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FOREWORD 
 
The conditions of environment in which enterprises are working has drastically 

changed during last few decades. The basic factors which occurred as a new 
challenges for  companies were: variability of customers’ equirements and the same 
making shorter the products’ life cycles, growing competiveness in global scale and 
the speed of technical progress do not meet up to now. Ipso facto the environment of 
functionality of enterprises has become extremely dynamic and directly the dynamics 
and variability of orders’ realization varied into complexity of problems which  
instantly had to been solved by the companies. In many cases, these problems were 
non-trivial and its solving required analysis of huge number of solutions, frequently 
taking into account many contradictory and inverse criteria of assessment.  

Inter alia, because of these reasons, the tools commonly used by designers and 
organizers of production became computer systems which assist decision processes 
and also planning and control of manufacturing processes. Simultaneously 
requirement for methodological solutions which allows fast analysis of many possible 
scenarios of solutions which are based on one or many criteria of evaluation was 
growing. Over a wide range, the scientific researches tending toward elaboration tools 
for finding importance of solutions when taking into account these criteria of 
evaluations were provided. In consequence of these fact the methods which have 
found wide applications are: mathematic methods of one- and multi-criteria 
optimization and also optimization methods of artificial intelligence (genetic 
algorithms, evolutionary algorithms, ant colony algorithms).  

In this issue the possibility of application of methods for finding importance of 
solutions in problems of manufacturing systems’ design, scheduling and control of 
manufacturing processes was presented. The contributed papers fall into four main 
problems area. The first paper presents reference model implemented in constraint 
programming techniques which can be successfully used for solving problems of rapid 
prototyping of alternative versions of project scheduling. The next paper presents 
possibility of using the evolutionary system of multicriteria analysis in problems of 
flexible manufacturing systems machine tools subsystem selection. The next group of 
three papers deals with problems of possibility of using the methods based on genetic 
algorithms and genetic programming in problems of both automated design of control 
systems and manufacturing processes scheduling.  

The last paper emphasizes the importance of reliability of ERP systems and 
presents the method of standardized audit of ERP systems, safety and evaluation of 
these systems under the European and Polish norms. 

 
 



We do hope that this issue will increase interest both among managers which 
deals with the problems of management and production engineering and also among 
scientific researcher for whom presented solutions will become the base for future 
works in finding new solutions which support processes of design and management of 
manufacturing processes.  

         

       Editors: Zbigniew Banaszak, Antoni 
�
wi� 

Lublin, June, 2011 
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project management, constraint programming, alternative projects 
 
 

Marcin RELICH* 
 
 

CP-BASED DECISION SUPPORT FOR SCHEDULING 
 
Abstract 

The paper presents the declarative approach to design of a reference model 
aimed at project prototyping. The reference model contains the finite set of 
decision variables, their domains and linking those constraints, i.e. can be seen 
as a kind of Constraint Satisfaction Problem. Consequently, the model 
considered can be treated as a knowledge base specifying both a class of 
enterprises and the projects that could be conducted on their base. So, the model 
provides a platform for rapid prototyping of alternative versions of project 
scheduling. The routine queries can be formulated in the straight or reverse way. 
In that context, the proposed reference model can be implemented in constraint 
programming (CP) techniques. 

 
 
1. INTRODUCTION 
 

In the activity of present organizations more and more importance concerns unique 
activities, so-called projects. A project is a sequence of unique, complex, and connected 
activities having one goal or purpose and that must be completed by a specific time, within 
budget, and according to specification [9]. On account of this, the demand arises for new 
knowledge that enables the problems occurring in the realisation of unique projects to be 
solved. In this case, of particular significance is knowledge of project management that 
identifies factors which have an influence on the success or failure of the project, and that uses 
special methods and techniques. 

Many cases of projects indicate that fewer than half of projects met cost and schedule 
targets [6, 11, 13, 16, 19]. The findings of various other authors indicate that projects which 
overrun are more common than projects which complete within original time scales, overruns 
likely to be between 40% and 200% [12]; for instance, only one third of World Bank projects 
met their aims, with typical delays of 50%. Another survey showing only 17% of projects 
meeting all three aspects of the project triangle (cost, time, and scope), with typical cost 
overruns as high as 189% [7]. In the case of software projects, the surveys on estimation 
performance report that 60-80 percent of all software projects encounter effort overruns [8, 10, 
17]. 

Project success or failure depends on many critical factors, such as factors related to the 
project, availability of resources, project management, and the external environment [2, 13]. 
The reasons for project failure can be generally considered in availability of resources (e.g. 
human, financial, raw materials) and changeability of the external environment.  

 

                                                      
* Ph.D., Faculty of Economics and Management, University of Zielona Góra, m.relich@wez.uz.zgora.pl 
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Moreover, unstable requirements, lack of well-defined scope, quality of management, and skill 
of the employees can cause project failure. Another factor is that an enterprise which carries 
out a few projects can change the priority of the project. 

The project requires planning that supports, among other things, the estimates of effort, 
resources, time, etc., which are fundamental to guide the project activities. To reduce project 
overruns, there are two ways to approach the problem. The first way is to increase the accuracy 
of the estimates through a better estimation process and the second, to increase the project 
control.  

It is unrealistic to expect very accurate estimates of project effort because of the inherent 
uncertainty in development projects, and the complex and dynamic interaction of factors that 
influence its development. However, even small improvements will be valuable, especially if a 
project is connected with the large scale. More accurate forecasting supports the project 
managers in planning and monitoring the project, for instance in the project price set, resource 
allocation or schedule arrangement.  

In the case of a significant difference between actual and planed project parameters, the 
manager should take a decision concerning the response to the change. The response can 
regard a support status quo, a correction of differences, a change of the norms, and also it may 
be connected with continuing the actual project. This approach is usually considered in the 
research works. The change of project scope can be another type of reaction regarding the 
performed variations. In this case, it seems important to build the approach that will generate a 
set of alternative projects and support the decision-maker. The alternative project is considered 
as a modification of the primary project, that can be made in different stages of the project life 
cycle, e.g. by the definition of the project or its implementation. 

Rapidly changing expectations related to supporting strategic decisions, as well as aiming 
to reduce cost and investment risk, result in the need to make a task-oriented decision support 
system. Most of the publications have considered separately the fields of enterprise and project 
management. This results in a separate knowledge base respectively for an enterprise and 
project management. Consequently, it implies the difficulty of implementation of these fields 
within a single tool that is used for decision support. Hence, there is a need to build a single 
model that combines the fields of enterprise and project management, and that provides a base 
for making a task-oriented decision support system. 

The paper is organized as follows. A reference model concerning an enterprise and project 
is presented in section 2. Scheduling in a form of the so-called constraint satisfaction problem 
is described in section 3. An example of the approach, which presents a possibility of decision 
problem specification in the straight and in the reverse way, is illustrated in section 4. Finally 
conclusions and future research are presented in section 5. 

 
 

2. REFERENCE MODEL 
 
The proposed approach combines the fields of an enterprise and project in single platform – 

the reference model. This type of approach seems to be natural in the case of an enterprise that 
executes projects and solves standard decision-making problems. In this way, a knowledge 
base is created that in addition to the inference strategies allows more efficient implementation 
of decision support system. 

It is assumed that the reference model has the structure of constraints satisfaction problem 
(CSP), and it may be described as follows: 
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 CSP = ((V, D), C) (1) 
 
where:  
V = {v1, v2, ..., vn} – finite set of n variables, 
D = {D1, D2, ..., Dn} – finite and discrete domains D of variables, where Di = {d i1, di2, ...,  
      dir}, 
C = {c1, c2, ..., cm} – finite set of m constraints binding decision variables. 
Each constraint treated as a predicate can be seen as an n-ary relation defined by a 

Cartesian product D1 × D2 × ... × Dn. The solution to the CSP is a vector (d1i, d2k, ..., dnj) such 
that the entry assignments satisfy all the constraints C. So, the task is to find the values of 
variables satisfying all the constraints, i.e., a feasible valuation. Generally, the constraints can 
be expressed by arbitrary analytical and/or logical formulas as well as bind variables with 
different non-numerical events. 

Thus, a constraint can be treated as a logical relation among several variables, each one 
taking a value in a given (usually discrete) domain. To solve such a problem stated by the set 
of requirements (constraints) that specify a problem at hand, the concept of constraint 
programming (CP) is employed. CP is an emergent software technology for declarative 
description CSP and can be considered as a pertinent framework for development of decision 
support system software aims. The main idea behind the CP concept is based on subsequent 
phases of constraint propagation and variable distribution [14]. 

Construction of the reference model requires certain assumptions concerning the structure 
of the modelled object and the tasks performed in it. It is assumed that the client orders may be 
taken and commenced at any time (possibly adding the new projects to a set of projects already 
in progress). The expenses regarding an order are paid from the enterprise’s own means or 
from a bank loan. The budget of the project is set with cash flow budget in the investment 
period. The client order is chosen by the profitability analysis and technical realizability. The 
enterprise receives the order specification with the client requirements, regarding among others 
the scope, price and time completion of project.  

The enterprise model can be described by its resources. The project model is created from 
the requirements of the client. In the model, some parameters are determined, among which  
a set of constraints and decision variables may be distinguished (Fig. 1). The constraints 
connect the variables that describe the capacity of the enterprise, as well as the variables that 
concern the conditions of project completion. For instance, the number of the enterprise’s 
employees limits the duration of the project. 

It means that fulfilment of specified constraints enables project completion according to 
client requirements. The enterprise and project model containing examples of decision 
variables and constraints is shown in Fig. 1. 
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Fig. 1. Enterprise-project model as a common knowledge base 
 
The assumed model enables descriptive approach to the problem statement, encompasses 

constraint satisfaction problem structure and then allows implementation of the problem 
considered in the constraint programming environment. The idea behind the proposed approach 
assumes the system considered can be represented in terms of a knowledge base (KB). KB 
comprises of facts and rules determining the system’s properties and relations linking them 
respectively. Taking into account the concept of constraints propagation and variables 
distribution following from the constraint programming languages it is easy to note that any 
KB can be represented in a standard form of the CSP [18].  

KB can be specified in terms of a system [5]. At the input of the system are the variables 
regarding the fundamental attributes of the object that are known and given by the user. In the 
considered KB for the enterprise-project model, there are, for example, variables concerning 
the amount of an enterprise’s resources or the project structure.  The output of the system is 
described by the attributes of the object that are unknown or are only partially known. In the 
considered case, there can be included variables regarding e.g. the cost or time of activity, use 
of resources or the level of investment performance indicators. 

Classification of the decision variables in KB as input-output variables is arbitrarily made 
and allows the formulation of two classes of standard queries, in a straight and in a reverse 
way, as follows [1, 4]:  

- a straight way (i.e. corresponding to the question: what results from premises?), e.g. Does 
a given resources allocation guarantee the schedule does not exceed the given deadline? 

- a reverse way (i.e. corresponding to the question: what implies conclusion?), e.g. What 
activity duration times and resources amount guarantee the given schedule does not exceed the 
deadline? 

The above-mentioned categories encompass the different reasoning perspectives, i.e. 
forward and backward reasoning. The corresponding queries can be stated in the same model 
that can be treated as composition of variables and constraints, i.e. assumed sets of variables 

Knowledge base 

Enterprise 
 

Constraints: 
- initial amount of 
resources, 
- limited amount of 
resources, 
- ... 

Decision variables: 
- employees, 
- tools, 
- logistic resources, 
- financial resources, 
- ... 

Project 
 
Decision variables: 
- the starting time of the 
activity, 
- the duration of the 
activity, 
- ... 

Constraints: 
- the sequence of activities 

in the project from work 
breakdown structure, 

- the time horizon of the 
project, 

- ... 

Constraints 
resulting from the 
expert knowledge 

and / or its 
employees 
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and constraints limiting their values. In that context, the problem statement of scheduling, 
which is specified in terms of CSP, is presented in next section. 

 
 

3. CONSTRAINTS SATISFACTION PROBLEM FOR SCHEDULING 
 
Given amount z of discrete resources rk specified by (e.g. workforce, tools, money): R = (r1, 

r2, ..., rz). Given amounts qk,h of available resources at the moment of  H: H = {0, 1, ..., h}. 
Given a project Pi is specified by the set composed of l activities: Pi = {Ai,1, Ai,2, ...,  Ai,l}. The 
activity Ai,j is specified as follows: 

 Ai,j = (si,j, ti,j, Tpi,j, Tzi,j, Dpi,j) (2) 
 
where: 
si,j – the starting time of the activity Ai,j, i.e., the time counted from the beginning of the 
time horizon H. 
ti,j – the duration of the activity Ai,j. 
Tpi,j = (tpi,j,1, tpi,j,2, ..., tpi,j,z) – the sequence of moments the activity Ai,j requires new 
amounts of resources: tpi,j,k – the time counted since the moment si,j of the dpi,j,k amount of 
the k-th resource allocation to the activity Ai,j. That means a resource is allotted to an 
activity during its execution period: 0 ≤ tpi,j,k < ti,j; k = 1, 2, ..., z. 
Tzi,j = (tzi,j,1, tzi,j,2, ..., tzi,j,z) – the sequence of moments the activity Ai,j releases the subsequent 
resources: tzi,j,k – the time counted since the moment si,j of the dpi,j,k amount of the k-th 
resource was released by the activity Ai,j. That is assumed a resource is released by activity 
during its execution period: 0 < tzi,j,k ≤ ti,j; tpi,j,k < tzi,j,k; k = 1, 2, ..., z. 
Dpi,j = (dpi,j,1, dpi,j,2, ..., dpi,j,z) – the sequence of the k-th resource amounts dpi,j,k are 
allocated to the activity Ai,j: dpi,j,k – the amount of the k-th resource allocation to the activity 
Ai,j. That assumes: 0 ≤ dpi,j,k < qk; k = 1, 2, ..., z. 
The constraints regarding the enterprise include the initial and available amounts of the 

resources. Moreover, the project portfolio should be completed within the given time horizon 
H = {0, 1, ... , h}. It is assumed the activities cannot be suspended during their execution, and 
also: 

− each activity can request any kind and quantity (not exceeding the resource’s limited 
amount) of any resource, 

− each resource can be uniquely used by an activity, 
− the quantity of resource used by an activity cannot be changed or allotted to other 

activity, 
− an activity can start its execution only if required amounts of resources are available at 

the moments given by Tpi,j. 
The following activities order constraints are considered: 
− the k-th activity follows the i-th one: 

  si,j + ti,j ≤ si,k (3) 
 
− the k-th activity follows other activities: 

 si,j + ti,j ≤ si,k 
 si,j+1 + ti,j+1 ≤ si,k (4) 
 ...  
 si,j+n + ti,j+n ≤ si,k 
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− the k-th activity is followed by other activities: 

 si,k + ti,k ≤ si,j 
 si,k + ti,k ≤ si,j+1 (5) 
 ... 
 si,k + ti,k ≤ si,j+n 
 
According to (1) the reference model for scheduling can be described as follows: 
A set of decision variables V: 
- the starting time of the activity si,j  
- the duration of the activity ti,j 
- resources z, Tpi,j, Tzi,j, Dpi,j 

 
 V= (si,j, ti,j, z, Tpi,j, Tzi,j, Dpi,j) (6) 
 
The values sets of variables V is specified by the set of domains: 
 
 D = (Dsi, Dti, Dz, DTpi, DTzi, DDpi) (7) 
 
Note that for the known values of decision variables (e.g. for a variable concerning 

available amounts of z resources), the domain is a set with single element.  
A set of constraints C includes the constraints regarding an enterprise and a project, for 

instance, the constraints concerning the sequence of activities, the cost or available amounts of 
the resources. Some of the constraints link the field of enterprise with project, e.g. the number 
of available employees. 

