
APPLIED COMPUTER SCIENCE

Vol. 7, No 1, 2011

IMPROVEMENTS METHODS IN MANUFACTURING
DESIGN, SCHEDULING AND CONTROL

Editors:
Zbigniew Banaszak, Antoni

�
wi�

LUBLIN UNIVERSITY OF TECHNOLOGY

INSTITUTE OF TECHNOLOGICAL SYSTEMS

OF INFORMATION

Sponsored by: Lublin University of Technology, Poland

Editorial Board:

Zbigniew BANASZAK Technical University of Koszalin, Poland

Krzysztof BZDYRA Technical University of Koszalin, Poland

Milan GREGOR University of Zilina, Slovak Republic

Józef MATUSZEK University of Bielsko-Biała, Poland

Dariusz PLINTA University of Bielsko-Biała, Poland

Antoni �WI� Lublin University of Technology, Poland

Cover Design: Dariusz PLINTA

Typeset by: Tomasz KUSZ

The content-related, responsibility, style and presentation form falls on the
authors of individual contributions

© Copyright by the Technical University of Koszalin, University
of Bielsko-Biała, Lublin University of Technology, University
of West Bohema and University of Zilina, Lublin 2011

No part of this publication may be reproduced, stored in a retrieval system
or transmitted in any form, or by any means, electronic, photocopying or
otherwise, without the prior written permission if the Publishers.

ISSN 1895-3735

ISBN 978-83-62596-32-4

WYDAWCA: Politechnika Lubelska
 ul. Nadbystrzycka 38D, 20-618 Lublin
DRUK: Wydawnictwo-Drukarnia „Liber-Duo”
 ul. Długa 5, 20-346 Lublin

FOREWORD

The conditions of environment in which enterprises are working has drastically

changed during last few decades. The basic factors which occurred as a new
challenges for companies were: variability of customers’ equirements and the same
making shorter the products’ life cycles, growing competiveness in global scale and
the speed of technical progress do not meet up to now. Ipso facto the environment of
functionality of enterprises has become extremely dynamic and directly the dynamics
and variability of orders’ realization varied into complexity of problems which
instantly had to been solved by the companies. In many cases, these problems were
non-trivial and its solving required analysis of huge number of solutions, frequently
taking into account many contradictory and inverse criteria of assessment.

Inter alia, because of these reasons, the tools commonly used by designers and
organizers of production became computer systems which assist decision processes
and also planning and control of manufacturing processes. Simultaneously
requirement for methodological solutions which allows fast analysis of many possible
scenarios of solutions which are based on one or many criteria of evaluation was
growing. Over a wide range, the scientific researches tending toward elaboration tools
for finding importance of solutions when taking into account these criteria of
evaluations were provided. In consequence of these fact the methods which have
found wide applications are: mathematic methods of one- and multi-criteria
optimization and also optimization methods of artificial intelligence (genetic
algorithms, evolutionary algorithms, ant colony algorithms).

In this issue the possibility of application of methods for finding importance of
solutions in problems of manufacturing systems’ design, scheduling and control of
manufacturing processes was presented. The contributed papers fall into four main
problems area. The first paper presents reference model implemented in constraint
programming techniques which can be successfully used for solving problems of rapid
prototyping of alternative versions of project scheduling. The next paper presents
possibility of using the evolutionary system of multicriteria analysis in problems of
flexible manufacturing systems machine tools subsystem selection. The next group of
three papers deals with problems of possibility of using the methods based on genetic
algorithms and genetic programming in problems of both automated design of control
systems and manufacturing processes scheduling.

The last paper emphasizes the importance of reliability of ERP systems and
presents the method of standardized audit of ERP systems, safety and evaluation of
these systems under the European and Polish norms.

We do hope that this issue will increase interest both among managers which
deals with the problems of management and production engineering and also among
scientific researcher for whom presented solutions will become the base for future
works in finding new solutions which support processes of design and management of
manufacturing processes.

 Editors: Zbigniew Banaszak, Antoni
�
wi�

Lublin, June, 2011

 5

 CONTENTS

Marcin RELICH
CP-BASED DECISION SUPPORT FOR SCHEDULING ……………

7

Arkadiusz GOLA, Jerzy MONTUSIEWICZ, Antoni

�
WI�

COMPUTER AIDED FMS MACHINE TOOLS SUBSYSTEM
SELECTION USING THE EVOLUTIONARY SYSTEM
OF MULTICRITERIA ANALYSIS ……………………………… ……

18

Juraj SPALEK, Michal GREGOR
ADAPTIVE SWITCHING OF MUTATION RATE FOR GENETIC
ALGORITHMS AND GENETIC PROGRAMMING ………………...

30

Juraj SPALEK, Michal GREGOR
ADAPTIVE APPROACHES TO PARAMETER CONTROL
IN GENETIC ALGORITHMS AND GENETIC PROGRAMMING...

38

Pavol SEMAN�O
MINIMIZING MAKESPAN IN GENERAL FLOW -SHOP
SCHEDULING PROBLEM USING A GA-BASED
IMPROVEMENT HEURISTIC ………………………………………...

57

Daniel G�SKA, Antoni

�
WI�

THE STANDARDIZED AUDIT OF SAFETY
AND THE RELIABILITY OF ERP SYSTEMS ……………………….

65

 7

project management, constraint programming, alternative projects

Marcin RELICH*

CP-BASED DECISION SUPPORT FOR SCHEDULING

Abstract

The paper presents the declarative approach to design of a reference model
aimed at project prototyping. The reference model contains the finite set of
decision variables, their domains and linking those constraints, i.e. can be seen
as a kind of Constraint Satisfaction Problem. Consequently, the model
considered can be treated as a knowledge base specifying both a class of
enterprises and the projects that could be conducted on their base. So, the model
provides a platform for rapid prototyping of alternative versions of project
scheduling. The routine queries can be formulated in the straight or reverse way.
In that context, the proposed reference model can be implemented in constraint
programming (CP) techniques.

1. INTRODUCTION

In the activity of present organizations more and more importance concerns unique
activities, so-called projects. A project is a sequence of unique, complex, and connected
activities having one goal or purpose and that must be completed by a specific time, within
budget, and according to specification [9]. On account of this, the demand arises for new
knowledge that enables the problems occurring in the realisation of unique projects to be
solved. In this case, of particular significance is knowledge of project management that
identifies factors which have an influence on the success or failure of the project, and that uses
special methods and techniques.

Many cases of projects indicate that fewer than half of projects met cost and schedule
targets [6, 11, 13, 16, 19]. The findings of various other authors indicate that projects which
overrun are more common than projects which complete within original time scales, overruns
likely to be between 40% and 200% [12]; for instance, only one third of World Bank projects
met their aims, with typical delays of 50%. Another survey showing only 17% of projects
meeting all three aspects of the project triangle (cost, time, and scope), with typical cost
overruns as high as 189% [7]. In the case of software projects, the surveys on estimation
performance report that 60-80 percent of all software projects encounter effort overruns [8, 10,
17].

Project success or failure depends on many critical factors, such as factors related to the
project, availability of resources, project management, and the external environment [2, 13].
The reasons for project failure can be generally considered in availability of resources (e.g.
human, financial, raw materials) and changeability of the external environment.

* Ph.D., Faculty of Economics and Management, University of Zielona Góra, m.relich@wez.uz.zgora.pl

 8

Moreover, unstable requirements, lack of well-defined scope, quality of management, and skill
of the employees can cause project failure. Another factor is that an enterprise which carries
out a few projects can change the priority of the project.

The project requires planning that supports, among other things, the estimates of effort,
resources, time, etc., which are fundamental to guide the project activities. To reduce project
overruns, there are two ways to approach the problem. The first way is to increase the accuracy
of the estimates through a better estimation process and the second, to increase the project
control.

It is unrealistic to expect very accurate estimates of project effort because of the inherent
uncertainty in development projects, and the complex and dynamic interaction of factors that
influence its development. However, even small improvements will be valuable, especially if a
project is connected with the large scale. More accurate forecasting supports the project
managers in planning and monitoring the project, for instance in the project price set, resource
allocation or schedule arrangement.

In the case of a significant difference between actual and planed project parameters, the
manager should take a decision concerning the response to the change. The response can
regard a support status quo, a correction of differences, a change of the norms, and also it may
be connected with continuing the actual project. This approach is usually considered in the
research works. The change of project scope can be another type of reaction regarding the
performed variations. In this case, it seems important to build the approach that will generate a
set of alternative projects and support the decision-maker. The alternative project is considered
as a modification of the primary project, that can be made in different stages of the project life
cycle, e.g. by the definition of the project or its implementation.

Rapidly changing expectations related to supporting strategic decisions, as well as aiming
to reduce cost and investment risk, result in the need to make a task-oriented decision support
system. Most of the publications have considered separately the fields of enterprise and project
management. This results in a separate knowledge base respectively for an enterprise and
project management. Consequently, it implies the difficulty of implementation of these fields
within a single tool that is used for decision support. Hence, there is a need to build a single
model that combines the fields of enterprise and project management, and that provides a base
for making a task-oriented decision support system.

The paper is organized as follows. A reference model concerning an enterprise and project
is presented in section 2. Scheduling in a form of the so-called constraint satisfaction problem
is described in section 3. An example of the approach, which presents a possibility of decision
problem specification in the straight and in the reverse way, is illustrated in section 4. Finally
conclusions and future research are presented in section 5.

2. REFERENCE MODEL

The proposed approach combines the fields of an enterprise and project in single platform –

the reference model. This type of approach seems to be natural in the case of an enterprise that
executes projects and solves standard decision-making problems. In this way, a knowledge
base is created that in addition to the inference strategies allows more efficient implementation
of decision support system.

It is assumed that the reference model has the structure of constraints satisfaction problem
(CSP), and it may be described as follows:

 9

 CSP = ((V, D), C) (1)

where:
V = {v1, v2, ..., vn} – finite set of n variables,
D = {D1, D2, ..., Dn} – finite and discrete domains D of variables, where Di = {d i1, di2, ...,
 dir},
C = {c1, c2, ..., cm} – finite set of m constraints binding decision variables.
Each constraint treated as a predicate can be seen as an n-ary relation defined by a

Cartesian product D1 × D2 × ... × Dn. The solution to the CSP is a vector (d1i, d2k, ..., dnj) such
that the entry assignments satisfy all the constraints C. So, the task is to find the values of
variables satisfying all the constraints, i.e., a feasible valuation. Generally, the constraints can
be expressed by arbitrary analytical and/or logical formulas as well as bind variables with
different non-numerical events.

Thus, a constraint can be treated as a logical relation among several variables, each one
taking a value in a given (usually discrete) domain. To solve such a problem stated by the set
of requirements (constraints) that specify a problem at hand, the concept of constraint
programming (CP) is employed. CP is an emergent software technology for declarative
description CSP and can be considered as a pertinent framework for development of decision
support system software aims. The main idea behind the CP concept is based on subsequent
phases of constraint propagation and variable distribution [14].

Construction of the reference model requires certain assumptions concerning the structure
of the modelled object and the tasks performed in it. It is assumed that the client orders may be
taken and commenced at any time (possibly adding the new projects to a set of projects already
in progress). The expenses regarding an order are paid from the enterprise’s own means or
from a bank loan. The budget of the project is set with cash flow budget in the investment
period. The client order is chosen by the profitability analysis and technical realizability. The
enterprise receives the order specification with the client requirements, regarding among others
the scope, price and time completion of project.

The enterprise model can be described by its resources. The project model is created from
the requirements of the client. In the model, some parameters are determined, among which
a set of constraints and decision variables may be distinguished (Fig. 1). The constraints
connect the variables that describe the capacity of the enterprise, as well as the variables that
concern the conditions of project completion. For instance, the number of the enterprise’s
employees limits the duration of the project.

It means that fulfilment of specified constraints enables project completion according to
client requirements. The enterprise and project model containing examples of decision
variables and constraints is shown in Fig. 1.

 10

Fig. 1. Enterprise-project model as a common knowledge base

The assumed model enables descriptive approach to the problem statement, encompasses

constraint satisfaction problem structure and then allows implementation of the problem
considered in the constraint programming environment. The idea behind the proposed approach
assumes the system considered can be represented in terms of a knowledge base (KB). KB
comprises of facts and rules determining the system’s properties and relations linking them
respectively. Taking into account the concept of constraints propagation and variables
distribution following from the constraint programming languages it is easy to note that any
KB can be represented in a standard form of the CSP [18].

KB can be specified in terms of a system [5]. At the input of the system are the variables
regarding the fundamental attributes of the object that are known and given by the user. In the
considered KB for the enterprise-project model, there are, for example, variables concerning
the amount of an enterprise’s resources or the project structure. The output of the system is
described by the attributes of the object that are unknown or are only partially known. In the
considered case, there can be included variables regarding e.g. the cost or time of activity, use
of resources or the level of investment performance indicators.

Classification of the decision variables in KB as input-output variables is arbitrarily made
and allows the formulation of two classes of standard queries, in a straight and in a reverse
way, as follows [1, 4]:

- a straight way (i.e. corresponding to the question: what results from premises?), e.g. Does
a given resources allocation guarantee the schedule does not exceed the given deadline?

- a reverse way (i.e. corresponding to the question: what implies conclusion?), e.g. What
activity duration times and resources amount guarantee the given schedule does not exceed the
deadline?

The above-mentioned categories encompass the different reasoning perspectives, i.e.
forward and backward reasoning. The corresponding queries can be stated in the same model
that can be treated as composition of variables and constraints, i.e. assumed sets of variables

Knowledge base

Enterprise

Constraints:
- initial amount of
resources,
- limited amount of
resources,
- ...

Decision variables:
- employees,
- tools,
- logistic resources,
- financial resources,
- ...

Project

Decision variables:
- the starting time of the
activity,
- the duration of the
activity,
- ...

Constraints:
- the sequence of activities

in the project from work
breakdown structure,

- the time horizon of the
project,

- ...

Constraints
resulting from the
expert knowledge

and / or its
employees

 11

and constraints limiting their values. In that context, the problem statement of scheduling,
which is specified in terms of CSP, is presented in next section.

3. CONSTRAINTS SATISFACTION PROBLEM FOR SCHEDULING

Given amount z of discrete resources rk specified by (e.g. workforce, tools, money): R = (r1,

r2, ..., rz). Given amounts qk,h of available resources at the moment of H: H = {0, 1, ..., h}.
Given a project Pi is specified by the set composed of l activities: Pi = {Ai,1, Ai,2, ..., Ai,l}. The
activity Ai,j is specified as follows:

 Ai,j = (si,j, ti,j, Tpi,j, Tzi,j, Dpi,j) (2)

where:
si,j – the starting time of the activity Ai,j, i.e., the time counted from the beginning of the
time horizon H.
ti,j – the duration of the activity Ai,j.
Tpi,j = (tpi,j,1, tpi,j,2, ..., tpi,j,z) – the sequence of moments the activity Ai,j requires new
amounts of resources: tpi,j,k – the time counted since the moment si,j of the dpi,j,k amount of
the k-th resource allocation to the activity Ai,j. That means a resource is allotted to an
activity during its execution period: 0 ≤ tpi,j,k < ti,j; k = 1, 2, ..., z.
Tzi,j = (tzi,j,1, tzi,j,2, ..., tzi,j,z) – the sequence of moments the activity Ai,j releases the subsequent
resources: tzi,j,k – the time counted since the moment si,j of the dpi,j,k amount of the k-th
resource was released by the activity Ai,j. That is assumed a resource is released by activity
during its execution period: 0 < tzi,j,k ≤ ti,j; tpi,j,k < tzi,j,k; k = 1, 2, ..., z.
Dpi,j = (dpi,j,1, dpi,j,2, ..., dpi,j,z) – the sequence of the k-th resource amounts dpi,j,k are
allocated to the activity Ai,j: dpi,j,k – the amount of the k-th resource allocation to the activity
Ai,j. That assumes: 0 ≤ dpi,j,k < qk; k = 1, 2, ..., z.
The constraints regarding the enterprise include the initial and available amounts of the

resources. Moreover, the project portfolio should be completed within the given time horizon
H = {0, 1, ... , h}. It is assumed the activities cannot be suspended during their execution, and
also:

− each activity can request any kind and quantity (not exceeding the resource’s limited
amount) of any resource,

− each resource can be uniquely used by an activity,
− the quantity of resource used by an activity cannot be changed or allotted to other

activity,
− an activity can start its execution only if required amounts of resources are available at

the moments given by Tpi,j.
The following activities order constraints are considered:
− the k-th activity follows the i-th one:

 si,j + ti,j ≤ si,k (3)

− the k-th activity follows other activities:

 si,j + ti,j ≤ si,k
 si,j+1 + ti,j+1 ≤ si,k (4)
 ...
 si,j+n + ti,j+n ≤ si,k

 12

− the k-th activity is followed by other activities:

 si,k + ti,k ≤ si,j
 si,k + ti,k ≤ si,j+1 (5)
 ...
 si,k + ti,k ≤ si,j+n

According to (1) the reference model for scheduling can be described as follows:
A set of decision variables V:
- the starting time of the activity si,j
- the duration of the activity ti,j
- resources z, Tpi,j, Tzi,j, Dpi,j

 V= (si,j, ti,j, z, Tpi,j, Tzi,j, Dpi,j) (6)

The values sets of variables V is specified by the set of domains:

 D = (Dsi, Dti, Dz, DTpi, DTzi, DDpi) (7)

Note that for the known values of decision variables (e.g. for a variable concerning

available amounts of z resources), the domain is a set with single element.
A set of constraints C includes the constraints regarding an enterprise and a project, for

instance, the constraints concerning the sequence of activities, the cost or available amounts of
the resources. Some of the constraints link the field of enterprise with project, e.g. the number
of available employees.

