WPŁYW DODATKU ZEOLITÓW NA OBNIŻENIE TEMPERATURY PRODUKCJI I ZAGĘSZCZANIA MIESZANEK MINERALNO-ASFALTOWYCH

Mgr inż. Agnieszka Woszuk

PRACA DOKTORSKA

Promotor: dr hab. inż. Wojciech Franus, prof. PL
Promotor pomocniczy: dr inż. Jerzy Kukiełka

Lublin, 2016
Dziękuję

Paniu dr hab. inż. Wojciechowi Franusowi, prof. PL za opiekę merytoryczną, cenne uwagi i sugestie, wyrozumiałość oraz zaangażowanie, dzięki któremu możliwe było napisanie tej pracy.

Pani Marzannie Pieczykolan za pomoc i wiele cennych rad, bez których, wielokrotnie „wyważałabym otwarte drzwi”.

Paniu dr inż. Januszowi Bohatkiewiczowi za ogromną życzliwość oraz pomoc w organizacji badań.

Byłym i obecnym członkom Katedry Dróg i Mostów za miłą atmosferę i mobilizację do pracy.

Rodzicom i rodzeństwu za okazane wsparcie i cierpliwość.

Ninnejszą pracę dedykuję córce Gabrieli
Spis treści
1 Wstęp .. 8
2 Przegląd literatury .. 10
 2.1 Właściwości asfaltu i kruszywa wpływające na temperaturę procesu produkcji i zagęszczania mieszanek mineralno-asfaltowych .. 10
 2.2 Technologie produkcji mieszanek mineralno-asfaltowych na ciepło 14
 2.3 Techniki spieniania asfaltu ... 17
 2.4 Właściwości zeolitów .. 24
 2.5 Korzyści stosowania mieszanek mineralno-asfaltowych o obniżonej temperaturze produkcji i zagęszczania .. 26
 2.6 Proces projektowania mieszanek mineralno asfaltowej obniżonej temperaturze produkcji i zagęszczania ... 32
 2.7 Wpływ dodatku zeolitów na właściwości asfaltu .. 35
 2.8 Właściwości mechaniczne obniżonej temperatury produkcji i zagęszczania z dodatkiem materiałów zeolitowych ... 39
 2.9 Inne dodatki stosowane do obniżania temperatur technologicznych mieszanek mineralno-asfaltowych .. 42
3 Tezy, cel i zakres pracy .. 45
4 Materiały do badań ... 46
 4.1 Asfalt ... 46
 4.2 Kruszywa .. 46
 4.3 Zeolity .. 47
5 Metodyka badań ... 49
 5.1 Plan badań .. 49
 5.2 Metodyka przygotowania próbek asfaltu z dodatkiem materiałów zeolitowych 50
 5.3 Metodyka przygotowania próbek mieszanki mineralno-asfaltowej z dodatkiem materiałów zeolitowych ... 52
 5.4 Metodyka badania własności asfaltu ... 53
 5.5 Metodyka badań własności kruszyw ... 61
 5.6 Metodyka badań właściwości zeolitów i wypełniacza wapiennego 61
 5.7 Metodyka badań własności fizykochemicznych mieszanki mineralno-asfaltowej z dodatkiem materiałów zeolitowych .. 62
 5.8 Metodyka statystycznej analizy otrzymanych wyników 73
6 Wyniki badań laboratoryjnych materiałów ... 77
6.1 Wyniki badań własności asfaltu 35/50 ... 77
6.2 Wyniki badań własności kruszyw ... 77
6.3 Wyniki badań zeolitów .. 79
6.4 Projekt mieszanki mineralno-asfaltowej ... 86
6.5 Wyniki badań i analiza właściwości asfaltu 35/50 z dodatkiem materiałów zeolitowych ... 88
6.6 Wyniki badań i analiza własności fizykomechanicznych mieszanki mineralno-asfaltowej AC 16 W z dodatkiem materiałów zeolitowych ... 102
6.7 Statystyczna analiza wyników badań własności fizykomechanicznych mieszanek mineralno-asfaltowych z dodatkiem materiałów zeolitowych ... 126
7 Odcinek doświadczalny ... 137
 7.1 Recepta mieszanki mineralno-asfaltowej ... 137
 7.2 Produkcja i wbudowywanie mieszanki mineralno-asfaltowej z zeolitem 140
 7.3 Metodyka badania składu WMA oraz badania próbek pobranych z odcinka doświadczalnego ... 143
 7.4 Wyniki badań próbek pobranych z odcinka doświadczalnego 145
8 Wnioski końcowe ... 151
Streszczenie .. 153
Bibliografia ... 156
Spis tabel .. 168
Spis rysunków ... 171
Spis fotografii ... 175
Oznaczenie skrótów i symboli

CLIN – zeolit naturalny klinoptilolit
CLIN+W – zeolit naturalny klinoptilolit modyfikowany wodą
NaP1 – zeolit syntetyczny o typie struktury NaP1
NaP1+W – zeolit syntetyczny o typie struktury NaP1 modyfikowany wodą
MM – mieszanka mineralna
MMA – mieszanka mineralno-asfaltowa
HMA – mieszanka mineralno-asfaltowa na gorąco
WMA – mieszanki mineralno-asfaltowe na ciepło, o obniżonej temperaturze produkcji i zagęszczania
WW – wypełniacz wapienny
WMB – wytwórnia mas bitumicznych
RTFOT – metoda laboratoryjnej symulacji starzenia technologicznego asfaltu
PAV – metoda laboratoryjnej symulacji starzenia eksploatacyjnego asfaltu
4PB-PR – badanie cztero – punktowego zginana na próbkę pryzmatycznej
IT-CY – badanie rozciągania pośredniego na próbkę cylindrycznej
CRM – miał gumowy (Crumb Rubber Modifier)
RAP – materiały z recyklingu nawierzchni (Reclaimed Asphalt Pavement)
BTDC – karta jakości asfaltu
BBR – reometr zginanej belki
TZP – temperaturowy zakres plastyczności
WLF – model analityczny służący do wyznaczania współczynnika przesunięcia temperaturowego Williams-Landel-Ferry
CA – model analityczny służący do opisu wyznaczonej krzywej wiodącej zespolonego modułu ścianania Christensen Anderson
K – współczynnik zagęszczalności
MSI – wskaźnik stabilności mieszanki
MRI – indeks odporności mieszanki (na dogęszczenie pod obciążeniem ruchem drogowym)
PI – indeks penetracji
a_T – współczynnik przesunięcia temperaturowego
η – lepkość dynamiczna [Pa·s]
τ – naprężenia ścinające [N/m²]
γ – prędkość ścianania [1/s]
ν – lepkość kinematyczna [m²/s]
ρ’ – gęstość cieczy [kg/m³] = [N·s²/m⁴]
G* – zespolony moduł ścignania [Pa]
G’ – część rzeczywista zespolonego modułu ścignania [Pa]
G” – część urojona zespolonego modułu ścignania [Pa]
Gg – moduł zeszklenia [Pa] (1 GPa)
E* – zespolony moduł sztywności [Pa]
δ – kąt przesunięcia fazowego [°]
C1, C2 – parametry modelu (stałe materiałowe) WLF
Tref – temperatura referencyjna [°C]
ω – częstotliwość pomierzona [rad/s]
ωred – częstotliwość zredukowana [rad/s]
f – częstotliwość pomierzona [Hz]
fred – częstotliwość zredukowana [Hz]
ωc – częstotliwość crossover – parametr modelu CA [rad/s]
R – indeks reologiczny – parametr modelu CA
η0 – lepkość w stanie równowagi – parametr modelu CA
δ’, α’, β’, γ’ – parametry modelu funkcji sigmoidalnej
Dp – średnica porów [nm]
Vp – objętość porów [cm³/g]
Vmic/ Vmes – objętość mikroporów/ mezoporów [cm³/g]
S BET – powierzchnia właściwa [m²/g]
Smic/ Smes – powierzchnia mikroporów/ mezoporów [m²/g]
V m – zawartość wolnych przestrzeni w próbie mieszanki mineralno-asfaltowej [%]
ρbssg – gęstość objętościowa (SSD) próbkı mieszanki mineralno-asfaltowej [kg/m³]
ρm – gęstość mieszanki mineralno-asfaltowej [kg/m³]
P – penetracja w 25ºC, [0,1 mm]
T Frass – temperatura łamliwości asfaltu [°C]
T PK – temperatura mięknienia asfaltu określona metodą pierścień i kula [°C]
Δ R&B – przyrost temperatury mięknienia [°C]
ITSR – wskaźnik wytrzymałości na rozciąganie pośrednie [%]
ITS – wytrzymałość na rozciąganie pośrednie [kPa]
ITSMR – wskaźnik modułu sztywności sprężystej przy pośrednim rozciąganiu [%]
PRD AIR – proporcjonalna głębokość koleiny po 10000 cyklach [%]
WTS AIR – przyrost głębokości koleiny [mm/10³ cykli obciążenia]
1 Wstęp

Technologia nawierzchni drogowych ma zapewniać im trwałość, bezpieczeństwo i komfort użytkowników. Zastosowanie wybranej technologii powinno także mieć uzasadnienie ekonomicznie i być przyjazne środowisku. Wszystkie te wymagania spełniają mieszanki mineralno-asfaltowe o obniżonej temperaturze produkcyi i zagęszczania (WMA).

Temperatura produkcji tradycyjnych mieszanek mineralno-asfaltowych (HMA) wynosi 140–200°C w zależności od rodzaju asfaltu [182]. Mieszanki na ciepło (WMA) także wymagają wysokiej temperatury w celu upłynnienia asfaltu, otoczenia kruszywa i zagęszczania, jednak umożliwiają obniżenie temperatur technologicznych o ok. 30°C.

Efekt spienienia asfaltu uzyskać można także poprzez dodanie do mieszanki mineralnej, w trakcie dozowania asfaltu, zeolitu. Metoda obniżania temperatury produkcji i zagęszczania z zastosowaniem zeolitu syntetycznego (Aspha-Min) została zapoczątkowana w Niemczech (Mitteldeutsche Hartstein-Industrie AG). Od 2001 r. technologię tę rozwija i stosuje na skalę przemysłową francuska firma drogowa Eurovia [196]. W efekcie obniżenia temperatur technologicznych następuje zmniejszenie emisji wyziewów i aerozoli oraz obniżenie emisji do atmosfery wielu szkodliwych gazów cieplarnianych. Biorąc pod uwagę zwiększającą się świadomość w zakresie ochrony środowiska oraz obowiązujące w tym zakresie przepisy prawne w najbliższych latach można spodziewać się rozwoju i upowszechnienia tego typu technologii.
Metoda spieniania asfaltu przez zastosowanie minerałów z grupy zeolitów ma przewagę nad innymi rodzajami spieniania asfaltu dzięki podobieństwu do tradycyjnie stosowanych sposobów produkcji MMA. Projektowanie, badania oraz wytwarzanie jest zbliżone do MMA na gorąco. Różnica polega na zastosowaniu niższych temperatur technologicznych i zachowaniu odpowiedniego czasu kondycjonowania zarobu przed zagęszczaniem próbek w laboratorium. Producent zeolitu Aspha-Min deklaruje, że dodatek ten może być stosowany do każdego rodzaju MMA oraz do każdego rodzaju asfaltu i kruszywa, w tym do lepiszcza modyfikowanego gumą oraz do kruszyw z recyklingu.

W opublikowanych materiałach nie znaleziono informacji o badaniach możliwości obniżenia temperatur technologicznych MMA przez zastosowanie zeolitów syntetycznych wytworzonych z popiołów lotnych oraz zeolitów dodatkowo aktywowanych poprzez proces nasączenia wodą. Brakuje także prób powiązania optymalnej ilości dozowanego zeolitu z własnościami materiału zeolitowego. Mając na uwadze, że dodatek zeolitu umożliwia obniżenie temperatur technologicznych poprzez spienianie asfaltu, konieczne jest rozpoznanie optymalnej struktury tych materiałów oraz charakteru procesu uwalniania wody zeolitowej.

Przeprowadzenie kompleksowych badań uwzględniających wyżej wymienione czynniki umożliwi jednoznaczne określenie przydatności wybranych minerałów z grupy zeolitów do produkcji mieszanek mineralno-asfaltowych o obniżonej temperaturze wbudowywania.
2 Przegląd literatury

2.1 Właściwości asfaltu i kruszywa wpływające na temperaturę procesu produkcji i zagęszczania mieszanek mineralno-asfaltowych

Asfalt jest materiałem termoplastycznym, którego właściwości są funkcją temperatury i czasu występowania obciążenia. Zależnie od temperatury i warunków obciążenia asfalt występuje w trzech podstawowych stanach reologicznych [101, 47]:

- lepkim,
- lepkosprężystym,
- sprężystym.

W wysokiej temperaturze oraz pod wpływem długotrwałego obciążenia lepiszcze asfaltowe zachowuje się jak lepka ciecz, natomiast w niskich temperaturach i pod działaniem obciążenia krótkotrwałego przyjmuje cechy ciała stałego sprężystego. W pośrednich warunkach asfalt wykazuje właściwości lepkosprężyste. Za umowną granicę stanu sprężystego przyjmuje się temperaturę łamliwości w której asfalt uzyskuje penetrację 1,25 ($T_{Frass} = 1,25$). Granica przejścia w stan lepki to temperatura mięknienia w której lepiszcze ma penetrację równą 800 ($T_{PiK} = 800$) [16]. Z uwagi na właściwości eksploatacyjne MMA najważniejszy w przypadku asfaltu jest stan lepkosprężysty. Praca nawierzchni drogi, od obciążeń i sił wewnętrznych, w innych stanach reologicznych jest przyczyną jej degradacji: w stanie sprężystym następuje kruszenie i pękanie asfaltu, natomiast w stanie lepkim – mięknienie i płynięcie.

Podstawową cechą reologiczną asfaltu jest lepkość, którą można zdefiniować jako tarcie wewnętrzne, występujące w wyniku działania sił kohezji między cząsteczkami, przy przesuwaniu się jednej warstwy asfaltu względem drugiej. Wartość lepkości zależy od temperatury i czasu badania oraz charakteru działania obciążenia [74] [47].

Wyróżnia się dwa rodzaje lepkości:

- **Lepkość dynamiczna** jest to stosunek naprężenia ścinającego do prędkości ścinańia

 i jest miarą oporu przepływu cieczy[185]:

 \[
 \eta = \frac{\tau}{\gamma}
 \]

 gdzie:

 \(\eta\) – lepkość dynamiczna [Pa·s],

 \(\tau\) – naprężenia ścinające [N/m²],

 \(\gamma\) – prędkość ścinańia [1/s].
Lepkość kinematyczna jest to stosunek lepkości dynamicznej do gęstości cieczy w temperaturze badania i jest miarą oporu przepływu cieczy pod wpływem sił grawitacji [166]:

\[\nu = \frac{\eta}{\rho'} \]

gdzie:
\(\nu \) – lepkość kinematyczna \([m^2/s]\),
\(\eta \) – lepkość dynamiczna \([Pa\cdot s]\),
\(\rho' \) – gęstość badanej cieczy \([kg/m^3]\).

W celu wyznaczenia temperatur technologicznych badana jest lepkość dynamiczna (zwana dalej „lepkością”). Znajomość konsystencji asfaltu pozwala określić najkorzystniejsze warunki temperaturowe dla całego procesu wytwarzania i wbudowywania mieszanek mineralno-asfaltowych oraz eksploatacji nawierzchni. W tabeli 2.1 zestawiono wartości lepkości asfaltu uważane za optymalne przy wyznaczaniu temperatur technologicznych.

Tabela 2.1. Optymalne wartości lepkości do wyznaczania temperatur technologicznych [104]

<table>
<thead>
<tr>
<th>Proces technologiczny</th>
<th>Lepkość asfaltu [Pa·s]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pompowanie asfaltu</td>
<td>2,0</td>
</tr>
<tr>
<td>Otaczanie kruszywa</td>
<td>0,2</td>
</tr>
<tr>
<td>Koniec efektywnego zagęszczania mieszanki mineralno-asfaltowej</td>
<td>20,0</td>
</tr>
</tbody>
</table>

Upłynnienie asfaltu pod wpływem wzrostu temperatury jest niezbędne, aby można było uzyskać odpowiednio niską lepkość, umożliwiającą dokładne otoczenie ziaren kruszywa błonką lepiszcza o wymaganej grubości. Lepkość asfaltu zmniejsza się wraz ze wzrostem temperatury, przy czym zależność lepkości asfaltu od jego temperatury ma charakter logarytmiczny i nawet małe zmiany temperatury powodują duże zmiany lepkości.

Wymagana lepkość 0,2 Pa·s w produkcji tradycyjnych MMA uzyskiwana jest w temperaturach 150–195°C, zależnie od rodzaju i twardości asfaltu. Im twardsze lepiszcze tym wyższe temperatury technologiczne. Przykładowe temperatury technologiczne, zalecane przez jednego głównych dostawców asfaltu w Polsce zestawiono w tabeli 2.2.
W celu wyznaczenia ekwiwalentnych temperatur pompowania i otaczania asfaltem mieszanek mineralnej należy uwzględnić wyniki badań lepkości asfaltu przed procesem starzenia krótkoterminowego (badanie RTFOT). Do wyznaczenia temperatury końca efektywnego zagęszczania właściwe będą wyniki badań lepkości asfaltu poddanego procesowi starzenia RTFOT. Rzeczywiste starzenie technologiczne asfaltu w MMA następuje już po wymieszaniu lepiszcza z kruszywem, w czasie transportu gotowej mieszanki na budowę. Zarówno zbyt niska temperatura, jak również zbyt wysoka wpływa negatywnie na proces produkcji MMA. Przy zbyt małej lepkości (proces tzw. „przegrzania” MMA) podczas mieszania lepiszcza z kruszywem może dochodzić do spływania asfaltu, a podczas zagęszczania na budowie – do „wypływania” zbyt gorącej mieszanki spod walców.

Kolejną istotną cechą jest **przyczepność fizykomechaniczna asfaltu i kruszywa** związana ze zdolnością zwilżania powierzchni materiału kamiennego przez lepiszcze asfaltowe. Zdolność ta zależy od lepkości asfaltu, napięcia powierzchniowego powstającego na granicy faz asfalt/kruszywo oraz od kąta zwilżania. Napięcie powierzchniowe można zdefiniować jako pracę potrzebną do odpowiedniego powiększenia powierzchni cieczy. Kąt zwilżania to wielkość pochodna sił napięć powierzchniowych występujących na granicy poszczególnych faz [49]. Kąt ten tworzy się na brzegach kropli lepiszcza na powierzchni kruszywa (rys. 2.1) i jest miarą zdolności pokrywania powierzchni kruszywa przez asfalt (zwilżalności).
Im mniejsza wartość lepkości i napięcia powierzchniowego na granicy faz asfalt/kruszywo, tym większe zwilżanie i przyczepność błonki lepiszcza do powierzchni kruszywa. Wraz ze wzrostem temperatury wzrasta zdolność zwilżania a maleje zdolność wiąząca lepiszcza. Na przyczepność asfaltu do kruszywa wpływa wiele czynników, te najważniejsze zestawiono w tabeli 2.3.

Tabela 2.3. Czynniki mające wpływ na przyczepność asfaltu do kruszywa i trwałość nawierzchni [104] [16]

<table>
<thead>
<tr>
<th>Właściwości kruszywa</th>
<th>Właściwości asfaltu</th>
<th>Właściwości mieszanki mineralno-asfaltowej</th>
<th>Czynniki zewnętrzne</th>
</tr>
</thead>
<tbody>
<tr>
<td>– skład mineralny</td>
<td>– właściwości reologiczne</td>
<td>– uziarnienie MM</td>
<td>– konstrukcja nawierzchni</td>
</tr>
<tr>
<td>– tekstura powierzchni</td>
<td>– budowa/struktura</td>
<td>– zawartość asfaltu</td>
<td>– proces produkcji i wbudowywania MMA</td>
</tr>
<tr>
<td>– wielkość ziaren</td>
<td></td>
<td>– grubość błonki asfaltu na ziarnach kruszywa</td>
<td>– obciążenie ruchem</td>
</tr>
<tr>
<td>– kształt ziaren</td>
<td></td>
<td>– rodzaj wypełniacza</td>
<td>– wilgotność</td>
</tr>
<tr>
<td>– porowatość</td>
<td></td>
<td>– zawartość wolnych przestrzeni</td>
<td>– pH wody</td>
</tr>
<tr>
<td>– wilgotność</td>
<td></td>
<td></td>
<td>– sposób odwodnienia</td>
</tr>
<tr>
<td>– stopień zapylenia</td>
<td></td>
<td></td>
<td>– naturalne warunki środowiskowe</td>
</tr>
<tr>
<td>– absorpcja asfaltu</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>– energia powierzchniowa</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

W odniesieniu do kruszyw wpływ na adhezję ma skład chemiczny kruszywa [27]. Z uwagi na zawartość krzemionki (SiO₂) skały dzielą się na trzy grupy:

- kwaśne (SiO₂ > 65%) np. granity, kwaryty, piaski,
- zasadowe (SiO₂ < 55%) np. wapienie, bazalty, garbo,
- obojętne (SiO₂ 55–65%) np. sjenit.
Im większa zawartość krzemionki tym gorsze powinowactwo skały do asfaltu [40]. Mimo tego kruszywa kwaśnie są powszechnie stosowane w drogownictwie gdyż mają lepsze właściwości mechaniczne od kruszyw uzyskanych ze skał zasadowych. W celu poprawy przyczepności, do MMA mających w składzie kruszywa kwaśnie dodawane są środki adhezyjne. Inną metodą jest stosowanie asfaltów modyfikowanych polimerami. Kruszywa kanciaste i o chropowatej powierzchni wykazują większą przyczepność do asfaltu od kruszyw gładkich i zaokrąglonych [91]. Jeśli jednak kanciastość kruszywa jest na tyle duża, że lepiszcze asfaltowe nie pokrywa w całości brzegów kruszywa, to połączenie obu materiałów nie jest zapewnione. W efekcie mieszanka mineralno-asfaltowa jest bardziej podatna na uszkodzenia w wyniku wilgoci [50]. Większa powierzchnia właściwa mieszanki mineralnej oznacza większy obszar styku kruszywa i spoiwa przez co uzyskane połączenie jest silniejsze.

Kruszywo przed procesem mieszania powinno być odpylone i wysuszone. Pyły zwiększają lepkość spoiwa, co prowadzi do zmniejszenia wilgoci. Woda na powierzchni kruszywa może natomiast powodować przerwanie połączenia między spoiwem a kruszywem.

2.2 Technologie produkcji mieszanek mineralno-asfaltowych na ciepło

Mieszanki mineralno asfaltowe z uwagi na temperaturę produkcji podzielić można na [96, 131]:

- MMA na gorąco – temp. produkcji 190–150°C (Hot Mix Asphalt),
- MMA na ciepło – temp. produkcji 100–140°C (Warm Mix Asphalt),
- MMA na „półciepło” – temp. produkcji 60–100°C (Half Warm Mix Asphalt),
- MMA na zimno – temp. produkcji 0–40°C (cold mixes).

Stosowanie mieszanek mineralno asfaltowych na ciepło pozwala na zmniejszenie temperatury produkcji i zagęszczania o 20–40°C [112]. Dzięki czemu zmniejsza się zużycie energii (rys. 2.2), poprawia komfort i bezpieczeństwo pracy. Niższa temperatura produkcji to także spowolnienie starzenia lepiszcza oraz lepsza urabialność mieszanki.
Mieszanki mineralno-asfaltowe na ciepło dzieli się z uwagi na stosowaną technologię zmniejszania temperatury na trzy technologie [147, 150]:

- spienianie asfaltu,
- dodatki organiczne lub parafinowe,
- dodatki chemiczne.

Dostępne obecnie produkty obniżające temperatury technologiczne mieszanek mineralno-asfaltowych zestawiono w tabeli 2.4.

Tabela 2.4. Produkty obniżające temperatury technologiczne mieszanek mineralno-asfaltowych [112, 150]

<table>
<thead>
<tr>
<th>Produkt</th>
<th>Firma</th>
<th>Opis</th>
<th>Kraj zastosowania</th>
<th>Dodatek</th>
<th>Temp. produkcji [przedział redukcji]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aquablack WMA</td>
<td>MAXAM</td>
<td></td>
<td>U.S</td>
<td>Nie jest konieczny</td>
<td>Nie określono</td>
</tr>
<tr>
<td>Double Barrel Green</td>
<td>Astec</td>
<td>Na bazie wody, proces spieniania</td>
<td>U.S</td>
<td>Opcjonalnie, środek adhezyjny</td>
<td>116–135°C*</td>
</tr>
<tr>
<td>Low Energy Asphalt</td>
<td>LEACO</td>
<td>Na bazie wody, gorące grube kruszywo połączone z mokrym piaskiem</td>
<td>U.S. Francja, Hiszpania, Włochy</td>
<td>0,5% masy asfaltu oraz środek adhezyjny</td>
<td>≤ 100°C*</td>
</tr>
<tr>
<td>Low Emission Asphalt</td>
<td>McConnaghy Technologies</td>
<td>Połączenie dodatku chemicznego ze spienianiem asfaltu</td>
<td>U.S</td>
<td>0,4% masy asfaltu</td>
<td>90°C*</td>
</tr>
<tr>
<td>----------------------</td>
<td>--------------------------</td>
<td>--</td>
<td>----</td>
<td>-----------------</td>
<td>------</td>
</tr>
<tr>
<td>Ultrafoam GX</td>
<td>Gencor Industries</td>
<td>Na bazie wody, proces spieniania</td>
<td>U.S</td>
<td>Nie jest konieczny</td>
<td>Nie określono</td>
</tr>
<tr>
<td>WAM-Foam</td>
<td>Shell and Kolo-Veidekke</td>
<td>Proces spieniania poprzez dodanie dwóch różnych lepiszczy</td>
<td>U.S, Norwegia</td>
<td>Środek adhezyjny można dodać do miękkiego asfaltu</td>
<td>110–120°C*</td>
</tr>
<tr>
<td>Warm Mix Asphalt System</td>
<td>Terex Roadbuilding</td>
<td>Na bazie wody, proces spieniania</td>
<td>U.S</td>
<td>Nie jest konieczny</td>
<td><32°C*</td>
</tr>
<tr>
<td>LEAB</td>
<td>BAM</td>
<td>Na bazie wody, mieszanie kruszyw poniżej temp. wrzenia wody</td>
<td>Niderlandy</td>
<td>0,1% masy asfaltu oraz środek adhezyjny</td>
<td>90°C [30]</td>
</tr>
<tr>
<td>LT Asphalt</td>
<td>Nynas</td>
<td>Na bazie wody, spienianie asfaltu + hydrofobowy wypełniacz</td>
<td>Włochy, Niderlandy</td>
<td>0,5-1,0% hydrofobowego wypełniacza w stosunku do masy MMA</td>
<td>90°C [30]</td>
</tr>
<tr>
<td>Advera</td>
<td>PQ Corporation</td>
<td>Zeolit nasączony wodą</td>
<td>U.S</td>
<td>0,25% masy MMA</td>
<td>10–20°C*</td>
</tr>
<tr>
<td>Aspha-Min</td>
<td>Eurovia</td>
<td>Zeolit nasączony wodą</td>
<td>U.S, Francja, Niemcy</td>
<td>0,3% masy MMA</td>
<td>30°C</td>
</tr>
</tbody>
</table>

Dodatki organiczne

<table>
<thead>
<tr>
<th>Sasobit</th>
<th>Sasol</th>
<th>Wosk syntetyczny Fischer-Tropsch</th>
<th>U.S, EU</th>
<th>2,5–3% masy asfaltu (Niemcy) 1–1,5% masy asfaltu (U.S)</th>
<th>10–30°C*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asphaltan A Romonta N</td>
<td>Romonta GmbH</td>
<td>Wosk Montana asfaltu lanego</td>
<td>Niemcy</td>
<td>1,5–2,0% masy asfaltu</td>
<td>20°C [30]</td>
</tr>
<tr>
<td>Asphaltan B</td>
<td>Romonta GmbH</td>
<td>Rafinowany wosk Montana z amidami kwasu tłuszczowego do walowanych MMA</td>
<td>Niemcy</td>
<td>2–4% masy MMA</td>
<td>20–30°C [30]</td>
</tr>
<tr>
<td>Licomont BS 100</td>
<td>Clariant</td>
<td>Amidy kwasu tłuszczowego</td>
<td>Niemcy</td>
<td>3% masy asfaltu</td>
<td>20–30°C [30]</td>
</tr>
<tr>
<td>3E LT or Ecoflex</td>
<td>Colas</td>
<td>Brak danych</td>
<td>Francja</td>
<td>Tak, brak danych</td>
<td>30–40°C [30]</td>
</tr>
</tbody>
</table>
Dodatki chemiczne

<table>
<thead>
<tr>
<th>Dodatek chemiczny</th>
<th>Fabrykant</th>
<th>Forma emulsji bitumicznej</th>
<th>Temperatura spienienia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Evotherm ET</td>
<td>Mead-Westvaco</td>
<td>Chemiczna emulsja asfaltowa</td>
<td>U.S, Francja</td>
</tr>
<tr>
<td>Evotherm DAT</td>
<td>Mead-Westvaco</td>
<td>Dodatek chemiczny + woda</td>
<td>U.S, Francja</td>
</tr>
<tr>
<td>Evotherm 3G</td>
<td>Mead-Westvaco</td>
<td>Dodatek chemiczny + woda</td>
<td>U.S</td>
</tr>
<tr>
<td>CECABASE RT</td>
<td>CECA Arkema group</td>
<td>Dodatek chemiczny</td>
<td>U.S, Francja</td>
</tr>
<tr>
<td>Rediset WMX</td>
<td>Akzo Nobel</td>
<td>Kationowe środki powierzchniowo czynne i dodatek środka organicznego</td>
<td>U.S, Norwegia</td>
</tr>
<tr>
<td>REVIX</td>
<td>Mathy-Ergon</td>
<td>Środki powierzchniowo czynne, woski, substancje pomocnicze, polimery</td>
<td>U.S</td>
</tr>
</tbody>
</table>

* według danych producenta

2.3 Techniki spieniania asfaltu

Najstarszą technologią obniżania temperatury produkcji MMA jest spienianie asfaltu przez dodanie niewielkiej zawartości wody do gorącego lepiszcza lub bezpośrednio do mieszalka kruszywa z asfaltem. Opracowano kilka technologii spieniania asfaltu, które podzielić można na dwie grupy [100, 112, 150]:

- na bazie wody (water based),
- dodatki zawierające wodę (water containing).

Początkowo spienianie asfaltu polegało na dodaniu wody o temperaturze pokojowej (ok. 20°C) do gorącego asfaltu o temperaturze 170–180°C. W efekcie woda uwalniała parę wodną spieniając asfalt. Powstawało płynne lepiszcze asfaltowe o temperaturze niższej niż 100°C [58, 60]. W zależności od rodzaju zastosowanego asfaltu podczas spienienia następuje 15–20 krotnie zwiększenie objętości bitumu. W czasie kilkudziesięciu sekund nowe lepiszcze o małej lepkości oraz dużej powierzchni właściwej zapewnia właściwe otoczenie kruszywa.
w niższej temperaturze [68, 58]. Po kilku minutach para wodna zanika i asfalt odzyskuje swoje pierwotne właściwości. Lepiszcze, w postaci rozpylonej, może być wprowadzone do mieszalka mechanicznie lub pod ciśnieniem. Po spienieniu asfalt jest wprowadzany do mieszalka za pomocą specjalnych dysz (rys. 2.3).

Rys. 2.3. Schemat wytwarzania asfaltu spienionego [121]

Do oceny spienienia asfaltu służą dwa parametry [68]:

- wskaźnik ekspansji (WE),
- czas połowicznego rozpadu – okres półtrwania (t_{1/2}).

Wskaźnik ekspansji jest to stosunek maksymalnej objętości asfaltu po spienieniu do objętości asfaltu przed spienieniem. Okres półtrwania, to czas w którym asfalt spieniony zmniejszy o połowę swoją objętość, może wynosić od kilkunastu do ponad 30 sekund. Im wyższy współczynnik ekspansji i okres półtrwania tym lepszej jakości jest nowo wytworzone lepiszcze. W omawianej technologii możliwe jest spienianie asfaltów o penetracji od 80 do 200. Optymalna zawartość wody waha się w granicach 2–4% [113, 86, 94]. Z bitumów dostępnych w Polsce najlepsze parametry osiągał asfalt Nyfoam 80 [58]. Badania wskazują na możliwość wykonywania nie tylko MMA z asfaltem spienionym ale również podbudów z materiałem z recyklingu (RAP) [58, 60, 68, 69, 121].

Inny sposób spieniania asfaltu polega na wymieszaniu dwóch rodzajów asfaltu, miękkiego i twardego. Do mieszalka z wysuszonym kruszywem dodawany jest miękki asfalt o temperaturze ok. 110–130°C. W drugim etapie, do wstępnie otoczonego blonką asfaltową kruszywa dodawany jest asfalt twarty w postaci spienionej. Mimo, że w tej technologii jedyny stosowany dodatek to woda, należy być bardzo ostrożnym w jej dozowaniu. Wody powinno być tyle, aby asfalt był odpowiednio spieniony. Przy zbyt dużej
ilości istnieje ryzyko obmycia kruszywa z lepiszcza [84]. Wadą technologii „water based” są koszty dostosowania wytwórni do spieniania asfaltu, co w początkowym okresie niweluje oszczędności wynikające z niższego zużycia energii.

Shell WAM-Foam

Współpraca koncernu petrochemicznego Shell z norweską firmą wykonawczą Kolo-Veidekke zaowocowała opracowaniem technologii zmniejszania temperatury produkcji MMA – WAM-Foam. Podstawa procesu to uzyskanie dwuskładnikowego środka wiązącego, poprzez wprowadzanie miękkiego oraz twardego spienionego spoiva w różnych fazach cyklu produkcji mieszanki [84]. W pierwszym etapie kruszywo rozgrzane do temperatury 100–120°C jest mieszane z miękkim asfalem, stanowiącym zwykle 20 lub 30% masy całego lepiszcza. Temperatura dozowania wykosi ok. 100°C, co jest wystarczające do wstępnego obtoczenia ziaren kruszywa bitumem [84]. Drugi etap to dodanie spienionego asfaltu twardego. Spienianie uzyskuje się przez wtryskiwanie do gorącego lepiszcza strumienia wody w ilości 1–5% w stosunku do masy twardego asfaltu. Proces ten zachodzi w komorze spieniania. Kombinacja miękkiego środka wiążącego i spienionego twardego spoiva zmniejsza lepkość mieszanki i poprawia jej urabialność. Technologia WAM-Foam pozwala obniżyć temperaturę produkcji MMA do 100–120°C, a temperaturę zagęszczania nawet do 80°C [78, 84]. Aby można było osiągnąć tak niskie temperatury produkcji należy odpowiednio dobrać komponenty. Zalecane jest dodanie środka polepszającego przyczepność w pierwszym etapie mieszania [23, 30]. W celu zapewnienia odpowiedniej jakości MMA należy również pamiętać, aby cała woda była usunięta w trakcie trwania procesu produkcyjnego. Przy temperaturze produkcji poniżej temperatury parowania wody nie zawsze wymóg ten jest spełniony. Wykorzystanie omawianej technologii do obniżenia temperatur technologicznych MMA skutkuje zmniejszeniem zużycia energii w stosunku do HMA o ok.
30% oraz redukcją emisji CO₂ na podobnym poziomie [84]. Niewątpliwa wada omawianej metody to konieczność modyfikacji wytwórni do potrzeb produkcji WAM-Foam i wysoki koszt instalacji specjalnej komory spieniania asfaltu [20].

Astec Double Barrel Green

Double Barrel Green to kolejna technologia produkcji mieszanek mineralno-asfaltowych na ciepło bazującą na spienionym asfalcie. Producent, amerykańska firma ASTEC oferuje pełen zestaw instalacyjny (Astec Green Pac), który zawiera opatentowany zestaw dysz wtryskujących wodę do rozgrzanego bitumu, zbiornik na wodę oraz urządzenia do sterowania wytwórnią. Stacjonarny zestaw do spieniania asfaltu w technologii Double Barrel Green przedstawiono na rysunku 2.4.

Rys. 2.4. Stacjonarny zestaw do spieniania asfaltu w technologii Double Barrel Green [193]

Pozostałą wodą nie trzeba stosować żadnych dodatków chemicznych ani organicznych. Technologia Double Barrel Green umożliwia zmniejszenie temperatury produkcji MMA do 116–135°C [71].

Low Energy Asphalt, Low Emission Asphalt

Low-Energy Asphalt (LEA) to francuska technologia opracowana przez firmę Fairco z Zozay [107, 108]. Sam proces produkcji MMA, składający się z kilku charakterystycznych faz (rys. 2.5), różni się znacząco od typowych procesów wytwarzania HMA i WMA. W pierwszym etapie kruszywo frakcji grusowej i część frakcji piaskowej, rozgrzane do temperatury 120–150°C, jest mieszane z asphaltem o temperaturze takiej jak temperatura lepiszcza stosowanego w tradycyjnej produkcji MMA. Do bitumu dodawany jest środek chemiczny, o nieznanym zastrzeżonym składzie, w ilości około 0,5% masy lepiszcza.
Dodatek ten poprawia przyczepność asfaltu do kruszywa oraz pełni rolę regulatora stopnia spieniania [30, 71]. W drugiej fazie do kruszywa gruboziarnistego otoczonego lepiszczem dodane jest zimne, wilgotne kruszywo frakcji piaskowej wraz z wypełniaczem. Działania te mają na celu wywołanie procesu spieniania asfaltu. Wzrost objętości asfaltu umożliwia powleczenie kruszywa drobnego grubszą błonką lepiszcza, a tym samym sprzyja poprawie urabialność mieszanki.

Rys. 2.5. Poszczególne fazy produkcji mieszanki typu LEA [71]

Temperatura w końcowej fazie produkcji mieszanki spada poniżej 100°C, co pozwala osiągnąć znaczne oszczędności energii przy jednoczesnym zmniejszeniu emisji gazów [30, 107, 108]. Aby móc wykorzystać technologię Low-Energy Asphalt na skalę przemysłową należy odpowiednio dostosować wytwórnice MMA. Zestaw do produkcji LEA zawiera specjalny zbiornik i dozownik wilgotnej frakcji piaskowej, jak również urządzenie do skrapiania kruszywa i system dodawania środków chemicznych do asfaltu. Fazy procesu produkcji mieszanki zostały zmodyfikowane zgodnie z etapami cyklu produkcji LEA. Gotowy zestaw umożliwia również dodawanie kruszywa z recyklingu bezpośrednio do mieszalnika [20, 108].

Low Emission Asphalt (LEA CO) to modyfikacja technologii Low Energy Asphalt. Analogicznie do etapów LEA rozgrzane gruboziarniste kruszywa miesza się z gorącym asfaltem zawierającym dodatek chemiczny. Następnie dodawane jest zimne, wilgotne kruszywo drobne, co powoduje spienianie lepiszcza [150].
Aspha-Min, Advera

Aspha-Min, czyli syntetyczny glinokrzemian o wzorze chemicznym:

\[\text{M}^{2+}/\text{n} \cdot \text{Al}_2\text{O}_3 \cdot \text{x S}_2\text{O}_2 \cdot \text{y H}_2\text{O} \] [51], zawiera około 21 % wody (masowo), która jest wydzielana w zakresie temperatur 85–182°C [57]. W momencie dodania zeolitu do mieszanki mineralnej jednocześnie z asfaltem, woda gromadzona w porach molekuł zaczyna się uwalniać. W wyniku parowania wody zeolitowej dochodzi do ekspansji objętościowej spoïwa, efektem czego jest spienienie asfaltu i obniżenie jego lepkości. Dzięki temu zwiększa się urabialność MMA i przyczepność asfaltu do kruszywa w niższych temperaturach [56]. Zjawisko to trwa przez około 2 godzin przez co efekt zwiększonej urabialności trwa zarówno w trakcie produkcji, transportu jak i wbudowywania MMA [30, 129].

Zeolity wykorzystywane komercyjnie, w tej technologii, występują w postaci proszku, barwy białej lub żółtej (fot. 2.1).

Przechowywane zeolity powinny być chronione przed wpływem warunków atmosferycznych i zawilgoceniem. Dodany zeolit w recepcie MMA zastępuje wypełniacz i w badaniach powinien być dokumentowany jako wypełniacz [188, 194]. Zastosowanie innych procedur uwzględniania zeolitu w MMA może doprowadzić do niewłaściwych proporcji „wypełniacz – asfalt”, będących przyczyną uszkodzeń nawierzchni [72].
W technologii Aspha-Min dozowany zeolit stanowi 0,3% masy MMA [1, 13, 44, 46, 57, 76, 115, 119, 129].

Optymalny dodatek zeolitu z uwagi na najmniejszą lepkość asfaltu, wynosi 5% w stosunku do masy lepiszcza [117]. W swoich materiałach promocyjnych Eurovia wskazuje, że stosowanie dodatku Aspha-Min może obniżyć temperaturę produkcji o 30°C.

Producent (Eurovia) deklaruje, że dodatek Aspha-Min może być stosowany dla wszystkich powszechnie znanych asfaltów i asfaltów modyfikowanych, każdego rodzaju kruszywa, a także kruszyw z recyklingu. Produkcja MMA z dodatkiem zeolitu nie różni się od tradycyjnie produkowanych mieszanek. Problematyczne może być jedynie dozowanie zeolitu. Z uwagi na charakter swojego działania ważna jest kolejność dozowania poszczególnych składników mieszanki. Zeolit powinien być dozowany razem z wypełniaczem lub bezpośrednio po nim [13, 192]. Dozowanie automatyczne odbywa się z silosu lub przy użyciu dodatkowo zainstalowanego zasobnika wagowego (rys. 2.6). Możliwe jest także ręczne dodawanie zeolitu w workach [13, 192]. (fot. 2.2).

Rys. 2.6. Ruchomy zasobnik dozowania zeolitu [194]

Fot. 2.2. Ręczne dozowanie zeolitu

Dodatek Advera, podobnie jak Aspha-Min to syntetyczny zeolit. Producent (PQ Corporation, USA) zaleca dozowanie w ilości 0,25% w stosunku do masy MMA [9, 70]. Prowadzone były badania właściwości asfaltu i MMA z innymi, niż zalecane przez producentów, ilościami dodatku [53, 117, 124, 125], a także z wykorzystaniem zeolitu naturalnego klinoptiolitu [36, 117, 126, 127].