C = {C1, C2}, where: 
C1: H = {1, ..., h} – the constraint of the project horizon H, 
C2: si,j + ti,j ≤ si,k - the constraint of the activities sequence in the project. 
An answer to the following question is sought: does a given resources allocation guarantees 

the project completion by assumed constraints, and if so, what are its parameters? 
This question can be expanded to the next, for instance, does a given resources allocation 

not exceed the given deadline H and the given financial resources q in time unit h? It allows a 
class of multicriteria problems to be taken into consideration.  

The examples regarding the above-described problem are presented in next section.  
 
 

4. ILLUSTRATIVE EXAMPLES 
 
The example aims to illustrate a possibility of CSP specification for decision problem of 

project planning in the straight and in the reverse way. It assumes, the activities compete with 
the access to the discrete resources. In the example, single project with nine activities P = {A1, 
..., A9} is considered that network is presented in Fig. 2. Bold lines represent the critical path. 
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Fig. 2. Activity network of project 
 
4.1. Routine queries formulated in the straight way 
 
Example 1 

Operation times for the project by the following sequence are determined: T = (3, 4, 2, 2, 3, 
3, 1, 4, 5). Moreover, given the time horizon H = {0, 1, ..., 15}, and resource r that is limited by 
26 units. Number of resource is constant in whole time horizon H. It assumes, an amount of 
resource is allocated to an activity at the moment of its beginning and can be released only by 
this activity at the moment of its completion. The required number of resource from the 
database of past projects, which belong to the same class as considered project, is determined. 
The resource according to linear function is calculated as follows: dpj = 2 + 2 · tj. Thus, the 
sequence of the resource amounts allocated to the activity j is following: Dp = (8, 10, 6, 6, 8, 8, 
4, 10, 12). 

The order constraints according to the activity network of the project and formulas (3), (4), 
and (5) are following:  

C1: s3 ≥ s1 + t1, C2: s4 ≥ s2 + t2, C3: s5 ≥ s2 + t2, C4: s6 ≥ s3 + t3, C5: s7 ≥ s6 + t6, C6: s8 ≥ s4 + t4, 
C7: s9 ≥ s5 + t5. 
The considered problem belongs to the class of “straight” ones where for a given 

parameters describing the enterprise-project system the activities schedule is sought. It reduces 
to the following question: is there, and if so, what form does a schedule have that completion 
time does not exceed the deadline H, and that fulfils the resource constraints? Note the answer 
to above-mentioned question is connected with determination of the starting time of the 
activity sj, where 0 ≤ sj < 15; j = 1, 2, ..., 9. 

The obtained solution follows from model implementation in the CSP-based reference 
model and programmed in Oz Mozart. The first admissible solution has the following form: S 
= (0, 0, 3, 4, 4, 5, 8, 6, 8). The project schedule fulfilled all constraints imposed by an 
enterprise capability and project requirements, is presented in Fig. 3. 
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Fig. 3. Gantt’s chart of project 

 
The level of resource usage containing the assumed resource’s limit in the time horizon is 

illustrated in Fig. 4. 
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Fig. 4. Gantt’s-like chart of the resource usage 

 
Example 2 

Given the project P specified by the same activity network, time horizon, durations of the 
activities, and amount of the resource allocated to the activity as in Example 1. However, the 
new limit of resource (r ≤ 20) is considered. 

The considered problem also belongs to the class of “straight” ones, and it can be reduced 
to the following question: is there, and if so, what form does a schedule have that completion 
time does not exceed the deadline H, and that fulfils the resource constraints? 

Similarly to the previous case, the solution results in a determination of the beginning 
moments of the activities sj, however regards smaller amount of the resource. By this 
constraint, the set of admissible solutions is empty. This means there is no schedule. Thus, 
there is a possibility to reformulate the considered problem by stating it in a reverse way, i.e. 
the way aims to search for decision variables (e.g. amount of resource for the activity) 
guaranteeing that the completion time of the project does not exceed the assumed deadline H. 
This way is considered in next subsection.  
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4.2 Routine queries formulated in the reverse way 
 
Given the project P specified by the same activity network, time horizon, durations of the 

activities and limit of the resource (r ≤ 20) as in Example 2. Amounts of the resource allocated 
to the activities are not known, however the constraint determining the amounts is given. 
According to the database of past project, the relationship between an amount of the resource 
and a duration of the j-th activity has been determined as follows: dpj = a + b· tj, where a = {1, 
2} and b = {2, 3}.  

Taking into account above-mentioned assumptions, the problem reduces to the question: 
what amounts of the resource allocated to the activities dpj guarantee that completion time of a 
schedule does not exceed the deadline H, and resource limit r? 

In order to response to this question the values of the following sentences are sought: Dp = 
(dp1, …, dp9) and S = (s1, …, s9). The reference model encompassing assumption of the 
considered example was implemented in Oz Mozart programming environment, and the 
obtained solution is following: Dp = (7, 9, 5, 5, 7, 7, 3, 9, 11) and S = (0, 0, 3, 4, 4, 5, 8, 7, 9). 
The project schedule fulfilled all constraints is presented in Fig. 5. 
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Fig. 5. Gantt’s chart of project  

 
The chart illustrating the changes of resource usages, by assumed resource’s limit and the 

time horizon, is presented in Fig. 6. 
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Fig. 6. Gantt’s-like chart of the resource usage 
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The assumed ranges of decision variables and constraints determine the possible values of 
sought parameters. The result is a set of feasible solutions in time unit h. This set can be empty, 
or with one or many solutions. Note that the number of generated solutions depends not only 
on the knowledge base, but also on a user-declared granularity of solutions in constraint 
programming languages such as, for instance, ILOG or Oz Mozart [15]. 
 
 
5. CONCLUSIONS 

 
In the present, changeable business environment, quickness of response to customer needs 

or pressure on innovation and effective cost management determine the success or failure in the 
struggle for market position. This forces more frequent and larger-scale changes in 
contemporary organizations. The answer to these new challenges is the application of the 
principles of project management. In the case of projects carried out on a client order, 
erroneous estimation of expenditures and project deadlines may result penalties being accrued, 
as agreed upon in the contract or covering the costs with the company's own money. A wrong 
decision may worsen the liquidity of an enterprise or even lead to its bankruptcy. In this 
situation, it seems extremely important to support the decision maker. 

The proposed approach assumes a kind of reference model encompassing open structure, 
enabling one to take into account different sorts of variables and constraints as well as to 
formulate straight and reverse kinds of project planning problems. 

Since a constraint can be treated as a logical relation among several variables, each one 
taking a value in a given (usually discrete) domain, the idea of CP is to solve problems by 
stating the requirements (constraints) that specify a problem at hand, and then finding a 
solution satisfying all the constraints. Because of its declarative nature, it is particularly useful 
for applications where it is enough to state what has to be solved instead of how to solve it [1]. 

The advantages of the proposed approach include the possibility of the description of 
enterprise and project management in terms of a knowledge base. Moreover, in the presented 
approach it is possible to obtain a set of feasible solutions in the different phases of the project 
life cycle. This is especially attractive in the absence of the possibility of continuing the project 
in its primary form and can support the decision maker in choosing the alternative project. 

Further research focuses on the presentation of the model reference for the project 
management problem in a dynamic form, taking into account the subsequent project 
management functionality and assessing their impact on the set of feasible solutions. It should 
also define criteria for evaluating project alternatives, and carrying out verification of the 
knowledge base of described object. 
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Abstract 

One of the key problems in the area of flexible manufacturing systems (FMS) 
design is a problem of proper design of manufacturing subsystem and especially 
the machine tools selection. Although the problem seems to be simple, in fact it is 
difficult to solve because of large variety and number of parameters and also 
brief foredesign which are highly influential for the decision. This study shows 
possibility of implementation the Evolutionary System of Multicriteria Analysis 
<ESAW> for defining the importance of solutions in the process of casing-class 
FMS machine tools selection.   

 
 
1. INTRODUCTION 
 
One of the key problems in the area of Flexible Manufacturing Systems (FMSs) design 
is a problem of manufacturing subsystem design and especially machine tools selection 
for designed FMS. It is the first and very important step which determines the system 
effectiveness to large extent. The proper selection of machine tools subsystem could both 
significantly minimize investments for construction, as well as lead to minimization of costs 
of system operation or make the most of machines. Moreover the purchased machinery stock 
directly determines the efficiency, automation and flexibility level of the whole FMS 
and the result of this step is a foundation for designing the residual subsystems of flexible 
manufacturing system [21].  
Although the problem seems to be simple, selection of proper machine tools for designed system 
is not an easy one. The basic resource of the problem is a great variety and number of parameters 
and also complexity of design conditions which are need to be taken into account during the 
selection process. Therefore appears the necessity of using the formalized optimization methods 
which assist to find the best solution in the process of FMS machine-tools subsystem design. 
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When taking into account that machine tools selection process is realized using more than one 
criterion of evaluation of solutions – the useful are methods of multicriteria analysis [9,17,24]. 
Various researchers have studied to determine the suitable equipment for the different 
manufacturing facilities using mathematical models, heuristic algorithms and MCDM methods. 
Some of them have been focused on machine tool selection directly. Several studies regarding 
the machine tool selection problem can be given as follows. Lin an Yang [12] presented 
a machine selection model from a range of machines for the manufacture of particular part types 
using the AHP method.  Tabucanon et al. [20] developed a decision support framework 
for selecting the most appropriated machines in flexible manufacturing systems (FMS). Atamani 
and Lashkari [2] developed a model for machine tool selection and operation allocation in FMS. 
Wang et al. [22] presented fuzzy multiple attribute decision making model to select 
the appropriate machines for FMS. Fuzzy technique for order preference by similarity to ideal 
solution (TOPSIS) presented Onut at al. [16]. Arslan et al. [1] presented a muliti-criteria weighted 
average (MCVA) method for machine tool selection. Yourdakul [23] proposed a model linking 
machine alternatives to manufacturing strategy for machine tool selection. In that study, 
evaluation of machine tool alternatives was modelled considering strategic implications 
of the machine tool selection decisions by using the AHP method. Ayag and Ozdemir [3] used 
the fuzzy AHP technique to weight the machine tool alternatives under eight main and nineteen 
subcriteria and then carried out benefit/cost ratio analysis by using both the fuzzy AHP score and 
procurement cost of each alternative. By using the same criteria again, Ayag [4] proposed 
a hybrid approach, which integrates the AHP with simulation techniques, to determine the best 
machine tool satisfying the needs and expectations of a manufacturing organization among set 
of possible alternatives in the market. Mishra et al. [13] suggested a fuzzy goal-programming 
model having multiple conflicting objectives and constraints pertaining to the machine tool 
selection and operation allocation problem, and used a random search optimization methodology. 
Chan and Swarknar [6] presented a fuzzy goal programming approach to model the machine tool 
selection and operation allocation problem of FMS. An ant colony optimization based approach 
was also applied to optimized the model. Cimren at al. [7] proposed a decision support system 
for machine tool selection using the analytic hierarchy process. Dagdeviren [8] presented 
an integrated approach which employs analytic hierarchy process (AHP) and preference ranking 
organization method for enrichment evaluations (PROMETHEE) together for the equipment 
selection problem. Selection of a machine tool for FMS using ELECTRE III presented 
Balaij at al. [5]. Rao and Parnichkun [18] presented a methodology based on a combinatorial 
mathematics-basede decision method for evaluation alternative flexible manufacturing systems. 
Although there were a number of publications evaluating the machine tools alternatives 
in the literature, many of them have been prepared using the MCDM methods considering human 
judgments, tangible, intangible and multiple criteria. In this paper the possibility 
of implementation the Evolutionary System of Multicriteria Analysis for the defining 
the importance of solutions in the process of casing-class FMS machine tools selection was 
shown. In particular, the issue of the process of machine tools selection, the essence 
of Evolutionary System of Multicriteria Analysis and solutions of the process of defining 
the importance of solutions for selected decision problem were presented. 
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2.  THE ALGORITHM OF THE PROCESS OF CASING-CLASS FM S 
MACHINE TOOLS SELECTION 

 
The process of selection of machine tools subsystem for designed casing-class FMS 

is implemented using the assumptions of the methodology presented in works [9,19]. The 
selection is realized according the four-stages algorithm presented in fig. 1.  

 

Record of knowledge about 

machine tools

Record of design knowledge 
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Elimination of machine 

tools based on „critical” 

criteria
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STOP
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knowledge, development          
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STAGE II

Elimination of machine tools 
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technological-organization 
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STAGE III

Development of possible 

variants of machining of the 

synthetic product, quantitative 

choice of machine tools for the 

particular variants

STAGE IV

Optimisation analysis of the 

particular variants selection         

of machine tools in accordance 

with the adopted optimisation 

criteria

Generation of matrix         

of machine tools’ 

technological capacity 

Development                            

of technological process 

of the synthetic product (SP)

 

Fig.1. Main algorithm of the methodology of machine tools selection in casing-class FMS 
[9,19] 

 
 

The first step in the process of selection is the preparation of a record of knowledge about 
all machines tools from among which the choice is to be made O = {o1, o2,… on} = {o i}, 
products to be machined in the FMS being designed W= {w1, w2, …, wt} = {w α} 
and development and saving of technological process of the synthetic product (SP).  

In the second stage elimination from the O database of those machine tools that are 
incapable of producing the parts that are to be machined in the system, based on certain limit 
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criteria (“critical” criteria)  is realized. In accordance with the adopted assumptions, we should 
eliminate from the database those machine tools that: 
1. Do not meet the limit conditions resulting from the technical parameters of products to be 

machined in FMS. 
2. Do not meet the limitations imposed by the user and/or designer of the flexible 

manufacturing system. 
3. Do not have the design-technological capabilities to perform the machining operations 

provided for realization within the process of manufacturing. 
Those machine tools that „remain” in the database after the stage of elimination constitute 

of set of machine tools that are taken into consideration at further stages of selection (X 
= {x1, x2,… xm} = {x k}). 