C = {C1, C2}, where:
C1: H = {1, ..., h} – the constraint of the project horizon H,
C2: si,j + ti,j ≤ si,k - the constraint of the activities sequence in the project.
An answer to the following question is sought: does a given resources allocation guarantees

the project completion by assumed constraints, and if so, what are its parameters?
This question can be expanded to the next, for instance, does a given resources allocation

not exceed the given deadline H and the given financial resources q in time unit h? It allows a
class of multicriteria problems to be taken into consideration.

The examples regarding the above-described problem are presented in next section.

4. ILLUSTRATIVE EXAMPLES

The example aims to illustrate a possibility of CSP specification for decision problem of

project planning in the straight and in the reverse way. It assumes, the activities compete with
the access to the discrete resources. In the example, single project with nine activities P = {A1,
..., A9} is considered that network is presented in Fig. 2. Bold lines represent the critical path.

 13

Fig. 2. Activity network of project

4.1. Routine queries formulated in the straight way

Example 1

Operation times for the project by the following sequence are determined: T = (3, 4, 2, 2, 3,
3, 1, 4, 5). Moreover, given the time horizon H = {0, 1, ..., 15}, and resource r that is limited by
26 units. Number of resource is constant in whole time horizon H. It assumes, an amount of
resource is allocated to an activity at the moment of its beginning and can be released only by
this activity at the moment of its completion. The required number of resource from the
database of past projects, which belong to the same class as considered project, is determined.
The resource according to linear function is calculated as follows: dpj = 2 + 2 · tj. Thus, the
sequence of the resource amounts allocated to the activity j is following: Dp = (8, 10, 6, 6, 8, 8,
4, 10, 12).

The order constraints according to the activity network of the project and formulas (3), (4),
and (5) are following:

C1: s3 ≥ s1 + t1, C2: s4 ≥ s2 + t2, C3: s5 ≥ s2 + t2, C4: s6 ≥ s3 + t3, C5: s7 ≥ s6 + t6, C6: s8 ≥ s4 + t4,
C7: s9 ≥ s5 + t5.
The considered problem belongs to the class of “straight” ones where for a given

parameters describing the enterprise-project system the activities schedule is sought. It reduces
to the following question: is there, and if so, what form does a schedule have that completion
time does not exceed the deadline H, and that fulfils the resource constraints? Note the answer
to above-mentioned question is connected with determination of the starting time of the
activity sj, where 0 ≤ sj < 15; j = 1, 2, ..., 9.

The obtained solution follows from model implementation in the CSP-based reference
model and programmed in Oz Mozart. The first admissible solution has the following form: S
= (0, 0, 3, 4, 4, 5, 8, 6, 8). The project schedule fulfilled all constraints imposed by an
enterprise capability and project requirements, is presented in Fig. 3.

A6 A3

A4

A9 A5

A8

A1

A2

A7

 14

0 2 4 6 8 10 12 14

A1

A3

A5

A7

A9

Fig. 3. Gantt’s chart of project

The level of resource usage containing the assumed resource’s limit in the time horizon is

illustrated in Fig. 4.

0

5

10

15

20

25

30

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Fig. 4. Gantt’s-like chart of the resource usage

Example 2

Given the project P specified by the same activity network, time horizon, durations of the
activities, and amount of the resource allocated to the activity as in Example 1. However, the
new limit of resource (r ≤ 20) is considered.

The considered problem also belongs to the class of “straight” ones, and it can be reduced
to the following question: is there, and if so, what form does a schedule have that completion
time does not exceed the deadline H, and that fulfils the resource constraints?

Similarly to the previous case, the solution results in a determination of the beginning
moments of the activities sj, however regards smaller amount of the resource. By this
constraint, the set of admissible solutions is empty. This means there is no schedule. Thus,
there is a possibility to reformulate the considered problem by stating it in a reverse way, i.e.
the way aims to search for decision variables (e.g. amount of resource for the activity)
guaranteeing that the completion time of the project does not exceed the assumed deadline H.
This way is considered in next subsection.

 15

4.2 Routine queries formulated in the reverse way

Given the project P specified by the same activity network, time horizon, durations of the

activities and limit of the resource (r ≤ 20) as in Example 2. Amounts of the resource allocated
to the activities are not known, however the constraint determining the amounts is given.
According to the database of past project, the relationship between an amount of the resource
and a duration of the j-th activity has been determined as follows: dpj = a + b· tj, where a = {1,
2} and b = {2, 3}.

Taking into account above-mentioned assumptions, the problem reduces to the question:
what amounts of the resource allocated to the activities dpj guarantee that completion time of a
schedule does not exceed the deadline H, and resource limit r?

In order to response to this question the values of the following sentences are sought: Dp =
(dp1, …, dp9) and S = (s1, …, s9). The reference model encompassing assumption of the
considered example was implemented in Oz Mozart programming environment, and the
obtained solution is following: Dp = (7, 9, 5, 5, 7, 7, 3, 9, 11) and S = (0, 0, 3, 4, 4, 5, 8, 7, 9).
The project schedule fulfilled all constraints is presented in Fig. 5.

0 2 4 6 8 10 12 14

A1

A2

A3

A4

A5

A6

A7

A8

A9

Fig. 5. Gantt’s chart of project

The chart illustrating the changes of resource usages, by assumed resource’s limit and the

time horizon, is presented in Fig. 6.

0

5

10

15

20

25

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Fig. 6. Gantt’s-like chart of the resource usage

 16

The assumed ranges of decision variables and constraints determine the possible values of
sought parameters. The result is a set of feasible solutions in time unit h. This set can be empty,
or with one or many solutions. Note that the number of generated solutions depends not only
on the knowledge base, but also on a user-declared granularity of solutions in constraint
programming languages such as, for instance, ILOG or Oz Mozart [15].

5. CONCLUSIONS

In the present, changeable business environment, quickness of response to customer needs

or pressure on innovation and effective cost management determine the success or failure in the
struggle for market position. This forces more frequent and larger-scale changes in
contemporary organizations. The answer to these new challenges is the application of the
principles of project management. In the case of projects carried out on a client order,
erroneous estimation of expenditures and project deadlines may result penalties being accrued,
as agreed upon in the contract or covering the costs with the company's own money. A wrong
decision may worsen the liquidity of an enterprise or even lead to its bankruptcy. In this
situation, it seems extremely important to support the decision maker.

The proposed approach assumes a kind of reference model encompassing open structure,
enabling one to take into account different sorts of variables and constraints as well as to
formulate straight and reverse kinds of project planning problems.

Since a constraint can be treated as a logical relation among several variables, each one
taking a value in a given (usually discrete) domain, the idea of CP is to solve problems by
stating the requirements (constraints) that specify a problem at hand, and then finding a
solution satisfying all the constraints. Because of its declarative nature, it is particularly useful
for applications where it is enough to state what has to be solved instead of how to solve it [1].

The advantages of the proposed approach include the possibility of the description of
enterprise and project management in terms of a knowledge base. Moreover, in the presented
approach it is possible to obtain a set of feasible solutions in the different phases of the project
life cycle. This is especially attractive in the absence of the possibility of continuing the project
in its primary form and can support the decision maker in choosing the alternative project.

Further research focuses on the presentation of the model reference for the project
management problem in a dynamic form, taking into account the subsequent project
management functionality and assessing their impact on the set of feasible solutions. It should
also define criteria for evaluating project alternatives, and carrying out verification of the
knowledge base of described object.

REFERENCES

1. BANASZAK Z., BOCEWICZ G., BACH I.: CP-driven production process planning in
multiproject environment, Decision Making in Manufacturing and Services, pp. 5-32, Vol. 2,
No.1-2, 2008.

2. BELASSI W., TUKEL O.I.: A new framework for determining critical success/failure factors
in projects, International Journal of Project Management, pp. 141-151, Vol. 14, 1996.

3. BERTALANFFY L.: General system theory - A Critical Review, General Systems, pp. 1-20,
Vol. 7, 1962.

 17

4. BOCEWICZ G., BACH-DĄBROWSKA I., BANASZAK Z.: Declarative approach to
computer aided project planning systems design. Akademicka Oficyna Wydawnicza EXIT,
Warsaw 2009. (In Polish).

5. BUBNICKI Z.: Logic-algebraic method for knowledge-based relation systems, Systems
Analysis Modelling and Simulation, pp. 21-35, Vol. 33, 1998.

6. COOKE-DAVIES T.J., ARZYMANOW A.: The maturity of project management in different
industries: an investigation into variations between project management models, International
Journal of Project Management, pp. 471-478, Vol. 21, 2003.

7. JORGENSEN M., SJOBERG D.I.: The impact of customer expectation on software
development effort estimates, International Journal of Project Management, pp. 317-325, Vol.
22, 2004.

8. JORGENSEN M., GRUSCHKE T.: The impact of lessons-learned sessions on effort estimation
and uncertainty assessments, IEEE Transactions on Software Engineering, pp. 368-383, Vol.
35, No. 3, 2009.

9. Meredith J.R., Mantel S.J.: Project Management – a managerial approach. Third Edition, John
Wiley and Sons, New York 1995.

10. MOLOKKEN-OSTVOLD K., JORGENSEN M.: A comparison of software project overruns,
IEEE Transactions on Software Engineering, pp. 754-766, Vol. 31, No. 9, 2005.

11. NITITHAMYONG P., SKIBNIEWSKI M.J.: Success/failure factors and performance
measures of web-based construction project management systems: professionals’ viewpoint,
Journal of Construction Engineering and Management, pp. 80-87, Vol. 132, 2006.

12. REICHELT K., LYNEIS J.: The dynamics of project performance: benchmarking the drivers of
cost and schedule overrun, European Management Journal, pp. 135-150, Vol. 17, 1999.

13. ROBERTSON S., WILLIAMS T.: Understanding project failure: using cognitive mapping in
an insurance project, Project Management Journal, pp. 55-71, Vol. 37, 2006.

14. ROSSI F.: Constraint (logic) programming: A survey on research and applications, New
Trends in Constraints (Apt K.R. et al.), pp. 40-74. Springer-Verlag, Berlin 2000.

15. SCHUTLE H., SMOLKA G., WURTZ J.: Finite Domain Constraint Programming in Oz.
German Research Center for Artificial Intelligence, Saarbrucken 1998.

16. SHORE B.: Systematic biases and culture in project failures, Project Management Journal, pp.
5-16, Vol. 39, 2008.

17. SINGH R., KEIL M., KASI V.: Identifying and overcoming the challenges of implementing a
project management office, European Journal of Information Systems, pp. 409-427, Vol. 18,
2009.

18. VAN ROY P., HARIDI S.: Concepts, techniques and models of computer programming.
Helion, Gliwice 2005.

19. YEO K.T.: Critical failure factors in information system projects, International Journal of
Project Management, pp. 241-246, Vol. 20, 2002.

 18

Keywords: machine tools selection, Evolutionary System of Multicriteria Analysis, ESAW

Arkadiusz GOLA∗, Jerzy MONTUSIEWICZ** , Antoni ŚWIĆ***

COMPUTER AIDED FMS MACHINE TOOLS SUBSYSTEM
SELECTION USING THE EVOLUTIONARY SYSTEM

OF MULTICRITERIA ANALYSIS

Abstract

One of the key problems in the area of flexible manufacturing systems (FMS)
design is a problem of proper design of manufacturing subsystem and especially
the machine tools selection. Although the problem seems to be simple, in fact it is
difficult to solve because of large variety and number of parameters and also
brief foredesign which are highly influential for the decision. This study shows
possibility of implementation the Evolutionary System of Multicriteria Analysis
<ESAW> for defining the importance of solutions in the process of casing-class
FMS machine tools selection.

1. INTRODUCTION

One of the key problems in the area of Flexible Manufacturing Systems (FMSs) design
is a problem of manufacturing subsystem design and especially machine tools selection
for designed FMS. It is the first and very important step which determines the system
effectiveness to large extent. The proper selection of machine tools subsystem could both
significantly minimize investments for construction, as well as lead to minimization of costs
of system operation or make the most of machines. Moreover the purchased machinery stock
directly determines the efficiency, automation and flexibility level of the whole FMS
and the result of this step is a foundation for designing the residual subsystems of flexible
manufacturing system [21].
Although the problem seems to be simple, selection of proper machine tools for designed system
is not an easy one. The basic resource of the problem is a great variety and number of parameters
and also complexity of design conditions which are need to be taken into account during the
selection process. Therefore appears the necessity of using the formalized optimization methods
which assist to find the best solution in the process of FMS machine-tools subsystem design.

∗ D.Sc., Eng., Lublin University of Technology, Faculty of Management, Department of

Enterprise Organization, ul. Nadbystrzycka 38, 20-618 Lublin, e-mail: a.gola@pollub.pl
∗∗ D.Sc., Eng., Lublin University of Technology, Faculty of Fundamentals of Technology,

Department of Fundamentals of Technology, ul. Nadbystrzycka 38, 20-618 Lublin, e-mail:
j.montusiewicz@pollub.pl

∗∗∗ D.Sc., Eng., (Assoc. Prof.), Lublin University of Technology, Faculty of Mechanical
Engineering, Institute of Technological Systems of Information, ul. Nadbystrzycka 36,

 20-618 Lublin, e-mail: a.swic@pollub.pl

 19

When taking into account that machine tools selection process is realized using more than one
criterion of evaluation of solutions – the useful are methods of multicriteria analysis [9,17,24].
Various researchers have studied to determine the suitable equipment for the different
manufacturing facilities using mathematical models, heuristic algorithms and MCDM methods.
Some of them have been focused on machine tool selection directly. Several studies regarding
the machine tool selection problem can be given as follows. Lin an Yang [12] presented
a machine selection model from a range of machines for the manufacture of particular part types
using the AHP method. Tabucanon et al. [20] developed a decision support framework
for selecting the most appropriated machines in flexible manufacturing systems (FMS). Atamani
and Lashkari [2] developed a model for machine tool selection and operation allocation in FMS.
Wang et al. [22] presented fuzzy multiple attribute decision making model to select
the appropriate machines for FMS. Fuzzy technique for order preference by similarity to ideal
solution (TOPSIS) presented Onut at al. [16]. Arslan et al. [1] presented a muliti-criteria weighted
average (MCVA) method for machine tool selection. Yourdakul [23] proposed a model linking
machine alternatives to manufacturing strategy for machine tool selection. In that study,
evaluation of machine tool alternatives was modelled considering strategic implications
of the machine tool selection decisions by using the AHP method. Ayag and Ozdemir [3] used
the fuzzy AHP technique to weight the machine tool alternatives under eight main and nineteen
subcriteria and then carried out benefit/cost ratio analysis by using both the fuzzy AHP score and
procurement cost of each alternative. By using the same criteria again, Ayag [4] proposed
a hybrid approach, which integrates the AHP with simulation techniques, to determine the best
machine tool satisfying the needs and expectations of a manufacturing organization among set
of possible alternatives in the market. Mishra et al. [13] suggested a fuzzy goal-programming
model having multiple conflicting objectives and constraints pertaining to the machine tool
selection and operation allocation problem, and used a random search optimization methodology.
Chan and Swarknar [6] presented a fuzzy goal programming approach to model the machine tool
selection and operation allocation problem of FMS. An ant colony optimization based approach
was also applied to optimized the model. Cimren at al. [7] proposed a decision support system
for machine tool selection using the analytic hierarchy process. Dagdeviren [8] presented
an integrated approach which employs analytic hierarchy process (AHP) and preference ranking
organization method for enrichment evaluations (PROMETHEE) together for the equipment
selection problem. Selection of a machine tool for FMS using ELECTRE III presented
Balaij at al. [5]. Rao and Parnichkun [18] presented a methodology based on a combinatorial
mathematics-basede decision method for evaluation alternative flexible manufacturing systems.
Although there were a number of publications evaluating the machine tools alternatives
in the literature, many of them have been prepared using the MCDM methods considering human
judgments, tangible, intangible and multiple criteria. In this paper the possibility
of implementation the Evolutionary System of Multicriteria Analysis for the defining
the importance of solutions in the process of casing-class FMS machine tools selection was
shown. In particular, the issue of the process of machine tools selection, the essence
of Evolutionary System of Multicriteria Analysis and solutions of the process of defining
the importance of solutions for selected decision problem were presented.

 20

2. THE ALGORITHM OF THE PROCESS OF CASING-CLASS FM S
MACHINE TOOLS SELECTION

The process of selection of machine tools subsystem for designed casing-class FMS

is implemented using the assumptions of the methodology presented in works [9,19]. The
selection is realized according the four-stages algorithm presented in fig. 1.

Record of knowledge about

machine tools

Record of design knowledge

about products to be machined

in the FMS

Elimination of machine

tools based on „critical”

criteria

Quantitative selection

of machine tools for particular

„technological paths”

Selection of machine tools

(„technological path”) according

to optimisation criteria

Development

of „technological paths”

for the synthetic product

START

STOP

STAGE I

Acquisition and processing

of information about machine

tools, representation of design

knowledge, development

of technological assumptions

for the products

to be machined in FMS

STAGE II

Elimination of machine tools

that do not meet the critical

technological-organization

conditions

STAGE III

Development of possible

variants of machining of the

synthetic product, quantitative

choice of machine tools for the

particular variants

STAGE IV

Optimisation analysis of the

particular variants selection

of machine tools in accordance

with the adopted optimisation

criteria

Generation of matrix

of machine tools’

technological capacity

Development

of technological process

of the synthetic product (SP)

Fig.1. Main algorithm of the methodology of machine tools selection in casing-class FMS
[9,19]

The first step in the process of selection is the preparation of a record of knowledge about
all machines tools from among which the choice is to be made O = {o1, o2,… on} = {o i},
products to be machined in the FMS being designed W= {w1, w2, …, wt} = {w α}
and development and saving of technological process of the synthetic product (SP).