Ponieważ technologia produkcji MMA z dodatkiem zeolitu nie różni się od tradycyjnych technologii [13, 142] możliwe jest jej wdrożenie bez ponoszenia znacznych nakładów finansowych.
2.4 Właściwości zeolitów

Zeolity to grupa glinokrzemianów szkieletowych o zróżnicowanej strukturze, w której występują puste przestrzenie w postaci komór i kanałów. Taka specyficzna budowa wewnętrzna nadaje im wiele cech fizycznych i chemicznych, które są niezwykle korzystne dla różnego rodzaju zastosowań przemysłowych. Rozmiary kanałów w zeolitach mieszczą się w granicach od około 3 Å do 30 Å i są wystarczająco duże, aby mogły do ich wnętrza nie tylko dyfundować i penetrować pojedyncze atomy, ale również niewielkie cząsteczki związków chemicznych. Charakterystyczną cechą mineralów tej grupy jest obecność w ich składzie cząsteczek wody związanych w specyficzny sposób z ich strukturą. Jest to woda zeolitowa. Podczas ogrzewania minerału do temperatury około 400°C woda ta jest oddawana ze struktury mineralów zeolitowych w sposób ciągły, bez zmian objętości krystalu, a podczas ochładzania minerału w środowisku wilgotnym cząsteczki wody są również w sposób ciągły wchłaniane przez jego strukturę.

Ogólna formula krystalograficzna zeolitów ma postać:

\[Me_{x/n} = [Al_xSi_yO_{2(x+y)}]^\cdot zH_2O \] \hspace{1cm} (2.3)

gdzie:

- Me – oznacza wymienne kationy metali o wartościowościach n (najczęściej są to kationy metali litowców i berylowców),
- y:x – stosunek krzemu do glinu, zawiera się w przedziale od 1 do 5,
- x:z – cząsteczki wody znajdujące się w wolnych przestrzeniach i kanałach śródszkieletowych.

Szkielet krystaliczny utworzony jest z tetraedrów AlO\(_4\) i SiO\(_4\), które mogą być zastępowane przez inne pierwiastki, które muszą być izoelektronowe z Al\(^{3+}\) i Si\(^{4+}\) o podobnych promieniach jonowych. Tak więc szkielet ma ładunek wypadkowy tym większy im więcej w nim jest tetraedrów AlO\(_4\). Zgodnie z regułą Loevensteina nie może być ich jednak więcej niż tetraedrów SiO\(_4\) [18, 48].

Specyficzne własności zeolitów wynikają z wyjątkowej struktury ich szkieletu. Ta struktura ma charakter hierarchiczny, w którym pierwszym stopniem są tzw. PBU (ang. primary building units) utworzone przez tetraedry AlO\(_4\) i SiO\(_4\), które z kolei są połączone narożami w układy pierścieniowe tzw. SBU (ang. secondary building units). Te wtórne
Jednostki strukturalne łącząc się wolnymi narożami tworzą bryły o różnych kryształach, bryły te zaś tworzą finalny szkielet. W szkieletie tym połączone puste wnętrza tworzą kanały. Hierarchiczną budowę szkieletu zeolitów przedstawiono na rysunku 2.7.

Rys. 2.7. Struktura wybranych zeolitów i ich system kanałów [140]

Genetycznie w grupie mineralów zeolitowych wyróżnia się zeolity naturalne i zeolity syntetyczne. Zeolity naturalne reprezentowane są przez ponad 100 różnego typu odmian mineralnych. Powstają w wielu środowiskach i procesach geologicznych. Jednak tylko niektóre z nich występują w formie nagromadzeń ekonomicznie opłacalnych do wydobycia i przeróbki tzw. złóż. Do najważniejszych zeolitów tworzących złoża należą klinoptilolit, filipsyt, chabazyt i mordenit.

Drugi genetyczny typ zeolitów to zeolity syntetyczne. Technologie ich otrzymywania intensywnie zaczęły rozwijać się z końcem ubiegłego stulecia. Umożliwiając one otrzymywanie zeolitów o ściśle określonych parametrach struktury, co kwalifikuje je do konkretnych zastosowań przemysłowych (m.in. selekcyjne sita molekularne).

Najpowszechniej otrzymywanymi w procesach przemysłowej syntezy zeolitami są struktury typu Na-X, Na-Y, Na-A, ZSM-5. Syntetyczne zeolity otrzymywane są z odczynników chemicznych w reakcjach krzemianu sodu i glianu sodu, surowców mineralnych (minerały ilaste, minerały z grupy krzemionki) oraz niektórych odpadów stanowiących uboczne produkty spalania węgla UPS (takich jak popioły lotne) [44]. Synteza w warunkach laboratoryjnych trwa od kilku do kilkudziesięciu godzin, natomiast w środowisku naturalnym
proces tworzenia zeolitów z popiołów wulkanicznych zajmuje minimum kilka tysięcy lat.

Zeolity syntetyczne w porównaniu do zeolitów naturalnych są lepszym surowcem mineralnym w technologiach przemysłowych. Naturalne zeolity z reguły wymagają kosztownych modyfikacji struktury w celu ich aplikacji w przemyśle. Proces syntezy związany jest również z poniesieniem określonych kosztów, dlatego też substratem do reakcji syntezy powinien być tani materiał mineralny lub odpadowy.

Wybrane właściwości naturalnych i syntetycznych zeolitów przedstawiono w tabeli 2.5.

Tabela 2.5. Właściwości zeolitów naturalnych i syntetycznych [103]

<table>
<thead>
<tr>
<th>Minerał</th>
<th>Wzór chemiczny</th>
<th>Poro- watość [%]</th>
<th>Zdolność wymienna [mval/g]</th>
<th>Największe prześwity kanalików [nm]</th>
<th>Gęstość [g/cm³]</th>
</tr>
</thead>
<tbody>
<tr>
<td>klinoptilolit</td>
<td>Na₆[(AlO₂)₆(SiO₂)₃₀]·24H₂O</td>
<td>34</td>
<td>2,54</td>
<td>0,47</td>
<td>2,16</td>
</tr>
<tr>
<td>chabazyt</td>
<td>Ca₉[(AlO₂)₄(SiO₂)₈]·13H₂O</td>
<td>47</td>
<td>3,81</td>
<td>0,37–0,42</td>
<td>2,05–2,10</td>
</tr>
<tr>
<td>mordenit</td>
<td>Na₈[(AlO₂)₈(SiO₂)₄₀]·24H₂O</td>
<td>28</td>
<td>2,29</td>
<td>0,67–0,7</td>
<td>2,12–2,15</td>
</tr>
<tr>
<td>ZSM-5</td>
<td>Na₈[(AₙSi₃₆₋ₙO₧₂₋ₙ]·16H₂O</td>
<td>59</td>
<td>2,07</td>
<td>0,53–0,56</td>
<td>2,28</td>
</tr>
<tr>
<td>Na-X</td>
<td>Na₈₆[(Al₈₆Si₁₀₆O₃₄₈]·26₄H₂O</td>
<td>50</td>
<td>4,50</td>
<td>0,74</td>
<td>2,36</td>
</tr>
<tr>
<td>Na-A</td>
<td>Na₁₂₈[(Al₁₂₈Si₁₂₈O₄₈]·2₇₄H₂O</td>
<td>47</td>
<td>5,31</td>
<td>0,41</td>
<td>2,41</td>
</tr>
</tbody>
</table>

Dzięki swoim właściwościom zeolity znajdują zastosowanie w przemyśle produkcji materiałów budowlanych, rolnictwie, medycynie, technologii chemicznej oraz ochronie i inżynierii środowiska [11, 41, 128, 137, 138, 139].

2.5 Korzyści stosowania mieszanek mineralno-asfaltowych o obniżonej temperaturze produkcji i zagęszczania

Stosowanie mieszanek mineralno-asfaltowych o obniżonej temperaturze produkcji przynosi wiele korzyści środowiskowych, technologicznych i ekonomicznych. Ich zakres oraz skala zależą od zastosowanej technologii WMA. Wyszczególnić można trzy sfery potencjalnych korzyści produkcji WMA:

- korzyści środowiskowe,
- korzyści ekonomiczne,
- korzyści technologiczne.
Korzyści środowiskowe

W 1996 Unia Europejska wprowadziła wymóg ograniczenia emisji wyziewów i aerozoli, powstających przy pracy z gorącym asfaltem. Badania wykazują, że emisje gazów i oparów asfaltu praktycznie nie występują przy temperaturze 80°C. Niewielkie ich stężenie występuje w temperaturze 150°C. Natomiast w 180°C emisje gazów i oparów osiągają już bardzo wysokie wartości [112]. Zmniejszenie temperatury produkcji MMA to redukcja emitowanego przez wytwórnie dwutlenku węgla o ok. 40%, a innych związków niebezpiecznych – nawet o 70% [19, 30, 85, 130]. Redukcja temperatury produkcji o 10°C to w przybliżeniu zmniejszenie o połowę emisji oparów i aerozoli [194].

Pierwsze badania WMA z zeolitem przeprowadzone w Niemczech wykazały emisję wyziewów i aerozoli na poziomie 350,7 mg/m³ w temperaturze produkcji 168°C, oraz 90,4 mg/m³ po zmniejszeniu temperatury do 142°C. Jest to redukcja emisji oparów o 75% przy spadku temperatury o 26°C (rys. 2.8). Podczas wbudowywania mieszanki odnotowano zmniejszenie emisji tych związków o 90% (rys. 2.9) [13]. Wyniki dotychczas prowadzonych emisji związków niebezpiecznych przy produkcji WMA z zeolitem Aspha-Min zestawiono w tabeli 2.6.

Tabela 2.6. Wpływ obniżenia temperatury produkcji WMA z dodatkiem zeolitu Aspha-Min na redukcję związków niebezpiecznych [13, 116]

<table>
<thead>
<tr>
<th>Rodzaj związku</th>
<th>Wartość pomierzona</th>
<th>Redukcja [%]</th>
<th>Miejsce pomiaru</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wyziewy i aerozole</td>
<td>HMA: 350,7 mg/m³</td>
<td>WMA: 90,4 mg/m³</td>
<td>75</td>
</tr>
<tr>
<td></td>
<td>Dtilenek siarki SO₂</td>
<td>0,109 kg/hr</td>
<td>0,018 kg/hr</td>
</tr>
<tr>
<td>Tlenki azotu NOₓ</td>
<td>2,36 kg/hr</td>
<td>1,63 kg/hr</td>
<td>31</td>
</tr>
<tr>
<td>Tlenek węgla CO</td>
<td>28,62 kg/hr</td>
<td>10,89 kg/hr</td>
<td>62</td>
</tr>
<tr>
<td>Lotne związki organiczne VOC</td>
<td>3,54 kg/hr</td>
<td>1,32 kg/hr</td>
<td>63</td>
</tr>
</tbody>
</table>

Badania prowadzone w Ohio wskazują, że wśród technologii WMA (Evotherm, Aspha-Min, Sasobit) największą redukcję związków niebezpiecznych uzyskuje się przy zastosowaniu MMA z zeolitami [116]. Oprócz korzyści środowiskowych zmniejszenie emisji wyziewów i aerozoli poprawia bezpieczeństwo osób zatrudnionych przy produkcji i wbudowywaniu MMA. Lepsze warunki pracy przekładają się na wyższą wydajność i jakość.
Zmniejszenie emisji związków niebezpiecznych pozwala na bliższe sąsiedztwo zakładu produkcyjnego z zabudową mieszkalną. O ile nową wytwórnię można zlokalizować z dala od skupisk ludzkich, o tyle wytwórnie już istniejące są często „pochłaniane” przez rozrastającą się zabudowę miejską. Wtedy produkcja HMA staje się uciążliwa dla okolicznych mieszkańców.

Mieszanki mineralno-asfaltowe na ciepło mogą być produkowane z dodatkiem miału gumowego (CRM – Crumb Rubber Modifier). Wyniki badań zagęszczalności MMA z asfaltem modyfikowanym 10% dodatkiem miału gumowego wskazują na spadek wolnych przestrzeni po zastosowaniu zeolitu [4]. Trwałość zmęczeniowa MMA z lepiszczem modyfikowanym gumą oraz z dodatkiem zeolitu Aspha-Min jest porównywalna do trwałości konwencjonalnych MMA [145]. Dodatkowa korzyść to wykorzystanie zużytych opon
samochodowych. W ostatnich latach w Europie, w tym w Polsce, powstało wiele zakładów zajmujących się przeróbką zużytych opon na pełnowartościowy materiał do różnorakiego wykorzystania.

Kolejną zaletą HMA jest potencjalnie większe wykorzystanie materiałów z recyklingu starych nawierzchni (RAP – Reclaimed Asphalt Pavement). Kruszywa z recyklingu nawierzchni asfaltowych są wykorzystywane jako pełnowartościowy materiał od ponad trzech dekad. Kruszywa te są stosowane w produkcji mieszanek mineralno-asfaltowych na gorąco [92, 154, 155], w podbudowach z asfaltom spienionym [58, 59, 60, 61, 62], jak również w technologii WMA.

Dzięki lepszej urabialności mieszanek na ciepło mogą one zawierać większy dodatek kruszyw z recyklingu [17, 130, 131]. Mniejsze starzenie lepiszcza w technologii WMA w pewien sposób rekomponuje wiek spośa w kruszywie z recyklingu, na zasadzie podobnej przy zastosowaniu bardziej miękkiego asfaltu. Prowadzono testy WMA z zeolitem przy zastosowaniu nawet 100% kruszyw z recyklingu. Uzyskane wyniki (rys. 2.13), wskazują na dobrą urabialność w temperaturach tak niskich jak 110°C [124].

Rys. 2.10. Zagęszczalność mieszanek mineralno-asfaltowych w temperaturze 110°C, po 60 minutach od momentu wykonania zarołu [124]

Niższa temperatura produkcji korzystnie wpływa na spowolnienie starzenia lepiszcza asfaltowego, co przeciwdziała sztywnieniu warstw z materiałami z recyklingu. Kruszywo z recyklingu jest tańsze od pozostałych materiałów kamiennych, co przynosi dodatkowe oszczędności z zastosowania technologii WMA.
Korzyści ekonomiczne

Z wytwarzaniem mieszanek mineralno asfaltowych w technologii na ciepło wiążą się wymierne korzyści ekonomiczne. Szacuje się, że obniżenie temperatury o 30°C to zmniejszenie zużycia energii o 9 kWh na 1 tonę gotowej MMA [190]. Produkcja WMA pochłania 60-80% energii potrzebnej przy produkcji HMA [30, 80].

Rzeczywista wartość osiąganych korzyści jest trudna do obliczenia, zależy od wybranej technologii oraz rodzaju paliwa używanego w procesie produkcyjnym. W początkowej fazie stosowania WMA ponoszone nakłady niejednokrotnie przewyższają oszczędności wynikające z niższego zużycia energii. Wynika to z konieczności dostosowania wytwórni do nowej technologii. Również zakup stosowanych dodatków obniżających temperaturę stanowi koszt (tabela 2.7). Jednak w perspektywie długofalowej stosowanie mieszanek mineralno-asfaltowych na ciepło może być również opłacalne ekonomicznie.

Tabela 2.7. Koszty zastosowania WMA w różnych technologiach [112]

<table>
<thead>
<tr>
<th>Technologia WMA</th>
<th>WAM-Foam</th>
<th>Aspha-Min</th>
<th>Sasobit</th>
<th>Evotherm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Koszt modyfikacji wytwórni</td>
<td>$30 000–$70 000</td>
<td>$0–$40 000</td>
<td>$0–$40 000</td>
<td>minimalny</td>
</tr>
<tr>
<td>Licencja</td>
<td>$15.000 w pierwszym roku</td>
<td>brak</td>
<td>brak</td>
<td>brak</td>
</tr>
<tr>
<td>$5000/wytwórnię/rocznie</td>
<td>$0,30/tonę MMA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Koszt materiałów</td>
<td>brak</td>
<td>$0.60/lb</td>
<td>$0.80/lb</td>
<td>7–10% więcej niż asfalt</td>
</tr>
<tr>
<td>Zalecane dozowanie</td>
<td>brak</td>
<td>0,3% masy MMA</td>
<td>1,5-3% masy asfaltu</td>
<td>Stosowane zamiast asfaltu</td>
</tr>
<tr>
<td>Przybliżony koszt na tonę gotowej MMA</td>
<td>$0,30</td>
<td>$3,60</td>
<td>$1,30–$2,60</td>
<td>$3,50–$4,00</td>
</tr>
</tbody>
</table>

Ocena efektywności stosowania danej technologii WMA jest oparta o szacowanie kosztów w cyklu życia nawierzchni asfaltowej. Typowy cykl życia nawierzchni asfaltowej przedstawiono na rysunku 2.11.

Rys. 2.11. Cykl życia nawierzchni asfaltowej
Przeprowadzone badania wskazują na 2,58% redukcję kosztów, w całym cyklu życia, nawierzchni wykonanej w technologii WMA z zeolitem, przy 80% wzroście trwałości nawierzchni w stosunku do nawierzchni wykonywanych technologią na gorąco [33]. Łączny spadek wydobycia kruszyw, emisji gazów i zużycia energii zmniejsza się o 13-14% po dodaniu 15% kruszyw z recyklingu [132].

Oner i Sengoz przeprowadzili analizę studium przypadku kosztu wykonania nawierzchni z mieszanki mineralno-asfaltowej 1 km autostrady w różnych technologiach WMA z kruszywami z recyklingu oraz bez ich użycia [97]. Wyniki zestawiono w tabeli 2.8.

Tabela 2.8. Koszt wykonania nawierzchni z mieszanki mineralno-asfaltowej na długości 1 km autostrady w Turcji w różnych technologiach [97]

<table>
<thead>
<tr>
<th>Technologia</th>
<th>Łączny koszt wykonania nawierzchni z MMA na 1 km autostrady [TL]</th>
<th>długość odcinka</th>
<th>długość odcinka</th>
<th>długość odcinka</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>25 km</td>
<td>50 km</td>
<td>75 km</td>
</tr>
<tr>
<td>HMA</td>
<td></td>
<td>158 240</td>
<td>161 285</td>
<td>164 330</td>
</tr>
<tr>
<td>WMA + Sasobit</td>
<td></td>
<td>157 674</td>
<td>160 719</td>
<td>163 764</td>
</tr>
<tr>
<td>WMA + Rediset WMX</td>
<td></td>
<td>158 690</td>
<td>161 735</td>
<td>164 780</td>
</tr>
<tr>
<td>WMA + zeolit Advera</td>
<td>156 177</td>
<td>159 222</td>
<td>162 267</td>
<td></td>
</tr>
<tr>
<td>WMA + Sasobit + 30% RAP</td>
<td></td>
<td>119 633</td>
<td>122 678</td>
<td>125 723</td>
</tr>
<tr>
<td>WMA + Rediset WMX + 10% RAP</td>
<td></td>
<td>146 290</td>
<td>149 335</td>
<td>152 380</td>
</tr>
<tr>
<td>WMA + zeolit Advera + 20% RAP</td>
<td>131 811</td>
<td>134 811</td>
<td>137 856</td>
<td></td>
</tr>
</tbody>
</table>

Zawartość materiału z recyklingu wg [97] była maksymalną przy której spełnione zostały tureckie wymagania odnośnie właściwości fizykochemicznych MMA. Analiza kosztów budowy autostrady potwierdza możliwość użycia kruszywa z recyklingu w technologiach WMA oraz redukcję kosztu inwestycji drogowej.

Dodatkowa zaleta wynikająca z obniżenie temperatury produkcji to mniejsze zużycie podzespołów w zakładzie produkcji MMA [22]. Również rygorystyczne normy dotyczące emisji związków niebezpiecznych i wysokie kary za przekroczenia sprawiają, że produkcja WMA staje się coraz bardziej atrakcyjną alternatywą w stosunku do mieszanek tradycyjnych.

Korzyści technologiczne

Stosowanie mieszanek mineralno-asfaltowych na ciepło przynosi szereg korzyści technologicznych. Lepsza urabialność mieszanki oraz niższa temperatura wbudowywania
i zagęszczania WMA umożliwia wydłużenie drogi i czasu transportu gotowej mieszanki. W tym przypadku aby nie nastąpiło nadmierne ochłodzenie uniemożliwiające poprawne zagęszczania, mieszankę z dodatkiem obniżającym temperaturę należy wyprodukować w temperaturze wyższej. Niższa temperatura wbudowywania pozwala także na wydłużenie sezonu robót drogowych oraz szybsze oddanie nawierzchni do ruchu [20, 150]. Jest to szczególnie istotne przy remontach dróg o dużym natężeniu ruchu lub remontach nawierzchni lotniskowych [35]. Nizsze temperatury technologiczne wpływają korzystnie także na właściwości asfaltu, który w mniejszym stopniu ulega procesowi starzenia. Mieszanki mineralno asfaltowe na ciepło pozwalają na większe wykorzystanie nawierzchni z recyklingu oraz stosowanie miału gumowego. Wszystkie przedstawione wyżej korzyści technologiczne przekładają się na korzyści ekonomiczne, co sprawia że WMA są bardzo atrakcyjne zarówno dla inwestora jak i wykonawcy.

2.6 Proces projektowania mieszanki mineralno asfaltowej obniżonej temperaturze produkcyi i zagęszczania

Zarówno normy europejskie z serii PN-EN, jak i obowiązujące w Polsce dokumenty aplikacyjne (Wymagania Techniczne) odnoszą się do mieszanek mineralno-asfaltowych na gorąco. Na obecną chwilę nie ma obowiązujących aktów prawnych na podstawie których można w Polsce projektować i wbudowywać mieszanki mineralno-asfaltowe na ciepło. Na podstawie wieloletnich i różnorodnych badań WMA można stwierdzić, że proces projektowania recepty mieszanki WMA przebiega w sposób podobny do projektowania recepty MMA tradycyjnej (tabela 2.9).
Tabela 2.9. Etapy projektowania składu mieszanki WMA oraz ewentualne różnice w stosunku do mieszanek HMA [73, 98, 150]

<table>
<thead>
<tr>
<th>Lp.</th>
<th>Etap projektowania recepty</th>
<th>Eventualne różnice w stosunku do projektowania składu mieszanki tradycyjnej</th>
</tr>
</thead>
</table>
| 1. | Dane podstawowe | 1. Wybór technologii WMA
2. Określenie ilości stosowanego dodatku WMA
3. Określenie potrzeby stosowania innych dodatków |
| 2. | Dobór rodzaju kruszyw i projektowanie mieszanki mineralnej | Bez zmian |
| 3. | Określenie ilości dozowanego asfaltu | Bez zmian |
2. Energia zagęszczania bez zmian |
| 5. | Zakres badan laboratoryjnych | Bez zmian |
| 6. | Kryteria oceny zaprojektowanej mieszanki mineralno-asfaltowej | Bez zmian |
| 7. | Określenie temperatur technologicznych | 1. Ustalane indywidualnie w zależności od celu zastosowania mieszanki WMA
2. W zależności od stosowanej technologii na podstawie badań lepkości asfaltu lub badan zagęszczalności MMA |

W procesie projektowania MMA na ciepło ważne jest prawidłowe określenie temperatur technologicznych. Jak opisano w rozdziale 2.1 niniejszej pracy, w celu zapewnienia
właściwego otoczenia ziaren kruszywa lepiszczem oraz prawidłowego zagęszczania mieszanki mineralo-asfaltowej asfalt powinien mieć odpowiednią lepkość. Określanie temperatur technologicznych asfaltu oraz umownych stanów reologicznych w funkcji temperatury możliwe jest za pomocą karty jakości asfaltu (BTDC – The Bitumen Test Data Chart). Wykres przedstawia zmienność własności asfaltu wraz ze zmianami temperatury [16]. Na rysunku 2.12 przedstawiono kartę jakości asfaltu opracowaną przez Heukeloma w latach 60-tych z zaznaczonymi wartościami charakterystycznymi asfaltów o różnych penetracjach.

Rys. 2.12. Karta jakości asfaltu [49]

Określanie temperatur technologicznych WMA jest teoretycznie możliwe za pomocą karty jakości asfaltu. Ponieważ jednak wykres BTDC był opracowany z uwzględnieniem czystych asfaltów, w przypadku modyfikacji lepiszcza różnymi dodatkami metoda ta może okazać się bezużyteczna. Wiele technologii WMA zależy nie tylko od redukcji lepkości ale także od interakcji bitum-kruszywo. W niektórych technologiach, jak na przykład WMA z zeolitami, efekt obniżania temperatur nie jest całościowo rozpoznany.

W metodach polegających na spienianiu asfaltu wodą (water based) karta BTDB również będzie mało przydatna. Metody te zależą od zmian lepkości w krótkim czasie, a spienianie jest efektem wprowadzenia wody tuż przed zmieszaniem spojwa z kruszywem
i wymaga innego podejścia do ustalenia prawidłowych temperatur mieszania i zagęszczania MMA.

Właściwa temperatura zagęszczania może być ustalona przez porównanie gęstości objętościowej lub zawartości wolnych przestrzeni w zagęszczonych próbkach WMA i HMA referencyjnej (rys. 2.13).

![Diagram](image.png)

Rys. 2.13. Metoda ustalania temperatury zagęszczania próbek WMA przez porównanie zawartości wolnych przestrzeni

Przyjmując wartość gęstości objętościowej/ zawartości wolnych przestrzeni w próbkach HMA po zagęszczeniu jako punkt odniesienia i porównując z wynikami uzyskanymi dla próbek zagęszczonej WMA w różnych temperaturach. Temperatura, przy której porównywane wartości są takie same będzie właściwą temperaturą zagęszczania.

2.7 Wpływ dodatku zeolitów na właściwości asfaltu

Zeolit Advera uwalnia wodę stopniowo w czasie, przy czym stabilizacja następuje po 20–40 minutach w zależności od temperatury. Im wyższa temperatura tym więcej wody ze struktury zeolitu jest uwalniane. Na tej podstawie można wnioskować, że poprawa urabialności MMA z dodatkiem zeolitu Advera będzie możliwa po minimum 20 minutach od dozowania materiału zeolitowego. W celu efektywnego spienienia asfaltu w tej technologii potrzebna jest temperatura powyżej 99°C (210°F), optymalnie 110–120°C [83].

Pierwsze badania właściwości reologicznych asfaltu z dodatkiem zeolitu prowadzone były przez Wasiuddina z zespołem. Uzyskane wyniki wskazują na spadek lepkości asfaltu z dodatkiem zeolitu, jednak nie były to zmiany znaczące [136]. Duży wkład w badania asfaltów z dodatkami WMA wnieśli Amirkhanian i Akisett [1, 2, 5, 45, 76, 87, 146]. Ogólnie wyniki ich badań wskazują na wzrost lepkości bitumu z dodatkiem zeolitu. Wzrasta lepkość czystego lepiszcza [45], asfaltów modyfikowanych 10% miału gumowego [1, 2], jak i spoj w 15% dodatkiem asfaltu po symulacji procesu recyklinowania nawierzchni [76, 87]. Wzrost lepkości jest większy w temperaturze badania równej 120°C niż w 135°C (rys. 2.16).
Testy przeprowadzane w różnych przedziałach czasowych, liczonych od momentu wymieszania asfaltu z zeolitem (30, 60, 90 minut) również wskazują na wzrost lepkości po zastosowaniu materiału zeolitowego [1] (rys. 2.17).

Obszerne badania asfaltów z dodatkiem zeolitów przeprowadził również Sengoz z zespołem. Jako dodatek stosował zarówno zeolit syntetyczny jak i naturalny. Lepiszce asfaltowe było modyfikowane materiałem zeolitowym w ilości 3, 4, 5, 6, 7% w stosunku do masy bitumu. Wyniki opisanych badań przedstawiono w tabeli 2.10. Analiza wyników wskazuje na spadek lepkości asfaltu przy zastosowaniu optymalnej zawartości zeolitu wynoszącej 5%. Efektem jest potencjalna możliwość zmniejszenia temperatury produkcji i zagęszczania o 6–8°C [117].
Tabela 2.10. Wyniki badań lepkoci asfaltu z zastosowaniem dodatku zeolitowego oraz temperatury technologiczne WMA określone na podstawie tych badań [117]

<table>
<thead>
<tr>
<th>Typ dodatku</th>
<th>Ilość dodatku [%]</th>
<th>Lepkość [mPa·s] w temperaturze badania:</th>
<th>Zalecana temperatura [°C]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>135°C</td>
<td>160°C</td>
</tr>
<tr>
<td>brak</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>zeolit naturalny</td>
<td>3</td>
<td>412,5</td>
<td>137,5</td>
</tr>
<tr>
<td>zn.</td>
<td>4</td>
<td>362,5</td>
<td>162,5</td>
</tr>
<tr>
<td>zn.</td>
<td>5</td>
<td>325,0</td>
<td>113,0</td>
</tr>
<tr>
<td>zn.</td>
<td>6</td>
<td>400,0</td>
<td>187,5</td>
</tr>
<tr>
<td>zn.</td>
<td>7</td>
<td>487,5</td>
<td>187,5</td>
</tr>
<tr>
<td>zeolit syntetyczny</td>
<td>3</td>
<td>350,0</td>
<td>138,0</td>
</tr>
<tr>
<td>zn.</td>
<td>4</td>
<td>325,0</td>
<td>125,0</td>
</tr>
<tr>
<td>zn.</td>
<td>5</td>
<td>312,5</td>
<td>112,5</td>
</tr>
<tr>
<td>zn.</td>
<td>6</td>
<td>437,5</td>
<td>150,0</td>
</tr>
<tr>
<td>zn.</td>
<td>7</td>
<td>512,5</td>
<td>175,0</td>
</tr>
</tbody>
</table>

Szczegółowe badanie modułu sztywności przeprowadzone w szerokim zakresie niskich i wysokich częstotliwości oraz przy różnych temperaturach, po dodaniu do asfaltu zeolitu, wskazują na zwiększenie wartości badanej cechy wraz ze wzrostem częstotliwości i spadkiem temperatury [117]. Badania asfaltów z dodatkiem lepiszcza z recyklingu nawierzchni w reometrze BBR w temperaturze −12°C, po procesie starzenia RTFOT oraz RTFOT i PAV, również wskazują na zwiększenie sztywności lepiszcza z dodatkiem zeolitu [3, 5]. W przypadku stosowania technologii WMA z zeolitem i użyciem kruszyw RAP konieczne jest stosowanie miękkiego lepiszcza (PG-58). Modyfikacja zeolitem lepiszcza PG-64 z dodatkiem zestarzonego bitumu skutkuje dużym usztywnieniem asfaltu [87] (rys. 2.18).

Legenda:

Rys. 2.18. Moduł sztywności asfaltów z 15% dodatkiem lepiszcza z recyklinowanej nawierzchni oraz dodatkiem zeolitu Aspha-Min i Sasobitu [87]
Wyniki badań asfaltów z dodatkiem zeolitu prezentowane w literaturze są niejednoznaczne. Zeolit nie jest rozpuszczalny w asfalcie i nie tworzy z bitumem homogenicznej cieczy. Materiał zeolitowy częstokroć zastępuje wypełniacz i wraz z lepiszczem stanowi zaczyn asfaltowy. Pozostając w postaci stałej wpływa na usztywnienie bitumu.

2.8 Właściwości mechaniczne obniżonej temperaturze produkacji i zagęszczania z dodatkiem materiałów zeolitowych

Ciekawe było to, że zawartość wolnych przestrzeni wzrasta przy spadku temperatury zagęszczania z 149°C do 129°C, a następnie pozostawała na podobnym poziomie, mimo niższej temperatury zagęszczania [54]. Autorzy raportu takie zjawisko tłumaczyli mniejszym starzeniem się spojwa i zastosowaniem gruboziarnistego kruszywa. Również w próbkach zagęszczanych przy użyciu prasy żyratorowej zagęszczalność mierzona zawartością wolnych przestrzeni spadła po zastosowaniu zeolitu o 0,65% w porównaniu do MMA referencyjnej. Badania prowadzone przez Sancheza-Alonso z zespołem, również wskazują na poprawę zagęszczalności po dodaniu zeolitu. Zawartość wolnych przestrzeni w próbkach zagęszczanych w prasie żyratorowej spadła z 7,6% do 7,2% przy obniżeniu temperatury zagęszczania ze 160°C do 120°C [115].

Przeprowadzone przez Hurleya i Prowella badania laboratoryjne były punktem wyjścia do wykonania wieloczynnikowej analizy wariancji w celu oceny wpływu poszczególnych czynników (kruszywo, asfalt, temperatura zagęszczania, dodatek zeolitu) na uzyskiwane rezultaty. Na tej podstawie wykazano, że dodatek zeolitu ma znikomy wpływ na moduł sztywności oraz głębokość kolein MMA. Wynik badania modułu sztywności był
związany głównie z rodzajem zastosowanego asfaltu. Odporność na deformacje trwałe była zależna od rodzaju zastosowanego kruszywa i asfaltu, w mniejszym stopniu od temperatury zagęszczania [54]. Wyniki badań koleinowania APA (Asphalt Pavement Analyzer) prowadzone w Stanach Zjednoczonych wskazują na negatywny wpływ dodatku zeolitu na okleinowanie w temperaturze produkcji wynoszącej minimum 129°C. Dla temperatur produkcji poniżej 129°C dodatek zeolitu poprawia odporność na deformacje trwałe w porównaniu do HMA [57]. Wyniki badań głębokości koleiny (APA) na próbkach wyciętych z nawierzchni dla WMA z zeolitem są porównywalne do wyników dla próbek referencyjnych [77]. Analizy przeprowadzone w Polsce, zgodnie z procedurą normy europejskiej [172], wskazują na pogorszenie parametrów koleinowania (WTS_{AIR}, PRD_{AIR}) dla WMA z zeolitami [71, 118].

Dodatek zeolitu, przy obniżeniu temperatury zagęszczania, wpływa negatywnie na wodoodporność [54, 115]. Odporność na działanie wody WMA z zeolitem poprawiła się po dodaniu 1–1,5% hydratyzowanego wapna, natomiast standardowe środki adhezyjne były nieskuteczne [54]. Pozytywny wpływ dodatku wapna hydratyzowanego na wodoodporność WMA z zeolitem potwierdziły analizy opisane w [75]. Badania prowadzone przez Judyckiego i Stienssa wskazują na zwiększenie wskaźnika ITSR z 86,1% w odniesieniu do próbek HMA referencyjnych o temperaturze produkcji 160°C, do 91,5% w przypadku próbek WMA z zeolitem o temperaturze produkcji 135°C. Po zastosowania asfaltu modyfikowanego 40/80-55 nastąpił wzrost wskaźnika ITSR z 89,9% do 95,0% [71, 118]. Wytrzymałość próbek WMA z zeolitem, wyciętych z nawierzchni po roku od jej wykonania, jest większa niż próbek HMA. Takie wyniki, zdaniem autorów raportu [54] są dowodem dobrej wodoodporności nawierzchni wykonanej w tej technologii. Badania zespołu: Kim, Zhang i Ban wykazały, że wytrzymałość próbek WMA z zeolitem wyciętych z nawierzchni jest nie mniejsza niż próbek HMA. Spadł natomiast wytrzymałość próbek WMA po nasyceniu ich wodą, co miało wpływ na zmniejszenie wskaźnika ITSR ze 100,2% (próbki HMA) do 73,9% (próbki WMA). Podobne rezultaty uzyskano na próbkach WMA wykonanych z dodatkiem środków chemicznych w postaci emulsji [77].

Vaiana z zespołem, w swoich badaniach [129] zajmował się określeniem zależności między czasem jaki upływa od wymieszania zarobu do wykonania próbek a właściwościami MMA. Wyniki tych badań wskazują, na poprawę zagęszczalności MMA z zeolitem po 1 godzinnym kondycjonowaniu zarobu w temperaturze zagęszczania w suszarce. Jest to efekt stopniowego uwalniania wody ze struktury zeolitów. Zjawisko to wydaje się zanikać po dwóch godzinach kondycjonowania MMA (rys. 2.19).
Legenda:
HMA150 – MMA referencyjna, gdzie Tm=150ºC i Tc=130ºC
HMA110 – MMA kontrolna, gdzie Tm=110ºC i Tc=90ºC
WMA110 – MMA z 0,5% dodatkiem zeolitu, gdzie Tm=110ºC i Tc=90ºC
Tm – temperatura wytwarzania MMA
Tc – temperatura zagęszczania MMA

Rys. 2.19. Zawartość wolnych przestrzeni w zależności od czasu spieniania asfaltu wodą uwalnianą ze struktury zeolitu Aspha-Min [129]

Zawartość wolnych przestrzeni w WMA z zeolitem (Tm=110ºC, Tc=90ºC) po 1 godzinnym kondycjonowaniu zarobu wynosiła 4%. Jest to wartość porównywalna do wyników uzyskiwanych na próbkach HMA (Tm=150ºC, Tc=130ºC) zagęszczanych bez kondycjonowania [109, 129].

Gandhi z zespołem [46] opisał wpływ starzenia długotermowego na właściwości WMA z dodatkiem zeolitu oraz Sasobitu. Badane były próbki MMA z dodatkiem spojwa PG 64-22 pochodzącego z dwóch różnych źródeł; z użyciem dwóch rodzajów kruszyw: granitu i marmuru. Zeolit Aspha-Min dozowano w ilości 0,3% w stosunku do masy MMA. Jako środek adhezyjny użycie 1% dodatek wapna hydratyzowanego. HMA referencyjna była mieszanica w temperaturze 150ºC a WMA w 120ºC. Temperatura zagęszczania była o 5ºC niższa od temperatury produkcji. Na próbkach wykonanych w prasie żyratorowej zbadano moduł sztywności w 3 temperaturach badania 5ºC, 25ºC, 40ºC, odporność na koleinowanie metodą APA oraz wodoodporność mierzoną wskaźnikiem ITSR. Powyższy zestaw badań powtórzone na próbkach poddanych kondycjonowaniu przez 120 h w suszarce z wymuszonym obiegiem w temperaturze 85ºC. Jest to symulacja procesu starzenia zagęszczonych mieszanek w okresie 7–10 lat. Otrzymane wyniki były podstawą statystycznej oceny wpływu poszczególnych składników na właściwości MMA. Próbki WMA z dodatkiem zeolitów, w porównaniu do próbek HMA, miały znacznie niższe moduły sztywności w temperaturze badania 25ºC i 40ºC. Wskaźnik wodoodporności ITSR był wyższy dla WMA z zeolitami niezależnie od pozostałych czynników (rodzaj asfaltu, kruszywa, wiek badanych próbek). Natomiast odporność na deformacje trwałe, mierzona głębokością koleiny, dla
WMA z zeolitem uległa pogorszeniu. Na podstawie tych badań można wnioskować, że dodatek zeolitu nie ma znaczącego wpływu na właściwości MMA po procesie starzenia [46].

2.9 Inne dodatki stosowane do obniżania temperatur technologicznych mieszanek mineralno-asfaltowych

Dodatki organiczne są to woski, które po wymieszaniu z lepiszczem tworzą homogeniczną mieszaninę z bazowym asfalem i obniżają jego lepkość w stanie płynnym [30, 31]. Zmniejszenie lepkości asfaltu przez dodanie wosku nie wnika jedynie z niższej lepkości dodatku. Istotne znaczenie ma tutaj także tzw. efekt smarowania [10], porównywalny do efektów otrzymywanych przez zastosowanie dodatków chemicznych.

Obecnie istniejące organiczne dodatki, zmieniające lepkość asfaltu, można przyporządkować do trzech grup [188]:
- wosk Fischera-Tropscha (wosk F-T),
- amid kwasu tłuszczowego (wosk amidu),
- wosk Montana.

Parafiny Fischera-Tropscha (FT) to alifatyczne węglowodory o długich łańcuchach od C_{40} do C_{115}, różniące się od długości łańcucha parafiny zawartej w asfalcie (C_{15}–C_{50}) [28, 122], o temperaturze topnienia powyżej 98°C [38]. Przykładem syntetycznego wosku jest produkt Sasobit będący parafiną produkowaną z gazyfikacji węgla metodą Fischera-Tropscha [29, 198]. W czystej postaci temperatura topnienia Sasobitu wynosi około 100°C. Po połączeniu z asfalem jego temperatura topnienia zmniejsza się do ok. 80–85°C, co umożliwia zagęszczanie MMA w temperaturze niższej niż 100°C [21, 28]. Krystalizacja zaczyna się w 105°C i jest zakończona w 65°C [20]. Sasobit jest stosowany w ilości 0,8–4% w stosunku do masy spoiwa [56, 64, 65]. Badania wykazują, że dodatek większy niż 4% pogarsza właściwości niskotemperaturowe asfaltu [38]. Sasobit zmniejsza lepkość asfaltu przy wyższych temperaturach zagęszczania, a zwiększa przy niskich [51, 66, 95, 136, 152]. Każde lepiszcze ma inną temperaturę krytczną, poniżej której po dodaniu Sasobitu lepkość będzie wzrastać [135]. Zastosowanie Sasobitu poprawia urabialność i zagęszalność, a co za tymприchodzi [19].

Zastosowanie Sasobitu poprawia urabialność i zagęszalność, co pozwala na obniżenie temperatury produkcji o ok. 20–30°C [14, 30, 56, 105, 112, 153]. Modyfikacją dodatku Sasotit jest produkt Sasoflex, będący połączeniem środka obniżającego temperaturę (Sasobit) i elastomeru Stydien-Butadien-Styren (SBS). Jednak badania Sasobitu z dodatkiem
elastomeru wskazują na znaczne zmniejszenie możliwości obniżania temperatur technologicznych przez modyfikację SBS [79].

Amidy kwasu tłuszczowego to alifatyczne węglowodory o długich łańcuchach, które produkowane są syntetycznie [30]. Amidy kwasu tłuszczowego rozpuszczają się całkowicie w asfalcie w temperaturze powyżej 140°C [190]. Podczas schładzania tworzą one kryształy, które zwiększają sztywność spoiva i odporność MMA na deformacje trwałe [71]. Przykładem produktu należącego do omawianej grupy jest Licomont BS 100 (Licomont). Dodanie Licomontu do lepiszcza, podobnie jak innych dodatków organicznych, zmniejsza jego lepkość [30, 106]. Badania wykazały, że 4% dodatek zmniejsza temperaturę produkcji o 10-15°C [105, 106].