Machine tools which meet the critical conditions are saved in the set of technological 
machines X= {x1, x2,… xm} = {x k}. On the base of X set and the developed 
technological process of synthetic product the Akj  [0-1] matrix of machine tools capabilities 
is generated. The matrix defines which of the machine tools has the ability to realize specified 
cut from the technological process of WS. 

In the stage three the generation of technological paths and the quantitative selection 
of machine tools for particular technological paths is realized. Technological paths determines 
possible ways of going the synthetic product through the system, i.e. following machine tools 
which realizes following cuts in the technological process of WS. Technological paths and the 
results of quantitative selection of machine tools which is realized using the method 
of balancing the burden level of particular machine tools with the manufacturing tasks forms 
solutions to be analyzed in fourth stage of methodology. 

The last step in the process of selection is a choice the best solution using the accepted 
criteria of evaluation. The optimization criteria (target functions) in presented model 
are as follows: 

 
1) Minimisation of total costs of machine tools acquisition and operation (per annum) 

calculated using formula (1): 

∑
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where: Lk – number of k machine tools, Ck – total purchasing price of k machine tool, aok – annual 

depreciation rate of k machine tool, ksk – average annual cost of service for k machine tool. 
 

2) Minimization of time of machining (throughput time) of synthetic product (exclusive 
of inter-cut transport and storage operations time) – calculated using formula (2): 
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where:  
value λ assumes the following values: 





=
1

0
λ  

twnk  – tool change time „from chip to chip” on k machine tool, twpk  –  technological palette change 
time on k machine tool, t1k – unit time of realization of first operations in technological process 
of synthetic product on k machine tool, tjk – unit time of realization of j cut on k machine tool. 

, when cut δj is realized on the same machine tool as cut δj-1 

, when cut δj is realized on another machine tool than cut δj-1 
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3. STRUCTURE AND CHARACTERISTICS OF THE EVOLUNTARY 
SYSTEM OF MULTICRITERIA ANALYSIS 

 
To solve the task of optimization defined in section 2 (stage 4) the Evolutionary System 
for Multicriteria Analysis <ESAW> was used. The system takes advantage of many different 
cooperating with each other methods and enables to generate one solution or small set 
of solutions, optimal in Pareto sense which are not much sensitive for changing the preferences 
for criteria given by experts [14]. 
The Evolutionary System of Multicriteria Analysis was built taking into account the internal 
features included both into analyzed values of solutions and parameter given in percentage. 
Values of evaluation of solutions decide of position of ideal vector, which is a basic reference 
point in the Compromise Solution Determination Method. The indistinctive interval given in 
percentage enables filtration of solutions using the Undifferentation Interval Method. The final 
effect of filtration depends both on the defined value of indistinctive interval and mutual 
position of analyzed valuation of solutions in the criteria space [15]. 
The Evolutionary System of Multicriteria Analysis  includes following methods: the Boundary 
Value Method (BVM), the Ideal Point Definition Method (IPDM), the Undifferentation 
Interval Method (UIM) and the Compromise Solution Determination Method (CSDM) (fig. 2). 
 
• Boundary Value Method (BVM) 

BVM eliminates undominated solutions, which values of rate are located on the extreme 
border of set of undominated solutions along orthogonal directions of components 
of criteria vector – i.e. values of solutions which determine the corner points and these one 
which are located in its neighborhood [14].  The values of solutions which determine 
the corner points usually defines the ideal value (ideal vector), so its elimination causes 
necessity of determining new ideal vector. BVM is over a wide range similar to formulated 
in an area of one-criterion and multicriteria optimization task of satisfaction [15]. In a task 
of multicriteria optimization occurs the vector target function F(x) = [F1(x), F2(x), …, 
Fj(x)]T, it is needed to specify j satisfactory values fsj. (where j ∈J = {1, 2, …,J} 
is a number of target function). The task of satisfaction assumes the shape as follows: 
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where: Fj – j component of the target function, x – vector of decision variables, fsj – j satisfactory 
value of crierion, xs – vector of decision variables for which the target function F(x) take 
the favourable value in comparison with previously selected satisfactory value. 

 
• Ideal Point Definition Method (IPDM) 

In the IPDM method the situation is reversed. It was proposed to treat the referential point 
which is the positive standard as a new ideal point. Accepted ideal point chooses from 
the set of valuations of undominated solutions the subset of valuations of solutions which 
satisfy the conditions that any of component values will not be adequately lesser (or larger) 
than the value of component of ideal point (depending if the task is the minimization 
or maximization one). 
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Fig. 2. Block diagram of the Evolutionary System of Multicriteria Analysis [14] 
 
 
There is, of course, possibility of simultaneous using this two mentioned above methods 
of selection: BVM and IPDM. The selection of set of undominated solutions with accepted 
positive standard as a new ideal point Fo, and satisfactory values fs was presented in fig 3. 
Using the inverse criteria in the multicriteria analysis causes that the elimination 
of solutions, which have very small values one component, leads simultaneously 
to rejecting this solutions with have big or very big values of different components. 
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Fig. 3. Selection of the set of undominated solutions (����) using simultaneously BVM 
and IPDM methods, ���� – ideal point (PI), ���� - new  PI, ����- valuation of the solutions 

which meet the new ideal point, ����- satisfying valuation (OS), ����- valuation of solutions 
which meet the OS, ����- valuation of solution which meet the OS and new ideal point [15]. 

 
• Undifferentation Interval Method (UIM) 

The selection using the UIM method was realized according to valuations of undominated 
solutions. Elimination of  elements of subset uses on the idea of optimality in the sense 
of undifferentation interval which is based on the idea of modified mutation. 
The multicriteria analysis of undominated solutions is realized in the criteria space 
and pursue to find if the value of mutated solution (“made worse”) by the accepted interval 
of undifferentation UI still remains as an undominated solution and will be added 
to actually created set of undominated solutions. In case of minimization of criteria, the 
element x^∈Ω will be undominated in the sense of undifferentation interval if and only 
if in the Ω set there is not an element x+, that for each λ∈N, 
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where: Ω – non-empty set of solutions optimal in Pareto sense. 

 
The situation where the element x^ is eliminated, because after the mutation of valuation 
of this element about the value of selected interval of undifferentation PN1, so it gets into 
the domination cone with the top in F(x+) point was presented in fig . 4a. The  case when 
both of solutions x^ and x+ are undominated elements in the sense of undifferentation 
interval method are presented in fig. 4b. 
 
 
 
 
 

(4) 
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Fig. 4. Graphic visualization of  (4) condition in case of two-criteria minimization [14] 
 

 
• Compromise Solution Determination Method (CSDM) 

This method tends to finding “the best solution” or subset of “the best solutions” using 
the analysis of domination relations in the set of vector values of indexes. In tasks 
of selection the decider has at his disposal complete set of acceptable solutions and theirs 
valuations and is not able to make new solutions. Therefore the operation of intersection 
applies to components of valuations of generated compromise solutions and components 
of the ideal point. Received in this way new ideal points, called following-up ideal points, 
fulfill the function of reference points during the next multicriteria analysis. The operation 
of intersection allows to get many reference points which are the base for generating 
successive compromise solutions. To visualize the way of operating the CSDM method, 
the situation, where the analyzed set of undominated solutions is an unseparately 
one and is composed of two subsets YD1

 and YD2 was presented in fig 5. The subset 
of valuations of compromise solutions reflects the shape of analyzed set of valuations even 
in case if it consists of two subsets. 
 

 

 Fig. 5. An example lay-out of valuations of compromise solutions [15]. 
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4. PROCESS OF DEFINING THE IMPORTANCE OF SOLUTION 
IN THE PROBLEM OF FMS MACHINE TOOLS SELECTION  
 
Using the methodology presented in section 2, the process of machine tools selection 

for the task formulated in paper [10] was realized. As result of execution stages I-III 
the solution in form of 36 different technological paths M={M1, M2, …, M36} 
with corresponding values of target functions F1(Mµ), F2(Mµ) were received. The values 
of target functions connected with the solutions are presented in tab. 1.  

 
Tab. 1. Values of target functions in realized experiment of selection 

 
The lay-out of received solutions according to calculated target functions was presented 

in fig. 6. 
A multicriteria analysis was realized using the Evolutionary System of Multicriteria 

Analysis according to algorithm presented in section 3 (fig. 2). In the first step the optimal 
in Pareto sense solutions were determined. This set contains 10 elements as follows: M5, M8, 
M17, M19, M21, M22, M24, M28, M30, M33.  

In second step the selection using the Undifferentation Interval Method (UIM) was realized. 
There were accepted values of interval of undifferentation as follows: PN = 0% according 
to the criterion F1(Mµ) and PN = 1,0% according to the criterion F2(Mµ). Non-zero value 
of interval of undifferentation according to the criterion F2(Mµ) was accepted as a result 
of possible inaccuracy of calculated target functions what follows from rounding 
and differences in rates when calculating the prices of purchasing the machine tools. As a result 
of realized analysis using the UIM method the received subset was limited to 7 elements. This 
are: M5, M17, M19, M21, M22, M24, M33.  

 

 

Value of target function Value of target function Symbol 
(number) 
of solution 

F1(M �) 
[sek.] F2(M�) [zł] 

Symbol 
(number) 
of solution 

F1(M�) 
[sek.] F2(M�) [zł] 

M 1 33 482 3 553 054,74 M 19 33 029 4 306 080,63 
M 2 33 675 3 765 964,99 M 20 33 222 3 901 027,01 
M 3 33 597 3 548 251,65 M 21 33 144 3 548 251,65 
M 4 33 445 3 905 830,10 M 22 32 992 4 658 855,99 
M 5 33 712 3 413 189,64 M 23 33 259 3 548 251,65 
M 6 33 560 3 901 027,01 M 24 33 107 3 901 027,01 
M 7 33 565 3 535 561,80 M 25 33 112 4 288 587,69 
M 8 33 758 3 395 696,70 M 26 33 305 3 530 758,72 
M 9 33 680 3 530 758,72 M 27 33 227 3 530 758,72 
M 10 33 528 3 535 561,80 M 28 33 075 4 288 587,69 
M 11 33 795 3 395 696,70 M 29 33 342 3 530 758,72 
M 12 33 643 3 530 758,72 M 30 33 190 3 530 758,72 
M 13 33 638 3 468 319,36 M 31 33 185 4 221 345,26 
M 14 33 831 3 681 229,62 M 32 33 378 3 816 291,64 
M 15 33 753 3 463 516,28 M 33 33 300 3 463 516,28 
M 16 33 601 3 821 094,72 M 34 33 148 4 574 120,62 
M 17 33 868 3 328 454,26 M 35 33 415 3 463 516,28 
M 18 33 716 3 816 291,64 

 

M 36 33 263 3 816 291,64 
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Fig. 5. Lay-out of solutions according to calculated target function 

 
 
In third step, the filtration using the Compromise Solution Determination Method was 

realized. The metrics both min-max and min-max with weight with different preferences 
of analyzed criteria were used. The results of analyses were presented in Tab. 2. It is worth 
to pay attention that to find the degree of sensitiveness each of solution, the weights from 0,2 
to 0,8 for each of criteria have been taken.  

Tab. 2. Results of filtration using the CSDM method 

No. Preferention weights 
∑ωl = 1 

First compromise 
solution 

Subset of compromise 
solutions 

1. ωl = ω2 = 0,5 M5 M 5
*, M 33, M21, 

2. ωl = 0,6;  ω2 = 0,4 M5 M 5, M 33, M21, 

3. ωl = 0,7;  ω2 = 0,3 M33 M 33, M 5, M21 

4. ωl = 0,8;  ω2 = 0,2 M33 M 33, M 5, M24 

5. ωl = 0,4;  ω2 = 0,6 M17 M17, M 5, M 33 

6. ωl = 0,3;  ω2 = 0,7 M17 M17, M 5, M 33 

7. ωl = 0,2;  ω2 = 0,8 M17 M17, M 5, M 33 

* - preffered solution – present in each of compromise solutions’ subset 
 
In fourth step the subset of representative solutions was searched. Analysis of the results 

presented in tab. 2 showed that solutions M5 and M33 exists in each of determined subset 
of solutions, solutions M17 and M21 appeared three times and the M24 solution appeared 
one time. Ipso facto the realized analysis in the space of decision variables showed 
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that received solutions M5 and M33 are characterized by the minimal sensitivity of changing 
the weights of particular criteria and taking into account major assumptions of Evolutionary 
System of Multicriteria Analysis – they are preferred solutions (with the same degree 
of importance). The final decision of about solution should be done by the designer taking into 
account particular analysis and criteria of individual preferences according to received values 
of target functions. 

  
 

5. CONCLUSIONS 
 
Decision support systems should help the designer to find the optimal solution among many 

possibilities for the defined decision task. It is especially highly important, when the quality 
of analyzed variants of solutions is described with many criteria and the decision problem 
is burdened with the high risk of non-objective criteria when taking the decision. 

One of the more important problem in the area of modern manufacturing systems design 
is a question of proper machine tools (technological machines) selection. When take into 
account that in the process of machine tools selection the relation between objective 
and subjective criteria is 20 to 80 [11] and the choice should be done considering some 
or several frequently inverse criteria, the need of searching methods which maximize 
the objectivity of taken decision.  

In this paper the possibility of implementation the Evolutionary System of Multicriteria 
Analysis <ESAW> for the defining the importance of solutions in the process of casing-class 
FMS machine tools selection was shown. Results of realized analysis shows that the <ESAW> 
system allows to find among the number of analyzed solutions few (or sometimes only one) 
proffered solutions from the selected criteria of evaluation point of view. Thanks to fact that 
the selection process is based onto internal features of solutions’ set – the preferred solutions 
are characterized with the “immunity” for subjective criteria of decider’s evaluation. 
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ADAPTIVE SWITCHING OF MUTATION RATE FOR 
GENETIC ALGORITHMS AND GENETIC 

PROGRAMMING 
 
Abstract 

The paper concerns the application of Genetic Algorithms and Genetic 
Programming to complex tasks such as automated design of control systems, 
where the space of solutions is non-trivial and may contain discontinuities. 
An adaptive value-switching mechanism for mutation rate control is proposed. 
It is shown that the proposed mechanism is useful in preventing the search from 
getting trapped in local extremes of the fitness landscape. 
 
 

INTRODUCTION 
 

Genetic Algorithms represent a well-known optimization method recognized in particular 
for its flexibility in representation of solutions and for its ability to produce reasonably fit 
results in a reasonable amount of time. Genetic Programming applies the theory of Genetic 
Algorithms to evolving computer programs, usually represented by syntactic trees. 

There is a multitude of research papers that aim to improve convergence and robustness of 
both methods. Some of these concentrate on parameter control, that is to say on setting and 
modifying various parameters of the algorithm. 

This paper presents an adaptive value-switching mechanism for control of the mutation 
rate, which aims to decrease the probability that the search will become trapped in local 
maxima by increasing mutation probability to a high value once such scenario is detected. 
 