In the second stage elimination from the O database of those machine tools that are
incapable of producing the parts that are to be machined in the system, based on certain limit

 21

criteria (“critical” criteria) is realized. In accordance with the adopted assumptions, we should
eliminate from the database those machine tools that:
1. Do not meet the limit conditions resulting from the technical parameters of products to be

machined in FMS.
2. Do not meet the limitations imposed by the user and/or designer of the flexible

manufacturing system.
3. Do not have the design-technological capabilities to perform the machining operations

provided for realization within the process of manufacturing.
Those machine tools that „remain” in the database after the stage of elimination constitute

of set of machine tools that are taken into consideration at further stages of selection (X
= {x1, x2,… xm} = {x k}).

Machine tools which meet the critical conditions are saved in the set of technological
machines X= {x1, x2,… xm} = {x k}. On the base of X set and the developed
technological process of synthetic product the Akj [0-1] matrix of machine tools capabilities
is generated. The matrix defines which of the machine tools has the ability to realize specified
cut from the technological process of WS.

In the stage three the generation of technological paths and the quantitative selection
of machine tools for particular technological paths is realized. Technological paths determines
possible ways of going the synthetic product through the system, i.e. following machine tools
which realizes following cuts in the technological process of WS. Technological paths and the
results of quantitative selection of machine tools which is realized using the method
of balancing the burden level of particular machine tools with the manufacturing tasks forms
solutions to be analyzed in fourth stage of methodology.

The last step in the process of selection is a choice the best solution using the accepted
criteria of evaluation. The optimization criteria (target functions) in presented model
are as follows:

1) Minimisation of total costs of machine tools acquisition and operation (per annum)

calculated using formula (1):

∑
=

→+=
m

k
skokkk kaCLMF

1
1 min]})*[({)(µ

 (1)

where: Lk – number of k machine tools, Ck – total purchasing price of k machine tool, aok – annual

depreciation rate of k machine tool, ksk – average annual cost of service for k machine tool.

2) Minimization of time of machining (throughput time) of synthetic product (exclusive
of inter-cut transport and storage operations time) – calculated using formula (2):

min}}]*)1[();max(*{

]);{[max()(

2

11

→+−++

+=

∑
=

jkwnk

z

j
wpkwnk

kwpkwnk

tttt

tttMF

λλ

µ

(2)

where:
value λ assumes the following values:

=
1

0
λ

twnk – tool change time „from chip to chip” on k machine tool, twpk – technological palette change
time on k machine tool, t1k – unit time of realization of first operations in technological process
of synthetic product on k machine tool, tjk – unit time of realization of j cut on k machine tool.

, when cut δj is realized on the same machine tool as cut δj-1

, when cut δj is realized on another machine tool than cut δj-1

 22

3. STRUCTURE AND CHARACTERISTICS OF THE EVOLUNTARY
SYSTEM OF MULTICRITERIA ANALYSIS

To solve the task of optimization defined in section 2 (stage 4) the Evolutionary System
for Multicriteria Analysis <ESAW> was used. The system takes advantage of many different
cooperating with each other methods and enables to generate one solution or small set
of solutions, optimal in Pareto sense which are not much sensitive for changing the preferences
for criteria given by experts [14].
The Evolutionary System of Multicriteria Analysis was built taking into account the internal
features included both into analyzed values of solutions and parameter given in percentage.
Values of evaluation of solutions decide of position of ideal vector, which is a basic reference
point in the Compromise Solution Determination Method. The indistinctive interval given in
percentage enables filtration of solutions using the Undifferentation Interval Method. The final
effect of filtration depends both on the defined value of indistinctive interval and mutual
position of analyzed valuation of solutions in the criteria space [15].
The Evolutionary System of Multicriteria Analysis includes following methods: the Boundary
Value Method (BVM), the Ideal Point Definition Method (IPDM), the Undifferentation
Interval Method (UIM) and the Compromise Solution Determination Method (CSDM) (fig. 2).

• Boundary Value Method (BVM)

BVM eliminates undominated solutions, which values of rate are located on the extreme
border of set of undominated solutions along orthogonal directions of components
of criteria vector – i.e. values of solutions which determine the corner points and these one
which are located in its neighborhood [14]. The values of solutions which determine
the corner points usually defines the ideal value (ideal vector), so its elimination causes
necessity of determining new ideal vector. BVM is over a wide range similar to formulated
in an area of one-criterion and multicriteria optimization task of satisfaction [15]. In a task
of multicriteria optimization occurs the vector target function F(x) = [F1(x), F2(x), …,
Fj(x)]T, it is needed to specify j satisfactory values fsj. (where j ∈J = {1, 2, …,J}
is a number of target function). The task of satisfaction assumes the shape as follows:

,)()(xFsatxF
Xx

s ∈
=

where: Fj – j component of the target function, x – vector of decision variables, fsj – j satisfactory
value of crierion, xs – vector of decision variables for which the target function F(x) take
the favourable value in comparison with previously selected satisfactory value.

• Ideal Point Definition Method (IPDM)

In the IPDM method the situation is reversed. It was proposed to treat the referential point
which is the positive standard as a new ideal point. Accepted ideal point chooses from
the set of valuations of undominated solutions the subset of valuations of solutions which
satisfy the conditions that any of component values will not be adequately lesser (or larger)
than the value of component of ideal point (depending if the task is the minimization
or maximization one).

=∈≥

=∈≤
=

∈
JJjxFtaskinfF

JJjxFtaskinfF
xFsat

jSjj

jSjj

Xx
,1),(min

,1),(min
)(

(3)

 23

Fig. 2. Block diagram of the Evolutionary System of Multicriteria Analysis [14]

There is, of course, possibility of simultaneous using this two mentioned above methods
of selection: BVM and IPDM. The selection of set of undominated solutions with accepted
positive standard as a new ideal point Fo, and satisfactory values fs was presented in fig 3.
Using the inverse criteria in the multicriteria analysis causes that the elimination
of solutions, which have very small values one component, leads simultaneously
to rejecting this solutions with have big or very big values of different components.

ANY NEW
VALUES?

INDICATING THE PREFERENTIAL SOLUTIONS

ANY NEW

PN VALUES?

ANY NEW
VALUES?

IN
IT

IA
L

 F
IL

T
R

A
T

IO
N

STOP

DETERMINING THE SUBSET
OF PARETO OPTIMAL SOLUTIONS

INPUT DATA FOR METHOD::
- CONDITONS OF SETS,
- VALIDITY OF CRITERIA.

DETERMINING THE SUBSET OF COMPROMISE
SOLUTIONS USING THE COMPROMISE SOLUTION

DETERMINATION METHOD (CSDM)

DETERMINING THE SUBSET
OF REPRESENTATIVE SOLUTIONS

ITRODUCTION: NUMBER OF CRITERIA
AND ACCEPTABLE SOLUTIONS

F
IL

T
R

A
T

IO
N

 IN
 C

R
IT

E
R

IA
L

 S
P

A
C

E

F
IL

T
R

A
T

IO
N

 U
IM

F

IL
T

R
A

T
IO

N
 C

S
D

M

ANY CHANGE
OF DATA?

ANY CHANGE

OF DATA?

T

N

T

N

T

NT

N

T

N

START

INPUT DATA FOR METHODS:

DETERMINING THE SUBSET OF UNDOMINATED
SOLUTIONS USING:

- THE BOUNDARY VALUE METHOD (BVM)

- THE IDEAL POINT DEFINITION METHOD (IPDM).

INPUT DATA FOR METHOD:

DETERMINING THE SUBSET OF SOLUTIONS
UNDOMOMINATED USING THE METOHOD

OF UNDIFFERENTATION INTERVAL METHOD (UIM)

ANALYSIS IN SPACE OF DECISION
VARIABLES

 24

Fig. 3. Selection of the set of undominated solutions (����) using simultaneously BVM
and IPDM methods, ���� – ideal point (PI), ���� - new PI, ����- valuation of the solutions

which meet the new ideal point, ����- satisfying valuation (OS), ����- valuation of solutions
which meet the OS, ����- valuation of solution which meet the OS and new ideal point [15].

• Undifferentation Interval Method (UIM)

The selection using the UIM method was realized according to valuations of undominated
solutions. Elimination of elements of subset uses on the idea of optimality in the sense
of undifferentation interval which is based on the idea of modified mutation.
The multicriteria analysis of undominated solutions is realized in the criteria space
and pursue to find if the value of mutated solution (“made worse”) by the accepted interval
of undifferentation UI still remains as an undominated solution and will be added
to actually created set of undominated solutions. In case of minimization of criteria, the
element x^∈Ω will be undominated in the sense of undifferentation interval if and only
if in the Ω set there is not an element x+, that for each λ∈N,

)()()

100
1()()(:0)(^

1
^^

1
++ >+<≥ xFxF

PN
proceedxFxFxFwhen ll

l
l

)()()
100

1()()(:0)(^
1

^^
1

++ >−<< xFxF
PN

proceedxFxFxFwhen ll
l

l

where: Ω – non-empty set of solutions optimal in Pareto sense.

The situation where the element x^ is eliminated, because after the mutation of valuation
of this element about the value of selected interval of undifferentation PN1, so it gets into
the domination cone with the top in F(x+) point was presented in fig . 4a. The case when
both of solutions x^ and x+ are undominated elements in the sense of undifferentation
interval method are presented in fig. 4b.

(4)

 25

Fig. 4. Graphic visualization of (4) condition in case of two-criteria minimization [14]

• Compromise Solution Determination Method (CSDM)

This method tends to finding “the best solution” or subset of “the best solutions” using
the analysis of domination relations in the set of vector values of indexes. In tasks
of selection the decider has at his disposal complete set of acceptable solutions and theirs
valuations and is not able to make new solutions. Therefore the operation of intersection
applies to components of valuations of generated compromise solutions and components
of the ideal point. Received in this way new ideal points, called following-up ideal points,
fulfill the function of reference points during the next multicriteria analysis. The operation
of intersection allows to get many reference points which are the base for generating
successive compromise solutions. To visualize the way of operating the CSDM method,
the situation, where the analyzed set of undominated solutions is an unseparately
one and is composed of two subsets YD1

 and YD2 was presented in fig 5. The subset
of valuations of compromise solutions reflects the shape of analyzed set of valuations even
in case if it consists of two subsets.

 Fig. 5. An example lay-out of valuations of compromise solutions [15].

 26

4. PROCESS OF DEFINING THE IMPORTANCE OF SOLUTION
IN THE PROBLEM OF FMS MACHINE TOOLS SELECTION

Using the methodology presented in section 2, the process of machine tools selection

for the task formulated in paper [10] was realized. As result of execution stages I-III
the solution in form of 36 different technological paths M={M1, M2, …, M36}
with corresponding values of target functions F1(Mµ), F2(Mµ) were received. The values
of target functions connected with the solutions are presented in tab. 1.

Tab. 1. Values of target functions in realized experiment of selection

The lay-out of received solutions according to calculated target functions was presented

in fig. 6.
A multicriteria analysis was realized using the Evolutionary System of Multicriteria

Analysis according to algorithm presented in section 3 (fig. 2). In the first step the optimal
in Pareto sense solutions were determined. This set contains 10 elements as follows: M5, M8,
M17, M19, M21, M22, M24, M28, M30, M33.

In second step the selection using the Undifferentation Interval Method (UIM) was realized.
There were accepted values of interval of undifferentation as follows: PN = 0% according
to the criterion F1(Mµ) and PN = 1,0% according to the criterion F2(Mµ). Non-zero value
of interval of undifferentation according to the criterion F2(Mµ) was accepted as a result
of possible inaccuracy of calculated target functions what follows from rounding
and differences in rates when calculating the prices of purchasing the machine tools. As a result
of realized analysis using the UIM method the received subset was limited to 7 elements. This
are: M5, M17, M19, M21, M22, M24, M33.

Value of target function Value of target function Symbol
(number)
of solution

F1(M �)
[sek.] F2(M�) [zł]

Symbol
(number)
of solution

F1(M�)
[sek.] F2(M�) [zł]

M 1 33 482 3 553 054,74 M 19 33 029 4 306 080,63
M 2 33 675 3 765 964,99 M 20 33 222 3 901 027,01
M 3 33 597 3 548 251,65 M 21 33 144 3 548 251,65
M 4 33 445 3 905 830,10 M 22 32 992 4 658 855,99
M 5 33 712 3 413 189,64 M 23 33 259 3 548 251,65
M 6 33 560 3 901 027,01 M 24 33 107 3 901 027,01
M 7 33 565 3 535 561,80 M 25 33 112 4 288 587,69
M 8 33 758 3 395 696,70 M 26 33 305 3 530 758,72
M 9 33 680 3 530 758,72 M 27 33 227 3 530 758,72
M 10 33 528 3 535 561,80 M 28 33 075 4 288 587,69
M 11 33 795 3 395 696,70 M 29 33 342 3 530 758,72
M 12 33 643 3 530 758,72 M 30 33 190 3 530 758,72
M 13 33 638 3 468 319,36 M 31 33 185 4 221 345,26
M 14 33 831 3 681 229,62 M 32 33 378 3 816 291,64
M 15 33 753 3 463 516,28 M 33 33 300 3 463 516,28
M 16 33 601 3 821 094,72 M 34 33 148 4 574 120,62
M 17 33 868 3 328 454,26 M 35 33 415 3 463 516,28
M 18 33 716 3 816 291,64

M 36 33 263 3 816 291,64

 27

�� ������ ������ ���	��
 ��������� ��������� ��������	 ��
�� �
���

��������� ��������� ��	��
 �� � ������
���

�����������������������
�� � �� �� � �� � �� � �� � �� � �� � �� � �� � �� � ��

�� ��� � ��� �
�� ��� � � !"#�

Fig. 5. Lay-out of solutions according to calculated target function

In third step, the filtration using the Compromise Solution Determination Method was

realized. The metrics both min-max and min-max with weight with different preferences
of analyzed criteria were used. The results of analyses were presented in Tab. 2. It is worth
to pay attention that to find the degree of sensitiveness each of solution, the weights from 0,2
to 0,8 for each of criteria have been taken.

Tab. 2. Results of filtration using the CSDM method

No. Preferention weights
∑ωl = 1

First compromise
solution

Subset of compromise
solutions

1. ωl = ω2 = 0,5 M5 M 5
*, M 33, M21,

2. ωl = 0,6; ω2 = 0,4 M5 M 5, M 33, M21,

3. ωl = 0,7; ω2 = 0,3 M33 M 33, M 5, M21

4. ωl = 0,8; ω2 = 0,2 M33 M 33, M 5, M24

5. ωl = 0,4; ω2 = 0,6 M17 M17, M 5, M 33

6. ωl = 0,3; ω2 = 0,7 M17 M17, M 5, M 33

7. ωl = 0,2; ω2 = 0,8 M17 M17, M 5, M 33

* - preffered solution – present in each of compromise solutions’ subset

In fourth step the subset of representative solutions was searched. Analysis of the results

presented in tab. 2 showed that solutions M5 and M33 exists in each of determined subset
of solutions, solutions M17 and M21 appeared three times and the M24 solution appeared
one time. Ipso facto the realized analysis in the space of decision variables showed

 28

that received solutions M5 and M33 are characterized by the minimal sensitivity of changing
the weights of particular criteria and taking into account major assumptions of Evolutionary
System of Multicriteria Analysis – they are preferred solutions (with the same degree
of importance). The final decision of about solution should be done by the designer taking into
account particular analysis and criteria of individual preferences according to received values
of target functions.

5. CONCLUSIONS

Decision support systems should help the designer to find the optimal solution among many

possibilities for the defined decision task. It is especially highly important, when the quality
of analyzed variants of solutions is described with many criteria and the decision problem
is burdened with the high risk of non-objective criteria when taking the decision.

One of the more important problem in the area of modern manufacturing systems design
is a question of proper machine tools (technological machines) selection. When take into
account that in the process of machine tools selection the relation between objective
and subjective criteria is 20 to 80 [11] and the choice should be done considering some
or several frequently inverse criteria, the need of searching methods which maximize
the objectivity of taken decision.

In this paper the possibility of implementation the Evolutionary System of Multicriteria
Analysis <ESAW> for the defining the importance of solutions in the process of casing-class
FMS machine tools selection was shown. Results of realized analysis shows that the <ESAW>
system allows to find among the number of analyzed solutions few (or sometimes only one)
proffered solutions from the selected criteria of evaluation point of view. Thanks to fact that
the selection process is based onto internal features of solutions’ set – the preferred solutions
are characterized with the “immunity” for subjective criteria of decider’s evaluation.

REFERENCES

1. ARSLAN M.C., CATAY B., BUDAK E.: A decision support system for machine tool
selection, Journal of Manufacturing Technology Management (2004), Vol. 5, pp. 101-109.

2. ATAMANI A., LASHKARI R.S: A model of machine tool selection and operation allocation
in flexible manufacturing systems, International Journal of Production Research (1998), Vol.
36, pp. 1339-1349.

3. AYAG Z, OZDEMIR R.G.: A fuzzy AHP approach to evaluating machine tool alternatives,
Journal of Intelligent Manufacturing (2006), Vol. 17, 179-190.

4. AYAG Z.: A hybrid approach to machine tool selection through AHP and simulation.
International Journal of Production Research (2007), Vol. 45, No. 9, pp. 2029-2050.

5. BALAJI C.M., GURUMURTHY A., KODALI R.: Selection of a machine tool for FMS using
ELECTRE III – a case study. Automation Science and Engineering (2009), pp. 171-176.

6. CHAN F.T.S., SWARNKAR R.: Ant colony optimization approach to a fuzzy goal
programming model for a machine tool selection and operation problem in an FMS, Robotics
and Computer-Integrated Manufacturing (2006), Vol. 22, pp. 353-362.