Wosk Montana to wosk bitumiczny otrzymany przez ekstrakcję z benzenem niektórych gatunków węgla brunatnego (węgiel ekstrakcyjny), składający się z wysokocząsteczkowych węglowodorów o temperaturze topnienia od 82 do 95°C [30]. Woski te są całkowicie rozpuszczalne w asfalcie w temperaturze powyżej ich temperatury topnienia [190]. Do grupy wosków Montana należy produkt Asphaltan-B. Podobnie jak Sasobit, jest to parafina o długich łańcuchach węglowodorowych, o temperaturze topnienia 82–105°C [23, 30, 51]. Asphaltan-B należy dodawać w ilości od 2 do 4% w stosunku do masy asfaltu, co pozwala na redukcję temperatury produkcji MMA o 15–20°C [105, 106]. Podobnie jak dodatek wosku F-T, wosk Montana polepsza urabialność i zagęszczalność MMA oraz zwiększa odporność na okleinowanie [39]. Kolejny produkt to Asphaltan-A – wosk o temperaturze topnienia ok. 125°C [35]. Jest stosowany w celu obniżenie temperatury produkcji asfaltu lanego. Badania wskazują, że 4% dodatek Asphaltanu-A pozwala obniżyć temperaturę produkcji MMA o ok. 20°C [105].

Obecnie prowadzone są badania nad możliwością obniżenia temperatur technologicznych przez dodatek do lepiszczy asfaltowych tzw. „parafin nowej generacji” [81, 82].

Dodatki chemiczne występują zwykle jako środki powierzchniowo czynne. Zmniejszają siły tarcia między powierzchnią styku asfaltu i kruszywa poprawiają przyczepność asfaltu do kruszywa. Zwilżając kruszywo i zmniejszając napięcie powierzchniowe umożliwiają obniżenie temperatury produkcji i zagęszczania MMA. Dodatki te mają postać emulsji do bezpośredniego użycia lub dodawane są do lepiszcza podczas procesu wytwarzania MMA. Badania wpływu dodatków chemicznych wykazują także na efekt obniżenia lepkości asfaltu, co dodatkowo wpływa na możliwość obniżania temperatur technologicznych [8, 130, 143, 144, 146], mimo że nie jest to idea działania tych produktów.
Przykładem dodatku chemicznego jest produkt Evotherm będący zestawem związków chemicznych obejmujących kationowe środki emulsyjne, dodatki poprawiające urabialność i zagęszczanie MMA oraz zwiększające przyczepność asfaltu do kruszywa [20]. Pakiet związków chemicznych może być różny, w zależności od kruszywa z jakim dodatek będzie wykorzystywany. Istnieją trzy technologie opracowane przez Evotherm:

- Evotherm ET (często określane jako tylko Evotherm),
- Evotherm DAT,
- Evotherm 3G.

Evotherm ET ma postać emulsji pokrywającej gorące kruszywo. Zawartość asfaltu w emulsji wynosi 70%. W przeciwieństwie do zwykłych spoiw asfaltowych, Evotherm jest przechowywany w temperaturze około 80°C [57]. Połączenie z mieszaną mineralną następuje w taki sam sposób jak asfaltu przy produkcji MMA na gorąco. Podczas kontaktu z rozgrzanym kruszywem woda zawarta w emulsji jest uwalniana w postaci pary wodnej. Wytworzona w ten sposób cienka warstewka wody pomiędzy kruszywem a asfaltem poprawia urabialność nawet w temperaturach poniżej 90°C [123].

Evotherm DAT jest roztworem wodnym zawierającym w swoim składzie te same związki chemiczne, które występują w produkcie Evotherm ET. Dodatek wprowadzany jest do linii z lepiszczem tuż przed komorą mieszania. Zmniejszenie lepkość spoiva pozwala zmniejszyć temperaturę produkcji MMA o ok. 25–30°C [17, 55, 151]. Evotherm 3G to wolna od wody forma produktu Evotherm, dozowana w taki sam sposób jak Evotherm DAT.

Kolejnym dodatkiem organicznym jest Rediset WMX (Rediset) będący połączeniem kationowych środków powierzchniowo czynnych i dodatków organicznych. Produkt zmniejsza lepkość asfaltu oraz poprawia przyczepność bitumu do kruszywa [114]. Rediset różni się od innych chemicznych dodatków (np. Evotherm i Cecabase) tym, że w swoim składzie zawiera środek adhezyjny, który może zwiększyć wodoodporność MMA. Dozowanie 1,5–2% dodatku w stosunku do masy lepiszca pozwala na zmniejszenie temperatury produkcji MMA o 15–30°C [23].
3 Tezy, cel i zakres pracy

Na potrzeby realizacji pracy sformułowano następujące tezy:

1. Możliwe jest zastosowanie naturalnych i syntetycznych zeolitów oraz ich odmian modyfikowanych wodą jako dodatków mineralnych spieniających asfalt.
2. Optymalna ilość dodawanego zeolitu do mieszanki mineralno asfaltowej może być związana z jego typem strukturalnym.
3. Obniżenie temperatury zagęszczania mieszanek mineralno asfaltowych można uzyskać poprzez dodatek mineralów z grupy zeolitów, przy zachowaniu właściwości fizykomechanicznych tych mieszanek odpowiadających tradycyjnym.

Cel pracy obejmuje ocenę wpływu typu i ilości dodatku zeolitu naturalnego (klinoptilolitu) i syntetycznego (NaP1) na efekt obniżenia temperatury procesu produkcji i zagęszczania mieszanek mineralno-asfaltowych.

Zakres wykonanych prac obejmuje:

- przegląd literatury dotyczącej istniejących obecnie technologii mieszanek mineralno-asfaltowej na ciepło, właściwości asfaltu i kruszyw wpływające na temperatury technologiczne MMA oraz charakterystykę zeolitów,
- przyjęcie planu badań właściwości projektowanych MMA z dodatkiem zeolitów, z uwzględnieniem procedur przygotowania próbek, metod ich badania oraz statystycznej oceny otrzymanych wyników,
- badanie i ocenę właściwości funkcjonalnych materiałów wykorzystanych w pracach laboratoryjnych: kruszywa, asfaltu, zeolitów,
- określenie optymalnej ilości dodatku materiału zeolitowego oraz optymalnej temperatury zagęszczania MMA,
- analizę wpływu dodatku materiału zeolitowego na właściwości asfaltu oraz mieszanek mineralno-asfaltowych,
- wykonanie odcinka doświadczalnego w celu weryfikacji zaprojektowanej mieszanki z dodatkiem materiałów zeolitowych,
- badania próbek MMA pobranych z odcinka doświadczalnego
- statystyczną ocenę otrzymanych wyników.
4 Materiały do badań

4.1 Asfalt

4.2 Kruszywa

W projekcie mieszanki mineralno-asfaltowej oraz badaniach laboratoryjnych zastosowano następujące kruszywa:

- kruszywo wapienne o ciągłym uziarzeniu 0/4,
- grys granodiorytowy 4/8,
- grys dolomitowy 8/11,
- grys granodiorytowy 11/16,
- wypełniacz wapienny.

Kruszywa użyte do zaprojektowania MMA oraz w badaniach laboratoryjnych są powszechnie stosowane w budowie nawierzchni drogowych na terenie Polski Wschodniej. Materiały kamienne dostarczyło Przedsiębiorstwo Robót Drogowych Sp. z o.o. Zamość. Zastąpienie krajowych kruszyw bazaltowych z Dolnego Śląska przez granodioryt z Ukrainy wynika głównie z ich niższej ceny.

Granodioryt jest skałą magmową głębinową, kwaśną, o dużej zawartości krzemionki (SiO₂ > 70%). Kruszywa granodiorytowe posiadają dobre właściwości mechaniczne, jednak z uwagi na dużą zawartość kwarcu, w stosunku do kruszyw zasadowych (np. bazaltu,
wapieni), wykazują słabsze powinowactwo chemiczne z asfaltem. W celu poprawy przyczepności asfaltu do kruszyw kwaśnych w praktyce przemysłowej stosowane są środki adhezyjne. W prowadzonych badaniach zrezygnowano z tego typu dodatków. Ich zastosowanie mogłoby mieć wpływ na wyniki końcowe badań. W efekcie trudno byłoby oddzielić wpływ dodatku zeolitu od wpływu innych środków (w tym dodatków adhezyjnych) na otrzymane wyniki badań laboratoryjnych.

4.3 Zeolity

W badaniach zastosowano zeolit syntetyczny o typie struktury NaP1 oraz zeolit naturalny klinoptilolit (fot. 4.1 a,). Strukturę wybranych do badań materiałów zeolitowych przedstawia rysunek 4.1.

Rys. 4.1. Struktura badanych materiałów zeolitowych: a) NaP1, b) klinoptilolit [195]

Klinoptilolit pochodził ze złoża tufów zeolitowych Sokyrnytsya – Obwód Zakarpacki. Zawartość klinoptilolitu w tufie zeolitowym wynosiła 75%. Zeolit syntetyczny NaP1 (fot. 4.1 b), otrzymano na bazie reakcji konwersji popiołu lotnego w warunkach hydrotermalnych w skali półtechnicznej. Popiół lotny użyty jako substrat do syntez pochodził z konwencjonalnego spalania węgla kamiennego w Elektrowni Kozienice.

Fot. 4.1. a) zeolit naturalny klinoptilolit b) zeolit syntetyczny o typie struktury NaP1
Stanowisko badawcze do syntezy zeolitu w skali półtechnicznej przedstawiiono na rysunku 4.2. Rozwiązanie technologiczne składa się z czterech bloków procesowych: bloku załadunku reaktora, bloku reakcyjnego, bloku oddzielania produktów reakcji oraz bloku finalnej obróbki materiału. Cały proces jest w pełni zautomatyzowany i sterowany za pomocą komputera PC lub ekranów dotykowych znajdujących się na szafkach poszczególnych bloków technologicznych.

Rys. 4.2. Schemat linii do syntezy zeolitu na skalę półtechniczną

W celu wyprodukowania materiału zeolitowego NaP1 zastosowano następujące warunki prowadzenia procesu syntezy:

- 20 kg popiołu lotnego, 12 kg NaOH i 90 dm³ wody,
- czas trwania reakcji – 36 h,
- temperatura 80°C.

Zawartość fazy zeolitowej w wyprodukowanym materiale wynosiła od 70 do 80 %.
5 Metodyka badań
5.1 Plan badań

W prowadzonych badaniach laboratoryjnych wydzielić można trzy zasadnicze etapy prac:

- badania własności materiałów zeolitowych
- badania własności asfaltów z dodatkiem materiałów zeolitowych
- badania własności fizykomechanicznych MMA z dodatkiem zeolitów

Najistotniejszą częścią badań laboratoryjnych było ustalenie ilości dozowanych zeolitów i właściwej temperatury zagęszczania próbek MMA z dodatkiem zeolitów. W tym celu przeprowadzono badania własności zeolitów oraz testy zagęszczalności w prasie żyratorowej z różnymi procentowymi dodatkami materiałów zeolitowych w różnych temperaturach zagęszczania. Badania własności fizykomechanicznych prowadzono w kilku temperaturach zagęszczania z optymalnym dodatkiem zeolitów przyjętym na podstawie wyników badań zagęszczalności w prasie żyratorowej. Plan badań własności MMA z dodatkiem zeolitów przedstawiono na rysunku 5.1.

![Rys. 5.1. Plan badań własności MMA z dodatkiem zeolitów](image-url)
5.2 Metodyka przygotowania próbek asfaltu z dodatkiem materiałów zeolitowych

Badania właściwości asfaltu wykonywano z czterema różnymi dodatkami:

- zeolit syntetyczny typu NaP1 (NaP1),
- zeolit naturalny klinoptilolit (CLIN),
- zeolit syntetyczny typu NaP1 modyfikowany wodą (NaP1+W),
- zeolit naturalny klinoptilolit modyfikowany wodą (CLIN+W).

Nasycenie zeolitu typu NaP1 wodą wynosiło 75% w stosunku do masy suchego zeolitu, natomiast klinoptilolitu – 25% (fot. 5.1). Przy wprowadzaniu do struktury zeolitów wody w wyżej wymienionych proporcjach materiał zeolitowy pozostaje sypki, co gwarantuje równomierne rozprowadzenie w mieszance mineralnej.

Fot. 5.1. a) zeolit naturalny klinoptilolit modyfikowany wodą
b) zeolit syntetyczny o typie struktury NaP1 modyfikowany wodą

W celu porównania wpływu różnych typów strukturalnych zeolitów na właściwości asfaltu do badań laboratoryjnych przyjęto 5% dodatek materiału zeolitowego w stosunku do masy lepiszcza. Jest to wartość optymalna z uwagi na najmniejszą lepkość asfaltu, zarówno syntetycznego jak i naturalnego [117]. W przypadku dodatków dozowanych do asfaltu i obniżających jego lepkość modyfikator tworzy z lepiszczem homogeniczną ciecz. Zeolit ma postać ciała stałego (pyłu) i nie jest bezpośrednim modyfikatorem lepiszcza. Proces stopniowego uwalniania wody prowadzi do spienienia asfaltu, a w konsekwencji do obniżenia jego lepkości. Biorąc pod uwagę tę zależność, w badaniach laboratoryjnych własności asfaltu opracowano opisaną poniżej metodykę modyfikacji asfaltu zeolitami.
Asfalt rozgrzewano w suszarce do temperatury 145°C. Po odważeniu właściwej ilości lepiszcza naczynie z materiałem ustawiano na płycie grzewczej o temperaturze 145°C. Do gorącego asfaltu wprowadzano zeolit i mieszano intensywnie przez 1 minutę. Wymieszana próbka była odstawiana do suszarki w której panowała temperatura 145°C na 45 minut. Dalsze przygotowywanie próbek do badań przebiegało zgodnie ze standardami opisanymi w przedmiotowych normach. Procedurę mieszania zeolitu z asfaltem przedstawiono na fotografii 5.2.

Fot. 5.2. a) 25 g asfaltu 35/50 o temperaturze 145°C
b) mieszanie rozgrzanego asfaltu z 5% dodatkiem zeolitu naturalnego klinoptilolitu modyfikowanego wodą
c) efekt spienienia asfaltu wywołany wodą uwalniającą się ze struktury zeolitu

Opisaną procedurę modyfikacji asfaltu zeolitem zastosowano przy przygotowaniu próbek do badań:

- penetracji w 25°C wg normy PN-EN 1426:2009 [186],
- temperatury mięknięcia wg normy PN-EN 1427:2009 [187],
- temperatury łamliwości wg normy PN-EN 12593:2009 [164],
- przyrostu temperatury mięknięcia zaczynu asfaltowego wg normy PN-EN 13179–1:2013 [184],
- zespolonego modułu ścianania wg normy 14770:2012 [189].

Próbki do badań lepkości wg normy ASTM D 4402 [156] po wymieszaniu asfaltu z zeolitem były odstawiane do suszarki rozgrzanej do temperatury 145°C na 15 minut, następnie umieszczanie w urządzeniu pomiarowym.
5.3 Metodyka przygotowania próbek mieszanki mineralno-asfaltowej z dodatkiem materiałów zeolitowych

Procedura wytwarzania mieszanki mineralno-asfaltowej z dodatkiem materiałów zeolitowych przypadała według schematu:

- wygrzewanie kruszywa przeznaczonego do przygotowania mieszanki mineralnej w suszarce w temperaturze 160°C przez 8 godzin,
- rozgrzanie asfaltu w suszarce w temperaturze 160°C przez 3 godziny,
- rozgrzanie misy/bębna mieszarki do temperatury mieszania,
- napełnienie gorącej misy/bębna mieszanką mineralną o temperaturze 160°C,
- wstępne mieszanie kruszywa, czas mieszania 30 sekund,
- dozowanie zeolitu do mieszanki mineralnej,
- mieszanie kruszywa z zeolitem, czas mieszania 10 sekund,
- dozowanie asfaltu,
- mieszanie właściwe, czas mieszania 180 sekund,
- wyładunek zarobu na tace,
- termostatowanie gotowej MMA w suszarce w temperaturze zagęszczania przez 45–60 minut.

Czas oraz temperatura wygrzewania kruszywa oraz asfaltu przyjęto na podstawie normy PN-EN 12697–35 + A1:2008 [180].

Woda ze struktury zeolitów uwalnia się stopniowo z czasem. W celu zachowania jednorodnych parametrów wykonywania próbek konieczna była kontrola czasu termostatowania zarobu. Proces ten wymuszał wykonywanie jednorazowo niedużych ilości mieszanki mineralno-asfaltowej przeznaczonej do uformowania od 1 do 3 próbek. Material zeolitowy do MMA dozowano tuż przed dodaniem asfaltu. Dozowanie przed lepiszczem i krótkie mieszanie z samym kruszywem pozwalało na uzyskanie MMA bardziej jednorodnej z zeolitem rozprowadzonym w całej objętości.

Próbki zagęszczane w ubijaku Marshalla według normy PN-EN 12697–30:2012 [177] przeznaczono do badań:
zawartości wolnych przestrzeni wg normy PN-EN 12697–8:2005 [171], energia zagęszczania – 75 uderzeń na stronę,
• modułu sztywności metodą rozciągania pośredniego na próbie cylindrycznej według normy PN-EN 12697–26:2012 [176], energia zagęszczania – 75 uderzeń na stronę,
• odporności na działanie wody według normy PN-EN 12697–12:2008 [172], energia zagęszczania – 35 uderzeń na stronę.

Próbkę prostopadłościenną zagęszczano przez wałowanie według normy PN-EN 12697–33 + A1:2008 [179] wykorzystano do:
• badań odporności na deformacje trwałe według normy PN-EN 12697–22 + A1:2008 [174],ymię płyty 300x400x60,
• wycięcia belek do badań modułu sztywności metodą cztero-punktowego zginana na próbie pryzmatycznej wg normy PN-EN 12697–26:2012 [176], wymiary płyty 300x400x100.

Z płyty o wymiarach 300x400x100 mm wycinano po 4 próbki w kształcie belek o wymiarach 50x63x400 mm. Wycięte beczki przechowywano przed badaniem „do odprężenia” przez 14 dni.

Próbki formowane przez wałowanie zagęszczano do wymaganej wysokości przy wskaźniku zagęszczenia wynoszącym od 98 do 100%.

5.4 Metodyka badania właściwości asfaltu

Podstawowe badania asfaltu

W celu określenia wpływu dodatku zeolitu na właściwości asfaltu wykonano badania:
• penetracji w 25°C wg normy PN-EN 1426:2009 [186],
• temperatury mięknienia wg normy PN-EN 1427:2009 [187],
• temperatury łamliwości wg normy PN-EN 12593:2009 [164].

Wyniki badań penetracji oraz temperatury mięknienia były podstawą do określenia indeksu penetracji (PI). Indeks ten obliczono na podstawie wzoru [163]:

$$ PI = \frac{20 \times T_{PIK} + 500 \times \lg P - 1952}{T_{PIK} - 50 \lg P + 120} $$

gdzie:

\(T_{PIK} \) – temperatura mięknienia w °C,
\(P \) – penetracja w 25°C, 0,1 mm.
Na podstawie wyników badań temperatury mięknienia oraz temperatury łamliwości określono temperaturowy zakres plastyczności (TZP) według wzoru:

\[TZP = T_{PiK} - T_{Frass} \] \hspace{1cm} (5.2)

gdzie:
- \(T_{PiK} \) – temperatura mięknienia w °C,
- \(T_{Frass} \) – temperatura łamliwości w °C.

Badania lepkości asfaltu

Badanie lepkości dynamicznej przeprowadzono w aparacie Brookfielda, zgodnie z normą ASTM D 4402 [156], w dwóch temperaturach odpowiadających temperaturom, jakim poddany jest asfalt:

- 135°C – w czasie wbudowywania,
- 160°C – w czasie produkcji.

Badanie polega na obliczeniu stosunku naprężenia ścinającego wywołanego wirującym wrzecionem zanurzonym w asfalcie do jego prędkości obrotowej.

Po przygotowaniu zacznym asfaltowego z zeolitem próbka była umieszczana na 15 minut w suszarce w temperaturze 145°C. Badanie lepkości asfaltu z zeolitem w każdej temperaturze wykonywano na oddzielnych próbkach. Pomiary lepkości wykonywano w następujących interwałach czasowych: 15, 30, 45 i 60 minut, liczonych od chwili umieszczenia próbki w aparacie Brookfielda. W pomiarach lepkości użyciu użyto wrzeciona SC 4 – 27.

Badania zespolonego modułu ścinania asfaltu

Badania zespolonego modułu ścinania asfaltu wykonano w reometrze dynamicznego ścinania, zgodnie z metodyką podaną w normie PN-EN 14770:2012 [189], w liniowym zakresie lepkosprężystości materiału. Badanie polegało na wyznaczaniu momentu obrotowego w zadanej szybkości ścinania.

Wyniki oznaczano w 13 temperaturach, stosując krok co 6°C. W temperaturze od 10°C do 46°C zastosowano geometrię próbki 8 mm o wysokości 2000 μm, w temperaturach od 46°C do 82°C zastosowano geometrię próbki 25 mm o wysokości 1000 μm. Zakres częstotliwości w każdej temperaturze badania wynosił od 0,16 Hz do 15,85 Hz, co odpowiada częstotliwości kątowej od 1 do 100 rad/s. Zastosowano 11 równych kroków doboru częstotliwości w skali logarytmicznej w każdej temperaturze badania. Wyniki badań były
podawane automatycznie przez program sterujący. Otrzymane wartości to: zespolony moduł ścinania G^*, część rzeczywista zespolonego modułu ścinania G', część urojona zespolonego modułu ścinania G'', δ – kąt przesunięcia fazowego.

Zespolony moduł ścinania G^* jest to iloraz największego naprężenia do największego odkształcenia wywołanych harmonicznie zmiennym obciążeniem sinusoidalnym (rys. 5.2).

Rys. 5.2. Graficzne przedstawienie zespolonego modułu ścinania i kąta przesunięcia fazowego [141]

Rzeczywista składowa zespolonego modułu ścinania opisuje sprężyste właściwości materiału, a urojona składowa – lepkie. Tangens kąta przesunięcia fazowego jest miarą stosunku składowej lepkiej do sprężystej.

Badaniaazespolonego modułu ścinania, przeprowadzono dla asfaltu 35/50 oraz asfaltu modyfikowanego dodatkami zeolitowymi:

- przed starzeniem RTFOT,
- po starzeniu RTFOT,
- po starzeniu RTFOT+PAV.

Proces starzenia technologicznego w aparacie RTFOF wykonano zgodnie z normą PN-EN 12607–1:2009 [167]. Symulację starzenia eksploatacyjnego w aparacie PAV przeprowadzono zgodnie z procedurą opisaną w normie PN-EN 14769:2012 [188].

Na podstawie zmierzonych wartości zespolonego modułu ścinania oraz kąta przesunięcia fazowego, przy prędkości ścinania 10 rad/s, określono własności asfaltu w wysokich i pośrednich temperaturach. Zgodnie funkcjonalną klasyfikacją asfaltów według amerykańskiej metody Superpave określono temperatury w których:

- $G^*/\sin\delta = 1.00$ kPa dla asfaltów przed starzeniem,
- $G^*/\sin\delta = 2.20$ kPa dla asfaltu po starzeniu w aparacie RTFOT,
• G* x sinδ = 6000 kPa dla asfaltu po starzeniu w aparacie RTFOT+PAV.

Wyznaczanie krzywych wiodących

Lepiszcze asfaltowe oraz mieszanki mineralno-asfaltowe to materiały, których właściwości reologiczne zależą od czasu obciążenia (badanie statyczne) lub częstotliwości obciążenia (badanie dynamiczne) oraz temperatury [74, 120]. Dla materiałów bitumicznych ma zastosowanie pojęcie równoważności czas-temperatura [101]. Oznacza to, że moduł sprężystości w wysokiej temperaturze i krótkim czasie obciążenia odpowiada równoważący pod względem wartości moduł w niższej temperaturze i dłuższym czasie obciążenia. Moduł sprężystości (lub kąt przesunięcia fazowego) wyznaczony w określonej temperaturze i czasie obciążenia może być transponowany do innej temperatury:

\[E(T,t) = E(T_0, t/a_T) \] (5.3)

gdzie:
- \(E(T,t) \) – moduł sztywności w temperaturze \(T \) i czasie obciążenia \(t \),
- \(E(T_0,t/a_T) \) – moduł sztywności w temperaturze \(T_0 \) i zredukowanym czasie obciążenia \(t/a_T \),
- \(a_T \) – współczynnik przesunięcia temperaturowego.

Stosując zasadę superpozycji na podstawie wyników badań modułu w różnych warunkach, możliwe jest sprowadzenie wyników do jednej krzywej tzw. krzywej wiodącej (master curve). Dzięki zastosowaniu krzywej wiodącej i współczynnika przesunięcia temperaturowego można interpolować moduł ścinania w rozszerzonym zakresie częstotliwości i temperatury.

Opracowano różne metody graficzne i analityczne tworzenia krzywych wiodących [7, 12, 25, 34, 52, 141]. W zależności od zastosowanego modelu uzyskane wyniki końcowe mogą być rozbijełe [67, 88, 133, 149]. Zasadę tworzenia krzywych wiodących metodą graficzną przedstawiono na rysunkach 5.3 i 5.4.
Rys. 5.3. Przykład tworzenia krzywej wiodącej poprzez przesunięcia izoterm zespolonego modułu ścinania o współczynnik przesunięcia temperaturowego a_T [110]

Rys. 5.4. Przykład krzywej wiodącej i wykresu współczynnika przesunięcia temperaturowego [110]

W pracy zastosowano graficzną metodę tworzenia krzywych wiodących. Metoda polegała na obliczeniu współczynników przesunięcia temperaturowego i częstotliwości zredukowanej, a następnie przesunięciu izoterm zespolonego modułu ścinania o obliczone współczynniki przesunięcia temperaturowego a_T. Powstałą krzywą współczynnika przesunięcia temperaturowego opisano stosując model obliczeniowy Williams-Landel-Ferry (WLF):
gdzie:
C₁, C₂ – parametry modelu (stałe materiałowe),
T – temperatura pomiaru,
T_{ref} – temperatura referencyjna.

Z analiz literaturowych wynika, że stałe materiałowe dla asfaltów niepoddanych starzeniu mogą wynosić odpowiednio: 19 i 92 [24, 93]. Niektórzy badacze otrzymywali inne wartości tych parametrów [89, 134].

W pracy współczynnik przesunięcia temperaturowego wyznaczono metodą graficzną z wykorzystaniem arkusza kalkulacyjnego. Analizowano wielkość przesuwu stosowanego w każdej temperaturze pomiaru zespolonego modułu ścibania (rys. 5.5). Za temperaturę referencyjną przyjęto średnią temperaturę pomiaru wynoszącą 34°C.

Rys. 5.5. Przykład graficznej analizy wielkości przesuwu w celu określenia współczynnika przesunięcia temperaturowego αₜ

Wykorzystując techniki optymalizacji opierające się na minimalizacji sumy kwadratu błędów pomiędzy wartościami danymi (αₜ) a przewidywanymi (αₜ_{pred}) oszacowano wartości
współczynników C1 i C2 modelu WFL. Obliczenia prowadzono przy wykorzystaniu funkcji Solver arkusza kalkulacyjnego.

Częstotliwość zredukowaną wyznaczono na podstawie równania:

$$\omega_{\text{red}} = \omega \times a_T$$ (5.5)

gdzie:

- ω – częstotliwość pomierzona,
- a_T – współczynnik przesunięcia temperaturowego.

Krzywą wiodącą zespolonego modułu ścinania wyznaczono przy zastosowaniu modelu analitycznego CA (Christensen Anderson) [24]:

$$|G^*(\omega)| = G_g \left[1 + \left(\frac{\omega_c}{\omega} \right)^{\frac{\log\omega}{\log R}} \right]$$ (5.6)

gdzie:

- $G^*(\omega)$ – zespolony moduł ścinania w częstotliwości ω [Pa],
- G_g – moduł zeszklenia [Pa] (1 GPa),
- R, ω_c – parametry modelu.

Parametry R, ω_c oszacowano w arkuszu kalkulacyjnym przy wykorzystaniu funkcji Solver.

Na podstawie krzywych wiodących zespolonego modułu ścinania wyznaczono następujące parametry reologiczne [6]:

- „Crossover frequency” ω_c – częstotliwość, w danej temperaturze gdzie tangens kąta przesunięcia fazowego równy jest 1 (tan $\delta = 1$). W tej częstotliwości składowa rzeczywista i urojona zespolonego modułu sprężystości są sobie równe ($G' = G''$). Na wykresie krzywej wiodącej jest to punkt w którym asymptota lepkości przecina prostą modułu zeszklenia G_g.
- Indeks reologiczny R – różnica pomiędzy modułem zeszklenia G_g, a zespolonym modulem sprężystości w częstotliwości „crossover”. Indeks reologiczny jest miarą szybkości ścinania zależną od rodzaju badanego lepiszcza.
- Lepkość w stanie równowagi η_0 – w badaniu dynamicznym oznacza w przybliżeniu granicę lepkości dynamicznej, gdy kąt fazowy zbliża się 90°. Oznaczona w niskich częstotliwościach jest często określana mianem „asymptoty lepkości”.

Powyżej omówione parametry przedstawiono graficznie na rysunku 5.6.
Rys. 5.6. Graficzne przedstawienie parametrów krzywej wiodącej: crossover frequency ω_c, oraz indeksu reologicznego R [24]

Częstotliwość „crossover” ω_c odczytano dla wartości kąta $\delta = 45^\circ$ z wykresu kąta fazowego w funkcji zredukowanej częstotliwości.

Indeks reologiczny R obliczono z wzoru [111]:

$$ R = \frac{(\log 2) \times \log \left(\frac{G(\omega_c)}{G_g} \right)}{\log (1 - \frac{\delta(\omega_c)}{90^\circ})} $$ \hspace{1cm} (5.7)

gdzie:
- G_g – moduł zeszklenia [Pa] (1 GPa),
- ω_c – częstotliwość „crossover” [rad/s],
- $\delta(\omega_c)$ – kąt przesunięcia fazowego w częstotliwości „crossover” [º],
- $G(\omega_c)$ – zespolony moduł sprężystości w częstotliwości „crossover” [Pa].

Lepkość w stanie równowagi η_0 obliczono z wzoru [111]:

$$ \eta_0 = \frac{G_g}{\omega_c} $$ \hspace{1cm} (5.8)

gdzie:
- oznaczenia jak we wzorze 5.7.

Badanie właściwości uszytywiających zaczynu asfaltowego z dodatkiem zeolitu

Zgodnie z normą PN-EN 13043:2004 [181] miarą właściwości uszytywiających wypełniacza jest przyrost temperatury mięknięcia $\Delta_{\Pi K}$ zaczynu asfaltowego w stosunku do temperatury pięknienia $T_{\Pi K}$ asfaltu drogowego 70/100. Badanie wykonano wg normy PN-EN 13179–1:2013 [184].
5.5 Metodyka badań własności kruszyw

Analiza podstawowych cech fizycznych kruszyw obejmowała:

- uziarnienie wg normy PN-EN 933–1:2012 [158],
- uziarnienie wypełniacza wg normy PN-EN 933–10:2009 (przesiew w strumieniu powietrza) [159],
- gęstość ziaren według normy PN-EN 1097–6:2013 [161],
- gęstość wypełniacza i zeolitów według normy PN-EN 1097–7:2008 [162],
- zawartość wody w wypełniaczu oraz zeolitach według normy PN-EN 1097–5:2008 [160].

5.6 Metodyka badań właściwości zeolitów i wypełniacza wapiennego

Uziarnienie

Pomiar uziarnienia materiału zeolitowego i wypełniacza wapiennego przeprowadzono metodą dyfrakcji laserowej na aparacie Malvern Mastersizer 3000. Pomiary wykonano w dyspersji cieczowej w wodzie destylowanej o współczynniku załamania światła 1,33. Próbki przed pomiarem dwukrotnie poddawano działaniu ultradźwięków o maksymalnej mocy 300 W (łącznie 4 minuty). Do obliczeń wielkości cząstek przyjęto teorię Mie.

Skład chemiczny

Skład chemiczny zeolitów i wypełniacza wapiennego został oznaczony metodą XRF za pomocą spektrometru Philips PW 1404. Źródło wzbudzenia stanowiła lampa rentgenowska z podwójną anodą Cr-Au o maksymalnej mocy 3kW.

Skład mineralny

Skład mineralny badanych materiałów oznaczono metodą dyfraktometrii proszkowej XRD, wykorzystując dyfraktometr rentgenowski Panalytical X’pert APD z goniometrem PW 3020 i lampą Cu oraz monochromatorem grafitowym. Analizę wykonano w zakresie kątowym 5–65° (2θ). Do interpretacji danych dyfrakcyjnych użyto oprogramowania HighScore.

Morfologię i skład chemiczny w mikroobszarze ziaren głównych składników mineralnych oznaczono za pomocą mikroskopu skaningowego (SEM) FEI Quanta 250 FEG, wyposażonego w przystawkę EDS.
Właściwości teksturalne

Właściwości tekstualne zeolitów wyznaczono na podstawie izoterm adsorpcji/desorpcji par azotu w temperaturze – 194,85°C, po wcześniejszym odgazowaniu próbki w warunkach ścisłe kontrolowanej temperatury (250°C przez 24 h) i obniżonego ciśnienia (10⁻³ hPa). Powierzchnię właściwą wyliczono, wykorzystując teorię wielowarstwowej adsorpcji Brunauera, Emmita i Tellera (BET) przy stosunku ciśnienia równowagowego i ciśnienia pary nasyconej azotem p/p₀ wynoszącym 0,06–0,3. Objętość porów Vₚ określono z objętości zaadsorbowanego azotu pod ciśnieniem p/p₀ = 0,98. Średnice porów obliczono według wzoru:

\[D_p = 4V_p/S_{BET} \] (5.9)

gdzie:

Vₚ – objętość porów,
S_{BET} – powierzchnia właściwa.

Badania tekstury przeprowadzono przy użyciu sorptomatu ASAP 2020 firmy Micromeritics.

Analiza termiczna

Ilość i zakres temperaturowy uwalniania wody ze struktury wybranych do badań zeolitów oznaczono za pomocą analizy termicznej. Krzywe DTA/TG zarejestrowano na derywatografie STA 449 F3 Jupiter Netzsch sprzężonym z kwadrupolowym spektrometrem masowym QMS 403C Aeolos w atmosferze powietrza w temperaturze 25–800°C przy podnoszeniu ogrzewania 10°C na minutę.

5.7 Metodyka badań własności fizykomechanicznych mieszanek mineralno-asfaltowej z dodatkiem materiałów zeolitowych

Zagęszczalność w prasie żyratorowej

Podstawową metodą przygotowywania w laboratorium próbek walcowych mieszanek mineralno-asfaltowej jest zagęszczanie w ubijaku Marshalla. Metoda ta nie symuluje jednak zagęszczania walcem podczas wykonywania nawierzchni. Lepszym odzwierciedleniem rzeczywistych warunków zagęszczania próbek MMA jest uzyskiwane w czasie formowania próbek w prasie żyratorowej [104].

Warunki badań zagęszczalności MMA z dodatkiem zeolitów wykonane w prasie żyratorowej ustalono na podstawie normy PN-EN 12697–31:2007 [176]. Przed rozpoczęciem
badania forma o średnicy 100 mm była wygrzewana w suszarce laboratoryjnej w temperaturze zagęszczania przez 2 godziny. Gorącą mieszankę przed badaniem zagęszczalności termostatowano w formie w suszarce laboratoryjnej przez 45–60 minut. Masę nawałki obliczono przy założeniu 0% wolnych przestrzeni w zagęszczonej MMA. Wykonano po 3 próbkach każdego rodzaju MMA.

Kąt wychylenia przyjęto 1,250, nacisk pionowy 600 kPa, szybkość obracania osi podłużnej – 30 obrotów/minutę, liczbę obrotów – 100. Temperatura zagęszczania mieszanki referencyjnej przyjęto na podstawie rodzaju stosowanego asfaltu – 160°C [178]. Próbki z różnymi dodatkami zeolitów zagęszczano odpowiednio w temperaturze 145 i 130°C.

Gęstość MMA określano automatycznie w programie sterującym na podstawie pomiaru zmniejszającej się wysokości próbki.

Na podstawie uzyskanych pomiarów gęstości w funkcji liczby cykli żyratoobrotów określono następujące parametrów:

- współczynnik zagęszczalności – K
- wskaźnik stabilności mieszanki – MSI (construction densification index – CDI)
- indeks odporności mieszanki MRI (traffic densification index – TDI)

Zgodnie z [157] w celu określenia współczynnika zagęszczalności K utworzono wykres w skali półlogarytmicznej zależności zawartości wolnych przestrzeni od liczby cykli. Zmiana zawartości wolnych przestrzeni w zagęszczanych w prasie żygotaorowej próbkach w stosunku do energii zagęszczania obliczono na podstawie wzoru:

\[V(n) = V(1) - K \times \ln(n) \]

gdzie:

- \(V(n) \) – zawartość wolnych przestrzeni w n-cyku zagęszczania w prasie żygotaorowej [%],
- \(V(1) \) – zawartość wolnych przestrzeni w 1 cyku zagęszczania w prasie żygotaorowej, oznaczająca początkową zawartość wolnych przestrzeni w MMA przy zastosowaniu jedynie naprężenia pionowego.

Współczynnik zagęszczalności K określa nachylenie krzywej aproksymacji do utworzonego w skali półlogarytmicznej wykresu zależności zawartości wolnych przestrzeni od liczby cykli (rys. 5.7).
Wskaźnik stabilności mieszanki MSI oraz indeks odporności mieszanki MRI określone zostały na podstawie wykresu krzywej zagęszczalności MMA w prasie żyratorowej. Indeks stabilności mieszanki MSI określany jest jako powierzchnia pola pod krzywą zagęszczania od gęstości przy 8 żyratoobrotach do gęstości 92% maksymalnej teoretycznej gęstości objętościowej i stanowi pracę wykonaną w okresie budowy, potrzebną do osiągnięcia 8% zawartości wolnych przestrzeni. Wskaźnik zagęszczenia przez ruch drogowy MRI to powierzchnia pola pod krzywą zagęszczania od 92% do 98% gęstości i określa zdolność mieszanki do oporu przed dogęszczeniem pod obciążeniem ruchem w czasie eksploatacji nawierzchni [90].

Zawartość wolnych przestrzeni uznawana za krytyczną, względem podatności na dogęszczenie pod wpływem obciążenia ruchem samochodowym, wynosi 2%. Wskaźnik zagęszczenia wbudowanych MMA powinien stanowić 97–98% gęstości mieszanek zagęszczonych w ubijaku Marshalla [177] co odpowiada 7–8% zawartość wolnych przestrzeni [32]. Zgodnie z powyższym wskaźnik MSI określono jako powierzchnię pola pod krzywą zagęszczania od gęstości przy 8 żyratoobrotach do zawartości wolnych przestrzeni 8%. Natomiast indeks MRI określono jako powierzchnię pola pod krzywą zagęszczania od 8% do 2% zawartości wolnych przestrzeni (rys. 5.8).
Zawartość wolnych przestrzeni oznaczona na próbkach wykonanych w ubijaku Marshalla

$$V_m = \frac{\rho_m - \rho_b}{\rho_m} \times 100\% \quad (5.11)$$

gdzie:

- V_m – zawartość wolnych przestrzeni w próbie mieszanki mineralno-asfaltowej [%],
- ρ_m – gęstość mieszanki mineralno-asfaltowej [kg/m3],
- ρ_b – gęstość objętościowa próbki mieszanki mineralno-asfaltowej [kg/m3].
Gęstość mieszanki mineralno-asfaltowej \((\rho_m)\) wyznaczono w piknometrze metodą objętościową. W obliczeniach posłużono się wzorem [169]:

\[
\rho_m = \frac{m_2 - m_1}{1000 \times V_{pp} \times \frac{m_3 - m_2}{\rho_w}}
\]

(5.12)

gdzie:

\(\rho_m\) – gęstość mieszanki mineralno-asfaltowej \([\text{kg/m}^3]\),

\(m_1\) – masa piknometru z nasadką \([\text{g}]\),

\(m_2\) – masa piknometru z nasadką i badaną próbką \([\text{g}]\),

\(m_3\) – masa piknometru z nasadką i badaną próbką oraz wodą \([\text{g}]\),

\(V_{pp}\) – objętość piknometru napełnionego do kreski pomiarowej \([\text{m}^3]\),

\(\rho_w\) – gęstość wody w temperaturze badania \([\text{kg/m}^3]\).

Gęstość objętościową oznaczono według normy PN-EN 12697–6:2012 [170], metoda B - próbkę w stanie nasyconym, powierzchniowo-suchym – SSD i obliczono na podstawie wzoru:

\[
\rho_{bssd} = \frac{m_1}{m_3 - m_2} \times \rho_w
\]

(5.13)

gdzie:

\(\rho_{bssd}\) – gęstość objętościowa (SSD) próbki mieszanki mineralno-asfaltowej \([\text{kg/m}^3]\),

\(m_1\) – masa suchej próbki \([\text{g}]\),

\(m_2\) – masa próbki w wodzie \([\text{g}]\),

\(m_3\) – masa próbki nasyconej, powierzchniowo osuszzonej \([\text{g}]\),

\(\rho_w\) – gęstość wody w temperaturze badania \([\text{kg/m}^3]\).

Badanie odporności na działanie wody

Próbki do badań formowano w ubijaku Marshalla (D = 101,6 mm, H = 63,5 mm), ilość uderzeń wynosiła 35 na stronę. Łącznie wytwarzano 8 próbek dla każdej mieszanki mineralno-asfaltowej. Temperatura zagęszczania wynosiła odpowiednio 145°C, 130°C, 115°C. Uformowane próbki podzielono na dwie grupy o zbliżonej średniej gęstości pozornej i zbliżonej zawartości wolnych przestrzeni.

Próbki serii kontrolnej, bez kondycjonowania, przechowywano w laboratorium w warunkach pokojowych, do czasu pierwszego badania modułu sztywności sprężystej i wytrzymałości na pośrednie rozciąganie. Badania te wykonywano po zakończeniu kondycjonowania wszystkich próbek z danej serii, po około 180 godzinach.

Procedura kondycjonowania próbek z cyklem zamrażania składała się z trzech etapów:

- próżniowego nasycania próbek wodą,
- poddania próbek przedłużonemu oddziaływaniu wody w podwyższonej temperaturze.
- poddania próbek 1 cyklowi zamrożenia – odmrożenia.

Procedura badawcza jest opisana w Wymaganiach Technicznych WT 2 2010 [192].