GENETIC ALGORITHMS AND GENETIC PROGRAMMING 
 

Although the methods in question are relatively well known, let us first present some 
fundamental information about both – Genetic Algorithms (GA) and Genetic Programming 
(GP). 
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Genetic algorithms represent one of the several computational techniques based on 
simulation of evolution, a process based on the principle of natural selection, that is, on the 
survival of the fittest. The genetic algorithm operates on a population of individuals.  

The individuals represent various solutions of a specific problem. The main principle of the 
algorithm is as shown in figure 1. 

The first step is to generate the initial population – this typically involves generating  
a group of random individuals. The next step is to perform evaluation of those individuals, 
which enables the algorithm to compare the individuals to each other and, furthermore, to 
introduce the survival of the fittest: the individuals with the best scores (also known as fitness 
in the genetic algorithm terminology) are the most likely* to participate in reproduction, that is, 
in forming the next generation. This is analogous to the natural selection process, in which the 
fitter individuals have greater chance to survive and to reproduce. 

Generation of 
the initial 

population

Evaluation of 
the individuals Selection

Reproduction

Stopping the evolution 
in case the defined 
conditions are met

CrossoverMutation

 
 

Fig. 1. The general principle of genetic algorithms 
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Fig. 1. A simple example of a syntactic 
 

Genetic programming (GP) is a technique developed by John Koza (see Genetic 
Programming: On the Programming of Computers by Means of Natural Selection [1]). It 
applies the theory of Genetic Programming to the task of evolving computer programs. The 
main idea of Genetic Programming is the way in which the individuals are represented – by 
syntactic trees (also known as parse trees). Fig. 2 shows a simple example of a syntactic tree 
that codes the expression x+x.y ln . 

                                                      
* However, we usually refrain from directly choosing the best n individuals as that tends to reduce 

diversity, which leads to getting trapped in a local extreme. 
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For syntactic trees crossover is usually done by swapping 2 randomly selected sub-trees of the 
2 parent individuals, while mutation may be implemented by replacing a randomly selected 
sub-tree by a newly generated one. For a more detailed introduction to the problem refer to [1] 
or [2]. 
 
THE ARTIFICIAL ANT PROBLEM 
 

The artificial ant problem described by John Koza in [1] is essentially a trail-following task. 
The actor – an artificial ant – is supposed to navigate in an environment following an irregular 
path consisting of pieces of food which it collects. The ant has very limited sensing capabilities 
– it only sees a single tile right in front of it. John Koza successfully solves the problem by 
applying Genetic Programming†. 

In our work we have set some additional requirements concerning the form of the solution 
– the evolved controller should, when executed, return the action that the ant is to execute next 
instead of calling functors that directly execute the action and wait for its completion. The set 
of terminals contains persistent variables and the controller has access to a pre-set number of 
its previous inputs and outputs. 

Controllers based on such mode of execution seem to be much more difficult to evolve than 
those originally proposed by Koza. The search usually gets trapped in a local maximum from 
which it is often unable escape. 
 
EXISTING APPROACHES TO PARAMETER CONTROL 
 

In some applications based on the theory of genetic algorithms, the optimization task may 
be so difficult – with a complex space including a great number of local optima in which the 
search process can get trapped – that additional techniques may be required to find the global 
optimum. Genetic programming does in a multitude of tasks serve as an especially good 
example of the problem, as it evolves computer programs and it is obvious that two very 
similar computer programs may produce drastically different results and thus the space of 
solutions is highly complex. 

Among the approaches that aim to prevent getting trapped in a local optimum are adaptive 
schemes that observe various parameters of the algorithm or the search process itself and using 
the observed values adapt some of the parameters. The approaches to parameter setting can 
basically be divided into the following categories [3], [4]: 

• static parameter control, 

• dynamic parameter control, 

• adaptive parameter control, 

• self-adaptive parameter control. 

 
Static Parameter Control 
 

The common feature of approaches falling into this category is that the setting they provide 
remains constant for the entire duration of the evolutionary process. There are many works 
analysing the problem of finding optimum settings for parameters like mutation probability and 

                                                      
† See [1] for detailed information about the solution. 
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crossover probability. Some of these are listed in [3], e.g. the work of Mühlenbein, which 
proposes the following formula for the mutation probability: 

L=pm /1 , (1) 

where L  is the length of the bit string by which the individual is represented. 
 
Dynamic Parameter Control 
 

As stated in [4] dynamic parameter approaches typically prescribe a deterministically 
decreasing schedule over a number of generations and provides a formula for mutation 
probability derived by Fogarty: 

( )
tm +=tp

2
0.11375

240
1 , (2) 

where t  is the generation counter. 
Articles [3], [4] both refer to a more general expression derived by Hesser and Männer: 

( )
L

� �
t��=tpm








 −

× 2
exp

, (3) 

where � , � , � are constants, �  is the population size and t  is the generation counter and L  is 

again the length of the bit string. 
 
Adaptive Parameter Control 
 

Adaptive parameter control techniques monitor the search process itself and provide 
feedback. Some examples can be found in [5]. The authors propose the following formulas for 
crossover and mutation probability respectively: 
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where f  is the fitness value of the individual to be mutated, f ′  is the larger of the fitness 

values of the individuals to be crossed and 
3k  and 4k  are constants. It is required that 

1k  and 

2k  be less than 1.0 in order to constrain 
cp  and 

mp  to the range of 0,1 . The ffk=pc ≤′3
 

and ffk=pm ≤4
 expressions are to prevent crossover and mutation probabilities from 

exceeding 1.0 for suboptimal solutions. 
Authors of [5] also observe that 

cp  and 
mp  are zero for the solution with maximum fitness 

and that 
1k=pc
 for f=f ′ , while 

2k=pm
 for f=f . For further details and for information 

concerning setting the values of the constants refer to [5]. 
 
Self-adaptive Parameter Control 
 

When using the self-adaptive parameter control approach, parameters such as mutation rate 
and crossover probability of each individual are part of its genome and are evolved with it. As 
stated in [4], the idea behind this is that a good parameter value will provide an evolutionary 
advantage to the individual. For further reference see [3] or [4]. 
 
 
ADAPTIVE VALUE-SWITCHING OF MUTATION RATE 
 
Motivation 
 

Most of the existing parameter setting mechanisms, as presented in the previous chapter, 
either focus on setting GA-specific parameters such as length of the bit string (e.g. rule (1)), or 
are not adaptive (e.g. (2) and (3)). The adaptive mechanism described in [5] (formulas (4) and 
(5)) seems more fit to the task because it implements certain form of convergence detection 
based on comparison of the maximum and average fitness values. However this approach does 
little to solve the problem of getting trapped in a local optimum as the method does not discern 
between local and global optima. 

Furthermore – as mentioned hereinbefore – equations (2) and (3) assign the best individual 
zero crossover and mutation probabilities, while assigning high probabilities to less fit 
individuals. The reasoning behind this is that the less fit individuals can safely be disrupted by 
high mutation rates and recombined by crossover (thus employing the solutions with 
subaverage fitness to search the space [5]), while the highly fit individuals should be preserved. 

However, such approach has a very obvious downside which the authors do not seem to 
address – the highly fit individuals obviously contain the most excellent genetic material 
available and by disallowing mutation and crossover for these individuals the genetic code they 
carry becomes isolated and is not used to generate new solutions. 
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Description of the Proposed Adaptive Mechanism 
 

The idea that the most fit solutions should survive crossover and mutation unmodified is 
valid, yet that feature can be enforced by using elitism‡. Keeping that in mind we propose a 
different adaptation scheme in order to address the other issues. The main idea is that the 
mutation probability should be increased to a high value when the search has become trapped 
in an extreme so as to provide the search process with new genetic material some of which may 
previously have been unavailable. To determine whether the search has become trapped the 
adaptive mechanism observes the change of average fitness in time. 

To describe the solution in more detail – the algorithm works with 2 values of mutation 
probability – the normal value and the high value. The algorithm switches from the normal 
value to the high value once the trigger criterion activates. 

The trigger criterion itself is based on a measure that we will herein term a delta sum: 

i

ii
ii f

ff
+

�
S�=

�
S 1

1. −
−

−
, (6) 

where 
i

�
S  is the delta sum in generation i  and 

if  is the average fitness in generation i and �  

is the feedback coefficient (the experiments have been carried out for 0.4=� ). 
If the delta sum is lower than a pre-set value for a predefined number of generations, that is 

to say the increase of average fitness in the last few generations is low, indicating that the 
search has become trapped§ – the mutation probability is set to its high value so as to provide 
the search with new genetic material. As mentioned before, when used in conjunction with 
elitism it is guaranteed that the best solution is not destroyed by the high mutation probability. 

The mutation probability is reset back to its normal value when at least one of the following 
conditions is true: 

• the average fitness increases enough to produce a sufficiently large delta sum; 

• the maximum fitness increases; 

• mutation has been set to its high value for at least n  generations. 
The n-generation limit is to ensure that the activation does not go on indefinitely (with the 

high mutation probability it is not very likely that the average fitness will increase enough to 
satisfy the first condition and maximum fitness may not increase as well). 

It has been observed that average fitness typically decreases when the criterion activates 
because the search process is to a large extent disrupted by the high mutation probability. 
However after the n-generation limit forces the mutation rate back to its normal value, average 
fitness tends to increase rapidly, thus usually moving away from the local extreme. 
 
Experimental Results 
 

Several experiments have been carried out – Fig. 3 shows performance of the search 
algorithm with the AGA adaptive mechanism proposed in [5] with constants set according to 

                                                      
‡ The best individual is copied to the next generation unmodified. 
§ This may also indicate convergence to the global maximum, it is, however, hardly possible to tell global 

and local maxima apart unless the algorithm is provided with additional problem-specific data. 
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recommendations. It also shows performance of the search algorithm without any adaptive 
mechanism and with the adaptive mechanism proposed in this paper. The maximum fitness 
value achieved is shown for each of the 5 runs displayed. 

As shown, search achieves suboptimal results when running with no adaptive mechanism. 
This can be ascribed to its inability to escape from local extremes. With no adaptive 
mechanism the search has not found the global optimum (fitness = 89) in any of the 5 runs. 

As expected, the AGA mechanism has caused further deterioration and its results are even 
worse than those produced in the previous case. 

The Value-switching adaptive mechanism proposed in this work improves the process of 
search – in 2 of the runs the global optimum is found, yet in certain cases not even the high 
mutation rate is guaranteed to help the search escape from the local maximum (runs 2, 3, 4). 
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Fig. 2. Comparison of the AGA Adaptive Mechanism 

and the Value-switching Adaptive Mechanism 
 
Suggestions for Further Work 
 

It has been shown that the adaptive mechanism described in this work is able to effect 
considerable improvements and that it is able to some extent prevent getting trapped in local 
maxima. Further experiments should now be carried out in order to ascertain that the principle 
is valid for a wider range of tasks. 

It has also become apparent that even with the high mutation rates it is not always 
guaranteed that the search will indeed escape from the local maximum. Value-switching, or 
piecewise continuous relationships for other parameters could perhaps help to alleviate the 
problem – this issue requires further investigation. 

 
CONCLUSION 
 
It is well known that search processes based on genetic algorithms and genetic program-

ming are prone to getting trapped in local maxima when exploring highly complex spaces.  
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As shown in the paper, search process based on the standard genetic programming 
approach fails to find the global optimum when applied to the modified version of the artificial 
ant problem. 

This paper investigates the problem and proposes an adaptive mechanism for mutation rate 
control, which should help the search to escape from local extremes. As shown, the results are 
considerably better than those of the standard genetic programming approach. 

Although the results are significantly better, even the adaptive value-switching of mutation 
rate as here proposed cannot always guarantee that the process will escape from a local 
maximum. It is possible that value-switching, or piecewise continuous relationships for other 
parameters could help to alleviate the problem. Such approaches could provide area for further 
research. 
 
This paper is a part of a more comprehensive research supported by: ASFEU 26220220049. 
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Abstract 

The paper concerns the application of Genetic Algorithms and Genetic 
Programming to complex tasks such as automated design of control systems, 
where the space of solutions is non-trivial and may contain discontinuities. 
Several adaptive mechanisms for control of the search algorithm's parameters 
are proposed, investigated and compared to each other. It is shown that the 
proposed mechanisms are useful in preventing the search from getting trapped in 
local extremes of the fitness landscape. 

 
Introduction 
 
Genetic Algorithms represent a well-known optimization method recognized in particular for 
its flexibility in representation of solutions. Genetic Programming applies the theory of Genetic 
Algorithms to evolving computer programs, usually represented by syntactic trees. 
There is a multitude of research papers that aim to improve convergence and robustness of both 
algorithms. Some of these concentrate on parameter control, that is to say on setting and 
modifying various parameters of the search algorithm. 
This paper proposes several adaptive mechanisms, which aim to decrease the probability that 
the search will become trapped in local maxima by various techniques. They are all based on 
detecting that the search has become trapped by observing how average fitness of the 
population changes in time. 
 
Genetic Algorithms 
 
Genetic algorithms represent one of the several computational techniques based on simulation 
of evolution, a process based on the principle of natural selection, that is, on the survival of the 
fittest. The genetic algorithm operates on a population of individuals. The individuals represent 
various solutions of a specific problem. The main principle of the algorithm is as shown in 
figure 1. 
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The first step is to generate the initial population – this typically involves generating a group of 
random individuals. The next step is to perform evaluation of those individuals, which enables 
the algorithm to compare the individuals to each other and, furthermore, to introduce the 
survival of the fittest: the individuals with the best scores (also known as fitness in the GA 
terminology) are the most likely**  to participate in reproduction, that is, in forming the next 
generation. This is analogous to the natural selection process, in which the fitter individuals 
have greater chance to survive and reproduce. 
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Stopping the evolution 
in case the defined 
conditions are met

CrossoverMutation

 
Fig. 3. The general principle of genetic algorithms 

 
Figure 1 also shows that the process of forming the next generation typically involves two 
main genetic operators – crossover and mutation. Mutation represents a random modification 
of the genetic code of a single individual. 
In crossover, however, several (usually two) individuals exchange parts of their genome. 
Therefore, if we choose mostly the highly fit individuals for reproduction, crossover provides a 
mechanism which may produce an offspring that combines their good properties (and thus 
achieves greater fitness that any of the parents). 
The process of evolution runs iteratively until certain conditions are met (like achieving a 
predefined level of (maximum or average) fitness, or reaching the maximum number of 
generations††). 
The individual phases will not be covered in detail here, see [1], [2], or [3]. However, the next 
section will present some information concerning fitness scaling as this concept will be utilized 
in the following sections. 
 