7. CIMREN E., CATAY B., BUDAK E.: Development of a machine tool selection system using
AHP, Intelligent Journal of Advances Technology (2007), Vol. 35, pp. 363-376.

8. DAGDEVIREN M.: Decision making in equipment selection: an integrated approach with
AHP and PROMETHEE, Journal of Intelligent Manufacturing (2008), Vol. 19, pp. 397-406.

 29

9. GOLA A., ŚWIĆ A., Brief Preliminary Design for a Method of FMS Machine Tools Subsystem
Selection, PAMM (2010) Vol. 9, Issue 1, pp. 663-664.

10. GOLA A., ŚWIĆ A., Computer Aided FMS Machine Tools Subsystem Selection – Conception
of Methodology, [w:] Z.Banaszak, J.Matuszek, Applied Computer Science. Supporting
Enterprise Management Processes (2009), Vol. 5, No 1, Wyd. ATH, Bielsko-Biała, s. 27-39.

11. HONCZARENKO J., Słaby I.: Metodyka doboru obrabiarek skrawajacych, Mechanik, Nr
3/2009, s. 166-173.

12. LIN Z.C., YANG C.B.: Evaluation of machine selection by the AHP method, Journal of
Materials Processing Technology (1994), Vol. 57, pp. 253-258.

13. MISHRA S., PRAKASH, TIVARI M.K, LASHKARI R.S.: A fuzzy goal-programming model
for machine tool selection and operation allocation problem in FMS: A quick converging
simulated annealing-based approach, International Journal of Production Research (2006),
Vol. 44. No. 1, pp. 43-76.

14. MONTUSIEWICZ J., Ewolucyjna analiza wielokryterialna w zagadnieniach technicznych,
Prace IPPT Polskiej Akademii Nauk, Warszawa 2004.

15. MONTUSIEWICZ J.: Komputerowe wspomaganie decyzji przy u�yciu Ewolucyjnego Systemu
Analizy Wielokryterialnej, Przegląd Mechaniczny nr 5’07, Suplement, s. 107-110.

16. ONUT S., KARA S.S., EFENDIGIL T.: A hybrid fuzzy MCDM approach to machine tool
selection, Journal of Intelligent Manufacturing (2008), Vol. 19, pp. 443-453.

17. PRIMOSE P.L., LEONARD R., Selecting Technology for Investment in Flexible
Manufacturing, International Journal of Flexible Manufacturing Systems (1991), Vol. 4, pp.
51-77.

18. RAO R.V., PARNICHKUN M.: Flexible manufacturing system selection using a
combinatorial mathematics-based decision-making method, International Journal of Production
Research, Vol. 47, Issue 24, pp. 6981-6998.

19. ŚWIĆ A. GOLA A., Elements of Design of Production Systems – Methodology of Machine
Tool Selection in Casing-Class FMS, Management and Production Engineering Review (2010),
Vol. 1, No. 2, pp. 73-81.

20. TABUCANON M.T., BATANOV D.N., VERMA D.K.: Intelligent Decision Support System
(DSS) for the selection process of alternative machines for Flexible Manufacturing Systems
(FMS), Computers in Industry (1994), Vol. 25, pp. 131-143. ���

 ����� �� �	
��� �
���� �� ��
����
 �	�������� ����
���
�!�������
� "�� �����# �$	���
	%&
	�"�# '
	��� (
��
��
	� �))*�
22. WANG T.Y., SHAW C.F., CHEN Y.L.: Machine selection in flexible manufacturing cell: A

fuzzy multiple attribute decision making approach, International Journal of Production
Research (2000), Vol. 30, pp. 2079-2097.

23. YOURDAKUL M.: AHP as a strategic decision making tool to justify machine tool selection,
Journal of Materials Processing Technology (2004), Vol. 146, pp. 365-376.

24. ZAWADZKA L., Modele optymalizacji wielokryterialnej. Przykłady aplikacji, [w:]
L. Zawadzka, In�ynieria systemów zarz+dzania, Wyd. Politechniki Gdańskiej, Gdańsk 2002.

 30

Genetic Algorithms, Genetic Programming, Adaptive Mechanisms

Juraj SPALEK∗ Michal GREGOR∗∗

ADAPTIVE SWITCHING OF MUTATION RATE FOR
GENETIC ALGORITHMS AND GENETIC

PROGRAMMING

Abstract

The paper concerns the application of Genetic Algorithms and Genetic
Programming to complex tasks such as automated design of control systems,
where the space of solutions is non-trivial and may contain discontinuities.
An adaptive value-switching mechanism for mutation rate control is proposed.
It is shown that the proposed mechanism is useful in preventing the search from
getting trapped in local extremes of the fitness landscape.

INTRODUCTION

Genetic Algorithms represent a well-known optimization method recognized in particular
for its flexibility in representation of solutions and for its ability to produce reasonably fit
results in a reasonable amount of time. Genetic Programming applies the theory of Genetic
Algorithms to evolving computer programs, usually represented by syntactic trees.

There is a multitude of research papers that aim to improve convergence and robustness of
both methods. Some of these concentrate on parameter control, that is to say on setting and
modifying various parameters of the algorithm.

This paper presents an adaptive value-switching mechanism for control of the mutation
rate, which aims to decrease the probability that the search will become trapped in local
maxima by increasing mutation probability to a high value once such scenario is detected.

GENETIC ALGORITHMS AND GENETIC PROGRAMMING

Although the methods in question are relatively well known, let us first present some
fundamental information about both – Genetic Algorithms (GA) and Genetic Programming
(GP).

∗ Prof. Ing. Juraj Spalek, PhD. – Department of Control and Information Systems, Faculty of Electrical

Engineering, University of Žilina, Univerzitná 1, 010 26 Žilina, Slovak Republic,
juraj.spalek@fel.uniza.sk

∗∗ Bc. Michal Gregor – Department of Control and Information Systems, Faculty of Electrical
Engineering, University of Žilina, Univerzitná 1, 010 26 Žilina, Slovak Republic,
o.m.gregor@gmail.com

 31

Genetic algorithms represent one of the several computational techniques based on
simulation of evolution, a process based on the principle of natural selection, that is, on the
survival of the fittest. The genetic algorithm operates on a population of individuals.

The individuals represent various solutions of a specific problem. The main principle of the
algorithm is as shown in figure 1.

The first step is to generate the initial population – this typically involves generating
a group of random individuals. The next step is to perform evaluation of those individuals,
which enables the algorithm to compare the individuals to each other and, furthermore, to
introduce the survival of the fittest: the individuals with the best scores (also known as fitness
in the genetic algorithm terminology) are the most likely* to participate in reproduction, that is,
in forming the next generation. This is analogous to the natural selection process, in which the
fitter individuals have greater chance to survive and to reproduce.

Generation of
the initial

population

Evaluation of
the individuals Selection

Reproduction

Stopping the evolution
in case the defined
conditions are met

CrossoverMutation

Fig. 1. The general principle of genetic algorithms

x y

* ln

x

+

Fig. 1. A simple example of a syntactic

Genetic programming (GP) is a technique developed by John Koza (see Genetic
Programming: On the Programming of Computers by Means of Natural Selection [1]). It
applies the theory of Genetic Programming to the task of evolving computer programs. The
main idea of Genetic Programming is the way in which the individuals are represented – by
syntactic trees (also known as parse trees). Fig. 2 shows a simple example of a syntactic tree
that codes the expression x+x.y ln .

* However, we usually refrain from directly choosing the best n individuals as that tends to reduce

diversity, which leads to getting trapped in a local extreme.

 32

For syntactic trees crossover is usually done by swapping 2 randomly selected sub-trees of the
2 parent individuals, while mutation may be implemented by replacing a randomly selected
sub-tree by a newly generated one. For a more detailed introduction to the problem refer to [1]
or [2].

THE ARTIFICIAL ANT PROBLEM

The artificial ant problem described by John Koza in [1] is essentially a trail-following task.
The actor – an artificial ant – is supposed to navigate in an environment following an irregular
path consisting of pieces of food which it collects. The ant has very limited sensing capabilities
– it only sees a single tile right in front of it. John Koza successfully solves the problem by
applying Genetic Programming†.

In our work we have set some additional requirements concerning the form of the solution
– the evolved controller should, when executed, return the action that the ant is to execute next
instead of calling functors that directly execute the action and wait for its completion. The set
of terminals contains persistent variables and the controller has access to a pre-set number of
its previous inputs and outputs.

Controllers based on such mode of execution seem to be much more difficult to evolve than
those originally proposed by Koza. The search usually gets trapped in a local maximum from
which it is often unable escape.

EXISTING APPROACHES TO PARAMETER CONTROL

In some applications based on the theory of genetic algorithms, the optimization task may
be so difficult – with a complex space including a great number of local optima in which the
search process can get trapped – that additional techniques may be required to find the global
optimum. Genetic programming does in a multitude of tasks serve as an especially good
example of the problem, as it evolves computer programs and it is obvious that two very
similar computer programs may produce drastically different results and thus the space of
solutions is highly complex.

Among the approaches that aim to prevent getting trapped in a local optimum are adaptive
schemes that observe various parameters of the algorithm or the search process itself and using
the observed values adapt some of the parameters. The approaches to parameter setting can
basically be divided into the following categories [3], [4]:

• static parameter control,

• dynamic parameter control,

• adaptive parameter control,

• self-adaptive parameter control.

Static Parameter Control

The common feature of approaches falling into this category is that the setting they provide
remains constant for the entire duration of the evolutionary process. There are many works
analysing the problem of finding optimum settings for parameters like mutation probability and

† See [1] for detailed information about the solution.

 33

crossover probability. Some of these are listed in [3], e.g. the work of Mühlenbein, which
proposes the following formula for the mutation probability:

L=pm /1 , (1)

where L is the length of the bit string by which the individual is represented.

Dynamic Parameter Control

As stated in [4] dynamic parameter approaches typically prescribe a deterministically
decreasing schedule over a number of generations and provides a formula for mutation
probability derived by Fogarty:

()
tm +=tp

2
0.11375

240
1 , (2)

where t is the generation counter.
Articles [3], [4] both refer to a more general expression derived by Hesser and Männer:

()
L

� �
t��=tpm

 −

× 2
exp

, (3)

where � , � , � are constants, � is the population size and t is the generation counter and L is

again the length of the bit string.

Adaptive Parameter Control

Adaptive parameter control techniques monitor the search process itself and provide
feedback. Some examples can be found in [5]. The authors propose the following formulas for
crossover and mutation probability respectively:

≤′

′
−

′−

ffk

f>f
ff

ff
k=p

max

max
c

3

1

(4)

 34

≤

−
−

ffk

f>f
ff

ff
k=p

max

max
m

4

2

(5)

where f is the fitness value of the individual to be mutated, f ′ is the larger of the fitness

values of the individuals to be crossed and
3k and 4k are constants. It is required that

1k and

2k be less than 1.0 in order to constrain
cp and

mp to the range of 0,1 . The ffk=pc ≤′3

and ffk=pm ≤4
 expressions are to prevent crossover and mutation probabilities from

exceeding 1.0 for suboptimal solutions.
Authors of [5] also observe that

cp and
mp are zero for the solution with maximum fitness

and that
1k=pc
 for f=f ′ , while

2k=pm
 for f=f . For further details and for information

concerning setting the values of the constants refer to [5].

Self-adaptive Parameter Control

When using the self-adaptive parameter control approach, parameters such as mutation rate
and crossover probability of each individual are part of its genome and are evolved with it. As
stated in [4], the idea behind this is that a good parameter value will provide an evolutionary
advantage to the individual. For further reference see [3] or [4].

ADAPTIVE VALUE-SWITCHING OF MUTATION RATE

Motivation

Most of the existing parameter setting mechanisms, as presented in the previous chapter,
either focus on setting GA-specific parameters such as length of the bit string (e.g. rule (1)), or
are not adaptive (e.g. (2) and (3)). The adaptive mechanism described in [5] (formulas (4) and
(5)) seems more fit to the task because it implements certain form of convergence detection
based on comparison of the maximum and average fitness values. However this approach does
little to solve the problem of getting trapped in a local optimum as the method does not discern
between local and global optima.

Furthermore – as mentioned hereinbefore – equations (2) and (3) assign the best individual
zero crossover and mutation probabilities, while assigning high probabilities to less fit
individuals. The reasoning behind this is that the less fit individuals can safely be disrupted by
high mutation rates and recombined by crossover (thus employing the solutions with
subaverage fitness to search the space [5]), while the highly fit individuals should be preserved.

However, such approach has a very obvious downside which the authors do not seem to
address – the highly fit individuals obviously contain the most excellent genetic material
available and by disallowing mutation and crossover for these individuals the genetic code they
carry becomes isolated and is not used to generate new solutions.

 35

Description of the Proposed Adaptive Mechanism

The idea that the most fit solutions should survive crossover and mutation unmodified is
valid, yet that feature can be enforced by using elitism‡. Keeping that in mind we propose a
different adaptation scheme in order to address the other issues. The main idea is that the
mutation probability should be increased to a high value when the search has become trapped
in an extreme so as to provide the search process with new genetic material some of which may
previously have been unavailable. To determine whether the search has become trapped the
adaptive mechanism observes the change of average fitness in time.

To describe the solution in more detail – the algorithm works with 2 values of mutation
probability – the normal value and the high value. The algorithm switches from the normal
value to the high value once the trigger criterion activates.

The trigger criterion itself is based on a measure that we will herein term a delta sum:

i

ii
ii f

ff
+

�
S�=

�
S 1

1. −
−

−
, (6)

where
i

�
S is the delta sum in generation i and

if is the average fitness in generation i and �

is the feedback coefficient (the experiments have been carried out for 0.4=�).
If the delta sum is lower than a pre-set value for a predefined number of generations, that is

to say the increase of average fitness in the last few generations is low, indicating that the
search has become trapped§ – the mutation probability is set to its high value so as to provide
the search with new genetic material. As mentioned before, when used in conjunction with
elitism it is guaranteed that the best solution is not destroyed by the high mutation probability.

The mutation probability is reset back to its normal value when at least one of the following
conditions is true:

• the average fitness increases enough to produce a sufficiently large delta sum;

• the maximum fitness increases;

• mutation has been set to its high value for at least n generations.
The n-generation limit is to ensure that the activation does not go on indefinitely (with the

high mutation probability it is not very likely that the average fitness will increase enough to
satisfy the first condition and maximum fitness may not increase as well).

It has been observed that average fitness typically decreases when the criterion activates
because the search process is to a large extent disrupted by the high mutation probability.
However after the n-generation limit forces the mutation rate back to its normal value, average
fitness tends to increase rapidly, thus usually moving away from the local extreme.

Experimental Results

Several experiments have been carried out – Fig. 3 shows performance of the search
algorithm with the AGA adaptive mechanism proposed in [5] with constants set according to

‡ The best individual is copied to the next generation unmodified.
§ This may also indicate convergence to the global maximum, it is, however, hardly possible to tell global

and local maxima apart unless the algorithm is provided with additional problem-specific data.

 36

recommendations. It also shows performance of the search algorithm without any adaptive
mechanism and with the adaptive mechanism proposed in this paper. The maximum fitness
value achieved is shown for each of the 5 runs displayed.

As shown, search achieves suboptimal results when running with no adaptive mechanism.
This can be ascribed to its inability to escape from local extremes. With no adaptive
mechanism the search has not found the global optimum (fitness = 89) in any of the 5 runs.

As expected, the AGA mechanism has caused further deterioration and its results are even
worse than those produced in the previous case.

The Value-switching adaptive mechanism proposed in this work improves the process of
search – in 2 of the runs the global optimum is found, yet in certain cases not even the high
mutation rate is guaranteed to help the search escape from the local maximum (runs 2, 3, 4).

1 2 3 4 5

0

10

20

30

40

50

60

70

80

90

100

AGA mechanism
No Adaptive
Mechanism
Value-switching
Adaptive
Mechanism

of run

M
a

xi
m

u
m

 fi
tn

e
ss

 a
ch

ie
ve

d

Fig. 2. Comparison of the AGA Adaptive Mechanism

and the Value-switching Adaptive Mechanism

Suggestions for Further Work

It has been shown that the adaptive mechanism described in this work is able to effect
considerable improvements and that it is able to some extent prevent getting trapped in local
maxima. Further experiments should now be carried out in order to ascertain that the principle
is valid for a wider range of tasks.

It has also become apparent that even with the high mutation rates it is not always
guaranteed that the search will indeed escape from the local maximum. Value-switching, or
piecewise continuous relationships for other parameters could perhaps help to alleviate the
problem – this issue requires further investigation.

CONCLUSION

It is well known that search processes based on genetic algorithms and genetic program-

ming are prone to getting trapped in local maxima when exploring highly complex spaces.

 37

As shown in the paper, search process based on the standard genetic programming
approach fails to find the global optimum when applied to the modified version of the artificial
ant problem.

This paper investigates the problem and proposes an adaptive mechanism for mutation rate
control, which should help the search to escape from local extremes. As shown, the results are
considerably better than those of the standard genetic programming approach.

Although the results are significantly better, even the adaptive value-switching of mutation
rate as here proposed cannot always guarantee that the process will escape from a local
maximum. It is possible that value-switching, or piecewise continuous relationships for other
parameters could help to alleviate the problem. Such approaches could provide area for further
research.

This paper is a part of a more comprehensive research supported by: ASFEU 26220220049.