Bezpośrednio przed każdym badaniem wszystkie próbki przechowywano w kąpieli wodnej przez 2 godziny w temperaturze 25°C, będącą temperaturą badania. Każdą próbkę zbadano wykonując nieniszczące badanie modułu sztywności metodą rozciągania pośredniego (IT-CY) (fot 5.3) oraz niszczące badanie wytrzymałości na pośrednie rozciąganie (fot 5.4).

Fot. 5.3. Próbka umieszczona w uchwycie prasy Marshalla podczas badania wytrzymałości na pośrednie rozciąganie

Fot. 5.4. Próbka umieszczona w aparacie NAT podczas badania modułu sztywności sprężystej metodą IT-CY
Odporność na działanie wody i mrozu określono na podstawie wskaźników ITSR oraz ITSM. Wkaarżnik ITSR zdefiniowano jako:

\[
ITSR = \frac{ITS_{w}}{ITS_{d}}
\]

(5.14)
gdzie:
- \(ITS_{R}\) – wskaźnik wytrzymałości na rozciąganie pośrednie [%],
- \(ITS_{w}\) – średnia wytrzymałość oznaczona dla grupy próbek mokrych [kPa],
- \(ITS_{d}\) – średnia wytrzymałość wyznaczona dla grupy próbek suchych [kPa].

Badanie wytrzymałości na rozciąganie pośrednie wykonano w prasie Marshalla przy prędkości przesuwu tłoka 50 mm/min. Monitorowaną wartością była maksymalna siła w chwili zniszczenia próbki.

Wytrzymałość na rozciąganie pośrednie obliczono zgodnie z wzorem [175]:

\[
ITS = \frac{2 \times P_{d}}{\pi \times D \times H}
\]

(5.15)
gdzie:
- \(P\) – maksymalna wartość siły ściskającej [kN],
- \(D\) – średnica próbki w zaokrągleniu do 0,1 mm [mm],
- \(H\) – wysokość próbki w zaokrągleniu do 0,1 mm [mm].

Wskaźnik ITSMR zdefiniowanego jako:

\[
ITSM = \frac{ITSM_{w}}{ITSM_{d}}
\]

(5.16)
gdzie:
- \(ITSM_{w}\) – średni moduł sztywności próbek kondycjonowanych [MPa],
- \(ITSM_{d}\) – średni moduł sztywności próbek bez kondycjonowania [MPa].

 Wynik końcowy stanowiła średnia z badań wykonanych na 3 próbkach.
Badanie odporności na deformacje trwałe
Odporność mieszanki mineralno-asfaltowej na deformacje trwałe oceniono zgodnie z procedurą opisaną w normie PN-EN 12697–22 + A1:2008 [174], metoda B, w powietrzu. Badanie przeprowadzono w koleinomierzu małym (fot. 5.5).

Fot. 5.5. Widok koleinomierza małego z próbką po zakończeniu badania odporności na deformacje trwałe

Próbki do badań zagęszczano w zagęszczarce płytowej w temperaturze 100–115°C. Grubość próbek, zgodnie z WT2 2010 wynosiła 60 mm. Opis przygotowania próbek do badania koleinowania przedstawiono w punkcie 5.3. Badanie przeprowadzono w temperaturze 60°C. Próbki, przed koleinowaniem, kondycjonowano w temperaturze badania przez 4 godziny. Liczba cykli obciążenia wynosiła 10000. Pomiar głębokości koleiny odbywał się za pomocą automatycznego urządzenia do pomiaru przemieszczeń. Wynikiem badania odporności na deformacje trwałe są:

- proporcjonalna głębokość koleiny po 10000 cyklach PRD_{AIR}, obliczona zgodnie z wzorem:

\[
PRD_{AIR} = \frac{RD_{AIR}}{h_{pr}}
\]

(5.17)

gdzie:
- RD_{AIR} – głębokość koleiny po 10000 cyklach [mm],
- h_{pr} – wysokość próbki [mm].
przyrost głębokości koleiny (WTS_{AIR}) określona według wzoru:

\[WTS_{AIR} = \frac{d_{10000} - d_{5000}}{5} \] \hspace{1cm} (5.18)

dzie:
\[d_{5000}, d_{10000} \] – głębokość koleiny po 5000 i 10000 cykli obciążenia [mm].

Wynik końcowy stanowiła średnia arytmetyczna z badania dwóch płyt.

Badanie sztywności metodą rozciągania pośredniego na próbkę cylindryczną (IT-CY)

Badanie modułu sztywności sprężystej przez pośrednie rozciąganie przeprowadzono w urządzeniu Nottingham Asphalt Tester (NAT) zgodnie instrukcją urządzenia i normą PN-EN 12697–26:2012 [176]. W czasie badania wykonywano test przy kontrolowanym naprężeniu. Próbkę poddawano pięciokrotnemu dynamicznemu obciążeniu przyłożonemu do próbki pionowo, wzdłuż średnicy. Czas wzrostu siły, mierzony od chwili przyłożenia siły, wzrastał od zera do wartości maksymalnej i wynosił 0,124 s. Siła maksymalna generowała przemieszczenie poziome próbki równe 5 μm. Pomiędzy kolejnymi pulsami siły występowały 3 sekundowe opóźnienia (rys. 5.9).

![Rys. 5.9. Kształt pulsu siły, ukazujący czas przyrostu i pik siły [176]](image)

Badanie przeprowadzono dla trzech temperatur: 23°C, 10°C, -2°C. Są to temperatury średnie dla okresów lato, wiosna-jesienn, zima w Polsce. Odpowiednio dla tych temperatur przyjęto współczynnik Poissona: 23°C – 0,4; 10°C – 0,3; 2°C – 0,25 [193].

Wynik badania był obliczany automatycznie przez program sterujący, jako średnia arytmetyczna z modułów sztywności dla każdego z 5-ciui pomiarów pulsów siły. Próbka po wykonaniu badania, była obracana o 90° wokół poziomej osi i badana ponownie. Jeżeli średni wynik badań mieścił się w granicach +10% -20% w stosunku do badania modułu we wcześniejszym położeniu to moduł sztywności próbki obliczano jako średnią z dwóch

Badanie sztywności metodą cztero-punktowego zginania na próbie pryzmatycznej (4PB-PR)

Procedurę przygotowywania próbek opisano w punkcie 5.3. Zbadano po 4 belezki każdego rodzaju MMA. Przed oznaczaniem, próbki sezonowano przez 2 godziny w temperaturze badania. Badanie polegało na zginaniu próbki belkowej umieszczonej w aparacie zmęczeniowym przy stałej amplitudzie odkształcenia. Zasadę badania cztero-punktowego zginania przedstawiono na rysunku 5.10 i fotografii 4.7.

![Rys. 5.10. Podstawowe zasady badania w metodzie cztero-punktowego zginania](image)

![Fot. 5.6. Próbka umieszczona w aparacie do badania moduł sztywności sprężystej metodą cztero-punktowego zginania](image)
W celu uzyskania pełnej charakterystyki mieszanki mineralno-asfaltowej, badanie wykonano w szerokim zakresie temperatur i częstotliwości [101].

Przyjęto następujące warunki wykonania badania:
- temperatura: 0, +10 ºC, +20 ºC, +30 ºC;
- częstotliwość: 0,1 Hz, 0,2 Hz, 0,5 Hz, 1 Hz, 2 Hz, 5 Hz, 10 Hz, 25 Hz;
- odkształcenie: 50 mm/mm.

W czasie badania rejestrowano siłę, liczbę cykli, ugięcie belki, kąt przesunięcia fazowego. Program sterujący obliczał zespolony moduł sztywności oraz naprężenia i odkształcenia rozcigujące.

Wyznaczanie krzywych wiodących modułów sztywności mieszanek mineralno-asfaltowych

Krzywe wiodące wyznaczono przy zastosowaniu metody graficznej opisanej w punkcie 5.4. Za temperaturę referencyjną przyjęto temperaturę pomiaru wynoszącą 20ºC.

Powstałą krzywą współczynnika przesunięcia temperaturowego opisano stosując model obliczeniowy WLF (równanie 5.4). Podczas ustalania współczynników C1 i C2 modelu WFL postępowano zgodnie z opisem w punkcie 5.4. Częstotliwość zredukowaną obliczono na podstawie równania 5.5.

Opracowano różne metody przewidywania modułu sztywności mieszanki mineralno – asfaltowej. Otrzymane wyniki różnią się w zależności od zastosowanej metody [99].

W pracy, krzywą wiodącą zespolonego modułu sztywności wyznaczono przy zastosowaniu funkcji sigmoidalnej modelu analitycznego MEPDG (Mechanistic-Empirical Pavement Design Guide) [67]:

\[\log E^* = \delta' + \frac{\alpha'}{1 + e^{\beta' + \gamma'(\log \omega_{red})}} \] \hspace{1cm} (5.19)

gdzie:
- \(E^*(\omega_{red}) \) – zespolony moduł sztywności w częstotliwości w zredukowanej częstotliwości \(\omega_r \) [Pa],
- \(\delta' \) – parametr modelu określający minimalną wartość modułu sztywności \(|E^*|\)
- \(\delta' + \alpha' \) – parametr modelu określający maksymalną wartość modułu sztywności \(|E^*|\)
- \(\beta', \gamma' \) – parametry modelu określające kształt sigmoidalnej funkcji

Parametry \(\delta', \alpha', \beta', \gamma' \) szacowano w arkuszu kalkulacyjnym przy wykorzystaniu funkcji Solver.
5.8 Metodyka statystycznej analizy otrzymanych wyników

Szacowanie dokładności pomiarów

Na wyniki badań właściwości lepiszczy asfaltowych oraz właściwości mieszanek mineralno-asfaltowych wpływa wiele czynników:

- zmienne warunki zewnętrzne podczas przygotowywania próbek
- zmienne warunki zewnętrzne w czasie trwania badania
- niejednorodność materiałów używanych do przygotowania próbek
- błędy metod pomiarowych.

W celu redukcji wpływu czynników zewnętrznych dokładnie przestrzegano procedur w czasie przygotowania próbek. Szczególnie istotna była kontrola czasu i temperatury rozgrzewania asfaltu oraz kondycjonowania próbek MMA. Nie można natomiast wykluczyć zmienności warunków temperaturowych wynikających z różnicy między temperaturą wskazywaną przez układ sterujący urządzenia a temperaturą rzeczywistą. Celem ograniczenia tych niedokładności wykonywano pomiary temperatury rzeczywistej, a w razie potrzeby kalibrację układu pomiarowego.

W celu minimalizacji efektu niejednorodności materiałów, asfaltu, kruszywa oraz zeolity zostały zgromadzone w ilościach wystarczających do przeprowadzenia wszystkich badań laboratoryjnych przed ich rozpoczęciem. Poszczególne rodzaje materiałów pochodziły z jednej partii produkcyjnej, co zmniejsza prawdopodobieństwo zmian jakościowych badanych materiałów.

Niejednorodność mieszanek mineralno-asfaltowych wynika z ich struktury wewnętrznej. Jest to materiał składający się z kilku rodzajów kruszyw oraz lepiszcza asfaltowego. Każdy składnik ma wpływ na ukształtowanie struktury wewnętrznej MMA. Nie jest możliwe uformowanie próbek z idealnie równomiernym rozmieszczeniem ziaren. Mimo przestrzegania procedur było to rozmieszczenie losowe, co miało wpływ na właściwości badanych mieszanek mineralno-asfaltowych.

Analiza statystyczna

Celem oceny wpływu materiałów zeolitowego na wyniki badań właściwości fizykomechanicznych mieszanek mineralno-asfaltowych przeprowadzono analizę statystyczną otrzymanych wyników.

W celu pełnej charakterystyki danych liczbowych uzyskanych w wyniku wykonanych badań wprowadzono miary zmienności zwane też miarami rozproszenia.
Zbiór liczb wykazuje małą zmiennność, jeżeli jego elementy są bliskie średniej arytmetycznej. Jedną z najczęściej stosowanych miar zmienności jest odchylenie standardowe określone wzorem:

$$s = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X})^2}$$

(5.20)

gdzie:

\bar{X} oznacza średnią arytmetyczną, a n zbiór liczb.

Odchylenie standardowe wyników badań własności fizykomechanicznych mieszanek mineralno-asfaltowych z dodatkiem materiałów zeolitowych przedstawiono graficznie na wykresach prezentujących rezultaty badań w rozdziale 6.6.

Średnią arytmetyczną wyraża się wzorem:

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

(5.21)

Inną charakterystyką liczbową jest współczynnik zmienności, będący wielkością niemianowaną i umożliwiający porównanie zbiorów obserwacji, które są wyrażone w różnych jednostkach skali. Współczynnik zmienności wyraża się wzorami:

$$\nu_s = \frac{s}{\bar{X}}$$

(5.22)

Kolejnym narzędziem statystycznym, wykorzystanym do statystycznej analizy wyników była jednoczynnikowa analiza wariancji (one way ANOVA). Jest to parametryczne narzędzie pozwalające porównywać więcej niż dwie badane grupy wydzielone przez kategorię jednej zmiennej. Metoda ta jest rozszerzeniem testu t-Studenta przeprowadzanego dla porównywania dwóch grup niezależnych. Idea analizy wariancji polega na porównaniu rozproszenia (wariancji) zmiennej zależnej w analizowanych grupach wydzielonych ze względu na wartości zmiennych niezależnych.

Analizę tą można stosować gdy spełnione są poniższe warunki:

- zmienna zależna, dla której wyliczane są średnie, jest cechą ilościową,
- zmienna niezależna jest cechą jakościową,
- analizowane są grupy o takiej samej lub zbliżonej liczności,
- rozkład zmiennej zależnej w porównywanych grupach jest w przybliżeniu rozkładem normalnym,
- we wszystkich porównywanych grupach występuje jednorodność wariancji pomiaru,
pomiary w każdej grupie są statystycznie niezależne.

W jednoczynnikowej analizie wariancji, testowany jest zestaw hipotez dotyczący wariancji:
\[
\begin{align}
H_0: \frac{s_A^2}{s_2^2} &= 1, \quad H_0: \frac{s_A^2}{s_2^2} \leq 1 \\
H_1: \frac{s_A^2}{s_2^2} > 1
\end{align}
\]
(5.23)

gdzie:
- \(s_A^2\) – wariancja międzygrupowa dla czynnika A,
- \(s_2^2\) – wariancja wewnątrzgrupowa (resztkowa) dla czynnika A.

Hipoteza zerowa mówi, że wariancja międzygrupowa związana z czynnikiem A jest równa wariancji resztkowej lub że jest niewiększa niż wariancja resztkowa. Oznacza to, że zmienne niezależne nie ma istotnego wpływu na zmienność obserwowanej zmiennej zależnej. Tym samym można uznać, że różnice w wariancji pomiędzy wydzielonymi ze względu na czynnik A grupami są statystycznie nieistotne. Ponieważ większa różnica w średniej wartości zmiennej pomiędzy porównywanymi grupami przekłada się na większą wariancję międzygrupową [42], można uznać, że wartości średnie w poszczególnych grupach również nie są istotnie różne.

Decyzja o odrzuceniu lub przyjęciu hipotezy zerowej podejmowana jest na podstawie wartości statystyki testowej F.

Statystyka testowa przyjmuje postać:
\[
F = \frac{\frac{\sum_{j=1}^{k} (\bar{x}_j - \bar{x})^2}{n_j}}{\frac{\sum_{j=1}^{k} \sum_{i=1}^{n_j} (x_{ij} - \bar{x}_j)^2}{(n-k)}}
\]
(5.24)

gdzie:
- \(n_j\) – liczebność grupy j,
- \(\bar{x}_j\) – wartość średniej dla zmiennej zależnej w grupie j,
- \(\bar{x}\) – wartość średniej ogólnej.

Odrzucenie hipotezy zerowej oznacza, że wśród analizowanych grup są takie w których wartość średnia zmiennej zależnej jest istotnie różna. Na podstawie jednoczynnikowej analizy wariancji nie można jednak stwierdzić które to grupy.

W pracy, testy porównań wielokrotnych wykonano z zastosowaniem metody NIR (Najmniejsza Istotna Różnica). Metoda ta polega na wykonaniu szeregu testów t - Studenta, dla każdej porównywalnej pary średnich. Wynikiem testu NIR jest macierz wartości p, która wskazuje na prawdopodobieństwo popełnienia błędu związanego z przyjęciem hipotezy o istnieniu różnic między parami warości średnich (tabela 5.1).

Tabela 5.1. Macierz wartości p testu Najmniejszej Istotnej Różnicy

<table>
<thead>
<tr>
<th>Nazwa populacji</th>
<th>A_1</th>
<th>A_2</th>
<th>A_3</th>
<th>...</th>
<th>A_a</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_1</td>
<td>—</td>
<td>p_{12}</td>
<td>p_{13}</td>
<td>...</td>
<td>p_{1a}</td>
</tr>
<tr>
<td>A_2</td>
<td>$p_{21} = p_{12}$</td>
<td>—</td>
<td>p_{23}</td>
<td>...</td>
<td>p_{2a}</td>
</tr>
<tr>
<td>A_3</td>
<td>$p_{31} = p_{13}$</td>
<td>$p_{32} = p_{23}$</td>
<td>—</td>
<td>...</td>
<td>p_{3a}</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>A_a</td>
<td>$p_{a1} = p_{1a}$</td>
<td>$p_{a2} = p_{2a}$</td>
<td>$p_{a3} = p_{3a}$</td>
<td>...</td>
<td>—</td>
</tr>
</tbody>
</table>

Jeżeli $(p < \alpha)$ wartość p nie przekracza założonej w analizie wartości poziomu istotności $\alpha = 0,1$ to różnice pomiędzy parami średnich należy traktować jako statystycznie istotne. Interpretację wyników badań przeprowadzono opierając się o analizę statystyczną z wykorzystaniem dodatku Analysis ToolPak Microsoft Excel.
6 Wyniki badań laboratoryjnych materiałów

6.1 Wyniki badań własności asfaltu 35/50

Właściwości asfaltu 35/50, użytego do badań laboratoryjnych, przedstawiono w tabeli 6.1.

Tabela 6.1. Właściwości asfaltu 35/50 używanego w badaniach laboratoryjnych

<table>
<thead>
<tr>
<th>Właściwość</th>
<th>Norma</th>
<th>Wynik</th>
<th>Wymagania</th>
</tr>
</thead>
<tbody>
<tr>
<td>Penetracja [25°C, 0.1 mm]</td>
<td>PN-EN 1426 [186]</td>
<td>36,50</td>
<td>35-50</td>
</tr>
<tr>
<td>Temperatura mięknienia [°C]</td>
<td>PN-EN 1427 [187]</td>
<td>55,80</td>
<td>50-58</td>
</tr>
<tr>
<td>Temperatura łamliwości [°C]</td>
<td>PN-EN 12593 [164]</td>
<td>-14,00</td>
<td>≤ -5</td>
</tr>
<tr>
<td>Lepkość [Pa s]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>60°C</td>
<td>ASTM D 4402 [156]</td>
<td>716,833</td>
<td></td>
</tr>
<tr>
<td>90°C</td>
<td></td>
<td>21,006</td>
<td></td>
</tr>
<tr>
<td>135°C</td>
<td></td>
<td>0,710</td>
<td></td>
</tr>
<tr>
<td>160°C</td>
<td></td>
<td>0,214</td>
<td></td>
</tr>
</tbody>
</table>

6.2 Wyniki badań własności kruszyw

Tabela 6.2. Podstawowe cechy fizyczne kruszyw stosowanych do zaprojektowania mieszanki mineralno-asfaltowej AC 16 W

<table>
<thead>
<tr>
<th>Wymiar oczek sita [mm]</th>
<th>wapien 0/4</th>
<th>granodioryt 4/8</th>
<th>dolomit 8/11</th>
<th>granodioryt 11/16</th>
<th>wypełniacz wapienny</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Przechodzi przez sito [%]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>31,5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22,4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16,0</td>
<td>100,0</td>
<td>100,0</td>
<td>88,0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11,2</td>
<td>100,0</td>
<td></td>
<td>87,0</td>
<td>12,0</td>
<td></td>
</tr>
<tr>
<td>8,0</td>
<td>91,0</td>
<td></td>
<td>3,0</td>
<td>1,0</td>
<td></td>
</tr>
<tr>
<td>5,6</td>
<td>100,0</td>
<td>39,0</td>
<td>1,0</td>
<td>1,0</td>
<td></td>
</tr>
<tr>
<td>4,0</td>
<td>99,6</td>
<td>7,0</td>
<td>1,0</td>
<td>1,0</td>
<td></td>
</tr>
<tr>
<td>2,0</td>
<td>79,3</td>
<td>1,0</td>
<td>1,0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10,0</td>
<td>50,6</td>
<td>1,0</td>
<td>1,0</td>
<td>1,0</td>
<td></td>
</tr>
<tr>
<td>0,5</td>
<td>35,2</td>
<td>1,0</td>
<td>1,0</td>
<td>1,0</td>
<td></td>
</tr>
<tr>
<td>0,25</td>
<td>25,7</td>
<td>1,0</td>
<td>1,0</td>
<td>1,0</td>
<td>100,0</td>
</tr>
<tr>
<td>0,125</td>
<td>19,4</td>
<td>1,0</td>
<td>1,0</td>
<td>1,0</td>
<td>97,0</td>
</tr>
<tr>
<td>0,063</td>
<td>15,4</td>
<td>1,0</td>
<td>1,0</td>
<td>1,0</td>
<td>83,0</td>
</tr>
<tr>
<td>Kategoria uzarnienia kruszywa</td>
<td>G_A 90</td>
<td>G_c 90/10</td>
<td>G_c 85/15</td>
<td>G_c 85/15</td>
<td>G_F 85</td>
</tr>
<tr>
<td>Wymagania</td>
<td>min G_F 85</td>
<td>min G_c 85/25</td>
<td>G_c 85/15</td>
<td>G_f 85</td>
<td></td>
</tr>
<tr>
<td>Kategoria zawartości pyłów</td>
<td>f_16</td>
<td>f_1</td>
<td>f_1</td>
<td>f_1</td>
<td>-</td>
</tr>
<tr>
<td>Wymagania</td>
<td>max f_16</td>
<td>max f_2</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gęstość [kg/m³]</td>
<td>2686</td>
<td>2717</td>
<td>2821</td>
<td>2674</td>
<td>2618</td>
</tr>
</tbody>
</table>

Kategoria uzarnienia kruszywa oraz kategoria zawartości pyłów dla wszystkich badanych kruszyw spełnia wymagania odnośnie przydatności do MMA przeznaczonych do warstwy wiązącej nawierzchni o kategorii ruchu KR 3–4 zgodnie z WT I 2010 [191].
6.3 Wyniki badań zeolitów

Podstawowe właściwości fizyczne zeolitów użytych do badań przedstawiono w tabeli 6.3. Ze względu na zbliżony charakter uziarnienia oraz wykonane badania fazowe w rozdziale tym opisano również właściwości mączki wapiennej pełniącej rolę wypełniacza w projektowanych MMA.

Tabela 6.3. Podstawowe właściwości wypełniacza oraz materiałów zeolitowych stosowanych w badaniach

<table>
<thead>
<tr>
<th>Rodzaj materiału</th>
<th>Gęstość [kg/m³]</th>
<th>Nasiąkliwość [%]</th>
<th>Wilgotność [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Klinoptilolit</td>
<td>2135</td>
<td>50</td>
<td>4,40</td>
</tr>
<tr>
<td>Na-P1</td>
<td>2319</td>
<td>165</td>
<td>7,82</td>
</tr>
<tr>
<td>Mączka wapienna</td>
<td>2618</td>
<td>22</td>
<td>0,36</td>
</tr>
</tbody>
</table>

Zarówno klinoptilolit, jak i zeolit syntetyczny o typie struktury NaP1 ma mniejszą gęstość od wypełniacza wapiennego. Wilgotność obu materiałów zeolitowych jest znacznie większa niż wypełniacza i przekracza wartość dopuszczalną (1%) zgodnie z WT 1 2010 [191]. Nasiąkliwość klinoptilolitu jest ponad 2 krotnie większa od mączki wapiennej a zeolitu NaP1 7,5 krotnie.

Rozkład wielkości ziaren obu materiałów zeolitowych wybranych do badań oraz wypełniacza wapiennego przedstawiono na rysunku 6.1 i w tabeli 6.4. Krzywa uziarnienia zeolitu NaP1 i mączki wapiennej reprezentuje modalny rozkład cząstek zeolitu z maksimum średnicy 25 µm. W przypadku zeolitu naturalnego występuje rozkład bimodalny, z pierwszym maksimum o średnicy 25 µm i drugim o wymiarach cząstek 300 µm.

Tabela 6.4. Uziarnienie wypełniacza i materiałów zeolitowych stosowanych w badaniach

<table>
<thead>
<tr>
<th>Rodzaj materiału</th>
<th>2 µm</th>
<th>20 µm</th>
<th>50 µm</th>
<th>100 µm</th>
<th>250 µm</th>
<th>500 µm</th>
<th>1000 µm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Klinoptilolit</td>
<td>4,92</td>
<td>18,62</td>
<td>15,92</td>
<td>14,25</td>
<td>22,38</td>
<td>19,11</td>
<td>4,78</td>
</tr>
<tr>
<td>Na-P1</td>
<td>4,92</td>
<td>52,61</td>
<td>27,89</td>
<td>12,32</td>
<td>2,25</td>
<td>0,00</td>
<td>0,00</td>
</tr>
<tr>
<td>Mączka wapienna</td>
<td>9,20</td>
<td>43,41</td>
<td>20,87</td>
<td>14,67</td>
<td>11,07</td>
<td>0,73</td>
<td>0,04</td>
</tr>
</tbody>
</table>
Rys. 6.1. Wykres rozkładu wielkości ziaren materiałów zeolitowych i mączki wapiennej oznaczony metodą dyfrakcji laserowej

Skład chemiczny

Skład chemiczny materiałów zeolitowych i mączki wapiennej przedstawiono w tabeli 6.5. Głównymi składnikami chemicznymi zeolitów jest: tlenuk krzemu (SiO$_2$) i tlenuk glinu (Al$_2$O$_3$), których zawartości ilościowe w zależności od struktury zeolitu wynoszą odpowiednio 67,421% i 9,696% w przypadku klinoptilolitu oraz 41,231% i 21,992% dla zeolitu NaP1. Pozostałe składniki chemiczne występują w znacznie mniejszych ilościach rzędu kilku procent. Głównymi kationami wymiennymi w przypadku klinoptilolitu są wapń (CaO – 3,029), potas (K$_2$O – 3,010) i sód (Na$_2$O – 2,116). Natomiast w przypadku zeolitu NaP1 to sód (Na$_2$O – 4,820) pochodzący głównie z NaOH będącego substratem w reakcji syntezy, a także wapń (CaO – 4,495) i żelazo (Fe$_2$O$_3$ – 4,589) których źródłem jest popiół lotny użyty do procesu konwersji.

W składzie chemicznym mączki wapiennej dominuje wapń (CaO – 91,065), którego wysoka zawartość związana jest z obecnością głównego składnika mineralnego wapieni tj. kalcytu CaCO$_3$. W podrzędnych ilościach występują sód, magnez, krzem i żelazo.
Tabela 6.5. Skład chemiczny materiałów zeolitowych i mączki wapiennej

<table>
<thead>
<tr>
<th></th>
<th>Klinoptilolit [% wag]</th>
<th>NaP1 [% wag]</th>
<th>Mączka wapienna [% wag]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Na₂O</td>
<td>2,116</td>
<td>4,820</td>
<td>3,776</td>
</tr>
<tr>
<td>MgO</td>
<td>0,732</td>
<td>1,563</td>
<td>1,163</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>9,696</td>
<td>21,992</td>
<td>0,406</td>
</tr>
<tr>
<td>SiO₂</td>
<td>67,421</td>
<td>41,231</td>
<td>1,562</td>
</tr>
<tr>
<td>P₂O₅</td>
<td>0,451</td>
<td>0,758</td>
<td>n.d</td>
</tr>
<tr>
<td>SO₃</td>
<td>0,047</td>
<td>0,125</td>
<td>n.d</td>
</tr>
<tr>
<td>K₂O</td>
<td>3,010</td>
<td>2,197</td>
<td>0,091</td>
</tr>
<tr>
<td>CaO</td>
<td>3,029</td>
<td>4,495</td>
<td>91,065</td>
</tr>
<tr>
<td>TiO₂</td>
<td>0,244</td>
<td>1,401</td>
<td>0,043</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>2,034</td>
<td>4,589</td>
<td>1,111</td>
</tr>
<tr>
<td>LOI</td>
<td>11,220</td>
<td>16,830</td>
<td>2,345</td>
</tr>
</tbody>
</table>

Skład mineralny

Dyfraktogramy składu mineralnego zeolitów i mączki wapiennej przedstawiono na rysunku 6.2. Głównymi składnikami materiałów zeolitowych użytych do badań jest klinoptilolit i NaP1. Klinoptilolit rozpoznano po charakterystycznych odległościach między płaszczyznach \(d_{hkl} = 8,95; 7,94; 3,96; 3,90 \) Å, natomiast NaP1 po \(d_{hkl} = 7,10; 5,01; 4,10; 3,18 \) Å. Skład mineralny naturalnego materiału zeolitowego uzupełniają niewielkie ilości opalu CT, kwarcu i skaleni potasowych, natomiast w przypadku materialu syntetycznego – mullit, kwarc i nieprzereagowane fragmenty szkliwa glinokrzemianowego. W obu przypadkach zawartość faz zeolitowych wynosi około 75% objętości.

Mączka wapienna użyta do badań składa się w główne mierze z kalcytu rozproszonego po \(d_{hkl} = 3,03 \), któremu towarzyszą podtrzymie występujący dolomit i kwarc.
Morfologicznie klinoptilolit występuje w postaci płytek o rozmiarach 20–30 µm, niekiedy w obrazach mikroskopu skaningowego SEM zaznacza się ich heksagonalny kształt (fot. 6.1). Natomiast zeolit typu NaP1 tworzy drobne agregaty płytkowe, których rozmiary wahają się od 2 do 3 µm. (fot. 6.2). Mączka wapienna występuje w formie nieregularnych ostrokrawędzistych ziaren (fot. 6.3).

Analizy chemiczne w mikroobszarach potwierdzają przynależność klinoptilolitu do zeolitów wysokokrzemowych a zeolitu NaP1 do średniokrzemowych. W przypadku klinoptilolitu głównymi kationami jonowymi są potas i wapń, zaś w zeolicie NaP1 kationem wymiennym jest sód.
Fot. 6.1. Mikrofotografia i widmo składu chemicznego klinoptilolitu

Fot. 6.2. Mikrofotografia i widmo składu chemicznego zeolitu NaP1

Fot. 6.3. Mikrofotografia i widmo składu chemicznego mączki wapiennej
Właściwości teksturalne

 Wyniki badań teksturanych zeolitu naturalnego, syntetycznego i mączki wapiennej przedstawiono w tabeli 6.6. Zarówno materiały zeolitowe jak i mączka wapienna wykazują bardzo zróżnicowane właściwości teksturalne. Oba zeolity reprezentują mezoporowaty charakter materiałów. Zeolit typu NaP1 posiada prawie 4-krotnie większą powierzchnię właściwą (94,48 m²/g) niż klinoptilolit (18,3 m²/g). Zdecydowanie większy udział powierzchni mezoporów w całkowitej powierzchni właściwej zaznacza się dla zeolitu syntetycznego. Podobna tendencja występuje również w udziale objętościowym mezoporów w stosunku do wartości dla klinoptilolitu.

Tabela 6.6. Parametry teksturalne klinoptilolitu i zeolitu NaP1

<table>
<thead>
<tr>
<th>Material</th>
<th>(S_{\text{BET}}) m²/g</th>
<th>(V_{\text{mic}}) cm³/g</th>
<th>(S_{\text{mic}}) m²/g</th>
<th>(V_{\text{mes}}) cm³/g</th>
<th>(S_{\text{mes}}) m²/g</th>
<th>(D_{p}) nm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Klinoptilolit</td>
<td>18,30</td>
<td>0,005100</td>
<td>10,65</td>
<td>0,0460</td>
<td>7,68</td>
<td>10,0</td>
</tr>
<tr>
<td>NaP1</td>
<td>94,48</td>
<td>0,004800</td>
<td>10,62</td>
<td>0,2330</td>
<td>85,86</td>
<td>8,9</td>
</tr>
<tr>
<td>Mączka wapienna</td>
<td>1,91</td>
<td>0,000019</td>
<td>1,95</td>
<td>0,0075</td>
<td>1,65</td>
<td>18,3</td>
</tr>
</tbody>
</table>

gdzie: \(S_{\text{BET}} \) – powierzchnia właściwa, \(V_{\text{mic}}/V_{\text{mes}} \) – objętość mikroporów/objętość mezoporów, \(S_{\text{mic}}/S_{\text{mes}} \) – powierzchnia mikroporów/powierzchnia mezoporów, \(D_{p} \) – średni promień porów

Mączka wapienna to materiał makroporowaty za czym przemawia fakt bardzo niskiej powierzchni właściwej tego wypełniacza rzędu 2 m²/g oraz mały udział w tej powierzchni mezoporów i mikroporów.

Analiza termiczna

Ze względu na wpływ zawartości wody obecnej w strukturze zeolitów i charakter jej wiązania na efekt spienienia asfaltu wykonano dla obu materiałów zeolitowych analizy termiczne. Krzywe termiczne przedstawiono na rysunku 6.3, a zestawienie liczbowe w tabeli 6.7.
Rys. 6.3. Derywatogramy klinoptilolitu i zeolitu typu NaP1

Tabela 6.7. Efekty termiczne zachodzące w klinoptilolicie i zeolicie NaP1

<table>
<thead>
<tr>
<th>Zakres:</th>
<th>Klinoptilolit</th>
<th>NaP1</th>
<th>Klinoptilolit</th>
<th>NaP1</th>
</tr>
</thead>
<tbody>
<tr>
<td>25–200°C</td>
<td>7,66</td>
<td>20,36</td>
<td>189,5</td>
<td>122,2; 155,2</td>
</tr>
<tr>
<td>200–450°C</td>
<td>4,14</td>
<td>2,34</td>
<td>424,3</td>
<td>----</td>
</tr>
<tr>
<td>450–650°C</td>
<td>3,40</td>
<td>2,53</td>
<td>621,9 egz.</td>
<td>553,3 egz.</td>
</tr>
<tr>
<td>650–800°C</td>
<td>2,54</td>
<td>3,79</td>
<td>772,3</td>
<td>764,9</td>
</tr>
</tbody>
</table>

Analiza termiczna (TG) klinoptilolitu wykazała gwałtowny spadek masy o 11,8% podczas ogrzewania od temperatury 25°C do 450°C. Efekt ten związany jest ze stopniową utratą wody zaadsorbowanej i strukturalnej uwięzionej w kryształach zeolitu. Dalsze ogrzewanie do temperatury 800°C powoduje niewielkie zmiany w masie próbki (o 5,94%). Przy temperaturze 800°C widać również stabilizację masy próbki co może wskazywać na wysoką termostabilność materiału. Badania DTA w przedziale od 25–200°C wykazały obecność reakcji endotermicznej z maksimum w temperaturze 189,5°C. Dalsze ogrzewanie otrzymanego klinoptilolitu powoduje dehydroksylację grup OH zobrazowaną
endotermicznym pikiem w temperaturze 424,3°C, co można wiązać z rozpadem wiązań hydroksylowych powstałych pomiędzy kationami wymiennymi, a spolaryzowaną cząsteczką wody. W zakresie od 450 do 630°C występuje szeroki efekt egzotermiczny z maksimum przy 621,9°C związany z rekryystalizacją materiału połączone dehydratacją i dehydroksylacją. W obszarze powyżej 700°C występują reakcje egzotermiczne odpowiedzialne za załamanie się struktury krystalicznej klinoptilolitu.

Zeolit NaP1 w analizie termogravimetrycznej charakteryzuje się sukcesywnym spadkiem masy w całym przedziale temperaturowym. Największy ubytek masy, wynoszący 20,36%, zarejestrowano w zakresie temperatur 25–200°C. Po przekroczeniu temperatury 200°C do około 400°C ubytek masy jest niewielki i nie przekracza 2,5%. W zakresie temperatur 400–650°C ubytek masy dla próbki zeolitu NaP1 wynosi 2,53%, co można wiązać z procesami dalszej dehydratacji. Ubytki masy w zakresie temperatur 600–800°C są rzędu 3–4%. Ubytkiem masy TG towarzyszy pojawianie się pików endo – i egzotermicznych na krzywych DTA. Próbkę NaP1 w zakresie temperatur 25–200°C charakteryzuje endotermiczny efekt związany z wydzielaniem wilgoci lub wody hydratacyjnej-zeolitowej. W zakresie temperatur 450–650°C krzywe DTA charakteryzują się pikami egzotermcznymi co można wiązać z procesami rekryystalizacji i/lub procesem kolapsu struktury zeolitu wyjściowego w temperaturze 553,3°C, z tym, że dla tego zeolitu obecny jest na krzywej DTA drugi pik egzotermiczny w temperaturze 586,3°C. W zakresie temperaturowym powyżej 700°C zachodzą reakcje egzotermiczne odpowiedzialne za całkowite załamanie się struktury krystalicznej zeolitu NaP1.

6.4 Projekt mieszanki mineralno-asfaltowej

Projekt mieszanki mineralnej

Materiałem referencyjnym w badaniach laboratoryjnych jest mieszanka mineralno-asfaltowa przeznaczona na warstwę wiążącą drogi obciążonej ruchem o kategorii KR 3–4 (AC 16 W 35/50), zaprojektowana zgodnie z polskimi standardami technicznymi WT 2 2010 [192].

Tabela 6.8. Uziarnienie mieszanki mineralnej 0/16 przeznaczonej do warstwy wiążącej z betonu asfaltowego AC 16 W, dla kategorii ruchu KR 3–4 wg WT 2010

<table>
<thead>
<tr>
<th>Wymiar sita [mm]</th>
<th>Odsiew [%]</th>
<th>Skrócony odsiew [%]</th>
<th>Przesiew [%]</th>
<th>Rzędne krzywych granicznych</th>
</tr>
</thead>
<tbody>
<tr>
<td>31,5</td>
<td>0,0</td>
<td>69,4</td>
<td>100,0</td>
<td>-</td>
</tr>
<tr>
<td>22,4</td>
<td>0,0</td>
<td></td>
<td>100,0</td>
<td>100 100</td>
</tr>
<tr>
<td>16,0</td>
<td>2,4</td>
<td></td>
<td>97,6</td>
<td>90 100</td>
</tr>
<tr>
<td>11,2</td>
<td>17,6</td>
<td></td>
<td>80,0</td>
<td>70 90</td>
</tr>
<tr>
<td>8,0</td>
<td>19,6</td>
<td></td>
<td>60,4</td>
<td>55 85</td>
</tr>
<tr>
<td>5,6</td>
<td>12,9</td>
<td></td>
<td>47,5</td>
<td>- -</td>
</tr>
<tr>
<td>4,0</td>
<td>7,9</td>
<td></td>
<td>39,6</td>
<td>- -</td>
</tr>
<tr>
<td>2,0</td>
<td>9,0</td>
<td>24,4</td>
<td>30,6</td>
<td>25 50</td>
</tr>
<tr>
<td>1,0</td>
<td>10,6</td>
<td></td>
<td>20,0</td>
<td>- -</td>
</tr>
<tr>
<td>0,5</td>
<td>5,7</td>
<td></td>
<td>14,3</td>
<td>- -</td>
</tr>
<tr>
<td>0,25</td>
<td>3,5</td>
<td></td>
<td>10,7</td>
<td>- -</td>
</tr>
<tr>
<td>0,125</td>
<td>2,5</td>
<td></td>
<td>8,3</td>
<td>4 12</td>
</tr>
<tr>
<td>0,063</td>
<td>2,0</td>
<td></td>
<td>6,2</td>
<td>4 10</td>
</tr>
<tr>
<td>0,0</td>
<td>6,2</td>
<td>6,2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>razem</td>
<td>100,0</td>
<td>100,0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Rys. 6.4. Wykres krzywej uziarnienia mieszanki mineralnej 0/16 przeznaczonej do warstwy wiążącej z betonu asfaltowego AC 16 W, dla kategorii ruchu KR 3–4 wg WT 2010

Krzywą mieszanki mineralnej zaprojektowano blisko dolnej krzywej granicznej. Silny szkielet utworzony przez wprowadzenie dużej ilości kruszyw najgrubszych frakcji powinien
przenieść ekstremalne naprężenia powstające w warstwie wiążącej. Na podstawie zaprojektowanej krzywej można wnioskować, że uzyskana mieszanka mineralno-asfaltowa będzie mieć dużą odporność na deformacje trwałe przy zmniejszonej odporności na zmęczenie.

Projekt mieszanki mineralno-asfaltowej

Zawartość asfaltu przyjęto na poziomie minimalnym, zgodnie z Wytycznymi Technicznymi WT 2 [192], uwzględniając gęstość mieszanki mineralnej. Postępowanie takie miało na celu odzwierciedlenie rzeczywiście stosowanych w praktyce procedur projektowych. Przyjęty skład mieszanki mineralnej oraz skład mieszanki mineralno-asfaltowej przedstawiono w tabeli 6.9.

Tabela 6.9. Projektowany skład mieszanki mineralnej i mieszanki mineralno-asfaltowej 0/16 przeznaczonej do warstwy wiążącej z betonu asfaltowego AC 16 W, dla kategorii ruchu KR 3–4 wg WT 2 2010

<table>
<thead>
<tr>
<th>Nazwa składnika mieszanki</th>
<th>Udział w mieszance [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MM</td>
</tr>
<tr>
<td>Wypełniacz wapienny</td>
<td>4,0</td>
</tr>
<tr>
<td>Wapień 0/4</td>
<td>34,0</td>
</tr>
<tr>
<td>Granodioryt 4/8</td>
<td>24,0</td>
</tr>
<tr>
<td>Granodioryt 11/16</td>
<td>20,0</td>
</tr>
<tr>
<td>Dolomit 8/12</td>
<td>18,0</td>
</tr>
<tr>
<td>Asfalt 35/50</td>
<td>4,6</td>
</tr>
</tbody>
</table>

W recepcie MMA z dodatkiem zeolitu zmniejszono dodatek wypełniacza o procentową zawartość dozowanego materiału zeolitowego.