Fitness Scaling 
 
There is a well known problem associated with the fitness-proportionate selection methods. As 
[3] says, when the evolution starts, the fitness variance in population is usually high and a 
small number of individuals are much fitter than the others. Those individuals are consequently 

                                                      
** However, we usually refrain from directly choosing the best n individuals as that tends to 
reduce diversity, which leads to premature convergence and to getting trapped in a local 
extreme. 
†† The latter is usually monitored in every implementation so as to prevent an infinite loop in 
case the algorithm does not converge. 
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much more likely to be selected than any of the others and so their offspring quickly multiplies, 
which leads to premature convergence and non-optimal results. 
On the other hand, later in the search, when all individuals are very similar and the fitness 
variance is therefore low, the evolution becomes extremely slow as there are virtually no 
fitness differences to explore. 
To address these problems a fitness scaling function can be applied – that is, the original fitness 
function f  will be wrapped into a scaling function 

sf : 

FFf s →: . (7) 

The scaling function wraps the original fitness function and the selection algorithm uses the 
scaled values: 

( )( )xff=fitness Scaled s
, (8) 

where Ix∈  represents an individual. 
There are several widely used types of fitness scaling functions – [4] lists 3 basic categories: 

1. linear, 

2. sigma truncation, 

3. power law. 
 
Linear Scaling 
 
A fitness function with linear scaling then has the following definition [4]: 

( ) ( )xfb+a=xf linear . , (9) 

where ( )xf  is the raw fitness and a , b  are user-defined constants – article [4] experiments 

with ( ){ }xfmax=a  and ( ){ } Nxfmin=b /− , where N  is the number of individuals. In [5] 

author presents a way to derive relationships for a , b , which provide linear scaling that 
preserves the average fitness. 
 
Sigma Truncation Scaling 
 
For a fitness function with sigma truncation scaling, source [6] provides the following 
definition: 

( ) ( )
f

f
sigma � �xf

+=xf
−

1 , 
(10) 

where 
f

�  and 
f

�  are the mean fitness and the standard deviation – respectively – of fitness for 

the current generation. 
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Power Law Scaling 
 
Source [5] provides the following definition of fitness function scaled using the power law 
scaling: 

( ) ( )k
power xf=xf , (11) 

where k  is a problem-dependent exponent that may require to be changed during the run. [5] 
also states that a value of 1.005=k  has been successfully used in machine-vision applications. 
 
Boltzmann Scaling 
 
There are also several special scaling methods, such as the Boltzmann scaling [6], definition of 
which is as follows: 

( ) ( )( )
( )( )[ ]Txfmean

Txf
=xfBoltzmann /exp

/exp , (12) 

where T  represents a temperature parameter, which gradually reduces over time (with an 
increasing number of generations). 
 
Scaling the Fitness Function to Satisfy the Requirements 
 
Certain selection methods also impose requirements on the range of the fitness function, the 
most obvious example being the fitness roulette selection, where fitness values must be greater 
than or equal to zero (see (11)). The most apparent way to achieve this is to use the following 
scaling, which could be considered a special case of linear scaling: 

( ) ( ) ( ){ } ( ){ }
( ) ( ){ }





≥

−

0

0

xfminxf

<xfminxfminxf=xfs

  

(13) 

The minimum can be evaluated over the current generation, or over the current and n  previous 
generations in which case the subtraction of the minimum is referred to as fitness windowing 
[7]. 
 
Adaptive Genetic Algorithms 
 
In some applications based on the theory of genetic algorithms, the optimization task may be so 
difficult – with a complex space including a great number of local optima in which the search 
process can be get trapped – that additional techniques may be required to find the global 
optimum. Genetic programming presented in the next section does in a multitude of tasks serve 
as an especially good example of the problem, as it evolves computer programs and it is 
obvious that two very similar computer programs may produce drastically different results and 
thus the space of solutions is highly complex.. 
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Among the approaches that aim to prevent getting trapped in a local optimum are the adaptive 
schemes that observe various parameters of the algorithm or the search process itself and using 
the observed values adapt some of the parameters. The approaches to parameter setting can 
basically be divided into the following categories [8], [9]: 

4. static parameter control, 

5. dynamic parameter control, 

6. adaptive parameter control, 

7. self-adaptive parameter control. 

 
Static Parameter Control 
 
The common feature of approaches falling into this category is that the setting they provide 
remains constant for the entire duration of the evolutionary process. There are many works 
analysing the problem of finding optimum settings for parameters like mutation probability and 
crossover probability. Some of these are listed in [8], e.g. the work of Mühlenbeinm which 
proposes the following formula for the mutation probability: 

L=pm /1 , (14) 

where L  is the length of the bit string. 
 
Dynamic Parameter Control 
 
As stated in [9] dynamic parameter approaches typically prescribe a deterministically 
decreasing schedule over a number of generations and provides a formula for mutation 
probability derived by Fogarty: 

( )
tm +=tp

2
0.11375

240
1 , (15) 

where t  is the generation counter. 
Papers [8] and [9] both refer to a more general expression derived by Hesser and Männer: 

( )
L

� �
t��=tpm








 −

× 2
exp

, (16) 

where � , � , � are constants, �  is the population size and t  is the generation counter and L  is 

again the length of the bit string. 
 
Adaptive Parameter Control 
 
Adaptive parameter control techniques monitor the search process itself and provide feedback. 
Some examples can be found in [10], which starts with a simple expression for the mutation 
and crossover probabilities. Crossover probability is expressed as follows: 
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ff

k
=p

max
c −

1 , (17) 

where 
1k  is a constant and 

maxf , f  are the current generation maximum and average fitness 

values respectively. 
A similar formula is proposed for mutation probability: 

ff

k
=p

max
m −

2 , (18) 

where 
2k  is a constant. 

It is further concluded in [10] that these expression do not depend on the fitness value of any 
particular solution, which means that the crossover and mutation probabilities will be the same 
for both – individuals with low and high fitness values. Another version of these formulas is 
derived that reflects these concerns [10]: 
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where f  is the fitness value of the individual to be mutated, f'  is the larger of the fitness 

values of the individuals to be crossed and 
3k  and 4k  are constants. It is required that 

1k  and 

2k be less than 1.0 in order to constrain cp  and 
mp  to the range of 0,1 . The ff'k=pc ≤3

 

and ffk=pm ≤4
 expressions are to prevent crossover and mutation probabilities from 

exceeding 1.0 for suboptimal solutions. 

Authors of [10] also observe that cp  and mp  are zero for the solution with maximum fitness 

and that 1k=pc
 for f=f' , while 2k=pm  for f=f . For further details and for information 

concerning setting the values of the constants refer to [10]. Some discussion concerning this 
approach is also provided in section 0. 
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Self-adaptive Parameter Control 
 
When using the self-adaptive parameter control approach, parameters such as mutation rate and 
crossover probability of each individual are part of its genome and are evolved with it. As 
stated in [9], the idea behind this is that a good parameter value will provide an evolutionary 
advantage to the individual. For further reference see [8] or [9]. 
 
Genetic Programming 
 
Genetic programming (GP) is a technique introduced by John Koza (see Genetic 
Programming: On the Programming of Computers by Means of Natural Selection [11]). It 
utilizes the previously outlined concepts to evolve computer programs. The main idea of 
Genetic Programming revolves around the way in which the individuals are represented, that is 
to say around the syntactic trees (also known as parse trees). The problem will be analysed 
more specifically in the following sections. 
 
Representation 
 
It is obvious, that simple text-based representation of a programme is not especially suitable for 
genetic algorithms as using a naïve implementation of crossover and mutation over the text-
based code would lead to syntactically incorrect programs. 
The solution proposed by John Koza is to represent a program using a parse tree (see Fig. 2 and 
3 for an instance), which is analogous to LISP S-expressions [1]. The syntactic tree is a graph 
with two types of nodes – non-terminals, which represent functions, and terminals, which 
represent variables and constants. 
Figures 2 and 3 show examples of such trees with Fig. 2 displaying a tree that codes the 
expression x+x.y ln  and Fig. 3 displaying a tree with more general mechanisms like 

conditional execution, assignment and return. 

x y

* ln

x

+

 

Fig. 4. A simple example of a syntactic tree 

 
The program in Fig. 3 shows one of the possible ways to return values. The root node called 
PRG (the name is taken over from [1], where a PRG functor is used to express that several 
void-returning functors are called in a sequence) is a functor with an arbitrary number of inputs 
of type void, while the last input is of a pre-set type, which is identical to the return type of the 
program. That way after all processing is done by the void input subtrees, the result can be 
collected using the last input and returned. 
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x y

> =

ret

IF

=

x

PRG

ret

ret y
 

Fig. 5 A more complex parse tree 

The program from figure 3 can be rewritten into the following C++ code (Listing 1): 

Listing 1 Code expressed by Fig. 3 

1. if(x > y) ret = x; 
2. else ret = y; 
3. return ret; 

 
The representation proposed by Koza has one important property, known as the closure 
property, which requires that any valid tree generated from a set of terminals: 

{ }nt,tt=T ...2,1,
, (21) 

and a set of non-terminals: 

{ }mt,tt=NT ...2,1,
, (22) 

represents a valid program, which states that any non-terminal should be able to handle as an 
argument any data type and value returned from a terminal of non-terminal [12]. 
In contrast to this approach, several researches focus on the so-called strongly typed genetic 
programming [12], where nodes are allowed to have different incompatible return and 
argument types. In this case, type constraints have to be enforced, which introduces several 
fundamental differences. The most notable aspect is that when generating, crossing or mutating 
a tree care has to be taken to ensure that the return type of the node used as an input is 
compatible with the data type of the input itself. 
The closure property can still be enforced in strongly typed genetic programming using 
dynamic typing. Non-terminals can be built so that they accept an argument of any type, but 
throw an exception if type id of the argument is not as expected. 
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The Artificial Ant Problem 
 
The artificial ant problem described by John Koza in [11] is essentially a trail-following task. 
The actor – an artificial ant – is supposed to navigate in an environment following an irregular 
path consisting of pieces of food which it collects. The ant has very limited sensing capabilities 
– it only sees a single tile right in front of it. John Koza successfully solves the problem by 
applying Genetic Programming‡‡. 
This constraint, although a reasonable one – with many line-following agents this is in fact the 
case – makes the task of navigating along a non-trivial path rather difficult. It seems that even a 
human is generally unable to navigate the ant correctly when only seeing a single tile in front 
of the actor although this has not been tested on a wide range of subjects. 
Concerning the application of GP to the problem, Koza uses the following set of terminals 
[11]: 

{ }LEFTRIGHT,MOVE,=T , (23) 

and the following non-terminals: 

{ }PROGN3PROGN2,AHEAD,-FOOD-IF=F . (24) 

The meaning of most of these is straight-forward – MOVE moves the actor forward by a single 
step, RIGHT and LEFT turn the actor in the respective directions. IF-FOOD-AHEAD is  
a functor with two arguments – the first is the then part and is executed if there is a piece of 
food in front of the actor, while the other is the else part. PROGN2 and PROGN3 are functors 
with 2 and 3 arguments respectively. PROGN represents a sequence of steps to be executed 
unconditionally, that is, PROGN2 and PROGN3 both execute each of its sub-trees. 
 

 
Fig. 6. The Santa Fe trail 

                                                      
‡‡ See [11] for detailed information about the solution. 
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The evaluation is based on simulation and the fitness is equal to the amount of food collected 
by the actor. It would normally be necessary to run several simulations for every individual to 
make sure that the solution works in general and not only on the single path on which it was 
tested. To avoid this Koza uses a trail known as the Santa Fe trail§§ (Fig. 4), which is presumed 
to be sufficiently representative of the general trail following problem [11]. 
 
Mode of Execution and Operators Used 
 
It is also necessary to mention the mode of execution used by Koza – the program generated by 
the evolutionary search is executed as fully as possible and then re-executed [11]. Both [11] 
and [1] limit the number of steps that a solution is allowed to perform to 400 so as to prevent 
running indefinitely for unfit individuals. The population size is set to 500 individuals and the 
maximum number of generations to 50 for both [11] and [1]. 
In our work we have set some additional requirements concerning the form of the solution – 
the evolved controller should, when executed, return the action that the ant is to execute next 
instead of calling functors that directly execute the action and wait for its completion. The set 
of terminals contains persistent variables and the controller has access to a pre-set number of 
its previous inputs and outputs. 
Controllers based on such mode of execution seem to be much more difficult to evolve than 
those originally proposed by Koza. The search usually gets trapped in a local maximum from 
which it is often unable escape. 
Let us provide the reader with some brief information concerning the terminals and non-
terminals used in our work. The following components were utilized: 

1. VariableFunctor<NavAction> – a terminal that acts as a variable of type NavAction 
(NavAction is an enumerated type representing the action that an actor can take like 
stay, forward, turn around, turn left, turn right). 

2. ConstFactory<NavAction> – a factory that creates constant terminals of type 
NavAction. 

3. ConstFactory<TileType> – a factory that creates constant terminals of type TileType 
(an enumerated type that represents various types of tiles in the map). 

4. ConstFunctor<void> and NumericConstFactory<bool> – auxiliary terminals of type 
void and bool. 

5. IfAssign – a non-terminal with 5 sub-nodes; the first is of type bool and expresses the 
condition. If the condition is true, value from sub-node 3 is assigned to variable from 
sub-node 2; if false value from sub-node 5 is assigned to variable from sub-node 4. 
Values and variables are of type NavAction. 

6. CompareFunctor<NavAction> and CompareFunctor<TileType> – non-terminals that 
returns true if both of their inputs are equal and false if not. 

7. Logic functors: And, Or, Not. 

8. PrgReturnFunctor(NavAction, N) – a non-terminal used primarily as root functor of 
the tree – it has N sub-nodes returning void and one sub-node (the last one) returning 
NavAction. All sub-nodes are executed one by one and the return value of the last one 
is returned by the PrgReturnFunctor. 

 

                                                      
§§ It contains single gaps, double gaps, single, double and triple gaps at corners [11], etc. 



 48 

Adaptive Value-switching of Mutation Rate 
 
Motivation 
 
Most of the existing parameter setting mechanisms, as presented in the previous section, either 
focus on setting GA-specific parameters such as length of the bit string (e.g. rule (8)), or are 
not adaptive (e.g. (8), (9) and (10)). The AGA adaptive mechanism described in [10] (formulas 
(13) and (14)) seems more fit to the task because it implements certain form of convergence 
detection based on comparison of the maximum and average fitness values. However this 
approach does little to solve the problem of getting trapped in a local optimum as the method 
does not discern between local and global optima. 
Furthermore – as mentioned hereinbefore – equations (13) and (14) assign the best individual 
zero crossover and mutation probabilities, while assigning high probabilities to less fit 
individuals. The reasoning behind this is that the less fit individuals can safely be disrupted by 
high mutation rates and recombined by crossover (thus employing the solutions with sub-
average fitness to search the space [10]), while the highly fit individuals should be preserved. 
However, such approach has a very obvious downside which the authors do not seem to 
address – the highly fit individuals obviously contain the most excellent genetic material 
available and by disallowing mutation and crossover for these individuals the genetic code they 
carry becomes isolated and is not used to generate new solutions. 
 