REFERENCES

1. KOZA J. R.: Genetic Programming: On the Programming of Computers by Means of
Natural Selection. The MIT Press. Cambridge, Massachusetts, 1998. ISBN 0-262-
11170-5

2. HYNEK J.: Genetické algoritmy a genetické programování. Grada Publishing, a. s.
Praha, 2008. ISBN 978-80-7300-218-3

3. EIBEN Á. E., ROBERT, H., MICHALEWICZ, Z.: Parameter Control in
Evolutionary Algorithms. IEEE Transactions of Evolutionary Computation: 3, 1999.
http://www.gpa.etsmtl.ca/cours/sys843/pdf/Eiben1999.pdf

4. THIERENS, D.: Adaptive mutation rate control schemes in genetic algorithms.
Proceedings of the 2002 IEEE World Congress on Computational Intelligence:
Congress on Evolutionary Computation, 2002.
http://dynamics.org/~altenber/UH_ICS/EC_REFS/GP_REFS/CEC/2002/GP_WCCI_
2002/7315.PDF

5. SRINIVAS, M., PATNAIK, L. M.: Adaptive Probabilities of Crossover and Mutation
in Genetic Algorithms. IEEE Transactions on Systems, Man and Cybernetics: 24,
1994. http://eprints.iisc.ernet.in/archive/00006971/02/adaptive.pdf

 38

Adaptive Approaches, Genetic Algorithms, Genetic Programming

Juraj SPALEK*
Michal GREGOR**

Adaptive Approaches to Parameter Control in Genetic
Algorithms and Genetic Programming

Abstract

The paper concerns the application of Genetic Algorithms and Genetic
Programming to complex tasks such as automated design of control systems,
where the space of solutions is non-trivial and may contain discontinuities.
Several adaptive mechanisms for control of the search algorithm's parameters
are proposed, investigated and compared to each other. It is shown that the
proposed mechanisms are useful in preventing the search from getting trapped in
local extremes of the fitness landscape.

Introduction

Genetic Algorithms represent a well-known optimization method recognized in particular for
its flexibility in representation of solutions. Genetic Programming applies the theory of Genetic
Algorithms to evolving computer programs, usually represented by syntactic trees.
There is a multitude of research papers that aim to improve convergence and robustness of both
algorithms. Some of these concentrate on parameter control, that is to say on setting and
modifying various parameters of the search algorithm.
This paper proposes several adaptive mechanisms, which aim to decrease the probability that
the search will become trapped in local maxima by various techniques. They are all based on
detecting that the search has become trapped by observing how average fitness of the
population changes in time.

Genetic Algorithms

Genetic algorithms represent one of the several computational techniques based on simulation
of evolution, a process based on the principle of natural selection, that is, on the survival of the
fittest. The genetic algorithm operates on a population of individuals. The individuals represent
various solutions of a specific problem. The main principle of the algorithm is as shown in
figure 1.

* Prof. Ing. Juraj Spalek, PhD. – Department of Control and Information Systems, Faculty
of Electrical Engineering, University of Žilina, Univerzitná 1, 010 26 Žilina, Slovak Republic,
juraj.spalek@fel.uniza.sk
** Bc. Michal Gregor – Department of Control and Information Systems, Faculty of Electrical
Engineering, University of Žilina, Univerzitná 1, 010 26 Žilina, Slovak Republic,
o.m.gregor@gmail.com

 39

The first step is to generate the initial population – this typically involves generating a group of
random individuals. The next step is to perform evaluation of those individuals, which enables
the algorithm to compare the individuals to each other and, furthermore, to introduce the
survival of the fittest: the individuals with the best scores (also known as fitness in the GA
terminology) are the most likely** to participate in reproduction, that is, in forming the next
generation. This is analogous to the natural selection process, in which the fitter individuals
have greater chance to survive and reproduce.

Generation of
the initial

population

Evaluation of
the individuals Selection

Reproduction

Stopping the evolution
in case the defined
conditions are met

CrossoverMutation

Fig. 3. The general principle of genetic algorithms

Figure 1 also shows that the process of forming the next generation typically involves two
main genetic operators – crossover and mutation. Mutation represents a random modification
of the genetic code of a single individual.
In crossover, however, several (usually two) individuals exchange parts of their genome.
Therefore, if we choose mostly the highly fit individuals for reproduction, crossover provides a
mechanism which may produce an offspring that combines their good properties (and thus
achieves greater fitness that any of the parents).
The process of evolution runs iteratively until certain conditions are met (like achieving a
predefined level of (maximum or average) fitness, or reaching the maximum number of
generations††).
The individual phases will not be covered in detail here, see [1], [2], or [3]. However, the next
section will present some information concerning fitness scaling as this concept will be utilized
in the following sections.

Fitness Scaling

There is a well known problem associated with the fitness-proportionate selection methods. As
[3] says, when the evolution starts, the fitness variance in population is usually high and a
small number of individuals are much fitter than the others. Those individuals are consequently

** However, we usually refrain from directly choosing the best n individuals as that tends to
reduce diversity, which leads to premature convergence and to getting trapped in a local
extreme.
†† The latter is usually monitored in every implementation so as to prevent an infinite loop in
case the algorithm does not converge.

 40

much more likely to be selected than any of the others and so their offspring quickly multiplies,
which leads to premature convergence and non-optimal results.
On the other hand, later in the search, when all individuals are very similar and the fitness
variance is therefore low, the evolution becomes extremely slow as there are virtually no
fitness differences to explore.
To address these problems a fitness scaling function can be applied – that is, the original fitness
function f will be wrapped into a scaling function

sf :

FFf s →: . (7)

The scaling function wraps the original fitness function and the selection algorithm uses the
scaled values:

()()xff=fitness Scaled s
, (8)

where Ix∈ represents an individual.
There are several widely used types of fitness scaling functions – [4] lists 3 basic categories:

1. linear,

2. sigma truncation,

3. power law.

Linear Scaling

A fitness function with linear scaling then has the following definition [4]:

() ()xfb+a=xf linear . , (9)

where ()xf is the raw fitness and a , b are user-defined constants – article [4] experiments

with (){ }xfmax=a and (){ } Nxfmin=b /− , where N is the number of individuals. In [5]

author presents a way to derive relationships for a , b , which provide linear scaling that
preserves the average fitness.

Sigma Truncation Scaling

For a fitness function with sigma truncation scaling, source [6] provides the following
definition:

() ()
f

f
sigma � �xf

+=xf
−

1 ,
(10)

where
f

� and
f

� are the mean fitness and the standard deviation – respectively – of fitness for

the current generation.

 41

Power Law Scaling

Source [5] provides the following definition of fitness function scaled using the power law
scaling:

() ()k
power xf=xf , (11)

where k is a problem-dependent exponent that may require to be changed during the run. [5]
also states that a value of 1.005=k has been successfully used in machine-vision applications.

Boltzmann Scaling

There are also several special scaling methods, such as the Boltzmann scaling [6], definition of
which is as follows:

() ()()
()()[]Txfmean

Txf
=xfBoltzmann /exp

/exp , (12)

where T represents a temperature parameter, which gradually reduces over time (with an
increasing number of generations).

Scaling the Fitness Function to Satisfy the Requirements

Certain selection methods also impose requirements on the range of the fitness function, the
most obvious example being the fitness roulette selection, where fitness values must be greater
than or equal to zero (see (11)). The most apparent way to achieve this is to use the following
scaling, which could be considered a special case of linear scaling:

() () (){ } (){ }
() (){ }

≥

−

0

0

xfminxf

<xfminxfminxf=xfs

(13)

The minimum can be evaluated over the current generation, or over the current and n previous
generations in which case the subtraction of the minimum is referred to as fitness windowing
[7].

Adaptive Genetic Algorithms

In some applications based on the theory of genetic algorithms, the optimization task may be so
difficult – with a complex space including a great number of local optima in which the search
process can be get trapped – that additional techniques may be required to find the global
optimum. Genetic programming presented in the next section does in a multitude of tasks serve
as an especially good example of the problem, as it evolves computer programs and it is
obvious that two very similar computer programs may produce drastically different results and
thus the space of solutions is highly complex..

 42

Among the approaches that aim to prevent getting trapped in a local optimum are the adaptive
schemes that observe various parameters of the algorithm or the search process itself and using
the observed values adapt some of the parameters. The approaches to parameter setting can
basically be divided into the following categories [8], [9]:

4. static parameter control,

5. dynamic parameter control,

6. adaptive parameter control,

7. self-adaptive parameter control.

Static Parameter Control

The common feature of approaches falling into this category is that the setting they provide
remains constant for the entire duration of the evolutionary process. There are many works
analysing the problem of finding optimum settings for parameters like mutation probability and
crossover probability. Some of these are listed in [8], e.g. the work of Mühlenbeinm which
proposes the following formula for the mutation probability:

L=pm /1 , (14)

where L is the length of the bit string.

Dynamic Parameter Control

As stated in [9] dynamic parameter approaches typically prescribe a deterministically
decreasing schedule over a number of generations and provides a formula for mutation
probability derived by Fogarty:

()
tm +=tp

2
0.11375

240
1 , (15)

where t is the generation counter.
Papers [8] and [9] both refer to a more general expression derived by Hesser and Männer:

()
L

� �
t��=tpm

 −

× 2
exp

, (16)

where � , � , � are constants, � is the population size and t is the generation counter and L is

again the length of the bit string.

Adaptive Parameter Control

Adaptive parameter control techniques monitor the search process itself and provide feedback.
Some examples can be found in [10], which starts with a simple expression for the mutation
and crossover probabilities. Crossover probability is expressed as follows:

 43

ff

k
=p

max
c −

1 , (17)

where
1k is a constant and

maxf , f are the current generation maximum and average fitness

values respectively.
A similar formula is proposed for mutation probability:

ff

k
=p

max
m −

2 , (18)

where
2k is a constant.

It is further concluded in [10] that these expression do not depend on the fitness value of any
particular solution, which means that the crossover and mutation probabilities will be the same
for both – individuals with low and high fitness values. Another version of these formulas is
derived that reflects these concerns [10]:

≤

−
−

ff'k

f>f'
ff

f'f
k=p

max

max
c

3

1

(19)

≤

−
−

ffk

f>f
ff

ff
k=p

max

max
m

4

2

(20)

where f is the fitness value of the individual to be mutated, f' is the larger of the fitness

values of the individuals to be crossed and
3k and 4k are constants. It is required that

1k and

2k be less than 1.0 in order to constrain cp and
mp to the range of 0,1 . The ff'k=pc ≤3

and ffk=pm ≤4
 expressions are to prevent crossover and mutation probabilities from

exceeding 1.0 for suboptimal solutions.

Authors of [10] also observe that cp and mp are zero for the solution with maximum fitness

and that 1k=pc
 for f=f' , while 2k=pm for f=f . For further details and for information

concerning setting the values of the constants refer to [10]. Some discussion concerning this
approach is also provided in section 0.

 44

Self-adaptive Parameter Control

When using the self-adaptive parameter control approach, parameters such as mutation rate and
crossover probability of each individual are part of its genome and are evolved with it. As
stated in [9], the idea behind this is that a good parameter value will provide an evolutionary
advantage to the individual. For further reference see [8] or [9].

Genetic Programming

Genetic programming (GP) is a technique introduced by John Koza (see Genetic
Programming: On the Programming of Computers by Means of Natural Selection [11]). It
utilizes the previously outlined concepts to evolve computer programs. The main idea of
Genetic Programming revolves around the way in which the individuals are represented, that is
to say around the syntactic trees (also known as parse trees). The problem will be analysed
more specifically in the following sections.

Representation

It is obvious, that simple text-based representation of a programme is not especially suitable for
genetic algorithms as using a naïve implementation of crossover and mutation over the text-
based code would lead to syntactically incorrect programs.
The solution proposed by John Koza is to represent a program using a parse tree (see Fig. 2 and
3 for an instance), which is analogous to LISP S-expressions [1]. The syntactic tree is a graph
with two types of nodes – non-terminals, which represent functions, and terminals, which
represent variables and constants.
Figures 2 and 3 show examples of such trees with Fig. 2 displaying a tree that codes the
expression x+x.y ln and Fig. 3 displaying a tree with more general mechanisms like

conditional execution, assignment and return.

x y

* ln

x

+

Fig. 4. A simple example of a syntactic tree

The program in Fig. 3 shows one of the possible ways to return values. The root node called
PRG (the name is taken over from [1], where a PRG functor is used to express that several
void-returning functors are called in a sequence) is a functor with an arbitrary number of inputs
of type void, while the last input is of a pre-set type, which is identical to the return type of the
program. That way after all processing is done by the void input subtrees, the result can be
collected using the last input and returned.

 45

x y

> =

ret

IF

=

x

PRG

ret

ret y

Fig. 5 A more complex parse tree

The program from figure 3 can be rewritten into the following C++ code (Listing 1):

Listing 1 Code expressed by Fig. 3

1. if(x > y) ret = x;
2. else ret = y;
3. return ret;

The representation proposed by Koza has one important property, known as the closure
property, which requires that any valid tree generated from a set of terminals:

{ }nt,tt=T ...2,1,
, (21)

and a set of non-terminals:

{ }mt,tt=NT ...2,1,
, (22)

represents a valid program, which states that any non-terminal should be able to handle as an
argument any data type and value returned from a terminal of non-terminal [12].
In contrast to this approach, several researches focus on the so-called strongly typed genetic
programming [12], where nodes are allowed to have different incompatible return and
argument types. In this case, type constraints have to be enforced, which introduces several
fundamental differences. The most notable aspect is that when generating, crossing or mutating
a tree care has to be taken to ensure that the return type of the node used as an input is
compatible with the data type of the input itself.
The closure property can still be enforced in strongly typed genetic programming using
dynamic typing. Non-terminals can be built so that they accept an argument of any type, but
throw an exception if type id of the argument is not as expected.

 46

The Artificial Ant Problem

The artificial ant problem described by John Koza in [11] is essentially a trail-following task.
The actor – an artificial ant – is supposed to navigate in an environment following an irregular
path consisting of pieces of food which it collects. The ant has very limited sensing capabilities
– it only sees a single tile right in front of it. John Koza successfully solves the problem by
applying Genetic Programming‡‡.
This constraint, although a reasonable one – with many line-following agents this is in fact the
case – makes the task of navigating along a non-trivial path rather difficult. It seems that even a
human is generally unable to navigate the ant correctly when only seeing a single tile in front
of the actor although this has not been tested on a wide range of subjects.
Concerning the application of GP to the problem, Koza uses the following set of terminals
[11]:

{ }LEFTRIGHT,MOVE,=T , (23)

and the following non-terminals:

{ }PROGN3PROGN2,AHEAD,-FOOD-IF=F . (24)

The meaning of most of these is straight-forward – MOVE moves the actor forward by a single
step, RIGHT and LEFT turn the actor in the respective directions. IF-FOOD-AHEAD is
a functor with two arguments – the first is the then part and is executed if there is a piece of
food in front of the actor, while the other is the else part. PROGN2 and PROGN3 are functors
with 2 and 3 arguments respectively. PROGN represents a sequence of steps to be executed
unconditionally, that is, PROGN2 and PROGN3 both execute each of its sub-trees.

Fig. 6. The Santa Fe trail

‡‡ See [11] for detailed information about the solution.

 47

The evaluation is based on simulation and the fitness is equal to the amount of food collected
by the actor. It would normally be necessary to run several simulations for every individual to
make sure that the solution works in general and not only on the single path on which it was
tested. To avoid this Koza uses a trail known as the Santa Fe trail§§ (Fig. 4), which is presumed
to be sufficiently representative of the general trail following problem [11].

Mode of Execution and Operators Used

It is also necessary to mention the mode of execution used by Koza – the program generated by
the evolutionary search is executed as fully as possible and then re-executed [11]. Both [11]
and [1] limit the number of steps that a solution is allowed to perform to 400 so as to prevent
running indefinitely for unfit individuals. The population size is set to 500 individuals and the
maximum number of generations to 50 for both [11] and [1].
In our work we have set some additional requirements concerning the form of the solution –
the evolved controller should, when executed, return the action that the ant is to execute next
instead of calling functors that directly execute the action and wait for its completion. The set
of terminals contains persistent variables and the controller has access to a pre-set number of
its previous inputs and outputs.
Controllers based on such mode of execution seem to be much more difficult to evolve than
those originally proposed by Koza. The search usually gets trapped in a local maximum from
which it is often unable escape.
Let us provide the reader with some brief information concerning the terminals and non-
terminals used in our work. The following components were utilized:

1. VariableFunctor<NavAction> – a terminal that acts as a variable of type NavAction
(NavAction is an enumerated type representing the action that an actor can take like
stay, forward, turn around, turn left, turn right).

2. ConstFactory<NavAction> – a factory that creates constant terminals of type
NavAction.

3. ConstFactory<TileType> – a factory that creates constant terminals of type TileType
(an enumerated type that represents various types of tiles in the map).

4. ConstFunctor<void> and NumericConstFactory<bool> – auxiliary terminals of type
void and bool.

5. IfAssign – a non-terminal with 5 sub-nodes; the first is of type bool and expresses the
condition. If the condition is true, value from sub-node 3 is assigned to variable from
sub-node 2; if false value from sub-node 5 is assigned to variable from sub-node 4.
Values and variables are of type NavAction.

6. CompareFunctor<NavAction> and CompareFunctor<TileType> – non-terminals that
returns true if both of their inputs are equal and false if not.

7. Logic functors: And, Or, Not.

8. PrgReturnFunctor(NavAction, N) – a non-terminal used primarily as root functor of
the tree – it has N sub-nodes returning void and one sub-node (the last one) returning
NavAction. All sub-nodes are executed one by one and the return value of the last one
is returned by the PrgReturnFunctor.

§§ It contains single gaps, double gaps, single, double and triple gaps at corners [11], etc.