6.5 Wyniki badań i analiza właściwości asfaltu 35/50 z dodatkiem materiałów zeolitowych

Oznaczenie próbek asfaltu i zaczynu asfaltowego z materiałami zeolitowymi

Rodzaj badanego materiału oznaczono poniższymi symbolami:

- 35/50 – asfalt referencyjny 35/50
- CLIN – asfalt 35/50 z 5% dodatkiem zeolitu naturalnego klinoptilolitu
- CLIN +W – asfalt 35/50 z 5% dodatkiem zeolitu naturalnego klinoptilolitu nasączonego wodą
NaP1 – asfalt 35/50 z 5% dodatkiem zeolitu syntetycznego NaP1

NaP1+W – asfalt 35/50 z 5% dodatkiem zeolitu syntetycznego NaP1 nasączonego wodą

WW – asfalt 70/100 z dodatkiem wypełniacza wapiennego

Własności asfaltu 35/50 z dodatkiem materiału zeolitowego

Wyniki badań własności asfaltu 35/50 z 5% dodatkiem materiału zeolitowego przedstawiono w tabeli 6.10.

Tabela 6.10. Wyniki badań własności asfaltu 35/50 oraz zaczynu asfaltowego z 5% dodatkiem materiałów zeolitowych

<table>
<thead>
<tr>
<th>Oznaczenie próbki</th>
<th>Penetracja [0,1 mm]</th>
<th>Temperatura mięknięcia [ºC]</th>
<th>Temperatura łamliwości [ºC]</th>
<th>Indeks penetracji [-]</th>
<th>TZP [ºC]</th>
</tr>
</thead>
<tbody>
<tr>
<td>35/50</td>
<td>36,5</td>
<td>55,7</td>
<td>-14,0</td>
<td>-0,58</td>
<td>69,7</td>
</tr>
<tr>
<td>CLIN</td>
<td>36,1</td>
<td>56,5</td>
<td>-11,5</td>
<td>-0,44</td>
<td>68,0</td>
</tr>
<tr>
<td>CLIN+W</td>
<td>36,2</td>
<td>55,1</td>
<td>-10,5</td>
<td>-0,73</td>
<td>65,6</td>
</tr>
<tr>
<td>NaP1</td>
<td>34,5</td>
<td>57,2</td>
<td>-11,5</td>
<td>-0,40</td>
<td>68,7</td>
</tr>
<tr>
<td>NaP1+W</td>
<td>36,2</td>
<td>55,1</td>
<td>-12,5</td>
<td>-0,73</td>
<td>67,6</td>
</tr>
</tbody>
</table>

TZP – temperaturowy zakres plastyczności

Wyniki badań penetracji przedstawione na rysunku 6.5 wskazują, że dodatek 5% materiału zeolitowego nie ma wpływu na konsystencję asfaltu 35/50. Jedynie dodatek zeolitu syntetycznego NaP1 spowodował niewielkie utwardzenie asfaltu. W tym przypadku penetracja spadła z 36,5 do 34,5.

Rys. 6.5. Wyniki badań penetracji asfaltu 35/50 z 5% dodatkiem materiałów zeolitowych

Dodatek zeolitu nie ma większego wpływu na temperaturę mięknięcia i łamliwości asfaltu (rys. 6.6, rys 6.7). Zastosowanie zeolitu spowodowało nieznaczny spadek temperatury
łamliwości asfaltu 35/50. Największy spadek o 3,5°C odnotowano przy zastosowaniu 5% dodatku zeolitu naturalnego klinoptilolitu nasączonego dodatkowo wodą. W pozostałych przypadkach różnica jest poniżej 3°C, co stanowi dopuszczalną normową różnicę między dwoma badaniami. Największy przyrost temperatury mięknienia, wynoszący zaledwie 1,5°C zaobserwowano dla dodatku zeolitu syntetycznego. W pozostałych przypadkach różnica pomiaru w stosunku do materiału referencyjnego wynosiła poniżej 1°C.

Rys. 6.6. Wyniki badań temperatury mięknienia asfaltu 35/50 z 5% dodatkiem materiałów zeolitowych

Rys. 6.7. Wyniki badań temperatury łamliwości asfaltu 35/50 z 5% dodatkiem materiałów zeolitowych

Na podstawie wyników badań penetracji i temperatury mięknienia obliczono indeks penetracji. Analiza uzyskanych wyników wskazuje, że asfalt 35/50 z dodatkiem materiału zeolitowego nasączonego wodą ma większą wrażliwość termiczną w stosunku do lepiszcza referencyjnego. Natomiast dodatek klinoptilolitu oraz zeolitu syntetycznego NaP1, bez
wprowadzania w ich strukturę dodatkowej ilości wody, skutkuje niewielkim spadkiem wrażliwości termicznej lepiszcza. Temperaturowy zakres plastyczności asfaltu 35/50 z dodatkiem zeolitów nieznacznie się zmniejszył. Przy czym podobnie, jak w wyżej analizowanych badaniach, nie były to zmiany znaczące.

Reasumując, dodatek materiału zeolitowego do asfaltu 35/50 nie ma znaczącego wpływu na zmianę właściwości badanego lepiszcza takich jak: konsystencja, temperatura mięknięcia i łamliwości, wrażliwość termiczna oraz temperaturowy zakres plastyczności.

Badanie właściwości usztywniających zaczynu asfaltowego z dodatkiem materiałów zeolitowych

Zeolit w recepcie MMA zastępuje wypełniacz. Nie jest to jednak stosunek 1:1 a tylko częściowa „zamiana” wynikająca z konieczności dodania odpowiedniej ilości zeolitu w celu osiągnięcia efektu spienienia asfaltu. Wyniki badań przedstawionych w punkcie 6.6 wskazują, że optymalna zawartość zeolitu kształtuję się w granicach od 0,4 do 1% w stosunku do masy MMA. W danych literaturowych niejednokrotnie przyjmowaną wartością jest 0,25%. Przyjmując, zgodnie z receptą 3,8% (p. 6.4 niniejszej pracy) dodatek wypełniacza wapiennego w stosunku do masy MMA, zeolit stanowić będzie od 10 do 26% zawartości wypełniacza. W związku z powyższym wykonano dodatkowo badania właściwości usztywniających zaczynów asfaltowych z dodatkiem:

- wypełniacza i klinoptilołitu w stosunku 9:1; 8:2 oraz 7:3,
- wypełniacza i zeolitu syntetycznego typu NaP1 w stosunku 9:1; 8:2 oraz 7:3.

Z uwagi na procedurę przygotowania próbki (wysuszenie „wypełniacza” do stałej masy) oraz charakter badanej cechy nie wykonywano tego oznaczenia dla zaczynów asfaltowych z zeolitami nasączenymi wodą.

Wyniki badań właściwości usztywniających zeolitów przedstawiono na rysunku 6.8.
Rys. 6.8. Wyniki badań właściwości usztywniających materiałów zeolitowych mierzone przyrostem temperatury mięknięcia Δ\textsubscript{R&B} zaczynu asfaltowego z materiałami zeolitowymi

Na podstawie otrzymanych wyników badań stwierdzono, że klinoptilolit ma większe oddziaływanie usztywniające (15°C) niż wypełniacz wapienny (9°C). Badanie zaczynu asfaltowego z zeolitem syntetycznym NaP1 nie zostało przeprowadzone, ponieważ materiał zeolitowy „wchłonął” asfalt (fot. 6.8), co jest efektem bardzo dużej porowatości materiału zeolitowego NaP1.

Fot. 6.4. Próba przygotowania próbki wg normy PN-EN 13179–1:2013 [184] do badania właściwości usztywniających zeolitu syntetycznego typu NaP1

Zastąpienie części wypełniacza mineralnego klinoptilolitem spowodowało usztywnienie zaczynu asfaltowego od 10,4°C do 11,4°C, natomiast zeolitem NaP1 o 11,8–16,8°C.
Reasumując można stwierdzić, że zastąpienie wypełniacza wapiennego materiałem zeolitowym w stosunku 1:1 nie jest możliwe z uwagi na dużą porowatość zeolitów oraz duże usztywnienie zaczynu asfaltowego, mierzonego przyrostem temperatury mięknięcia. Dodatek materiału zeolitowego w ilości optymalnej (p. niniejszej pracy) w stosunku do masy MMA dla AC 16 W (p. niniejszej pracy) stanowi nie więcej niż 30% dozowanego wypełniacza wapiennego. Zaczyn asfaltowy z wypełniaczem wapiennym i zeolitami w proporcji 9:1, 8:2, 7:3 charakteryzuje się niedużym przyrostem temperatury mięknięcia o kategorii ΔR&B 8/16 lub ΔR&B 17/25. Zgodnie z WT 1 2010 [191] wypełniacz tej kategorii może być stosowany w mieszkankach mineralno-asfaltowych każdego typu.

Lepkość dynamiczna asfaltu 35/50 z dodatkiem materiału zeolitowego

Biorąc pod uwagę charakterystykę procesu spieniania, w badaniach nad możliwościami zastosowania zeolitów do obniżania temperatur technologicznych MMA, istotne było określenie wpływu dodatku zeolitu na lepkość asfaltu. Wykonanie oznaczeń lepkości w 4 interwałach czasowych w temperaturze 135°C i 160°C, wynika z przebiegu procesu uwalniania wody zeolitowej. Proces ten jest zależny od czasu i temperatury.

Wyniki z przeprowadzonych badań lepkości zestawiono na rysunku 6.9 i 6.10.

Otrzymane wyniki badań lepkości wykazały wpływ charakteru krystalochemicznego zeolitów na spienienie asfaltu spowodowane stopniowym uwalnianiem wody ze struktury tych minerałów. Niezależnie od rodzaju dodatku zeolitowego spadek lepkości nastąpił w 30 minucie badania, czyli po 45 minutach od wprowadzenia zeolitu do lepiszcza asfaltowego. Na podstawie oznaczeń lepkości wykonanych w 45 i 60 minucie badania można wnioskować o stabilizacji procesu spieniania asfaltu przez wodę zeolitową.

Lepkość asfaltu z dodatkiem zeolitu NaP1 i klinoptilolitu w stanie powietrzno suchym była wyższa od lepkości próbki referencyjnej, zarówno w temperaturze badania 135°C jak i w 160°C. Jest to efekt wprowadzenia do lepiszcza ciała stałego nierozpuszczalnego. Zastosowanie zeolitu nasączonego wodą wpłynęło pozytywnie na lepkość asfaltu powodując jej spadek w stosunku do materiałów zeolitowych nienasączanych wodą. Dla tych próbek w temperaturze badania 135°C uzyskano lepkość niższą niż dla asfaltu referencyjnego, natomiast w 160°C zbliżoną.
Rys. 6.9. Wyniki badań lepkości dynamicznej asfaltu 35/50 z dodatkiem materiałów zeolitowych oznaczona w temperaturze 135°C

Rys. 6.10. Wyniki badań lepkości dynamicznej asfaltu 35/50 z dodatkiem materiałów zeolitowych oznaczona w temperaturze 160°C
Próby z dodatkiem zeolitu NaP1 charakteryzowały się najwyższą lepkością spośród badanych materiałów. Należy przypuszczać, że jest to efekt 6 krotnie większej objętości mezoporów tego materiału w stosunku do objętości mezoporów w klinoptilolicie. Jednocześnie dla zaczynu asfaltowego z zeolitem NaP1 odnotowano najwyższy spadek lepkości w czasie, odpowiednio: 6,3% w 135ºC oraz 6,7% w 160ºC. Spadek ten był spowodowany spienianiem asfaltu przez uwalniającą się ze struktury zeolitu wodę. Analiza termiczna (p. 6.3) wykazała, że woda zeolitowa jest uwalniana w większej ilości w zeolicie NaP1 i w niższych temperaturach niż w klinoptilolicie.

Ilość i zakres temperaturowy uwalniania wody zeolitowej należy wiązać z charakterem krystalochemicznym badanych zeolitów. Klinoptilolit zaliczony jest do zeolitów wysokokrzemowych co wpływa bezpośrednio na przebieg procesu dehydratacji. Tego typu zeolity wykazują szeroki efekt endotermiczny w zakresie 140–220ºC i poziom uwalniania wody ze struktury w tym zakresie temperaturowym rzędu 10–15%. Podobna zależność występuje dla zeolitów w których dominują w przestrzeni jonowymiennej kationy dwuwartościowe (Ca²⁺ i Mg²⁺) jak ma to miejsce w przypadku klinoptilolitu wykorzystanego w przeprowadzonych badaniach.

Zeolit typu NaP1 zaliczany jest do średniokrzemowych. Jego głównym kationem jonowymiennej jest sód w efekcie czego maksymalny proces uwalniania wody występuje już w temperaturze 120ºC i charakteryzuje go wąski pik endotermiczny. Ilość uwalnianej wody w zakresie temperaturowym 25–220ºC przekracza 20%.

Zespolony moduł ścianania asfaltu 35/50 z dodatkiem materiału zeolitowego

Temperatury krytyczne według funkcjonalnej klasyfikacji asfaltów określane były na podstawie wyników badań asfaltu z dodatkiem materiałów zeolitowych w reometrze dynamicznego ścianania DSR. Otrzymane wyniki przedstawiono w tabeli 6.11.
Tabela 6.11. Temperatury krytyczne według funkcjonalnej klasyfikacji asfaltów określone na podstawie wyników badań zaczynu asfaltowego z dodatkiem materiałów zeolitowych w reometrze dynamicznego ściania DSR.

<table>
<thead>
<tr>
<th>Oznaczenie próbki</th>
<th>Temperatura krytyczna przy G*/sinδ =1 kPa asfalt przed starzeniem</th>
<th>Temperatura krytyczna przy G*/sinδ =2,2 kPa asfalt po starzeniu RTFOT</th>
<th>Temperatura krytyczna przy G* x sinδ =6000 kPa asfalt po starzeniu RTFOT+PAV</th>
</tr>
</thead>
<tbody>
<tr>
<td>35/50</td>
<td>72,6</td>
<td>70,7</td>
<td>26,9</td>
</tr>
<tr>
<td>CLIN</td>
<td>73,4</td>
<td>70,7</td>
<td>26,7</td>
</tr>
<tr>
<td>CLIN+W</td>
<td>73,8</td>
<td>71,8</td>
<td>29,3</td>
</tr>
<tr>
<td>NaP1</td>
<td>73,6</td>
<td>72,8</td>
<td>27,7</td>
</tr>
<tr>
<td>NaP1+W</td>
<td>73,1</td>
<td>71,4</td>
<td>25,1</td>
</tr>
</tbody>
</table>

Górna temperatura krytyczna (kolumna 2 i 3 tabeli 6.11) określa maksymalną 7–dniową temperaturę nawierzchni. Im wyższa jej wartość tym większa odporność asfaltu na deformacje lepko-plastyczne. Uzyskane wyniki wskazują, że asfalt modyfikowany materiałem zeolitowym jest co najmniej tak odporny na deformacje trwałe jak asfalt referencyjny 35/50.

Badanie przeprowadzone w DSR w pośredniej temperaturze sprawdza odporność lepiszcza na powstawanie spękań zmęczeniowych. Na podstawie otrzymanych dolnych temperatur krytycznych (4 kolumna tabeli 6.11) można wnioskować, że dodatek zeolitu NaP1 oraz klinoptilolitu nasączonego wodą usztywnia asfalt zwiększając prawdopodobieństwo powstania spękań zmęczeniowych. Na podstawie różnic w temperaturach krytycznych wynoszących odpowiednio 0,8°C oraz 2,4°C można uznać, że wpływ materiału zeolitowego, na omawiane powyżej właściwości, nie jest znaczący.

Krzywe wiodące

Wykresy współczynników przesunięcia temperaturowego przedstawiono na rysunku 6.11. Na ich podstawie tworzone były krzywe wiodące lepiszcza oraz zaczynów asfaltowych z zeolitami. W temperaturach do 28°C współczynniki \(a_T \) były zbliżone dla każdego rodzaju materiału oraz niezależne od procesu starzenia. W temperaturach powyżej 28°C na wartość współczynnika \(a_T \) wpływ miał proces starzenia lepiszcza asfaltowego.
Rys. 6.12. Krzywe wiodące asfaltu 35/50 oraz zaczynu asfaltowego z dodatkiem materiałów zeolitowych, wyznaczone przy temperatury referencyjnej 34°C

Tabela 6.12. Parametry reologiczne modelu CA dla asfaltu 35/50 z dodatkiem materiałów zeolitowych oraz modelu WLF współczynnika przesunięcia temperaturowego

<table>
<thead>
<tr>
<th>Oznaczenie próbki</th>
<th>Rodzaj badanego materiału</th>
<th>Parametry modelu CA</th>
<th>Parametry modelu WLF</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>G (Pa)</td>
<td>ω_c [Hz]</td>
</tr>
<tr>
<td>przed RTFOT</td>
<td>A 35/50</td>
<td>2,01E+07</td>
<td>596,83</td>
</tr>
<tr>
<td></td>
<td>B CLIN</td>
<td>1,52E+07</td>
<td>510,89</td>
</tr>
<tr>
<td></td>
<td>C CLIN+W</td>
<td>1,81E+07</td>
<td>560,23</td>
</tr>
<tr>
<td></td>
<td>D NaP1</td>
<td>1,49E+07</td>
<td>469,51</td>
</tr>
<tr>
<td></td>
<td>E NaP1+W</td>
<td>1,45E+07</td>
<td>525,21</td>
</tr>
<tr>
<td>po RTFOT</td>
<td>A 35/50</td>
<td>1,23E+07</td>
<td>230,77</td>
</tr>
<tr>
<td></td>
<td>B CLIN</td>
<td>1,37E+07</td>
<td>233,96</td>
</tr>
<tr>
<td></td>
<td>C CLIN+W</td>
<td>1,68E+07</td>
<td>222,82</td>
</tr>
<tr>
<td></td>
<td>D NaP1</td>
<td>1,38E+07</td>
<td>208,49</td>
</tr>
<tr>
<td></td>
<td>E NaP1+W</td>
<td>1,27E+07</td>
<td>210,08</td>
</tr>
<tr>
<td>po RTFOT+PAV</td>
<td>A 35/50</td>
<td>7,27E+06</td>
<td>15,12</td>
</tr>
<tr>
<td></td>
<td>B CLIN</td>
<td>5,56E+06</td>
<td>9,55</td>
</tr>
<tr>
<td></td>
<td>C CLIN+W</td>
<td>7,22E+06</td>
<td>7,96</td>
</tr>
<tr>
<td></td>
<td>D NaP1</td>
<td>6,95E+06</td>
<td>11,14</td>
</tr>
<tr>
<td></td>
<td>E NaP1+W</td>
<td>6,11E+06</td>
<td>16,71</td>
</tr>
</tbody>
</table>

Częstotliwość „crossover” (ω_c) jest określana miarą twardości asfaltu i wskazuje ogólnie na konsystencję lepiszcza w danej temperaturze i częstotliwości pomiaru [186]. Otrzymane wartości parametru ω_c obrazują proces utwardzania się asfaltu referencyjnego oraz zaczynu asfaltowego z materiałami zeolitowymi w wyniku starzenia technologicznego i eksploatacyjnego.

Na podstawie wyników badań nie można jednoznacznie określić wpływu dodatku materiału zeolitowego na utwardzenie asfaltu 35/50. W próbkach niestarzonych dodatek każdego rodzaju zeolitu spowodował teoretycznie wzrost twardości w stosunku do asfaltu 35/50, o czym świadczy niższa częstotliwość „crossover”. Przy czym wpływ zeolitów nasączenych wodą był mniejszy niż zeolitów niemodyfikowanych. Po starzeniu metodą RTFOF asfalt z dodatkiem klinoptilolitu i jego odmiany modyfikowanej wodą charakteryzuje...
się wartością parametru ω_c zbliżoną do wartości dla asfaltu 35/50. Natomiast częstotliwość „crossover” próbek z dodatkiem obu typów zeolitu syntetycznego NaP1 okazała się niższa. Wyniki uzyskane dla próbek do starzeniu RTFOT + PAV wskazują na utwardzenie asfaltu po dodaniu zeolitu. Wyjątek stanowi dodatek zeolitu syntetycznego NaP1 nasączonego wodą, gdzie wartość parametru ω_c jest porównywa do wartości dla asfaltu 35/50.

Reasumując można stwierdzić, że teoretycznie materiały zeolitowe spowodowały utwardzenie asfaltu. Jest to efekt wprowadzenia do bitumu ciała stałego nierozpuszczonego.

Kolejnym parametrem modelu CA jest indeks reologiczny R. Wyższa wartość wskaźnika reologicznego przyczynia się do bardziej płaskiej krzywej wiodącej i w rezultacie bardziej kruchego spoiwa. Analizowane materiały charakteryzują się indeksem R w zakresie od 1,17 do 2,25. Próbki z dodatkiem materiałów zeolitowych w stosunku do lepiszcza przed starzeniem wykazują wyższą wartość indeksu R niż asfalt 35/50. Natomiast po procesie starzenia, zarówno RTFOT jak i RTFOT+PAV, omawiany wskaźnik pozostał na podobnym poziomie dla każdego rodzaju badanego materiału.

Wpływ dodatku zeolitu do asfaltu na parametr lepkości w stanie równowagi (η_{ss}) uwidoczniał się głównie po symulacji starzenia eksploatacyjnego. W przypadku zastosowania klinoptilolitu nasączonego wodą parametr η_{ss} okazał się prawie 2 krotnie wyższy niż dla czystego asfaltu. Dodatek klinoptilolitu oraz zeolitu NaP1 spowodował wzrost parametr η_{ss} odpowiednio o 58% i 36%. W pozostałych przypadkach (starzenia technologiczne oraz brak starzenia) zmiana wartości parametru η_{ss} wynosi od 1 do 27%. Podobnie, jak w przypadku częstotliwości „crossover” zmiana parametrów R oraz lepkości w stanie równowagi η_{ss} była powiązana z procesem starzenia badanych próbek asfaltu i zaczynu asfaltowego z materiałami zeolitowymi.
Zespolony moduł ścinania w częstotliwości „crossover” maleje wraz ze starzeniem badanego asfaltu oraz zaczynu asfaltowego, mimo że wartości modułu G^* w poszczególnych częstotliwościach wraz z „wiekiem” spojwa wzrastała. Uzyskane wyniki są związane ze zmniejszającymi się wartościami częstotliwości „crossover”. Na podstawie otrzymanych wyników można wnioskować, że na wartość modułu G^* większy wpływ ma częstotliwość badania niż proces starzenia bitumu. Asfalt niestarzony z dodatkiem zeolitu charakteryzuje się niższymi wartościami G^*, po RTFOT – wyższymi, natomiast po RTFOT+PAV jest zależy od rodzaju materiału zeolitowego. Wartości modułu G^* asfaltu 35/50 po symulacji starzenia technologicznego zmniejszyła się o 38% natomiast zaczynów z dodatkiem zeolitów o 7–12%. Starzenie eksploatacyjne zmniejszyło pierwotną wartość modułu G^* od 54 do 62%.

Reasumując można stwierdzić, że na próbkach zaczynu asfaltowego z materiałami zeolitowymi uzyskano niższy moduł początkowy G^* w częstotliwości „crossover”. Dodatek zeolitów wpłynął na wolniejszy spadek omawianego parametru w wyniku starzenia w stosunku do czystego asfaltu.

Rys. 6.13. Zespolony moduł ścinania wyznaczony w częstotliwości "crossover" dla asfaltu 35/50 oraz zaczynu asfaltowego z materiałami zeolitowymi
6.6 Wyniki badań i analiza własności fizykomechanicznych mieszanki mineralno-asfaltowej AC 16 W z dodatkiem materiałów zeolitowych

Oznaczenie próbek

Do oznaczania rodzaju badanej mieszanki mineralno asfaltowej posłużyło się następującym schematem:

LITERA LICZBA_UŁAMEK

gdzie

LITERA – oznaczenie rodzaju MMA

LICZBA – temperatura zagęszczania próbek

UŁAMEK – procentowa zawartość dodatku zeolitowego w stosunku do masy MMA

Zestawienie stosowanych oznaczeń próbek MMA zestawiono w tabeli 6.13.

Tabela 6.13. Symbole zastosowane do oznaczania próbek mieszanek mineralno-asfaltowych

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Oznaczenie</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>MMA referencyjna (bez dodatku zeolitu)</td>
</tr>
<tr>
<td>A</td>
<td>MMA z dodatkiem zeolitu naturalnego klinoptilolitu</td>
</tr>
<tr>
<td>B</td>
<td>MMA z dodatkiem zeolitu naturalnego klinoptilolitu nasączonego wodą</td>
</tr>
<tr>
<td>C</td>
<td>MMA z dodatkiem zeolitu syntetycznego NaP1</td>
</tr>
<tr>
<td>D</td>
<td>MMA z dodatkiem zeolitu syntetycznego NaP1 nasączonego wodą</td>
</tr>
<tr>
<td>60</td>
<td>Temperatura zagęszczania 160°C</td>
</tr>
<tr>
<td>45</td>
<td>Temperatura zagęszczania 145°C</td>
</tr>
<tr>
<td>30</td>
<td>Temperatura zagęszczania 130°C</td>
</tr>
<tr>
<td>15</td>
<td>Temperatura zagęszczania 115°C</td>
</tr>
<tr>
<td>0,20</td>
<td>Dodatek 0,20% zeolitu w stosunku do masy MMA</td>
</tr>
<tr>
<td>0,40</td>
<td>Dodatek 0,40% zeolitu w stosunku do masy MMA</td>
</tr>
<tr>
<td>0,80</td>
<td>Dodatek 0,80% zeolitu w stosunku do masy MMA</td>
</tr>
<tr>
<td>0,25</td>
<td>Dodatek 0,25% zeolitu w stosunku do masy MMA</td>
</tr>
<tr>
<td>0,50</td>
<td>Dodatek 0,50% zeolitu w stosunku do masy MMA</td>
</tr>
<tr>
<td>0,75</td>
<td>Dodatek 0,75% zeolitu w stosunku do masy MMA</td>
</tr>
<tr>
<td>1,00</td>
<td>Dodatek 1,00% zeolitu w stosunku do masy MMA</td>
</tr>
</tbody>
</table>

Przykładowe schematy zastosowane do oznaczania próbek mieszanek mineralno-asfaltowych

Oznaczenie	MMA referencyjna zagęszczana w temperaturze 160°C
R 60 | MMA z dodatkiem zeolitu naturalnego klinoptilolitu w ilości 0,25% w stosunku do masy MMA, temperatura zagęszczania 145°C
A 45_0,25 | MMA z dodatkiem zeolitu naturalnego klinoptilolitu nasączonego wodą w ilości 0,50% w stosunku do masy MMA
B 0,50 | MMA referencyjna zagęszczana w temperaturze 160°C

Wyniki badań zageszczalności w prasie żyratorowej

Badania zageszczalności mieszanek mineralno-asfaltowych przeprowadzone w prasie żyratorowej, zgodnie z metodą opisaną w punkcie 5.7. Otrzymane wyniki były podstawą do obliczenia współczynnika zageszczalności K. W tabeli 6.15 zestawiono rezultaty przeprowadzonych obliczeń.

Tabela 6.15. Współczynnik zageszczalności WMA z dodatkiem materiałów zeolitowych

<table>
<thead>
<tr>
<th>Oznaczenie</th>
<th>Vm w 1 cyku [%]</th>
<th>Vm w 100 cyku [%]</th>
<th>Współczynnik zageszczalności K</th>
<th>Równanie regresji</th>
<th>R²</th>
</tr>
</thead>
<tbody>
<tr>
<td>R 60</td>
<td>24,2</td>
<td>6,5</td>
<td>3,865</td>
<td>-3,865ln(x)+24,366</td>
<td>0,9994</td>
</tr>
<tr>
<td>R 45</td>
<td>25,1</td>
<td>7,1</td>
<td>3,917</td>
<td>-3,917ln(x)+25,359</td>
<td>0,9991</td>
</tr>
<tr>
<td>R 30</td>
<td>25,3</td>
<td>7,7</td>
<td>3,849</td>
<td>-3,849ln(x)+25,471</td>
<td>0,9997</td>
</tr>
<tr>
<td>A 45_0,25</td>
<td>24,6</td>
<td>6,6</td>
<td>3,912</td>
<td>-3,912ln(x)+24,746</td>
<td>0,9995</td>
</tr>
<tr>
<td>A 45_0,5</td>
<td>24,6</td>
<td>6,6</td>
<td>3,940</td>
<td>-3,940ln(x)+24,847</td>
<td>0,9993</td>
</tr>
<tr>
<td>A 45_75</td>
<td>25,0</td>
<td>7,3</td>
<td>3,877</td>
<td>-3,877ln(x)+25,182</td>
<td>0,9997</td>
</tr>
<tr>
<td>A 45_1,0</td>
<td>24,5</td>
<td>6,3</td>
<td>3,977</td>
<td>-3,977ln(x)+24,702</td>
<td>0,9994</td>
</tr>
<tr>
<td>A 30_0,25</td>
<td>25,5</td>
<td>8,0</td>
<td>3,915</td>
<td>-3,915ln(x)+25,901</td>
<td>0,9998</td>
</tr>
<tr>
<td>A 30_0,5</td>
<td>25,3</td>
<td>7,4</td>
<td>3,911</td>
<td>-3,911ln(x)+25,474</td>
<td>0,9996</td>
</tr>
<tr>
<td>A 30_75</td>
<td>25,3</td>
<td>7,2</td>
<td>3,937</td>
<td>-3,937ln(x)+25,439</td>
<td>0,9995</td>
</tr>
<tr>
<td>A 30_1,0</td>
<td>25,2</td>
<td>7,1</td>
<td>3,971</td>
<td>-3,971ln(x)+25,444</td>
<td>0,9995</td>
</tr>
<tr>
<td>B 45_0,2</td>
<td>24,6</td>
<td>8,1</td>
<td>3,574</td>
<td>-3,574ln(x)+24,717</td>
<td>0,9992</td>
</tr>
<tr>
<td>B 45_0,4</td>
<td>24,1</td>
<td>7,1</td>
<td>3,694</td>
<td>-3,694ln(x)+24,258</td>
<td>0,9993</td>
</tr>
<tr>
<td>B 45_0,6</td>
<td>24,9</td>
<td>7,9</td>
<td>3,699</td>
<td>-3,699ln(x)+25,071</td>
<td>0,9992</td>
</tr>
<tr>
<td>B 45_0,8</td>
<td>24,2</td>
<td>7,8</td>
<td>3,566</td>
<td>-3,566ln(x)+24,389</td>
<td>0,999</td>
</tr>
<tr>
<td>B 30_0,2</td>
<td>24,3</td>
<td>8,2</td>
<td>3,511</td>
<td>-3,511ln(x)+24,458</td>
<td>0,9994</td>
</tr>
<tr>
<td>B 30_0,4</td>
<td>24,7</td>
<td>7,3</td>
<td>3,795</td>
<td>-3,795ln(x)+24,83</td>
<td>0,9997</td>
</tr>
<tr>
<td>B 30_0,6</td>
<td>24,5</td>
<td>7,4</td>
<td>3,728</td>
<td>-3,728ln(x)+24,693</td>
<td>0,9993</td>
</tr>
<tr>
<td>B 30_0,8</td>
<td>24,8</td>
<td>7,6</td>
<td>3,749</td>
<td>-3,749ln(x)+24,986</td>
<td>0,9995</td>
</tr>
<tr>
<td>C 45_0,25</td>
<td>24,9</td>
<td>6,9</td>
<td>3,925</td>
<td>-3,925ln(x)+25,054</td>
<td>0,9996</td>
</tr>
<tr>
<td>C 45_0,5</td>
<td>24,2</td>
<td>6,2</td>
<td>3,914</td>
<td>-3,914ln(x)+24,283</td>
<td>0,9997</td>
</tr>
</tbody>
</table>
Wartość współczynnika zagęszczalności K można stosować do przewidywania łatwości zagęszczania MMA. Im wyższa wartość omawianego współczynnika tym zawartość wolnych przestrzeni zmniejsza się szybciej, czyli takie mieszanki są łatwiej zagęszczalne. Do osiągnięcia określonej zawartości wolnych przestrzeni potrzeba mniej energii. Należy jednak pamiętać, że MMA zagęszczane zbyt szybko mogą wykazywać skłonność do przemieszczania się podczas zagęszczania, a w konsekwencji do utraty stabilności podczas eksploatacji nawierzchni.

Obliczone wartości współczynników K poszczególnych mieszanek kształtowały się w granicach 3,511–3,977. WMA z dodatkiem zeolitów nasączonych wodą charakteryzują się nieznacznie niższymi wartości parametru K od WMA z zeolitami bez modyfikacji wodą, co wskazuje na gorszą zagęszczalność. Jest to jednak efekt niższej początkowej zawartości wolnych przestrzeni w próbkach WMA z materiałami zeolitowymi modyfikowanymi wodą. Parametr K może być stosowany jako kryterium zagęszczalności jedynie wtedy gdy porównywane są MMA o podobnej początkowej zawartości wolnych przestrzeni. W zbadanych mieszanках zawartość wolnych przestrzeni po pierwszym żyratoobrocie (V1) wynosiła od 24,1 do 25,7%. W związku z powyższym parametr K nie może służyć jako wyznacznik zagęszczalności.

Istotnymi parametrami służącymi do oceny zagęszczalności MMA są MSI oraz MRI. Wskaźnik stabilności mieszanki MSI przedstawia pracę typowej rozkładarki w czasie wbudowywania mieszanki w nawierzchnię, przed właściwym zagęszczaniem walcami. Indeks oporności mieszanki MRI dostarcza informacji o odporności MMA na dogęszczanie przez...
ruch samochodowy. Jest to parametr zależny nie tylko od rodzaju MMA ale także od natężenia ruchu drogowego [195]. MMA o niskim MSI i wysokim MRI są łatwiej zagęszczane oraz odporne na dogęszczanie podczas eksploatacji nawierzchni. W tabeli 6.16 zestawiono wyniki obliczeń wskaźnika stabilności mieszanki MSI oraz indeks odporności mieszanki MRI.

Rys. 6.14. Wskaźnik stabilności mieszanki MSI oraz indeks odporności mieszanki MRI dla WMA z dodatkiem zeolitu naturalnego klinoptilolitu

Rys. 6.15. Wskaźnik stabilności mieszanki MSI oraz indeks odporności mieszanki MRI dla WMA z dodatkiem zeolitu naturalnego klinoptilolitu modyfikowanego wodą
Tabela 6.16. Zestawienie wskaźnika stabilności mieszanki MSI oraz indeks odporności mieszanki MRI dla WMA z dodatkiem zeolitów

<table>
<thead>
<tr>
<th>Oznaczenie</th>
<th>Wskaźnik stabilności mieszanki MSI</th>
<th>Indeks odporności mieszanki MRI</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Nr cyklu Vm=8%</td>
<td>Pole powierzchni</td>
</tr>
<tr>
<td>R 60</td>
<td>67</td>
<td>172,93</td>
</tr>
<tr>
<td>R 45</td>
<td>84</td>
<td>219,38</td>
</tr>
<tr>
<td>R 30</td>
<td>90</td>
<td>243,86</td>
</tr>
<tr>
<td>A 45_0,25</td>
<td>69</td>
<td>184,15</td>
</tr>
<tr>
<td>A 45_0,5</td>
<td>68</td>
<td>196,12</td>
</tr>
<tr>
<td>A 45_75</td>
<td>81</td>
<td>214,79</td>
</tr>
<tr>
<td>A 45_1,0</td>
<td>63</td>
<td>166,37</td>
</tr>
<tr>
<td>A 30_0,25</td>
<td>100</td>
<td>266,28</td>
</tr>
<tr>
<td>A 30_0,5</td>
<td>83</td>
<td>226,52</td>
</tr>
<tr>
<td>A 30_75</td>
<td>81</td>
<td>217,40</td>
</tr>
<tr>
<td>A 30_1,0</td>
<td>77</td>
<td>216,40</td>
</tr>
<tr>
<td>B 45_0,2</td>
<td>102</td>
<td>272,31</td>
</tr>
<tr>
<td>B 45_0,4</td>
<td>80</td>
<td>198,74</td>
</tr>
<tr>
<td>B 45_0,6</td>
<td>95</td>
<td>258,77</td>
</tr>
<tr>
<td>B 45_0,8</td>
<td>93</td>
<td>243,70</td>
</tr>
<tr>
<td>B 30_0,2</td>
<td>104</td>
<td>271,47</td>
</tr>
<tr>
<td>B 30_0,4</td>
<td>80</td>
<td>210,48</td>
</tr>
<tr>
<td>B 30_0,6</td>
<td>83</td>
<td>219,00</td>
</tr>
<tr>
<td>B 30_0,8</td>
<td>89</td>
<td>235,46</td>
</tr>
<tr>
<td>C 45_0,25</td>
<td>74</td>
<td>200,98</td>
</tr>
<tr>
<td>C 45_0,5</td>
<td>62</td>
<td>157,07</td>
</tr>
<tr>
<td>C 45_75</td>
<td>88</td>
<td>234,19</td>
</tr>
<tr>
<td>C 45_1,0</td>
<td>72</td>
<td>193,53</td>
</tr>
<tr>
<td>C 30_0,25</td>
<td>93</td>
<td>251,99</td>
</tr>
<tr>
<td>C 30_0,5</td>
<td>76</td>
<td>202,03</td>
</tr>
<tr>
<td>C 30_75</td>
<td>83</td>
<td>229,24</td>
</tr>
<tr>
<td>C 30_1,0</td>
<td>81</td>
<td>212,81</td>
</tr>
<tr>
<td>D 45_0,2</td>
<td>76</td>
<td>202,52</td>
</tr>
<tr>
<td>D 45_0,4</td>
<td>67</td>
<td>170,80</td>
</tr>
<tr>
<td>D 45_0,6</td>
<td>82</td>
<td>203,13</td>
</tr>
<tr>
<td>D 45_0,8</td>
<td>90</td>
<td>239,93</td>
</tr>
<tr>
<td>D 30_0,2</td>
<td>80</td>
<td>202,57</td>
</tr>
<tr>
<td>D 30_0,4</td>
<td>73</td>
<td>195,08</td>
</tr>
<tr>
<td>D 30_0,6</td>
<td>90</td>
<td>237,41</td>
</tr>
<tr>
<td>D 30_0,8</td>
<td>92</td>
<td>264,08</td>
</tr>
</tbody>
</table>
Rys. 6.16. Wskaźnik stabilności mieszanki MSI oraz indeks odporności mieszanki MRI dla WMA z dodatkiem zeolitu syntetycznego NaP1

W celu wyboru optymalnej temperatury zagęszczania i dodatku zeolitu wskaźniki MSI i MRI były analizowane razem i optymalizowane. W pierwszym etapie oceniany był wskaźnik MSI. Za optymalną przyjęto wartość najniższą, po to aby zapewnić najlepszą zagęszczalność MMA. Jeśli wartości MSI byłyby równe, wybór zależałby od wartości MRI. Im wyższy parametr MRI, tym większa odporność mieszanki na obciążenie ruchem drogowym.
W MMA referencyjnych zarówno MSI jak i MRI wzrastały wraz ze spadkiem temperatury. W WMA z dodatkiem zeolitów nie zaobserwowano tej zależności. W poszczególnych grupach mieszanek, z uwagi na rodzaj dodatku zeolitowego najniższe wartości MSI, niezależnie od temperatury zagęszczania wykazują mieszanki z dodatkiem:

- 1% zeolitu naturalnego klinoptilolitu,
- 0,5% zeolitu syntetycznego NaP1,
- 0,4% zeolitu naturalnego klinoptilolitu modyfikowanego wodą,
- 0,4% zeolitu syntetycznego NaP1 modyfikowanego wodą

Przy powyższych dodatkach zeolitów wartość MSI zwiększała się wraz ze spadkiem temperatury zagęszczania. Przy czym parametr MSI dla WMA, z wymienionymi powyżej ilościami zeolitu, wykazuje wartości niższe niż dla MMA referencyjnej o temperaturze zagęszczania wyższej o 15°C. Wyjątek stanowi WMA z 0,4 dodatkiem klinoptilolitu modyfikowanego wodą o temperaturze zagęszczania 145°C.

Jednocześnie badane mieszanki wykazują dość niski indeks MRI. Jest to spowodowane najmniejszą końcową zawartością wolnych przestrzeni po 100 żyratoobrotach. W efekcie trzeba zużyć mniej energii aby taką mieszankę wbudować w nawierzchnię do gęści pod obciążeniem ruchem samochodowym, do krytycznej wartości wolnych przestrzeni (2%).

Wyżej wymienione ilości zeolitu okazały się optymalne z uwagi na zagęszczalność WMA.

Określenie optymalnej ilości dozowanego zeolitu do mieszanki mineralno-asfaltowej na podstawie zawartości wolnych przestrzeni w zagęszczonych próbkach MMA z dodatkiem materiałów zeolitowych

Optymalny dodatek materiału zeolitowego ostatecznie określono na podstawie porównania zawartości wolnych przestrzeni w próbkach z dodatkiem materiałów zeolitowych do zawartości wolnych przestrzeni w próbkach referencyjnych. Analiza uzyskanych wyników badań zagęszczalności w prasie żyratorowej, przedstawionych na rysunkach 6.18 i 6.19 wskazuje, że optymalna zawartość zeolitu syntetycznego NaP1: wynosi 0,5% w/m oraz 0,4% w przypadku modyfikacji zeolitu wodą. Przy zastosowaniu zeolitu naturalnego klinoptilolitu optymalna ilość to 1,0% w/m oraz 0,4% dla minerału nasączonego wodą. Te same wartości uzyskano w analizie zagęszczalności na podstawie wskaźnika MSI.
Zawartość wolnych przestrzeni w próbkach MMA z zeolitami niemodyfikowanymi jest niższa przy zastosowaniu 0,5% dodatku niż przy 0,25%. Zwiększenie dodatku materiału zeolitowego do 0,75% powoduje wzrost zawartości wolnych przestrzeni w badanych próbkach. Przy dodatku 1% uzyskano spadek zawartości wolnych przestrzeni w stosunki do próbek z 0,75% zawartością zeolitów. Dozowanie materiału zeolitowego w ilości większej niż 0,4% nie poprawia zagęszczałości MMA mierzonej zawartością wolnych przestrzeni, niezależnie od rodzaju zeolitu.

 Ponieważ zeolit w MMA zastępuje wypełniacz (wchodzi w skład zacznym asfaltowego) nie badano możliwości dozowania zeolitu w większej ilości niż 1%. Materiały zeolitowe są dużo bardziej porowate niż mączka wapienna, co wpływa na ich

Rys. 6.18. Zależność zawartości wolnych przestrzeni od procentowej ilości dozowanego materiału zeolitowego, w próbkach zagęszczanych w prasie żyratorowej.

