPT	BN-85/4944-02
	$32.5 / 1969$	
średnica zewnętrzna bieżni	$42.6_{-0,04}$	$42.575_{-0,035}$
grubość bieżni	$4,61_{-0,03}$	$4,6_{-0,018}$
średnica trzpienia	$4,399_{-0,02}$	$4,4_{-0,048}$
wysokość robocza trzpienia	$13,2^{+0,05^{2}}$	$13,1^{+0,1}$
odległość bieżni od spodu	$5,17_{-0,1}$	$5_{-0,05}^{+0,05}$
bębenek		
średnica zewnętrzna	$22,4 \mathrm{~h} 11$	$22,5_{-0,15}$
średnica wewnętrzna	$20,7 \mathrm{H} 11$	$20,7^{+0,1}$,

średnica zewnętrzña piasty	$5,7 \mathrm{~h} 11$	$5,1_{-0,12}^{2}$
średnica otworu piasty	$4,4 \mathrm{H} 9$	$4,42^{+0,03}$
odległość czoła od dna korpusu	$11,75 \mathrm{H} 11$	$11,65^{+0,1}$
szerokość zaczepu	2,5	$2,5_{-0,1,1}^{4}$
odległość zaczepu od osi	18,8	$19,5_{-(0,2}^{+0,2}$

szpulka

Średnica zewnętrzna talerzyków	$20,5 \mathrm{hll}$	$20,5-9,1$
otwór piasty	$6,16 \mathrm{F9}$	$6,2^{+0,1}$
szerokość kanałka	1,4	1,4
wysokość całkowita	$11,9 \mathrm{~h} 11$	$11,7_{-0,1}$

6. Symbol wg SWW - 0673-996.
7. Autorzy projektu normy - inż. Zygmunt Kundys i Marian Banaszkiewicz - Zakłady Metalowe ŁUCZNIK im. Generała Waltera, Radom.