 48

Adaptive Value-switching of Mutation Rate

Motivation

Most of the existing parameter setting mechanisms, as presented in the previous section, either
focus on setting GA-specific parameters such as length of the bit string (e.g. rule (8)), or are
not adaptive (e.g. (8), (9) and (10)). The AGA adaptive mechanism described in [10] (formulas
(13) and (14)) seems more fit to the task because it implements certain form of convergence
detection based on comparison of the maximum and average fitness values. However this
approach does little to solve the problem of getting trapped in a local optimum as the method
does not discern between local and global optima.
Furthermore – as mentioned hereinbefore – equations (13) and (14) assign the best individual
zero crossover and mutation probabilities, while assigning high probabilities to less fit
individuals. The reasoning behind this is that the less fit individuals can safely be disrupted by
high mutation rates and recombined by crossover (thus employing the solutions with sub-
average fitness to search the space [10]), while the highly fit individuals should be preserved.
However, such approach has a very obvious downside which the authors do not seem to
address – the highly fit individuals obviously contain the most excellent genetic material
available and by disallowing mutation and crossover for these individuals the genetic code they
carry becomes isolated and is not used to generate new solutions.

Description of the AVSMR Mechanism

The idea that the most fit solutions should survive crossover and mutation unmodified is valid,
yet that feature can be enforced by using elitism*** . Keeping that in mind we propose
a different adaptation scheme – called AVSMR (Adaptive Value-switching of Mutation Rate)
- in order to address the other issues. The main idea is that the mutation probability should be
increased to a high value when the search has become trapped in an extreme so as to provide
the search process with new genetic material some of which may previously have been
unavailable. To determine whether the search has become trapped the adaptive mechanism
observes the change of average fitness in time.
To describe the solution in more detail – the algorithm works with 2 values of mutation
probability – the normal value and the high value. The algorithm switches from the normal
value to the high value once the trigger criterion activates.
The trigger criterion itself is based on a measure that we will herein term a delta sum:

i

ii
ii

f

ff
+

�
S�=

�
S 1

1. −
−

− , (25)

where
i

�
S is the delta sum in generation i and

if is the average fitness in generation i and �

is the feedback coefficient (the experiments have been carried out for 0.4=�).
If the delta sum is lower than a pre-set value for a predefined number of generations, that is to
say the increase of average fitness in the last few generations is low, indicating that the search

*** The best individual is copied to the next generation unmodified.

 49

has become trapped††† – the mutation probability is set to its high value so as to provide the
search with new genetic material. As mentioned before, when used in conjunction with elitism
it is guaranteed that the best solution is not destroyed by the high mutation probability.
The mutation probability is reset back to its normal value when at least one of the following
conditions is true:

1. the average fitness increases enough to produce a sufficiently large delta sum;

2. the maximum fitness increases;

3. mutation has been set to its high value for at least n generations.
The n-generation limit is to ensure that the activation does not go on indefinitely (with the high
mutation probability it is not very likely that the average fitness will increase enough to satisfy
the first condition and maximum fitness may not increase as well).
It has been observed that average fitness typically decreases when the criterion activates
because the search process is to a large extent disrupted by the high mutation probability.
However after the n-generation limit forces the mutation rate back to its normal value, average
fitness tends to increase rapidly, thus usually moving away from the local extreme.

Experimental Results

Several experiments have been carried out (the specific settings are attached in Appendix
Błąd! Nie moŜna odnaleźć źródła odwołania.) – Fig. 5 shows performance of the search
algorithm with the AGA adaptive mechanism proposed in [10] with constants set according to
recommendations. It also shows performance of the search algorithm without any adaptive
mechanism and with the adaptive mechanism proposed in this paper. The maximum fitness
value achieved is shown for each of the 5 runs displayed.

1 2 3 4 5

0

10

20

30

40

50

60

70

80

90

100

AGA mechanism
No Adaptive
Mechanism
AVSMR

of run

M
a

xi
m

u
m

 fi
tn

e
ss

 a
ch

ie
ve

d

Fig. 7. Comparison of the AGA Adaptive Mechanism and AVSMR

††† This may also indicate convergence to the global maximum, it is, however, hardly
possible to tell global and local maxima apart unless the algorithm is provided with additional
problem-specific data.

 50

As shown, search achieves suboptimal results when running with no adaptive mechanism. This
can be ascribed to its inability to escape from local extremes. With no adaptive mechanism the
search has not found the global optimum (fitness = 89) in any of the 5 runs.
As expected, the AGA mechanism has caused further deterioration and its results are even
worse than those produced in the previous case.
The Value-switching adaptive mechanism proposed in this work improves the process of
search – in 2 of the runs the global optimum is found, yet in certain cases not even the high
mutation rate is guaranteed to help the search escape from the local maximum (runs 2, 3, 4).

Further Suggestions

It has been shown that the adaptive mechanism described in this work is able to effect
considerable improvements and that it is able to some extent prevent getting trapped in local
maxima. Further experiments should now be carried out in order to ascertain that the principle
is valid for a wider range of tasks.
It has also become apparent that even with the high mutation rates it is not always guaranteed
that the search will indeed escape from the local maximum. Value-switching, or piecewise
continuous relationships for other parameters could perhaps help to alleviate the problem – this
issue requires further investigation.

The Simple Flood Mechanism

Seeing that the AVSMR mechanism described in the previous section is helpful in controlling
the search process by helping it to escape from local extremes, yet not completely reliable and
not always effective. To address these issues, we have developed another adaptive scheme
supposed to provide even greater level of introducing new genetic material into the process.

Simple Flood Mechanism

The principle is very straight-forward – once a trapping is detected – a relatively small part of
the population is selected – these individuals survive. The rest of the population is destroyed
and replaced by newly generated individuals. This method is superior to AVSMR in that a
large part of the population is guaranteed to be replaced and the newly generated individuals
are generated in the same way that the initial population was.
The trigger criterion has been modified for this task. The first requirement is that the criterion
only activates for a single generation at a time as it would probably be useless and possibly
even counterproductive to activate the flood mechanism for several successive generations.

The new trigger criterion is still based on the average fitness
if (where i is the number of

generation). The criterion stores average fitness
if for N generations (1−N previous

generations and the current one; 7=N generations was used in the experiments). The
mechanism cannot activate before the

if for at least N generations has actually been

collected. Once that is true, the mechanism activates if the following holds:

() �
<ff i

Nj

j=i
i 1

2

−

−−

−∑ , (26)

 51

where j is the number of current generation and � is an activation threshold. It is also

possible to interpret the threshold as a relative parameter in which case we can rewrite the
equation as follows:

() �
<

f

ff

j

i

Nj

j=i
i 1

2

−

−−

−∑
. (27)

All experiments were carried out using (21).
It is also important to note that once the mechanism activates, the array storing the previous
value of average fitness is cleared so it is guaranteed that the mechanism does not activate for
the next N generations.
Although the approach seems straight-forward and similar in concept to AVSMR, experimental
results point out an important issue. As obvious from Fig. 6, the results achieved by the Simple
Flood Mechanism are significantly worse than those produced by the AVSMR – they are in
fact worse than those produced by the system when using no adaptive mechanism.

1 2 3 4 5

0

10

20

30

40

50

60

70

80

90

100

Simple Flood
Mechanism
AVSMR

of run

M
a

xi
m

u
m

 fi
tn

e
ss

 a
ch

ie
ve

d

Fig. 8. Comparison of AVSMR and the Simple Flood Mechanism

The reason behind this is very simple – although we do introduce new genetic material into the
process, the newly generated individuals will generally have very low fitness (usually 0, 3, or 4
at most). Therefore if we apply fitness-proportionate selection to these in the next generation,
almost every newly generated individual will be discarded. The survivors on the other hand
will now dominate the population. This is especially true later in the evolutionary process when
fitness score of the best individual will tend to be vastly greater than that of any randomly
generated individual. At this point the next generation will be formed almost exclusively by the
best individual, which will almost in every case aggravate the problem of getting trapped in a
local extreme instead of solving it.

Flood Mechanism with Low-pressure Scaling and the New-Blood Mechanism

There are several ways to alleviate the problem that the Simple Flood Mechanism faces. The
objective is – in any case – to create such scheme in which the newly generated individuals
mate with the survivors so as to make use of their potentially useful code.

 52

This paper proposes two different ways to achieve this:
1. apply a fitness scaling function with low selection pressure to the GA for several

generations following the flood – this mechanism will be referred to as Flood
Mechanism with Low-pressure Scaling (FMLPS);

2. once the mechanism activates create only such mating pairs in which at least one
individual is newly generated – this mechanism will be referred to as the New Blood
Mechanism.

1 2 3 4 5

0

10

20

30

40

50

60

70

80

90

100

AVSMR
FMLPS
New Blood GA

of run

M
a

xi
m

u
m

 fi
tn

e
ss

 a
ch

ie
ve

d

Fig. 9. Comparison of the AVSMR, FMLPS the New Blood Mechanism

The experimental results are shown in Fig. 7. FMLPS uses power scaling of 0.3 as the low-
pressure scaling. To make the comparison easier, the values are now ordered by fitness rather
than by the number of run. This shows that AVSMR is still superior to FMLPS (although
FMLPS is – in contrast to the Simple Flood Mechanism – significantly better than vanilla GP).
The New Blood GA on the other hand is definitely superior to AVSMR – although it still gets
trapped in local extremes, the maximum fitness values achieved are greater than those achieved
by the AVSMR.
The influence that some of the parameters such as the number of survivors, or the selection
pressure applied by the low-pressure scaling have on the process of search should be subjected
to a more systematic investigation. Combining the proposed adaptive mechanisms with some
of the concepts introduced by the AGA mechanism could also prove useful – e.g. instead of
decreasing the selection pressure using a scaling function the spread of the best individual's
copies through the population immediately after the flood could be inhibited by techniques
similar to those utilized in AGA.

Conclusion

It is well known that search processes based on genetic algorithms and genetic programming
are prone to getting trapped in local maxima when exploring highly complex spaces. As shown
in the paper, search process based on the standard genetic programming approach fails to find
the global optimum when applied to the modified version of the artificial ant problem.
This paper investigates the problem and proposes several adaptive mechanism, which should
help the search process to escape from local extremes. As shown, the results are considerably
better than those of the standard Genetic Programming approach.

 53

Although the results are better, even the proposed algorithms cannot always guarantee that the
process will indeed escape from every local maximum it encounters. This stems mainly from
the high order of stochasticity that the algorithm is subject to as well as from the size of the
searched space.
Related techniques such as adaptive value-switching, or piecewise continuous relationships for
other parameters of the search algorithm might provide further improvements. The influence
that some of the flood mechanism related parameters (such as the number of survivors, or the
selection pressure applied by the low-pressure scaling) have on the process of search may also
provide an interesting area for further investigation.

REFERENCES

1. HYNEK, J.: Genetické algoritmy a genetické programování. Grada Publishing, a. s.

Praha, 2008. ISBN 978-80-7300-218-3 [In Czech.]

2. ALBA, E., COTTA, C.: Evolutionary Algorithms. 2004.

http://www.lcc.uma.es/%7Eccottap/papers/eas.pdf

3. MITCHELL, M.: An Introduction to Genetic Algorithms. A Bradford Book The MIT

Press. Cambridge, Massachusetts, 1999. ISBN 0−262−13316−4

4. SADJADI, F. A.: Comparison of fitness scaling functions in genetic algorithms with

applications to optical processing. Optical Information Systems II, Proceedings of

SPIE: Vol. 5557, 2004.

5. BANERJEE, A.: Fitness Scaling. [quot. 11-20-2010].

http://www.cse.unr.edu/~banerjee/scaling.htm

6. LAROSE, D. T.: Data Mining Methods and Models. John Wiley & Sons. New Jersey,

2006. ISBN 978-04-7166-656-1

7. BUSETTI, F.: Genetic algorithms overview. 2001.

http://www.vit.ac.in/academicresearch/res701/RES701DUMP%5CEvolutionary%20A

lgorithms%5Cgaweb.pdf

8. EIBEN, Á. E., ROBERT, H., MICHALEWICZ, Z.: Parameter Control in

Evolutionary Algorithms. IEEE Transactions of Evolutionary Computation: 3, 1999.

http://www.gpa.etsmtl.ca/cours/sys843/pdf/Eiben1999.pdf

9. THIERENS, D.: Adaptive mutation rate control schemes in genetic algorithms.

Proceedings of the 2002 IEEE World Congress on Computational Intelligence:

Congress on Evolutionary Computation, 2002.

 54

http://dynamics.org/~altenber/UH_ICS/EC_REFS/GP_REFS/CEC/2002/GP_WCCI_

2002/7315.PDF

10. SRINIVAS, M., PATNAIK, L. M.: Adaptive Probabilities of Crossover and Mutation

in Genetic Algorithms. IEEE Transactions on Systems, Man and Cybernetics: 24,

1994. http://eprints.iisc.ernet.in/archive/00006971/02/adaptive.pdf

11. KOZA, J. R.: Genetic Programming: On the Programming of Computers by Means of

Natural Selection. The MIT Press. Cambridge, Massachusetts, 1998. ISBN 0-262-

11170-5

12. MONTANA, D. J.: Strongly Typed Genetic Programming. Evolutionary Computation:

3, 1995. http://vishnu.bbn.com/papers/stgp.pdf

[1] Selected Experimental Data

Maximum number of generations: 150.
Elitism: 3.
Population size: 500.
Maximum depth: 10.
Tree generator used: GrownTreeGenerator.
Functors used:

1. VariableFunctor<NavAction>,

2. ConstFactory<NavAction>(ACT_STAY, ACT_TURN_AROUND),

3. ConstFactory<TileType>(tile_empty, tile_wall),

4. CompareFunctor<NavAction>,

5. CompareFunctor<TileType>,

6. ConstFunctor<void>,

7. NumericConstFactory<bool>(0, 1),

8. IfAssign,

9. Logic functors: And, Or, Not,

10. PrgReturnFunctor(NavAction, 10).

Formal parameters used:

1. 3 x TileType (tile in front of the actor now and in past 2 turns).

2. 3 x NavAction (previous outputs of the program).

 55

Selection method: FitnessRoulette.
1. No Adaptive Mechanism

Crossover probability: 1.0.
Mutation probability: 0.2.
Results:

of run max. fitness achieved

1 41

2 27

3 26

4 46

5 27

2. The AGA Adaptive Mechanism

Crossover probability: variable.
Mutation probability: variable.
Additional information: Uses the AGA mechanism with k1 = 1.0, k2 = 0.5, k3 = 1.0, k4 =
0.5.
Results:

of run max. fitness achieved

1 14

2 7

3 14

4 18

5 3

3. The AVSMR Adaptive Mechanism

Fitness scaling: none.
Crossover probability: 1.0.
Mutation probability: Basic mutation probability of 0.2; can be increased to 0.8 by the
adaptive mechanism.
Additional information: Uses the AVSMR mechanism.

 56

Results:

of run max. fitness achieved

1 89

2 26

3 42

4 47

5 89

4. The FMLPS Adaptive Mechanism

Crossover probability: 1.0.
Mutation probability: 0.2.
Additional information: Uses the FMLPS mechanism with 20 survivors, power scaling of
0.3, 7=N ; 0.01=

� .
Results:

of run max. fitness achieved

1 89

2 39

3 63

4 36

5 46

5. The New Blood Adaptive Mechanism

Crossover probability: 1.0.
Mutation probability: 0.2.
Additional information: Uses the New Blood mechanism with 20 survivors, 7=N ; 0.01=

�
.

Results:

of run max. fitness achieved

1 89

2 48

3 89

4 45

5 63

 57

flow-shop production, evolutionary algorithm

Pavol SEMANČO*

MINIMIZING MAKESPAN IN GENERAL FLOW -SHOP
SCHEDULING PROBLEM USING A GA-BASED

IMPROVEMENT HEURISTIC

Abstract

In the paper an improvement heuristic is proposed for permutation flow-shop
problem based on the idea of evolutionary algorithm. The approach employs
constructive heuristic that gives a good initial solution. GA-based improvement
heuristic is applied in conjunction with three well-known constructive heuristics,
namely CDS, Gupta’s algorithm and Palmer’s Slope Index. The approach is
tested on benchmark set of 10 problems range from 4 to 25 jobs and 4 to 30
machines. The results are also compared to the best-known lower-bound
solutions.

1. INTRODUCTION

A flow-shop production introduces a manufacturing system where n jobs are processed by
m machines in the same order. The problem of finding an optimal schedule is referred to as
flow-shop scheduling problem (FSSP). In a permutation flow-shop scheduling problem,
denoted as PFSSP, the same sequence, or permutation, of jobs is maintained throughout
(Pinedo, 2008). The objective of the flow-shop scheduling problem is to meet optimality
criterion of minimizing the makespan, total flow time or total weighted flow time. This paper
investigates an optimal job sequence for flow-shop scheduling benchmark problem with
objective to minimize the makespan. The general scheduling problem for a classical flow shop
gives rise to (n!)m possible schedules (Gupta 1975). For flow-shop scheduling problem Johnson
(1954) proposed algorithm that optimally solves a 2-machine flow-shop problem. It was later
demonstrated that m-machine flow-shop scheduling problem (FSSP) is strongly NP-hard for
m≥3 (Garey et al., 1976). Permutation FSSP also has to meet standard requirements like a job
cannot be processed by two or more machines at a time and a machine cannot process two or
more jobs at the same time.

The optimization of FSSP employs the three major types of scheduling algorithm (exact,
approximation and heuristic). However, the most common type of scheduling algorithms for
NP-hard FSSP is heuristic that produces near-optimal or optimal solutions in reasonable time.
The heuristics can be further classified as constructive heuristic and improvement heuristic (or
meta-heuristic). The improvement heuristic in contrast to constructive heuristic starts with a
initial schedule trying to find an improved schedule. In this paper, the improvement-heuristic

* Ing. Pavol Semančo, Technical University of Kosice, Slovakia, email: pavol.semanco@tuke.sk

 58

approach is proposed incorporating the idea of evolution. If no improvement occurs for a
certain number of iterations, the algorithm backtracks to the last best result. GA-based
improvement heuristic is performed by predetermined number of iterations and report of the
best result.