Rys. 6.19. Zależność zawartości wolnych przestrzeni od procentowej ilości dozowanego materiału zeolitowego modyfikowanych wodą, w próbkach zagęszczanych w prasie żyratorowej.
bitumochłonność. Zbyt duży dodatek zeolitu wpływa także negatywnie na usztywnienie zaczynu asfaltowego.

Zawartość wolnych przestrzeni w próbkach MMA z dodatkiem materiałów zeolitowych zagęszczanych w prasie żyratorowej.

Rysunki 6.20–6.23 przedstawiają wyniki zagęszczalności próbek MMA z dodatkiem materiałów zeolitowych wykonanych w prasie żyratorowej, mierzonej zawartością wolnych przestrzeni.

Rys. 6.20. Zawartość wolnych przestrzeni w próbkach zagęszczanych w prasie żyratorowej z dodatkiem klinoptilolitu

Rys. 6.21. Zawartość wolnych przestrzeni w próbkach zagęszczanych w prasie żyratorowej z dodatkiem klinoptilolitu modyfikowanego wodą
Zawartość wolnych przestrzeni w próbkach zagęszczanych w prasie żyratorowej
z dodatkiem zeolitu NaP1

Efektywność wpływu dodatku materiału zeolitowego na zagęszczalność była
zróżnicowana, zależna od rodzaju zeolitu oraz ilości zastosowanego dodatku. Zawartość
wolnych przestrzeni próbek MMA z zeolitem syntetycznym NaP1 zmniejszyła się
o 5–8% w stosunku do wartości dla MMA referencyjnej o tej samej temperaturze
zagęszczania. Próbki MMA z optymalnym dodatkiem zeolitu NaP1 wykazują zawartość
wolnych przestrzeni na poziomie porównywalnym bądź niższym niż próbki MMA referencyjnej o temperaturze zagęszczania wyższej o 15°C. Taką samą zależność uzyskano na próbkach MMA z 1% dodatkiem klinoptilolitu. W przypadku zastosowania 0,4% klinoptilolitu modyfikowanego wodą widoczna była poprawa zagęszczalności w temperaturze zagęszczania 130°C. Zawartość wolnych przestrzeni na poziomie 6,2%, niższą niż w MMA referencyjnej w temperaturze zagęszczania 160°C (6,4%) osiągnięto przy zastosowaniu 0,5% dodatku zeolitu NaP1 w próbach zagęszczanych w temperaturze 145°C.

Powyższe wnioski potwierdzają wcześniejszą analizę wykonaną na podstawie parametru MSI.

Lepsza zagęszczalność próbek MMA z dodatkiem zeolitu syntetycznego NaP1 niż klinoptilolitu wynika z właściwości tekstualnych tych mineralów. Materiał zeolitowy typu NaP1 posiada 5 – krotnie wyższą powierzchnię właściwą 94,48 m²/g niż klinoptilolit 18,3 m²/g i jest materiałem bardziej porowatym. Dzięki wyższym parametrom tekstualnym zeolit NaP1 adsorbuje więcej wody i więcej wody oddaje w tym samym czasie, co poprawia efekt spieniania asfaltu.

Określenie możliwości obniżenia temperatury zagęszczania mieszanki mineralno-asfaltowej poprzez dodatek materiałów zeolitowych

Możliwość obniżenia temperatury zagęszczania próbek WMA z dodatkiem zeolitów, w prasie żyratorowej, wyznaczono na podstawie porównania zawartości wolnych przestrzeni w zagęszczonych próbkach WMA i HMA referencyjnej (rys. 6.24).

Rys. 6.24. Graficzny sposób określenia temperatury zagęszczania WMA z dodatkiem zeolitów na podstawie badań zagęszczalności w prasie żyratorowej
Na podstawie badań zagęszczalności próbek MMA z dodatkiem materiałów zeolitowych określono, że poprzez zastosowanie materiałów zeolitowych można obniżyć temperaturę zagęszczania w prasie żyratorowej o:

- 18°C przy zastosowaniu 1% dodatku zeolitu naturalnego klinoptilolitu,
- 22°C przy zastosowaniu 0,5% dodatku zeolitu syntetycznego NaP1,
- 15°C przy zastosowaniu 0,4% dodatku zeolitu syntetycznego NaP1 modyfikowanego wodą.

W próbkach WMA z 0,4% dodatkiem zeolitu syntetycznego NaP1 zawartość wolnych przestrzeni jest wyższa o 0,1% niż w próbkach HMA referencyjnych (6,4%). Zastosowanie zeolitu naturalnego klinoptilolitu modyfikowanego wodą nie pozwoliło osiągnąć zawartości wolnych przestrzeni porównywanie do wyników HMA referencyjnej.

Z przeprowadzonych badaniach zagęszczalności w prasie żyratorowej wynika, że optymalna ilość dodatku zeolitowego wynosi: 1% klinoptilolitu, 0,5% zeolitu syntetycznego NaP1 oraz 0,4% zeolitów nasączonych wodą w/m. Na mieszankach mineralno-asfaltowych z optymalnym dodatkiem zeolitu przeprowadzono badania właściwości fizykomechanicznych.

Zawartość wolnych przestrzeni w próbkach zagęszczanych w ubijaku Marshalla

Wyniki badań zawartości wolnych przestrzeni w próbkach zagęszczanych w ubijaku Marshalla przedstawiono w tabeli 6.17 oraz na rysunku 6.25.

Tabela 6.17. Zawartość wolnych przestrzeni w próbkach zagęszczanych w ubijaku Marshalla z dodatkiem zeolitów

<table>
<thead>
<tr>
<th>Oznaczenie próbki</th>
<th>Zawartość wolnych przestrzeni w temperaturze zagęszczania: [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>145°C</td>
</tr>
<tr>
<td>R</td>
<td>4,6</td>
</tr>
<tr>
<td>A 1,00</td>
<td>4,3</td>
</tr>
<tr>
<td>B 0,40</td>
<td>4,2</td>
</tr>
<tr>
<td>C 0,50</td>
<td>4,2</td>
</tr>
<tr>
<td>D 0,40</td>
<td>4,5</td>
</tr>
</tbody>
</table>
Wyniki badań zawartości wolnych przestrzeni na próbkach wykonanych w ubijaku Marshalla wskazują na minimalną poprawę zagęszczalności w stosunku do MMA referencyjnej po zastosowaniu dodatku zeolitowego. Przy najniższej temperaturze zagęszczania (115°C) poprawa zagęszczalności była największa: spadek wolnych przestrzeni wynosił od 9% (dodatek zeolitu NaP1, NaP1+woda) do 14% (dodatek klinoptilolitu). Najlepszą poprawę zagęszczalności, niezależnie od temperatury zagęszczania uzyskano przy 1% dodatku zeolitu naturalnego klinoptilolitu. Wraz ze spadkiem temperatury zagęszczania, wzrastała zawartość wolnych przestrzeni, niezależnie od rodzaju materiału zeolitowego. Zawartość wolnych przestrzeni w każdej MMA mieściła się w wymaganych granicach, dla AC 16 W wg polskich Wymagań Technicznych [192].

Odporność na działanie wody

Wyniki badania wytrzymałości na rozciąganie pośrednie próbek suchych (niekondycjonowanych) oraz próbek nasączonych wodą poddanych cyklowi zamrażania-odmrażania, wartość wskaźnika wodoodporności ITSR dla każdej kombinacji temperatury i dodatku zeolitowego zestawiono w tabeli 6.18 oraz na rysunkach 6.26–6.28.
Tabela 6.18. Wytrzymałość na rozciąganie pośrednie oraz wskaźnika wodoodporności ITSR mieszanki mineralno-asfaltowej z dodatkiem zeolitów

<table>
<thead>
<tr>
<th>Oznaczenie próbki</th>
<th>Temperatura zagęszczania:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>145°C</td>
<td>130°C</td>
</tr>
<tr>
<td>R</td>
<td>0,856</td>
<td>0,928</td>
</tr>
<tr>
<td>A 1,00</td>
<td>0,951</td>
<td>1,008</td>
</tr>
<tr>
<td>B 0,40</td>
<td>0,813</td>
<td>0,941</td>
</tr>
<tr>
<td>C 0,50</td>
<td>0,996</td>
<td>1,020</td>
</tr>
<tr>
<td>D 0,40</td>
<td>0,858</td>
<td>1,051</td>
</tr>
</tbody>
</table>

Analiza uzyskanych wyników badań wskazuje, że wytrzymałość na rozciąganie (ITS_D) próbek niekonwcyjnych z dodatkiem zeolitu jest zawsze większa od próbek MMA referencyjnej o tej samej temperaturze zagęszczania, niezależnie od rodzaju zastosowanego materiału zeolitowego. Wzrost ITS_D kształtował się w granicach od 3,7 do 13%. Próbki z dodatkiem klinoptilolitu, zeolitu NaP1 oraz zeolitu NaP1 modyfikowanego wodą posiadają większą wytrzymałość na rozciąganie (ITS_D) od próbek MMA referencyjnej o wyższej o 15°C temperaturze zagęszczania. W przypadku wytrzymałości na rozciąganie próbek kondycjonowanych (ITS_W) zależność ta została zachowana jedynie dla MMA z dodatkiem zeolitów niemodyfikowanych.

Rys. 6.26. Wytrzymałość na pośrednie rozciąganie próbek suchych mieszanki mineralno-asfaltowej z dodatkiem materialów zeolitowych
Rys. 6.27. Wytrzymałość na pośrednie rozciąganie kondycjonowanych próbek mieszanki mineralno-asfaltowej z dodatkiem materiałów zeolitowych

Rys. 6.28. Wskaźnik wodoodporności ITSR mieszanki mineralno-asfaltowej z dodatkiem materiałów zeolitowych

Odporność na działanie wody i mrozu, według Wymagań Technicznych [192], została zachowana dla wszystkich rodzajów MMA, w każdej temperaturze zagęszczania z wyjątkiem WMA z dodatkiem zeolitu NaP1 zagęszczanych w temperaturze 115°C (ITSR = 77%). Próby
MMA z dodatkiem zeolitów modyfikowanych wodą posiadają mniejszą wodoodporność niż MMA z zeolitami niemodyfikowanymi. Przyczyną może być częściowe zatrzymanie wody w strukturze zeolitowej podczas procesu produkcji MMA.

Wyniki badań termicznych mineralów z grupy zeolitów wskazują jednoznacznie iż proces uwalniania wody zeolitowej przebiega w interwale temperaturowym od 100ºC do 400ºC. Zatrzymana w porach zeolitów woda miała wpływ na duży spadek wytrzymałości po cyklu zamrażania – odmrażania (tab. 6.18). Należy mieć na uwadze, że w prowadzonych badaniach nie używano żadnych środków adhezyjnych. Podczas stosowania kruszyw kwaśnych środki adhezyjne są zalecane i mogą mieć pozytywny wpływ na wodoodporność. Na podstawie analizy literatury można wnioskować, że na wzrost odporności na działanie wody i mrozu, w przypadku WMA z zeolitami wpływ ma dodatek wapna hydratyzowanego [75] oraz zastosowanie asfaltu modyfikowanego [71, 119].

Wyniki badań modułów sztywności w aparacie NAT metodą IT-CY oraz uzyskane wskaźniki mrozoodporności ITSM zestawiono w tabeli 6.19 oraz na rysunkach 6.29–6.31

Tabela 6.19. Moduły sztywności zmierzone metodą IT-CY oraz wskaźnik wodoodporności ITSM mieszanki mineralno-asaftowej z dodatkiem materiałów zeolitowych

<table>
<thead>
<tr>
<th>Oznaczenie próbki</th>
<th>Temperatura zagęszczania:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>145ºC</td>
</tr>
<tr>
<td>R</td>
<td>3176</td>
</tr>
<tr>
<td>A 1,00</td>
<td>3734</td>
</tr>
<tr>
<td>B 0,40</td>
<td>3440</td>
</tr>
<tr>
<td>C 0,50</td>
<td>3060</td>
</tr>
<tr>
<td>D 0,40</td>
<td>3717</td>
</tr>
</tbody>
</table>
Rys. 6.29. Moduł sztywności sprężystej próbek suchych mieszanki mineralno-asfaltowej z dodatkiem materiałów zeolitowych

Rys. 6.30. Moduł sztywności sprężystej kondycjonowanych próbek mieszanki mineralno-asfaltowej z dodatkiem materiałów zeolitowych
Rys. 6.31. Wskaźnik wodoodporności ITSM mieszanki mineralno-asfaltowej z dodatkiem materiałów zeolitowych

Na podstawie przedstawionych powyżej wyników badań można zauważyć, że moduły sztywności zmniejszały się wraz ze spadkiem temperatury zagęszczania niezależnie od rodzaju zastosowanego materiału zeolitowego. Jest to efekt wzrostu zawartości wolnych przestrzeni wraz ze spadkiem temperatury zagęszczania (tabela 6.20). Zależność tę zaobserwowano zarówno w przypadku próbek suchych jak i kondycjonowanych. Jedynie dla WMA z 0,5% dodatkiem zeolitu NaP1, moduł sztywności dla próbek kondycjonowanych i zagęszczonych w temperaturze 130°C jest nieznacznie wyższy od wyników uzyskanych dla próbek zagęszczonych w temperaturze 145°C. Wzrost ten wynosi 3,5%, co należy tłumaczyć niejednorodnością materiału MMA nie zaś własnościami zastosowanego materiału zeolitowego.

Tabela 6.20. Zawartość wolnych przestrzeni w próbkach zagęszczanych w ubijaku Marshalla z dodatkiem materiałów zeolitowych, przeznaczonych do badania odporności na działanie wody i mrozu

<table>
<thead>
<tr>
<th>Oznaczenie próbki</th>
<th>Zawartość wolnych przestrzeni w temperaturze zagęszczania: [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>145°C</td>
</tr>
<tr>
<td>R</td>
<td>5,1</td>
</tr>
<tr>
<td>A 1,00</td>
<td>4,8</td>
</tr>
<tr>
<td>B 0,40</td>
<td>5,3</td>
</tr>
<tr>
<td>C 0,50</td>
<td>5,4</td>
</tr>
<tr>
<td>D 0,40</td>
<td>4,8</td>
</tr>
</tbody>
</table>
Pomierzone moduły sztywności MMA z dodatkiem zeolitów są wyższe od wartości uzyskanych dla próbek MMA referencyjnej o tej samej temperaturze zagęszczania, niezależnie od rodzaju zastosowanego dodatku zeolitowego i temperatury zagęszczania. W próbkach zagęszczanych w temperaturze 130°C wzrost badanej cechy wynosił od 13 do 40%. Natomiast najmniejszy przyrost odnotowano w próbkach zagęszczanych w 145°C (1–21%), w przypadku 0,5% dodatku zeolitu NaP1 nastąpiło nawet zmniejszenie o 4%.

Najwyższe wartości modułu sztywności uzyskały MMA z 1% dodatkiem klinoptilolitu i 0,4% zeolitu syntetycznego modyfikowanego wodą. Można również zauważyć, że dla MMA z dodatkiem zeolitów modyfikowanych wodą wzrasta moduł sztywności po kondycjonowaniu próbek, co przekłada się na wartość wskaźnika wodoodporności ITSM powyżej 100%. MMA z wspomnianymi dodatkami charakteryzują się wskaźnikami ITSM wyższymi niż pozostałe rodzaje badanych MMA.

Otrzymane wyniki odporności na działanie wody i mrozu mierzone wskaźnikiem ITSM nie są w korelacji z uzyskanymi wskaźnikami ITSR. W przypadku badań MMA z zeolitami za parametr odporności na działanie wody i mrozu należy uznać wskaźnik ITSR. Procedura ta jest także w pełni zgodna z europejskimi obowiązującymi wymaganiami odnośnie odporności MMA na działanie wody i mrozu [172].

Odporność na deformacje trwałe

Otrzymane wyniki badania odporności na deformacje trwałe przedstawiono na rysunkach 6.32 i 6.33.

![Rys. 6.32. Proporcjonalna głębokość koleiny PRD \(\text{AIR} \) [%]](image-url)
Dodatek zeolitu do MMA poprawił odporność na deformacje trwałe w stosunku do MMA referencyjnej, mimo obniżenia temperatury zagęszczania o 30ºC. Na próbkach WMA z zeolitem NaP1 modyfikowanym wodą uzyskano spadek WTS\textsubscript{AIR} o 28%, a PRD\textsubscript{AIR} o 15%. W przypadku zastosowania klinoptilolitu modyfikowanego wodą parametr WTS\textsubscript{AIR} zmniejszył się 28%, natomiast PRD\textsubscript{AIR} o 19% w stosunku do wyników uzyskiwanych dla MMA referencyjnej. Wszystkie rodzaje zbadanych MMA, według polskich wymagań technicznych (WTS\textsubscript{AIR MAX} = 0,3) okazały się odporne na deformacje trwałe.

Na rysunku 6.34 przedstawiono wzrost proporcjonalnej głębokości koleiny w zależności od liczby cykli badania.

Rys. 6.33. Przyrost głębokości koleiny próbek mieszanki mineralno-asfaltowej z dodatkiem materiałów zeolitowych

Rys. 6.34. Wykres przebiegu proporcjonalnej głębokości koleiny w zależności od liczby cykli badania odporności na deformacje trwałe próbek mieszanki mineralno-asfaltowej z dodatkiem zeolitów
We wszystkich badanych mieszankach przebieg tworzenia się koleiny jest podobny. Jedynie w WMA z dodatkiem 0,5 % zeolitu syntetycznego NaP1 od 1100 do 2100 cyklu (od 2200 do 4200 przejść koła) nastąpił gwałtowny wzrost głębokości koleiny.

Wyniki badań odporności na deformacje trwałe opisane w literaturze, wskazują na jej pogorszenie dla WMA z zeolitami [57, 71, 119]. Przyczyną, nie jest różnica we właściwościach stosowanych zeolitów, a raczej stosowanie niewłaściwej procedury przygotowania próbek – zbyt krótki czas kondycjonowania zaboru przed przystąpieniem do zagęszczania lub niewłaściwa ilość dozowanego materiału. Zbyt mała ilość dodatku zeolitowego, skutkuje niedostateczną ilością wody uwalnianej ze struktury zeolitów i brakiem właściwego spienienia asfaltu. Podobnie, w przypadku za krótkiego czasu kondycjonowania zarobu, woda ze struktury zeolitu nie została uwalniona w takiej ilości aby zainicjowany proces spieniania asfaltu przebiegał prawidłowo.

Moduł sztywności w aparacie NAT

Średnie wartości modułów sztywności zbadane metodą IT-CY zestawiono na rysunkach 6.35–6.37.

Rys. 6.35. Moduł sztywności sprężystej próbek mieszanki mineralno-asfaltowej z dodatkiem materiałów zeolitowych w temperaturze badania 23°C
Analiza otrzymanych wyników wskazuje, że sztywność spadał wraz ze spadkiem temperatury zagęszczania niezależnie od rodzaju MMA. Taka samą zależność zaobserwowano w badaniach modułu sztywności do określenia wskaźnika ITSM. Jest to spowodowane wzrostem zawartości wolnych przestrzeni w próbkach (tab. 5).

Na rysunku 6.35 można zaobserwować, że uzyskana wartość modułu sztywności MMA z zolitami w temperaturze badania 23°C była większa w stosunku do MMA referencyjnej niezależnie od typu zolitu oraz temperatury zagęszczania. Taką samą korelację uzyskano
w badaniach prowadzonych w Turcji [65]. W niższych temperaturach badania dodatek zeolitów powodował wzrost modułu sztywności próbek zagęszczanych w temperaturze 145°C. Pomierzony moduł sztywności próbek WMA z dodatkiem zeolitów, zagęszczanych w temperaturze 115°C, pozostał na poziomie porównywalnym do wartości uzyskanych dla MMA referencyjnej (rys. 6.36, rys. 6.37).

Najwyższe wartości badanej cechy uzyskano po zastosowaniu dodatku 1% klinoptilolitu oraz 0,4% zeolitu NaP1 modyfikowanego wodą. Przy tych dodatkach wyznaczone wartości modułu sztywności próbek zagęszczanych w 130°C były wyższe od wyników dla próbek referencyjnych zagęszczanych w temperaturze 145°C, niezależnie od temperatury badania.

Reasumując, można stwierdzić, że wartość modułu sztywności zależy od temperatury zagęszczania MMA oraz temperatury wykonywania badania. Natomiast na wzrost wartość modułu sztywności WMA z zeolitami w stosunku do MMA referencyjnej największy wpływ miał rodzaj użytego materiału zeolitowego.

Moduł sztywności metodą belki cztero-punktowo zginanej

![Wykres współczynników przesunięcia temperaturowego](image)

Rys. 6.38. Wykres współczynników przesunięcia temperaturowego na podstawie których wyznaczono krzywe wiodące mieszanek mineralno-asfaltowych z dodatkiem materiałów zeolitowych
Tabela 6.21. Parametry reologiczne funkcji sigmoidalnej mieszanek mineralno-asfaltowych z dodatkiem materiałów zeolitowych oraz modelu WLF współczynnika przesunięcia temperaturowego

<table>
<thead>
<tr>
<th>Rodzaj badanego materiału</th>
<th>Parametry modelu CA</th>
<th>Parametry modelu WLF</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>α</td>
<td>δ</td>
</tr>
<tr>
<td>R 45</td>
<td>3,942</td>
<td>0,592</td>
</tr>
<tr>
<td>A 15_1,00</td>
<td>4,316</td>
<td>0,240</td>
</tr>
<tr>
<td>B 15_0,40</td>
<td>3,981</td>
<td>0,563</td>
</tr>
<tr>
<td>C 15_0,50</td>
<td>3,153</td>
<td>1,351</td>
</tr>
<tr>
<td>D 15_0,40</td>
<td>4,024</td>
<td>0,522</td>
</tr>
</tbody>
</table>

Na podstawie wyznaczonych krzywych wiodących (rys. 6,39) można wnioskować, że dodatek materiału zeolitowego nie miał wpływu na wartość zespolonego modułu sztywności MMA.

Rys. 6.39. Krzywe wiodące mieszanek mineralno-asfaltowych z dodatkiem materiałów zeolitowych, wyznaczone przy temperatury referencyjnej 20°C

Otrzymane wyniki modułu sztywności są porównywane do wyników MMA referencyjnej niezależnie od temperatury i częstotliwości oznaczenia. Również obniżenie temperatury zagęszczania o 30°C mieszanek z dodatkiem zeolitów nie miało wpływu na wartość modułu sztywności wyznaczonego metodą belki 4 – punktowo zginanej.
6.7 Statystyczna analiza wyników badań własności fizykomechanicznych mieszanek mineralno-asfaltowych z dodatkiem materiałów zeolitowych

Analizy rozrzutu wyników i współczynnika zmienności

Ważnym elementem oceny właściwości fizykomechanicznych mieszanek mineralno-asfaltowych z dodatkiem zeolitów było określenie jednorodność uzyskanych wyników badań. Jednorodność tę określono na podstawie analizy rozrzutu wyników i współczynnika zmienności, będącego klasyczną względną miarą zróżnicowania cechy, zależną od wartości średniej arytmetycznej.

Wyniki analizy statystycznej współczynnika zmienności zestawiono w tabelach 6.22 – 6.28.

Tabela 6.22. Określenie jednorodności badania zagęszczalności w prasie żyratorowej próbek mieszanki mineralno-asfaltowej z dodatkiem materiałów zeolitowych

<table>
<thead>
<tr>
<th>Oznaczenie próbki</th>
<th>\bar{X} [%]</th>
<th>s [%]</th>
<th>v_X [%]</th>
<th>Oznaczenie próbki</th>
<th>\bar{X} [%]</th>
<th>s [%]</th>
<th>v_X [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>R 60</td>
<td>6,4</td>
<td>0,2</td>
<td>4,0</td>
<td>C 45_0,25</td>
<td>6,9</td>
<td>0,4</td>
<td>5,1</td>
</tr>
<tr>
<td>R 45</td>
<td>7,1</td>
<td>0,4</td>
<td>5,5</td>
<td>C 45_0,5</td>
<td>6,2</td>
<td>0,3</td>
<td>5,0</td>
</tr>
<tr>
<td>R 30</td>
<td>7,7</td>
<td>0,5</td>
<td>6,0</td>
<td>C 45_75</td>
<td>7,6</td>
<td>0,4</td>
<td>5,9</td>
</tr>
<tr>
<td>A 45_0,25</td>
<td>6,6</td>
<td>0,1</td>
<td>1,3</td>
<td>C 45_1,0</td>
<td>6,7</td>
<td>0,2</td>
<td>2,6</td>
</tr>
<tr>
<td>A 45_0,5</td>
<td>6,6</td>
<td>0,3</td>
<td>4,2</td>
<td>C 30_0,25</td>
<td>7,7</td>
<td>0,7</td>
<td>9,2</td>
</tr>
<tr>
<td>A 45_75</td>
<td>7,3</td>
<td>0,2</td>
<td>2,7</td>
<td>C 30_0,5</td>
<td>6,9</td>
<td>0,2</td>
<td>2,9</td>
</tr>
<tr>
<td>A 45_1,0</td>
<td>6,3</td>
<td>0,4</td>
<td>6,4</td>
<td>C 30_75</td>
<td>7,4</td>
<td>1,1</td>
<td>14,2</td>
</tr>
<tr>
<td>A 30_0,25</td>
<td>8</td>
<td>0,6</td>
<td>7,5</td>
<td>C 30_1,0</td>
<td>7,3</td>
<td>0,4</td>
<td>5,9</td>
</tr>
<tr>
<td>A 30_0,5</td>
<td>7,4</td>
<td>0,7</td>
<td>9,5</td>
<td>D 45_0,2</td>
<td>7,1</td>
<td>0,3</td>
<td>4,1</td>
</tr>
<tr>
<td>A 30_75</td>
<td>7,6</td>
<td>0,7</td>
<td>9,7</td>
<td>D 45_0,4</td>
<td>6,5</td>
<td>0,1</td>
<td>2,0</td>
</tr>
<tr>
<td>A 30_1,0</td>
<td>7,1</td>
<td>0,5</td>
<td>6,7</td>
<td>D 45_0,6</td>
<td>7,3</td>
<td>0,4</td>
<td>4,9</td>
</tr>
<tr>
<td>B 45_0,2</td>
<td>8,1</td>
<td>0,4</td>
<td>5,4</td>
<td>D 45_0,8</td>
<td>7,7</td>
<td>0,7</td>
<td>8,7</td>
</tr>
<tr>
<td>B 45_0,4</td>
<td>7,1</td>
<td>0,3</td>
<td>4,3</td>
<td>D 30_0,2</td>
<td>7,3</td>
<td>0,3</td>
<td>4,7</td>
</tr>
<tr>
<td>B 45_0,6</td>
<td>7,9</td>
<td>0,5</td>
<td>6,0</td>
<td>D 30_0,4</td>
<td>6,9</td>
<td>0,6</td>
<td>8,2</td>
</tr>
<tr>
<td>B 45_0,8</td>
<td>7,8</td>
<td>0,5</td>
<td>6,0</td>
<td>D 30_0,6</td>
<td>7,6</td>
<td>0,8</td>
<td>10,8</td>
</tr>
<tr>
<td>B 30_0,2</td>
<td>8,2</td>
<td>0,3</td>
<td>3,8</td>
<td>D 30_0,8</td>
<td>7,8</td>
<td>0,4</td>
<td>4,7</td>
</tr>
<tr>
<td>B 30_0,4</td>
<td>7,3</td>
<td>0,5</td>
<td>7,1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B 30_0,6</td>
<td>7,4</td>
<td>0,2</td>
<td>2,5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B 30_0,8</td>
<td>7,6</td>
<td>1,1</td>
<td>13,9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Norma PN-EN 12697–31:2007 [178] podaje wartość wariancji zawartości wolnych przestrzeni po 60 żyratoobrodach, równą 0,244. Maksymalna wariancja uzyskanych wyników badań po 100 żyratoobrodach wynosi 0,142. Przyjęto zatem, że badanie zostało wykonane prawidłowo a otrzymane wyniki mogły być podstawą przeprowadzonych analiz.
Tabela 6.23. Określenie jednorodności badania zawartości wolnych przestrzeni w próbach mieszanki mineralno-asfaltowej z dodatkiem materiałów zeolitowych

<table>
<thead>
<tr>
<th>Oznaczenie próbki</th>
<th>(\bar{x}) [%]</th>
<th>s [%]</th>
<th>(v_x) [%]</th>
<th>Oznaczenie próbki</th>
<th>(\bar{x}) [%]</th>
<th>s [%]</th>
<th>(v_x) [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>R 45</td>
<td>4,6</td>
<td>0,2</td>
<td>3,3</td>
<td>C 45_0,5</td>
<td>4,2</td>
<td>0,2</td>
<td>4,7</td>
</tr>
<tr>
<td>R 30</td>
<td>5,0</td>
<td>0,3</td>
<td>6,8</td>
<td>C 30_0,5</td>
<td>5,1</td>
<td>0,2</td>
<td>4,4</td>
</tr>
<tr>
<td>R 15</td>
<td>6,4</td>
<td>0,3</td>
<td>4,0</td>
<td>C 15_0,5</td>
<td>5,8</td>
<td>0,2</td>
<td>3,8</td>
</tr>
<tr>
<td>A 45_1,0</td>
<td>4,3</td>
<td>0,3</td>
<td>6,5</td>
<td>D 45_0,4</td>
<td>4,5</td>
<td>0,3</td>
<td>5,8</td>
</tr>
<tr>
<td>A 30_1,0</td>
<td>4,8</td>
<td>0,3</td>
<td>7,1</td>
<td>D 30_0,4</td>
<td>5,0</td>
<td>0,2</td>
<td>5,0</td>
</tr>
<tr>
<td>A 15_1,0</td>
<td>5,5</td>
<td>0,3</td>
<td>4,9</td>
<td>D 15_0,4</td>
<td>5,8</td>
<td>0,4</td>
<td>6,1</td>
</tr>
<tr>
<td>B 45_0,4</td>
<td>4,2</td>
<td>0,2</td>
<td>4,9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B 30_0,4</td>
<td>5,3</td>
<td>0,5</td>
<td>8,6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B 15_0,5</td>
<td>5,9</td>
<td>0,3</td>
<td>5,3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Zgodnie z normą PN-EN 12697–8:2005 [171] odchylenie standardowe zawartości wolnych przestrzeni może wynosić 0,8%. Rozrzut uzyskanych wyników wahał się w granicach 0,2 do 0,5%. Wobec powyższego uznano, że badanie przebiegało prawidłowo i dokonano analizy otrzymanych wyników.

Tabela 6.24. Określenie jednorodności badania wodoodporności ITSR w próbach mieszanki mineralno-asfaltowej z dodatkiem materiałów zeolitowych

<table>
<thead>
<tr>
<th>Oznaczenie próbki</th>
<th>Wytrzymałość ITS próbek suchych</th>
<th>Wytrzymałość ITS próbek mokrych</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\bar{x}) [MPa]</td>
<td>s [MPa]</td>
<td>(v_x) [%]</td>
</tr>
<tr>
<td>R 45</td>
<td>0,928</td>
<td>0,033</td>
</tr>
<tr>
<td>R 30</td>
<td>0,855</td>
<td>0,021</td>
</tr>
<tr>
<td>R 15</td>
<td>0,830</td>
<td>0,086</td>
</tr>
<tr>
<td>A 45_1,0</td>
<td>1,008</td>
<td>0,064</td>
</tr>
<tr>
<td>A 30_1,0</td>
<td>0,990</td>
<td>0,049</td>
</tr>
<tr>
<td>A 15_1,0</td>
<td>0,917</td>
<td>0,007</td>
</tr>
<tr>
<td>B 45_0,4</td>
<td>0,941</td>
<td>0,071</td>
</tr>
<tr>
<td>B 30_0,4</td>
<td>0,901</td>
<td>0,092</td>
</tr>
<tr>
<td>B 15_0,5</td>
<td>0,875</td>
<td>0,079</td>
</tr>
<tr>
<td>C 45_0,5</td>
<td>1,020</td>
<td>0,069</td>
</tr>
<tr>
<td>C 30_0,5</td>
<td>0,946</td>
<td>0,073</td>
</tr>
<tr>
<td>C 15_0,5</td>
<td>0,861</td>
<td>0,081</td>
</tr>
<tr>
<td>D 45_0,4</td>
<td>1,051</td>
<td>0,038</td>
</tr>
<tr>
<td>D 30_0,4</td>
<td>0,950</td>
<td>0,085</td>
</tr>
<tr>
<td>D 15_0,4</td>
<td>0,903</td>
<td>0,065</td>
</tr>
</tbody>
</table>
Norma PN-EN 12697–12:2008 [172] informuje, o braku danych dotyczących precyzji badania. Jednocześnie norma podaje wyniki badań porównawczych przeprowadzonych w Stanach Zjednoczonych Ameryki. Badania te przeprowadzono przy użyciu podobnej aparatury i w tej samej temperaturze badawczej. Odchylenie standardowe wskaźnika wytrzymałości na rozciągniętość uzyskane ze wszystkich laboratoriów biorących udział w porównaniu wyniosło 8 %. Maksymalna dopuszczalna różnica pomiędzy wynikami z dwóch laboratoriów wynosiła 23 %. Na podstawie tych danych oszacowano, że powtarzalność wynosi ok. 15 %, a odtwarzalność ok. 23 %.

Współczynnik zmienności badań wytrzymałości próbek MMA prowadzonych w czasie realizacji pracy wynosił od 1,8 do 10,4% i mieścił się w granicach normowych.

Tabela 6.25. Określenie jednorodności badania wodoodporności ITSMR w próbach mieszanki mineralno-asfaltowej z dodatkiem materiałów zeolitowych

<table>
<thead>
<tr>
<th>Oznaczenie próbki</th>
<th>Moduł sztywności IT-CY próbek suchych</th>
<th>Moduł sztywności IT-CY próbek mokrych</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>\overline{X} [MPa]</td>
<td>s [MPa]</td>
</tr>
<tr>
<td>R 45</td>
<td>3303</td>
<td>204</td>
</tr>
<tr>
<td>R 30</td>
<td>2741</td>
<td>178</td>
</tr>
<tr>
<td>R 15</td>
<td>2479</td>
<td>203</td>
</tr>
<tr>
<td>A 45_1,0</td>
<td>3987</td>
<td>83</td>
</tr>
<tr>
<td>A 30_1,0</td>
<td>3405</td>
<td>261</td>
</tr>
<tr>
<td>A 15_1,0</td>
<td>2854</td>
<td>111</td>
</tr>
<tr>
<td>B 45_0,4</td>
<td>3471</td>
<td>338</td>
</tr>
<tr>
<td>B 30_0,4</td>
<td>3107</td>
<td>265</td>
</tr>
<tr>
<td>B 15_0,5</td>
<td>2939</td>
<td>285</td>
</tr>
<tr>
<td>C 45_0,5</td>
<td>3330</td>
<td>223</td>
</tr>
<tr>
<td>C 30_0,5</td>
<td>3188</td>
<td>253</td>
</tr>
<tr>
<td>C 15_0,5</td>
<td>2669</td>
<td>263</td>
</tr>
<tr>
<td>D 45_0,4</td>
<td>3667</td>
<td>13</td>
</tr>
<tr>
<td>D 30_0,4</td>
<td>3418</td>
<td>234</td>
</tr>
<tr>
<td>D 15_0,4</td>
<td>2966</td>
<td>217</td>
</tr>
<tr>
<td>Oznaczenie próbki</td>
<td>Moduł sztywności IT CY w temp. badania 23º C</td>
<td>Moduł sztywności IT CY w temp. badania 10º C</td>
</tr>
<tr>
<td>------------------</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>(\bar{X}) [MPa]</td>
<td>(s) [MPa]</td>
</tr>
<tr>
<td>R 45</td>
<td>4986,5</td>
<td>202,9</td>
</tr>
<tr>
<td>R 30</td>
<td>4599,3</td>
<td>416,0</td>
</tr>
<tr>
<td>R 15</td>
<td>4317,3</td>
<td>234,9</td>
</tr>
<tr>
<td>A 45_1,0</td>
<td>5885,8</td>
<td>508,1</td>
</tr>
<tr>
<td>A 30_1,0</td>
<td>5521,8</td>
<td>347,2</td>
</tr>
<tr>
<td>A 15_1,0</td>
<td>4954,0</td>
<td>308,5</td>
</tr>
<tr>
<td>B 45_0,4</td>
<td>5206,4</td>
<td>467,1</td>
</tr>
<tr>
<td>B 30_0,4</td>
<td>4714,3</td>
<td>278,5</td>
</tr>
<tr>
<td>B 15_0,5</td>
<td>4423,1</td>
<td>193,6</td>
</tr>
<tr>
<td>C 45_0,5</td>
<td>5806,0</td>
<td>306,1</td>
</tr>
<tr>
<td>C 30_0,5</td>
<td>5072,3</td>
<td>331,7</td>
</tr>
<tr>
<td>C 15_0,5</td>
<td>4456,6</td>
<td>391,2</td>
</tr>
<tr>
<td>D 45_0,4</td>
<td>5620,5</td>
<td>310,0</td>
</tr>
<tr>
<td>D 30_0,4</td>
<td>5153,4</td>
<td>629,6</td>
</tr>
<tr>
<td>D 15_0,4</td>
<td>4555,5</td>
<td>273,5</td>
</tr>
</tbody>
</table>

Norma PN-EN 12697–26:2008 [176] nie informuje o precyzji badania modułu sztywności metodą IT-CY oraz metodą 4PB-PR. W pracy [118] wyniki badań modułu sztywności metodą IT-CY charakteryzowały się współczynnikiem zmiennosci do 30%. W prowadzonych badaniach wariancja uzyskanych wyników mieściła się w granicach 0,4–12,4% w metodzie IT-CY (tab. 6,25, 6,26) oraz od 0,8% do 13,8% dla metody 4PB-PR (tab. 6,27 6,28). Wobec powyższego uznano, że przebieg badań był prawidłowy a otrzymane wyniki były podstawą do analiz.
Tabela 6.27. Określenie jednorodności badania wodoodporności ITSR w próbach mieszanki mineralno-asfaltowej z dodatkiem zeolitów.

<table>
<thead>
<tr>
<th>Oznaczenie próbki</th>
<th>Częstotliwość [Hz]</th>
<th>Temperatura badania 0ºC</th>
<th>Temperatura badania 10ºC</th>
<th>Temperatura badania 20ºC</th>
<th>Temperatura badania 30ºC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0,1</td>
<td>0,2</td>
<td>0,5</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>\bar{X} [MPa]</td>
<td>s [MPa]</td>
<td>v_x [%]</td>
<td>\bar{X} [MPa]</td>
<td>s [MPa]</td>
</tr>
<tr>
<td>R_45</td>
<td>19127</td>
<td>850</td>
<td>4,4</td>
<td>20535</td>
<td>1016</td>
</tr>
<tr>
<td>A_15_1,0</td>
<td>17060</td>
<td>1001</td>
<td>5,9</td>
<td>18469</td>
<td>1067</td>
</tr>
<tr>
<td>B_15_0,4</td>
<td>17078</td>
<td>1246</td>
<td>7,3</td>
<td>18493</td>
<td>1332</td>
</tr>
<tr>
<td>C_15_0,5</td>
<td>16675</td>
<td>342</td>
<td>2,1</td>
<td>18034</td>
<td>300</td>
</tr>
<tr>
<td>D_15_0,4</td>
<td>17711</td>
<td>479</td>
<td>2,7</td>
<td>18995</td>
<td>513</td>
</tr>
<tr>
<td>R_45</td>
<td>10612</td>
<td>329</td>
<td>3,1</td>
<td>11940</td>
<td>472</td>
</tr>
<tr>
<td>A_15_1,0</td>
<td>9490</td>
<td>541</td>
<td>5,7</td>
<td>10641</td>
<td>574</td>
</tr>
<tr>
<td>B_15_0,4</td>
<td>8993</td>
<td>418</td>
<td>4,6</td>
<td>10179</td>
<td>472</td>
</tr>
<tr>
<td>C_15_0,5</td>
<td>9450</td>
<td>314</td>
<td>3,3</td>
<td>10850</td>
<td>309</td>
</tr>
<tr>
<td>D_15_0,4</td>
<td>9320</td>
<td>162</td>
<td>1,7</td>
<td>10555</td>
<td>225</td>
</tr>
<tr>
<td>R_45</td>
<td>4440</td>
<td>149</td>
<td>3,3</td>
<td>5450</td>
<td>162</td>
</tr>
<tr>
<td>A_15_1,0</td>
<td>3791</td>
<td>243</td>
<td>6,4</td>
<td>4572</td>
<td>240</td>
</tr>
<tr>
<td>B_15_0,4</td>
<td>3541</td>
<td>218</td>
<td>6,2</td>
<td>4374</td>
<td>263</td>
</tr>
<tr>
<td>C_15_0,5</td>
<td>3663</td>
<td>356</td>
<td>9,7</td>
<td>4375</td>
<td>403</td>
</tr>
<tr>
<td>D_15_0,4</td>
<td>3860</td>
<td>130</td>
<td>3,4</td>
<td>4799</td>
<td>47</td>
</tr>
<tr>
<td>R_45</td>
<td>1432</td>
<td>97</td>
<td>6,8</td>
<td>1676</td>
<td>82</td>
</tr>
<tr>
<td>A_15_1,0</td>
<td>1128</td>
<td>83</td>
<td>7,3</td>
<td>1409</td>
<td>136</td>
</tr>
<tr>
<td>B_15_0,4</td>
<td>1099</td>
<td>89</td>
<td>8,1</td>
<td>1382</td>
<td>34</td>
</tr>
<tr>
<td>C_15_0,5</td>
<td>1079</td>
<td>136</td>
<td>12,6</td>
<td>1275</td>
<td>176</td>
</tr>
<tr>
<td>D_15_0,4</td>
<td>1230</td>
<td>63</td>
<td>5,1</td>
<td>1548</td>
<td>97</td>
</tr>
</tbody>
</table>
Tabela 6.28. Określenie jednorodności badania wodoodporności ITSR w próbach mieszanki mineralno-ASFALTowej z dodatkiem zeolitów

<table>
<thead>
<tr>
<th>Oznaczenie próby</th>
<th>Częstotliwość [Hz]</th>
<th>Temperatura badania 0°C</th>
<th>Temperatura badania 10°C</th>
<th>Temperatura badania 20°C</th>
<th>Temperatura badania 30°C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(\bar{X}) [MPa]</td>
<td>(s) [MPa]</td>
<td>(v_x) [%]</td>
<td>(\bar{X}) [MPa]</td>
<td>(s) [MPa]</td>
</tr>
<tr>
<td>R_45</td>
<td>24720</td>
<td>1443</td>
<td>5,8</td>
<td>26668</td>
<td>1553</td>
</tr>
<tr>
<td>A_15_1,0</td>
<td>22801</td>
<td>1524</td>
<td>6,7</td>
<td>24643</td>
<td>1729</td>
</tr>
<tr>
<td>B_15_0,4</td>
<td>22928</td>
<td>1480</td>
<td>6,5</td>
<td>24640</td>
<td>1500</td>
</tr>
<tr>
<td>C_15_0,5</td>
<td>22390</td>
<td>800</td>
<td>3,6</td>
<td>24182</td>
<td>992</td>
</tr>
<tr>
<td>D_15_0,4</td>
<td>23535</td>
<td>610</td>
<td>2,6</td>
<td>25339</td>
<td>685</td>
</tr>
<tr>
<td>R_45</td>
<td>16651</td>
<td>618</td>
<td>3,7</td>
<td>18716</td>
<td>780</td>
</tr>
<tr>
<td>A_15_1,0</td>
<td>15226</td>
<td>895</td>
<td>5,9</td>
<td>17192</td>
<td>1159</td>
</tr>
<tr>
<td>B_15_0,4</td>
<td>14755</td>
<td>796</td>
<td>5,4</td>
<td>16635</td>
<td>988</td>
</tr>
<tr>
<td>C_15_0,5</td>
<td>15490</td>
<td>873</td>
<td>5,6</td>
<td>17432</td>
<td>1125</td>
</tr>
<tr>
<td>D_15_0,4</td>
<td>15120</td>
<td>637</td>
<td>4,2</td>
<td>17080</td>
<td>878</td>
</tr>
<tr>
<td>R_45</td>
<td>9576</td>
<td>267</td>
<td>2,8</td>
<td>11298</td>
<td>253</td>
</tr>
<tr>
<td>A_15_1,0</td>
<td>8441</td>
<td>190</td>
<td>2,3</td>
<td>10060</td>
<td>344</td>
</tr>
<tr>
<td>B_15_0,4</td>
<td>8149</td>
<td>480</td>
<td>5,9</td>
<td>9887</td>
<td>545</td>
</tr>
<tr>
<td>C_15_0,5</td>
<td>8371</td>
<td>571</td>
<td>6,8</td>
<td>10006</td>
<td>568</td>
</tr>
<tr>
<td>D_15_0,4</td>
<td>8859</td>
<td>226</td>
<td>2,6</td>
<td>10516</td>
<td>344</td>
</tr>
<tr>
<td>R_45</td>
<td>3999</td>
<td>76</td>
<td>1,9</td>
<td>5222</td>
<td>140</td>
</tr>
<tr>
<td>A_15_1,0</td>
<td>3283</td>
<td>354</td>
<td>10,8</td>
<td>4308</td>
<td>440</td>
</tr>
<tr>
<td>B_15_0,4</td>
<td>3165</td>
<td>92</td>
<td>2,9</td>
<td>4219</td>
<td>81</td>
</tr>
<tr>
<td>C_15_0,5</td>
<td>3015</td>
<td>380</td>
<td>12,6</td>
<td>4097</td>
<td>471</td>
</tr>
<tr>
<td>D_15_0,4</td>
<td>3513</td>
<td>169</td>
<td>4,8</td>
<td>4701</td>
<td>112</td>
</tr>
</tbody>
</table>
Jednoczynnikowa analiza wariancji

Pierwszy etap jednoczynnikowej analizy wariancji wyników badań własności fizykomechanicznych mieszanki mineralno-asfaltowej z dodatkiem materiałów zeolitowych polegał na określeniu wartości statystyki testowej F, będącej podstawą do przyjęcia lub odrzucenia hipotezy o istnieniu istotnych różnic w wartościach średnich w analizowanej grupie. Wartości statystyki testowej F poszczególnych własności MMA zestawiono w tabeli 6.29.