Description of the AVSMR Mechanism 
 
The idea that the most fit solutions should survive crossover and mutation unmodified is valid, 
yet that feature can be enforced by using elitism*** . Keeping that in mind we propose  
a different adaptation scheme – called AVSMR (Adaptive Value-switching of Mutation Rate)  
- in order to address the other issues. The main idea is that the mutation probability should be 
increased to a high value when the search has become trapped in an extreme so as to provide 
the search process with new genetic material some of which may previously have been 
unavailable. To determine whether the search has become trapped the adaptive mechanism 
observes the change of average fitness in time. 
To describe the solution in more detail – the algorithm works with 2 values of mutation 
probability – the normal value and the high value. The algorithm switches from the normal 
value to the high value once the trigger criterion activates. 
The trigger criterion itself is based on a measure that we will herein term a delta sum: 

i

ii
ii

f

ff
+
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S�=

�
S 1

1. −
−

− , (25) 

where 
i

�
S  is the delta sum in generation i  and 

if  is the average fitness in generation i and �  

is the feedback coefficient (the experiments have been carried out for 0.4=� ). 
If the delta sum is lower than a pre-set value for a predefined number of generations, that is to 
say the increase of average fitness in the last few generations is low, indicating that the search 

                                                      
*** The best individual is copied to the next generation unmodified. 
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has become trapped††† – the mutation probability is set to its high value so as to provide the 
search with new genetic material. As mentioned before, when used in conjunction with elitism 
it is guaranteed that the best solution is not destroyed by the high mutation probability. 
The mutation probability is reset back to its normal value when at least one of the following 
conditions is true: 

1. the average fitness increases enough to produce a sufficiently large delta sum; 

2. the maximum fitness increases; 

3. mutation has been set to its high value for at least n  generations. 
The n-generation limit is to ensure that the activation does not go on indefinitely (with the high 
mutation probability it is not very likely that the average fitness will increase enough to satisfy 
the first condition and maximum fitness may not increase as well). 
It has been observed that average fitness typically decreases when the criterion activates 
because the search process is to a large extent disrupted by the high mutation probability. 
However after the n-generation limit forces the mutation rate back to its normal value, average 
fitness tends to increase rapidly, thus usually moving away from the local extreme. 
 
Experimental Results 
 
Several experiments have been carried out (the specific settings are attached in Appendix 
Błąd! Nie moŜna odnaleźć źródła odwołania.) – Fig. 5 shows performance of the search 
algorithm with the AGA adaptive mechanism proposed in [10] with constants set according to 
recommendations. It also shows performance of the search algorithm without any adaptive 
mechanism and with the adaptive mechanism proposed in this paper. The maximum fitness 
value achieved is shown for each of the 5 runs displayed. 
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Fig. 7. Comparison of the AGA Adaptive Mechanism and AVSMR 

                                                      
††† This may also indicate convergence to the global maximum, it is, however, hardly 
possible to tell global and local maxima apart unless the algorithm is provided with additional 
problem-specific data. 
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As shown, search achieves suboptimal results when running with no adaptive mechanism. This 
can be ascribed to its inability to escape from local extremes. With no adaptive mechanism the 
search has not found the global optimum (fitness = 89) in any of the 5 runs. 
As expected, the AGA mechanism has caused further deterioration and its results are even 
worse than those produced in the previous case. 
The Value-switching adaptive mechanism proposed in this work improves the process of 
search – in 2 of the runs the global optimum is found, yet in certain cases not even the high 
mutation rate is guaranteed to help the search escape from the local maximum (runs 2, 3, 4). 
 
Further Suggestions 
 
It has been shown that the adaptive mechanism described in this work is able to effect 
considerable improvements and that it is able to some extent prevent getting trapped in local 
maxima. Further experiments should now be carried out in order to ascertain that the principle 
is valid for a wider range of tasks. 
It has also become apparent that even with the high mutation rates it is not always guaranteed 
that the search will indeed escape from the local maximum. Value-switching, or piecewise 
continuous relationships for other parameters could perhaps help to alleviate the problem – this 
issue requires further investigation. 
 
The Simple Flood Mechanism 
 
Seeing that the AVSMR mechanism described in the previous section is helpful in controlling 
the search process by helping it to escape from local extremes, yet not completely reliable and 
not always effective. To address these issues, we have developed another adaptive scheme 
supposed to provide even greater level of introducing new genetic material into the process. 
 
Simple Flood Mechanism 
 
The principle is very straight-forward – once a trapping is detected – a relatively small part of 
the population is selected – these individuals survive. The rest of the population is destroyed 
and replaced by newly generated individuals. This method is superior to AVSMR in that a 
large part of the population is guaranteed to be replaced and the newly generated individuals 
are generated in the same way that the initial population was. 
The trigger criterion has been modified for this task. The first requirement is that the criterion 
only activates for a single generation at a time as it would probably be useless and possibly 
even counterproductive to activate the flood mechanism for several successive generations. 

The new trigger criterion is still based on the average fitness 
if  (where i is the number of 

generation). The criterion stores average fitness 
if  for N  generations ( 1−N  previous 

generations and the current one; 7=N generations was used in the experiments). The 
mechanism cannot activate before the 

if  for at least N  generations has actually been 

collected. Once that is true, the mechanism activates if the following holds: 
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where j  is the number of current generation and �  is an activation threshold. It is also 

possible to interpret the threshold as a relative parameter in which case we can rewrite the 
equation as follows: 

( ) �
<
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ff
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Nj

j=i
i 1

2

−

−−

−∑
. (27) 

All experiments were carried out using (21). 
It is also important to note that once the mechanism activates, the array storing the previous 
value of average fitness is cleared so it is guaranteed that the mechanism does not activate for 
the next N  generations. 
Although the approach seems straight-forward and similar in concept to AVSMR, experimental 
results point out an important issue. As obvious from Fig. 6, the results achieved by the Simple 
Flood Mechanism are significantly worse than those produced by the AVSMR – they are in 
fact worse than those produced by the system when using no adaptive mechanism. 
 

1 2 3 4 5

0

10

20

30

40

50

60

70

80

90

100

Simple Flood 
Mechanism
AVSMR

# of run

M
a

xi
m

u
m

 fi
tn

e
ss

 a
ch

ie
ve

d

 
Fig. 8. Comparison of AVSMR and the Simple Flood Mechanism 

 
The reason behind this is very simple – although we do introduce new genetic material into the 
process, the newly generated individuals will generally have very low fitness (usually 0, 3, or 4 
at most). Therefore if we apply fitness-proportionate selection to these in the next generation, 
almost every newly generated individual will be discarded. The survivors on the other hand 
will now dominate the population. This is especially true later in the evolutionary process when  
fitness score of the best individual will tend to be vastly greater than that of any randomly 
generated individual. At this point the next generation will be formed almost exclusively by the 
best individual, which will almost in every case aggravate the problem of getting trapped in a 
local extreme instead of solving it. 
 
Flood Mechanism with Low-pressure Scaling and the New-Blood Mechanism 
 
There are several ways to alleviate the problem that the Simple Flood Mechanism faces. The 
objective is – in any case – to create such scheme in which the newly generated individuals 
mate with the survivors so as to make use of their potentially useful code. 
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This paper proposes two different ways to achieve this: 
1. apply a fitness scaling function with low selection pressure to the GA for several 

generations following the flood – this mechanism will be referred to as Flood 
Mechanism with Low-pressure Scaling (FMLPS); 

2. once the mechanism activates create only such mating pairs in which at least one 
individual is newly generated – this mechanism will be referred to as the New Blood 
Mechanism. 
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Fig. 9. Comparison of the AVSMR, FMLPS the New Blood Mechanism 

 
The experimental results are shown in Fig. 7. FMLPS uses power scaling of 0.3 as the low-
pressure scaling. To make the comparison easier, the values are now ordered by fitness rather 
than by the number of run. This shows that AVSMR is still superior to FMLPS (although 
FMLPS is – in contrast to the Simple Flood Mechanism – significantly better than vanilla GP). 
The New Blood GA on the other hand is definitely superior to AVSMR – although it still gets 
trapped in local extremes, the maximum fitness values achieved are greater than those achieved 
by the AVSMR. 
The influence that some of the parameters such as the number of survivors, or the selection 
pressure applied by the low-pressure scaling have on the process of search should be subjected 
to a more systematic investigation. Combining the proposed adaptive mechanisms with some 
of the concepts introduced by the AGA mechanism could also prove useful – e.g. instead of 
decreasing the selection pressure using a scaling function the spread of the best individual's 
copies through the population immediately after the flood could be inhibited by techniques 
similar to those utilized in AGA. 
 
Conclusion 
 
It is well known that search processes based on genetic algorithms and genetic programming 
are prone to getting trapped in local maxima when exploring highly complex spaces. As shown 
in the paper, search process based on the standard genetic programming approach fails to find 
the global optimum when applied to the modified version of the artificial ant problem. 
This paper investigates the problem and proposes several adaptive mechanism, which should 
help the search process to escape from local extremes. As shown, the results are considerably 
better than those of the standard Genetic Programming approach. 
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Although the results are better, even the proposed algorithms cannot always guarantee that the 
process will indeed escape from every local maximum it encounters. This stems mainly from 
the high order of stochasticity that the algorithm is subject to as well as from the size of the 
searched space. 
Related techniques such as adaptive value-switching, or piecewise continuous relationships for 
other parameters of the search algorithm might provide further improvements. The influence 
that some of the flood mechanism related parameters (such as the number of survivors, or the 
selection pressure applied by the low-pressure scaling) have on the process of search may also 
provide an interesting area for further investigation. 
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[1] Selected Experimental Data 
 
Maximum number of generations: 150. 
Elitism:  3. 
Population size: 500. 
Maximum depth:  10. 
Tree generator used: GrownTreeGenerator. 
Functors used:  
 
 

1. VariableFunctor<NavAction>, 

2. ConstFactory<NavAction>(ACT_STAY, ACT_TURN_AROUND), 

3. ConstFactory<TileType>(tile_empty, tile_wall), 

4. CompareFunctor<NavAction>, 

5. CompareFunctor<TileType>, 

6. ConstFunctor<void>, 

7. NumericConstFactory<bool>(0, 1), 

8. IfAssign, 

9. Logic functors: And, Or, Not, 

10. PrgReturnFunctor(NavAction, 10).  
 
 

Formal parameters used: 

1. 3 x TileType (tile in front of the actor now and in past 2 turns). 

2. 3 x NavAction (previous outputs of the program). 
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Selection method: FitnessRoulette. 
1. No Adaptive Mechanism 
 
Crossover probability: 1.0. 
Mutation probability:  0.2. 
Results:  
 

# of run max. fitness achieved 

1 41 

2 27 

3 26 

4 46 

5 27 

 
2. The AGA Adaptive Mechanism 
 
Crossover probability: variable. 
Mutation probability:  variable. 
Additional information:  Uses the AGA mechanism with k1 = 1.0, k2 = 0.5, k3 = 1.0, k4 = 
0.5. 
Results: 
 

# of run max. fitness achieved 

1 14 

2 7 

3 14 

4 18 

5 3 

 
3. The AVSMR Adaptive Mechanism 
 
Fitness scaling: none. 
Crossover probability: 1.0. 
Mutation probability:  Basic mutation probability of 0.2; can be increased to 0.8 by the 
adaptive mechanism. 
Additional information:  Uses the AVSMR mechanism. 
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Results: 

# of run max. fitness achieved 

1 89 

2 26 

3 42 

4 47 

5 89 

 
4. The FMLPS Adaptive Mechanism 
 
Crossover probability: 1.0. 
Mutation probability:  0.2. 
Additional information:  Uses the FMLPS mechanism with 20 survivors, power scaling of 
0.3, 7=N ; 0.01=

� . 
Results: 
 

# of run max. fitness achieved 

1 89 

2 39 

3 63 

4 36 

5 46 

 
5. The New Blood Adaptive Mechanism 
 
Crossover probability: 1.0. 
Mutation probability:  0.2. 
Additional information:  Uses the New Blood mechanism with 20 survivors, 7=N ; 0.01=

�
. 

Results: 
 

# of run max. fitness achieved 

1 89 

2 48 

3 89 

4 45 

5 63 
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flow-shop production, evolutionary algorithm 
 
 

Pavol SEMANČO* 
 
 

MINIMIZING MAKESPAN IN GENERAL FLOW -SHOP 
SCHEDULING PROBLEM USING A GA-BASED 

IMPROVEMENT HEURISTIC 
 
 
Abstract 

In the paper an improvement heuristic is proposed for permutation flow-shop 
problem based on the idea of evolutionary algorithm. The approach employs 
constructive heuristic that gives a good initial solution. GA-based improvement 
heuristic is applied in conjunction with three well-known constructive heuristics, 
namely CDS, Gupta’s algorithm and Palmer’s Slope Index. The approach is 
tested on benchmark set of 10 problems range from 4 to 25 jobs and 4 to 30 
machines. The results are also compared to the best-known lower-bound 
solutions. 
 
 

1. INTRODUCTION 
 

A flow-shop production introduces a manufacturing system where n jobs are processed by 
m machines in the same order. The problem of finding an optimal schedule is referred to as 
flow-shop scheduling problem (FSSP). In a permutation flow-shop scheduling problem, 
denoted as PFSSP, the same sequence, or permutation, of jobs is maintained throughout 
(Pinedo, 2008). The objective of the flow-shop scheduling problem is to meet optimality 
criterion of minimizing the makespan, total flow time or total weighted flow time. This paper 
investigates an optimal job sequence for flow-shop scheduling benchmark problem with 
objective to minimize the makespan. The general scheduling problem for a classical flow shop 
gives rise to (n!)m possible schedules (Gupta 1975). For flow-shop scheduling problem Johnson 
(1954) proposed algorithm that optimally solves a 2-machine flow-shop problem. It was later 
demonstrated that m-machine flow-shop scheduling problem (FSSP) is strongly NP-hard for 
m≥3 (Garey et al., 1976). Permutation FSSP also has to meet standard requirements like a job 
cannot be processed by two or more machines at a time and a machine cannot process two or 
more jobs at the same time.  

The optimization of FSSP employs the three major types of scheduling algorithm (exact, 
approximation and heuristic). However, the most common type of scheduling algorithms for 
NP-hard FSSP is heuristic that produces near-optimal or optimal solutions in reasonable time. 
The heuristics can be further classified as constructive heuristic and improvement heuristic (or 
meta-heuristic). The improvement heuristic in contrast to constructive heuristic starts with a 
initial schedule trying to find an improved schedule. In this paper, the improvement-heuristic 
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approach is proposed incorporating the idea of evolution. If no improvement occurs for a 
certain number of iterations, the algorithm backtracks to the last best result. GA-based 
improvement heuristic is performed by predetermined number of iterations and report of the 
best result. 