The rest of the paper is organized as follows. The next section reviews the relevant
scheduling literature for the flow-shop scheduling heuristics algorithms. In the section, namely
GA-based improvement heuristic, the formal description of GA approach is covered. The
Section, “Computational Experiments,” discusses results obtained from the experiment. The
summary of the paper and possible future research ideas are presented in the section, namely
Summary and Conclusions.

2. RESEARCH BACKGROUND

The model of flow-shop scheduling problem with makespan (Cmax) as an objective function

can be specified according to 3-filed classification αβγ. The first filed, namelyα, stands for
machine environment. For the flow-shop scheduling the machine environment is denoted as
Fm, where m is the number of the machines. The β-field specifies the job constraints like for
permutation of jobs the prmu abbreviation is used. The last field determines the optimally
criterion like makespan (Cmax). Based on this 3-field classification the general flow-shop
scheduling problem can be denoted as FmprmuCmax. This notation was firstly suggested by
Conway et al. (1967) and until now is handy.

Hejazi and Saghafian (2005) introduced a comprehensive review of alogorithms for flow-
shop scheduling problems with makespan criterion. Approaches solving flow-shop scheduling
problem range from heuristics, developed, for example, by Palmer (1965), Campbell et al.
(1970), Dannenbring (1977) to more complex techniques such as Branch and Bound (Brucker,
1994), Tabu Search (Gendreau, 1998), Genetic Algorithm (Murata et al., 1996), Shifting
Bottleneck procedure (Balas and Vazacopoulos, 1998), Ant Colony Algorithm (Blum and
Sampels, 2004) and others.

The flow-shop sequencing problem is one of the most well-known classic production
scheduling problems. Focusing on the PFSSP with Cmax objective function, first classical
heuristics was proposed by Page (1961). Palmer (1965) adopted his idea and proposed the
slope index to be utilized for the m-machine n-job permutation flow shop sequencing problem.
A simple heuristic extension of Johnson’s rule to m-machine flow shop problem has been
proposed by Campbell et al. (1970). This extension is known in the literature as the CDS
(Campbell, Dudek, and Smith) heuristic. Another method to obtain a minimum makespan is
presented Gupta (1972). A significant approach to solving the FSSP proposed Nawaz et al.
(1983), in which they point out that a job with larger total processing time should have higher
priority in the sequence.

One of the important factors that are quite frequently discussed in FSSP is the setup time
(see, for instance, Allahverdi et al., 2008). The setup time represents the time required to shift
from one job to another on the given machine. In the flow-shop environment, the setup time is
included in the processing times of each job (Hendizadeh et al., 2007).

Modern approaches designated for larger instances are known as meta-heuristics.
Approaches that combine different concepts or components of more than one meta-heuristic
are named as hybrid meta-heuristic algorithms (Zobolas et al., 2009). Heuristic methods for
make-span minimization have been applied, for example, by Ogbu et al. (1990) using
Simulated Annealing (SA) and by Taillard (1990) applying Tabu Search (TS) algorithm. Nagar

 59

et al. (1996) proposed a combined Branch-and-Bound (BB) and Genetic Algorithm (GA) based
procedure for a flow shop scheduling problem with objectives of mean flow time and make-
span minimization. Similarly, Neppalli et al. (1996) were used genetic algorithms in their
approach to solve the 2-machine flow shop problem with objectives of minimizing make-span
and total flow time. An atypical method based on an Artificial Immune System (AIS)
approach, which was inspired from vertebrate immune system, has been presented by Engin
and Doyen (2004). They used the proposed method for solving the hybrid flow shop
scheduling problem with minimizing Cmax. Obviously, there are plenty of other related
approaches to this problem that are identified in survey studies, such as that of Ribas et al.
(2010).

3. GA-BASED IMPROVEMENT HEURISTIC

Genetic algorithm (GA) forms one of the categories of local search method that operate

with a set of solutions. GA is inspired by well-known Darvin’s theory about the evolution. GA-
based heuristic is started with a set of solutions, also referred to as population. Solutions (or in
terms of genetic algorithm, chromosomes) from initial population are taken to form a new
population with hope that the new population will be better than the old one. The selection of
solutions is performed by a “survival of the fittest” principle to ensure that the overall quality
of solutions increases from one generation to the next. This is repeated until some condition
(for example number of generations or improvement of the best solution) is satisfied. The
framework of proposed GA-based heuristic (GAH) is introduced below.

NOTATION OF GAH ALGORITHM

The following notation was used:
G number of generations
P population size
F(s) fitness function
Cmax makespan
s solution represented by a job sequence
si initial solution
pc crossover probability parameter
pm mutation probability parameter
c chromosome string
cp parent chromosome
co offspring

 60

GA OPERATORS

The most important parts of the genetic algorithm are genetic operators, referred to as
encoding, selection, crossover and mutation operator that impact the whole performance.
Proposed GA-based improvement heuristic employs permutation encoding of chromosomes,
where each chromosome is a string of numbers (genes), which represents number in a
sequence.

For the selection of best chromosomes the roulette wheel method was used. Proposed GAH
employs also a method, called elitism, before roulette wheel selection to ensure that at least one
best solution is copied without changes to a new population, so the best solution found can
survive to end of run.

The crossover operator is carried out with a crossover probability. Crossover selects genes
from parent chromosomes and creates a new offspring. It randomly selects a crossover point
and everything before this point is copied from the first parent. Then the second parent is
scanned and if the scanned gene is not yet in the offspring, it is appended. This method is also
called as Single point crossover.

Mutation is also done randomly for each gene and it depends upon another parameter called
mutation probability. In this method inversion mutation is adopted where one gene is selected
at random and exchanged with another gene mutually. Basically it is an order changing where
two numbers are exchanged.

PSEUDO CODE OF GA FOR MINIMIZING THE MAKESPAN

In the paper GAH is used to search for solution of minimal make-span. Figure 1 introduces
the pseudo code of proposed GA-based improvement heuristic in conjunction with constructive
heuristic. The constructive heuristic gives a good initial solution to be improved by GA-based
heuristic. The objective of the fitness function is to minimize a makespan. The best solution is
represented by minimal makespan.

Fig. 1. Pseudo code of proposed algorithm

Step 1 Find initial solution (si) by selected constructive heuristic
Step 2 Generate initial population (P) based on initial solution and

randomness
Step 3 Apply selection with elitism
Step 4 Apply crossover with crossover probability (cp)
Step 5 Apply mutation with mutation probability (mp)
Step 6 Compute the fitness value for new offspring
Step 7 Evaluate and save the best chromosome
Step 8 Go to Step 2 until the generation value reaches G

 61

4. COMPUTATIONAL EXPERIMENTS

The experiment was run with objective of minimizing makespan on benchmark dataset that

has 10 instances. The dataset ranges from 20 to 500 jobs and 5 to 20 machines.
The CDS, Palmer’s Slope Index, Gupta’s algorithms and GAH were coded in PHP script,

running on a PC with 1.6 GHz Intel Atom and 1GB of RAM. All PHP-coded algorithms has
user-friendly interface with eventuality to select whether to run each heuristic itself or all
together. It has also an option to draw a Gantt chart. Table 1 contains the input parameters of
GAH approach for the experiment purposes.

Table 1. GA constraints

Parameter Value

P 20

G 500

pc 0.6

pm 0.05

F(s) makespan

RESULTS

Results of GA-based heuristic are represented by use of percentage improvement from
solution of constructive heuristic and gap from lower-bound solution (LB).

The paper will refer to the 3-heuristic GAH versions, namely P-GAH (Palmer-GAH), CDS-
GAH and G-GAH (Gupta-GAH). Table 2 summarizes the results for all 10 instances and also
shows percentage improvement of GAH over constructive heuristic. Table 1 also introduces
the best-known lower bounds and percentage gap from the best-known bound for the best GAH
result. In the table the results are displayed for Palmer alone, CDS alone, NEH alone, P-GAH,
CDS-GAH and G-GAH.

 62

Table 2. Makespans and improvements for 10 benchmark problems

Gupta CDS Palmer No. Problem
Size

LB

Single
pass

G-
GAH

%
Imprv
GAH

Single
pass

CDS-
GAH

%
Imprv
GAH

Single
pass

P-
GAH

%
Imprv
GAH

Best
GAH

% gap
from
LB

1. 4x4 156 157 156 0.64 156 156 0.00 157 156 0.64 156 0.00

2. 5x4 51 51 51 0.00 51 51 0.00 53 51 3.77 51 0.00

3. 6x5 7.7 7.7 7.7 0.00 7.7 7.7 0.00 8.35 7.7 7.78 7.7 0.00

4. 7x7 65 65 65 0.00 67 65 2.99 75 65 13.33 65 0.00

5. 8x7 69 69 66 4.35 66 66 0.00 70 69 1.43 66 -
4.55*

6. 10x12 93 106 97 8.49 104 100 3.85 104 96 7.69 96 3.13

7. 12x12 104 111 110 0.90 114 107 6.14 115 108 6.09 107 2.80

8. 15x18 141 163 150 7.98 153 149 2.61 146 142 2.74 142 0.70

9. 23x25 219 264 233 11.74 259 232 10.42 241 225 6.64 225 2.67

10. 30x25 249 285 260 8.77 271 258 4.80 274 261 4.74 258 3.49

LB – Best-known lower bound solution
Single pass – makespan of constructive heuristic
* new lower-bound solution

Overall neither of 3-heuristic GAH versions performed significantly better, although all of

them gave feasible improved solutions. For flow-shop scheduling problem sizes range from 4
to 7 machines and jobs, GAH matched the best-known lower bound solutions. for 24 of the 30
problems and found a new upper bound for one problem. For the fifth problem the new lower
bound was found by the GA-based improvement heuristic.

Average computational times (CPU) for each size of the problem are summarized and
depicted in Figure 2. The computation times of course vary by the size of the problem. The
variance, within three versions of GAH was not significant.

 63

Figure 2. Computational times of GAH algorithm for each size of the problem.

5. SUMMARY AND CONCLUSIONS

In presented study, the scheduling problem with sequence-dependent operations was dealt.

The main idea is to minimize the make-span time and thereby reducing the idle time of both
jobs and machines since these criteria are often applied for operational decision-making in
scheduling. Under above mentioned consideration an improvement heuristic based on
evolutionary algorithm (GAH) is proposed and applied to the permutation flow-shop
scheduling problem. The GA-based heuristic approach uses a constructive heuristic to get an
initial solution that tries to find improvements iteratively.

The GAH algorithm was used to improve upon heuristics, namely, Palmer, CDS and Gupta.
For all three heuristics, GAH showed significant improvements. The best improvements were
compared well with the best-known lower bounds. The average gap from the best-known lower
bound was 0.82% for all ten problems.

Future research should look at this heuristic for the more difficult flow-shop scheduling
problems involving sequence-dependent setup times. Different objective functions can also be
tested.

REFERENCES

1. ALLAHVERDI. A.. NG. C.T.. CHENG. T.C.E.. & KOVALYOV. M.Y. (2008). A survey

of scheduling problems with setup times or costs. European Journal of Operational
Research. 187. 985-1032.

2. BALAS. E.. & VAZACOPOULOS. A. (1998). Guided local search with shifting
bottleneck for job shop scheduling. Management Science. 44 (2). 262-275.

3. BLUM. C.. & M. SAMPELS. (2004). An ant colony optimization algorithm for shop
scheduling problems. Journal of Mathematical Modelling and Algorithms. 3(3). 285-308.

4. BRUCKER. P.. JURISCH. B.. & SIEVERS. B. (1994). A branch and bound algorithm
for the job shop scheduling problem. Discrete Applied Mathematics. 49(1). 109-127.

 64

5. CAMPBELL. H.G.. DUDEK. R.A.. & SMITH. M.L. (1970). A heuristic algorithm for the
n job. m machine sequencing problem. Management Science. 16(10). 630-637.

6. DANNENBRING. D.G. (1977). An evaluation of flow shop sequencing heuristics.
Management Science. 23(11). 1174-1182.

7. ENGIN. O.. & DOYEN. A. (2004). A new approach to solve hybrid flow shop scheduling
problems by artificial immune system. Future Generation Computer Systems. 20. 1083-
1095.

8. GAREY. M.R.D.. JOHNSON. D.S.. & SETHI. R. (1976). The complexity of flowshop
and jobshop scheduling. Mathematics of Operations Research. 1. 117-129.

9. GENDREAU. M.. LAPORTE. G.. & SEMET. F. (1998). A tabu search heuristic for the
undirected selective travelling salesman problem. European Journal of Operational
Research. 106(2-3). 539-545. Elsevier.

10. GUPTA. J.N.D. (1972). Heuristic algorithms for multistage flowshop scheduling problem.
AIIE Transactions. 4 (1). 11-18.

11. GUPTA. J.N.D. (1975). Analysis of combinatorial approach to flowshop scheduling
problems.

12. HEJAZI. S.R.. & SAGHAFIAN. S. (2005). Flowshop scheduling problems with
makespan criterion: a review. International Journal of Production Research. 43(14). 2895-
2929.

13. HENDIZADEH. S.H.. ELMEKKAWY. T.Y.. & WANG. G.G. (2007). Bi-criteria
scheduling of a flowshop manufacturing cell with sequence dependent setup time..
European Journal of Industrial Engineering. 1. 391-413.

14. JOHNSON. S. M. (1954). Optimal two and three stage production schedules with set-up
times. Naval Research Logistics Quarterly. 1. 61-68.

15. NAGAR. A.. HERAGU. S.S.. & HADDOCK. J. (1996). A combined branch-and-bound
and genetic algorithm based approach for a flowshop-scheduling problem. Annal. Oper.
Res.. 63. 397-414.

16. NAWAZ. M.E.. ENSCORE. I.. & HAM. I. (1983). A heuristic algorithm for the m
machine. n job flow shop sequence problem. OMEGA. 11 (1). 91-95.

17. NEPPALLI. V.R.. CHEN. C.L. & GUPTA. J.N.D. (1996). Genetic algorithms for the
two-stage bicriteria flowshop problem. Eur. J. Oper. Res.. 95. 356–373.

18. OGBU. F.A.. & SMITH. D.K. (1990). The application of the simulated annealing
algorithm to the solution of the n/m/Cmax owshop problem. Computers & Operations
Research. 17. 3243-253.

19. PALMER. D. S. (1965). Sequencing jobs through a multi-stage process in the minimum
total time - a quick method of obtaining a near optimum. Opers Res. Q.. 16. 101-107.

20. PINEDO. M. (2008). Scheduling: Theory. algorithms and Systems. Prentice Hall. New
Jersey: Springer.

21. RIBAS. R.. LEISTEN. J.M. (2010). Review and classification of hybrid flow shop
scheduling problems from a production system and a solutions procedure perspective.
Computers and Operations Research. 37(8).1439-1454.

22. ZOBOLAS. G. I.. TARANTILIS. C. D.. & IOANNOU. G. (2009) Minimizing makespan
in permutation flow shop scheduling problems using a hybrid metaheuristic algorithm.
Computers and Operations Research. 36 (4). 1249-1267.

 65

Audit of the ERP system, safety in ERP systems,
evaluation of the safety of ERP systems.

Daniel GĄSKA*, Antoni ŚWIĆ**

THE STANDARDIZED AUDIT OF SAFETY AND THE
RELIABILITY OF ERP SYSTEMS

Abstract

The paper presents the possibility of the realization of the evaluation of the
security of the Enterprise Resource Planning (ERP)systems following the
regulations specified by European and Polish norms which relate to the safety of
computer systems (information systems) in enterprises with the special regard to
the ERP systems. It also introduces the possibility of creating the security system
programme and the actions executed during the evaluation.

1. INTRODUCTION

ERP systems are characterized by the modular structure, that is each system contains

several modules which create the complete entity. The modules can work in various
configurations, which means that the firm does not have to buy the whole system. It is enough
to buy the chosen modules which will co-operate with each other, thus exchanging the
introduced information.

Assuring the safety to the computer resources of firms is currently one of most popular
services on the IT market. However, the majority the services aiming at the evaluation
and the improvement of the computer safety in the firm do not take into account the
regulations specified by Polish and European norms. Thanks to the introduction of the
norms into the process of the evaluation of the computer safety of the firm it will be
possible to compare various ERP systems in relation to the safety. The standardized
process of the evaluation of the safety will give us the true representation of the
system and its protections.

The safety of the ERP system is the necessary element to ensure the correct
functioning of the whole enterprise. Because all the elements of the enterprise are
integrated with the ERP system, the possibility of maintaining the safety of the system

* M.Sc. Eng. Daniel Gąska Lublin University of Technology, Institute of Technological
Information Systems, Lublin, Poland, e-mail: d.gaska@pollub.pl
** D.Sc. Eng. Assoc Prof. Antoni Świć Lublin University of Technology, Institute of
Technological Information Systems, Lublin, Poland, e-mail: a.swic@pollub.pl

 66

seems to be the essential element in the context of the utilization of ERP systems in
the enterprises which introduced the system [1].

2. AUDITING ERP SYSTEMS ACCORDING TO THE DIRECTIVE S

OF SACA

ISACA (Information Systems Audit and Control Association) is an international
association of the people in charge of the issues concerning the audit, control, safety and other
aspects of the management of the information systems.

It is one the ways of introducing the reliable evaluation of the information systems and, in
particular, of the ERP systems. The association proposes solutions which enable the execution
of the audit of the information system realized on the basis of standards specified in SISA
Standards for Information Systems Auditing [4].
It is imperative that the organization’s system management fully understand and support the IS
auditor’s role(s) as it relates to the ERP system or implementation project .The IS Auditing
Guideline should be reviewed and considered within the context of the ERP system and related
initiatives of the organization (Fig. 1.).