Na podstawie oceny jednoczynnikowej analizy wariancji cech fizykomechanicznych MMA z dodatkiem zeolitów można stwierdzić, że uzyskana w testach wartość p jest zdecydowanie niższa od przyjętego poziomu istotności (α=0,1). Uzyskane wartości p-value pozwoliły na odrzucenie hipotezy zerowej, co oznacza, że wśród analizowanych grup są takie w których wartość średnie badanej cechy są istotnie różne.

W drugim etapie statystycznej oceny otrzymanych wyników badań wykonano testy porównań wielokrotnych metodą Najmniejszych Istotnych Różnic. Porównywano właściwości MMA referencyjnej z właściwościami MMA z dodatkiem zeolitów. Wyniki przeprowadzonych analiz zestawiono w tabelach 6.30–6.35.
Tabela 6.29. Wyniki jednoczynnikowej analizy wariancji

<table>
<thead>
<tr>
<th>Cechy fizykomechaniczne</th>
<th>Źródło wariancji</th>
<th>SS</th>
<th>df</th>
<th>MS</th>
<th>F</th>
<th>Wartość-p</th>
<th>Test F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zawartość wolnych przestrzeni</td>
<td>Pomiędzy grupami</td>
<td>19,39724</td>
<td>14</td>
<td>1,385517</td>
<td>17,03275</td>
<td>1,48E-10</td>
<td>2,03742</td>
</tr>
<tr>
<td></td>
<td>W obrębie grup</td>
<td>2,440328</td>
<td>30</td>
<td>0,081344</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pomiędzy grupami</td>
<td>0,175199</td>
<td>14</td>
<td>0,012514</td>
<td>2,760163</td>
<td>0,009598</td>
<td>2,03742</td>
</tr>
<tr>
<td></td>
<td>W obrębie grup</td>
<td>0,136016</td>
<td>30</td>
<td>0,004534</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pomiędzy grupami</td>
<td>0,290944</td>
<td>14</td>
<td>0,020782</td>
<td>6,822692</td>
<td>5,65E-06</td>
<td>2,03742</td>
</tr>
<tr>
<td></td>
<td>W obrębie grup</td>
<td>0,091379</td>
<td>30</td>
<td>0,003046</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wytrzymałość ITS próbek suchych</td>
<td>Pomiędzy grupami</td>
<td>14776550</td>
<td>14</td>
<td>1055468</td>
<td>7,913498</td>
<td>4,47E-08</td>
<td>1,918249</td>
</tr>
<tr>
<td></td>
<td>W obrębie grup</td>
<td>6001904</td>
<td>45</td>
<td>133375,6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wytrzymałość ITS próbek mokrych</td>
<td>Pomiędzy grupami</td>
<td>43800690</td>
<td>14</td>
<td>3128621</td>
<td>5,995665</td>
<td>1,92E-06</td>
<td>1,918249</td>
</tr>
<tr>
<td></td>
<td>W obrębie grup</td>
<td>23481623</td>
<td>45</td>
<td>521813,8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Moduł sztywności IT CY temp. badania 23°C</td>
<td>Pomiędzy grupami</td>
<td>1,39E+08</td>
<td>14</td>
<td>9894747</td>
<td>12,8531</td>
<td>2,23E-11</td>
<td>1,918249</td>
</tr>
<tr>
<td></td>
<td>W obrębie grup</td>
<td>34642498</td>
<td>45</td>
<td>769833,3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Moduł sztywności IT CY temp. badania 10°C</td>
<td>Pomiędzy grupami</td>
<td>14776550</td>
<td>14</td>
<td>1055468</td>
<td>7,913498</td>
<td>4,47E-08</td>
<td>1,918249</td>
</tr>
<tr>
<td></td>
<td>W obrębie grup</td>
<td>6001904</td>
<td>45</td>
<td>133375,6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Moduł sztywności IT CY temp. badania -2°C</td>
<td>Pomiędzy grupami</td>
<td>43800690</td>
<td>14</td>
<td>3128621</td>
<td>5,995665</td>
<td>1,92E-06</td>
<td>1,918249</td>
</tr>
<tr>
<td></td>
<td>W obrębie grup</td>
<td>23481623</td>
<td>45</td>
<td>521813,8</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Tabela 6.30. Wynik testu porównań wielokrotnych metodą Najmniejszych Istotnych Różnic zawartości wolnych przestrzeni w próbkach zagęszczanych w ubijaku Marshalla z dodatkiem materiałów zeolitowych

<table>
<thead>
<tr>
<th></th>
<th>R 30</th>
<th>R 15</th>
<th>A 45_1.00</th>
<th>A 30_1.00</th>
<th>A 15_1.00</th>
<th>B 45_0.4</th>
<th>B 30_0.4</th>
<th>B 15_0.4</th>
</tr>
</thead>
<tbody>
<tr>
<td>R 45</td>
<td>0,136905</td>
<td>0,001746</td>
<td>0,18137</td>
<td>0,360948</td>
<td>0,013929</td>
<td>0,065336</td>
<td>0,136589</td>
<td>0,007634</td>
</tr>
<tr>
<td>R 30</td>
<td>x</td>
<td>0,004886</td>
<td>0,041967</td>
<td>0,507405</td>
<td>0,122045</td>
<td>0,039662</td>
<td>0,522869</td>
<td>0,033835</td>
</tr>
<tr>
<td>R 15</td>
<td>x</td>
<td>0,000602</td>
<td>0,00296</td>
<td>0,014215</td>
<td>0,00032</td>
<td>0,030406</td>
<td>0,080865</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>R 45</th>
<th>R 30</th>
<th>R 15</th>
<th>A 45_0.50</th>
<th>A 30_0.50</th>
<th>A 15_0.50</th>
<th>C 45_0.50</th>
<th>C 30_0.50</th>
<th>C 15_0.50</th>
<th>D 45_0.4</th>
<th>D 30_0.4</th>
<th>D 15_0.4</th>
</tr>
</thead>
<tbody>
<tr>
<td>R 45</td>
<td></td>
<td></td>
<td></td>
<td>0,049204</td>
<td>0,043448</td>
<td>0,001589</td>
<td>0,571369</td>
<td>0,128618</td>
<td>0,03618</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R 30</td>
<td></td>
<td></td>
<td></td>
<td>0,053548</td>
<td>0,718755</td>
<td>0,052127</td>
<td>0,093439</td>
<td>0,735246</td>
<td>0,065071</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R 15</td>
<td></td>
<td></td>
<td></td>
<td>0,000279</td>
<td>0,002784</td>
<td>0,028298</td>
<td>0,000785</td>
<td>0,00196</td>
<td>0,054479</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Wyniki zawartości wolnych przestrzeni w próbkach zagęszczanych temperaturze 115°C są statystycznie istotne niezależnie od rodzaju zastosowanego materiału zeolitowego. W tej temperaturze nastąpiła największa poprawa zagęszczałości. Zastosowanie klinoptilolitu modyfikowanego wodą oraz zeolitu NaP1 jest statystycznie istotne przy przygotowaniu próbek w temperaturze 145 lub 115°C. Przy zastosowaniu zeolitu NaP1 modyfikowanego wodą zawartość wolnych przestrzeni w próbkach zagęszczanych w temperaturze 115 °C także jest istotnie różna od wartości uzyskiwanych dla próbek referencyjnych. W MMA o zbliżonych wartościach zmierzonej cechy nie wykazano statystycznie istotnych różnic.

Tabela 6.31. Wynik testu porównań wielokrotnych metodą Najmniejszych Istotnych Różnic wytrzymałości na rozciąganie pośrednie próbek suchych z dodatkiem materiałów zeolitowych

<table>
<thead>
<tr>
<th></th>
<th>R 30</th>
<th>R 15</th>
<th>A 45_1.00</th>
<th>A 30_1.00</th>
<th>A 15_1.00</th>
<th>B 45_0.4</th>
<th>B 30_0.4</th>
<th>B 15_0.4</th>
</tr>
</thead>
<tbody>
<tr>
<td>R 45</td>
<td>0,049198</td>
<td></td>
<td>0,01589</td>
<td>0,63616</td>
<td>0,784234</td>
<td>0,688015</td>
<td>0,362703</td>
<td></td>
</tr>
<tr>
<td>R 30</td>
<td>x</td>
<td>0,677137</td>
<td>0,059354</td>
<td>0,022443</td>
<td>0,041146</td>
<td>0,182462</td>
<td>0,487509</td>
<td>0,716858</td>
</tr>
<tr>
<td>R 15</td>
<td>x</td>
<td>0,045789</td>
<td>0,068698</td>
<td>0,225402</td>
<td>0,16123</td>
<td>0,385928</td>
<td>0,546058</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>R 45</th>
<th>R 30</th>
<th>R 15</th>
<th>A 45_0.50</th>
<th>A 30_0.50</th>
<th>A 15_0.50</th>
<th>C 45_0.50</th>
<th>C 30_0.50</th>
<th>C 15_0.50</th>
<th>D 45_0.4</th>
<th>D 30_0.4</th>
<th>D 15_0.4</th>
</tr>
</thead>
<tbody>
<tr>
<td>R 45</td>
<td></td>
<td></td>
<td></td>
<td>0,012962</td>
<td>0,697582</td>
<td>0,598793</td>
<td>0,713848</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R 30</td>
<td></td>
<td></td>
<td></td>
<td>0,713848</td>
<td>0,27979</td>
<td>0,012962</td>
<td>0,697582</td>
<td>0,598793</td>
<td>0,713848</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R 15</td>
<td></td>
<td></td>
<td></td>
<td>0,174886</td>
<td>0,916952</td>
<td>0,004387</td>
<td>0,200202</td>
<td>0,352006</td>
<td>0,174886</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0,150969</td>
<td>0,679342</td>
<td>0,026944</td>
<td>0,161428</td>
<td>0,310457</td>
<td>0,150969</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Tabela 6.32. Wynik testu porównań wielokrotnych metodą Najmniejszych Istotnych Różnic wytrzymałości na rozciąganie pośrednie próbek mokrych z dodatkiem materiałów zeolitowych

<table>
<thead>
<tr>
<th></th>
<th>R 30</th>
<th>R 15</th>
<th>A 45_1.00</th>
<th>A 30_1.00</th>
<th>A 15_1.00</th>
<th>B 45_0.4</th>
<th>B 30_0.4</th>
<th>B 15_0.4</th>
</tr>
</thead>
<tbody>
<tr>
<td>R 45</td>
<td>0,110648</td>
<td>0,056688</td>
<td>0,027706</td>
<td>0,918284</td>
<td>0,241643</td>
<td>0,301779</td>
<td>0,218006</td>
<td>0,008133</td>
</tr>
<tr>
<td>R 30</td>
<td>x</td>
<td>0,448507</td>
<td>0,017825</td>
<td>0,114816</td>
<td>0,724376</td>
<td>0,303901</td>
<td>0,407815</td>
<td>0,323268</td>
</tr>
<tr>
<td>R 15</td>
<td>x</td>
<td>0,004209</td>
<td>0,04658</td>
<td>0,334508</td>
<td>0,104182</td>
<td>0,139528</td>
<td>0,857915</td>
<td></td>
</tr>
</tbody>
</table>

Wynik badania wytrzymałości na rozciąganie pośrednie próbek MMA suchych z dodatkiem zeolitu NaP1 o temperaturze zagęszczania 115°C różni się w sposób statystycznie znaczący od wyników uzyskiwanych na próbkach referencyjnych. W przypadku badania na próbach kondycjonowanych istotne różnice w otrzymanych wynikach uzyskano na próbach MMA zagęszczanych w 145°C z dodatkiem klinoptilolitu.

Tabela 6.33. Wynik testu porównań wielokrotnych metodą Najmniejszych Istotnych Różnic modułu sztywności sprężystej próbek mieszanki mineralno-asfaltowej z dodatkiem materiałów zeolitowych w temperaturze badania 23°C

<table>
<thead>
<tr>
<th></th>
<th>R 30</th>
<th>R 15</th>
<th>A 45_1.00</th>
<th>A 30_1.00</th>
<th>A 15_1.00</th>
<th>B 45_0.4</th>
<th>B 30_0.4</th>
<th>B 15_0.4</th>
</tr>
</thead>
<tbody>
<tr>
<td>R 45</td>
<td>0,169598</td>
<td>0,005023</td>
<td>0,030299</td>
<td>0,044767</td>
<td>0,867189</td>
<td>0,436604</td>
<td>0,174901</td>
<td>0,006977</td>
</tr>
<tr>
<td>R 30</td>
<td>x</td>
<td>0,29088</td>
<td>0,00782</td>
<td>0,014408</td>
<td>0,219802</td>
<td>0,10029</td>
<td>0,665227</td>
<td>0,485508</td>
</tr>
<tr>
<td>R 15</td>
<td>x</td>
<td>0,004979</td>
<td>0,002236</td>
<td>0,016733</td>
<td>0,027252</td>
<td>0,072113</td>
<td>0,512638</td>
<td></td>
</tr>
</tbody>
</table>

R 45 | C 45_0.50 | C 30_0.50 | C 15_0.50 | D 45_0.4 | D 30_0.4 | D 15_0.4 |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>R 30</td>
<td>0,080166</td>
<td>0,218006</td>
<td>0,008133</td>
<td>0,961616</td>
<td>0,092542</td>
<td>0,029756</td>
</tr>
<tr>
<td>R 15</td>
<td>0,011482</td>
<td>0,288921</td>
<td>0,242806</td>
<td>0,080505</td>
<td>0,904008</td>
<td>0,227808</td>
</tr>
<tr>
<td></td>
<td>0,006338</td>
<td>0,107796</td>
<td>0,101066</td>
<td>0,028615</td>
<td>0,35503</td>
<td>0,633566</td>
</tr>
</tbody>
</table>

R 45 | C 45_0.50 | C 30_0.50 | C 15_0.50 | D 45_0.4 | D 30_0.4 | D 15_0.4 |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>R 30</td>
<td>0,006625</td>
<td>0,677612</td>
<td>0,061264</td>
<td>0,436604</td>
<td>0,174901</td>
<td>0,006977</td>
</tr>
<tr>
<td>R 15</td>
<td>0,003423</td>
<td>0,125749</td>
<td>0,635216</td>
<td>0,007653</td>
<td>0,201864</td>
<td>0,867385</td>
</tr>
<tr>
<td></td>
<td>0,000248</td>
<td>0,013782</td>
<td>0,567965</td>
<td>0,000536</td>
<td>0,067578</td>
<td>0,234362</td>
</tr>
</tbody>
</table>
Tabela 6.34. Wynik testu porównań wielokrotnych metodą Najmniejszych Istotnych Różnic modułu sztywności sprężystej próbek mieszanki mineralno-asfaltowej z dodatkiem materiałów zeolitowych w temperaturze badania 10°C

<table>
<thead>
<tr>
<th></th>
<th>R 30</th>
<th>R 15</th>
<th>A 45_1.00</th>
<th>A 30_1.00</th>
<th>A 15_1.00</th>
<th>B 45_0.4</th>
<th>B 30_0.4</th>
<th>B 15_0.4</th>
</tr>
</thead>
<tbody>
<tr>
<td>R 45</td>
<td>0,722929</td>
<td>0,007061</td>
<td>0,008704</td>
<td>0,074388</td>
<td>0,302408</td>
<td>0,304145</td>
<td>0,344317</td>
<td>0,021131</td>
</tr>
<tr>
<td>R 30</td>
<td>x</td>
<td>0,073176</td>
<td>0,049886</td>
<td>0,092801</td>
<td>0,341837</td>
<td>0,612041</td>
<td>0,523865</td>
<td>0,077015</td>
</tr>
<tr>
<td>R 15</td>
<td>x</td>
<td>0,00043</td>
<td>0,003635</td>
<td>0,002184</td>
<td>0,122983</td>
<td>0,409582</td>
<td>0,882075</td>
<td></td>
</tr>
</tbody>
</table>

Tabela 6.35. Wynik testu porównań wielokrotnych metodą Najmniejszych Istotnych Różnic modułu sztywności sprężystej próbek mieszanki mineralno-asfaltowej z dodatkiem materiałów zeolitowych w temperaturze badania -2°C

<table>
<thead>
<tr>
<th></th>
<th>R 30</th>
<th>R 15</th>
<th>A 45_1.00</th>
<th>A 30_1.00</th>
<th>A 15_1.00</th>
<th>B 45_0.4</th>
<th>B 30_0.4</th>
<th>B 15_0.4</th>
</tr>
</thead>
<tbody>
<tr>
<td>R 45</td>
<td>0,05272</td>
<td>0,039146</td>
<td>0,00209</td>
<td>0,01069</td>
<td>0,076462</td>
<td>0,245702</td>
<td>0,773792</td>
<td>0,015885</td>
</tr>
<tr>
<td>R 30</td>
<td>x</td>
<td>0,686895</td>
<td>0,000441</td>
<td>0,001759</td>
<td>0,8406</td>
<td>0,025051</td>
<td>0,12798</td>
<td>0,348096</td>
</tr>
<tr>
<td>R 15</td>
<td>x</td>
<td>0,00095</td>
<td>0,001571</td>
<td>0,56027</td>
<td>0,018182</td>
<td>0,009058</td>
<td>0,065422</td>
<td></td>
</tr>
</tbody>
</table>

Analiza Najmniejszych Istotnych Różnic wykazała, że wyniki badań modułu sztywności metodą IT-CY, niezależnie od temperatury badania, są statystycznie różne od wyników uzyskanych na próbkach referencyjnych w przypadku:

- MMA z dodatkiem klinoptilolitu o temperaturze zagęszczania 145°C,
- MMA z dodatkiem klinoptilolitu o temperaturze zagęszczania 130°C,
- MMA z dodatkiem zeolitu NaP1 o temperaturze zagęszczania 145°C,
- MMA z dodatkiem modyfikowanego wodą zeolitu NaP1 o temperaturze zagęszczania 145°C.

Dodatek zeolitu modyfikowanego wodą do MMA zagęszczanych w temperaturze 130°C był statystycznie istotny w przypadku wyników badań modułu sztywności zmierzonych w temperaturze -2°C.
7 Odcinek doświadczalny

W celu zweryfikowania możliwości zastosowania mieszanek mineralno-asfaltowych o obniżonej temperaturze zagęszczania z dodatkiem zeolitów wykonano odcinek doświadczalny. Na podstawie otrzymanych wyników badań pozyskano informacje na temat wytwarzania i wbudowywania WMA w warunkach rzeczywistych.

Odcinek doświadczalny wykonano w Zamościu, województwo lubelskie, na drodze gminnej Nr 110538 L, nr ewidencyjny działki 258/2, stanowiącej łącznik między ulicą Hrubieszowską, a ciepłownią. Długość odcinka wynosiła 100 mb, szerokość – 5,5 m. Aby móc porównać wyniki badań laboratoryjnych z wynikami badań odwiertów wykonano nawierzchnię warstwy wiążącej AC 16 W 35/50 zaprojektowaną dla kategorii ruchu KR 3–4 wg. WT 2 2010 [192]. Grubość warstwy po zagęszczeniu, zgodnie z projektem wynosiła 40 mm. W celu umożliwienia pobrania próbek do badania odporności na deformacje trwałe, podczas wbudowywania mieszanki miejscowo zwiększono grubość wbudowywanej warstwy do 65mm. Wykonawcą odcinka doświadczalnego było Przedsiębiorstwo Robót Drogowych Spółka z o.o. w Zamościu.

7.1 Recepta mieszanki mineralno-asfaltowej

W projekcie mieszanki mineralnej oraz mieszanki mineralno-asfaltowej zastosowano takie same materiały jak w fazie badań laboratoryjnych. Charakterystyka kruszyw, zeolitu oraz asfaltu jest zgodna z charakterystyką materiałów opisanych w punktach 4.1, 4.2, 4.3. W produkcji, tak jak podczas badań laboratoryjnych, nie używano środków adhezyjnych poprawiających przyczepności kruszyw kwaśnych do asfaltu.

Ilość asfaltu w mieszance mineralno-asfaltowej określono na podstawie Wymagań Technicznych WT 2 2010 [192], przy zastosowaniu współczynnika korekcyjnego zależnego od gęstości mieszanki mineralnej (tabela 7.1).
Tabela 7.1 Określenie minimalnej zawartości asfaltu w mieszance mineralno-asfaltowej przeznaczonej do wykonania warstwy wiążącej z betonu asfaltowego AC 16 W

<table>
<thead>
<tr>
<th>Wyszczególnienie</th>
<th>Wartość</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gęstość mieszanki mineralnej, (\rho_a)</td>
<td>2712 kg/m (^3)</td>
</tr>
<tr>
<td>Minimalna zawartość asfaltu, (B_{\text{min}})</td>
<td>4,4 %</td>
</tr>
<tr>
<td>Współczynnik korekcyjny (\rho_a = 2,650/ \rho_a)</td>
<td>0,977</td>
</tr>
<tr>
<td>Minimalna zawartość asfaltu, (B_{\text{min}}), po korekcji</td>
<td>4,3 %</td>
</tr>
<tr>
<td>Minimalna zawartość asfaltu, (B_{\text{min}}), po korekcji zwiększona o 0,3 % zgodnie z w WT 2 2010</td>
<td>4,6 %</td>
</tr>
</tbody>
</table>

Skład mieszanki mineralnej oraz mieszanki mineralno-asfaltowej, przedstawiono w tabeli 7.2.

Tabela 7.2. Projektowany skład mieszanki mineralnej i mieszanki mineralno-asfaltowej 0/16 przeznaczonej do wykonania odcinka doświadczalnego warstwy wiążącej z betonu asfaltowego AC 16 W, dla kategorii ruchu KR 3–4 wg WT 2 2010

<table>
<thead>
<tr>
<th>Materiał</th>
<th>MM</th>
<th>MMA</th>
<th>MMA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kruszywo grube 11/16 granodioryt kop. Vyrivsyj Karjer</td>
<td>20,0</td>
<td>19,1</td>
<td>19,1</td>
</tr>
<tr>
<td>Kruszywo grube 8/11 dolomit kop. Piskrzyń</td>
<td>18,0</td>
<td>17,2</td>
<td>17,2</td>
</tr>
<tr>
<td>Kruszywo grube 4/8 granodioryt kop. Vyrivsyj Karjer</td>
<td>24,0</td>
<td>22,9</td>
<td>22,9</td>
</tr>
<tr>
<td>Kruszywo o c.u. 0/4 wapięń kop. Trzuskawica</td>
<td>34,0</td>
<td>32,5</td>
<td>32,5</td>
</tr>
<tr>
<td>Wypełniacz dodany (mączka wapienna) Bukowa</td>
<td>4,0</td>
<td>2,8 *</td>
<td>3,4 *</td>
</tr>
<tr>
<td>Asfalt drogowy 35/50</td>
<td></td>
<td>4,6</td>
<td>4,6</td>
</tr>
<tr>
<td>Zeolit naturalny klinoptilolit</td>
<td>1,0</td>
<td>0,4 **</td>
<td></td>
</tr>
</tbody>
</table>

* ilość wypełniacza dodanego została pomniejszona o ilość zadozowanego tułu zeolitu
** zeolit nasączony wodą zgodnie z procedurą opisaną w p. niniejszej pracy

Z uwagi na źródło finansowania odcinka doświadczalnego możliwe były wykonanie jedynie warstwy mieszanki mineralno-asfaltowej z dodatkiem zeolitu naturalnego klinoptilolitu. Wytypowany odcinek drogi podzielono na dwie części: prawą i lewą i oznaczono odpowiednio literami L i P. Prawa strona odcinka doświadczalnego została wykonana z mieszanki AC 16 W 35/50 z 1% dodatkiem klinoptilolitu w stosunku do masy MMA. Lewa część odcinka doświadczalnego została wykonana z mieszanki AC 16 W 35/50 z 0,4% dodatkiem klinoptilolitu modyfikowanego wodą.
Nasączenie zeolitu wodą odbywało się zgodnie z procedurą opisaną w punkcie 5.2 i przedstawiono na fotografii 7.1.

Fot. 7.1. Nasączenie zeolitu naturalnego klinoptilolitu wodą

Dla zaprojektowanej mieszanki AC 16 W z dodatkiem zeolitów nie wykonywano badania typu. Materiały jak i recepta MMA przeznaczonej do wykonania odcinka doświadczalnego były takie same jak na etapie badań laboratoryjnych. Wyniki wymaganych w Badaniu Typu własności fizykochemicznych MMA przyjęto zgodnie z wynikami badań omówionymi w punkcie 6.6.

Na podstawie uzyskanych wyników badań laboratoryjnych za optymalną temperaturę zagęszczania próbek WMA przyjęto 115°C. Wykonawca odcinka doświadczalnego w ramach zakładowej kontroli produkcji wykonał badania gęstości, gęstości objętościowej oraz zawartości wolnych przestrzeni. Wymienione parametry przyjęto na podstawie badań kontrolnych Wykonawcy.

W tabeli 7.3 zestawiono własności fizykochemiczne WMA z dodatkiem zeolitu naturalnego klinoptilolitu AC 16 W przeznaczonej na wykonanie odcinka doświadczalnego.
Tabela 7.3. Własności fizykomechaniczne WMA z dodatkiem zeolitu naturalnego klinoptilolitu AC 16 W przeznaczonej na wykonanie odcinka doświadczalnego

<table>
<thead>
<tr>
<th>Właściwości</th>
<th>Wyniki badań mieszanki AC 16 W z dodatkiem zeolitu</th>
<th>Wymagania wg WT 2 2010</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1% CLIN</td>
<td>0,4% CLIN+W</td>
</tr>
<tr>
<td>Gęstość MMA [kg/m³] wg [169]</td>
<td>2507</td>
<td>2517</td>
</tr>
<tr>
<td>Gęstość objętościowa MMA [kg/m³] wg [170]</td>
<td>2357</td>
<td>2364</td>
</tr>
<tr>
<td>Zawartość wolnych przestrzeni [%] wg [171]</td>
<td>6,0</td>
<td>6,1</td>
</tr>
<tr>
<td>Odporność na deformacje trwałe wg PN-EN 12697-22 [174], metoda B w powietrzu, +60°C, 10 000 cykli</td>
<td>0,15</td>
<td>0,11</td>
</tr>
<tr>
<td>• WTS</td>
<td>7,1</td>
<td>6,2</td>
</tr>
<tr>
<td>• PRD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Odporność na działanie wody i mrozu wg PN-EN 12697-12 [172], przechowywanie w 40°C z jednym cyklem zamrażania, badanie w temp. +25°C</td>
<td>85</td>
<td>82</td>
</tr>
</tbody>
</table>

7.2 Produkcja i wbudowywanie mieszanki mineralno-asfaltowej z dodatkiem materiałów zeolitowych

Mieszankę mineralno-asfaltową wytworono w otaczarce stacjonarnej w Wytwórni Mas Bitumicznych Przedsiębiorstwa Robót Drogowych Spółka z o.o. w Zamościu. Jest to wytwórnia o konstrukcji wieżowej o wydajności 120 t/h. Wielkość jednokrotnego zarobu wynosiła 1400 kg. Łącznie wytworzone 2,75 tony MMA na każdą ze stron odcinka doświadczalnego.

Temperatury wytwarzania mieszanki mineralno-asfaltowej wynosiły odpowiednio:

- temperatura asfaltu – 140 °C±3,
- temperatura kruszywa – 180 °C±5,
- temperatura mieszanki – 160 °C±5.

Zgodnie z WT 2 2010 maksymalna temperatura MMA z asfaltem 35/50 po wytworzeniu na wytwórni może wynosić 195°C. Graniczna górna temperatura asfaltu 35/50 w zbiorniku wynosi 190°C. Biorąc pod uwagę powyższe temperaturę WMA z zeolitem po wytworzeniu była niższa o 35°C od dopuszczalnej temperatury maksymalnej.
Dozowanie zeolitu odbywało się ręcznie, po wcześniejszym przygotowaniu worków z zeolitem (fot. 7.2) o masie 14 kg w przypadku klinoptilolitu oraz o masie 5,6 kg z klinoptilolitem modyfikowanym wodą. Łącznie zużyto 275 kg klinoptilolit u oraz 110 kg klinoptilolitu modyfikowanego wodą.

Fot. 7.2. Ręczne dozowanie zeolitu

Odcinek doświadczalny wykonano 17 sierpnia 2015 roku. W czasie wbudowywania WMA z dodatkiem zeolitów panowały następujące, warunki atmosferyczne:

- temperatura otoczenia + 16°C,
- pochmurno z przejaśnieniami,
- brak opadów atmosferycznych.

Podłoże pod warstwę wiązącą zostało wyrównane mieszanką mineralno-asfaltową, czyste, bez pozostałości luźnego kruszywa, wyprofilowane, równe i bez kolein. Transport mieszanki z wytwórni na miejsce wbudowania odbywał się za pomocą ciągnika siodłowego z naczepą samowyładowczą. Z uwagi na bliskie sąsiedztwo WMB i miejsca wbudowywania mieszanki zrezygnowano z przekrycia skrzyń ładunkowych.

Do rozkładania mieszanki użyto rozkładarki gąsienicowej. Zagęszczanie odbywało się przy użyciu walca stalowego gładkiego bez wibracji o masie 11,6 t. (fot. 7.3). Minimalna temperatura HMA z dodatkiem asfaltu 35/50 wyładowanej do rozściełacza wynosi 155°C, a minimalna końcowa temperatura zagęszczania to 115°C [192].

Zagęszczanie rozłożonej warstwy rozpoczęto przy 120°C, zakończono w 95–105°C. Uzyskano obniżenie temperatury wbudowywania o 20–35°C w stosunku do minimalnych zalecanych temperatur dla mieszanek na gorąco.
Fot. 7.3. a) Załadunek mieszanki mineralno-aszaltowej 0/16 z dodatkiem zeolitu, przeznaczonej do wykonania odcinka doświadczalnego warstwy wiążącej z betonu asfaltowego AC 16 W
b) Zagęszczanie mieszanki mineralno-aszaltowej 0/16 z dodatkiem zeolitu, przeznaczonej do wykonania odcinka doświadczalnego warstwy wiążącej z betonu asfaltowego AC 16 W

Otrzymana mieszanka AC 16 W z dodatkiem zeolitu makroskopowo nie różni od tradycyjnych mieszanek na gorąco (fot. 7.4). Wszystkie ziarna kruszywa zostały całkowicie otoczone asfaltem. Mieszanka jest czarna i lekko połyskująca, nie wykazuje cech rozsegregowania.

Fot. 7.4. Wyprodukowana mieszanka mineralno-aszaltowa AC 16 W z dodatkiem zeolitu
a) na wytwórni mas bitumicznych w stanie luźnym b) w zagęszczonej warstwie

Produkcja, wbudowywanie i zagęszczanie przebiegało bez utrudnień. Przy niewielkiej ilości produkowanej masy dozowanie zeolitu odbywało się ręcznie. Przy produkcji na dużą skalę należałoby ten proces zautomatyzować. Niedogodnością było jedynie nasączenie zeolitu wodą i rozważanie odpowiednich porcji do worków. Z uwagi na szybki spadek temperatury
rozłożonej mieszanki lepsze byłoby jednoczesne użycie przynajmniej dwóch walców, co przyspiesza proces zagęszczania.

7.3 Metodyka badania składu WMA oraz badania próbek pobranych z odcinka doświadczalnego

Teoretyczną zawartość asfaltu rozpuszczonego określono na podstawie wzoru:

\[B_n = 0,14 \times F + 0,1 \% \] (7.1)

gdzie:
F – zawartość ziaren mniejszych od 0,063 mm w zaprojektowanej mieszance mineralnej, [%] (m/m).

Z odcinka doświadczalnego pobrano próbki do badań laboratoryjnych. W wyznaczonych przekrojach wycięto następujące próbki:

- Ø 100 mm przeznaczone do badania gęstości MMA oraz wskaźnika zagęszczenia,
- Ø 100 mm przeznaczonych przeznaczone do badania modułu sztywności metodą IT-CY,
- Ø 200 mm przeznaczone do badania odporności na deformacje trwałe,
- prostokątne przeznaczone do badania modułu sztywności metodą 4PB-PR.

Próbki walcowe były pobierane poprzez wykonanie odwiertu wiertłem rdzeniowym. Próbki prostokątne były wycinane z nawierzchni przy użyciu piły. Na próbkach Ø 200 mm zaznaczono kierunek zagęszczania, po to aby ruch koła w czasie badania odporności na deformacje trwałe był zgodny z kierunkiem zagęszczania.

Plan badań odcinka doświadczalnego obejmował badania właściwości WMA na próbkach wyciętych z nawierzchni, co przedstawiono tabeli 7.4.
Tabela 7.4. Zestawienie badań właściwości WMA na próbkach wyciętych z nawierzchni odcinka doświadczalnego

<table>
<thead>
<tr>
<th>Wyszczególnienie</th>
<th>Norma</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zagęszczenie warstwy</td>
<td>PN-EN 12697–8 [171]</td>
</tr>
<tr>
<td></td>
<td>PN-EN 13108</td>
</tr>
<tr>
<td>Zawartość wolnych przestrzeni Wskaźnik zagęszczenia</td>
<td></td>
</tr>
<tr>
<td>Odporność na deformacje trwałe</td>
<td>PN-EN 12697–22 [174]</td>
</tr>
<tr>
<td>Procentowa głębokość koleiny</td>
<td></td>
</tr>
<tr>
<td>Prędkość przyrostu koleiny</td>
<td></td>
</tr>
<tr>
<td>Wytrzymałość na pośrednie rozciąganie</td>
<td>PN-EN 12697–23 [175]</td>
</tr>
<tr>
<td>Moduł sztywności</td>
<td>PN-EN 12697–26 [176]</td>
</tr>
<tr>
<td>metodą IT-CY</td>
<td></td>
</tr>
<tr>
<td>metodą 4PB-PR</td>
<td></td>
</tr>
</tbody>
</table>

Wskaźnik zagęszczenia, określany jako „procent gęstości referencyjnej” został obliczony na podstawie wzoru:

\[P = \frac{B_{\text{specimen}}}{B_{\text{reference}}} \times 100 \] (7.2)

gdzie:

- \(P \) - wskaźnik zagęszczenia [%],
- \(B_{\text{specimen}} \) – średnia gęstość objętościowa próbek wyciętych z nawierzchni, określona zgodnie z PN-EN 12697–6:2012 [kg/m³] [170],
- \(B_{\text{reference}} \) – średnia gęstość objętościowa próbek wykonanych z zarobu w laboratorium w ubijaku Marszalla, określona zgodnie z PN-EN 12697–6:2012 [kg/m³] [170].

Procedury badawcze zawartości wolnych przestrzeni, odporności na deformacje trwałe, wytrzymałości na rozciąganie pośrednie, modułu sztywności metodą IT-CY oraz modułu sztywności metodą 4PB-PR były zgodne z procedurami opisanymi w punkcie 5.7.

Próbki walcowe o średnicy Ø 100 wykorzystano do badania gęstości MMA, określenia wskaźnika zagęszczenia, badania modułu sztywności w aparacie NAT metodą IT-CY.

Próbki walcowe o średnicy Ø 200 przeznaczone do badania odporności na deformacje trwałe. Z płyt wycięto po 4 beleczki o wymiarach 50x63x400, na których wykonano badania modułu sztywności metodą cztero-punktowego zginania.
7.4 Wyniki badań próbek pobranych z odcinka doświadczalnego

W tabeli 7.5 przedstawiono zawartość lepiszcza rozpuszczego określonego w ekstrakcji MMA podczas walidacji produkcji.

Tabela 7.5. Zawartość lepiszcza rozpuszczonego i nierozpuszczonego w mieszance mineralno-asfaltowej AC 16 W 35/50 z dodatkiem materiałów zeolitowych wg PN-EN 12697–1:2012 [168]

<table>
<thead>
<tr>
<th>Zawartość lepiszcza rozpuszczalnego w mieszance gruboziarnej</th>
<th>Wg recepty</th>
<th>Wynik badania</th>
<th>Odchyłka od recepty</th>
<th>Dopuszczalna odchyłka pojedynczego wyniku badania wg WT 2 2010</th>
</tr>
</thead>
<tbody>
<tr>
<td>MMA + 1% CLIN</td>
<td>4,6%</td>
<td>4,5%</td>
<td>-0,1%</td>
<td>± 0,6%</td>
</tr>
<tr>
<td>MMA + 0,4% CLIN+W</td>
<td>4,4%</td>
<td>-0,2%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Uziarnienie zaprojektowanej mieszanki mineralnej z dodatkiem materiałów zeolitowych oraz uziarnienia tych mieszanek po ekstrakcji przedstawiono tabeli 7.6.

Tabela 7.6. Uziarnienie mieszanki mineralnej 0/16 przeznaczonej do warstwy wiążącej z betonu asfaltowego AC 16 W, dla kategorii ruchu KR 3–4 z dodatkiem materiałów zeolitowych po ekstrakcji, wg WT 2 2010

<table>
<thead>
<tr>
<th>Wymiar sita [mm]</th>
<th>Przesiew po ekstrakcji [%]</th>
<th>Przesiew wg Recepty [%]</th>
<th>Rzęduń krzywych granicznych [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MM + 1% CLIN</td>
<td>MM + 0,4% CLIN+W</td>
<td></td>
</tr>
<tr>
<td>22,4</td>
<td>100,0</td>
<td>100,0</td>
<td>100</td>
</tr>
<tr>
<td>16,0</td>
<td>98,4</td>
<td>96,4</td>
<td>97,6</td>
</tr>
<tr>
<td>11,2</td>
<td>81,2</td>
<td>76,7</td>
<td>80,0</td>
</tr>
<tr>
<td>8,0</td>
<td>62,8</td>
<td>55,6</td>
<td>60,4</td>
</tr>
<tr>
<td>5,6</td>
<td>51,1</td>
<td>44,3</td>
<td>47,5</td>
</tr>
<tr>
<td>4,0</td>
<td>43,7</td>
<td>37,9</td>
<td>39,6</td>
</tr>
<tr>
<td>2,0</td>
<td>31,8</td>
<td>28,2</td>
<td>30,6</td>
</tr>
<tr>
<td>1,0</td>
<td>20,7</td>
<td>19,0</td>
<td>20,0</td>
</tr>
<tr>
<td>0,50</td>
<td>14,7</td>
<td>14,1</td>
<td>14,3</td>
</tr>
<tr>
<td>0,25</td>
<td>10,9</td>
<td>10,6</td>
<td>10,7</td>
</tr>
<tr>
<td>0,125</td>
<td>8,4</td>
<td>8,5</td>
<td>8,3</td>
</tr>
<tr>
<td>0,063</td>
<td>7,4</td>
<td>7,4</td>
<td>6,2</td>
</tr>
<tr>
<td>< 0,063</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Dopuszczalne odchyłki dla pojedynczego wyniku badań składu ziarnowego MMA zestawiono w tabeli 7.7.
Sprawdzenie składu MM oraz zawartości lepiszcza jest konieczne w celu kontroli jakości produkowanej mieszanki. Badania potwierdziły zgodność co do składu ilościowego użytych materiałów wykonanej na wytwórni mieszanki z zaprojektowaną receptą. Ilość rozpuszczonego lepiszcza jest mniejsza jedynie o 0,1–0,2% w stosunku do wartości zaprojektowanej i dodanej. Odchyłka ta jest zgodna z teoretyczną ilością lepiszcza nierozpuszczonego, która wynosi 0,2%. Uzyskane wyniki wskazują, że duża porowatość i chłonność zeolitów, w przypadku ich niewielkiego dodatku (w ilości 0,4–1,0% w stosunku do masy MMA) nie powoduje konieczności zwiększania ilości dozowanego lepiszcza.