The rest of the paper is organized as follows. The next section reviews the relevant 
scheduling literature for the flow-shop scheduling heuristics algorithms. In the section, namely 
GA-based improvement heuristic, the formal description of GA approach is covered. The 
Section, “Computational Experiments,” discusses results obtained from the experiment. The 
summary of the paper and possible future research ideas are presented in the section, namely 
Summary and Conclusions. 

 
 

2. RESEARCH BACKGROUND 
 
The model of flow-shop scheduling problem with makespan (Cmax) as an objective function 

can be specified according to 3-filed classification αβγ. The first filed, namelyα, stands for 
machine environment. For the flow-shop scheduling the machine environment is denoted as 
Fm, where m is the number of the machines. The β-field specifies the job constraints like for 
permutation of jobs the prmu abbreviation is used. The last field determines the optimally 
criterion like makespan (Cmax). Based on this 3-field classification the general flow-shop 
scheduling problem can be denoted as FmprmuCmax. This notation was firstly suggested by 
Conway et al. (1967) and until now is handy.  

Hejazi and Saghafian (2005) introduced a comprehensive review of alogorithms for flow-
shop scheduling problems with makespan criterion. Approaches solving flow-shop scheduling 
problem range from heuristics, developed, for example, by Palmer (1965), Campbell et al. 
(1970), Dannenbring (1977) to more complex techniques such as Branch and Bound (Brucker, 
1994), Tabu Search (Gendreau, 1998), Genetic Algorithm (Murata et al., 1996), Shifting 
Bottleneck procedure (Balas  and Vazacopoulos, 1998),  Ant Colony Algorithm (Blum and 
Sampels, 2004) and others. 

The flow-shop sequencing problem is one of the most well-known classic production 
scheduling problems.  Focusing on the PFSSP with Cmax objective function, first classical 
heuristics was proposed by Page (1961). Palmer (1965) adopted his idea and proposed the 
slope index to be utilized for the m-machine n-job permutation flow shop sequencing problem. 
A simple heuristic extension of Johnson’s rule to m-machine flow shop problem has been 
proposed by Campbell et al. (1970). This extension is known in the literature as the CDS 
(Campbell, Dudek, and Smith) heuristic. Another method to obtain a minimum makespan is 
presented Gupta (1972). A significant approach to solving the FSSP proposed Nawaz et al. 
(1983), in which they point out that a job with larger total processing time should have higher 
priority in the sequence.  

One of the important factors that are quite frequently discussed in FSSP is the setup time 
(see, for instance, Allahverdi et al., 2008). The setup time represents the time required to shift 
from one job to another on the given machine. In the flow-shop environment, the setup time is 
included in the processing times of each job (Hendizadeh et al., 2007).  

Modern approaches designated for larger instances are known as meta-heuristics. 
Approaches that combine different concepts or components of more than one meta-heuristic 
are named as hybrid meta-heuristic algorithms (Zobolas et al., 2009). Heuristic methods for 
make-span minimization have been applied, for example, by Ogbu et al. (1990) using 
Simulated Annealing (SA) and by Taillard (1990) applying Tabu Search (TS) algorithm. Nagar 
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et al. (1996) proposed a combined Branch-and-Bound (BB) and Genetic Algorithm (GA) based 
procedure for a flow shop scheduling problem with objectives of mean flow time and make-
span minimization.  Similarly, Neppalli et al. (1996) were used genetic algorithms in their 
approach to solve the 2-machine flow shop problem with objectives of minimizing make-span 
and total flow time. An atypical method based on an Artificial Immune System (AIS) 
approach, which was inspired from vertebrate immune system, has been presented by Engin 
and Doyen (2004). They used the proposed method for solving the hybrid flow shop 
scheduling problem with minimizing Cmax. Obviously, there are plenty of other related 
approaches to this problem that are identified in survey studies, such as that of Ribas et al. 
(2010).  

 
 

3. GA-BASED IMPROVEMENT HEURISTIC  
 
Genetic algorithm (GA) forms one of the categories of local search method that operate 

with a set of solutions. GA is inspired by well-known Darvin’s theory about the evolution. GA-
based heuristic is started with a set of solutions, also referred to as population. Solutions (or in 
terms of genetic algorithm, chromosomes) from initial population are taken to form a new 
population with hope that the new population will be better than the old one. The selection of 
solutions is performed by a “survival of the fittest” principle to ensure that the overall quality 
of solutions increases from one generation to the next. This is repeated until some condition 
(for example number of generations or improvement of the best solution) is satisfied. The 
framework of proposed GA-based heuristic (GAH) is introduced below.  

NOTATION OF GAH ALGORITHM  

The following notation was used: 
G number of generations 
P population size 
F(s) fitness function 
Cmax makespan  
s solution represented by a job sequence 
si initial solution 
pc crossover probability parameter 
pm mutation probability parameter 
c chromosome string 
cp parent chromosome 
co offspring 
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GA OPERATORS  

The most important parts of the genetic algorithm are genetic operators, referred to as 
encoding, selection, crossover and mutation operator that impact the whole performance. 
Proposed GA-based improvement heuristic employs permutation encoding of chromosomes, 
where each chromosome is a string of numbers (genes), which represents number in a 
sequence.  

For the selection of best chromosomes the roulette wheel method was used. Proposed GAH 
employs also a method, called elitism, before roulette wheel selection to ensure that at least one 
best solution is copied without changes to a new population, so the best solution found can 
survive to end of run. 

The crossover operator is carried out with a crossover probability. Crossover selects genes 
from parent chromosomes and creates a new offspring. It randomly selects a crossover point 
and everything before this point is copied from the first parent. Then the second parent is 
scanned and if the scanned gene is not yet in the offspring, it is appended. This method is also 
called as Single point crossover.   

Mutation is also done randomly for each gene and it depends upon another parameter called 
mutation probability. In this method inversion mutation is adopted where one gene is selected 
at random and exchanged with another gene mutually. Basically it is an order changing where 
two numbers are exchanged. 
 
PSEUDO CODE OF GA FOR MINIMIZING THE MAKESPAN 

In the paper GAH is used to search for solution of minimal make-span. Figure 1 introduces 
the pseudo code of proposed GA-based improvement heuristic in conjunction with constructive 
heuristic. The constructive heuristic gives a good initial solution to be improved by GA-based 
heuristic. The objective of the fitness function is to minimize a makespan. The best solution is 
represented by minimal makespan.  

 

 
 

Fig. 1. Pseudo code of proposed algorithm 

Step 1 Find initial solution (si) by selected constructive heuristic 
Step 2 Generate initial population (P) based on initial solution and 

randomness  
Step 3 Apply selection with elitism 
Step 4 Apply crossover with crossover probability (cp) 
Step 5 Apply mutation with mutation probability (mp) 
Step 6 Compute the fitness value for new offspring 
Step 7 Evaluate and save the best chromosome 
Step 8 Go to Step 2 until the generation value reaches G 
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4. COMPUTATIONAL EXPERIMENTS 
 
The experiment was run with objective of minimizing makespan on benchmark dataset that 

has 10 instances. The dataset ranges from 20 to 500 jobs and 5 to 20 machines.  
The CDS, Palmer’s Slope Index, Gupta’s algorithms and GAH were coded in PHP script, 

running on a PC with 1.6 GHz Intel Atom and 1GB of RAM. All PHP-coded algorithms has 
user-friendly interface with eventuality to select whether to run each heuristic itself or all 
together. It has also an option to draw a Gantt chart. Table 1 contains the input parameters of 
GAH approach for the experiment purposes.  

 
Table 1. GA constraints 
 

Parameter Value 

P 20 

G 500 

pc 0.6 

pm 0.05 

F(s) makespan 

 
RESULTS  

Results of GA-based heuristic are represented by use of percentage improvement from 
solution of constructive heuristic and gap from lower-bound solution (LB).  

The paper will refer to the 3-heuristic GAH versions, namely P-GAH (Palmer-GAH), CDS-
GAH and G-GAH (Gupta-GAH). Table 2 summarizes the results for all 10 instances and also 
shows percentage improvement of GAH over constructive heuristic. Table 1 also introduces 
the best-known lower bounds and percentage gap from the best-known bound for the best GAH 
result. In the table the results are displayed for Palmer alone, CDS alone, NEH alone, P-GAH, 
CDS-GAH and G-GAH. 
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Table 2. Makespans and improvements for 10 benchmark problems 
 

Gupta CDS  Palmer No. Problem 
Size 

LB 

Single 
pass 

G-
GAH 

% 
Imprv 
GAH 

Single 
pass 

CDS-
GAH 

% 
Imprv 
GAH 

Single 
pass 

P-
GAH 

% 
Imprv 
GAH 

Best 
GAH 

% gap 
from 
LB 

1. 4x4 156 157 156 0.64 156 156 0.00 157 156 0.64 156 0.00 

2. 5x4 51 51 51 0.00 51 51 0.00 53 51 3.77 51 0.00 

3. 6x5 7.7 7.7 7.7 0.00 7.7 7.7 0.00 8.35 7.7 7.78 7.7 0.00 

4. 7x7 65 65 65 0.00 67 65 2.99 75 65 13.33 65 0.00 

5. 8x7 69 69 66 4.35 66 66 0.00 70 69 1.43 66 -
4.55* 

6. 10x12 93 106 97 8.49 104 100 3.85 104 96 7.69 96 3.13 

7. 12x12 104 111 110 0.90 114 107 6.14 115 108 6.09 107 2.80 

8. 15x18 141 163 150 7.98 153 149 2.61 146 142 2.74 142 0.70 

9. 23x25 219 264 233 11.74 259 232 10.42 241 225 6.64 225 2.67 

10. 30x25 249 285 260 8.77 271 258 4.80 274 261 4.74 258 3.49 

LB – Best-known lower bound solution 
Single pass – makespan of constructive heuristic 
* new lower-bound solution 

 
 
Overall neither of 3-heuristic GAH versions performed significantly better, although all of 

them gave feasible improved solutions. For flow-shop scheduling problem sizes range from 4 
to 7 machines and jobs, GAH matched the best-known lower bound solutions.  for 24 of the 30 
problems and found a new upper bound for one problem. For the fifth problem the new lower 
bound was found by the GA-based improvement heuristic.  

Average computational times (CPU) for each size of the problem are summarized and 
depicted in Figure 2. The computation times of course vary by the size of the problem. The 
variance, within three versions of GAH was not significant. 
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Figure 2. Computational times of GAH algorithm for each size of the problem. 
 
 

5. SUMMARY AND CONCLUSIONS 
 
In presented study, the scheduling problem with sequence-dependent operations was dealt. 

The main idea is to minimize the make-span time and thereby reducing the idle time of both 
jobs and machines since these criteria are often applied for operational decision-making in 
scheduling. Under above mentioned consideration an improvement heuristic based on 
evolutionary algorithm (GAH) is proposed and applied to the permutation flow-shop 
scheduling problem. The GA-based heuristic approach uses a constructive heuristic to get an 
initial solution that tries to find improvements iteratively. 

The GAH algorithm was used to improve upon heuristics, namely, Palmer, CDS and Gupta. 
For all three heuristics, GAH showed significant improvements. The best improvements were 
compared well with the best-known lower bounds. The average gap from the best-known lower 
bound was 0.82% for all ten problems. 

Future research should look at this heuristic for the more difficult flow-shop scheduling 
problems involving sequence-dependent setup times. Different objective functions can also be 
tested.  
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THE STANDARDIZED AUDIT OF SAFETY AND THE 
RELIABILITY OF ERP SYSTEMS  

 
 
Abstract 

The paper presents the possibility of the realization of the evaluation of  the 
security of the Enterprise Resource Planning (ERP)systems following  the 
regulations specified by European and Polish norms which relate to the safety of 
computer systems (information systems) in enterprises with the special regard to 
the ERP systems. It also introduces the possibility of creating the security system 
programme and the actions executed during the evaluation. 

 
 
1. INTRODUCTION 

 
ERP systems are characterized by the modular structure, that is each system contains 

several modules which create the complete entity. The modules can work in various 
configurations, which means that the firm does not have to buy the whole system. It is enough 
to buy the chosen modules which will co-operate with each other, thus exchanging the 
introduced information.  
 
Assuring the safety to the computer resources of firms is currently one of most popular 
services on the IT market. However, the majority the services aiming at the evaluation 
and the improvement of the computer safety in the firm do not take into account the 
regulations specified by Polish and European norms. Thanks to the introduction of the 
norms into the process of the evaluation of the computer safety of the firm it will be 
possible to compare various ERP systems in relation to the safety. The standardized 
process of the evaluation of the safety will give us the true representation of the 
system and its protections. 
 
The safety of the ERP system is the necessary element to ensure the correct 
functioning of the whole enterprise. Because all the elements of the enterprise are 
integrated with the ERP system, the possibility of maintaining the safety of the system 

                                                      
* M.Sc. Eng. Daniel Gąska Lublin University of Technology, Institute of Technological 
Information Systems, Lublin, Poland, e-mail: d.gaska@pollub.pl 
**  D.Sc. Eng. Assoc Prof. Antoni Świć Lublin University of Technology, Institute of 
Technological Information Systems, Lublin, Poland, e-mail: a.swic@pollub.pl 



 66 

seems to be the essential element in the context of the utilization of ERP systems in 
the enterprises which introduced the system [1]. 
 
2.  AUDITING ERP SYSTEMS ACCORDING TO THE DIRECTIVE S  

OF SACA 
 

ISACA (Information Systems Audit and Control Association) is an international 
association of the people in charge of the issues concerning the audit, control, safety and other 
aspects of the management of the information systems. 

It is one the ways of introducing the reliable evaluation of the information systems and, in 
particular, of the ERP systems. The association proposes solutions which enable the execution 
of the audit of the information system realized on the basis of standards specified in SISA 
Standards for Information Systems Auditing [4].  
It is imperative that the organization’s system management fully understand and support the IS 
auditor’s role(s) as it relates to the ERP system or implementation project .The IS Auditing 
Guideline should be reviewed and considered within the context of the ERP system and related 
initiatives of the organization (Fig. 1.). 