Fig. 1. IS Auditor’s ERP Involvement [3]

IS Auditor’s ERP
Involvement

Audit Noaudit

Inital
Implementation

Existing System

Review, Test
Assess Controls
and Business
Process

Test Changes

E.g. Direct
participation Or
involvement In:
• Data integrity and

conversion
• Security and control

consultation
• BPR rple(s)
• Testing

E.g. Coverage May
include:
• Pre-implementation

review of controls
• Data integrity and

conversion
• Project management
• Security administration

BPR
• Testing

 67

ERP Knowledge and Skill Requirements [3]
 ERP System Implementation

Project
Background
knowledge
of the IS
auditor

An understanding of financial and
management controls and control
risks generally
A thorough understanding of the
application of professional IS
auditing standards
A thorough understanding of IT
related controls and
control risks in the following
areas:
• IT environment
• Applications/processing
An understanding of client/server
architectures
An understanding of operating
systems and database
management systems
A general understanding of ERPs
and their design and deployment
philosophies, including their
effect on the audit trail
An understanding of the ERP
modules and how they are
configured, integrated and
deployed
An understanding of security and
authorization concepts in an ERP
setting

An understanding of
project management
practices and controls
generally
An understanding of
project management
practices and controls
in the area of IT
An understanding of
IT-related systems
development
methodologies and
standards, including
change management
An understanding of
business process
reengineering
principles and
application of such

Skills of the
IS auditor

A seasoned IS audit professional
who is able to focus on the key
areas of control risk in an ERP
setting
An understanding of computer-
assisted audit techniques
(CAATs) and how to apply them
in an ERP setting. An ability to
recognise where additional
skills/expertise (such as financial
and regulatory) are required

Experience in the
review and assessment
of
implementation
projects

 68

How to
Acquire
skills

Certification as a professional
auditor
Certification as a professional IS
auditor, such as CISA ERP
learning opportunities especially
as part of the end-user community
Practical, on-the-job experience
Self study, research, Internet, etc.

Enroll in specialist
training courses
focusing on
Practical, on-the-job
experience
Self study, research,
Internet, etc.

While carrying out the audit of the ERP systems, you should consider the most important

areas of the system. Fig. 2 shows which areas you should examine more exactly.

Fig. 2. General Elements of and Questions on ERP System Implementation

3. THE FEATURES OF THE SECURITY

Every component feature of the security depends on the architectural organization of the

modules of the ERP systems and on the properties of the security of these modules.
Every component feature on the level of the system can depend on several component

features on the level of the module [6].
The security of the ERP systems cannot be described by one feature. Some of the features

can be expressed as probability, other features are deterministic some elements can be
introduced quantitatively, whereas other aspects can only be described qualitatively.

The examples of the analysis of the security of ERP systems on the level of modules can be
situations in which:

• thearchitecture of the system contains redundancy, the readiness of the system
depends on the features of the integrity of the redundant modules;

• if the architecture contains the mechanisms of the protection of the system, the
protection of the system depends on the features of the readiness of the modules
which realize the mechanism of the protection;

• if the architecture contains modules controlling internal passing of the information
between the various parts of the system, then the security of the system depends on
the features of the protection of these modules.

 69

In order to realize the evaluation of the security of the ERP systems, the program of this
evaluation needs to be defined. This is possible after defining the aims of the evaluation of
security, the requirements of the system and the specification of the system. Figure 1 represents
three elements of the full analysis of the system, with the third element of the analysis being
the evaluation of the security of the ERP systems [13].

It is important to remember that the information given in the document relating to the
system requirements (SRD) and in the document relating the specification of the system (SSD)
must be complete and exact to make the evaluation of the system possible.

If it turns out that at any phase of carrying out the evaluation, some information is missing
or is incomplete, the consultation with the authors of SRD and SSD is required. By asking
them detailed questions, it will be possible to receive the required information. It is important
that the received additional information is specified in suitable documents [15].

4. EVALUATION CRITERIA ERP SYSTEMS ACCORDING TO TH E
DIRECTIVES OF INTERNATIONAL STANDARD ISO/IEC 15408

Information held by ERP system is a critical resource that enables organizations to succeed

in their mission. Additionally, individuals have a reasonable expectation that their personal
information contained in ERP products or systems remain private, be available to them as
needed, and not be subject to unauthorized modification. ERP products or systems should
perform their functions while exercising proper control of the information to ensure it is
protected against hazards such as unwanted or unwarranted dissemination, alteration, or loss.
The term ERP security is used to cover prevention and mitigation of these and similar hazards.

Many consumers of ERP lack the knowledge, expertise or resources necessary to judge
whether their confidence in the security of their ERP products or systems is appropriate, and
they may not wish to rely solely on the assertions of the developers. Consumers may therefore
choose to increase their confidence in the security measures of an ERP product or system by
ordering an analysis of its security (i.e. a security evaluation) [10].

The Common Criteria (CC) with international standard ISO/IEC 15408 can be used to

select the appropriate ERP security measures and it contains criteria for evaluation of security
requirements.

The Common Criteria (CC) with international standard ISO/IEC 15408 plays an important
role in supporting techniques for consumer selection of ERP security requirements to express
their organizational needs. The Common Criteria (CC) with international standard ISO/IEC
15408 is written to ensure that evaluation fulfils the needs of the consumers as this is the
fundamental purpose and justification for the evaluation process.

Consumers can use the results of evaluations to help decide whether an evaluated product
or system fulfils their security needs. These security needs are typically identified as a result of
both risk analysis and policy direction. Consumers can also use the evaluation results to
compare different products or systems. Presentation of the assurance requirements within a
hierarchy supports this need.

The Common Criteria (CC) gives consumers — especially in consumer groups and
communities of interest — an implementation-independent structure termed the Protection
Profile (PP) in which to express their special requirements for ERP security measures in a
Target of Evaluation (TOE).

 70

In order to achieve greater comparability between evaluation results, evaluations should be
performed within the framework of an authoritative evaluation scheme that sets the standards,
monitors the quality of the evaluations and administers the regulations to which the evaluation
facilities and evaluators must conform.

The Common Criteria (CC) does not state requirements for the regulatory framework.
However, consistency between the regulatory frameworks of different evaluation authorities
will be necessary to achieve the goal of mutual recognition of the results of such evaluations.
Figure 3 depicts the major elements that form the context for evaluations.

Use of a common evaluation methodology contributes to the repeatability and objectivity of
the results but is not by itself sufficient. Many of the evaluation criteria require the application
of expert judgment and background knowledge for which consistency is more difficult to
achieve.

Fig. 3. Evaluation context

In order to enhance the consistency of the evaluation findings, the final evaluation results

could be submitted to a certification process. The certification process is the independent
inspection of the results of the evaluation leading to the production of the final certificate or
approval. The certificate is normally publicly available. It is noted that the certification process
is a means of gaining greater consistency in the application of ERP security criteria.

Security is concerned with the protection of assets from threats, where threats are
categorized as the potential for abuse of protected assets. All categories of threats should be
considered; but in the domain of security greater attention is given to those threats that are
related to malicious or other human activities. Figure 3 illustrates high level concepts and
relationships.

Safeguarding assets of interest is the responsibility of owners who place value on those
assets. Actual or presumed threat agents may also place value on the assets and seek to abuse
assets in a manner contrary to the interests of the owner. Owners will perceive such threats as

 71

potential for impairment of the assets such that the value of the assets to the owners would be
reduced. Security specific impairment commonly includes, but is not limited to, damaging
disclosure of the asset to unauthorized recipients (loss of confidentiality), damage to the asset
through unauthorized modification (loss of integrity), or unauthorized deprivation of access to
the asset (loss of availability) [10].

Owners

countermeasures

vulnerabilities

risk

assetsthreats

Threat agents

valuewish to

minimise

impose

to reducethat may

possess

may be aware of

that may be

reduced by

that

exploit

give

rise to

wish to abuse and/or may damage

to

that increase

leading to
to

Fig. 4. Security concepts and relationships

The owners of the assets will analyze the possible threats to determine which ones apply to

their environment. The results are known as risks. This analysis can aid in the selection of
countermeasures to counter the risks and reduce it to an acceptable level.

Countermeasures are imposed to reduce vulnerabilities and to meet security policies of the
owners of the assets (either directly or indirectly by providing direction to other parties).
Residual vulnerabilities may remain after the imposition of countermeasures. Such
vulnerabilities may be exploited by threat agents representing a residual level of risk to the
assets. Owners will seek to minimize that risk given other constraints.

 72

Fig. 5. Evaluation concepts and relationships

Owners will need to be confident that the countermeasures are adequate to counter the
threats to assets before they will allow exposure of their assets to the specified threats. Owners
may not themselves possess the capability to judge all aspects of the countermeasures, and may
therefore seek evaluation of the countermeasures. The outcome of evaluation is a statement
about the extent to which assurance is gained that the countermeasures can be trusted to reduce
the risks to the protected assets. The statement assigns an assurance rating of the
countermeasures, assurance being that property of the countermeasures that gives grounds for
confidence in their proper operation. This statement can be used by the owner of the assets in
deciding whether to accept the risk of exposing the assets to the threats. Figure 5 illustrates
these relationships [11].

 73

Owners of assets will normally be held responsible for those assets and should be able to
defend the decision to accept the risks of exposing the assets to the threats. This requires that
the statements resulting from evaluation are defensible. Thus, evaluation should lead to
objective and repeatable results that can be cited as evidence.

Many assets are in the form of information that is stored, processed and transmitted by ERP
products or systems to meet requirements laid down by owners of the information. Information
owners may require that dissemination and modification of any such information
representations (data) be strictly controlled. They may demand that the ERP product or system
implement ERP specific security controls as part of the overall set of security countermeasures
put in place to counteract the threats to the data ERP systems are procured and constructed to
meet specific requirements and may, for economic reasons, make maximum use of existing
commodity ERP products such as operating systems, general purpose application components,
and hardware platforms. ERP security countermeasures implemented by a system may use
functions of the underlying ERP products and depend upon the correct operation of ERP
product security functions. The ERP products may, therefore, be subject to evaluation as part
of the ERP system security evaluation [11].

4.1. COLLECTING THE INFORMATION FOR EXECUTING
 THE EVALUATION OF THE SECURITY

Before beginning the realization of the audit of the security of the ERP system, it is

necessary to execute the review of the system in order to relate the system to its mission. The
system should be decomposed into modules and elements. It is also necessary to remember that
the process of decomposing leads to demonstrative schemes/patterns and additional
descriptions.

It is recommended that while realizing the process of decomposing of the ERP system the
description should include:

• all modules of interface to the process, to the application, to the database and to
external systems;

• communication channels which in the large measure decide about the security of the
system;

• processing modules connected with the application;
• the interaction of the modules;
• existence of the divisions and the distances between the divisions of the firm.

After completing the process of decomposingit is important to know that the majority of
ERP systems are based on module architecture which where he separate modules freely
combined.

In order to conduct the evaluation of the system, it is essential to extract the necessary
information from SRD and SSD documents.

It is recommended to combine the requirements specified in SRD and the level of security
assured by the system, as specified in SSD, and the comparison between them in order to arrive
at the precise quantitative and qualitative definition and the range of their value, if this can be
applied, in following casess:

• thelimits of the ERP systems;
• thekind of threats and their ways of spreading;
• the influencing conditions which can create the threat inside the system;
• the ways of reducing the risk of the situations which may pose the threat;

 74

• the ways of reducing the risk of the situations of connecting various phenomena
which, in turn, may pose the threat;

• the allocation of the security of modules and the elements of the system;
• the way in which various modules and the elements of the system interact and the

possibility losing the security which can happen as the result of the interaction;
• matters which are outside the range of the system;
• thegenerally accessible knowledge and the range within which the security of the

system is to be evaluated.

4.2. ACTIONS EXECUTED DURING THE EVALUATION
 OF THE SECURITY OF THE SYSTEM

The list of the actions to be realized during the evaluation process comes from the reduced

list of the objects of the evaluation broadened by the subjects included in the evaluation in
which we should consider:

• thekind of analysis and defining of the proprieties required for the justification of the
evaluation of the security;

• thelevel of the priority of every action which is part o the evaluation of the security;
• theknowledge and skills necessary for the execution of the required analysis and the

definition of the properties;
• limitations in the schedule of the evaluation of the security, resulting from the long

time of marking the different proprieties of the system;
• theavailability of the chosen staff;
• tools and services necessary for the execution of required analyses and delimitation of

the propriety of the system;
• estimation of the cost and duration of every analysis and the definition of the

properties of the system.
It is often necessary to combine several techniques which will be complimentary and will

make it possible to define the security of the system realizing earlier planned actions.
The programme of the evaluation of the security of the ERP systems should contain such

elements as:
• the object of the evaluation;
• the criteria which need to be taken into consideration;
• the actions taken during the evaluation;
• therequired increase of the level of the confidence;
• the schedule of the evaluation in which you should consider the long time of the

duration of some investigations.

4.3. TECHNIQUES OF DEFINING THE PROPRIETIES OF THE SYSTEM
 FOR FURTHER EVALUATION

Chosen techniques could be either analytic, using only the documentation of the system or

experimental, requiring the access to the realized system [2].
The results received with the help of the alternative techniques of defining proprieties can

be quantitative or qualitative, or can also be the combination of both kinds.

 75

Various methods of defining properties can be applied, but it is recommended that in each
case, the report of the evaluation contained the reference he documents describing the applied
methods.

The following steps should be executed with reference to each kind of the threat:
• check if the threat exists and if it does, check if there is the accessible certification and

if it is valid in the working conditions specified in SRD or if it follows the regulation;
• if the satisfying certification is not available it is recommended to execute the suitable

analysis of the risk.
The experimental techniques of defining the proprieties of the system are the supplement of

the analytic techniques.
Every time the analytic techniques cannot guarantee the evaluation of the security level of

the system, the execution of experimental defining of the proprieties, in order to evaluate those
aspects which do not have complete data.

5. THE REPORT OF THE EVALUATION OF ERP SYSTEMS

The report of the evaluation of the safety of the ERP system should also contain the

following information:
• the compilation of the data from the document relating to system requirements and the

document relating to the specification of the system of, for example the requirements
of safety, working conditions, service, etc.;

• theanalysis of the system, its modular and functional structure, the risks to which the
system was subjected, elements and components and the relationship between them,
etc.;

• thelist of actions recommended for further evaluation of the analysis and further
investigations.

8. SUMMARY

Summing up should affirm, that the performance of the standardized programme of

the opinion of the safety of the ERP systems will make possible the creation such
conditions the work, which will give the tool to the enterprise thanks which what
level of the safety of the ERP systems the qualification possible will be he is in the
enterprise. Does the introduce methodology give the answer what to the safety of one
of the most important links of the firm.

REFERENCES

1. Benjamin B. Bae, Ph.D., and Paul Ashcroft, Ph.D.: Implementation of ERP Systems.
Accounting and Auditing Implications, ISACA Journal Volume 5, 2004.

2. Standards, Guidelines and Procedures for Auditing and Control Professionals,
Published by Information Systems Audit and Control Association, February 2007.

3. Steve Maguire, Writing solid code: Microsoft’s techniques for developing bug-free C
programs, Published by Microsoft Press Washington 1993.

4. PN-I-13335-1: Technika informatyczna. Wytyczne do zarządzania bezpieczeństwem
systemów informatycznych. Pojęcia i modele bezpieczeństwa systemów
informatycznych.

 76

5. PN-I-02000: Technika informatyczna. Zabezpieczenia w systemach informatycznych.
Terminologia.

6. PN-ISO 10011-1: Wytyczne do audytowania systemów jakości. Audytowanie.
7. ISO/IEC 17799: Technologie informacyjne. Zasady postępowania w zarządzaniu

bezpieczeństwem informacji.
8. PrPN-I-13335-2: Technika informatyczna. Wytyczne do zarządzania

bezpieczeństwem systemów informatycznych. Aspekty zarządzania i planowania.
9. PrPN-I-1335-3: Technika informatyczna. Wytyczne do zarządzania bezpieczeństwem

systemów informatycznych. Techniki bezpieczeństwa.
10. ISO/IEC 15408-1: Information technology - Security techniques - Evaluation criteria

for IT security - Part 1: Introduction and general model.
11. ISO/IEC 15408-2: Information technology - Security techniques - Evaluation criteria

for IT security - Part 2: Security functional components.
12. ISO/IEC 15408-3: Information technology - Security techniques - Evaluation criteria

for IT security - Part 3: Security assurance components.
13. PN-EN 61069: Pomiary i sterowanie procesami przemysłowymi. Wyznaczanie

właściwości systemu w celu jego oceny: Część 2: Metodologia oceny.
14. PN-EN 61069: Pomiary i sterowanie procesami przemysłowymi. Wyznaczanie

właściwości systemu w celu jego oceny: Część 5: Ocena niezawodności systemu.
15. PN-EN 61069: Pomiary i sterowanie procesami przemysłowymi. Wyznaczanie

właściwości systemu w celu jego oceny: Część 7: Ocena bezpieczeństwa systemu.

	Front page
	Editioral page
	FOREWORD
	CONTENTS
	CP-BASED DECISION SUPPORT FOR SCHEDULING
	COMPUTER AIDED FMS MACHINE TOOLS SUBSYSTEM SELECTION USING THE EVOLUTIONARY SYSTEM OF MULTICRITERIA ANALYSIS
	ADAPTIVE SWITCHING OF MUTATION RATE FOR GENETIC ALGORITHMS AND GENETIC PROGRAMMING
	Adaptive Approaches to Parameter Control in Genetic Algorithms and Genetic Programming
	MINIMIZING MAKESPAN IN GENERAL FLOW-SHOP SCHEDULING PROBLEM USING A GA-BASED IMPROVEMENT HEURISTIC
	THE STANDARDIZED AUDIT OF SAFETY AND THE RELIABILITY OF ERP SYSTEMS