Zagęszczenie mieszanki mineralno–asfaltowej AC 16 W z dodatkiem klinoptilolitu

Wskaźnik zagęszczenia warstwy wskazuje na bardzo dobrą zagęszczalność WMA z dodatkiem materiałów zeolitowych (tabela 7.8). W stosunku do badań laboratoryjnych zwiększyła się zawartość wolnych przestrzeni o 1–2%.

Tabela 7.8. Wyniki badań zagęszczania warstwy nawierzchni na odcinku doświadczalnym

<table>
<thead>
<tr>
<th>Właściwości</th>
<th>Wynik badania km 0+030</th>
<th>Wynik badania km 0+060</th>
<th>Wymagania</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>P</td>
<td>L</td>
<td>P</td>
</tr>
<tr>
<td>Gęstość objętościowa MMA [kg/m³]</td>
<td>2300</td>
<td>2338</td>
<td>2301</td>
</tr>
<tr>
<td>Zawartość wolnych przestrzeni [%]</td>
<td>8,2</td>
<td>7,1</td>
<td>8,2</td>
</tr>
<tr>
<td>Wskaźnik zagęszczenia warstwy [%]</td>
<td>98</td>
<td>99</td>
<td>98</td>
</tr>
</tbody>
</table>

P – strona prawa odcinka doświadczalnego wykonanego z WMA z dodatkiem 1% klinoptilolitu
L – strona lewa odcinka doświadczalnego wykonanego z WMA z dodatkiem 0,4% klinoptilolitu nasączonego wodą
Wartości pomierzone na próbkach wyciętych z nawierzchni przekraczają maksymalną dopuszczalną granicę zawartości wolnych przestrzeni, na co wpłynęła głównie temperatura zagęszczania. Pierwotnie zakładano zagęszczanie w temperaturze 120–100°C. Jednak rozpoczęcie zagęszczania w tak niskiej temperaturze powodowało bardzo szybki spadek temperatury mieszanki podczas wykonywania odcinka doświadczalnego i rzeczywista temperatura zagęszczania miejscowo wynosiła 95°C. Mimo krótkiego odcinka (100 mb) w celu uniknięcia spadku temperatury zagęszczania mieszanki w konieczne byłoby użycie dwóch walców.

Odporność na deformacje trwałe

 Wyniki badań odporności na deformacje trwałe próbek wyciętych z nawierzchni odcinka doświadczalnego zestawiono w tabeli 7.9.

Tabela 7.9 Wyniki badań odporności na deformacje trwałe próbek wyciętych z warstwy nawierzchni na odcinku doświadczalnym

<table>
<thead>
<tr>
<th>Wyszczególnienie</th>
<th>Wynik badania</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PRD_{\text{AIR}}</td>
</tr>
<tr>
<td>Wymagania według WT 2 2010</td>
<td>PRD_{\text{AIR Deklarowane}}</td>
</tr>
<tr>
<td>Wymagania według WT 2 2014</td>
<td>PRD_{\text{AIR 7,0}}</td>
</tr>
<tr>
<td>AC 16 W+ 1% CLIN</td>
<td>4,4</td>
</tr>
<tr>
<td>AC 16 W+0,4% CLIN+W</td>
<td>5,1</td>
</tr>
</tbody>
</table>

Na podstawie otrzymanych wartości PRD_{\text{AIR}} i WTS_{\text{AIR}} można stwierdzić, że nawierzchnia wykonana z AC 16W w technologii WMA z dodatkiem zeolitu naturalnego klinoptilolitu jest odporna na deformacje trwałe i spełnia wymagania według WT2 2010. Zarówno przyrost głębokości koleiny (WTS_{\text{AIR}}) jak i proporcjonalna głębokość koleiny (PRD_{\text{AIR}}) w próbkach wyciętych z nawierzchni były niższe niż w próbkach referencyjnych i w próbkach z dodatkiem klinoptilolitu wykonanych w laboratorium. Przy zastosowaniu 1% klinoptilolitu nastąpił spadek PRD_{\text{AIR}} o 38% a WTS_{\text{AIR}} o 40% w stosunku do wyników badań na płytach wykonanych w zagęszczarce płytyowej. Przy dodatku 0,4% klinoptilolitu nasączonego wodą PRD_{\text{AIR}} zmniejszyła się o 25% a WTS_{\text{AIR}} o 7%.
Moduł sztywności określony metodą rozciągania pośredniego na próbie cylindrycznej (IT-CY)

Wyniki badań modułu sztywności (metoda IT-CY) próbek wyciętych z nawierzchni odcinka doświadczalnego zestawiono w tabeli 7.10.

Tab. 7.10. Wyniki badań modułu sztywności (metoda IT-CY) wyciętych z warstwy nawierzchni na odcinku doświadczalnym

<table>
<thead>
<tr>
<th>Wyszczególnienie</th>
<th>Moduł sztywności [MPa] w temperaturze badania:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>23°C</td>
</tr>
<tr>
<td>AC 16 W+ 1% CLIN</td>
<td>4327</td>
</tr>
<tr>
<td>AC 16 W+0,4% CLIN+W</td>
<td>3598</td>
</tr>
</tbody>
</table>

Moduły sztywności próbek wycietych z nawierzchni z dodatkiem 1% klinoptilolitu osiągnął wartość porównywalną do wyników badań próbek referencyjnych wykonanych w laboratorium. Wartości te są niższe o 10–20% od modułów sztywności uzyskanych na próbkach wykonanych w ubijaki Marshalla, z takim samym dodatkiem zeolitu, zależnie od temperatury badania. W przypadku zastosowania zeolitu modyfikowanego wodą spadek modułu sztywności wynosi od 15 do 20%. Wpływ na spadek modułu sztywności ma większa zawartość wolnych przestrzeni niż w próbkach wykonanych w laboratorium. Zarówno w badaniach laboratoryjnych jak i na próbkach wycietych z nawierzchni moduły sztywności WMA z 0,4% klinoptilolitem modyfikowanym wodą okazały się niższe od wartości uzyskiwanych na próbkach WMA z 1% klinoptilolitu niemodyfikowanego.

Moduł sztywności metodą belki 4 punktowo zginanej

Wykresy współczynników przesunięcia temperaturowego na podstawie których utworzono krzywe wiodące dla próbek MMA z dodatkiem klinoptilolitu wycietych z nawierzchni odcinka doświadczalnego przedstawiono na rysunku 7.1. Parametry reologiczne funkcji sigmoidalnej zestawiono w tabl. 7.11.
Rys. 7.1. Wykres współczynników przesunięcia temperaturowego na podstawie których wyznaczono krzywe wiodące mieszank mineralno-asfaltowych z dodatkiem materiałów zeolitowych

Tabela 7.11. Parametry reologiczne funkcji sigmoidalnej mieszank mineralno-asfaltowych z dodatkiem klinoptilolitu oraz modelu WLF współczynnika przesunięcia temperaturowego

<table>
<thead>
<tr>
<th>Rodzaj badanego materiału</th>
<th>Parametry modelu CA</th>
<th>Parametry modelu WLF</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>α</td>
<td>δ</td>
</tr>
<tr>
<td>CLIN</td>
<td>3,990</td>
<td>0,418</td>
</tr>
<tr>
<td>CLIN+W</td>
<td>3,275</td>
<td>1,103</td>
</tr>
</tbody>
</table>

Rysunek 7.2 przedstawia wyznaczone krzywe wiodące WMA z dodatkiem klinoptilolitu.

Krzywa wiodąca wyznaczona dla WMA z dodatkiem klinoptilolitu modyfikowanego wodą wskazuje na niższe wartości pomierzonego modułu sztywności niezależnie od temperatury i częstotliwości oznaczenia w stosunki do wyników uzyskanych na próbkach WMA z dodatkiem 1% klinoptilolitu. Różnice te wahały się w granicach od 6 do 16%.
Rys. 7.2. Krzywe wiodące zespolonego modułu sztywności mieszanek mineralno-asfaltowych z dodatkiem klinoptilolitu wyznaczone przy temperatury referencyjnej 20°C, wykonane na podstawie wyników badań próbek wyciętych z nawierzchni odcinka doświadczalnego

Moduły sztywności oznaczone na próbkach wyciętych z nawierzchni są niższe od wartości uzyskanych na próbkach zagęszczanych zagęszczarką płytową w laboratorium o 25–60%. Różnica otrzymanych wyników wzrasta wraz ze wzrostem temperatury i częstotliwości badania.

Reasumując, na podstawie przeprowadzonych badań laboratoryjnych oraz badań próbek wyciętych z odcinka doświadczalnego można stwierdzić, że dodatek zeolitu naturalnego klinoptilolitu pozwala obniżyć temperaturę zagęszczania WMA o 25–30°C. Przy zastosowaniu optymalnej ilości dozowanego materiału zeolitowego zaprojektowana WMA spełnia wymagania dla MMA na gorąco według polskich Wymagań Technicznych.
8 Wnioski końcowe

Na podstawie uzyskanych wyników badań laboratoryjnych i terenowych mieszank mineralno-asfaltowych z dodatkiem materiałów zeolitowych oraz opierając się o analizę literatury krajowej i zagranicznej sformułowano następujące wnioski końcowe:

1. Dodatek zeolitu do mieszanki mineralno-asfaltowej pozwala na obniżenie temperatury zagęszczania o 30°C, przy zastosowaniu optymalnej ilości materiału zeolitowego. Obniżenie temperatury zagęszczania MMA możliwe jest zarówno przy zastosowaniu zeolitu naturalnego klinoptilolitu, zeolitu syntetycznego NaP1 jak i ich odmian modyfikowanych dodatkiem wody.

2. Optymalna zawartość zeolitu dodawanego do mieszanki mineralno-asfaltowej jest ścisłe związana z jego porowatością, zawartością wody zeolitowej oraz charakterem krystalochemicznym. Dodatek zeolitu można obniżyć poprzez modyfikację (nasączenie wodą). Ilość wody którą można wprowadzić do materiału zeolitowego zależy od jego typu strukturalnego.

3. W celu ustalenia optymalnego dodatku materiału zeolitowego do mieszanki mineralno-asfaltowej należy wykonać badania zagęszczalności w prasie żyratorowej. W badaniu tym można także wstępnie oszacować możliwość obniżenia temperatury zagęszczania próbek mieszanki mineralno-asfaltowej z dodatkiem zeolitów. Ostateczne przyjęcie temperatury zagęszczania powinno być dokonane na podstawie badań właściwości fizykochemicznych MMA na próbkach wykonanych w obniżonej temperaturze zagęszczania.

4. W badaniu zagęszczalności w prasie żyratorowej oraz na podstawie zawartości wolnych przestrzeni w zagęszczonych próbkach MMA z dodatkiem materiałów zeolitowych ustalono optymalny dodatek materiałów zeolitowych na poziomie:

 - 1% zeolitu naturalnego klinoptilolitu,
 - 0,5% zeolitu syntetycznego NaP1,
 - 0,4% zeolitu naturalnego klinoptilolitu nasączonego wodą,
 - 0,4% zeolitu syntetycznego NaP1 nasączonego wodą,

 w stosunku do masy mieszanki mineralno-asfaltowej.

próbek są wyniki badań lepkości dynamicznej zaczynu z dodatkiem materiałów zeolitowych.

7. Odporność na działanie wody i mrozu mieszanek mineralno-asfaltowych z dodatkiem klinoptilolitu i zeolitu NaP1, mierzona wskaźnikiem ITSR, jest na poziomie porównywalnym do MMA referencyjnych. Dodatek zeolitów nasączonech wodą powoduje spadek tej odporności. Przyczyną, jest częściowe zatrzymanie wody w strukturze zeolitowej podczas procesu produkcji MMA. Do tych mieszanek, na podstawie analizy literatury, zalecane jest zastosowanie dodatku wapna hydratyzowanego lub asfaltu modyfikowanego.

8. Odporność na deformacje trwałe MMA z dodatkiem materiałów zeolitowych jest nie mniejsza od MMA referencyjnych, mimo obniżenia temperatury zagęszczania o 30°C.

10. Proces projektowania, wytwarzania i wbudowywania mieszanek mineralno-asfaltowych o obniżonej temperaturze zagęszczania z dodatkiem materiałów zeolitowych przebiega w sposób podobny do tradycyjne produkowanych MMA. Jedyna różnica polega na przyjęciu innej temperatury zagęszczania oraz przestrzeganie czasu kondycjonowania zarobu. Zarówno w badaniach laboratoryjnych jak i w produkcji wykorzystywany jest ten sam zespół urządzeń i maszyn. W związku z powyższym produkcja WMA z dodatkiem materiałów zeolitowych może odbywać się w istniejących wytwórniach mieszanek bitumicznych.
Streszczenie

W pracy zbadano wpływ typu struktury i ilości dodatku zeolitu naturalnego (klinoptilolitu) i syntetycznego (NaP1) na efekt obniżenia temperatury procesu produkcji i zagęszczania mieszanek mineralno-asfaltowych. Zeolity to grupa minerałów o specyficznej budowie wewnętrznej (system kanałów i komór) w której występują cząsteczki wody. W efekcie dodania zeolitu do mieszanki mineralnej jednocześnie z asfaltem, woda zgromadzona w porach tych minerałów zaczyna się uwalniać. W wyniku utraty wody zeolitowej dochodzi do ekspansji objętościowej spoiiwa, efektem czego jest spienienie asfaltu i obniżenie jego lepkości. Dzięki temu zwiększa się urabialność MMA i przyczepność asfaltu do kruszywa w niższych temperaturach.

Na podstawie wyników badań własności materiałów zeolitowych oraz lepkości dynamicznej zacznymy asfaltowego z 5% dodatkiem zeolitów stwierdzono, że proces spieniania asfaltu jest zależny od charakteru krystalochemicznego minerałów zeolitowych. Również optymalna zawartość zeolitu dodawanego do MMA jest ścisłe związana z jego charakterem krystalochemicznym, porowatością oraz zawartością wody zeolitowej.

Optymalny dodatek materiałów zeolitowych został określony na podstawie wyników badań zagęszczalności MMA w prasie żyratorowej i wynosi on odpowiednio dla różnych typów badanych materiałów:

- 1% zeolitu naturalnego klinoptilolitu,
- 0,5% zeolitu syntetycznego NaP1,
- 0,4% zeolitu naturalnego klinoptilolitu modyfikowanego wodą,
- 0,4% zeolitu syntetycznego NaP1 modyfikowanego wodą.
THE EFFECT OF THE ADDITION OF ZEOLITES ON THE DECREASE OF PRODUCTION AND COMPACTION OF MIX ASPHALT

Abstract

The study analyzed the effect of natural zeolite (clinoptilolite) and synthetic zeolite (NaP1) structure type and amount on decreasing the temperature of mix asphalt production and compaction process. Zeolites are a mineral group with a specific internal structure (pores and channels) in which water particles are present. As a result of adding zeolite to mineral mix together with asphalt, the water contained in the pores of those minerals is released. As a result of zeolite water evaporation, volumetric expansion of the binder occurs, the effect of which is asphalt foaming and decreasing in its viscosity. Thus the workability of mix asphalt and asphalt adhesion to aggregate at lower temperatures increase.

The study used synthetic zeolite of the NaP1 – type structure and natural zeolite - clinoptilolite and their variations modified through soaking with water. Clinoptilolite was obtained from Sokyrnytsya zeolite tuff deposits in Carpathian Ruthenia, Ukraine. Synthetic NaP1 zeolite was obtained through fly ash conversion in hydrothermal conditions at pilot plant scale. NaP1 zeolite saturation with water was 75% in proportion to dry material mass, whereas that of clinoptilolite was 25%. The reference mix asphalt was designed for AC 16 W layer with 35/50 asphalt.

Based on results of zeolite material properties and dynamic viscosity of asphalt slurry with 5% zeolite addition, it was ascertained that the asphalt foaming process depends on the crystallochemical character of zeolite minerals. Optimal content of zeolite added to mix
asphalt is also strictly related to its crystallochemical character, porosity and zeolite water content.

Optimal addition of zeolite materials was determined basing on mix asphalt compactibility study results in a gyratory press and, for different types of analyzed materials respectively, amounts to:

- 1% of natural clinoptilolite zeolite,
- 0.5% of synthetic NaP1 zeolite,
- 0.4% of natural clinoptilolite modified with water,
- 0.4% of synthetic NaP1 zeolite modified with water.

The studies of physical and chemical properties of mix asphalt with optimal zeolite additions were conducted in 3 compaction temperatures – 145ºC, 130ºC, 115ºC. Analysis of air voids content, water resistance assessed using ITSR index and rutting resistance showed that mix asphalt with zeolite material addition meet the requirements for HMA according to WT 2 2010, therefore they can be used to construct road pavements in Poland.

Environmental, technological and economic benefits resulting from using WMA with zeolite addition, technology process similar to traditionally produced HMA, while maintaining physical and chemical properties, should contribute to dissemination of this technology.
Bibliografía

[17] Bonaquist R., Mix design practices for warm mix asphalt., Transportation Research Board, Washington (DC), 2011
[19] Bueche N., Warm asphalt bituminous mixtures with regards to energy., Emissions and Performance Young Researchers Seminar (YRS), Torino, Italy, 2009
[34] Di Benedetto H., Olard F., Sauzeat C., Delaporte B., Linear viscoelastic behavior of bituminous materials: from binders to mixes., Road Materials and Pavement Design, 5, p. 163–202, 2004
[40] Emery J., Seddik H., Moisture damage of asphalt pavements and antistripping additives: causes, identification, testing, and mitigation, Ottawa, Canada: Transportation Association of Canada, 1997

[51] Hirsch V., Warm Mix Asphalt Technologies., Presentation to WM A Scan Team, Germany, 2007

[65] Iwański M., Mazurek G., Synthetic wax effect on the resilient stiffness modulus of asphalt concrete., Road and Bridges, 3 (11), p.233–248, 2012

159

[68] Jenkins K. J., Mix design consideration for cold and half-warm bituminous mixes with emphasis on foamed bitumen., PhD Dissertation, University of Stellenbosch, South Africa, 2000

[73] Judycki J., Stienss M., Wstępne zalecenia dotyczące projektowania, produkcji i wbudowywania mieszanek mineralno-asfaltowych walowanych o obniżonej temperaturze otaczania i wbudowania (WMA) z dodatkami obniżającymi temperaturę produkcji, 2012

[84] Larsen O.R., Moen O., Robertus C., Koenders B.G., Asphalt production at lower operating temperatures as an environmental friendly alternative to HMA., Proceedings, 3rd Eurasphalt & Eurobitume Congress, Vienna, Austria, 2004
[85] Larsen O.R., Warm Asphalt Mix with foam a WAM-Foam., Partie B: Thèmes Techniques, S.00469, Kolo Veidekke, Norway, 2001
[90] Mahmoud A.F., Bahia H., Using the gyratory compactor to measure the mechanical stability of asphalt mixtures., Wisconsin Highway Research Program, 2004
[95] Nölting M., 10 years of Sasobit technology experiences, applications and outlook., Presentation to WM A Scan Team, Germany, 2007
[96] Olard F., Noan C., Low energy asphalts. Routes roads 336/337., PIARC (World Road Association), 2008
Saboori A., Abdelrahman M., Ragab M., Warm Mix Asphalt processes applicable to North Dakota, 2012
Stienss M., Badanie i analiza właściwości fizykomechanicznych mieszanek mineralno-asfaltowych o obniżonej temperaturze produkcji., Praca doktorska, Gdańsk: Politechnika Gdańska, 2014
Sybilski D., Wyznaczanie krzywej wiodącej mieszanki mineralno-asfaltowej., IV Międzynarodowa Konferencja: Trwałe i bezpieczne nawierzchnie drogowe, Kielce, 1998
Sybilski D., Horodecka R., Bańkowski W., Wróbel A., Mirski K., Zastosowanie asfaltu spienionego w technologii recyklingu nawierzchni na zimno., Projekt na zlecenie GDDKiA, 2004
Takamura K., Binder characterization for latex polymer-modified Evotherm® Warm Mix., Charlotte, North Carolina, 2005
Tao M., Mallick R.B., Effects of warm-mix asphalt additives on workability and mechanical properties of reclaimed asphalt pavement material., Transportation Research Record: Journal of the Transportation Research Board, 2126, p. 151–160, 2009

[131] Vaitkus A., Vorobjovas V., Ziliut L., The research on the use of warm mix asphalt for asphalt pavement structures., Road Department Vilnius Gediminas Technical University, Vilnius, Lithuania, 2009

Normy i wytyczne

166
[186] PN-EN 1426:2009 Asfalty i lepiszczca asfaltowe – Oznaczanie penetracji igłą
[190] Deutscher Asphaltverband e.V., Mieszanki mineralno asfaltowe o obniżonej temperaturze. Porady z praktyki do praktyki, 2009
[191] Kruszywa do mieszanek mineralno-asfaltowych i powierzchniowych utrwaleń na drogach krajowych. Wymagania Techniczne WT1 2010
[192] Nawierzchnie asfaltowe na drogach krajowych, Wymagania Techniczne WT2 2010
[193] Rozporządzenie Ministra Transportu i Gospodarki Morskiej z dnia 2 marca 1999 r. w sprawie warunków technicznych, jakim powinny odpowiadać drogi publiczne i ich usytuowanie, (Dz. U.1999 Nr 43 poz. 430).

strony internetowe

Spis tabel

Tabela 2.1. Optymalne wartości lepkości do wyznaczania temperatur technologicznych 11
Tabela 2.2. Temperatury technologiczne asfaltów i mieszanek mineralno-asfaltowych w zależności od rodzaju asfaltu .. 12
Tabela 2.3. Czynniki mające wpływ na przyczepność asfaltu do kruszywa i trwałość nawierzchni ... 13
Tabela 2.4. Produkty obniżające temperatury technologiczne mieszanek mineralno-asfaltowych... 15
Tabela 2.5. Właściwości zeolitów naturalnych i syntetycznych .. 26
Tabela 2.6. Wpływ obniżenia temperatury produkcji WMA z dodatkiem zeolitu Aspha-Min na redukcję związków niebezpiecznych ... 27
Tabela 2.7. Koszty zastosowania WMA w różnych technologiach ... 30
Tabela 2.8. Koszt wykonania nawierzchni z mieszanek mineralno-asfaltowej na długości 1 km autostrady w Turcji w różnych technologiach ... 31
Tabela 2.9. Etapy projektowania składu mieszanek WMA oraz ewentualne różnice w stosunku do mieszanek HMA ... 33
Tabela 2.10. Wyniki badań lepkości asfaltu z zastosowaniem dodatku zeolitowego oraz temperatury technologiczne WMA określone na podstawie tych badań 38
Tabela 5.1. Macierz wartości p testu Najmniejszej Istotnej Różnicy 76
Tabela 6.1. Właściwości asfaltu 35/50 używanego w badaniach laboratoryjnych 77
Tabela 6.2. Podstawowe cechy fizyczne kruszyw stosowanych do zaprojektowania mieszanki mineralno-asfaltowej AC 16 W... 78
Tabela 6.3. Podstawowe właściwości wypełniacza oraz materiałów zeolitowych stosowanych w badaniach ... 79
Tabela 6.4. Uziarnienie wypełniacza i materiałów zeolitowych stosowanych w badaniach ... 79
Tabela 6.5. Skład chemiczny materiałów zeolitowych i mączki wapienne 81
Tabela 6.6. Parametry teksturalne klinoptilolitu i zeolitu NaP1 ... 84
Tabela 6.7. Efekty termiczne zachodzące w klinoptilolicie i zeolicie NaP1 85
Tabela 6.8. Uziarnienie mieszanek mineralnej 0/16 przeznaczonej do warstwy wiążącej z betonu asfaltowego AC 16 W, dla kategorii ruchu KR 3–4 wg WT 2 2010 87
Tabela 6.9. Projektowany skład mieszanek mineralnej i mieszanki mineralno-asfaltowej 0/16 przeznaczonej do warstwy wiążącej z betonu asfaltowego AC 16 W, dla kategorii ruchu KR 3–4 wg WT 2 2010 .. 88
Tabela 6.10. Wyniki badań własności asfaltu 35/50 oraz zaczynu asfaltowego z 5% dodatkiem materiałów zeolitowych ... 89
Tabela 6.11. Temperatury krytyczne według funkcjonalnej klasyfikacji asfaltów określone na podstawie wyników badań zaczynu asfaltowego z dodatkiem materiałów zeolitowych w reometrze dynamicznego ścignania DSR ... 96
Tabela 6.12. Parametry reologiczne modelu CA dla asfaltu 35/50 z dodatkiem materiałów zeolitowych oraz modelu WLF współczynnika przesunięcia temperaturowego 99
Tabela 6.13 Symbole zastosowane do oznaczania próbek mieszanek mineralno-asfaltowych ... 102
Tabela 6.34. Wynik testu porównań wielokrotnych metodą Najmniejszych Istotnych Różnic moodułu sztywności sprężystej próbek mieszanki mineralno-asfaltowej z dodatkiem materiałów zeolitowych w temperaturze badania 10°C ... 136
Tabela 6.35. Wynik testu porównań wielokrotnych metodą Najmniejszych Istotnych Różnic moodułu sztywności sprężystej próbek mieszanki mineralno-asfaltowej z dodatkiem materiałów zeolitowych w temperaturze badania -2°C ... 136
Tabela 7.1 Określenie minimalnej zawartości asfaltu w mieszance mineralno-asfaltowej przeznaczonej do wykonania warstwy wiążącej z betonu asfaltowego AC 16 W 138
Tabela 7.2. Projektowany skład mieszanki mineralnej i mieszanki mineralno-asfaltowej 0/16 przeznaczonej do wykonania odcinka doświadczalnego warstwy wiążącej z betonu asfaltowego AC 16 W, dla kategorii ruchu KR 3–4 wg WT 2 2010 ... 138
Tabela 7.3. Własności fizykochemiczne WMA z dodatkiem zeolitu naturalnego klinoptilolitu AC 16 W przeznaczonej na wykonanie odcinka doświadczalnego 140
Tabela 7.4. Zestawienie badań właściwości WMA na próbkach wyciętych z nawierzchni odcinka doświadczalnego .. 144
Tabela 7.5. Zawartość lepiszcza rozpuszczonego i nierozpuszczonego w mieszanicie mineralno-asfaltowej AC 16 W 35/50 z dodatkiem materiałów zeolitowych wg PN-EN 12697–1:2012 [168] ... 145
Tabela 7.6. Uziarnienie mieszanki mineralnej 0/16 przeznaczonej do warstwy wiążącej z betonu asfaltowego AC 16 W, dla kategorii ruchu KR 3–4 z dodatkiem materiałów zeolitowych po ekstrakcji, wg WT 2 2010 ... 145
Tabela 7.7. Wyniki badań uziarnienia mieszanki mineralnej oraz dopuszczalne odchyłki wg WT 2 2010 ... 146
Tabela 7.8. Wyniki badań zagęszczania warstwy nawierzchni na odcinku doświadczalnym 146
Tabela 7.9 Wyniki badań odporności na deformacje trwałe próbek wyciętych z warstwy nawierzchni na odcinku doświadczalnym ... 147
Tabela 7.10. Wyniki badań modułu sztywności (metoda IT-CY) wyciętych z warstwy nawierzchni na odcinku doświadczalnym ... 148
Tabela 7.11. Parametry reologiczne funkcji sigmoidalnej mieszank mineralno-asfaltowych z dodatkiem klinoptilolitu oraz modelu WLF współczynnika przesunięcia temperaturowego ... 149
Spis rysункów

Rys. 2.1. Powierzchnia ciała stałego: a) zwilżana, b) nie zwilżana przez krople wody, 1 – napięcie powierzchniowe ciało stałe-gaz; 2 – napięcie powierzchniowe ciało stałe-ciec; 3 – napięcie powierzchniowe ciało ciec-gaz 13
Rys. 2.2. Klasyfikacja mieszanek mineralno-asfaltowych według temperatur i przybliżone zużycie paliwa ... 15
Rys. 2.3. Schemat wytwarzania asfaltu spionego ... 18
Rys. 2.4. Stacjonarny zestaw do spieniania asfaltu w technologii Double Barrel Green [193] ... 20
Rys. 2.5. Poszczególne fazy produkcji mieszanek typu LEA 21
Rys. 2.6. Ruchomy zasobnik dozowania zeolitu .. 23
Rys. 2.7. Struktura wybranych zeolitów i ich system kanałów 25
Rys. 2.8. Proces produkcji mieszanek mineralno-asfaltowej a) w technologii na gorąco b) z technologii na ciepło z dodatkiem zeolitu Aspha-Min 28
Rys. 2.9. Wbudowywanie mieszanek mineralno-asfaltowej a) w technologii na gorąco b) z technologii na ciepło z dodatkiem zeolitu Aspha-Min 28
Rys. 2.10. Zagęszczalność mieszanek mineralno-asfaltowych w temperaturze 110ºC, po 60 minutach od momentu wykonania zarobu ... 29
Rys. 2.11. Cykl życia nawierzchni asfaltowej .. 30
Rys. 2.12. Karta jakości asfaltu ... 34
Rys. 2.13. Metoda ustalania temperatury zagęszczania próbek WMA przez porównanie zawartości wolnych przestrzeni ... 35
Rys. 2.14. Procentowy ubytek masy zeolitu Advera przy użyciu masy wyjściowej 10,0 g, w zależności od temperatury ... 36
Rys. 2.15. Wzrost objętości spoiwa zmodyfikowanego przez zeolit Advera w temperaturze badania 121°C (250ºF) ... 36
Rys. 2.16. Lepkość spois asfaltowych modyfikowanych 10% dodatkiem miału gumowego z dodatkami WMA Aspha-Min i Sasobit w temperaturze badania: a) 135°C, b) 120°C 37
Rys. 2.17. Lepkość spois asfaltowych modyfikowanych 10% dodatkiem miału gumowego z zeolitem Aspha-Min w funkcji czasu w temperaturze badania: a) 135°C, b) 120°C 37
Rys. 2.18. Moduł sztywności asfaltów z 15% dodatkiem lepiszcza z recyklinowanej nawierzchni oraz dodatkiem zeolitu Aspha-Min i Sasobitu 38
Rys. 2.19. Zawartość wolnych przestrzeni w zależności od czasu spieniania asfaltu wodą uwalnianą ze struktury zeolitu Aspha-Min .. 41
Rys. 4.1. Struktura badanych materiałów zeolitowych: a) NaP1, b) klinoptilolit 47
Rys. 4.2. Schemat linii do syntez zeolitu na skalę półtechniczną 48
Rys. 5.1. Plan badań własności MMA z dodatkiem zeolitów 49
Rys. 5.2. Graficzne przedstawienie zespolonego modułu ścinania i kąta przesunięcia fazowego ... 55
Rys. 5.3. Przykład tworzenia krzywej wiodącej poprzez przesunięcia izoterm zespolonego modułu ścinania o współczynnik przesunięcia temperaturowego a_T ... 57
Rys. 5.4. Przykład krzywej wiodącej i wykresu współczynnika przesunięcia temperaturowego .. 57

171
Rys. 5.5. Przykład graficznej analizy wielkości przesuwu w celu określenia współczynnika przesunięcia temperaturowego \(a_T \) ... 58
Rys. 5.6. Graficzne przedstawienie parametrów krzywej wiodącej: crossover frequency \(\omega_c \), oraz indeksu reologicznego \(R \) ... 60
Rys. 5.7. Wykres zagęszczalności mieszanki mineralno-asfaltowej w prasie żyratorowej w skali półlogarytmicznej ... 64
Rys. 5.8. Wykres zagęszczalności mieszanki mineralno-asfaltowej w prasie żyratorowej z zaznaczonymi wskaźnikami MSI i MRI .. 65
Rys. 5.9. Kształt pulsu siły, ukazujący czas przyrostu i pik siły 70
Rys. 5.10. Podstawowe zasady badania w metodzie cztero-punktowego zginania 71
Rys. 6.1. Wykres rozkładu wielkości ziaren materiałów zeolitowych i mączki wapiennej oznaczony metodą dyfrakcji laserowej ... 80
Rys. 6.2. Dyfraktogramy składu mineralnego materiałów zeolitowych i mączki wapiennej .. 82
Rys. 6.3. Derywatogramy klinoptiolołu i zeolitu typu NaP1 85
Rys. 6.4. Wykres krzywej uziarnienia mieszanki mineralnej 0/16 przeznaczonej do warstwy wiąującej z betonu asfaltowego AC 16 W, dla kategorii ruchu KR 3–4 wg WT 2 2010...... 87
Rys. 6.5. Wyniki badań penetracji asfaltu 35/50 z 5% dodatkiem materiałów zeolitowych ... 89
Rys. 6.6. Wyniki badań temperatury mięknienia asfaltu 35/50 z 5% dodatkiem materiałów zeolitowych ... 90
Rys. 6.7. Wyniki badań temperatury łamliwości asfaltu 35/50 z 5% dodatkiem materiałów zeolitowych ... 90
Rys. 6.8. Wyniki badań właściwości usztywniających materiałów zeolitowych mierzone przyrostem temperatury mięknienia \(\Delta_{R&B} \) zaczynu asfaltowego z materiałami zeolitowymi. 92
Rys. 6.9. Wyniki badań lepkości dynamicznej asfaltu 35/50 z dodatkiem materiałów zeolitowych oznaczona w temperaturze 135°C 94
Rys. 6.10. Wyniki badań lepkości dynamicznej asfaltu 35/50 z dodatkiem materiałów zeolitowych oznaczona w temperaturze 160°C 94
Rys. 6.11. Wykresy współczynników przesunięcia temperaturowego dla asfaltu 35/50 oraz zacznuy asfaltowego z dodatkiem materiałów zeolitowych 97
Rys. 6.12. Krzywe wiodące asfaltu 35/50 oraz zacznuy asfaltowego z dodatkiem materiałów zeolitowych, wyznaczone przy temperatury referencyjnej 34°C .. 98
Rys. 6.13. Zespolony moduł ścinania wyznaczony w częstotliwości "crossover" dla asfaltu 35/50 oraz zacznuy asfaltowego z materiałami zeolitowymi 101
Rys. 6.14. Wskaźnik stabilności mieszanki MSI oraz indeks odporności mieszanki MRI dla WMA z dodatkiem zeolitu naturalnego klinoptiolołu .. 105
Rys. 6.15. Wskaźnik stabilności mieszanki MSI oraz indeks odporności mieszanki MRI dla WMA z dodatkiem zeolitu naturalnego klinoptiolołu modyfikowanego wodą 105
Rys. 6.16. Wskaźnik stabilności mieszanki MSI oraz indeks odporności mieszanki MRI dla WMA z dodatkiem zeolitu syntetycznego NaP1 .. 107
Rys. 6.17. Wskaźnik stabilności mieszanki MSI oraz indeks odporności mieszanki MRI dla WMA z dodatkiem zeolitu syntetycznego NaP1 modyfikowanego wodą 107
Rys. 6.18. Zależność zawartości wolnych przestrzeni od procentowej ilości dozowanego materiału zeolitowego, w próbkach zagęszczanych w prasie żyratorowej 109
Rys. 6.19. Zależność zawartości wolnych przestrzeni od procentowej ilości dozowanego materiału zeolitowego modyfikowanych wodą, w próbkach zagęszczanych w prasie żyratorowej ... 109
Rys. 6.20. Zawartość wolnych przestrzeni w próbkach zagęszczanych w prasie żyratorowej z dodatkiem klinoptilolitu ... 110
Rys. 6.21. Zawartość wolnych przestrzeni w próbkach zagęszczanych w prasie żyratorowej z dodatkiem klinoptilolitu modyfikowanego wodą .. 110
Rys. 6.22 Zawartość wolnych przestrzeni w próbkach zagęszczanych w prasie żyratorowej z dodatkiem zeolitów NaP1 ... 111
Rys. 6.23. Zawartość wolnych przestrzeni w próbkach zagęszczanych w prasie żyratorowej z dodatkiem zeolitów modyfikowanych wodą .. 111
Rys. 6.24. Graficzny sposób określania temperatury zagęszczania WMA z dodatkiem zeolitów na podstawie badań zagęszczalności w prasie żyratorowej 112
Rys. 6.25 Zawartość wolnych przestrzeni w próbkach zagęszczanych w ubijaku Marshalla z dodatkiem zeolitów ... 114
Rys. 6.26. Wytrzymałość na pośrednie rozciąganie próbek suchych mieszanki mineralno-asfaltowej z dodatkiem materiałów zeolitowych .. 115
Rys. 6.27. Wytrzymałość na pośrednie rozciąganie kondycjonowanych próbek mieszanki mineralno-asfaltowej z dodatkiem materiałów zeolitowych 116
Rys. 6.28 Wskaźnik wodoodporności ITSR mieszanki mineralno-asfaltowej z dodatkiem materiałów zeolitowych ... 116
Rys. 6.29. Moduł sztywności sprężystej próbek suchych mieszanki mineralno-asfaltowej z dodatkiem materiałów zeolitowych ... 118
Rys. 6.30. Moduł sztywności sprężystej kondycjonowanych próbek mieszanki mineralno-asfaltowej z dodatkiem materiałów zeolitowych 118
Rys. 6.31. Wskaźnik wodoodporności ITSM mieszanki mineralno-asfaltowej z dodatkiem materiałów zeolitowych ... 119
Rys. 6.32. Proporcjonalna głębokość koleiny dla próbek mieszanki mineralno-asfaltowej z dodatkiem materiałów zeolitowych ... 120
Rys. 6.33. Przyrost głębokości koleiny próbek mieszanki mineralno-asfaltowej z dodatkiem materiałów zeolitowych ... 121
Rys. 6.34. Wykres przebiegu proporcjonalnej głębokości koleiny w zależności od liczby cykli badania odporności na deformacje trwałe próbek mieszanki mineralno-asfaltowej z dodatkiem zeolitów ... 121
Rys. 6.35. Moduł sztywności sprężystej próbek mieszanki mineralno-asfaltowej z dodatkiem materiałów zeolitowych w temperaturze badania 23°C 122
Rys. 6.36. Moduł sztywności sprężystej próbek mieszanki mineralno-asfaltowej z dodatkiem materiałów zeolitowych w temperaturze badania 10°C 123
Rys. 6.37. Moduł sztywności sprężystej próbek mieszanki mineralno-asfaltowej z dodatkiem materiałów zeolitowych w temperaturze badania -2°C 123
Rys. 6.38. Wykres współczynników przesunięcia temperaturowego na podstawie których wyznaczono krzywe wiodące mieszanek mineralno-asfaltowych z dodatkiem materiałów zeolitowych ... 124

173
Rys. 6.39. Krzywe wiodące mieszanek mineralno-asfaltowych z dodatkiem materiałów zeolitowych, wyznaczone przy temperatury referencyjnej 20°C ... 125
Rys. 7.1. Wykres współczynników przesunięcia temperaturowego na podstawie których wyznaczono krzywe wiodące mieszanek mineralno-asfaltowych z dodatkiem materiałów zeolitowych .. 149
Rys. 7.2. Krzywe wiodące zespolonego modułu sztywności mieszanek mineralno-asfaltowych z dodatkiem klinoptilolitu wyznaczone przy temperatury referencyjnej 20°C, wykonane na podstawie wyników badań próbek wyciętych z nawierzchni odcinka doświadczalnego 150
Spis fotografii

Fot. 2.1. Zeolit Aspha-Min i Advera ... 22
Fot. 2.2. Ręczne dozowanie zeolitu ... 23
Fot. 4.1. a) zeolit naturalny klinoptilolit b) zeolit syntetyczny o typie struktury NaP1 47
Fot. 5.1. a) zeolit naturalny klinoptilolit modyfikowany wodą b) zeolit syntetyczny o typie struktury NaP1 modyfikowany wodą ... 50
Fot. 5.2. a) 25 g asfaltu 35/50 o temperaturze 145°C b) mieszanie rozgrzanego asfaltu z 5% dodatkiem zeolitu naturalnego klinoptilolitu modyfikowanego wodą c) efekt spienienia asfaltu wywołany wodą uwalniającą się ze struktury zeolitu ... 51
Fot. 5.3. Próbka umieszczona w uchwycie prasy Marshalla podczas badania wytrzymałości na pośrednie rozciąganie .. 67
Fot. 5.4. Próbka umieszczona w aparacie NAT podczas badania modułu sztywności sprężystej metodą IT-CY ... 67
Fot. 5.5. Widok koleinomierza małego z próbką po zakończeniu badania odporności na deformacje trwale .. 69
Fot. 5.6. Próbka umieszczona w aparacie do badania modułu sztywności sprężystej metodą cztero-punktowego zginania ... 71
Fot. 6.1. Mikrofotografia i widmo składu chemicznego klinoptilolitu 83
Fot. 6.2. Mikrofotografia i widmo składu chemicznego zeolitu NaP1 83
Fot. 6.3. Mikrofotografia i widmo składu chemicznego mączki wapiennej 83
Fot. 6.4. Próba przygotowania próbki wg normy PN-EN 13179–1:2013 [184] do badania właściwości usztywniających zeolit syntetycznego typu NaP1 ... 92
Fot. 7.1. Nasączanie zeolitu naturalnego klinoptilolitu wodą 139
Fot. 7.2. Ręczne dozowanie zeolitu ... 141
Fot. 7.3. a) Załadunek mieszanki mineralno-asfaltowej 0/16 z dodatkiem zeolitu,
przeznaczonej do wykonania odcinka doświadczalnego warstwy wiąjącej z betonu
asfaltowego AC 16 W b) Zagęszczanie mieszanki mineralno-asfaltowej 0/16 z dodatkiem
zeolitu, przeznaczonej do wykonania odcinka doświadczalnego warstwy wiąjącej z betonu
asfaltowego AC 16 W .. 142
Fot. 7.4. Wyprodukowana mieszanka mineralno-asfaltowa AC 16 W z dodatkiem zeolitu.. 142