 

Fig. 1. IS Auditor’s ERP Involvement [3] 

IS Auditor’s ERP 
Involvement 

Audit Noaudit 

Inital 
Implementation 

Existing System 

Review, Test 
Assess Controls 
and Business 
Process 

Test Changes 

E.g. Direct 
participation Or 
involvement In: 
• Data integrity and 

conversion 
• Security and control 

consultation 
• BPR rple(s) 
• Testing 

E.g. Coverage May 
include: 
• Pre-implementation 

review of controls 
• Data integrity and 

conversion 
• Project management 
• Security administration 

BPR 
• Testing 
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ERP Knowledge and Skill Requirements [3] 
 ERP System Implementation 

Project 
Background 
knowledge 
of the IS 
auditor 

An understanding of financial and 
management controls and control 
risks generally  
A thorough understanding of the 
application of professional IS 
auditing standards 
A thorough understanding of IT 
related controls and 
control risks in the following 
areas: 
• IT environment 
• Applications/processing 
An understanding of client/server 
architectures 
An understanding of operating 
systems and database 
management systems 
A general understanding of ERPs 
and their design and deployment 
philosophies, including their 
effect on the audit trail 
An understanding of the ERP 
modules and how they are 
configured, integrated and 
deployed 
An understanding of security and 
authorization concepts in an ERP 
setting 

An understanding of 
project management 
practices and controls 
generally 
An understanding of 
project management 
practices and controls 
in the area of IT 
An understanding of 
IT-related systems 
development 
methodologies and 
standards, including 
change management 
An understanding of 
business process 
reengineering 
principles and 
application of such 

Skills of the 
IS auditor 

A seasoned IS audit professional 
who is able to focus on the key 
areas of control risk in an ERP 
setting 
An understanding of computer-
assisted audit techniques 
(CAATs) and how to apply them 
in an ERP setting. An ability to 
recognise where additional 
skills/expertise (such as financial 
and regulatory) are required 

Experience in the 
review and assessment 
of 
implementation 
projects 
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How to 
Acquire 
skills 

Certification as a professional 
auditor 
Certification as a professional IS 
auditor, such as CISA ERP 
learning opportunities especially 
as part of the end-user community 
Practical, on-the-job experience 
Self study, research, Internet, etc. 

Enroll in specialist 
training courses 
focusing on 
Practical, on-the-job 
experience 
Self study, research, 
Internet, etc. 

 
While carrying out the audit of the ERP systems, you should consider the most important 

areas of the system. Fig. 2 shows which areas you should examine more exactly. 
 

 
Fig. 2. General Elements of and Questions on ERP System Implementation 

 
3. THE FEATURES OF THE SECURITY 

 
Every component feature of the security depends on the architectural organization of the 

modules of the ERP systems and on the properties of the security of these modules. 
Every component feature on the level of the system can depend on several component 

features on the level of the module [6]. 
The security of the ERP systems cannot be described by one feature. Some of the features 

can be expressed as probability, other features are deterministic some elements can be 
introduced quantitatively, whereas other aspects can only be described qualitatively. 

The examples of the analysis of the security of ERP systems on the level of modules can be 
situations in which: 

• thearchitecture of the system contains redundancy, the readiness of the system 
depends on the features of the integrity of the redundant modules; 

• if the architecture contains the mechanisms of the protection of the system, the 
protection of the system depends on the features of the readiness of the modules 
which realize the mechanism of the protection; 

• if the architecture contains modules controlling internal passing of the information 
between the various parts of the system, then the security of the system depends on 
the features of the protection of these modules. 
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In order to realize the evaluation of the security of the ERP systems, the program of this 
evaluation needs to be defined. This is possible after defining the aims of the evaluation of 
security, the requirements of the system and the specification of the system. Figure 1 represents 
three elements of the full analysis of the system, with the third element of the analysis being 
the evaluation of the security of the ERP systems [13]. 

It is important to remember that the information given in the document relating to the 
system requirements (SRD) and in the document relating the specification of the system (SSD) 
must be complete and exact to make the evaluation of the system possible. 

If it turns out that at any phase of carrying out the evaluation, some information is missing 
or is incomplete, the consultation with the authors of SRD and SSD is required. By asking 
them detailed questions, it will be possible to receive the required information. It is important 
that the received additional information is specified in suitable documents [15]. 
 
4. EVALUATION CRITERIA  ERP SYSTEMS ACCORDING TO TH E 
DIRECTIVES OF INTERNATIONAL STANDARD ISO/IEC 15408 

 
Information held by ERP system is a critical resource that enables organizations to succeed 

in their mission. Additionally, individuals have a reasonable expectation that their personal 
information contained in ERP products or systems remain private, be available to them as 
needed, and not be subject to unauthorized modification. ERP products or systems should 
perform their functions while exercising proper control of the information to ensure it is 
protected against hazards such as unwanted or unwarranted dissemination, alteration, or loss. 
The term ERP security is used to cover prevention and mitigation of these and similar hazards. 

Many consumers of ERP lack the knowledge, expertise or resources necessary to judge 
whether their confidence in the security of their ERP products or systems is appropriate, and 
they may not wish to rely solely on the assertions of the developers. Consumers may therefore 
choose to increase their confidence in the security measures of an ERP product or system by 
ordering an analysis of its security (i.e. a security evaluation) [10]. 

 
The Common Criteria (CC) with international standard ISO/IEC 15408 can be used to 

select the appropriate ERP security measures and it contains criteria for evaluation of security 
requirements. 

The Common Criteria (CC) with international standard ISO/IEC 15408 plays an important 
role in supporting techniques for consumer selection of ERP security requirements to express 
their organizational needs. The Common Criteria (CC) with international standard ISO/IEC 
15408 is written to ensure that evaluation fulfils the needs of the consumers as this is the 
fundamental purpose and justification for the evaluation process.  

Consumers can use the results of evaluations to help decide whether an evaluated product 
or system fulfils their security needs. These security needs are typically identified as a result of 
both risk analysis and policy direction. Consumers can also use the evaluation results to 
compare different products or systems. Presentation of the assurance requirements within a 
hierarchy supports this need. 

The Common Criteria (CC) gives consumers — especially in consumer groups and 
communities of interest — an implementation-independent structure termed the Protection 
Profile (PP) in which to express their special requirements for ERP security measures in a 
Target of Evaluation (TOE). 
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In order to achieve greater comparability between evaluation results, evaluations should be 
performed within the framework of an authoritative evaluation scheme that sets the standards, 
monitors the quality of the evaluations and administers the regulations to which the evaluation 
facilities and evaluators must conform. 

The Common Criteria (CC) does not state requirements for the regulatory framework. 
However, consistency between the regulatory frameworks of different evaluation authorities 
will be necessary to achieve the goal of mutual recognition of the results of such evaluations. 
Figure 3 depicts the major elements that form the context for evaluations. 

Use of a common evaluation methodology contributes to the repeatability and objectivity of 
the results but is not by itself sufficient. Many of the evaluation criteria require the application 
of expert judgment and background knowledge for which consistency is more difficult to 
achieve. 

 

 
 

Fig. 3.  Evaluation context 
 
In order to enhance the consistency of the evaluation findings, the final evaluation results 

could be submitted to a certification process. The certification process is the independent 
inspection of the results of the evaluation leading to the production of the final certificate or 
approval. The certificate is normally publicly available. It is noted that the certification process 
is a means of gaining greater consistency in the application of ERP security criteria. 

Security is concerned with the protection of assets from threats, where threats are 
categorized as the potential for abuse of protected assets. All categories of threats should be 
considered; but in the domain of security greater attention is given to those threats that are 
related to malicious or other human activities. Figure 3 illustrates high level concepts and 
relationships. 

Safeguarding assets of interest is the responsibility of owners who place value on those 
assets. Actual or presumed threat agents may also place value on the assets and seek to abuse 
assets in a manner contrary to the interests of the owner. Owners will perceive such threats as 
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potential for impairment of the assets such that the value of the assets to the owners would be 
reduced. Security specific impairment commonly includes, but is not limited to, damaging 
disclosure of the asset to unauthorized recipients (loss of confidentiality), damage to the asset 
through unauthorized modification (loss of integrity), or unauthorized deprivation of access to 
the asset (loss of availability) [10]. 

 
 
 

Owners

countermeasures

vulnerabilities

risk

assetsthreats

Threat agents

valuewish to 

minimise

impose

to reducethat may

possess

may be aware of

that may be

reduced by

that 

exploit

give

rise to

wish to abuse and/or may damage

to

that increase

leading to
to

 
 

Fig. 4. Security concepts and relationships 
 
The owners of the assets will analyze the possible threats to determine which ones apply to 

their environment. The results are known as risks. This analysis can aid in the selection of 
countermeasures to counter the risks and reduce it to an acceptable level. 

Countermeasures are imposed to reduce vulnerabilities and to meet security policies of the 
owners of the assets (either directly or indirectly by providing direction to other parties). 
Residual vulnerabilities may remain after the imposition of countermeasures. Such 
vulnerabilities may be exploited by threat agents representing a residual level of risk to the 
assets. Owners will seek to minimize that risk given other constraints. 
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Fig. 5. Evaluation concepts and relationships 
 

Owners will need to be confident that the countermeasures are adequate to counter the 
threats to assets before they will allow exposure of their assets to the specified threats. Owners 
may not themselves possess the capability to judge all aspects of the countermeasures, and may 
therefore seek evaluation of the countermeasures. The outcome of evaluation is a statement 
about the extent to which assurance is gained that the countermeasures can be trusted to reduce 
the risks to the protected assets. The statement assigns an assurance rating of the 
countermeasures, assurance being that property of the countermeasures that gives grounds for 
confidence in their proper operation. This statement can be used by the owner of the assets in 
deciding whether to accept the risk of exposing the assets to the threats. Figure 5 illustrates 
these relationships [11]. 
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Owners of assets will normally be held responsible for those assets and should be able to 
defend the decision to accept the risks of exposing the assets to the threats. This requires that 
the statements resulting from evaluation are defensible. Thus, evaluation should lead to 
objective and repeatable results that can be cited as evidence. 

Many assets are in the form of information that is stored, processed and transmitted by ERP 
products or systems to meet requirements laid down by owners of the information. Information 
owners may require that dissemination and modification of any such information 
representations (data) be strictly controlled. They may demand that the ERP product or system 
implement ERP specific security controls as part of the overall set of security countermeasures 
put in place to counteract the threats to the data ERP systems are procured and constructed to 
meet specific requirements and may, for economic reasons, make maximum use of existing 
commodity ERP products such as operating systems, general purpose application components, 
and hardware platforms. ERP security countermeasures implemented by a system may use 
functions of the underlying ERP products and depend upon the correct operation of ERP 
product security functions. The ERP products may, therefore, be subject to evaluation as part 
of the ERP system security evaluation [11]. 

 
4.1. COLLECTING THE INFORMATION FOR EXECUTING  
       THE EVALUATION OF THE SECURITY 

 
Before beginning the realization of the audit of the security of the ERP system, it is 

necessary to execute the review of the system in order to relate the system to its mission. The 
system should be decomposed into modules and elements. It is also necessary to remember that 
the process of decomposing leads to demonstrative schemes/patterns and additional 
descriptions. 

It is recommended that while realizing the process of decomposing of the ERP system the 
description should include: 

• all modules of interface to the process, to the application, to the database and to 
external systems; 

• communication channels which in the large measure decide about the security of the 
system; 

• processing modules connected with the application; 
• the interaction of the modules; 
• existence of the divisions and the distances between the divisions of the firm. 

After completing the process of decomposingit is important to know that  the majority of 
ERP systems are based on module architecture which where he separate modules freely 
combined. 

In order to conduct the evaluation of the system, it is essential to extract the necessary 
information from SRD and SSD documents.  

It is recommended to combine the requirements specified in SRD and the level of security 
assured by the system, as specified in SSD, and the comparison between them in order to arrive 
at the precise quantitative and qualitative definition and the range of their value, if this can be 
applied, in following casess: 

• thelimits of the ERP systems; 
• thekind of threats and their ways of spreading; 
• the influencing  conditions which can create the threat inside the system; 
• the ways of reducing the risk of the situations which may pose the threat; 
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• the ways  of reducing the risk of the situations of connecting various  phenomena 
which, in turn, may pose the threat; 

• the allocation of the security of modules and the elements of the system; 
• the way in which various modules and the elements of the system interact and the 

possibility losing the security which can happen as the result of the interaction; 
• matters which are outside the range of the system; 
• thegenerally accessible knowledge and the range within which the security of the 

system is to be evaluated. 
 

4.2. ACTIONS EXECUTED DURING THE EVALUATION  
       OF THE SECURITY OF THE SYSTEM 

 
The list of the actions to be realized during the evaluation process comes from the reduced 

list of the objects of the evaluation broadened by the subjects included in the evaluation in 
which we should consider: 

• thekind of analysis and defining of the proprieties  required for the justification of the 
evaluation of the security; 

• thelevel of the priority of every action which is part o the evaluation of the security; 
• theknowledge and skills necessary for the execution of the required analysis and the 

definition of the properties; 
• limitations in the schedule of the evaluation of the security, resulting from the long 

time of marking the different proprieties of the system; 
• theavailability of the chosen staff; 
• tools and services necessary for the execution of required analyses and delimitation of 

the propriety of the system; 
• estimation of the cost and duration of every analysis and the definition of the 

properties of the system. 
It is often necessary to combine several techniques which will be complimentary and will 

make it possible to define the security of the system realizing earlier planned actions.  
The programme of the evaluation of the security of the ERP systems should contain such 

elements as: 
• the object of the evaluation; 
• the criteria which need to be taken into consideration; 
• the actions taken during the evaluation; 
• therequired increase of the level of the confidence; 
• the schedule of the evaluation in which you should consider the long time of the 

duration of some investigations. 
 

4.3. TECHNIQUES OF DEFINING THE PROPRIETIES OF THE SYSTEM  
  FOR FURTHER EVALUATION 
 
Chosen techniques could be either analytic, using only the documentation of the system or 

experimental, requiring the access to the realized system [2]. 
The results received with the help of the alternative techniques of defining proprieties can 

be quantitative or qualitative, or can also be the combination of both kinds. 
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Various methods of defining properties can be applied, but it is recommended that in each 
case, the report of the evaluation contained the reference he documents describing the applied 
methods.  

The following steps should be executed with reference to each kind of the threat: 
• check if the threat exists and if it does, check if there is the accessible certification and 

if it is valid in the working conditions specified in SRD or if it follows the regulation; 
• if the satisfying certification is not available it is recommended to execute the suitable 

analysis of the risk. 
The experimental techniques of defining the proprieties of the system are the supplement of 

the analytic techniques. 
Every time the analytic techniques cannot guarantee the evaluation of the security level of 

the system, the execution of experimental defining of the proprieties, in order to evaluate those 
aspects which do not have complete data.  

 
5. THE REPORT OF THE EVALUATION OF ERP SYSTEMS 

 
The report of the evaluation of the safety of the ERP system should also contain the 

following information: 
• the compilation of the data from the document relating to system requirements and the 

document relating to the specification of the system of, for example the requirements 
of safety, working conditions, service, etc.; 

• theanalysis of the system, its modular and functional structure, the risks to which the 
system was subjected, elements and components and the relationship between them, 
etc.; 

• thelist of actions recommended for further evaluation of the analysis and further 
investigations. 

 
8. SUMMARY 

 
Summing up should affirm, that the performance of the standardized programme of 

the opinion of the safety of the ERP systems will make possible the creation such 
conditions the work, which will give the tool to  the  enterprise thanks which what 
level of the safety of the ERP systems the qualification possible will be he is in the 
enterprise. Does the introduce methodology give the answer what to the safety of one 
of the most important links of the firm. 
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